101
|
Tennent R, Ali A, Wham C, Rutherfurd-Markwick K. Narrative Review: Impact of Genetic Variability of CYP1A2, ADORA2A, and AHR on Caffeine Consumption and Response. J Caffeine Adenosine Res 2020. [DOI: 10.1089/caff.2020.0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Rebecca Tennent
- School of Sport, Exercise and Nutrition, College of Health, Massey University, North Shore City, New Zealand
| | - Ajmol Ali
- School of Sport, Exercise and Nutrition, College of Health, Massey University, North Shore City, New Zealand
- Centre for Metabolic Health Research and Massey University, North Shore City, New Zealand
| | - Carol Wham
- School of Sport, Exercise and Nutrition, College of Health, Massey University, North Shore City, New Zealand
- Centre for Metabolic Health Research and Massey University, North Shore City, New Zealand
| | - Kay Rutherfurd-Markwick
- Centre for Metabolic Health Research and Massey University, North Shore City, New Zealand
- School of Health Sciences, Massey University, North Shore City, New Zealand
| |
Collapse
|
102
|
Nicolopoulos K, Mulugeta A, Zhou A, Hyppönen E. Association between habitual coffee consumption and multiple disease outcomes: A Mendelian randomisation phenome-wide association study in the UK Biobank. Clin Nutr 2020; 39:3467-3476. [PMID: 32284183 DOI: 10.1016/j.clnu.2020.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Coffee is the most commonly consumed beverage in the world after water, however the debate as to whether coffee consumption is beneficial or detrimental to health continues. Current evidence of the link between coffee and health outcomes is predominately observational, thus subject to methodological issues such a confounding and reverse causation. METHODS This Mendelian randomisation phenome-wide association study (MR-PheWAS) used information from up to 333,214 participants of White-British ancestry in the UK Biobank to examine the causal association between genetically instrumented habitual coffee consumption and the full range of disease outcomes. We constructed a genetic risk score for habitual coffee consumption and screened for associations with disease outcomes across 1117 case-control series. All signals under false discovery rate controlled threshold (5.8 × 10-4) were followed by Mendelian randomisation (MR) analyses, with replication in independent data sources where possible. RESULTS The initial phenome-wide association analysis identified signals for 13 outcomes representing five distinct diseases. The strongest signal was seen for gout (P = 2.3 × 10-12), but there was notable pleiotropy (Pdistortion <0.001) and MR analyses did not support an association with habitual coffee consumption (inverse variance weighted MR OR 0.41, 95% CI 0.08 to 2.25, P = 0.31). Support for a possible causal relationship between habitual coffee consumption was only obtained for four distinct disease outcomes, including an increased odds of osteoarthrosis (OR 1.23, 95% CI 1.11 to 1.35), other arthropathies (OR 1.22, 95% CI 1.12 to 1.33) and overweight (OR 1.28, 95% CI 1.05 to 1.56), and a lower odds of postmenopausal bleeding (OR 0.72, 95% CI 0.63 to 0.82). Evidence for an association between habitual coffee consumption and these four diseases was also supported by phenotypic associations with self-reported coffee consumption. CONCLUSIONS This large-scale MR-PheWAS provided little evidence for notable harm or benefit with respect to higher habitual coffee consumption. The only evidence for harm was seen with respect to osteoarthrosis, other arthropathies and obesity.
Collapse
Affiliation(s)
- Konstance Nicolopoulos
- Australian Centre for Precision Health, University of South Australia Cancer Research Institute, Adelaide, Australia
| | - Anwar Mulugeta
- Australian Centre for Precision Health, University of South Australia Cancer Research Institute, Adelaide, Australia; Department of Pharmacology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ang Zhou
- Australian Centre for Precision Health, University of South Australia Cancer Research Institute, Adelaide, Australia
| | - Elina Hyppönen
- Australian Centre for Precision Health, University of South Australia Cancer Research Institute, Adelaide, Australia; Population, Policy and Practice, UCL Great Ormond Street Institute of Child Health, London, UK; South Australian Health and Medical Research Institute, Adelaide, Australia.
| |
Collapse
|
103
|
Habitual coffee intake and risk for nonalcoholic fatty liver disease: a two-sample Mendelian randomization study. Eur J Nutr 2020; 60:1761-1767. [PMID: 32856188 DOI: 10.1007/s00394-020-02369-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Epidemiological studies support a protective role of habitual coffee and caffeine consumption against the risk of non-alcoholic fatty liver disease (NAFLD). We aimed to investigate the causal relationship between coffee intake and the risk of NAFLD. METHODS We performed a two-sample Mendelian randomization (MR) analysis using SNPs associated with habitual coffee intake in a published genome-wide association study (GWAS) as genetic instruments and summary-level data from a published GWAS of NAFLD (1122 cases and 399,900 healthy controls) in the UK Biobank. The causal relationship was estimated with the inverse weighted method using a 4-SNP and 6-SNP instrument based on the single largest non-UK Biobank GWAS (n = 91,462) and meta-analysis (n = 121,524) of GWAS data on habitual coffee intake, respectively. To maximize power, we also used up to 77 SNPs associated with coffee intake at a liberal significance level (p ≤ 1e-4) as instruments. RESULTS We observed a non-significant trend towards a causal protective effect of coffee intake on NAFLD based upon either the 4-SNP (OR: 0.76; 95% CI 0.51, 1.14, p = 0.19) or 6-SNP genetic instruments (OR: 0.77; 95% CI 0.48, 1.25, p = 0.29). The result also remains non-significant when using the more liberal 77-SNP instrument. CONCLUSION Our findings do not support a causal relationship between coffee intake and NAFLD risk. However, despite the largest-to-date sample size, the power of this study may be limited by the non-specificity and moderate effect size of the genetic alleles on coffee intake.
Collapse
|
104
|
Cornelis MC, van Dam RM. Habitual Coffee and Tea Consumption and Cardiometabolic Biomarkers in the UK Biobank: The Role of Beverage Types and Genetic Variation. J Nutr 2020; 150:2772-2788. [PMID: 32805014 PMCID: PMC7549305 DOI: 10.1093/jn/nxaa212] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/18/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mechanisms linking habitual consumption of coffee and tea to the development of type 2 diabetes and cardiovascular diseases remain unclear. OBJECTIVES We leveraged dietary, genetic, and biomarker data collected from the UK Biobank to investigate the role of different varieties of coffee and tea in cardiometabolic health. METHODS We included data from ≤447,794 participants aged 37-73 y in 2006-2010 who provided a blood sample and completed questionnaires regarding sociodemographic factors, medical history, diet, and lifestyle. Multivariable linear regression was used to examine the association between coffee or tea consumption and blood concentrations of glycated hemoglobin, fasting glucose, total cholesterol, HDL cholesterol, LDL cholesterol, fasting triglycerides (TGs), apoA-1, apoB, lipoprotein-a, and C-reactive protein (CRP). Lifestyle and genetic factors affecting caffeine metabolism, responses, or intake were tested for interactions with beverage intake in relation to biomarker concentrations. RESULTS Compared with coffee nonconsumers, each additional cup of coffee was significantly associated with higher total cholesterol, HDL-cholesterol, and LDL-cholesterol concentrations and lower TG and CRP concentrations in both men and women (P-trend < 0.002). Higher consumption of espresso coffee (≥2 compared with 0 cups/d) was associated with higher LDL cholesterol in men (β: 0.110 mmol/L; 95% CI: 0.058, 0.163 mmol/L) and women (β: 0.161 mmol/L; 95% CI: 0.088, 0.234 mmol/L), whereas no substantial association was observed for instant coffee. Compared with tea nonconsumers, higher tea consumption was associated with lower total and LDL cholesterol and apoB and higher HDL cholesterol (P-trend < 0.002); these associations were similar for black and green tea. Associations were not modified by genetics. CONCLUSIONS In the UK Biobank, consumption of certain coffee brews such as espresso had unfavorable associations with blood lipids, whereas consumption of tea had favorable associations. Findings were not modified by genetic variants affecting caffeine metabolism, suggesting a role of noncaffeine constituents of these beverages in cardiometabolic health.
Collapse
Affiliation(s)
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore,Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
105
|
Cornelis MC, Weintraub S, Morris MC. Caffeinated Coffee and Tea Consumption, Genetic Variation and Cognitive Function in the UK Biobank. J Nutr 2020; 150:2164-2174. [PMID: 32495843 PMCID: PMC7398783 DOI: 10.1093/jn/nxaa147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/25/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Coffee and tea are the major contributors of caffeine in the diet. Evidence points to the premise that caffeine may benefit cognition. OBJECTIVE We examined the associations of habitual regular coffee or tea and caffeine intake with cognitive function whilst additionally accounting for genetic variation in caffeine metabolism. METHODS We included white participants aged 37-73 y from the UK Biobank who provided biological samples and completed touchscreen questionnaires regarding sociodemographic factors, medical history, lifestyle, and diet. Habitual caffeine-containing coffee and tea intake was self-reported in cups/day and used to estimate caffeine intake. Between 97,369 and 445,786 participants with data also completed ≥1 of 7 self-administered cognitive functioning tests using a touchscreen system (2006-2010) or on home computers (2014). Multivariable regressions were used to examine the association between coffee, tea, or caffeine intake and cognition test scores. We also tested interactions between coffee, tea, or caffeine intake and a genetic-based caffeine-metabolism score (CMS) on cognitive function. RESULTS After multivariable adjustment, reaction time, Pairs Matching, Trail Making test B, and symbol digit substitution, performance significantly decreased with consumption of 1 or more cups of coffee (all tests P-trend < 0.0001). Tea consumption was associated with poor performance on all tests (P-trend < 0.0001). No statistically significant CMS × tea, CMS × coffee, or CMS × caffeine interactions were observed. CONCLUSIONS Our findings, based on the participants of the UK Biobank, provide little support for habitual consumption of regular coffee or tea and caffeine in improving cognitive function. On the contrary, we observed decrements in performance with intakes of these beverages which may be a result of confounding. Whether habitual caffeine intake affects cognitive function therefore remains to be tested.
Collapse
Affiliation(s)
- Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Martha Clare Morris
- Rush Institute for Healthy Aging, Rush University, Chicago, IL, USA,Address correspondence to MCC (e-mail: )
| |
Collapse
|
106
|
Rohde K, Schamarek I, Blüher M. Consequences of Obesity on the Sense of Taste: Taste Buds as Treatment Targets? Diabetes Metab J 2020; 44:509-528. [PMID: 32431111 PMCID: PMC7453985 DOI: 10.4093/dmj.2020.0058] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022] Open
Abstract
Premature obesity-related mortality is caused by cardiovascular and pulmonary diseases, type 2 diabetes mellitus, physical disabilities, osteoarthritis, and certain types of cancer. Obesity is caused by a positive energy balance due to hyper-caloric nutrition, low physical activity, and energy expenditure. Overeating is partially driven by impaired homeostatic feedback of the peripheral energy status in obesity. However, food with its different qualities is a key driver for the reward driven hedonic feeding with tremendous consequences on calorie consumption. In addition to visual and olfactory cues, taste buds of the oral cavity process the earliest signals which affect the regulation of food intake, appetite and satiety. Therefore, taste buds may play a crucial role how food related signals are transmitted to the brain, particularly in priming the body for digestion during the cephalic phase. Indeed, obesity development is associated with a significant reduction in taste buds. Impaired taste bud sensitivity may play a causal role in the pathophysiology of obesity in children and adolescents. In addition, genetic variation in taste receptors has been linked to body weight regulation. This review discusses the importance of taste buds as contributing factors in the development of obesity and how obesity may affect the sense of taste, alterations in food preferences and eating behavior.
Collapse
Affiliation(s)
- Kerstin Rohde
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany.
| | - Imke Schamarek
- Medical Department III (Endocrinology, Nephrology and Rheumatology), University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany.
