101
|
Yanagita T, Tsuge K, Koga M, Inoue N, Nagao K. Eicosapentaenoic acid-containing polar lipids from seaweed Susabinori (Pyropia yezoensis) alleviate hepatic steatosis in obese db/db mice. Arch Biochem Biophys 2020; 691:108486. [PMID: 32710880 DOI: 10.1016/j.abb.2020.108486] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/21/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is emerging as the most common liver disease in industrialized countries. Because hepatic steatosis is an early pathogenesis of NAFLD, the discovery of food components that could ameliorate hepatic steatosis is of interest. Susabinori (Pyropia yezoensis) is recognized as one of the most delicious edible brown algae, and we prepared lipid component of susabinori (SNL), which is rich in eicosapentaenoic acid (EPA)-containing polar lipids. In this study, we tested whether feeding SNL to db/db mice protects them from developing obesity-induced hepatic steatosis. After four weeks of feeding, hepatomegaly, hepatic steatosis, and hepatic injury were markedly alleviated in SNL-fed db/db mice. These effects were partly attributable to the suppression of activities and mRNA expressions of lipogenic enzymes and enhanced levels of adiponectin due to the SNL diet. Additionally, mRNA expression of monocyte chemoattractant protein-1, an inflammatory chemokine, was markedly suppressed, and the mRNA levels of PPARδ, the anti-inflammatory transcription factor, were strongly enhanced in the livers of db/db mice by the SNL diet. We speculate that the development and progression of obesity-induced hepatic steatosis was prevented by the suppression of chronic inflammation due to the combination of bioactivities of EPA, phospholipids, and glycolipids in the SNL diet.
Collapse
Affiliation(s)
- Teruyoshi Yanagita
- Department of Biological Resource Science, Saga University, Saga, 840-8502, Japan; Department of Health and Nutrition Sciences, Nishikyushu University, Kanzaki, 842-8585, Japan; Saga Regional Industry Support Center, Saga, 849-0932, Japan
| | - Keisuke Tsuge
- Industrial Technology Center of Saga, Saga, 849-0932, Japan
| | - Misato Koga
- Department of Biological Resource Science, Saga University, Saga, 840-8502, Japan
| | - Nao Inoue
- Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555, Japan
| | - Koji Nagao
- Department of Biological Resource Science, Saga University, Saga, 840-8502, Japan.
| |
Collapse
|
102
|
Wang P, Loh KH, Wu M, Morgan DA, Schneeberger M, Yu X, Chi J, Kosse C, Kim D, Rahmouni K, Cohen P, Friedman J. A leptin-BDNF pathway regulating sympathetic innervation of adipose tissue. Nature 2020; 583:839-844. [PMID: 32699414 DOI: 10.1038/s41586-020-2527-y] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/01/2020] [Indexed: 11/09/2022]
Abstract
Mutations in the leptin gene (ob) result in a metabolic disorder that includes severe obesity1, and defects in thermogenesis2 and lipolysis3, both of which are adipose tissue functions regulated by the sympathetic nervous system. However, the basis of these sympathetic-associated abnormalities remains unclear. Furthermore, chronic leptin administration reverses these abnormalities in adipose tissue, but the underlying mechanism remains to be discovered. Here we report that ob/ob mice, as well as leptin-resistant diet-induced obese mice, show significant reductions of sympathetic innervation of subcutaneous white and brown adipose tissue. Chronic leptin treatment of ob/ob mice restores adipose tissue sympathetic innervation, which in turn is necessary to correct the associated functional defects. The effects of leptin on innervation are mediated via agouti-related peptide and pro-opiomelanocortin neurons in the hypothalamic arcuate nucleus. Deletion of the gene encoding the leptin receptor in either population leads to reduced innervation in fat. These agouti-related peptide and pro-opiomelanocortin neurons act via brain-derived neurotropic factor-expressing neurons in the paraventricular nucleus of the hypothalamus (BDNFPVH). Deletion of BDNFPVH blunts the effects of leptin on innervation. These data show that leptin signalling regulates the plasticity of sympathetic architecture of adipose tissue via a top-down neural pathway that is crucial for energy homeostasis.
Collapse
Affiliation(s)
- Putianqi Wang
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Ken H Loh
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| | - Michelle Wu
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Donald A Morgan
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Marc Schneeberger
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Xiaofei Yu
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jingyi Chi
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Christin Kosse
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Damian Kim
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Jeffrey Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
103
|
LEPR hypomethylation is significantly associated with gastric cancer in males. Exp Mol Pathol 2020; 116:104493. [PMID: 32659237 DOI: 10.1016/j.yexmp.2020.104493] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 05/28/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Previous study has shown LEPR is a candidate gene of prediction and treatment of gastric cancer (GC). The purpose of this study was to test whether LEPR methylation could predict the risk of GC. MATERIALS AND METHODS Tumor tissues and 5-cm adjacent non-tumor tissues from 117 newly diagnosed and untreated GC patients were collected for the current methylation study. LEPR methylation levels were determined by quantitative methylation specific PCR (qMSP), and the methylation level of LEPR was described by the percentage of methylated reference (PMR). RESULTS Our results showed that LEPR methylation levels were significantly lower in tumor tissues than those in adjacent non-tumor tissues (median PMR: 36.64% vs. 50.29%, P = 1E-4). In addition, LEPR methylation levels were found to be significantly associated with platelet (r = -0.198, P = .037). Further subgroup analysis showed that the association of LEPR promoter hypomethylation with GC was specific to males (males: P = 7E-5; females: P = .500). Notably, significant hypomethylation of LEPR promoter was found only in GC patients without recurrence (P = .002) but not in GC patients with recurrence (P = .146). The AUC of LEPR hypomethylation for identification of GC risk was 0.649 with a sensitivity of 67.5% and a specificity of 63.2%. In addition, the AUC of LEPR hypomethylation in males was 0.685 with a sensitivity of 68.4% and a specificity of 69.6%. CONCLUSION LEPR hypomethylation can be used to predict the risk of GC in males. And it might also have the potential to predict the recurrence in GC patients.
Collapse
|
104
|
Bains V, Kaur H, Badaruddoza B. Association analysis of polymorphisms in LEP (rs7799039 and rs2167270) and LEPR (rs1137101) gene towards the development of type 2 diabetes in North Indian Punjabi population. Gene 2020; 754:144846. [PMID: 32512158 DOI: 10.1016/j.gene.2020.144846] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Obesity is a major risk factor in aetiology of type 2 diabetes mellitus (T2DM). Leptin (LEP) is an anti-obesity hormone which regulates food intake, energy expenditure and glucose metabolism. The genetic variants in leptin and leptin receptor gene (LEPR) may play major role in the pathogenesis of T2DM and obesity. The current study aimed to investigate the association of polymorphisms in LEP (rs7799039, -2548G/A and rs2167270, 19G/A) and LEPR (rs1137101, 668A/G) gene with type 2 diabetes in North Indian Punjabi population. METHODS A total of 817 subjects were included for the present case-control study, consisting of 417 T2DM patients and 400 healthy controls. The anthropometric, physiometric and biochemical measurements were taken from all the subjects. The genotyping of LEP and LEPR gene variants were carried out by polymerase chain reaction based restriction fragment length polymorphism method (PCR-RFLP), followed by genotyping of 10% of the samples for each polymorphism by Sanger sequencing method for quality control measurement. RESULTS The risk genotype frequencies were found to be significantly higher in T2DM cases than control subjects (rs7799039, p = 0.001; rs2167270, p = 0.019 and rs1137101, p = 0.003). Under recessive genetic model LEPrs7799039 and LEPRrs1137101 polymorphism conferred 3.4 and 2.1 fold risk towards the development of T2DM after adjustment of various covariates (OR = 3.44, 95%CI: 1.768-6.681, p = 0.001 and OR: 2.12, 95%CI: 1.256-3.569, p = 0.005, respectively). In the stratified analysis of LEP variant rs7799039 by age, gender, BMI and alcohol use, a significantly increased risk of T2DM was found in female, BMI ≥ 23 and never drinking subgroups. However, in the LEPR variant rs1137101, significantly increased risk of T2DM was observed in age <50, male, BMI ≥ 23 and never drinking subgroup. The A-G haplotype combination of rs7799039A and rs2167270G conferred significant 2 fold risk towards T2DM (OR = 2.35, 95%CI: 1.34-4.12, p = 0.002). In control group, the genetic variants rs7799039 and rs1137101 were significantly associated with levels of random blood sugar and low density lipoprotein cholesterol levels. CONCLUSION The present study revealed the association of LEP rs7799039 and LEPR rs1137101 with type 2 diabetes mellitus, which suggest its predominant role in the estimation of type 2 diabetes mellitus in North Indian Punjabi population.
Collapse
Affiliation(s)
- Veena Bains
- Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar 143 005, Punjab, India
| | - Harjit Kaur
- Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar 143 005, Punjab, India
| | - Badaruddoza Badaruddoza
- Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar 143 005, Punjab, India.
| |
Collapse
|
105
|
Association of leptin receptor genetic variants (LEPR) with obesity and leptin level in unexplained infertility in northern Indian population. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2020. [DOI: 10.1016/j.cegh.2019.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
106
|
Interaction of glucose sensing and leptin action in the brain. Mol Metab 2020; 39:101011. [PMID: 32416314 PMCID: PMC7267726 DOI: 10.1016/j.molmet.2020.101011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023] Open
Abstract
Background In response to energy abundant or deprived conditions, nutrients and hormones activate hypothalamic pathways to maintain energy and glucose homeostasis. The underlying CNS mechanisms, however, remain elusive in rodents and humans. Scope of review Here, we first discuss brain glucose sensing mechanisms in the presence of a rise or fall of plasma glucose levels, and highlight defects in hypothalamic glucose sensing disrupt in vivo glucose homeostasis in high-fat fed, obese, and/or diabetic conditions. Second, we discuss brain leptin signalling pathways that impact glucose homeostasis in glucose-deprived and excessed conditions, and propose that leptin enhances hypothalamic glucose sensing and restores glucose homeostasis in short-term high-fat fed and/or uncontrolled diabetic conditions. Major conclusions In conclusion, we believe basic studies that investigate the interaction of glucose sensing and leptin action in the brain will address the translational impact of hypothalamic glucose sensing in diabetes and obesity.
Collapse
|
107
|
Gözüküçük M, Yarcı Gürsoy A, Destegül E, Taşkın S, Şatıroğlu H. Adiponectin and leptin levels in normal weight women with polycystic ovary syndrome. Horm Mol Biol Clin Investig 2020; 41:/j/hmbci.ahead-of-print/hmbci-2020-0016/hmbci-2020-0016.xml. [DOI: 10.1515/hmbci-2020-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/08/2020] [Indexed: 12/17/2022]
Abstract
Abstract
Objectives
Since polycystic ovarian syndrome (PCOS) is prevalent in reproductive women with obesity and insulin resistance, adipocytokines are often accused and investigated for pathophysiology. The aim of this study was to evaluate the adiponectin and leptin levels in normal-weight women with PCOS.
Methods
Forty women with PCOS and 40 age and body mass index (BMI) matched controls were included in the study. Adiponectin and leptin levels in addition to other biochemical parameters were measured.
Results
Leptin levels were statistically significantly higher in the study group compared to the control group (6.53 ± 2.670 vs 3.37 ± 2.002 ng/mL, p < 0.001 respectively). Although Adiponectin levels were lower in the study group compared to the control group (28.89 ± 16.124 μg/mL vs 31.05 ± 20.507, p = 0.714 respectively) the difference did not reach statistical significance. Leptin levels were positively correlated with fasting glucose, fasting insulin, free testosterone levels and homeostatic model assessment of insulin resistance (HOMA-IR) values. Adiponectin levels were negatively correlated with BMI.
Conclusions
Adiponectin and leptin have been suggested to play a crucial role in the pathogenesis of PCOS. Different adipocytokine levels in the normal weight PCOS group compared to age and BMI matched controls support the idea that adipose tissue in this group of women has some distinctive features not only in high BMI subgroup but also in normal weight subgroup.