- Medical Department III (Endocrinology, Nephrology and Rheumatology), University of Leipzig, Leipzig, Germany
| |
Collapse
|
107
|
Interactions of Habitual Coffee Consumption by Genetic Polymorphisms with the Risk of Prediabetes and Type 2 Diabetes Combined. Nutrients 2020; 12:nu12082228. [PMID: 32722627 PMCID: PMC7468962 DOI: 10.3390/nu12082228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 01/15/2023] Open
Abstract
Habitual coffee consumption and its association with health outcomes may be modified by genetic variation. Adults aged 40 to 69 years who participated in the Korea Association Resource (KARE) study were included in this study. We conducted a genome-wide association study (GWAS) on coffee consumption in 7868 Korean adults, and examined whether the association between coffee consumption and the risk of prediabetes and type 2 diabetes combined was modified by the genetic variations in 4054 adults. In the GWAS for coffee consumption, a total of five single nucleotide polymorphisms (SNPs) located in 12q24.11-13 (rs2074356, rs11066015, rs12229654, rs11065828, and rs79105258) were selected and used to calculate weighted genetic risk scores. Individuals who had a larger number of minor alleles for these five SNPs had higher genetic risk scores. Multivariate logistic regression models were used to estimate the odds ratios (ORs) and 95% confidence intervals (95% CIs) to examine the association. During the 12 years of follow-up, a total of 2468 (60.9%) and 480 (11.8%) participants were diagnosed as prediabetes or type 2 diabetes, respectively. Compared with non-black-coffee consumers, the OR (95% CI) for ≥2 cups/day by black-coffee consumers was 0.61 (0.38–0.95; p for trend = 0.023). Similarly, sugared coffee showed an inverse association. We found a potential interaction by the genetic variations related to black-coffee consumption, suggesting a stronger association among individuals with higher genetic risk scores compared to those with lower scores; the ORs (95% CIs) were 0.36 (0.15–0.88) for individuals with 5 to 10 points and 0.87 (0.46–1.66) for those with 0 points. Our study suggests that habitual coffee consumption was related to genetic polymorphisms and modified the risk of prediabetes and type 2 diabetes combined in a sample of the Korean population. The mechanisms between coffee-related genetic variation and the risk of prediabetes and type 2 diabetes combined warrant further investigation.
Collapse
|
108
|
Affiliation(s)
- Rob M van Dam
- From the Saw Swee Hock School of Public Health and Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (R.M.V.D.); and the Departments of Nutrition (R.M.V.D., F.B.H., W.C.W.) and Epidemiology (F.B.H., W.C.W.), Harvard T.H. Chan School of Public Health, and the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School (F.B.H., W.C.W.) - both in Boston
| | - Frank B Hu
- From the Saw Swee Hock School of Public Health and Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (R.M.V.D.); and the Departments of Nutrition (R.M.V.D., F.B.H., W.C.W.) and Epidemiology (F.B.H., W.C.W.), Harvard T.H. Chan School of Public Health, and the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School (F.B.H., W.C.W.) - both in Boston
| | - Walter C Willett
- From the Saw Swee Hock School of Public Health and Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore (R.M.V.D.); and the Departments of Nutrition (R.M.V.D., F.B.H., W.C.W.) and Epidemiology (F.B.H., W.C.W.), Harvard T.H. Chan School of Public Health, and the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School (F.B.H., W.C.W.) - both in Boston
| |
Collapse
|
109
|
Recent Caffeine Drinking Associates with Cognitive Function in the UK Biobank. Nutrients 2020; 12:nu12071969. [PMID: 32630669 PMCID: PMC7399821 DOI: 10.3390/nu12071969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/16/2020] [Accepted: 06/29/2020] [Indexed: 11/17/2022] Open
Abstract
Clinical evidence points to the premise that caffeine may benefit cognition, but whether these findings extend to real life settings and amidst factors that impact caffeine metabolism is unclear. The aim of this study was to investigate the impact of recent caffeine drinking on cognitive ability while additionally accounting for lifestyle and genetic factors that impact caffeine metabolism. We included up to 434,900 UK Biobank participants aged 37–73 years, recruited in 2006–2010, who provided biological samples and completed touchscreen questionnaires regarding sociodemographic factors, medical history, lifestyle, and diet. Recent caffeine drinking (yes/no in the last hour) was recorded during a physical assessment. Participants completed at least one of four self-administered cognitive function tests using the touchscreen system: prospective memory (PM), pairs matching (Pairs), fluid intelligence (FI), and reaction time (RT). Multivariable regressions were used to examine the association between recent caffeine drinking and cognition test scores. We also tested interactions between recent caffeine drinking and a genetic caffeine-metabolism score (CMS) on cognitive function. Among white participants, recent caffeine drinking was associated with higher performance on RT but lower performance on FI, Pairs, and PM (p ≤ 0.004). Similar directions of associations for FI (p = 0.09), Pairs (p = 0.03), and PM (p = 0.34) were observed among non-white participants. No significant and consistent effect modification by age, sex, smoking, test time, habitual caffeine intake, or CMS was observed. Caffeine consumed shortly before tasks requiring shorter reaction times may improve task performance. Potential impairments in memory and reasoning tasks with recent caffeine drinking warrant further study.
Collapse
|
110
|
Goodman RP, Markhard AL, Shah H, Sharma R, Skinner OS, Clish CB, Deik A, Patgiri A, Hsu YHH, Masia R, Noh HL, Suk S, Goldberger O, Hirschhorn JN, Yellen G, Kim JK, Mootha VK. Hepatic NADH reductive stress underlies common variation in metabolic traits. Nature 2020; 583:122-126. [PMID: 32461692 PMCID: PMC7536642 DOI: 10.1038/s41586-020-2337-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/11/2020] [Indexed: 01/21/2023]
Abstract
The cellular NADH/NAD+ ratio is fundamental to biochemistry, but the extent to which it reflects versus drives metabolic physiology in vivo is poorly understood. Here we report the in vivo application of Lactobacillus brevis (Lb)NOX1, a bacterial water-forming NADH oxidase, to assess the metabolic consequences of directly lowering the hepatic cytosolic NADH/NAD+ ratio in mice. By combining this genetic tool with metabolomics, we identify circulating α-hydroxybutyrate levels as a robust marker of an elevated hepatic cytosolic NADH/NAD+ ratio, also known as reductive stress. In humans, elevations in circulating α-hydroxybutyrate levels have previously been associated with impaired glucose tolerance2, insulin resistance3 and mitochondrial disease4, and are associated with a common genetic variant in GCKR5, which has previously been associated with many seemingly disparate metabolic traits. Using LbNOX, we demonstrate that NADH reductive stress mediates the effects of GCKR variation on many metabolic traits, including circulating triglyceride levels, glucose tolerance and FGF21 levels. Our work identifies an elevated hepatic NADH/NAD+ ratio as a latent metabolic parameter that is shaped by human genetic variation and contributes causally to key metabolic traits and diseases. Moreover, it underscores the utility of genetic tools such as LbNOX to empower studies of 'causal metabolism'.
Collapse
Affiliation(s)
- Russell P Goodman
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew L Markhard
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Hardik Shah
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Rohit Sharma
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Owen S Skinner
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Amy Deik
- Broad Institute, Cambridge, MA, USA
| | - Anupam Patgiri
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Yu-Han H Hsu
- Broad Institute, Cambridge, MA, USA
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
| | - Ricard Masia
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Hye Lim Noh
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sujin Suk
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Olga Goldberger
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Joel N Hirschhorn
- Broad Institute, Cambridge, MA, USA
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
| | - Gary Yellen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Vamsi K Mootha
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute, Cambridge, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
111
|
Kolb H, Kempf K, Martin S. Health Effects of Coffee: Mechanism Unraveled? Nutrients 2020; 12:E1842. [PMID: 32575704 PMCID: PMC7353358 DOI: 10.3390/nu12061842] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
The association of habitual coffee consumption with a lower risk of diseases, like type 2 diabetes mellitus, chronic liver disease, certain cancer types, or with reduced all-cause mortality, has been confirmed in prospective cohort studies in many regions of the world. The molecular mechanism is still unresolved. The radical-scavenging and anti-inflammatory activity of coffee constituents is too weak to account for such effects. We argue here that coffee as a plant food has similar beneficial properties to many vegetables and fruits. Recent studies have identified a health promoting mechanism common to coffee, vegetables and fruits, i.e., the activation of an adaptive cellular response characterized by the upregulation of proteins involved in cell protection, notably antioxidant, detoxifying and repair enzymes. Key to this response is the activation of the Nrf2 (Nuclear factor erythroid 2-related factor-2) system by phenolic phytochemicals, which induces the expression of cell defense genes. Coffee plays a dominant role in that regard because it is the major dietary source of phenolic acids and polyphenols in the developed world. A possible supportive action may be the modulation of the gut microbiota by non-digested prebiotic constituents of coffee, but the available data are still scarce. We conclude that coffee employs similar pathways of promoting health as assumed for other vegetables and fruits. Coffee beans may be viewed as healthy vegetable food and a main supplier of dietary phenolic phytochemicals.
Collapse
Affiliation(s)
- Hubert Kolb
- Faculty of Medicine, University of Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (H.K.); (S.M.)
- West-German Centre of Diabetes and Health, Duesseldorf Catholic Hospital Group, Hohensandweg 37, 40591 Duesseldorf, Germany
| | - Kerstin Kempf
- West-German Centre of Diabetes and Health, Duesseldorf Catholic Hospital Group, Hohensandweg 37, 40591 Duesseldorf, Germany
| | - Stephan Martin
- Faculty of Medicine, University of Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (H.K.); (S.M.)
- West-German Centre of Diabetes and Health, Duesseldorf Catholic Hospital Group, Hohensandweg 37, 40591 Duesseldorf, Germany
| |
Collapse
|
112
|
Chang LH, Ong JS, An J, Verweij KJH, Vink JM, Pasman J, Liu M, MacGregor S, Cornelis MC, Martin NG, Derks EM. Investigating the genetic and causal relationship between initiation or use of alcohol, caffeine, cannabis and nicotine. Drug Alcohol Depend 2020; 210:107966. [PMID: 32276208 DOI: 10.1016/j.drugalcdep.2020.107966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Caffeine, alcohol, nicotine and cannabis are commonly used psychoactive substances. While the use of these substances has been previously shown to be genetically correlated, causality between these substance use traits remains unclear. We aimed to revisit the genetic relationships among different measures of SU using genome-wide association study (GWAS) summary statistics from the UK Biobank, International Cannabis Consortium, and GWAS & Sequencing Consortium of Alcohol and Nicotine use. METHODS We obtained GWAS summary statistics from the aforementioned consortia for ten substance use traits including various measures of alcohol consumption, caffeine consumption, cannabis initiation and smoking behaviours. We then conducted SNP-heritability (h2) estimation for individual SU traits, followed by genetic correlation analyses and two-sample Mendelian randomisation (MR) studies between substance use trait pairs. RESULTS SNP h2 of the ten traits ranged from 0.03 to 0.11. After multiple testing correction, 29 of the 45 trait pairs showed evidence of being genetically correlated. MR analyses revealed that most SU traits were not causally associated with each other. However, we found evidence for an MR association between regular smoking initiation and caffeine consumption 40.17 mg; 95 % CI: [24.01, 56.33] increase in caffeine intake per doubling of odds in smoking initiation). Our findings were robust against horizontal pleiotropy, SNP-outliers, and the direction of causality was consistent in all MR analyses. CONCLUSIONS Most of the substance traits were genetically correlated but there is little evidence to establish causality apart from the relationship between smoking initiation and caffeine consumption.
Collapse
Affiliation(s)
- Lun-Hsien Chang
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia.
| | - Jue-Sheng Ong
- Statistical Genetics, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia.
| | - Jiyuan An
- Statistical Genetics, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia.
| | - Karin J H Verweij
- Department of Psychiatry, Amsterdam UMC Location AMC, University of Amsterdam, Meibergdreef 5, 1105 AZ, Amsterdam, the Netherlands.
| | - Jacqueline M Vink
- Behavioural Science Institute, Developmental Psychopathology, Radboud University, Postbus 9104 6500 HE Nijmegen, the Netherlands.
| | - Joëlle Pasman
- Behavioural Science Institute, Developmental Psychopathology, Radboud University, Postbus 9104 6500 HE Nijmegen, the Netherlands.
| | - Mengzhen Liu
- Institute for Behavioural Genetics, University of Colorado, Boulder, CO, 80309-0447, United States.
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia.
| | - Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N Lake Shore Dr Suite 1400, Chicago, IL, 60611, United States.