Collapse
Affiliation(s)
- Murat Gözüküçük
- Sağlık Bakanlığı Ankara Eğitim ve Araştırma Hastanesi Sakarya Mh , Ulucanlar Cd , No:89 Altındağ , Ankara , Turkey
| | - Aslı Yarcı Gürsoy
- Ufuk University Faculty of Medicine , Department of Obstetrics and Gynecology , Ankara , Turkey
| | - Emre Destegül
- Adana City Hospital , Department of Obstetrics and Gynecology , Adana , Turkey
| | - Salih Taşkın
- Ankara University Faculty of Medicine , Department of Obstetrics and Gynecology , Ankara , Turkey
| | - Hakan Şatıroğlu
- Ankara University Faculty of Medicine , Department of Obstetrics and Gynecology , Ankara , Turkey
| |
Collapse
|
108
|
Danielsson J, Noel JK, Simien JM, Duggan BM, Oliveberg M, Onuchic JN, Jennings PA, Haglund E. The Pierced Lasso Topology Leptin has a Bolt on Dynamic Domain Composed by the Disordered Loops I and III. J Mol Biol 2020; 432:3050-3063. [PMID: 32081588 DOI: 10.1016/j.jmb.2020.01.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/18/2020] [Accepted: 01/24/2020] [Indexed: 02/08/2023]
Abstract
Leptin is an important signaling hormone, mostly known for its role in energy expenditure and satiety. Furthermore, leptin plays a major role in other proteinopathies, such as cancer, marked hyperphagia, impaired immune function, and inflammation. In spite of its biological relevance in human health, there are no NMR resonance assignments of the human protein available, obscuring high-resolution characterization of the soluble protein and/or its conformational dynamics, suggested as being important for receptor interaction and biological activity. Here, we report the nearly complete backbone resonance assignments of human leptin. Chemical shift-based secondary structure prediction confirms that in solution leptin forms a four-helix bundle including a pierced lasso topology. The conformational dynamics, determined on several timescales, show that leptin is monomeric, has a rigid four-helix scaffold, and a dynamic domain, including a transiently formed helix. The dynamic domain is anchored to the helical scaffold by a secondary hydrophobic core, pinning down the long loops of leptin to the protein body, inducing motional restriction without a well-defined secondary or tertiary hydrogen bond stabilized structure. This dynamic region is well suited for and may be involved in functional allosteric dynamics upon receptor binding.
Collapse
Affiliation(s)
- Jens Danielsson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | | | | | - Brendan Michael Duggan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, USA
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, USA; Department of Physics and Astronomy, Department of Chemistry, And Department of Biosciences, Rice University, Houston, USA
| | - Patricia Ann Jennings
- Department of Chemistry and Biochemistry, The University of California at San Diego, La Jolla, USA
| | - Ellinor Haglund
- The Department of Chemistry, University of Hawaii, Manoa, Honolulu, USA.
| |
Collapse
|
109
|
Iqbal J, Mascareno E, Chua S, Hussain MM. Leptin-mediated differential regulation of microsomal triglyceride transfer protein in the intestine and liver affects plasma lipids. J Biol Chem 2020; 295:4101-4113. [PMID: 32047110 PMCID: PMC7105304 DOI: 10.1074/jbc.ra119.011881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/06/2020] [Indexed: 11/06/2022] Open
Abstract
The hormone leptin regulates fat storage and metabolism by signaling through the brain and peripheral tissues. Lipids delivered to peripheral tissues originate mostly from the intestine and liver via synthesis and secretion of apolipoprotein B (apoB)-containing lipoproteins. An intracellular chaperone, microsomal triglyceride transfer protein (MTP), is required for the biosynthesis of these lipoproteins, and its regulation determines fat mobilization to different tissues. Using cell culture and animal models, here we sought to identify the effects of leptin on MTP expression in the intestine and liver. Leptin decreased MTP expression in differentiated intestinal Caco-2 cells, but increased expression in hepatic Huh7 cells. Similarly, acute and chronic leptin treatment of chow diet-fed WT mice decreased MTP expression in the intestine, increased it in the liver, and lowered plasma triglyceride levels. These leptin effects required the presence of leptin receptors (LEPRs). Further experiments also suggested that leptin interacted with long-form LEPR (ObRb), highly expressed in the intestine, to down-regulate MTP. In contrast, in the liver, leptin interacted with short-form LEPR (ObRa) to increase MTP expression. Mechanistic experiments disclosed that leptin activates signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase (MAPK) signaling pathways in intestinal and hepatic cells, respectively, and thereby regulates divergent MTP expression. Our results also indicated that leptin-mediated MTP regulation in the intestine affects plasma lipid levels. In summary, our findings suggest that leptin regulates MTP expression differentially by engaging with different LEPR types and activating distinct signaling pathways in intestinal and hepatic cells.
Collapse
Affiliation(s)
- Jahangir Iqbal
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203; King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Eastern Region, Ministry of National Guard Health Affairs, Al Ahsa 31982, Saudi Arabia.
| | - Eduardo Mascareno
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203
| | - Streamson Chua
- Department of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - M Mahmood Hussain
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203; Department of Foundations of Medicine, NYU Long Island School of Medicine and Diabetes and Obesity Research Center, NYU Winthrop Research Institute, Mineola, New York 11501; Veterans Affairs New York Harbor Healthcare System, Brooklyn, New York 11209.
| |
Collapse
|
110
|
Cangiano B, Swee DS, Quinton R, Bonomi M. Genetics of congenital hypogonadotropic hypogonadism: peculiarities and phenotype of an oligogenic disease. Hum Genet 2020; 140:77-111. [PMID: 32200437 DOI: 10.1007/s00439-020-02147-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/04/2020] [Indexed: 12/30/2022]
Abstract
A genetic basis of congenital isolated hypogonadotropic hypogonadism (CHH) can be defined in almost 50% of cases, albeit not necessarily the complete genetic basis. Next-generation sequencing (NGS) techniques have led to the discovery of a great number of loci, each of which has illuminated our understanding of human gonadotropin-releasing hormone (GnRH) neurons, either in respect of their embryonic development or their neuroendocrine regulation as the "pilot light" of human reproduction. However, because each new gene linked to CHH only seems to underpin another small percentage of total patient cases, we are still far from achieving a comprehensive understanding of the genetic basis of CHH. Patients have generally not benefited from advances in genetics in respect of novel therapies. In most cases, even genetic counselling is limited by issues of apparent variability in expressivity and penetrance that are likely underpinned by oligogenicity in respect of known and unknown genes. Robust genotype-phenotype relationships can generally only be established for individuals who are homozygous, hemizygous or compound heterozygotes for the same gene of variant alleles that are predicted to be deleterious. While certain genes are purely associated with normosmic CHH (nCHH) some purely with the anosmic form (Kallmann syndrome-KS), other genes can be associated with both nCHH and KS-sometimes even within the same kindred. Even though the anticipated genetic overlap between CHH and constitutional delay in growth and puberty (CDGP) has not materialised, previously unanticipated genetic relationships have emerged, comprising conditions of combined (or multiple) pituitary hormone deficiency (CPHD), hypothalamic amenorrhea (HA) and CHARGE syndrome. In this review, we report the current evidence in relation to phenotype and genetic peculiarities regarding 60 genes whose loss-of-function variants can disrupt the central regulation of reproduction at many levels: impairing GnRH neurons migration, differentiation or activation; disrupting neuroendocrine control of GnRH secretion; preventing GnRH neuron migration or function and/or gonadotropin secretion and action.
Collapse
Affiliation(s)
- Biagio Cangiano
- Department of Clinical Sciences and Community Health, University of Milan, 20100, Milan, Italy.,Department of Endocrine and Metabolic Diseases and Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy
| | - Du Soon Swee
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | - Richard Quinton
- Endocrine Unit, Royal Victoria Infirmary, Department of Endocrinology, Diabetes and Metabolism, Newcastle-Upon-Tyne Hospitals, Newcastle-Upon-Tyne, NE1 4LP, UK. .,Translational and Clinical Research Institute, University of Newcastle-Upon-Tyne, Newcastle-Upon-Tyne, UK.
| | - Marco Bonomi
- Department of Clinical Sciences and Community Health, University of Milan, 20100, Milan, Italy. .,Department of Endocrine and Metabolic Diseases and Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy.
| |
Collapse
|
111
|
Martinez-Pena Y Valenzuela I, Akaaboune M. The disassembly of the neuromuscular synapse in high-fat diet-induced obese male mice. Mol Metab 2020; 36:100979. [PMID: 32283080 PMCID: PMC7182767 DOI: 10.1016/j.molmet.2020.100979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Objective A sustained high fat diet in mice mimics many features of human obesity. We used male and female Non-Swiss albino mice to investigate the impact of short and long-term high-fat diet-(HFD)-induced obesity on the peripheral neuromuscular junction (NMJ) and whether obesity-related synaptic structural alterations were reversible after switching obese mice from HFD to a standard fat diet (SD). Methods HFD-induced obese and age-matched control mice fed SD were used. We carried out in vivo time lapse imaging to monitor changes of synapses over time, quantitative fluorescence imaging to study the regulation of acetylcholine receptor number and density at neuromuscular junctions, and high resolution confocal microscope to study structural alterations in both the pre- and postsynaptic apparatus. Results Time-lapse imaging in vivo over a 9 month period revealed that NMJs of HFD obese male mice display a variety of obesity-related structural alterations, including the disappearance of large synaptic areas, significant reduction in the density/number of nicotinic acetylcholine receptor (AChRs), abnormal distribution of AChRs, high turnover rate of AChRs, retraction of axons from lost postsynaptic sites, and partially denervated synapses. The severity of these synaptic alterations is associated with the duration of obesity. However, no substantial alterations were observed at NMJs of age-matched HFD obese female mice or male mice fed with a standard or low fat diet. Intriguingly, when obese male mice were switched from HFD to a standard diet, receptor density and the abnormal pattern of AChR distribution were completely reversed to normal, whereas lost synaptic structures were not restored. Conclusions These results show that the obese male mice are more vulnerable than female mice to the impacts of long-term HFD on the NMJ damage and provide evidence that diet restriction can partially reverse obesity-related synaptic changes. Neuromuscular junctions of High-fat induced obese male mice display a variety of obesity-related structural alterations. The severity of alterations in neuromuscular junction morphology is associated with the duration of obesity. Neuromuscular junctions of High-fat diet induced obese female mice display no substantial morphological changes. Not all obesity-related synaptic alterations were reversible after switching male mice from High-fat diet to standard diet. Obese male mice are more vulnerable than female mice to the impacts of long-term HFD on the neuromuscular junction damage.
Collapse
Affiliation(s)
| | - Mohammed Akaaboune
- Department of Molecular, Cellular, and Developmental Biology, USA; Program in Neuroscience, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
112
|
Seoane-Collazo P, Martínez-Sánchez N, Milbank E, Contreras C. Incendiary Leptin. Nutrients 2020; 12:nu12020472. [PMID: 32069871 PMCID: PMC7071158 DOI: 10.3390/nu12020472] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 02/08/2023] Open
Abstract
Leptin is a hormone released by adipose tissue that plays a key role in the control of energy homeostasis through its binding to leptin receptors (LepR), mainly expressed in the hypothalamus. Most scientific evidence points to leptin’s satiating effect being due to its dual capacity to promote the expression of anorexigenic neuropeptides and to reduce orexigenic expression in the hypothalamus. However, it has also been demonstrated that leptin can stimulate (i) thermogenesis in brown adipose tissue (BAT) and (ii) the browning of white adipose tissue (WAT). Since the demonstration of the importance of BAT in humans 10 years ago, its study has aroused great interest, mainly in the improvement of obesity-associated metabolic disorders through the induction of thermogenesis. Consequently, several strategies targeting BAT activation (mainly in rodent models) have demonstrated great potential to improve hyperlipidemias, hepatic steatosis, insulin resistance and weight gain, leading to an overall healthier metabolic profile. Here, we review the potential therapeutic ability of leptin to correct obesity and other metabolic disorders, not only through its satiating effect, but by also utilizing its thermogenic properties.
Collapse
Affiliation(s)
- Patricia Seoane-Collazo
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain;
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
- Correspondence: (P.S.-C.); (N.M.-S.); (C.C.); Tel.: +81-298-533-301 (P.S.-C.); +34-913-941-650 (N.M.-S.); +44-01865285890 (C.C.)
| | - Noelia Martínez-Sánchez
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Correspondence: (P.S.-C.); (N.M.-S.); (C.C.); Tel.: +81-298-533-301 (P.S.-C.); +34-913-941-650 (N.M.-S.); +44-01865285890 (C.C.)
| | - Edward Milbank
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain;
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Cristina Contreras
- Department of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (P.S.-C.); (N.M.-S.); (C.C.); Tel.: +81-298-533-301 (P.S.-C.); +34-913-941-650 (N.M.-S.); +44-01865285890 (C.C.)
| |
Collapse
|
113
|
Ardid-Ruiz A, Harazin A, Barna L, Walter FR, Bladé C, Suárez M, Deli MA, Aragonès G. The effects of Vitis vinifera L. phenolic compounds on a blood-brain barrier culture model: Expression of leptin receptors and protection against cytokine-induced damage. JOURNAL OF ETHNOPHARMACOLOGY 2020; 247:112253. [PMID: 31562952 DOI: 10.1016/j.jep.2019.112253] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The medicinal properties of grapes (Vitis vinifera L.) are well known since ancient times. Ethnobotanical grape preparations, like the Ayurvedic Darakchasava are used as cardiotonic and for the treatment of cardiovascular diseases. Dried grape products are also applied in Iranian traditional medicine for memory problems, which are linked to the pathology of brain microvessels, a special part of the cardiovascular system. The anti-inflammatory and protective effects of these traditional preparations on the cardiovascular system are related to their bioactive phenolic compounds. AIM OF THE STUDY The blood-brain barrier (BBB), formed by brain capillaries, is not only involved in inflammatory and other diseases of the central nervous system, but also in many systemic diseases with an inflammatory component. Dietary obesity is a systemic chronic inflammatory condition in which the peripheral and central vascular system is affected. Among the cerebrovascular changes in obesity defective leptin transport across the BBB related to central leptin resistance is observed. Our aim was to study the protective effects of grape phenolic compounds epicatechin (EC), gallic acid (GA) and resveratrol (RSV) and grape-seed proanthocyanidin-rich extract (GSPE) on a cytokine-induced vascular endothelial inflammation model. Using a culture model of the BBB we investigated cytokine-induced endothelial damage and changes in the expression of leptin receptors and leptin transfer. MATERIALS AND METHODS For the BBB model, primary cultures of rat brain endothelial cells, glial cells and pericytes were used in co-culture. Cells were treated by tumor necrosis factor-α (TNF-α) and interleukin-1 β (IL-1β) (10 ng/ml each) to induce damage. Cell toxicity was evaluated by the measurement of impedance. The expression of leptin receptors was assessed by RT-qPCR and western blot. The production of reactive oxygen species (ROS) and nitric oxide (NO) were detected by fluorescent probes. RESULTS GSPE (10 μg/ml), EC (10 μM), GA (1 μM) or RSV (10 μM) did not change the viability of brain endothelial cells. The gene expression of the short leptin receptor isoform, Ob-Ra, was up-regulated by GSPE, EC and RSV, while the mRNA levels of Lrp2 and clusterin, clu/ApoJ were not affected. The tested compounds did not change the expression of the long leptin receptor isoform, Ob-Rb. RSV protected against the cytokine-induced increase in albumin permeability of the BBB model. GSPE and EC exerted an antioxidant effect and GSPE increased NO both alone and in the presence of cytokines. The cytokine-induced nuclear translocation of transcription factor NF-κB was blocked by GSPE, GA and RSV. Cytokines increased the mRNA expression of Lrp2 which was inhibited by EC. RSV increased Ob-Ra and Clu in the presence of cytokines. Cytokines elevated leptin transfer across the BBB model, which was not modified by GSPE or RSV. CONCLUSION Our results obtained on cell culture models confirm that natural grape compounds protect vascular endothelial cells against inflammatory damage in accordance with the ethnopharmacological use of grape preparations in cardiovascular diseases. Furthermore, grape compounds and GSPE, by exerting a beneficial effect on the BBB, may also be considered in the treatment of obesity after validation in clinical trials.
Collapse
Affiliation(s)
- Andrea Ardid-Ruiz
- Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira I Virgili, Tarragona, Spain
| | - András Harazin
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Lilla Barna
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Fruzsina R Walter
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Cinta Bladé
- Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira I Virgili, Tarragona, Spain
| | - Manuel Suárez
- Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira I Virgili, Tarragona, Spain.
| | - Maria A Deli
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary; Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary.
| | - Gerard Aragonès
- Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira I Virgili, Tarragona, Spain
| |
Collapse
|
114
|
Scotti L, Monteiro AFM, de Oliveira Viana J, Mendonça Junior FJB, Ishiki HM, Tchouboun EN, Santos R, Scotti MT. Multi-Target Drugs Against Metabolic Disorders. Endocr Metab Immune Disord Drug Targets 2020; 19:402-418. [PMID: 30556507 DOI: 10.2174/1871530319666181217123357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/18/2018] [Accepted: 06/27/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND Metabolic disorders are a major cause of illness and death worldwide. Metabolism is the process by which the body makes energy from proteins, carbohydrates, and fats; chemically breaking these down in the digestive system towards sugars and acids which constitute the human body's fuel for immediate use, or to store in body tissues, such as the liver, muscles, and body fat. OBJECTIVE The efficiency of treatments for multifactor diseases has not been proved. It is accepted that to manage multifactor diseases, simultaneous modulation of multiple targets is required leading to the development of new strategies for discovery and development of drugs against metabolic disorders. METHODS In silico studies are increasingly being applied by researchers due to reductions in time and costs for new prototype synthesis; obtaining substances that present better therapeutic profiles. DISCUSSION In the present work, in addition to discussing multi-target drug discovery and the contributions of in silico studies to rational bioactive planning against metabolic disorders such as diabetes and obesity, we review various in silico study contributions to the fight against human metabolic pathologies. CONCLUSION In this review, we have presented various studies involved in the treatment of metabolic disorders; attempting to obtain hybrid molecules with pharmacological activity against various targets and expanding biological activity by using different mechanisms of action to treat a single pathology.
Collapse
Affiliation(s)
- Luciana Scotti
- Teaching and Research Management - University Hospital, Federal University of Paraíba, João Pessoa, PB, Brazil.,Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Alex France Messias Monteiro
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Jéssika de Oliveira Viana
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Francisco Jaime Bezerra Mendonça Junior
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, Joao Pessoa, PB, Brazil.,Laboratory of Synthesis and Drug Delivery, Department of Biological Science, State University of Paraiba, Joao Pessoa, PB, Brazil
| | - Hamilton M Ishiki
- University of Western Sao Paulo (Unoeste), Presidente Prudente, SP, Brazil
| | | | - Rodrigo Santos
- Laboratory of Synthesis and Drug Delivery, Department of Biological Science, State University of Paraiba, Joao Pessoa, PB, Brazil
| | - Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| |
Collapse
|
115
|
Abstract
Leptin is a hormone that plays a major role as mediator of long-term regulation of energy balance, suppressing food intake, and stimulating weight loss. More recently, important physiological roles other than controlling appetite and energy expenditure have been suggested for leptin, including neuroendocrine, reparative, reproductive, and immune functions. These emerging peripheral roles let hypothesize that leptin can modulate also cancer progression. Indeed, many studies have demonstrated that elevated chronic serum concentrations of leptin, frequently seen in obese subjects, represent a stimulatory signal for tumor growth. Current knowledge indicates that also different non-tumoral cells resident in tumor microenvironment may respond to leptin creating a favorable soil for cancer cells. In addition, leptin is produced also within the tumor microenvironment creating the possibility for paracrine and autocrine action. In this review, we describe the main mechanisms that regulate peripheral leptin availability and how leptin can shape tumor microenvironment.
Collapse
|
116
|
Nason SR, Kim T, Antipenko JP, Finan B, DiMarchi R, Hunter CS, Habegger KM. Glucagon-Receptor Signaling Reverses Hepatic Steatosis Independent of Leptin Receptor Expression. Endocrinology 2020; 161:bqz013. [PMID: 31673703 PMCID: PMC7188084 DOI: 10.1210/endocr/bqz013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/25/2019] [Indexed: 01/16/2023]
Abstract
Glucagon (GCG) is an essential regulator of glucose and lipid metabolism that also promotes weight loss. We have shown that glucagon-receptor (GCGR) signaling increases fatty acid oxidation (FAOx) in primary hepatocytes and reduces liver triglycerides in diet-induced obese (DIO) mice; however, the mechanisms underlying this aspect of GCG biology remains unclear. Investigation of hepatic GCGR targets elucidated a potent and previously unknown induction of leptin receptor (Lepr) expression. Liver leptin signaling is known to increase FAOx and decrease liver triglycerides, similar to glucagon action. Therefore, we hypothesized that glucagon increases hepatic LEPR, which is necessary for glucagon-mediated reversal of hepatic steatosis. Eight-week-old control and liver-specific LEPR-deficient mice (LeprΔliver) were placed on a high-fat diet for 12 weeks and then treated with a selective GCGR agonist (IUB288) for 14 days. Liver triglycerides and gene expression were assessed in liver tissue homogenates. Administration of IUB288 in both lean and DIO mice increased hepatic Lepr isoforms a-e in acute (4 hours) and chronic (72 hours,16 days) (P < 0.05) settings. LeprΔliver mice displayed increased hepatic triglycerides on a chow diet alone (P < 0.05), which persisted in a DIO state (P < 0.001), with no differences in body weight or composition. Surprisingly, chronic administration of IUB288 in DIO control and LeprΔliver mice reduced liver triglycerides regardless of genotype (P < 0.05). Together, these data suggest that GCGR activation induces hepatic Lepr expression and, although hepatic glucagon and leptin signaling have similar liver lipid targets, these appear to be 2 distinct pathways.
Collapse
Affiliation(s)
- Shelly R Nason
- Comprehensive Diabetes Center and Department of Medicine – Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama
| | - Teayoun Kim
- Comprehensive Diabetes Center and Department of Medicine – Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jessica P Antipenko
- Comprehensive Diabetes Center and Department of Medicine – Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brian Finan
- Novo Nordisk Research Center, Indianapolis, IN
| | - Richard DiMarchi
- Novo Nordisk Research Center, Indianapolis, IN
- Department of Chemistry, Indiana University, Bloomington, IN
| | - Chad S Hunter
- Comprehensive Diabetes Center and Department of Medicine – Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kirk M Habegger
- Comprehensive Diabetes Center and Department of Medicine – Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
117
|
Poetsch MS, Strano A, Guan K. Role of Leptin in Cardiovascular Diseases. Front Endocrinol (Lausanne) 2020; 11:354. [PMID: 32655492 PMCID: PMC7325922 DOI: 10.3389/fendo.2020.00354] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/06/2020] [Indexed: 01/01/2023] Open
Abstract
The adipocyte-derived adipokine leptin exerts pleiotropic effects, which are essential for the regulation of energy balance and cell metabolism, for controlling inflammatory and immune responses, and for the maintenance of homeostasis of the cardiovascular system. Leptin resistance in obese or type 2 diabetes mellitus (T2DM) patients is defined as a decrease in tissue response to leptin. In the cardiovascular system, leptin resistance exhibits the adverse effect on the heart's response to stress conditions and promoting cardiac remodeling due to impaired cardiac metabolism, increased fibrosis, vascular dysfunction, and enhanced inflammation. Leptin resistance or leptin signaling deficiency results in the risk increase of cardiac dysfunction and heart failure, which is a leading cause of obesity- and T2DM-related morbidity and mortality. Animal studies using leptin- and leptin receptor- (Lepr) deficient rodents have provided many useful insights into the underlying molecular and pathophysiological mechanisms of obese- and T2DM-associated metabolic and cardiovascular diseases. However, none of the animal models used so far can fully recapitulate the phenotypes of patients with obese or T2DM. Therefore, the role of leptin in the human cardiovascular system, and whether leptin affects cardiac function directly or acts through a leptin-regulated neurohumoral pathway, remain elusive. As the prevalence of obesity and diabetes is continuously increasing, strategies are needed to develop and apply human cell-based models to better understand the precise role of leptin directly in different cardiac cell types and to overcome the existing translational barriers. The purpose of this review is to discuss the mechanisms associated with leptin signaling deficiency or leptin resistance in the development of metabolic and cardiovascular diseases. We analyzed and comprehensively addressed substantial findings in pathophysiological mechanisms in commonly used leptin- or Lepr-deficient rodent models and highlighted the differences between rodents and humans. This may open up new strategies to develop directly and reliably applicable models, which resemble the human pathophysiology in order to advance health care management of obesity- and T2DM-related cardiovascular complications.
Collapse
|
118
|
Immune-neuroendocrine and metabolic disorders in human and experimental T. cruzi infection: New clues for understanding Chagas disease pathology. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165642. [PMID: 31866417 DOI: 10.1016/j.bbadis.2019.165642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022]
Abstract
Studies in mice undergoing acute Trypanosoma cruzi infection and patients with Chagas disease, led to identify several immune-neuroendocrine disturbances and metabolic disorders. Here, we review relevant findings concerning such abnormalities and discuss their possible influence on disease physiopathology.
Collapse
|
119
|
Sembach FE, Fink LN, Johansen T, Boland BB, Secher T, Thrane ST, Nielsen JC, Fosgerau K, Vrang N, Jelsing J, Pedersen TX, Østergaard MV. Impact of sex on diabetic nephropathy and the renal transcriptome in UNx db/db C57BLKS mice. Physiol Rep 2019; 7:e14333. [PMID: 31876119 PMCID: PMC6930935 DOI: 10.14814/phy2.14333] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is associated with albuminuria and loss of kidney function and is the leading cause of end-stage renal disease. Despite evidence of sex-associated differences in the progression of DN in human patients, male mice are predominantly being used in preclinical DN research and drug development. Here, we compared renal changes in male and female uninephrectomized (UNx) db/db C57BLKS mice using immunohistochemistry and RNA sequencing. Male and female UNx db/db mice showed similar progression of type 2 diabetes, as assessed by obesity, hyperglycemia, and HbA1c. Progression of DN was also similar between sexes as assessed by kidney and glomerular hypertrophy as well as urine albumin-to-creatinine ratio being increased in UNx db/db compared with control mice. In contrast, kidney collagen III and glomerular collagen IV were increased only in female UNx db/db as compared with respective control mice but showed a similar tendency in male UNx db/db mice. Comparison of renal cortex transcriptomes by RNA sequencing revealed 66 genes differentially expressed (p < .01) in male versus female UNx db/db mice, of which 9 genes were located on the sex chromosomes. In conclusion, male and female UNx db/db mice developed similar hallmarks of DN pathology, suggesting no or weak sex differences in the functional and structural changes during DN progression.