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia.
| | - Eske M Derks
- Translational Neurogenomics, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD 4006, Australia.
| |
Collapse
|
113
|
Abstract
Nervous systems allow animals to acutely respond and behaviorally adapt to changes and recurring patterns in their environment at multiple timescales-from milliseconds to years. Behavior is further shaped at intergenerational timescales by genetic variation, drift, and selection. This sophistication and flexibility of behavior makes it challenging to measure behavior consistently in individual subjects and to compare it across individuals. In spite of these challenges, careful behavioral observations in nature and controlled measurements in the laboratory, combined with modern technologies and powerful genetic approaches, have led to important discoveries about the way genetic variation shapes behavior. A critical mass of genes whose variation is known to modulate behavior in nature is finally accumulating, allowing us to recognize emerging patterns. In this review, we first discuss genetic mapping approaches useful for studying behavior. We then survey how variation acts at different levels-in environmental sensation, in internal neuronal circuits, and outside the nervous system altogether-and then discuss the sources and types of molecular variation linked to behavior and the mechanisms that shape such variation. We end by discussing remaining questions in the field.
Collapse
Affiliation(s)
- Natalie Niepoth
- Zuckerman Mind Brain Behavior Institute and Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027, USA; ,
| | - Andres Bendesky
- Zuckerman Mind Brain Behavior Institute and Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027, USA; ,
| |
Collapse
|
114
|
Chang H, Yao S, Tritchler D, Hullar MA, Lampe JW, Thompson LU, McCann SE. Genetic Variation in Steroid and Xenobiotic Metabolizing Pathways and Enterolactone Excretion Before and After Flaxseed Intervention in African American and European American Women. Cancer Epidemiol Biomarkers Prev 2020; 28:265-274. [PMID: 30709839 DOI: 10.1158/1055-9965.epi-18-0826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/05/2018] [Accepted: 11/02/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Metabolism and excretion of the phytoestrogen enterolactone (ENL), which has been associated with breast cancer risk, may be affected by variation in steroid hormone and xenobiotic-metabolizing genes. METHODS We conducted a randomized, crossover flaxseed intervention study in 252 healthy, postmenopausal women [137 European ancestry (EA) and 115 African ancestry (AA)] from western New York. Participants were randomly assigned to maintain usual diet or consume 10 g/day ground flaxseed for 6 weeks. After a 2-month washout period, participants crossed over to the other diet condition for an additional 6 weeks. Urinary ENL excretion was measured by gas chromatography-mass spectrometry and 70 polymorphisms in 29 genes related to steroid hormone and xenobiotic metabolism were genotyped. Mixed additive genetic models were constructed to examine association of genetic variation with urinary ENL excretion at baseline and after the flaxseed intervention. RESULTS SNPs in several genes were nominally (P < 0.05) associated with ENL excretion at baseline and/or after intervention: ESR1, CYP1B1, COMT, CYP3A5, ARPC1A, BCL2L11, SHBG, SLCO1B1, and ZKSCAN5. A greater number of SNPs were associated among AA women than among EA women, and no SNPs were associated in both races. No SNP-ENL associations were statistically significant after correction for multiple comparisons. CONCLUSIONS Variation in several genes related to steroid hormone metabolism was associated with lignan excretion at baseline and/or after flaxseed intervention among postmenopausal women. IMPACT These findings may contribute to our understanding of the differences observed in urinary ENL excretion among AA and EA women and thus hormone-related breast cancer risk.
Collapse
Affiliation(s)
- Huiru Chang
- Department of Biostatistics, University at Buffalo, Buffalo, New York
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - David Tritchler
- Department of Biostatistics, University at Buffalo, Buffalo, New York
| | | | | | - Lilian U Thompson
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Susan E McCann
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| |
Collapse
|
115
|
Revez JA, Lin T, Qiao Z, Xue A, Holtz Y, Zhu Z, Zeng J, Wang H, Sidorenko J, Kemper KE, Vinkhuyzen AAE, Frater J, Eyles D, Burne THJ, Mitchell B, Martin NG, Zhu G, Visscher PM, Yang J, Wray NR, McGrath JJ. Genome-wide association study identifies 143 loci associated with 25 hydroxyvitamin D concentration. Nat Commun 2020; 11:1647. [PMID: 32242144 PMCID: PMC7118120 DOI: 10.1038/s41467-020-15421-7] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
Vitamin D deficiency is a candidate risk factor for a range of adverse health outcomes. In a genome-wide association study of 25 hydroxyvitamin D (25OHD) concentration in 417,580 Europeans we identify 143 independent loci in 112 1-Mb regions, providing insights into the physiology of vitamin D and implicating genes involved in lipid and lipoprotein metabolism, dermal tissue properties, and the sulphonation and glucuronidation of 25OHD. Mendelian randomization models find no robust evidence that 25OHD concentration has causal effects on candidate phenotypes (e.g. BMI, psychiatric disorders), but many phenotypes have (direct or indirect) causal effects on 25OHD concentration, clarifying the epidemiological relationship between 25OHD status and the health outcomes examined in this study.
Collapse
Affiliation(s)
- Joana A Revez
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Tian Lin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Zhen Qiao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Angli Xue
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Yan Holtz
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Zhihong Zhu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Jian Zeng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Huanwei Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Julia Sidorenko
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Kathryn E Kemper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Anna A E Vinkhuyzen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Julanne Frater
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Darryl Eyles
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
| | - Thomas H J Burne
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
| | - Brittany Mitchell
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | | | - Gu Zhu
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Jian Yang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Institute for Advanced Research, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| | - John J McGrath
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia.
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
116
|
Maruvada P, Lampe JW, Wishart DS, Barupal D, Chester DN, Dodd D, Djoumbou-Feunang Y, Dorrestein PC, Dragsted LO, Draper J, Duffy LC, Dwyer JT, Emenaker NJ, Fiehn O, Gerszten RE, B Hu F, Karp RW, Klurfeld DM, Laughlin MR, Little AR, Lynch CJ, Moore SC, Nicastro HL, O'Brien DM, Ordovás JM, Osganian SK, Playdon M, Prentice R, Raftery D, Reisdorph N, Roche HM, Ross SA, Sang S, Scalbert A, Srinivas PR, Zeisel SH. Perspective: Dietary Biomarkers of Intake and Exposure-Exploration with Omics Approaches. Adv Nutr 2020; 11:200-215. [PMID: 31386148 PMCID: PMC7442414 DOI: 10.1093/advances/nmz075] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
While conventional nutrition research has yielded biomarkers such as doubly labeled water for energy metabolism and 24-h urinary nitrogen for protein intake, a critical need exists for additional, equally robust biomarkers that allow for objective assessment of specific food intake and dietary exposure. Recent advances in high-throughput MS combined with improved metabolomics techniques and bioinformatic tools provide new opportunities for dietary biomarker development. In September 2018, the NIH organized a 2-d workshop to engage nutrition and omics researchers and explore the potential of multiomics approaches in nutritional biomarker research. The current Perspective summarizes key gaps and challenges identified, as well as the recommendations from the workshop that could serve as a guide for scientists interested in dietary biomarkers research. Topics addressed included study designs for biomarker development, analytical and bioinformatic considerations, and integration of dietary biomarkers with other omics techniques. Several clear needs were identified, including larger controlled feeding studies, testing a variety of foods and dietary patterns across diverse populations, improved reporting standards to support study replication, more chemical standards covering a broader range of food constituents and human metabolites, standardized approaches for biomarker validation, comprehensive and accessible food composition databases, a common ontology for dietary biomarker literature, and methodologic work on statistical procedures for intake biomarker discovery. Multidisciplinary research teams with appropriate expertise are critical to moving forward the field of dietary biomarkers and producing robust, reproducible biomarkers that can be used in public health and clinical research.
Collapse
Affiliation(s)
- Padma Maruvada
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Johanna W Lampe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - David S Wishart
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, Alberta, Canada
| | - Dinesh Barupal
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, Davis, CA, USA
| | - Deirdra N Chester
- Division of Nutrition, Institute of Food Safety and Nutrition at the National Institute of Food and Agriculture, USDA, Washington, DC, USA
| | - Dylan Dodd
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yannick Djoumbou-Feunang
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, Alberta, Canada
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Lars O Dragsted
- Department of Nutrition, Exercise, and Sports, Section of Preventive and Clinical Nutrition, University of Copenhagen, Copenhagen, Denmark
| | - John Draper
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - Linda C Duffy
- National Institutes of Health, National Center for Complementary and Integrative Health, Bethesda, MD, USA
| | - Johanna T Dwyer
- National Institutes of Health, Office of Dietary Supplements, Bethesda, MD, USA
| | - Nancy J Emenaker
- National Institutes of Health, National Cancer Institute, Rockville, MD, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, Davis, CA, USA
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Frank B Hu
- Departments of Nutrition; Epidemiology and Statistics, Harvard TH Chan School of Public Health, Boston, MA, USA
- Channing Division for Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert W Karp
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - David M Klurfeld
- Department of Nutrition, Food Safety/Quality, USDA—Agricultural Research Service, Beltsville, MD, USA
| | - Maren R Laughlin
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - A Roger Little
- National Institutes of Health, National Institute on Drug Abuse, Bethesda, MD, USA
| | - Christopher J Lynch
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Steven C Moore
- National Institutes of Health, National Cancer Institute, Rockville, MD, USA
| | - Holly L Nicastro
- National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Diane M O'Brien
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - José M Ordovás
- Nutrition and Genomics Laboratory, Jean Mayer–USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Stavroula K Osganian
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Mary Playdon
- Department of Nutrition and Integrative Physiology, University of Utah and Division of Cancer Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Ross Prentice
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - Daniel Raftery
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Medicine, University of Washington, Seattle, WA, USA
| | | | - Helen M Roche
- Nutrigenomics Research Group, School of Public Health, Physiotherapy and Sports Science, UCD Institute of Food and Health, Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
| | - Sharon A Ross
- National Institutes of Health, National Cancer Institute, Rockville, MD, USA
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina A&T State University, North Carolina Research Campus, Nutrition Research Building, Kannapolis, NC, USA
| | - Augustin Scalbert
- International Agency for Research on Cancer, Nutrition and Metabolism Section, Biomarkers Group, Lyon, France
| | - Pothur R Srinivas
- National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Steven H Zeisel
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| |
Collapse
|
117
|
Qian Y, Ye D, Huang H, Wu DJH, Zhuang Y, Jiang X, Mao Y. Coffee Consumption and Risk of Stroke: A Mendelian Randomization Study. Ann Neurol 2020; 87:525-532. [PMID: 32034791 DOI: 10.1002/ana.25693] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 01/22/2020] [Accepted: 02/02/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Observational epidemiological studies have reported a relationship between coffee intake and risk of stroke. However, evidence for this association is inconsistent, and it remains uncertain whether the association is causal or due to confounding or reverse causality. To clarify this relationship, we adopted a Mendelian randomization (MR) approach to evaluate the effects of coffee consumption on the risk of stroke and its subtypes. METHODS A meta-analysis of genome-wide association studies (GWASs) including 91,462 coffee consumers was used to identify instruments for coffee consumption. Summary-level data for stroke, intracerebral hemorrhage, ischemic stroke (IS), and IS subtypes were obtained from GWAS meta-analyses conducted by the MEGASTROKE consortium. MR analyses were performed using the inverse-variance-weighted, weighted-median, MR-PRESSO (Pleiotropy RESidual Sum and Outlier) test and MR-Egger regression. Sensitivity analyses were further performed using alternative instruments to test the robustness of our findings. RESULTS Genetically predicted coffee consumption (high vs infrequent/no) was not associated with risk of stroke. Similarly, among coffee consumers, MR analysis did not indicate causal associations between coffee consumption (cups/day) and risk of stroke. However, in the subgroup analysis, we found weak suggestive evidence for a potential protective effect of coffee consumption on risk of small vessel (SV)-IS, although the association did not reach statistical significance after correction for multiple comparisons. INTERPRETATION This study suggests that coffee consumption is not causally associated with risk of stroke or its subtypes. Further studies are warranted to elucidate the possible association between coffee intake and risk of SV-IS, as well as its potential underlying mechanisms. ANN NEUROL 2020;87:525-532.