Collapse
Affiliation(s)
- Frederikke E. Sembach
- Gubra ApSHørsholmDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Li L, Krznar P, Erban A, Agazzi A, Martin-Levilain J, Supale S, Kopka J, Zamboni N, Maechler P. Metabolomics Identifies a Biomarker Revealing In Vivo Loss of Functional β-Cell Mass Before Diabetes Onset. Diabetes 2019; 68:2272-2286. [PMID: 31537525 DOI: 10.2337/db19-0131] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 09/10/2019] [Indexed: 11/13/2022]
Abstract
Identification of individuals with decreased functional β-cell mass is essential for the prevention of diabetes. However, in vivo detection of early asymptomatic β-cell defect remains unsuccessful. Metabolomics has emerged as a powerful tool in providing readouts of early disease states before clinical manifestation. We aimed at identifying novel plasma biomarkers for loss of functional β-cell mass in the asymptomatic prediabetes stage. Nontargeted and targeted metabolomics were applied in both lean β-Phb2-/- (β-cell-specific prohibitin-2 knockout) mice and obese db/db (leptin receptor mutant) mice, two distinct mouse models requiring neither chemical nor dietary treatments to induce spontaneous decline of functional β-cell mass promoting progressive diabetes development. Nontargeted metabolomics on β-Phb2-/- mice identified 48 and 82 significantly affected metabolites in liver and plasma, respectively. Machine learning analysis pointed to deoxyhexose sugars consistently reduced at the asymptomatic prediabetes stage, including in db/db mice, showing strong correlation with the gradual loss of β-cells. Further targeted metabolomics by gas chromatography-mass spectrometry uncovered the identity of the deoxyhexose, with 1,5-anhydroglucitol displaying the most substantial changes. In conclusion, this study identified 1,5-anhydroglucitol as associated with the loss of functional β-cell mass and uncovered metabolic similarities between liver and plasma, providing insights into the systemic effects caused by early decline in β-cells.
Collapse
Affiliation(s)
- Lingzi Li
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, Geneva, Switzerland
- Faculty Diabetes Centre, University of Geneva Medical Centre, Geneva, Switzerland
| | - Petra Krznar
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- PhD Program in Systems Biology, Life Science Zurich Graduate School, Zurich, Switzerland
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Andrea Agazzi
- Theoretical Physics Department, University of Geneva, Geneva, Switzerland
| | - Juliette Martin-Levilain
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, Geneva, Switzerland
- Faculty Diabetes Centre, University of Geneva Medical Centre, Geneva, Switzerland
| | - Sachin Supale
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, Geneva, Switzerland
- Faculty Diabetes Centre, University of Geneva Medical Centre, Geneva, Switzerland
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, Geneva, Switzerland
- Faculty Diabetes Centre, University of Geneva Medical Centre, Geneva, Switzerland
| |
Collapse
|
121
|
Doulberis M, Papaefthymiou A, Polyzos SA, Katsinelos P, Grigoriadis N, Srivastava DS, Kountouras J. Rodent models of obesity. MINERVA ENDOCRINOL 2019; 45:243-263. [PMID: 31738033 DOI: 10.23736/s0391-1977.19.03058-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Obese or overweight people exceed one-third of the global population and obesity along with diabetes mellitus consist basic components of metabolic syndrome, both of which are known cardio-cerebrovascular risk factors with detrimental consequences. These data signify the pandemic character of obesity and the necessity for effective treatments. Substantial advances have been accomplished in preclinical research of obesity by using animal models, which mimic the human disease. In particular, rodent models have been widely used for many decades with success for the elucidation of the pathophysiology of obesity, since they share physiological and genetic components with humans and appear advantageous in their husbandry. The most representative rodents include the laboratory mouse and rat. Within this review, we attempted to consolidate the most widely used mice and rat models of obesity and highlight their strengths as well as weaknesses in a critical way. Our aim was to bridge the gap between laboratory facilities and patient's bed and help the researcher find the appropriate animal model for his/her obesity research. This tactful selection of the appropriate model of obesity may offer more translational derived results. In this regard, we included, the main diet induced models, the chemical/mechanical ones, as well as a selection of monogenic or polygenic models.
Collapse
Affiliation(s)
- Michael Doulberis
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland - .,Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece -
| | | | | | - Panagiotis Katsinelos
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- First Department of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - David S Srivastava
- Second Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jannis Kountouras
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
122
|
Friedman-Einat M, Seroussi E. Avian Leptin: Bird's-Eye View of the Evolution of Vertebrate Energy-Balance Control. Trends Endocrinol Metab 2019; 30:819-832. [PMID: 31699239 DOI: 10.1016/j.tem.2019.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/13/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022]
Abstract
Discovery of the satiety hormone leptin in 1994 and its characterization in mammals provided a key tool to deciphering the complex mechanism governing adipose tissue regulation of appetite and energy expenditure. Surprisingly, despite the perfectly logical notion of an energy-storing tissue announcing the amount of fat stores using leptin signaling, alternate mechanisms were chosen in bird evolution. This conclusion emerged based on the recent discovery and characterization of genuine avian leptin - after it had been assumed missing by some, and erroneously identified by others. Critical evaluation of the past and present indications of the role of leptin in Aves provides a new perspective on the evolution of energy-balance control in vertebrates; proposing a regulation strategy alternative to the adipostat mechanism.
Collapse
Affiliation(s)
- Miriam Friedman-Einat
- Department of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeTsiyon, Israel.
| | - Eyal Seroussi
- Department of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeTsiyon, Israel
| |
Collapse
|
123
|
Pant T, Dhanasekaran A, Bai X, Zhao M, Thorp EB, Forbess JM, Bosnjak ZJ, Ge ZD. Genome-wide differential expression profiling of lncRNAs and mRNAs associated with early diabetic cardiomyopathy. Sci Rep 2019; 9:15345. [PMID: 31653946 PMCID: PMC6814824 DOI: 10.1038/s41598-019-51872-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022] Open
Abstract
Diabetic cardiomyopathy is one of the main causes of heart failure and death in patients with diabetes. There are no effective approaches to preventing its development in the clinic. Long noncoding RNAs (lncRNA) are increasingly recognized as important molecular players in cardiovascular disease. Herein we investigated the profiling of cardiac lncRNA and mRNA expression in type 2 diabetic db/db mice with and without early diabetic cardiomyopathy. We found that db/db mice developed cardiac hypertrophy with normal cardiac function at 6 weeks of age but with a decreased diastolic function at 20 weeks of age. LncRNA and mRNA transcripts were remarkably different in 20-week-old db/db mouse hearts compared with both nondiabetic and diabetic controls. Overall 1479 lncRNA transcripts and 1109 mRNA transcripts were aberrantly expressed in 6- and 20-week-old db/db hearts compared with nondiabetic controls. The lncRNA-mRNA co-expression network analysis revealed that 5 deregulated lncRNAs having maximum connections with differentially expressed mRNAs were BC038927, G730013B05Rik, 2700054A10Rik, AK089884, and Daw1. Bioinformatics analysis revealed that these 5 lncRNAs are closely associated with membrane depolarization, action potential conduction, contraction of cardiac myocytes, and actin filament-based movement of cardiac cells. This study profiles differently expressed lncRNAs in type 2 mice with and without early diabetic cardiomyopathy and identifies BC038927, G730013B05Rik, 2700054A10Rik, AK089884, and Daw1 as the core lncRNA with high significance in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Tarun Pant
- Departments of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226, USA
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, 600025, India
| | | | - Xiaowen Bai
- Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226, USA
- Departments of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226, USA
| | - Ming Zhao
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, 300 E. Superior Avenue, Chicago, Illinois, 60611, USA
| | - Edward B Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 300 E. Superior Avenue, Chicago, Illinois, 60611, USA
| | - Joseph M Forbess
- Departments of Surgery and Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, Illinois, 60611, USA
| | - Zeljko J Bosnjak
- Departments of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226, USA
- Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, 53226, USA
| | - Zhi-Dong Ge
- Departments of Surgery and Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, Illinois, 60611, USA.
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 300 E. Superior Avenue, Chicago, Illinois, 60611, USA.
| |
Collapse
|
124
|
Nørgaard SA, Briand F, Sand FW, Galsgaard ED, Søndergaard H, Sørensen DB, Sulpice T. Nephropathy in diabetic db/db mice is accelerated by high protein diet and improved by the SGLT2 inhibitor dapagliflozin. Eur J Pharmacol 2019; 860:172537. [DOI: 10.1016/j.ejphar.2019.172537] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/03/2019] [Accepted: 07/12/2019] [Indexed: 11/29/2022]
|
125
|
Huang W, Queen NJ, McMurphy TB, Ali S, Cao L. Adipose PTEN regulates adult adipose tissue homeostasis and redistribution via a PTEN-leptin-sympathetic loop. Mol Metab 2019; 30:48-60. [PMID: 31767180 PMCID: PMC6812328 DOI: 10.1016/j.molmet.2019.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE Despite the large body of work describing the tumor suppressor functions of Phosphatase and tensin homologue deleted on chromosome ten (PTEN), its roles in adipose homeostasis of adult animals are not yet fully understood. Here, we sought to determine the role of PTEN in whole-body adipose homeostasis. METHODS We genetically manipulated PTEN in specific fat depots through recombinant adeno-associated viral vector (rAAV)-based gene transfer of Cre recombinase to adult PTENflox mice. Additionally, we used a denervation agent, 6OHDA, to assess the role of sympathetic signaling in PTEN-related adipose remodeling. Furthermore, we chemically manipulated AKT signaling via a pan-AKT inhibitor, MK-2206, to assess the role of AKT in PTEN-related adipose remodeling. Finally, to understand the role of leptin and central signaling on peripheral tissues, we knocked down hypothalamic leptin receptor with a microRNA delivered by a rAAV vector. RESULTS Knockdown PTEN in individual fat depot resulted in massive expansion of the affected fat depot through activation of AKT signaling associated with suppression of lipolysis and induction of leptin. This hypertrophic expansion of the affected fat depot led to upregulation of PTEN level, higher lipolysis, and induction of white fat browning in other fat depots, and the compensatory reduced fat mass to maintain a set point of whole-body adiposity. Administration of AKT inhibitor MK-2206 prevented the adipose PTEN knockdown-associated effects. 6OHDA-mediated denervation demonstrated that sympathetic innervation was required for the PTEN knockdown-induced adipose redistribution. Knockdown hypothalamic leptin receptor attenuated the adipose redistribution induced by PTEN deficiency in individual fat depot. CONCLUSIONS Our results demonstrate the essential role of PTEN in adipose homeostasis, including mass and distribution in adulthood, and reveal an "adipose PTEN-leptin-sympathetic nervous system" feedback loop to maintain a set point of adipose PTEN and whole-body adiposity.
Collapse
Affiliation(s)
- Wei Huang
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Nicholas J Queen
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Travis B McMurphy
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Seemaab Ali
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Lei Cao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.
| |
Collapse
|
126
|
Pedro JMBS, Sica V, Madeo F, Kroemer G. Acyl-CoA-binding protein (ACBP): the elusive 'hunger factor' linking autophagy to food intake. Cell Stress 2019; 3:312-318. [PMID: 31656948 PMCID: PMC6789435 DOI: 10.15698/cst2019.10.200] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
The best-known appetite-regulating factors identified in rodents are leptin, an appetite inhibitor, and ghrelin, an appetite stimulator. Rare cases of loss-of-functions mutations affecting leptin and its receptor, as well as polymorphisms concerning ghrelin and its receptor, have been documented in human obesity, apparently validating the relevance of leptin and ghrelin for human physiology. Paradoxically, however, the overwhelming majority of obese individuals manifest high leptin and low ghrelin plasma levels, suggesting that both factors are not directly disease-relevant. We recently discovered that acyl-CoA-binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), acts as an efficient lipogenic and appetite stimulator in mice. Indeed, in response to starvation, ACBP/DBI is released from tissues in an autophagy-dependent fashion and increases in the plasma. Intravenous injection of ACBP/DBI stimulates feeding behavior through a reduction of circulating glucose levels, and consequent activation of orexigenic neurons in the hypothalamus. In contrast, neutralization of ACBP/DBI abolishes the hyperphagia observed after starvation of mice. Of note, ACBP/DBI is increased in the plasma of obese persons and mice, pointing to a convergence (rather than divergence) between its role in appetite stimulation and human obesity. Based on our results, we postulate a novel 'hunger reflex' in which starvation induces a surge in extracellular ACBP/DBI, which in turn stimulates feeding behavior. Thus, ACBP/DBI might be the elusive 'hunger factor' that explains increased food uptake in obesity.