Collapse
Affiliation(s)
- Yu Qian
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ding Ye
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huijun Huang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - David J H Wu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China.,University of Minnesota Medical School, Minneapolis, MN
| | - Yaxuan Zhuang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xia Jiang
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard University T. H. Chan School of Public Health, Boston, MA.,Cardiovascular Epidemiology Unit, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Yingying Mao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
118
|
Cornelis MC. Coffee and type 2 diabetes: time to consider alternative mechanisms? Am J Clin Nutr 2020; 111:248-249. [PMID: 31919498 DOI: 10.1093/ajcn/nqz346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
119
|
Matoba N, Akiyama M, Ishigaki K, Kanai M, Takahashi A, Momozawa Y, Ikegawa S, Ikeda M, Iwata N, Hirata M, Matsuda K, Murakami Y, Kubo M, Kamatani Y, Okada Y. GWAS of 165,084 Japanese individuals identified nine loci associated with dietary habits. Nat Hum Behav 2020; 4:308-316. [PMID: 31959922 DOI: 10.1038/s41562-019-0805-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/03/2019] [Indexed: 01/02/2023]
Abstract
Dietary habits are important factors in our lifestyle, and confer both susceptibility to and protection from a variety of human diseases. We performed genome-wide association studies for 13 dietary habits including consumption of alcohol (ever versus never drinkers and drinks per week), beverages (coffee, green tea and milk) and foods (yoghurt, cheese, natto, tofu, fish, small whole fish, vegetables and meat) in Japanese individuals (n = 58,610-165,084) collected by BioBank Japan, the nationwide hospital-based genome cohort. Significant associations were found in nine genetic loci (MCL1-ENSA, GCKR, AGR3-AHR, ADH1B, ALDH1B1, ALDH1A1, ALDH2, CYP1A2-CSK and ADORA2A-AS1) for 13 dietary traits (P < 3.8 × 10-9). Of these, ten associations between five loci and eight traits were new findings. Furthermore, a phenome-wide association study revealed that five of the dietary trait-associated loci have pleiotropic effects on multiple human complex diseases and clinical measurements. Our findings provide new insight into the genetics of habitual consumption.
Collapse
Affiliation(s)
- Nana Matoba
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Genetics, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masahiro Kanai
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyotake, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyotake, Japan
| | - Makoto Hirata
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koichi Matsuda
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, the Institute of Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. .,Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan. .,Laboratory of Statistical Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan. .,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.
| |
Collapse
|
120
|
Williams PT. Quantile-Specific Heritability may Account for Gene-Environment Interactions Involving Coffee Consumption. Behav Genet 2020; 50:119-126. [PMID: 31900678 DOI: 10.1007/s10519-019-09989-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Estimated heritability of coffee intake ranges from 0.36 to 0.58, however, these point estimates assume that inherited effects are the same throughout the distribution of coffee intake, i.e., whether consumption is high or low relative to intake in the population. Quantile regression of 4788 child-parent pairs and 2380 siblings showed that offspring-parent and sibling concordance became progressively greater with increasing quantiles of coffee intake. Each cup/day increase in the parents' coffee intake was associated with an offspring increase of 0.020 ± 0.013 cup/day at the 10th percentile of the offsprings' coffee intake (slope ± SE, NS), 0.137 ± 0.034 cup/day at their 25th percentile (P = 5.2 × 10-5), 0.159 ± 0.029 cup/day at the 50th percentile (P = 5.8 × 10-8), 0.233 ± 0.049 cup/day at the 75th percentile (P = 1.8 × 10-6), and 0.284 ± 0.054 cup/day at the 90th percentile (P = 1.2 × 10-7). This quantile-specific heritability suggests that factors that distinguish heavier vs. lighter drinkers (smoking, male sex) will likely manifest differences in estimated heritability, as reported.
Collapse
Affiliation(s)
- Paul T Williams
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA.
| |
Collapse
|
121
|
Nordestgaard AT, Stender S, Nordestgaard BG, Tybjaerg-Hansen A. Coffee intake protects against symptomatic gallstone disease in the general population: a Mendelian randomization study. J Intern Med 2020; 287:42-53. [PMID: 31486166 DOI: 10.1111/joim.12970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Coffee intake is associated with low risk of symptomatic gallstone disease (GSD). We tested the hypothesis that high coffee intake causally protects against symptomatic GSD using a Mendelian randomization design. METHODS First, we tested whether high coffee intake was associated with low risk of GSD in 104 493 individuals from the general population. Mean follow-up was 8 years (range: <1-13 years). Secondly, we tested whether two genetic variants near CYP1A1/A2 (rs2472297) and AHR (rs4410790), combined as an allele score, were associated with higher coffee intake measured as a continuous variable. Thirdly, we tested whether the allele score was associated with lower risk of GSD in 114 220 individuals including 7294 gallstone events. Mean follow-up was 38 years (range: <1-40 years). RESULTS In observational analysis, those with coffee intake of >6 cups daily had 23% lower risk of GSD compared to individuals without coffee intake [hazard ratio (HR) = 0.77 (95% confidence interval: 0.61-0.94)]. In genetic analysis, there was a stepwise higher coffee intake of up to 41% (caffeine per day) in individuals with 4 (highest) versus 0 (lowest) coffee intake alleles (P for trend = 3 x 10-178 ) and a corresponding stepwise lower risk of GSD up to 19%[HR = 0.81 (0.69-0.96)]. The estimated observational odds ratio for GSD for a one cup per day higher coffee intake was 0.97 (0.96-0.98), equal to 3% lower risk. The corresponding genetic odds ratio was 0.89 (0.83-0.95), equal to 11% lower risk. CONCLUSION High coffee intake is associated observationally with low risk of GSD, and with genetic evidence to support a causal relationship.
Collapse
Affiliation(s)
- A T Nordestgaard
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Biochemistry and The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Copenhagen University Hospitals and Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - S Stender
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Copenhagen University Hospitals and Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - B G Nordestgaard
- Department of Clinical Biochemistry and The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Copenhagen University Hospitals and Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,The Copenhagen City Heart Study, Frederiksberg and Bispebjerg Hospital, Copenhagen, Denmark
| | - A Tybjaerg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Biochemistry and The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Copenhagen University Hospitals and Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,The Copenhagen City Heart Study, Frederiksberg and Bispebjerg Hospital, Copenhagen, Denmark
| |
Collapse
|
122
|
Djordjevic N, Radmanovic B, Cukic J, Baskic D, Djukic-Dejanovic S, Milovanovic D, Aklillu E. Cigarette smoking and heavy coffee consumption affecting response to olanzapine: The role of genetic polymorphism. World J Biol Psychiatry 2020; 21:29-52. [PMID: 30513034 DOI: 10.1080/15622975.2018.1548779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Objectives: To evaluate the effect of cigarette smoking and heavy coffee consumption on efficacy and safety of olanzapine treatment in schizophrenia patients, in relation to genetic polymorphism.Methods: The study involved 120 patients with schizophrenia, treated with olanzapine for 30 days. Therapy efficacy was determined using three different psychiatric scales, and safety by assessing metabolic adverse effects and extrapyramidal symptoms. Genotyping included CYP1A2*1C, CYP1A2*1F and CYP1A1/1A2 intergenic polymorphism, as well as CYP2D6*3, CYP2D6*4 and CYP2D6*6.Results: Cigarette smoking and heavy coffee consumption decreased the efficacy and increased the safety of olanzapine treatment (P < 0.001). Although the effect was detected only in carriers of CYP1A2*1F allele, covariate analysis revealed that it is independent of CYP1A2 genotype. Olanzapine dose was inversely correlated with the drug efficacy (P ≤ 0.002) and LDL level (P = 0.004). Women and older subjects responded better to therapy (P < 0.026), but had more certain adverse effects (P ≤ 0.049). When controlling for other relevant factors, CYP2D6 metabolizer status affects olanzapine efficacy (P = 0.032).Conclusions: We confirm the effect of cigarette smoking and heavy coffee consumption on olanzapine efficacy and safety. The relevance of CYP1A2 genotype for the described effect needs further investigation. Olanzapine treatment outcome is also affected by dose, sex, age and CYP2D6 metabolizer status.
Collapse
Affiliation(s)
- Natasa Djordjevic
- Department of Pharmacology and toxicology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Branimir Radmanovic
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Psychiatry Clinic, Clinical Centre "Kragujevac", Kragujevac, Serbia
| | | | - Dejan Baskic
- Department of Microbiology and immunology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | | | - Dragan Milovanovic
- Department of Pharmacology and toxicology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
123
|
Aljofan M, Alkhamaisah SI, Younes KM, Gaipov A. Development and validation of a simple and sensitive HPLC method for the determination of liquid form of therapeutic substances. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2019. [DOI: 10.29333/ejgm/112271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
124
|
Noyce AJ, Bandres‐Ciga S, Kim J, Heilbron K, Kia D, Hemani G, Xue A, Lawlor DA, Smith GD, Duran R, Gan‐Or Z, Blauwendraat C, Gibbs JR, Hinds DA, Yang J, Visscher P, Cuzick J, Morris H, Hardy J, Wood NW, Nalls MA, Singleton AB. The Parkinson's Disease Mendelian Randomization Research Portal. Mov Disord 2019; 34:1864-1872. [PMID: 31659794 PMCID: PMC6973052 DOI: 10.1002/mds.27873] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/05/2019] [Accepted: 09/04/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Mendelian randomization is a method for exploring observational associations to find evidence of causality. OBJECTIVE To apply Mendelian randomization between risk factors/phenotypic traits (exposures) and PD in a large, unbiased manner, and to create a public resource for research. METHODS We used two-sample Mendelian randomization in which the summary statistics relating to single-nucleotide polymorphisms from 5,839 genome-wide association studies of exposures were used to assess causal relationships with PD. We selected the highest-quality exposure genome-wide association studies for this report (n = 401). For the disease outcome, summary statistics from the largest published PD genome-wide association studies were used. For each exposure, the causal effect on PD was assessed using the inverse variance weighted method, followed by a range of sensitivity analyses. We used a false discovery rate of 5% from the inverse variance weighted analysis to prioritize exposures of interest. RESULTS We observed evidence for causal associations between 12 exposures and risk of PD. Of these, nine were effects related to increasing adiposity and decreasing risk of PD. The remaining top three exposures that affected PD risk were tea drinking, time spent watching television, and forced vital capacity, but these may have been biased and were less convincing. Other exposures at nominal statistical significance included inverse effects of smoking and alcohol. CONCLUSIONS We present a new platform which offers Mendelian randomization analyses for a total of 5,839 genome-wide association studies versus the largest PD genome-wide association studies available (https://pdgenetics.shinyapps.io/MRportal/). Alongside, we report further evidence to support a causal role for adiposity on lowering the risk of PD. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alastair J. Noyce
- Preventive Neurology Unit, Wolfson Institute of Preventive MedicineQueen Mary University of LondonLondonUnited Kingdom
- Department of Clinical and Movement NeurosciencesUniversity College London, Institute of NeurologyLondonUnited Kingdom
| | - Sara Bandres‐Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on AgingNational Institutes of HealthBethesdaMarylandUSA
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
| | - Jonggeol Kim
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on AgingNational Institutes of HealthBethesdaMarylandUSA
| | | | - Demis Kia
- Department of Clinical and Movement NeurosciencesUniversity College London, Institute of NeurologyLondonUnited Kingdom
| | - Gibran Hemani
- MRC Integrative Epidemiology UnitUniversity of BristolBristolUnited Kingdom
| | - Angli Xue
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Debbie A. Lawlor
- MRC Integrative Epidemiology UnitUniversity of BristolBristolUnited Kingdom
- Population Health Science, Bristol Medical SchoolUniversity of BristolBristolUnited Kingdom
| | - George Davey Smith
- MRC Integrative Epidemiology UnitUniversity of BristolBristolUnited Kingdom
- Population Health Science, Bristol Medical SchoolUniversity of BristolBristolUnited Kingdom
| | - Raquel Duran
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Centro de Investigacion Biomedica and Departamento de Fisiologia, Facultad de MedicinaUniversidad de GranadaGranadaSpain
| | - Ziv Gan‐Or
- Department of Neurology & NeurosurgeryMcGill UniversityMontreal, QuebecCanada
- Montreal Neurological InstituteMcGill UniversityMontreal, QuebecCanada
- Department of Human GeneticsMcGill UniversityMontreal, QuebecCanada
| | - Cornelis Blauwendraat
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on AgingNational Institutes of HealthBethesdaMarylandUSA
| | - J. Raphael Gibbs
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on AgingNational Institutes of HealthBethesdaMarylandUSA
| | | | | | - Jian Yang
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
- Institute for Advanced ResearchWenzhou Medical UniversityWenzhou, ZhejiangChina
| | - Peter Visscher
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Jack Cuzick
- Preventive Neurology Unit, Wolfson Institute of Preventive MedicineQueen Mary University of LondonLondonUnited Kingdom
| | - Huw Morris
- Department of Clinical and Movement NeurosciencesUniversity College London, Institute of NeurologyLondonUnited Kingdom
| | - John Hardy
- Department of Clinical and Movement NeurosciencesUniversity College London, Institute of NeurologyLondonUnited Kingdom
| | - Nicholas W. Wood
- Department of Clinical and Movement NeurosciencesUniversity College London, Institute of NeurologyLondonUnited Kingdom
| | - Mike A. Nalls
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on AgingNational Institutes of HealthBethesdaMarylandUSA
- Data Tecnica InternationalGlen Echo, MarylandUSA
| | - Andrew B. Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on AgingNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
125
|
Abstract
PURPOSE Urinary incontinence and fecal incontinence are common disorders in women that negatively impact quality of life. In addition to known health and lifestyle risk factors, genetics may have a role in continence. Identification of genetic variants associated with urinary incontinence and fecal incontinence could result in a better understanding of etiologic pathways, and new interventions and treatments. MATERIALS AND METHODS We previously generated genome-wide single nucleotide polymorphism data from Nurses' Health Studies participants. The participants provided longitudinal urinary incontinence and fecal incontinence information via questionnaires. Cases of urinary incontinence (6,120) had at least weekly urinary incontinence reported on a majority of questionnaires (3 or 4 across 12 to 16 years) while controls (4,811) consistently had little to no urinary incontinence reported. We classified cases of urinary incontinence in women into stress (1,809), urgency (1,942) and mixed (2,036) subtypes. Cases of fecal incontinence (4,247) had at least monthly fecal incontinence reported on a majority of questionnaires while controls (11,634) consistently had no fecal incontinence reported. We performed a genome-wide association study for each incontinence outcome. RESULTS We identified 8 single nucleotide polymorphisms significantly associated (p <5×10-8) with urinary incontinence located in 2 loci, chromosomes 8q23.3 and 1p32.2. There were no genome-wide significant findings for the urinary incontinence subtype analyses. However, the significant associations for overall urinary incontinence were stronger for the urgency and mixed subtypes than for stress. While no single nucleotide polymorphism reached genome-wide significance for fecal incontinence, 4 single nucleotide polymorphisms had p <10-6. CONCLUSIONS Few studies have collected genetic data and detailed urinary incontinence and fecal incontinence information. This genome-wide association study provides initial evidence of genetic associations for urinary incontinence and merits further research to replicate our findings and identify additional risk variants.
Collapse
|
126
|
Ong JS, Law MH, An J, Han X, Gharahkhani P, Whiteman DC, Neale RE, MacGregor S. Association between coffee consumption and overall risk of being diagnosed with or dying from cancer among >300 000 UK Biobank participants in a large-scale Mendelian randomization study. Int J Epidemiol 2019; 48:1447-1456. [PMID: 31412118 DOI: 10.1093/ije/dyz144] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Previous observational studies have suggested that coffee intake may be associated with a reduction in cancer risk. Mendelian randomization (MR) studies can help clarify whether the observed associations are likely to be causal. Here we evaluated whether coffee intake is associated with: (i) overall risk of being diagnosed with/dying from any cancer; and (ii) risk of individual cancers. METHODS We identified 46 155 cases (of which 6998 were fatal) and 270 342 controls of White British ancestry from the UK Biobank cohort (UKB), based on ICD10 diagnoses. Individuals with benign tumours were excluded. Coffee intake was self-reported and recorded based on cup/day consumption. We conducted both observational and summary data MR analyses. RESULTS There was no observational association between coffee intake and overall cancer risk [odds ratio (OR) per one cup/day increase = 0.99, 95% confidence interval (CI) 0.98, 1.00] or cancer death (OR = 1.01, 0.99, 1.03); the estimated OR from MR is 1.01 (0.94, 1.08) for overall cancer risk and 1.11 (0.95, 1.31) for cancer death. The relationship between coffee intake and individual cancer risks were consistent with a null effect, with most cancers showing little or no associations with coffee. Meta-analysis of our MR findings with publicly available summary data on various cancers do not support a strong causal relationship between coffee and risk of breast, ovarian, lung or prostate cancer, upon correction for multiple testing. CONCLUSIONS Taken together, coffee intake is not associated with overall risk of being diagnosed with or dying from cancer in UKB. For individual cancers, our findings were not statistically inconsistent with earlier observational studies, although for these we were unable to rule out a small effect on specific types of cancer.
Collapse
Affiliation(s)
- Jue-Sheng Ong
- Statistical Genetics, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Matthew H Law
- Statistical Genetics, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jiyuan An
- Statistical Genetics, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Xikun Han
- Statistical Genetics, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Puya Gharahkhani
- Statistical Genetics, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - David C Whiteman
- Cancer Control, Department of Population Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Rachel E Neale
- Cancer Aetiology and Prevention, Department of Population Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Stuart MacGregor
- Statistical Genetics, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
127
|
Grover S, Lill CM, Kasten M, Klein C, Del Greco M F, König IR. Risky behaviors and Parkinson disease: A mendelian randomization study. Neurology 2019; 93:e1412-e1424. [PMID: 31527283 PMCID: PMC7010323 DOI: 10.1212/wnl.0000000000008245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/04/2019] [Indexed: 02/04/2023] Open
Abstract
Objective To examine causal associations between risky behavior phenotypes and Parkinson disease using a mendelian randomization approach. Methods We used 2-sample mendelian randomization to generate unconfounded estimates using summary statistics from 2 independent, large meta-analyses of genome-wide association studies on risk-taking behaviors (n = 370,771–939,908) and Parkinson disease (cases n = 9,581, controls n = 33,245). We used the inverse variance weighted method as the main method for judging causality. Results Our results support a strong protective association between the tendency to smoke and Parkinson disease (odds ratio [OR] 0.714 per log odds of ever smoking, 95% confidence interval [CI] 0.568–0.897, p = 0.0041, Cochran Q test p = 0.238; I2 index 6.3%). Furthermore, we observed risk association trends between automobile speed propensity and the number of sexual partners and Parkinson disease after removal of overlapping loci with other risky traits (OR 1.986 for each 1-SD increase in normalized automobile speed propensity, 95% CI 1.215–3.243, p = 0.0066; OR 1.635 for each 1-SD increase in number of sexual partners, 95% CI 1.165–2.293, p = 0.0049). Conclusion These findings provide support for a causal relationship between general risk tolerance and Parkinson disease and may provide new insights into the pathogenic mechanisms leading to the development of Parkinson disease.
Collapse
Affiliation(s)
- Sandeep Grover
- From the Institut für Medizinische Biometrie und Statistik (S.G., I.R.K.), Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck; Genetic and Molecular Epidemiology Group (C.M.L.), Lübeck Interdisciplinary Platform for Genome Analytics, Institutes of Neurogenetics & Cardiogenetics, Institute of Neurogenetics (M.K.), Department of Psychiatry and Psychotherapy, and Institute of Neurogenetics (C.K.), Universität zu Lübeck, Germany; and Institute for Biomedicine (F.D.G.M.), Eurac Research, Bolzano, Italy
| | - Christina M Lill
- From the Institut für Medizinische Biometrie und Statistik (S.G., I.R.K.), Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck; Genetic and Molecular Epidemiology Group (C.M.L.), Lübeck Interdisciplinary Platform for Genome Analytics, Institutes of Neurogenetics & Cardiogenetics, Institute of Neurogenetics (M.K.), Department of Psychiatry and Psychotherapy, and Institute of Neurogenetics (C.K.), Universität zu Lübeck, Germany; and Institute for Biomedicine (F.D.G.M.), Eurac Research, Bolzano, Italy
| | - Meike Kasten
- From the Institut für Medizinische Biometrie und Statistik (S.G., I.R.K.), Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck; Genetic and Molecular Epidemiology Group (C.M.L.), Lübeck Interdisciplinary Platform for Genome Analytics, Institutes of Neurogenetics & Cardiogenetics, Institute of Neurogenetics (M.K.), Department of Psychiatry and Psychotherapy, and Institute of Neurogenetics (C.K.), Universität zu Lübeck, Germany; and Institute for Biomedicine (F.D.G.M.), Eurac Research, Bolzano, Italy
| | - Christine Klein
- From the Institut für Medizinische Biometrie und Statistik (S.G., I.R.K.), Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck; Genetic and Molecular Epidemiology Group (C.M.L.), Lübeck Interdisciplinary Platform for Genome Analytics, Institutes of Neurogenetics & Cardiogenetics, Institute of Neurogenetics (M.K.), Department of Psychiatry and Psychotherapy, and Institute of Neurogenetics (C.K.), Universität zu Lübeck, Germany; and Institute for Biomedicine (F.D.G.M.), Eurac Research, Bolzano, Italy
| | - Fabiola Del Greco M
- From the Institut für Medizinische Biometrie und Statistik (S.G., I.R.K.), Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck; Genetic and Molecular Epidemiology Group (C.M.L.), Lübeck Interdisciplinary Platform for Genome Analytics, Institutes of Neurogenetics & Cardiogenetics, Institute of Neurogenetics (M.K.), Department of Psychiatry and Psychotherapy, and Institute of Neurogenetics (C.K.), Universität zu Lübeck, Germany; and Institute for Biomedicine (F.D.G.M.), Eurac Research, Bolzano, Italy.
| | - Inke R König
- From the Institut für Medizinische Biometrie und Statistik (S.G., I.R.K.), Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck; Genetic and Molecular Epidemiology Group (C.M.L.), Lübeck Interdisciplinary Platform for Genome Analytics, Institutes of Neurogenetics & Cardiogenetics, Institute of Neurogenetics (M.K.), Department of Psychiatry and Psychotherapy, and Institute of Neurogenetics (C.K.), Universität zu Lübeck, Germany; and Institute for Biomedicine (F.D.G.M.), Eurac Research, Bolzano, Italy.
| |
Collapse
|
128
|
Wang H, Lane JM, Jones SE, Dashti HS, Ollila HM, Wood AR, van Hees VT, Brumpton B, Winsvold BS, Kantojärvi K, Palviainen T, Cade BE, Sofer T, Song Y, Patel K, Anderson SG, Bechtold DA, Bowden J, Emsley R, Kyle SD, Little MA, Loudon AS, Scheer FAJL, Purcell SM, Richmond RC, Spiegelhalder K, Tyrrell J, Zhu X, Hublin C, Kaprio JA, Kristiansson K, Sulkava S, Paunio T, Hveem K, Nielsen JB, Willer CJ, Zwart JA, Strand LB, Frayling TM, Ray D, Lawlor DA, Rutter MK, Weedon MN, Redline S, Saxena R. Genome-wide association analysis of self-reported daytime sleepiness identifies 42 loci that suggest biological subtypes. Nat Commun 2019; 10:3503. [PMID: 31409809 PMCID: PMC6692391 DOI: 10.1038/s41467-019-11456-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 06/27/2019] [Indexed: 01/12/2023] Open
Abstract
Excessive daytime sleepiness (EDS) affects 10-20% of the population and is associated with substantial functional deficits. Here, we identify 42 loci for self-reported daytime sleepiness in GWAS of 452,071 individuals from the UK Biobank, with enrichment for genes expressed in brain tissues and in neuronal transmission pathways. We confirm the aggregate effect of a genetic risk score of 42 SNPs on daytime sleepiness in independent Scandinavian cohorts and on other sleep disorders (restless legs syndrome, insomnia) and sleep traits (duration, chronotype, accelerometer-derived sleep efficiency and daytime naps or inactivity). However, individual daytime sleepiness signals vary in their associations with objective short vs long sleep, and with markers of sleep continuity. The 42 sleepiness variants primarily cluster into two predominant composite biological subtypes - sleep propensity and sleep fragmentation. Shared genetic links are also seen with obesity, coronary heart disease, psychiatric diseases, cognitive traits and reproductive ageing.