Collapse
Affiliation(s)
- José Manuel Bravo-San Pedro
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 15 rue de l'école de médecine 75006, Paris, France
- Team “Metabolism, Cancer & Immunity” labellisée par la Ligue contre le Cancer, Paris, France
- Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Valentina Sica
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 15 rue de l'école de médecine 75006, Paris, France
- Team “Metabolism, Cancer & Immunity” labellisée par la Ligue contre le Cancer, Paris, France
- Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria
- BioTechMed Graz, Graz, 8010, Austria
| | - Guido Kroemer
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 15 rue de l'école de médecine 75006, Paris, France
- Team “Metabolism, Cancer & Immunity” labellisée par la Ligue contre le Cancer, Paris, France
- Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
127
|
Monteiro L, Pereira JADS, Palhinha L, Moraes-Vieira PMM. Leptin in the regulation of the immunometabolism of adipose tissue-macrophages. J Leukoc Biol 2019; 106:703-716. [PMID: 31087711 DOI: 10.1002/jlb.mr1218-478r] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/19/2019] [Accepted: 04/26/2019] [Indexed: 01/03/2025] Open
Abstract
Obesity is a pandemic disease affecting around 15% of the global population. Obesity is a major risk factor for other conditions, such as type 2 diabetes and cardiovascular diseases. The adipose tissue is the main secretor of leptin, an adipokine responsible for the regulation of food intake and energy expenditure. Obese individuals become hyperleptinemic due to increased adipogenesis. Leptin acts through the leptin receptor and induces several immunometabolic changes in different cell types, including adipocytes and Mϕs. Adipose tissue resident Mϕs (ATMs) are the largest leukocyte population in the adipose tissue and these ATMs are in constant contact with the excessive leptin levels secreted in obese conditions. Leptin activates both the JAK2-STAT3 and the PI3K-AKT-mTOR pathways. The activation of these pathways leads to intracellular metabolic changes, with increased glucose uptake, upregulation of glycolytic enzymes, and disruption of mitochondrial function, as well as immunologic alterations, such as increased phagocytic activity and proinflammatory cytokines secretion. Here, we discuss the immunometabolic effects of leptin in Mϕs and how hyperleptinemia can contribute to the low-grade systemic inflammation in obesity.
Collapse
Affiliation(s)
- Lauar Monteiro
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Sao Paulo, Brazil
| | - Jéssica Aparecida da Silva Pereira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Sao Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Lohanna Palhinha
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Manoel M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Sao Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
128
|
Abstract
Studies have linked obesity, metabolic syndrome, type 2 diabetes, cardiovascular disease (CVD), nonalcoholic fatty liver disease (NAFLD) and dementia. Their relationship to the incidence and progression of these disease states suggests an interconnected pathogenesis involving chronic low-grade inflammation and oxidative stress. Metabolic syndrome represents comorbidities of central obesity, insulin resistance, dyslipidemia, hypertension and hyperglycemia associated with increased risk of type 2 diabetes, NAFLD, atherosclerotic CVD and neurodegenerative disease. As the socioeconomic burden for these diseases has grown signficantly with an increasing elderly population, new and alternative pharmacologic solutions for these cardiometabolic diseases are required. Adipose tissue, skeletal muscle and liver are central endocrine organs that regulate inflammation, energy and metabolic homeostasis, and the neuroendocrine axis through synthesis and secretion of adipokines, myokines, and hepatokines, respectively. These organokines affect each other and communicate through various endocrine, paracrine and autocrine pathways. The ultimate goal of this review is to provide a comprehensive understanding of organ crosstalk. This will include the roles of novel organokines in normal physiologic regulation and their pathophysiological effect in obesity, metabolic syndrome, type 2 diabetes, CVD, NAFLD and neurodegenerative disorders.
Collapse
Affiliation(s)
- Hye Soo Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Seoul, South Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
129
|
Abstract
The discovery of leptin changed the view of adipose tissue from that of a passive vessel that stores fat to that of a dynamic endocrine organ that actively regulates behaviour and metabolism. Secreted by adipose tissue, leptin functions as an afferent signal in a negative feedback loop, acting primarily on neurons in the hypothalamus and regulating feeding and many other functions. The leptin endocrine system serves a critical evolutionary function by maintaining the relative constancy of adipose tissue mass, thereby protecting individuals from the risks associated with being too thin (starvation and infertility) or too obese (predation). In this Review, the biology of leptin is summarized, and a conceptual framework is established for studying the pathogenesis of obesity, which, analogously to diabetes, can result from either leptin hyposecretion or leptin resistance. Herein, these two states are distinguished with the terms 'type 1 obesity' and 'type 2 obesity': type 1 obesity describes a subset of obese individuals with low endogenous plasma leptin levels who respond to leptin therapy, whereas type 2 obesity describes most obese individuals, who are leptin resistant but might respond to leptin therapy in combination with other drugs, such as leptin sensitizers.
Collapse
Affiliation(s)
- Jeffrey M Friedman
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
130
|
Senn SS, Le Foll C, Whiting L, Tarasco E, Duffy S, Lutz TA, Boyle CN. Unsilencing of native LepRs in hypothalamic SF1 neurons does not rescue obese phenotype in LepR-deficient mice. Am J Physiol Regul Integr Comp Physiol 2019; 317:R451-R460. [PMID: 31314542 DOI: 10.1152/ajpregu.00111.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Leptin receptor (LepR) signaling in neurons of the ventromedial nucleus of the hypothalamus (VMH), specifically those expressing steroidogenic factor-1 (SF1), have been proposed to play a key role in controlling energy balance. By crossing LepR-silenced (LepRloxTB) mice with those expressing SF1-Cre, we unsilenced native LepR specifically in the VMH and tested whether SF1 neurons in the VMH are critical mediators of leptin's effect on energy homeostasis. LepRloxTB × SF1-Cre [knockout (KO)/Tg+] mice were metabolically phenotyped and compared with littermate controls that either expressed or were deficient in LepRs. Leptin-induced phosphorylated STAT3 was present in the VMH of KO/Tg+ mice and absent in other hypothalamic nuclei. VMH leptin signaling did not ameliorate obesity resulting from LepR deficiency in chow-fed mice. There was no change in food intake or energy expenditure when comparing complete LepR-null mice with KO/Tg+ mice, nor did KO/Tg+ mice show improved glucose tolerance. The presence of functional LepRs in the VMH mildly enhanced sensitivity to the pancreatic hormone amylin. When maintained on a high-fat diet (HFD), there was no reduction in diet-induced obesity in KO/Tg+ mice, but KO/Tg+ mice had improved glucose tolerance after 7 wk on an HFD compared with LepR-null mice. We conclude that LepR signaling in the VMH alone is not sufficient to correct metabolic dysfunction observed in LepR-null mice.
Collapse
Affiliation(s)
- Seraina S Senn
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Christelle Le Foll
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Lynda Whiting
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Erika Tarasco
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sonya Duffy
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Christina Neuner Boyle
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
131
|
Mashaqi S, Badr MS. The Impact of Obstructive Sleep Apnea and Positive Airway Pressure Therapy on Metabolic Peptides Regulating Appetite, Food Intake, Energy Homeostasis, and Systemic Inflammation: A Literature Review. J Clin Sleep Med 2019; 15:1037-1050. [PMID: 31383242 DOI: 10.5664/jcsm.7890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/04/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Sleep-related breathing disorders are very common and highly associated with many comorbid diseases. They have many metabolic consequences that impact appetite, energy expenditure, and systemic inflammation. These consequences are mediated through peptides (eg, ghrelin, leptin, adiponectin, resistin, apelin, obestatin, and neuropeptide Y). METHODS We searched the literature (PubMed) for sleep-disordered breathing (SDB) and metabolic peptides and included 15, 22, 14, 4 and 2 articles for ghrelin, leptin, adiponectin, resistin, and apelin respectively. RESULTS Our review of the published literature suggests that leptin levels seem to correlate with body mass index and adiposity rather than obstructive sleep apnea. Conversely, levels of adiponectin and ghrelin are influenced by obstructive sleep apnea alone. Finally, resistin and apelin seem to be not correlated with obstructive sleep apnea. Regarding positive airway pressure (PAP) impact, it seems that PAP therapy affected the levels of these peptides (mainly ghrelin). CONCLUSIONS There is significant controversy in the literature regarding the impact of SDB and PAP therapy on these metabolic peptides. This could be due to the lack of randomized clinical trials and the variability of the methodology used in these studies. Further research is needed to assess the impact of SDB and PAP therapy on the levels of these peptides and whether this impact is also related to body mass index and body fat composition.
Collapse
Affiliation(s)
- Saif Mashaqi
- Division of Sleep Medicine, University of North Dakota School of Medicine - Sanford Health, Fargo, North Dakota
| | - M Safwan Badr
- Department of Internal Medicine, Wayne State University, Detroit, Michigan
| |
Collapse
|
132
|
Cortese L, Terrazzano G, Pelagalli A. Leptin and Immunological Profile in Obesity and Its Associated Diseases in Dogs. Int J Mol Sci 2019; 20:E2392. [PMID: 31091785 PMCID: PMC6566566 DOI: 10.3390/ijms20102392] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/29/2022] Open
Abstract
Growing scientific evidence has unveiled increased incidences of obesity in domestic animals and its influence on a plethora of associated disorders. Leptin, an adipokine regulating body fat mass, represents a key molecule in obesity, able to modulate immune responses and foster chronic inflammatory response in peripheral tissues. High levels of cytokines and inflammatory markers suggest an association between inflammatory state and obesity in dogs, highlighting the parallelism with humans. Canine obesity is a relevant disease always accompanied with several health conditions such as inflammation, immune-dysregulation, insulin resistance, pancreatitis, orthopaedic disorders, cardiovascular disease, and neoplasia. However, leptin involvement in many disease processes in veterinary medicine is poorly understood. Moreover, hyperleptinemia as well as leptin resistance occur with cardiac dysfunction as a consequence of altered cardiac mitochondrial metabolism in obese dogs. Similarly, leptin dysregulation seems to be involved in the pancreatitis pathophysiology. This review aims to examine literature concerning leptin and immunological status in obese dogs, in particular for the aspects related to obesity-associated diseases.
Collapse
Affiliation(s)
- Laura Cortese
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy.
| | - Giuseppe Terrazzano
- Department of Science, University of Basilicata, 85100 Potenza, Italy.
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy.
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy.
- Institute of Biostructures and Bioimages (IBB), National Research Council (CNR), 80131 Naples, Italy.
| |
Collapse
|
133
|
Tuttle M, Dalman MR, Liu Q, Londraville RL. Leptin-a mediates transcription of genes that participate in central endocrine and phosphatidylinositol signaling pathways in 72-hour embryonic zebrafish ( Danio rerio). PeerJ 2019; 7:e6848. [PMID: 31110923 PMCID: PMC6501765 DOI: 10.7717/peerj.6848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/26/2019] [Indexed: 01/01/2023] Open
Abstract
We analyzed microarray expression data to highlight biological pathways that respond to embryonic zebrafish Leptin-a (lepa) signaling. Microarray expression measures for 26,046 genes were evaluated from lepa morpholino oligonucleotide "knockdown", recombinant Leptin-a "rescue", and uninjected control zebrafish at 72-hours post fertilization. In addition to KEGG pathway enrichment for phosphatidylinositol signaling and neuroactive ligand-receptor interactions, Gene Ontology (GO) data from lepa rescue zebrafish include JAK/STAT cascade, sensory perception, nervous system processes, and synaptic signaling. In the zebrafish lepa rescue treatment, we found changes in the expression of homologous genes that align with mammalian leptin signaling cascades including AMPK (prkaa2), ACC (acacb), Ca2+/calmodulin-dependent kinase (camkk2), PI3K (pik3r1), Ser/Thr protein kinase B (akt3), neuropeptides (agrp2, cart1), mitogen-activated protein kinase (MAPK), and insulin receptor substrate (LOC794738, LOC100537326). Notch signaling pathway and ribosome biogenesis genes respond to knockdown of Leptin-a. Differentially expressed transcription factors in lepa knockdown zebrafish regulate neurogenesis, neural differentiation, and cell fate commitment. This study presents a role for zebrafish Leptin-a in influencing expression of genes that mediate phosphatidylinositol and central endocrine signaling.