Collapse
Affiliation(s)
- Heming Wang
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Jacqueline M Lane
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Samuel E Jones
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, United Kingdom
| | - Hassan S Dashti
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hanna M Ollila
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, United Kingdom
| | | | - Ben Brumpton
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Department of Thoracic and Occupational Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Bendik S Winsvold
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
- Division of Clinical Neuroscience, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Katri Kantojärvi
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki, Finland
- Department of Psychiatry and SleepWell Research Program, Faculty of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Teemu Palviainen
- Institute for Molecular Medicine FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Yanwei Song
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Northeastern University College of Science, Boston, MA, USA
| | - Krunal Patel
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Northeastern University College of Science, Boston, MA, USA
| | - Simon G Anderson
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- The George Alleyne Chronic Disease Research Centre, Caribbean Institute for Health Research, University of the West Indies, Cave Hill, Barbados
| | - David A Bechtold
- Division of Endocrinology, Diabetes & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jack Bowden
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Richard Emsley
- Division of Endocrinology, Diabetes & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Simon D Kyle
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Max A Little
- Department of Mathematics, Aston University, Birmingham, UK
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew S Loudon
- Division of Endocrinology, Diabetes & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Frank A J L Scheer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Shaun M Purcell
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Rebecca C Richmond
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Kai Spiegelhalder
- Clinic for Psychiatry and Psychotherapy, Medical Centre, University of Freiburg, Freiburg, Germany
| | - Jessica Tyrrell
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, United Kingdom
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Christer Hublin
- Institute for Molecular Medicine FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Jaakko A Kaprio
- Institute for Molecular Medicine FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Kati Kristiansson
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Sonja Sulkava
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki, Finland
- Department of Psychiatry and SleepWell Research Program, Faculty of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Tiina Paunio
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki, Finland
- Department of Psychiatry and SleepWell Research Program, Faculty of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Kristian Hveem
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
| | - Jonas B Nielsen
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - John-Anker Zwart
- Division of Clinical Neuroscience, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Linn B Strand
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, United Kingdom
| | - David Ray
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, OX39DU, UK
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Martin K Rutter
- Division of Endocrinology, Diabetes & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Diabetes Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Michael N Weedon
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, United Kingdom
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Richa Saxena
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
129
|
The association between genetic risk score and blood pressure is modified by coffee consumption: Gene–diet interaction analysis in a population-based study. Clin Nutr 2019; 38:1721-1728. [DOI: 10.1016/j.clnu.2018.07.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/17/2018] [Accepted: 07/25/2018] [Indexed: 12/19/2022]
|
130
|
Jia H, Nogawa S, Kawafune K, Hachiya T, Takahashi S, Igarashi M, Saito K, Kato H. GWAS of habitual coffee consumption reveals a sex difference in the genetic effect of the 12q24 locus in the Japanese population. BMC Genet 2019; 20:61. [PMID: 31345160 PMCID: PMC6659273 DOI: 10.1186/s12863-019-0763-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/08/2019] [Indexed: 01/04/2023] Open
Abstract
Background Studies on genetic effects of coffee consumption are scarce for Asian populations. We conducted a genome-wide association study (GWAS) of habitual coffee consumption in Japan using a self-reporting online survey. Results Candidate genetic loci associated with habitual coffee consumption were searched within a discovery cohort (N = 6,264) and confirmed in a replication cohort (N = 5,975). Two loci achieved genome-wide significance (P < 5 × 10− 8) in a meta-analysis of the discovery and replication cohorts: an Asian population-specific 12q24 (rs79105258; P = 9.5 × 10− 15), which harbors CUX2, and 7p21 (rs10252701; P = 1.0 × 10− 14), in the upstream region of the aryl hydrocarbon receptor (AHR) gene, involved in caffeine metabolism. Subgroup analysis revealed a stronger genetic effect of the 12q24 locus in males (P for interaction = 8.2 × 10− 5). Further, rs79105258 at the 12q24 locus exerted pleiotropic effects on body mass index (P = 3.5 × 10− 4) and serum triglyceride levels (P = 8.7 × 10− 3). Conclusions Our results consolidate the association of habitual coffee consumption with the 12q24 and 7p21 loci. The different effects of the 12q24 locus between males and females are a novel finding that improves our understanding of genetic influences on habitual coffee consumption. Electronic supplementary material The online version of this article (10.1186/s12863-019-0763-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huijuan Jia
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Shun Nogawa
- Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo, 108-0014, Japan
| | - Kaoru Kawafune
- Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo, 108-0014, Japan
| | - Tsuyoshi Hachiya
- Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo, 108-0014, Japan.,Genome Analytics Japan Inc., 15-1-3205, Tomihisa-cho, Shinjuku-ku, Tokyo, 162-0067, Japan
| | - Shoko Takahashi
- Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo, 108-0014, Japan
| | - Maki Igarashi
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Kenji Saito
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Genequest Inc., 5-29-11 Siba, Minato-ku, Tokyo, 108-0014, Japan
| | - Hisanori Kato
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
131
|
Zhong VW, Kuang A, Danning RD, Kraft P, van Dam RM, Chasman DI, Cornelis MC. A genome-wide association study of bitter and sweet beverage consumption. Hum Mol Genet 2019; 28:2449-2457. [PMID: 31046077 PMCID: PMC6606847 DOI: 10.1093/hmg/ddz061] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/14/2018] [Accepted: 08/09/2018] [Indexed: 01/07/2023] Open
Abstract
Except for drinking water, most beverages taste bitter or sweet. Taste perception and preferences are heritable and determinants of beverage choice and consumption. Consumption of several bitter- and sweet-tasting beverages has been implicated in development of major chronic diseases. We performed a genome-wide association study (GWAS) of self-reported bitter and sweet beverage consumption among ~370 000 participants of European ancestry, using a two-staged analysis design. Bitter beverages included coffee, tea, grapefruit juice, red wine, liquor and beer. Sweet beverages included artificially and sugar sweetened beverages (SSBs) and non-grapefruit juices. Five loci associated with total bitter beverage consumption were replicated (in/near GCKR, ABCG2, AHR, POR and CYP1A1/2). No locus was replicated for total sweet beverage consumption. Sub-phenotype analyses targeting the alcohol, caffeine and sweetener components of beverages yielded additional loci: (i) four loci for bitter alcoholic beverages (GCKR, KLB, ADH1B and AGBL2); (ii) five loci for bitter non-alcoholic beverages (ANXA9, AHR, POR, CYP1A1/2 and CSDC2); (iii) 10 loci for coffee; six novel loci (SEC16B, TMEM18, OR8U8, AKAP6, MC4R and SPECC1L-ADORA2A); (iv) FTO for SSBs. Of these 17 replicated loci, 12 have been associated with total alcohol consumption, coffee consumption, plasma caffeine metabolites or BMI in previous GWAS; none was involved in known sweet and bitter taste transduction pathways. Our study suggests that genetic variants related to alcohol consumption, coffee consumption and obesity were primary genetic determinants of bitter and sweet beverage consumption. Whether genetic variants related to taste perception are associated with beverage consumption remains to be determined.
Collapse
Affiliation(s)
- Victor W Zhong
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alan Kuang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rebecca D Danning
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard School of Public Health and Department of Biostatistics, Boston, MA, USA
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
132
|
Abstract
Regular coffee intake has been associated with reduced risk of developing serious chronic diseases. The hypothesis of this study is that coffee consumers present a particular pattern/trend of genotypes that ultimately will shed light on new gene targets to treat the diseases, from which regular coffee intake has preventive effects. Sixteen SNPs identified at genome-wide association studies (GWAS) on coffee and caffeine consumption were genotyped using real-time restriction-fragment length polymorphism-polymerase chain reaction (RT-PCR). The DNA samples were the same from a previous pilot study where 15 healthy volunteers donated two blood samples collected before and after drinking a standard cup of coffee and had caffeine plasma levels and CYP 1A2 genotype (rs762551) determined. The cross-examination of the data showed that six of the sixteen SNPs exhibited a negative allelic effect direction and nine of them showed a positive effect direction of which three of them had results confirmed by a recent GWAS. There is a need of a more in-depth study to understand the effects of the presence or absence of specific variant alleles as players to benefit the health of coffee consumers.
Collapse
|
133
|
Irimie AI, Braicu C, Pasca S, Magdo L, Gulei D, Cojocneanu R, Ciocan C, Olariu A, Coza O, Berindan-Neagoe I. Role of Key Micronutrients from Nutrigenetic and Nutrigenomic Perspectives in Cancer Prevention. ACTA ACUST UNITED AC 2019; 55:medicina55060283. [PMID: 31216637 PMCID: PMC6630934 DOI: 10.3390/medicina55060283] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/28/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
Regarding cancer as a genetic multi-factorial disease, a number of aspects need to be investigated and analyzed in terms of cancer's predisposition, development and prognosis. One of these multi-dimensional factors, which has gained increased attention in the oncological field due to its unelucidated role in risk assessment for cancer, is diet. Moreover, as studies advance, a clearer connection between diet and the molecular alteration of patients is becoming identifiable and quantifiable, thereby replacing the old general view associating specific phenotypical changes with the differential intake of nutrients. Respectively, there are two major fields concentrated on the interrelation between genome and diet: nutrigenetics and nutrigenomics. Nutrigenetics studies the effects of nutrition at the gene level, whereas nutrigenomics studies the effect of nutrients on genome and transcriptome patterns. By precisely evaluating the interaction between the genomic profile of patients and their nutrient intake, it is possible to envision a concept of personalized medicine encompassing nutrition and health care. The list of nutrients that could have an inhibitory effect on cancer development is quite extensive, with evidence in the scientific literature. The administration of these nutrients showed significant results in vitro and in vivo regarding cancer inhibition, although more studies regarding administration in effective doses in actual patients need to be done.
Collapse
Affiliation(s)
- Alexandra Iulia Irimie
- Department of Prosthetic Dentistry and Dental Materials, Division Dental Propaedeutics, Aesthetic, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Sergiu Pasca
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Lorand Magdo
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Roxana Cojocneanu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Cristina Ciocan
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Andrei Olariu
- Nordlogic Software, 10-12, Rene Descartes Street 400486 Cluj-Napoca, Romania.
| | - Ovidiu Coza
- Department of Radiotherapy with High Energies and Brachytherapy, Oncology Institute "Prof. Dr. Ion Chiricuta", Street Republicii, No. 34-36, 400015 Cluj-Napoca, Romania.
- Department of Radiotherapy and Medical Oncology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Street Louis Pasteur, No. 4, 400349 Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
- Department of Functional Genomics and Experimental Pathology, "Prof. Dr. Ion Chiricuta" The Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania.
| |
Collapse
|
134
|
Bucur IG, Claassen T, Heskes T. Inferring the direction of a causal link and estimating its effect via a Bayesian Mendelian randomization approach. Stat Methods Med Res 2019; 29:1081-1111. [PMID: 31146640 PMCID: PMC7221461 DOI: 10.1177/0962280219851817] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The use of genetic variants as instrumental variables - an approach known as Mendelian randomization - is a popular epidemiological method for estimating the causal effect of an exposure (phenotype, biomarker, risk factor) on a disease or health-related outcome from observational data. Instrumental variables must satisfy strong, often untestable assumptions, which means that finding good genetic instruments among a large list of potential candidates is challenging. This difficulty is compounded by the fact that many genetic variants influence more than one phenotype through different causal pathways, a phenomenon called horizontal pleiotropy. This leads to errors not only in estimating the magnitude of the causal effect but also in inferring the direction of the putative causal link. In this paper, we propose a Bayesian approach called BayesMR that is a generalization of the Mendelian randomization technique in which we allow for pleiotropic effects and, crucially, for the possibility of reverse causation. The output of the method is a posterior distribution over the target causal effect, which provides an immediate and easily interpretable measure of the uncertainty in the estimation. More importantly, we use Bayesian model averaging to determine how much more likely the inferred direction is relative to the reverse direction.
Collapse
Affiliation(s)
- Ioan Gabriel Bucur
- Data Science Department, Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands
| | - Tom Claassen
- Data Science Department, Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands
| | - Tom Heskes
- Data Science Department, Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
135
|
Picó C, Serra F, Rodríguez AM, Keijer J, Palou A. Biomarkers of Nutrition and Health: New Tools for New Approaches. Nutrients 2019; 11:E1092. [PMID: 31100942 PMCID: PMC6567133 DOI: 10.3390/nu11051092] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
A main challenge in nutritional studies is the valid and reliable assessment of food intake, as well as its effects on the body. Generally, food intake measurement is based on self-reported dietary intake questionnaires, which have inherent limitations. They can be overcome by the use of biomarkers, capable of objectively assessing food consumption without the bias of self-reported dietary assessment. Another major goal is to determine the biological effects of foods and their impact on health. Systems analysis of dynamic responses may help to identify biomarkers indicative of intake and effects on the body at the same time, possibly in relation to individuals' health/disease states. Such biomarkers could be used to quantify intake and validate intake questionnaires, analyse physiological or pathological responses to certain food components or diets, identify persons with specific dietary deficiency, provide information on inter-individual variations or help to formulate personalized dietary recommendations to achieve optimal health for particular phenotypes, currently referred as "precision nutrition." In this regard, holistic approaches using global analysis methods (omics approaches), capable of gathering high amounts of data, appear to be very useful to identify new biomarkers and to enhance our understanding of the role of food in health and disease.
Collapse
Affiliation(s)
- Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Ana María Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands.
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| |
Collapse
|
136
|
Ong JS, MacGregor S. Implementing MR-PRESSO and GCTA-GSMR for pleiotropy assessment in Mendelian randomization studies from a practitioner's perspective. Genet Epidemiol 2019; 43:609-616. [PMID: 31045282 PMCID: PMC6767464 DOI: 10.1002/gepi.22207] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 12/21/2022]
Abstract
With the advent of very large scale genome‐wide association studies (GWASs), the promise of Mendelian randomization (MR) has begun to be fulfilled. However, whilst GWASs have provided essential information on the single nucleotide polymorphisms (SNPs) associated with modifiable risk factors needed for MR, the availability of large numbers of SNP instruments raises issues of how best to use this information and how to deal with potential problems such as pleiotropy. Here we provide commentary on some of the recent advances in the MR analysis, including an overview of the different genetic architectures that are being uncovered for a variety of modifiable risk factors and how users ought to take that into consideration when designing MR studies.
Collapse
Affiliation(s)
- Jue-Sheng Ong
- Statistical Genetics Laboratory, Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Stuart MacGregor
- Statistical Genetics Laboratory, Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
137
|
Cornelis MC. Genetic determinants of beverage consumption: Implications for nutrition and health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 89:1-52. [PMID: 31351524 PMCID: PMC7047661 DOI: 10.1016/bs.afnr.2019.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Beverages make important contributions to nutritional intake and their role in health has received much attention. This review focuses on the genetic determinants of common beverage consumption and how research in this field is contributing insight to what and how much we consume and why this genetic knowledge matters from a research and public health perspective. The earliest efforts in gene-beverage behavior mapping involved genetic linkage and candidate gene analysis but these approaches have been largely replaced by genome-wide association studies (GWAS). GWAS have identified biologically plausible loci underlying alcohol and coffee drinking behavior. No GWAS has identified variants specifically associated with consumption of tea, juice, soda, wine, beer, milk or any other common beverage. Thus far, GWAS highlight an important behavior-reward component (as opposed to taste) to beverage consumption which may serve as a potential barrier to dietary interventions. Loci identified have been used in Mendelian randomization and gene×beverage interaction analysis of disease but results have been mixed. This research is necessary as it informs the clinical relevance of SNP-beverage associations and thus genotype-based personalized nutrition, which is gaining interest in the commercial and public health sectors.
Collapse
Affiliation(s)
- Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
138
|
Inoue M, Tsugane S. Coffee Drinking and Reduced Risk of Liver Cancer: Update on Epidemiological Findings and Potential Mechanisms. Curr Nutr Rep 2019; 8:182-186. [DOI: 10.1007/s13668-019-0274-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
139
|
Ong JS, Hwang LD, Cuellar-Partida G, Martin NG, Chenevix-Trench G, Quinn MCJ, Cornelis MC, Gharahkhani P, Webb PM, MacGregor S. Assessment of moderate coffee consumption and risk of epithelial ovarian cancer: a Mendelian randomization study. Int J Epidemiol 2019; 47:450-459. [PMID: 29186515 DOI: 10.1093/ije/dyx236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2017] [Indexed: 12/15/2022] Open
Abstract
Background Coffee consumption has been shown to be associated with various health outcomes in observational studies. However, evidence for its association with epithelial ovarian cancer (EOC) is inconsistent and it is unclear whether these associations are causal. Methods We used single nucleotide polymorphisms associated with (i) coffee and (ii) caffeine consumption to perform Mendelian randomization (MR) on EOC risk. We conducted a two-sample MR using genetic data on 44 062 individuals of European ancestry from the Ovarian Cancer Association Consortium (OCAC), and combined instrumental variable estimates using a Wald-type ratio estimator. Results For all EOC cases, the causal odds ratio (COR) for genetically predicted consumption of one additional cup of coffee per day was 0.92 [95% confidence interval (CI): 0.79, 1.06]. The COR was 0.90 (95% CI: 0.73, 1.10) for high-grade serous EOC. The COR for genetically predicted consumption of an additional 80 mg caffeine was 1.01 (95% CI: 0.92, 1.11) for all EOC cases and 0.90 (95% CI: 0.73, 1.10) for high-grade serous cases. Conclusions We found no evidence indicative of a strong association between EOC risk and genetically predicted coffee or caffeine levels. However, our estimates were not statistically inconsistent with earlier observational studies and we were unable to rule out small protective associations.
Collapse
Affiliation(s)
- Jue-Sheng Ong
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,School of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - Liang-Dar Hwang
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,School of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - Gabriel Cuellar-Partida
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Nicholas G Martin
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Georgia Chenevix-Trench
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Michael C J Quinn
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Marilyn C Cornelis
- Northwestern University Feinberg School of Medicine, Preventive Medicine, Chicago, IL, USA
| | - Puya Gharahkhani
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Penelope M Webb
- Population Health Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Stuart MacGregor
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | |
Collapse
|
140
|
Abstract
After more than 10 years of accumulated efforts, genome-wide association studies (GWAS) have led to many findings, most of which have been deposited into the GWAS Catalog. Between GWAS's inception and March 2017, the GWAS Catalog has collected 2429 studies, 1818 phenotypes, and 28,462 associated SNPs. We reclassified the psychology-related phenotypes into 217 reclassified phenotypes, which accounted for 514 studies and 7052 SNPs. In total, 1223 of the SNPs reached genome-wide significance. Of these, 147 were replicated for the same psychological trait in different studies. Another 305 SNPs were replicated within one original study. The SNPs rs2075650 and rs4420638 were linked to the most replications within a single reclassified phenotype or very similar reclassified phenotypes; both were associated with Alzheimer's disease (AD). Schizophrenia was associated with 74 within-phenotype SNPs reported in independents studies. Alzheimer's disease and schizophrenia were both linked to some physical phenotypes, including cholesterol and body mass index, through common GWAS signals. Alzheimer's disease also shared risk SNPs with age-related phenotypes such as age-related macular degeneration and longevity. Smoking-related SNPs were linked to lung cancer and respiratory function. Alcohol-related SNPs were associated with cardiovascular and digestive system phenotypes and disorders. Two separate studies also identified a shared risk SNP for bipolar disorder and educational attainment. This review revealed a list of reproducible SNPs worthy of future functional investigation. Additionally, by identifying SNPs associated with multiple phenotypes, we illustrated the importance of studying the relationships among phenotypes to resolve the nature of their causal links. The insights within this review will hopefully pave the way for future evidence-based genetic studies.
Collapse
|
141
|
Neavin DR, Liu D, Ray B, Weinshilboum RM. The Role of the Aryl Hydrocarbon Receptor (AHR) in Immune and Inflammatory Diseases. Int J Mol Sci 2018; 19:ijms19123851. [PMID: 30513921 PMCID: PMC6321643 DOI: 10.3390/ijms19123851] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/17/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a nuclear receptor that modulates the response to environmental stimuli. It was recognized historically for its role in toxicology but, in recent decades, it has been increasingly recognized as an important modulator of disease—especially for its role in modulating immune and inflammatory responses. AHR has been implicated in many diseases that are driven by immune/inflammatory processes, including major depressive disorder, multiple sclerosis, rheumatoid arthritis, asthma, and allergic responses, among others. The mechanisms by which AHR has been suggested to impact immune/inflammatory diseases include targeted gene expression and altered immune differentiation. It has been suggested that single nucleotide polymorphisms (SNPs) that are near AHR-regulated genes may contribute to AHR-dependent disease mechanisms/pathways. Further, we have found that SNPs that are outside of nuclear receptor binding sites (i.e., outside of AHR response elements (AHREs)) may contribute to AHR-dependent gene regulation in a SNP- and ligand-dependent manner. This review will discuss the evidence and mechanisms of AHR contributions to immune/inflammatory diseases and will consider the possibility that SNPs that are outside of AHR binding sites might contribute to AHR ligand-dependent inter-individual variation in disease pathophysiology and response to pharmacotherapeutics.
Collapse
Affiliation(s)
- Drew R Neavin
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA.
| | - Duan Liu
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA.
| | - Balmiki Ray
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA.
| | - Richard M Weinshilboum
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA.
| |
Collapse
|
142
|
Ong JS, Hwang LD, Zhong VW, An J, Gharahkhani P, Breslin PAS, Wright MJ, Lawlor DA, Whitfield J, MacGregor S, Martin NG, Cornelis MC. Understanding the role of bitter taste perception in coffee, tea and alcohol consumption through Mendelian randomization. Sci Rep 2018; 8:16414. [PMID: 30442986 PMCID: PMC6237869 DOI: 10.1038/s41598-018-34713-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Consumption of coffee, tea and alcohol might be shaped by individual differences in bitter taste perception but inconsistent observational findings provide little insight regarding causality. We conducted Mendelian randomization analyses using genetic variants associated with the perception of bitter substances (rs1726866 for propylthiouracil [PROP], rs10772420 for quinine and rs2597979 for caffeine) to evaluate the intake of coffee, tea and alcohol among up to 438,870 UK Biobank participants. A standard deviation (SD) higher in genetically predicted bitterness of caffeine was associated with increased coffee intake (0.146 [95%CI: 0.103, 0.189] cups/day), whereas a SD higher in those of PROP and quinine was associated with decreased coffee intake (-0.021 [-0.031, -0.011] and -0.081 [-0.108, -0.054] cups/day respectively). Higher caffeine perception was also associated with increased risk of being a heavy (>4 cups/day) coffee drinker (OR 1.207 [1.126, 1.294]). Opposite pattern of associations was observed for tea possibly due to the inverse relationship between both beverages. Alcohol intake was only negatively associated with PROP perception (-0.141 [-1.88, -0.94] times/month per SD increase in PROP bitterness). Our results reveal that bitter perception is causally associated with intake of coffee, tea and alcohol, suggesting a role of bitter taste in the development of bitter beverage consumption.
Collapse
Affiliation(s)
- Jue-Sheng Ong
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.
- School of Medicine, University of Queensland, Brisbane, Australia.
| | - Liang-Dar Hwang
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.
- School of Medicine, University of Queensland, Brisbane, Australia.
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia.
| | - Victor W Zhong
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jiyuan An
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Paul A S Breslin
- Monell Chemical Senses Center, Philadelphia, PA, 19104, USA
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, 4072, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Science, Bristol Medical School, University of Bristol, Canynge Hall, Whiteladies Road, Bristol, BS8 2PS, UK
| | - John Whitfield
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | - Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
143
|
Fava C, Bonafini S. Eicosanoids via CYP450 and cardiovascular disease: Hints from genetic and nutrition studies. Prostaglandins Other Lipid Mediat 2018; 139:41-47. [DOI: 10.1016/j.prostaglandins.2018.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/25/2018] [Accepted: 10/03/2018] [Indexed: 01/11/2023]
|
144
|
Major TJ, Topless RK, Dalbeth N, Merriman TR. Evaluation of the diet wide contribution to serum urate levels: meta-analysis of population based cohorts. BMJ 2018; 363:k3951. [PMID: 30305269 PMCID: PMC6174725 DOI: 10.1136/bmj.k3951] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To systematically test dietary components for association with serum urate levels and to evaluate the relative contributions of estimates of diet pattern and inherited genetic variants to population variance in serum urate levels. DESIGN Meta-analysis of cross sectional data from the United States. DATA SOURCES Five cohort studies. REVIEW METHODS 16 760 individuals of European ancestry (8414 men and 8346 women) from the US were included in analyses. Eligible individuals were aged over 18, without kidney disease or gout, and not taking urate lowering or diuretic drugs. All participants had serum urate measurements, dietary survey data, information on potential confounders (sex, age, body mass index, average daily calorie intake, years of education, exercise levels, smoking status, and menopausal status), and genome wide genotypes. The main outcome measures were average serum urate levels and variance in serum urate levels. β values (95% confidence intervals) and Bonferroni corrected P values from multivariable linear regression analyses, along with regression partial R2 values, were used to quantitate associations. RESULTS Seven foods were associated with raised serum urate levels (beer, liquor, wine, potato, poultry, soft drinks, and meat (beef, pork, or lamb)) and eight foods were associated with reduced serum urate levels (eggs, peanuts, cold cereal, skim milk, cheese, brown bread, margarine, and non-citrus fruits) in the male, female, or full cohorts. Three diet scores, constructed on the basis of healthy diet guidelines, were inversely associated with serum urate levels and a fourth, data driven diet pattern positively associated with raised serum urate levels, but each explained ≤0.3% of variance in serum urate. In comparison, 23.9% of variance in serum urate levels was explained by common, genome wide single nucleotide variation. CONCLUSION In contrast with genetic contributions, diet explains very little variation in serum urate levels in the general population.