Collapse
Affiliation(s)
- Matthew Tuttle
- Biology, University of Akron, Akron, OH, United States of America
| | - Mark R Dalman
- Podiatric Medicine, Kent State University, Kent, OH, United States of America
| | - Qin Liu
- Biology, University of Akron, Akron, OH, United States of America
| | | |
Collapse
|
134
|
Garcia-Galiano D, Borges BC, Allen SJ, Elias CF. PI3K signalling in leptin receptor cells: Role in growth and reproduction. J Neuroendocrinol 2019; 31:e12685. [PMID: 30618188 PMCID: PMC6533139 DOI: 10.1111/jne.12685] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/15/2022]
Abstract
Nutrition and growth are important signals for pubertal development, although how they are perceived and integrated in brain circuits has not been well defined. Growth hormones and metabolic cues both recruit phosphatidylinositol 3-kinase (PI3K) signalling in hypothalamic sites, although whether they converge into the same neuronal population(s) is also not known. In this review, we discuss recent findings from our laboratory showing the role of PI3K subunits in cells directly responsive to the adipocyte-derived hormone leptin in the coordination of growth, pubertal development and fertility. Mice with deletion of PI3K p110α and p110β catalytic subunits in leptin receptor cells (LRΔα+β ) have a lean phenotype associated with increased energy expenditure, locomotor activity and thermogenesis. The LRΔα+β mice also show deficient growth and delayed puberty. Deletion of a single subunit (ie, p110α) in LR cells (LRΔα ) causes a similar phenotype of increased energy expenditure, deficient growth and delayed pubertal development, indicating that these functions are preferably controlled by p110α. The LRΔα mice show enhanced leptin sensitivity in metabolic regulation but, remarkably, these mice are unresponsive to the effects of leptin on growth and puberty. PI3K is also recruited by insulin and a subpopulation of LR neurones is responsive to i.c.v. insulin administration. Deletion of insulin receptor in LR cells causes no changes in body weight or linear growth and induces only a mild delay in pubertal completion. Our findings demonstrate that PI3K in LR cells plays an essential role in growth and reproduction. We will also discuss the potential neural pathways underlying these effects.
Collapse
Affiliation(s)
- David Garcia-Galiano
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Beatriz C. Borges
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Susan J. Allen
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Carol F. Elias
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
135
|
Piattini F, Le Foll C, Kisielow J, Rosenwald E, Nielsen P, Lutz T, Schneider C, Kopf M. A spontaneous leptin receptor point mutation causes obesity and differentially affects leptin signaling in hypothalamic nuclei resulting in metabolic dysfunctions distinct from db/db mice. Mol Metab 2019; 25:131-141. [PMID: 31076350 PMCID: PMC6601129 DOI: 10.1016/j.molmet.2019.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Leptin (Lep) plays a crucial role in controlling food intake and energy expenditure. Defective Lep/LepRb-signaling leads to fat accumulation, massive obesity, and the development of diabetes. We serendipitously noticed spontaneous development of obesity similar to LepR-deficient (db/db) mice in offspring from a C57BL/6J breeding and transmittance of the phenotype in a Mendelian manner. Candidate gene sequencing revealed a spontaneous point mutation in the LepRb gene. We investigated leptin responsiveness, leptin receptor signaling and metabolic phenotype of this novel LepRb mutant mouse variant. METHODS Overexpression and functional tests of the mutant LepRb in 3T3 cells. Measurement of leptin responsiveness in hypothalamic nuclei, glucose tolerance, food uptake and energy expenditure in the mutant mice. RESULTS The mutation results in the exchange of a glycine for serine (G506S) and introduces an alternative splice acceptor which, when used, encodes for a protein with a 40aa deletion that is retained in the cytoplasm. LepRb signaling was abrogated in the hypothalamic ventromedial nucleus (VMN) and dorsomedial nucleus (DMN), but only partially reduced in the hypothalamic arcuate nucleus (ARC) of LepRbG506S/G506S mice, most likely due to differential splicing in neurons located in the respective regions of the hypothalamus. Extensive metabolic characterization of these mice revealed interesting differences in the control of food intake, glucose tolerance, energy expenditure, and fat accumulation in LepRbG506S/G506S compared with LepRb-deficient db/db mice. CONCLUSIONS This study provides further insight into differences of the leptin responsiveness in VMN, DMN, and ARC and its metabolic consequences.
Collapse
Affiliation(s)
- Federica Piattini
- Institute of Molecular Biomedicine, Department Biology, ETH Zürich, Switzerland
| | - Christelle Le Foll
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Jan Kisielow
- Institute of Molecular Biomedicine, Department Biology, ETH Zürich, Switzerland
| | - Esther Rosenwald
- Institute of Molecular Biomedicine, Department Biology, ETH Zürich, Switzerland
| | - Peter Nielsen
- Institute of Molecular Biomedicine, Department Biology, ETH Zürich, Switzerland
| | - Thomas Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Christoph Schneider
- Institute of Molecular Biomedicine, Department Biology, ETH Zürich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Biomedicine, Department Biology, ETH Zürich, Switzerland.
| |
Collapse
|
136
|
Hum JM, O'Bryan LM, Tatiparthi AK, Clinkenbeard EL, Ni P, Cramer MS, Bhaskaran M, Johnson RL, Wilson JM, Smith RC, White KE. Sustained Klotho delivery reduces serum phosphate in a model of diabetic nephropathy. J Appl Physiol (1985) 2019; 126:854-862. [PMID: 30605400 PMCID: PMC6485689 DOI: 10.1152/japplphysiol.00838.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/12/2018] [Accepted: 12/29/2018] [Indexed: 12/26/2022] Open
Abstract
Diabetic nephropathy (DN) is a primary cause of end-stage renal disease and is becoming more prevalent because of the global rise in type 2 diabetes. A model of DN, the db/db uninephrectomized ( db/db-uni) mouse, is characterized by obesity, as well as compromised renal function. This model also manifests defects in mineral metabolism common in DN, including hyperphosphatemia, which leads to severe endocrine disease. The FGF23 coreceptor, α-Klotho, circulates as a soluble, cleaved form (cKL) and may directly influence phosphate handling. Our study sought to test the effects of cKL on mineral metabolism in db/db-uni mice. Mice were placed into either mild or moderate disease groups on the basis of the albumin-to-creatinine ratio (ACR). Body weights of db/db-uni mice were significantly greater across the study compared with lean controls regardless of disease severity. Adeno-associated cKL administration was associated with increased serum Klotho, intact, bioactive FGF23 (iFGF23), and COOH-terminal fragments of FGF23 ( P < 0.05). Blood urea nitrogen was improved after cKL administration, and cKL corrected hyperphosphatemia in the high- and low-ACR db/db-uni groups. Interestingly, 2 wk after cKL delivery, blood glucose levels were significantly reduced in db/db-uni mice with high ACR ( P < 0.05). Interestingly, several genes associated with stabilizing active iFGF23 were also increased in the osteoblastic UMR-106 cell line with cKL treatment. In summary, delivery of cKL to a model of DN normalized blood phosphate levels regardless of disease severity, supporting the concept that targeting cKL-affected pathways could provide future therapeutic avenues in DN. NEW & NOTEWORTHY In this work, systemic and continuous delivery of the "soluble" or "cleaved" form of the FGF23 coreceptor α-Klotho (cKL) via adeno-associated virus to a rodent model of diabetic nephropathy (DN), the db/db uninephrectomized mouse, normalized blood phosphate levels regardless of disease severity. This work supports the concept that targeting cKL-affected pathways could provide future therapeutic avenues for the severe mineral metabolism defects associated with DN.
Collapse
Affiliation(s)
- Julia M Hum
- Division of Molecular Genetics and Gene Therapy, Department of Medical and Molecular Genetics, Indiana University School of Medicine , Indianapolis, Indiana
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University , Indianapolis, Indiana
| | - Linda M O'Bryan
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, Indiana
| | - Arun K Tatiparthi
- Lead Optimization Toxicology and Pharmacology, Covance Incorporated, Greenfield, Indiana
| | - Erica L Clinkenbeard
- Division of Molecular Genetics and Gene Therapy, Department of Medical and Molecular Genetics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Pu Ni
- Division of Molecular Genetics and Gene Therapy, Department of Medical and Molecular Genetics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Martin S Cramer
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, Indiana
| | - Manoj Bhaskaran
- Toxicology and Pathology, Eli Lilly and Company , Indianapolis, Indiana
| | - Robert L Johnson
- Toxicology and Pathology, Eli Lilly and Company , Indianapolis, Indiana
| | - Jonathan M Wilson
- Tailored Therapeutics, Eli Lilly and Company , Indianapolis, Indiana
| | - Rosamund C Smith
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, Indiana
| | - Kenneth E White
- Division of Molecular Genetics and Gene Therapy, Department of Medical and Molecular Genetics, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
137
|
Baldini G, Phelan KD. The melanocortin pathway and control of appetite-progress and therapeutic implications. J Endocrinol 2019; 241:R1-R33. [PMID: 30812013 PMCID: PMC6500576 DOI: 10.1530/joe-18-0596] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
The initial discovery that ob/ob mice become obese because of a recessive mutation of the leptin gene has been crucial to discover the melanocortin pathway to control appetite. In the melanocortin pathway, the fed state is signaled by abundance of circulating hormones such as leptin and insulin, which bind to receptors expressed at the surface of pro-opiomelanocortin (POMC) neurons to promote processing of POMC to the mature hormone α-melanocyte-stimulating hormone (α-MSH). The α-MSH released by POMC neurons then signals to decrease energy intake by binding to melanocortin-4 receptor (MC4R) expressed by MC4R neurons to the paraventricular nucleus (PVN). Conversely, in the 'starved state' activity of agouti-related neuropeptide (AgRP) and of neuropeptide Y (NPY)-expressing neurons is increased by decreased levels of circulating leptin and insulin and by the orexigenic hormone ghrelin to promote food intake. This initial understanding of the melanocortin pathway has recently been implemented by the description of the complex neuronal circuit that controls the activity of POMC, AgRP/NPY and MC4R neurons and downstream signaling by these neurons. This review summarizes the progress done on the melanocortin pathway and describes how obesity alters this pathway to disrupt energy homeostasis. We also describe progress on how leptin and insulin receptors signal in POMC neurons, how MC4R signals and how altered expression and traffic of MC4R change the acute signaling and desensitization properties of the receptor. We also describe how the discovery of the melanocortin pathway has led to the use of melanocortin agonists to treat obesity derived from genetic disorders.
Collapse
Affiliation(s)
- Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kevin D. Phelan
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
138
|
Tessier F, Fontaine-Bisson B, Lefebvre JF, El-Sohemy A, Roy-Gagnon MH. Investigating Gene-Gene and Gene-Environment Interactions in the Association Between Overnutrition and Obesity-Related Phenotypes. Front Genet 2019; 10:151. [PMID: 30886629 PMCID: PMC6409307 DOI: 10.3389/fgene.2019.00151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/12/2019] [Indexed: 01/12/2023] Open
Abstract
Introduction: Animal studies suggested that NFKB1, IKBKB, and SOCS3 genes could be involved in the association between overnutrition and obesity. This study aims to investigate interactions involving these genes and macronutrient intakes affecting obesity-related phenotypes. Methods: We used a traditional statistical method, logistic regression, and compared it to alternative statistical method, multifactor dimensionality reduction (MDR) and penalized logistic regression (PLR), to better detect genes/environment interactions in the Toronto Nutrigenomics and Health Study (n = 1639) using dichotomized body mass index (BMI) and waist circumference as obesity-related phenotypes. Exposure variables included genotype on 54 single nucleotide polymorphisms (NFKB1: 18, IKBKB: 9, SOCS3: 27), macronutrient (carbohydrates, protein, fat) and alcohol intakes and ethno-cultural background. Results: After correction for multiple testing, no interaction was found using logistic regression. MDR identified interactions between SOCS3 rs6501199 and rs4969172, and IKBKB rs3747811 affecting BMI in the Caucasian population; SOCS3 rs6501199 and NFKB1 rs1609798 affecting WC in the Caucasian population; and SOCS3 rs4436839 and IKBKB rs3747811 affecting WC in the South Asian population. PLR found a main effect of SOCS3 rs12944581 on BMI among the South Asian population. Conclusion: While MDR and PLR had discordant results, some models support results from previous studies. These results emphasize the need to use alternative statistical methods to investigate high-order interactions and suggest that variants in the nutrient-responsive hypothalamic IKKB/NF-kB signaling pathway may be involved in obesity pathogenesis.
Collapse
Affiliation(s)
- François Tessier
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | | | | | - Ahmed El-Sohemy
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
139
|
Fang C, Cai X, Hayashi S, Hao S, Sakiyama H, Wang X, Yang Q, Akira S, Nishiguchi S, Fujiwara N, Tsutsui H, Sheng J. Caffeine-stimulated muscle IL-6 mediates alleviation of non-alcoholic fatty liver disease. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:271-280. [PMID: 30553055 DOI: 10.1016/j.bbalip.2018.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 11/20/2018] [Accepted: 12/10/2018] [Indexed: 02/05/2023]
Abstract
Caffeine intake is associated with a reduced risk developing non-alcoholic fatty liver disease (NAFLD), but the underlying molecular mechanisms remain to be fully elucidated. We report here that caffeine markedly improved high fat diet-induced NAFLD in mice resulting in a 10-fold increase in circulating IL-6 levels, leading to STAT3 activation in the liver. Interestingly, the expression of IL-6 mRNA was not increased in the liver, but increased substantially in the muscles of caffeine-treated mice. Caffeine was found to stimulate IL-6 production in cultured myotubes but not in hepatocytes, adipocytes, or macrophages. The inhibition of p38/MAPK abrogated caffeine-induced IL-6 production in muscle cells. Caffeine failed to improve NAFLD in IL-6 and hepatocyte-specific STAT3 knockout mice, indicating that the IL-6/STAT3 pathway is vital for the hepatoprotective effects of caffeine in NAFLD. The possibility that IL-6/STAT3-mediated hepatic autophagosome induction and hepatocytic oxygen consumption are involved in the anti-NAFLD effects of caffeine cannot be excluded, based on the findings presented here. Our results reveal that caffeine ameliorates NAFLD via crosstalk between muscle IL-6 production and liver STAT3 activation.