Collapse
Affiliation(s)
- Tanya J Major
- Department of Biochemistry, University of Otago, 710 Cumberland Street, Dunedin 9054, New Zealand
| | - Ruth K Topless
- Department of Biochemistry, University of Otago, 710 Cumberland Street, Dunedin 9054, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, 710 Cumberland Street, Dunedin 9054, New Zealand
| |
Collapse
|
145
|
Fulton JL, Dinas PC, Carrillo AE, Edsall JR, Ryan EJ, Ryan EJ. Impact of Genetic Variability on Physiological Responses to Caffeine in Humans: A Systematic Review. Nutrients 2018; 10:nu10101373. [PMID: 30257492 PMCID: PMC6212886 DOI: 10.3390/nu10101373] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/21/2018] [Accepted: 09/23/2018] [Indexed: 01/21/2023] Open
Abstract
Emerging research has demonstrated that genetic variation may impact physiological responses to caffeine consumption. The purpose of the present review was to systematically recognize how select single nucleotide polymorphisms (SNPs) impact habitual use of caffeine as well as the ergogenic and anxiogenic consequences of caffeine. Two databases (PubMed and EBSCO) were independently searched using the same algorithm. Selected studies involved human participants and met at least one of the following inclusion criteria: (a) genetic analysis of individuals who habitually consume caffeine; (b) genetic analysis of individuals who underwent measurements of physical performance with the consumption of caffeine; (c) genetic analysis of individuals who underwent measurements of mood with the consumption of caffeine. We included 26 studies (10 randomized controlled trials, five controlled trials, seven cross-sectional studies, three single-group interventional studies and one case-control study). Single nucleotide polymorphisms in or near the cytochrome P450 (CYP1A2) and aryl hydrocarbon receptor (AHR) genes were consistently associated with caffeine consumption. Several studies demonstrated that the anxiogenic consequences of caffeine differed across adenosine 2a receptor (ADORA2A) genotypes, and the studies that investigated the effects of genetic variation on the ergogenic benefit of caffeine reported equivocal findings (CYP1A2) or warrant replication (ADORA2A).
Collapse
Affiliation(s)
- Jacob L Fulton
- Department of Movement Science, Chatham University, Pittsburgh, PA 15232, USA.
| | - Petros C Dinas
- FAME Laboratory, Department of Exercise Science, University of Thessaly, GR42100 Trikala, Greece.
| | - Andres E Carrillo
- Department of Movement Science, Chatham University, Pittsburgh, PA 15232, USA.
- FAME Laboratory, Department of Exercise Science, University of Thessaly, GR42100 Trikala, Greece.
| | - Jason R Edsall
- Department of Movement Science, Chatham University, Pittsburgh, PA 15232, USA.
| | - Emily J Ryan
- Department of Exercise Physiology, West Virginia University School of Medicine, West Virginia University, Morganton, WV 26506, USA.
| | - Edward J Ryan
- Department of Movement Science, Chatham University, Pittsburgh, PA 15232, USA.
| |
Collapse
|
146
|
Cornelis MC, Munafo MR. Mendelian Randomization Studies of Coffee and Caffeine Consumption. Nutrients 2018; 10:E1343. [PMID: 30241358 PMCID: PMC6213346 DOI: 10.3390/nu10101343] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 12/26/2022] Open
Abstract
Habitual coffee and caffeine consumption has been reported to be associated with numerous health outcomes. This perspective focuses on Mendelian Randomization (MR) approaches for determining whether such associations are causal. Genetic instruments for coffee and caffeine consumption are described, along with key concepts of MR and particular challenges when applying this approach to studies of coffee and caffeine. To date, at least fifteen MR studies have investigated the causal role of coffee or caffeine use on risk of type 2 diabetes, cardiovascular disease, Alzheimer's disease, Parkinson's disease, gout, osteoarthritis, cancers, sleep disturbances and other substance use. Most studies provide no consistent support for a causal role of coffee or caffeine on these health outcomes. Common study limitations include low statistical power, potential pleiotropy, and risk of collider bias. As a result, in many cases a causal role cannot confidently be ruled out. Conceptual challenges also arise from the different aspects of coffee and caffeine use captured by current genetic instruments. Nevertheless, with continued genome-wide searches for coffee and caffeine related loci along with advanced statistical methods and MR designs, MR promises to be a valuable approach to understanding the causal impact that coffee and caffeine have in human health.
Collapse
Affiliation(s)
- Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Marcus R Munafo
- MRC Integrative Epidemiology Unit (IEU) at the University of Bristol, UK Centre for Tobacco and Alcohol Studies, School of Psychological Science, University of Bristol, Bristol BS8 1TU, UK.
| |
Collapse
|
147
|
Coffee consumption and the risk of rheumatoid arthritis and systemic lupus erythematosus: a Mendelian randomization study. Clin Rheumatol 2018; 37:2875-2879. [PMID: 30167974 DOI: 10.1007/s10067-018-4278-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/08/2018] [Accepted: 08/22/2018] [Indexed: 01/07/2023]
Abstract
We aimed to analyze the causal association between coffee consumption and the risk of rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We performed a two-sample Mendelian randomization (MR) analysis using the inverse-variance weighted (IVW), MR-Egger regression, and weighted median methods. We used publicly available summary statistics datasets of coffee consumption genome-wide association studies (GWASs) as an exposure variable and RA and SLE GWASs as outcomes. Four single-nucleotide polymorphisms (SNPs) from GWASs of coffee consumption were selected as instrumental variables (IVs) to improve inference: NCARD (rs16868941), POR (rs17685), CYP1A1 (rs2470893), and LAMB4 (rs382140). The IVW method showed a causal association between coffee consumption and RA (beta = 0.770, SE = 0.279, p = 0.006). MR-Egger regression revealed that directional pleiotropy was unlikely to be biasing the result (intercept = - 0.145, p = 0.451). While the MR-Egger analysis showed no causal association between coffee consumption and RA (beta = 2.744, SE = 1.712, p = 0.355), the weighted median approach demonstrated a causal association between coffee consumption and RA (beta = 0.751, SE = 0.348, p = 0.031). However, the associations based on the weighted median analyses after the Bonferroni correction were not significant (adjusted p values = 0.091). The IVW, MR-Egger analysis, and weighted median methods showed no causal association between coffee consumption and SLE risk (beta = 0.594, SE = 0.437, p = 0.209; beta = 3.100, SE = 3.632, p = 0.550; beta = 0.733, SE = 0.567, p = 0.196). MR analysis results do not support causal associations between coffee consumption and the development of RA and SLE.
Collapse
|
148
|
Biases Inherent in Studies of Coffee Consumption in Early Pregnancy and the Risks of Subsequent Events. Nutrients 2018; 10:nu10091152. [PMID: 30142937 PMCID: PMC6163788 DOI: 10.3390/nu10091152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/18/2018] [Accepted: 08/21/2018] [Indexed: 12/23/2022] Open
Abstract
Consumption of coffee by women early in their pregnancy has been viewed as potentially increasing the risk of miscarriage, low birth weight, and childhood leukemias. Many of these reports of epidemiologic studies have not acknowledged the potential biases inherent in studying the relationship between early-pregnancy-coffee consumption and subsequent events. I discuss five of these biases, recall bias, misclassification, residual confounding, reverse causation, and publication bias. Each might account for claims that attribute adversities to early-pregnancy-coffee consumption. To what extent these biases can be avoided remains to be determined. As a minimum, these biases need to be acknowledged wherever they might account for what is reported.
Collapse
|
149
|
B Barnung R, H Nøst T, Ulven SM, Skeie G, S Olsen K. Coffee Consumption and Whole-Blood Gene Expression in the Norwegian Women and Cancer Post-Genome Cohort. Nutrients 2018; 10:nu10081047. [PMID: 30096876 PMCID: PMC6115989 DOI: 10.3390/nu10081047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/27/2018] [Accepted: 08/07/2018] [Indexed: 11/19/2022] Open
Abstract
Norwegians are the second highest consumers of coffee in the world. Lately, several studies have suggested that beneficial health effects are associated with coffee consumption. By analyzing whole-blood derived, microarray based mRNA gene expression data from 958 cancer-free women from the Norwegian Women and Cancer Post-Genome Cohort, we assessed the potential associations between coffee consumption and gene expression profiles and elucidated functional interpretation. Of the 958 women included, 132 were considered low coffee consumers (<1 cup of coffee/day), 422 moderate coffee consumers (1–3 cups of coffee/day), and 404 were high coffee consumers (>3 cups of coffee/day). At a false discovery rate <0.05, 139 genes were differentially expressed between high and low consumers of coffee. A subgroup of 298 nonsmoking, low tea consumers was established to isolate the effects of coffee from smoking and potential caffeine containing tea consumption. In this subgroup, 297 genes were found to be differentially expressed between high and low coffee consumers. Results indicate differentially expressed genes between high and low consumers of coffee with functional interpretations pointing towards a possible influence on metabolic pathways and inflammation.
Collapse
Affiliation(s)
- Runa B Barnung
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway.
| | - Therese H Nøst
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway.
| | - Stine M Ulven
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, P.O. Box 1046 Blindern, 0317 Oslo, Norway.
| | - Guri Skeie
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway.
| | - Karina S Olsen
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway.
| |
Collapse
|
150
|
Lee YH. Investigating the possible causal association of coffee consumption with osteoarthritis risk using a Mendelian randomization analysis. Clin Rheumatol 2018; 37:3133-3139. [PMID: 30076541 DOI: 10.1007/s10067-018-4252-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/22/2018] [Accepted: 07/30/2018] [Indexed: 12/28/2022]
Abstract
This study examined whether coffee consumption is causally associated with osteoarthritis. A two-sample Mendelian randomization (MR) analysis using inverse-variance weighted (IVW) and weighted median estimates, and the MR-Egger regression method were performed. The publicly available summary statistical datasets of coffee consumption genome-wide association studies (GWASs) meta-analyses on coffee intake from eight Caucasian cohorts (n = 18,176), GWAS meta-analyses of predominately regular-type coffee consumers of European ancestry (n = up to 91,462), and a GWAS in 7410 patients with osteoarthritis in the arcOGEN study with 11,009 controls of European ancestry were evaluated. Four single-nucleotide polymorphisms (SNPs) from GWASs of coffee consumption as instrumental variables (IVs) to improve inference were selected. These SNPs were located at neurocalcin delta (NCALD) (rs16868941), cytochrome p450 oxidoreductase (POR) (rs17685), cytochrome p450 family 1 subfamily A member 1 (CYP1A1) (rs2470893), and neuronal cell adhesion molecule (NRCAM) (rs382140). The IVW method (beta = 0.381, SE = 0.170, p = 0.025) and the weighted median approach (beta = 0.419, SE = 0.206, p = 0.047) showed evidence to support a causal association between coffee consumption and osteoarthritis. MR-Egger regression revealed that directional pleiotropy was unlikely to be biasing the result (intercept = 0.064; p = 0.549), but showed no causal association between coffee consumption and osteoarthritis (beta = - 0.518, SE = 1.270, p = 0.723). Cochran's Q test and the funnel plot indicated no evidence of heterogeneity between IV estimates based on the individual variants. The results of MR analysis support the observation that coffee consumption is causally associated with an increased risk of osteoarthritis.
Collapse
Affiliation(s)
- Young Ho Lee
- Department of Rheumatology, Korea University College of Medicine, Korea University Anam Hospital, 73, Inchon-ro, Seongbuk-gu, Seoul, 02841, South Korea.
| |
Collapse
|