Collapse
Affiliation(s)
- Chongye Fang
- Key Laboratory of Pu-erh Tea Science, the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Department of Pu-erh Tea and Medical Science, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Xianbin Cai
- Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan; Department of Gastroenterology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Shuhei Hayashi
- Department of Pu-erh Tea and Medical Science, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan; Department of Microbiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.
| | - Shumei Hao
- Yunnan University, Kunming 650091, China
| | - Haruhiko Sakiyama
- Department of Biochemistry, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Xuanjun Wang
- Key Laboratory of Pu-erh Tea Science, the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Qin Yang
- Department of Internal Medicine, Division of Endocrinology, University of California at Irvine, Irvine, CA 92697, USA
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier International Research Center Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan; Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Shuhei Nishiguchi
- Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Noriko Fujiwara
- Department of Biochemistry, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | - Hiroko Tsutsui
- Key Laboratory of Pu-erh Tea Science, the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Department of Microbiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Jun Sheng
- Key Laboratory of Pu-erh Tea Science, the Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China; Pu'erh Tea Research Institute, Pu'erh, China.
| |
Collapse
|
140
|
Zech ATL, Singh SR, Schlossarek S, Carrier L. Autophagy in cardiomyopathies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118432. [PMID: 30831130 DOI: 10.1016/j.bbamcr.2019.01.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/19/2022]
Abstract
Autophagy (greek auto: self; phagein: eating) is a highly conserved process within eukaryotes that degrades long-lived proteins and organelles within lysosomes. Its accurate and constant operation in basal conditions ensures cellular homeostasis by degrading damaged cellular components and thereby acting not only as a quality control but as well as an energy supplier. An increasing body of evidence indicates a major role of autophagy in the regulation of cardiac homeostasis and function. In this review, we describe the different forms of mammalian autophagy, their regulations and monitoring with a specific emphasis on the heart. Furthermore, we address the role of autophagy in several forms of cardiomyopathy and the options for therapy.
Collapse
Affiliation(s)
- Antonia T L Zech
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg, Hamburg, Germany; German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sonia R Singh
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children's Hospital, Cincinnati, OH, United States of America
| | - Saskia Schlossarek
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg, Hamburg, Germany; German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg, Hamburg, Germany; German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
141
|
McGregor G, Harvey J. Leptin Regulation of Synaptic Function at Hippocampal TA-CA1 and SC-CA1 Synapses: Implications for Health and Disease. Neurochem Res 2019; 44:650-660. [PMID: 28819795 PMCID: PMC6420429 DOI: 10.1007/s11064-017-2362-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/05/2017] [Accepted: 07/21/2017] [Indexed: 12/16/2022]
Abstract
Growing evidence indicates that the endocrine hormone leptin regulates hippocampal synaptic function in addition to its established role as a hypothalamic satiety signal. Indeed, numerous studies show that leptin facilitates the cellular events that underlie hippocampal learning and memory including activity-dependent synaptic plasticity and glutamate receptor trafficking, indicating that leptin may be a potential cognitive enhancer. Although there has been extensive investigation into the modulatory role of leptin at hippocampal Schaffer collateral (SC)-CA1 synapses, recent evidence indicates that leptin also potently regulates excitatory synaptic transmission at the anatomically distinct temporoammonic (TA) input to hippocampal CA1 neurons. The cellular mechanisms underlying activity-dependent synaptic plasticity at TA-CA1 synapses differ from those at SC-CA1 synapses and the TA input is implicated in spatial and episodic memory formation. Furthermore, the TA input is an early target for neurodegeneration in Alzheimer's disease (AD) and aberrant leptin function is linked to AD. Here, we review the evidence that leptin regulates hippocampal synaptic function at both SC- and TA-CA1 synapses and discuss the consequences for neurodegenerative disorders like AD.
Collapse
Affiliation(s)
- Gemma McGregor
- Division of Neuroscience, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Jenni Harvey
- Division of Neuroscience, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
142
|
|
143
|
Murayama S, Yamamoto K, Fujita S, Takei H, Inui T, Ogiso B, Kobayashi M. Extracellular glucose-dependent IPSC enhancement by leptin in fast-spiking to pyramidal neuron connections via JAK2-PI3K pathway in the rat insular cortex. Neuropharmacology 2019; 149:133-148. [PMID: 30772375 DOI: 10.1016/j.neuropharm.2019.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 01/29/2023]
Abstract
Leptin is produced in the adipocytes and plays a pivotal role in regulation of energy balance by controlling appetite and metabolism. Leptin receptors are widely distributed in the brain, especially in the hypothalamus, hippocampus, and neocortex. The insular cortex (IC) processes gustatory and visceral information, which functionally correlate to feeding behavior. However, it is still an open issue whether and how leptin modulates IC neural activities. Our paired whole-cell patch-clamp recordings using IC slice preparations demonstrated that unitary inhibitory postsynaptic currents (uIPSCs) but not uEPSCs were potentiated by leptin in the connections between pyramidal (PNs) and fast-spiking neurons (FSNs). The leptin-induced increase in uIPSC amplitude was accompanied by a decrease in paired-pulse ratio. Under application of inhibitors of JAK2-PI3K but not MAPK pathway, leptin did not change uIPSC amplitude. Variance-mean analysis revealed that leptin increased the release probability but not the quantal size and the number of release site. These electrophysiological findings suggest that the leptin-induced uIPSC increase is mediated by activation of JAK2-PI3K pathway in presynaptic FSNs. An in vivo optical imaging revealed that leptin application decreased excitatory propagation in IC induced by electrical stimulation of IC. These leptin-induced effects were not observed under the low energy states: low glucose concentration (2.5 mM) in vitro and one-day-fasting condition in vivo. However, leptin enhanced uIPSCs under application of low glucose with an AMPK inhibitor. These results suggest that leptin suppresses IC excitation by facilitating GABA release in FSN→PN connections, which may not occur under a hunger state.
Collapse
Affiliation(s)
- Shota Murayama
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Department of Endodontics, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kiyofumi Yamamoto
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Satoshi Fujita
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Hiroki Takei
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Department of Pedodontics, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Tadashi Inui
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Bunnai Ogiso
- Department of Endodontics, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Molecular Dynamics Imaging Unit, RIKEN Centre for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
144
|
Molecular dynamic (MD) studies on Gln233Arg (rs1137101) polymorphism of leptin receptor gene and associated variations in the anthropometric and metabolic profiles of Saudi women. PLoS One 2019; 14:e0211381. [PMID: 30763324 PMCID: PMC6375553 DOI: 10.1371/journal.pone.0211381] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/12/2019] [Indexed: 01/07/2023] Open
Abstract
The Gln233Arg (A>G; rs1137101) polymorphism of the leptin receptor gene (LEPR) has been investigated extensively and is reported to be associated with different metabolic states. In this investigation, we aimed to study the frequency of Gln233Arg genotypes and alleles in a group of Saudi women stratified by their body mass index (BMI), to correlate the LEPR genotypes with variations in anthropometric, lipid and hormonal parameters and to investigate conformational and structural variations in the mutant LEPR using molecular dynamic (MD) investigations. The study group included 122 Saudi women (normal weight = 60; obese = 62) attending the clinics for a routine checkup. Anthropometric data: height, weight, waist and hip circumference were recorded and fasting serum sample was used to estimate glucose, lipids, ghrelin, leptin and insulin. BMI, W/H ratio, and HOMA-IR values were calculated. Whole blood sample was used to extract DNA; exon 6 of the LEPR gene was amplified by PCR and sequencing was conducted on an ABI 3100 Avant Genetic Analyser. Molecular Dynamic Simulation studies were carried out using different softwares. The results showed the presence of all three genotypes of Gln233Arg in Saudi women, but the frequencies were significantly different when compared to reports from some populations. No differences were seen in the genotype and allele frequencies between the normal weight and obese women. Stratification by the genotypes showed significantly higher BMI, waist and hip circumference, leptin, insulin, fasting glucose and HOMA-IR and lower ghrelin levels in obese women carrying the GG genotype. Even in the normal weight group, individuals with GG genotype had higher BMI, waist and hip circumference and significantly lower ghrelin levels. The MD studies showed a significant effect of the Gln/Arg substitution on the conformation, flexibility, root-mean-square fluctuation (RMSF), radius of gyration (Rg) values, solvent-accessible surface area (SASA) and number of inter- and intra-molecular H-bonds. The results suggest that the structural changes brought about by the mutation, influence the signaling pathways by some unknown mechanism, which may be contributing to the abnormalities seen in the individuals carrying the G allele of rs1137101.
Collapse
|
145
|
Son DH, Doan KV, Yang DJ, Sun JS, Kim SK, Kang N, Kang JY, Paik JH, DePinho RA, Choi YH, Shin DM, Kim KW. FoxO1 regulates leptin-induced mood behavior by targeting tyrosine hydroxylase. Metabolism 2019; 91:43-52. [PMID: 30500562 DOI: 10.1016/j.metabol.2018.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/02/2018] [Accepted: 11/23/2018] [Indexed: 01/08/2023]
Abstract
PURPOSE While leptin has been associated with various psycho-physiological functions, the molecular network in leptin-mediated mood regulation remains elusive. METHODS Anxiolytic behaviors and tyrosine hydroxylase (TH) levels were examined after leptin administration. Functional roles of STAT3 and FoxO1 in regulation of TH expression were investigated using in vivo and in vitro systems. A series of animal behavioral tests using dopaminergic neuron-specific FoxO1 KO (FoxO1 KODAT) were performed and investigated the roles of FoxO1 in regulation of mood behaviors. RESULTS Here, we show that administration of leptin induces anxiolytic-like phenotype through the activation of signal transducer and activator of transcription 3 (STAT3) and the inhibition of forkhead box protein O1 (FoxO1) in dopaminergic (DA) neurons of the midbrain. Specifically, STAT3 and FoxO1 directly bind to and exert opposing effects on tyrosine hydroxylase (TH) expression, where STAT3 acts as an enhancer and FoxO1 acts as a prominent repressor. Accordingly, suppression of the prominent suppressor FoxO1 by leptin strongly increased TH expression. Furthermore, our previous results showed that specific deletion of FoxO1 in DA neurons (FoxO1 KODAT) led to a profound elevation of TH activity and dopamine contents. Finally, FoxO1 KODAT mice exhibited enhanced leptin sensitivity as well as displayed reduced anxiety- and depression-like behaviors. CONCLUSIONS This work establishes a novel molecular mechanism of mood behavior regulation by leptin and suggests FoxO1 suppression by leptin might be a key for leptin-induced behavioral manifestation in DA neurons.
Collapse
Affiliation(s)
- Dong Hwee Son
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, South Korea; Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, South Korea; Department of Wellness & Healthy Aging, Wonju College of Medicine, Yonsei University, Wonju 26426, South Korea
| | - Khanh V Doan
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, South Korea; Department of Wellness & Healthy Aging, Wonju College of Medicine, Yonsei University, Wonju 26426, South Korea; Department of Pharmacology, School of Medicine, Tan Tao University, Tan Duc E.City, Duc Hoa, Long An 850000, Viet Nam
| | - Dong Joo Yang
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, South Korea; Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, South Korea; Department of Wellness & Healthy Aging, Wonju College of Medicine, Yonsei University, Wonju 26426, South Korea
| | - Ji Su Sun
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, South Korea
| | - Seul Ki Kim
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, South Korea
| | - Namju Kang
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, South Korea
| | - Jung Yun Kang
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, South Korea
| | - Ji-Hye Paik
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ronald A DePinho
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yun-Hee Choi
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, South Korea.
| | - Dong Min Shin
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, South Korea.
| | - Ki Woo Kim
- Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry, Seoul 03722, South Korea; Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, South Korea; Department of Wellness & Healthy Aging, Wonju College of Medicine, Yonsei University, Wonju 26426, South Korea.
| |
Collapse
|
146
|
Kuipers A, Moll GN, Wagner E, Franklin R. Efficacy of lanthionine-stabilized angiotensin-(1-7) in type I and type II diabetes mouse models. Peptides 2019; 112:78-84. [PMID: 30529303 DOI: 10.1016/j.peptides.2018.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022]
Abstract
Native angiotensin-(1-7) exerts many therapeutic effects. However, it is rapidly degraded by ACE and other peptidases. This drawback is largely eliminated for lanthionine-stabilized angiotensin-(1-7), termed cAng-(1-7), which is fully resistant to ACE and has strongly increased resistance to other peptidases. Goal of the present study was to test whether cAng-(1-7) has therapeutic activity in diabetes mouse models: in a multiple low dose streptozotocin-induced model of type I diabetes and / or in a db/db model of type II diabetes. In the type I diabetes model cAng-(1-7) caused in an increase in the insulin level of 133% in week 4 (p < 0.001) compared to vehicle, and in the type II diabetes model an increase of 55% of the insulin level in week 8 (p < 0.05) compared to vehicle. cAng-(1-7) reduced blood glucose levels in the type I model by 37% at day 22 (p < 0.001) and in the type II diabetes model by 17% at day 63 of treatment (p < 0.001) and in an oral glucose tolerance test in a type II diabetes model, by 17% at week 4 (p < 0.01). cAng-(1-7) also caused a reduction of glycated hemoglobin levels in the type II diabetes model of 21% in week 6 (p < 0,001). These data are consistent with therapeutic potential of cAng-(1-7) in type I and II diabetes.
Collapse
Affiliation(s)
- Anneke Kuipers
- Lanthio Pharma, a MorphoSys AG company, 9727 DL, Groningen, the Netherlands
| | - Gert N Moll
- Lanthio Pharma, a MorphoSys AG company, 9727 DL, Groningen, the Netherlands; Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, the Netherlands.
| | - Elizabeth Wagner
- Constant Pharmaceuticals LLC, 398 Columbus Ave, PMB 507, Boston, MA, 02116, USA
| | - Rick Franklin
- Constant Pharmaceuticals LLC, 398 Columbus Ave, PMB 507, Boston, MA, 02116, USA
| |
Collapse
|
147
|
Forny-Germano L, De Felice FG, Vieira MNDN. The Role of Leptin and Adiponectin in Obesity-Associated Cognitive Decline and Alzheimer's Disease. Front Neurosci 2019; 12:1027. [PMID: 30692905 PMCID: PMC6340072 DOI: 10.3389/fnins.2018.01027] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
Cross-talk between adipose tissue and central nervous system (CNS) underlies the increased risk of obese people to develop brain diseases such as cognitive and mood disorders. Detailed mechanisms for how peripheral changes caused by adipose tissue accumulation in obesity impact the CNS to cause brain dysfunction are poorly understood. Adipokines are a large group of substances secreted by the white adipose tissue to regulate a wide range of homeostatic processes including, but not limited to, energy metabolism and immunity. Obesity is characterized by a generalized change in the levels of circulating adipokines due to abnormal accumulation and dysfunction of adipose tissue. Altered adipokine levels underlie complications of obesity as well as the increased risk for the development of obesity-related comorbidities such as type 2 diabetes, cardiovascular and neurodegenerative diseases. Here, we review the literature for the role of adipokines as key mediators of the communication between periphery and CNS in health and disease. We will focus on the actions of leptin and adiponectin, two of the most abundant and well studied adipokines, in the brain, with particular emphasis on how altered signaling of these adipokines in obesity may lead to cognitive dysfunction and augmented risk for Alzheimer's disease. A better understanding of adipokine biology in brain disorders may prove of major relevance to diagnostic, prevention and therapy.
Collapse
Affiliation(s)
- Leticia Forny-Germano
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda G. De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Centre for Neuroscience Studies, Department of Psychiatry, Queen’s University, Kingston, ON, Canada
| | | |
Collapse
|
148
|
Dar R, Rasool S, Waza AA, Ayoub G, Qureshi M, Zargar AH, Bashir I, Jan T, Andrabi KI. Polymorphic Analysis of Leptin Promoter in Obese/diabetic Subjects in Kashmiri Population. Indian J Endocrinol Metab 2019; 23:111-116. [PMID: 31016164 PMCID: PMC6446689 DOI: 10.4103/ijem.ijem_164_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The role of common variants in leptin promoter has already been established to play a major role in obesity and diabetes in humans. The study was accordingly focused on leptin promoter variants and their potential association with diabetes and obesity in ethnic population from Kashmir, India. METHODS Allele frequencies of 620 Kashmiri subjects with diabetes (200), obese subjects (200), and ethnically matched healthy controls (200) were tested for the Hardy-Weinberg disequilibrium. Among 200 obese subjects, a total of 50 persons were with diabetes. The genotype and allele frequencies were evaluated using the Chi-square or Fisher's exact tests. RESULTS Sequence analysis revealed two reported variations i.e., rs72563764C>T and rs7799039G>A in promoter region. Both variants show homozygous as well as heterozygous genotypes. These variations indicated significant difference with respect to allelic and genotypic frequencies in all groups i.e., persons with diabetes, obese, and obese persons with diabetes (P < 0.05). We also analyzed the association of these variations with biochemical characteristics and found significant association of rs72563764C>T with triglycerides (TG) in obese patients and fasting plasma glucose (FPG) and random blood sugar (RBS) in obese/persons with diabetes. Also rs7799039G>A showed association with postprandial plasma sugar (PPPS) in obese patients and FPG and resting plasma glucose (RPG) in obese persons with diabetes. CONCLUSIONS Our results are suggestive of the association of leptin promoter gene variations i.e., rs72563764C>T and rs7799039G>A with both diabetes and obesity.
Collapse
Affiliation(s)
- Rubiya Dar
- Department of Biotechnology, University of Kashmir, Hazratbal Srinagar, Srinagar, Jammu and Kashmir, India
| | - Shabhat Rasool
- Department of Biotechnology, University of Kashmir, Hazratbal Srinagar, Srinagar, Jammu and Kashmir, India
| | - Ajaz Ahmad Waza
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Gazalla Ayoub
- Department of Biotechnology, University of Kashmir, Hazratbal Srinagar, Srinagar, Jammu and Kashmir, India
| | - Meenu Qureshi
- Department of Biotechnology, University of Kashmir, Hazratbal Srinagar, Srinagar, Jammu and Kashmir, India
| | - Abdul Hamid Zargar
- Department of Endocrinology, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Soura, Srinagar, Jammu and Kashmir, India
| | - Iftikhar Bashir
- Department of Endocrinology, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Soura, Srinagar, Jammu and Kashmir, India
| | - Tariq Jan
- Department of Statistics, University of Kashmir, Hazratbal Srinagar, Srinagar, Jammu and Kashmir, India
| | - Khurshid Iqbal Andrabi
- Department of Biotechnology, University of Kashmir, Hazratbal Srinagar, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
149
|
Dlamini Z, Hull R, Makhafola TJ, Mbele M. Regulation of alternative splicing in obesity-induced hypertension. Diabetes Metab Syndr Obes 2019; 12:1597-1615. [PMID: 31695458 PMCID: PMC6718130 DOI: 10.2147/dmso.s188680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/11/2019] [Indexed: 12/26/2022] Open
Abstract
Obesity is the result of genetics which predisposes an individual to obesity and environmental factors, resulting in excessive weight gain. A well-established linear relationship exists between hypertension and obesity. The combined burden of hypertension and obesity poses significant health and economic challenges. Many environmental factors and genetic traits interact to contribute to obesity-linked hypertension. These include excess sodium re-absorption or secretion by the kidneys, a hypertensive shift of renal-pressure and activation of the sympathetic nervous system. Most individuals suffering from hypertension need drugs in order to treat their raised blood pressure, and while a number of antihypertensive therapeutic agents are currently available, 50% of cases remain uncontrolled. In order to develop new and effective therapeutic agents combating obesity-induced hypertension, a thorough understanding of the molecular events leading to adipogenesis is critical. With the advent of whole genome and exome sequencing techniques, new genes and variants which can be used as markers for obesity and hypertension are being identified. This review examines the role played by alternative splicing (AS) as a contributing factor to the metabolic regulation of obesity-induced hypertension. Splicing mutations constitute at least 14% of the disease-causing mutations, thus implicating polymorphisms that effect splicing as indicators of disease susceptibility. The unique transcripts resulting from the alternate splicing of mRNA encoding proteins that play a key role in contributing to obesity would be vital to gain a proper understanding of the genetic causes of obesity. A greater knowledge of the genetic basis for obesity-linked hypertension will assist in the development of appropriate diagnostic tests as well as the identification of new personalized therapeutic targets against obesity-induced hypertension.
Collapse
Affiliation(s)
- Zodwa Dlamini
- South African Medical Research Council/University of Pretoria Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), Faculty of Health Sciences, University of Pretoria, Hatfield0028, South Africa
- Correspondence: Zodwa Dlamini South African Medical Research Council/University of Pretoria Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), Faculty of Health Sciences, University of Pretoria, South AfricaTel +27 3 18 199 334/5Email
| | - Rodney Hull
- South African Medical Research Council/University of Pretoria Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), Faculty of Health Sciences, University of Pretoria, Hatfield0028, South Africa
| | - Tshepiso J Makhafola
- South African Medical Research Council/University of Pretoria Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), Faculty of Health Sciences, University of Pretoria, Hatfield0028, South Africa
| | - Mzwandile Mbele
- South African Medical Research Council/University of Pretoria Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), Faculty of Health Sciences, University of Pretoria, Hatfield0028, South Africa
| |
Collapse
|
150
|
Wang Z, Aguilar EG, Luna JI, Dunai C, Khuat LT, Le CT, Mirsoian A, Minnar CM, Stoffel KM, Sturgill IR, Grossenbacher SK, Withers SS, Rebhun RB, Hartigan-O'Connor DJ, Méndez-Lagares G, Tarantal AF, Isseroff RR, Griffith TS, Schalper KA, Merleev A, Saha A, Maverakis E, Kelly K, Aljumaily R, Ibrahimi S, Mukherjee S, Machiorlatti M, Vesely SK, Longo DL, Blazar BR, Canter RJ, Murphy WJ, Monjazeb AM. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat Med 2019; 25:141-151. [PMID: 30420753 PMCID: PMC6324991 DOI: 10.1038/s41591-018-0221-5] [Citation(s) in RCA: 573] [Impact Index Per Article: 95.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 09/12/2018] [Indexed: 12/23/2022]
Abstract
The recent successes of immunotherapy have shifted the paradigm in cancer treatment, but because only a percentage of patients are responsive to immunotherapy, it is imperative to identify factors impacting outcome. Obesity is reaching pandemic proportions and is a major risk factor for certain malignancies, but the impact of obesity on immune responses, in general and in cancer immunotherapy, is poorly understood. Here, we demonstrate, across multiple species and tumor models, that obesity results in increased immune aging, tumor progression and PD-1-mediated T cell dysfunction which is driven, at least in part, by leptin. However, obesity is also associated with increased efficacy of PD-1/PD-L1 blockade in both tumor-bearing mice and clinical cancer patients. These findings advance our understanding of obesity-induced immune dysfunction and its consequences in cancer and highlight obesity as a biomarker for some cancer immunotherapies. These data indicate a paradoxical impact of obesity on cancer. There is heightened immune dysfunction and tumor progression but also greater anti-tumor efficacy and survival after checkpoint blockade which directly targets some of the pathways activated in obesity.
Collapse
Affiliation(s)
- Ziming Wang
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Ethan G Aguilar
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jesus I Luna
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Cordelia Dunai
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Lam T Khuat
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Catherine T Le
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Annie Mirsoian
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Christine M Minnar
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Kevin M Stoffel
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Ian R Sturgill
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Steven K Grossenbacher
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Sita S Withers
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Robert B Rebhun
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Dennis J Hartigan-O'Connor
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
- California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - Gema Méndez-Lagares
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
- California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - Alice F Tarantal
- California National Primate Research Center, University of California Davis, Davis, CA, USA
- Department of Pediatrics, University of California Davis School of Medicine, Davis, CA, USA
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, USA
| | - R Rivkah Isseroff
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
- Dermatology Service, Sacramento VA Medical Center, Mather, CA, USA
| | - Thomas S Griffith
- Department of Urology, Center for Immunology, Masonic Cancer Center, Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN, USA
| | - Kurt A Schalper
- Department of Pathology & Translational Immuno-oncology Laboratory, Yale University School of Medicine, New Haven, CT, USA
| | - Alexander Merleev
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
- Immune Monitoring Core, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Asim Saha
- Masonic Cancer Center and Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
- Immune Monitoring Core, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Karen Kelly
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis Schoolof Medicine, Sacramento, CA, USA
| | - Raid Aljumaily
- Department of Internal Medicine, Section of Hematology and Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sami Ibrahimi
- Department of Internal Medicine, Section of Hematology and Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sarbajit Mukherjee
- Department of Internal Medicine, Section of Hematology and Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael Machiorlatti
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sara K Vesely
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Dan L Longo
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Bruce R Blazar
- Masonic Cancer Center and Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Robert J Canter
- Division of Surgical Oncology, Department of Surgery, University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - William J Murphy
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA.
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis Schoolof Medicine, Sacramento, CA, USA.
| | - Arta M Monjazeb
- Department of Radiation Oncology, University of California Davis Comprehensive Cancer Center, Universityof California School of Medicine, Sacramento, CA, USA
| |
Collapse
|