101
|
Borborema TS, Lima JDS, Brito JCM, Murao M, Siqueira-Batista R. Thrombotic thrombocytopenic purpura and mushroom-shaped red blood cells secondary to COVID-19: A case report. Hematol Transfus Cell Ther 2024; 46:494-497. [PMID: 36710912 PMCID: PMC9868352 DOI: 10.1016/j.htct.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/16/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Affiliation(s)
- Tarcísio Silva Borborema
- Hospital Infantil João Paulo II, Belo Horizonte, MG, Brazil; Faculdade Dinâmica do Vale do Piranga, Belo Horizonte, MG, Brazil.
| | | | | | - Mitiko Murao
- Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo Siqueira-Batista
- Faculdade Dinâmica do Vale do Piranga, Belo Horizonte, MG, Brazil; Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
102
|
Nazir F, John Kombe Kombe A, Khalid Z, Bibi S, Zhang H, Wu S, Jin T. SARS-CoV-2 replication and drug discovery. Mol Cell Probes 2024; 77:101973. [PMID: 39025272 DOI: 10.1016/j.mcp.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed millions of people and continues to wreak havoc across the globe. This sudden and deadly pandemic emphasizes the necessity for anti-viral drug development that can be rapidly administered to reduce morbidity, mortality, and virus propagation. Thus, lacking efficient anti-COVID-19 treatment, and especially given the lengthy drug development process as well as the critical death tool that has been associated with SARS-CoV-2 since its outbreak, drug repurposing (or repositioning) constitutes so far, the ideal and ready-to-go best approach in mitigating viral spread, containing the infection, and reducing the COVID-19-associated death rate. Indeed, based on the molecular similarity approach of SARS-CoV-2 with previous coronaviruses (CoVs), repurposed drugs have been reported to hamper SARS-CoV-2 replication. Therefore, understanding the inhibition mechanisms of viral replication by repurposed anti-viral drugs and chemicals known to block CoV and SARS-CoV-2 multiplication is crucial, and it opens the way for particular treatment options and COVID-19 therapeutics. In this review, we highlighted molecular basics underlying drug-repurposing strategies against SARS-CoV-2. Notably, we discussed inhibition mechanisms of viral replication, involving and including inhibition of SARS-CoV-2 proteases (3C-like protease, 3CLpro or Papain-like protease, PLpro) by protease inhibitors such as Carmofur, Ebselen, and GRL017, polymerases (RNA-dependent RNA-polymerase, RdRp) by drugs like Suramin, Remdesivir, or Favipiravir, and proteins/peptides inhibiting virus-cell fusion and host cell replication pathways, such as Disulfiram, GC376, and Molnupiravir. When applicable, comparisons with SARS-CoV inhibitors approved for clinical use were made to provide further insights to understand molecular basics in inhibiting SARS-CoV-2 replication and draw conclusions for future drug discovery research.
Collapse
Affiliation(s)
- Farah Nazir
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China
| | - Arnaud John Kombe Kombe
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Zunera Khalid
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Shaheen Bibi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Anhui, China
| | - Hongliang Zhang
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China
| | - Songquan Wu
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China.
| | - Tengchuan Jin
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China; Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Anhui, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, 230027, China; Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
103
|
Ravaioli F, Brodosi L, Agnelli G, Albanese MG, Baldo C, Baracco B, Lambertini L, Leoni L, Magnani L, Nicastri A, Perazza F, Rossetti C, Sacilotto F, Stecchi M, Sasdelli AS, Pironi L. Malnutrition independently predicts mortality at 18 months in patients hospitalised for severe acute respiratory syndrome corona virus 2 (SARS-coV-2). Clin Nutr ESPEN 2024; 63:736-747. [PMID: 39074610 DOI: 10.1016/j.clnesp.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
RATIONALE To investigate the association between malnutrition and patient outcome following hospitalisation for Corona Virus Disease 2019 (COVID-19). METHODS In April 2020, 268 adult patients (235 included in the follow-up) hospitalised for COVID-19 infection were evaluated for malnutrition risk and diagnosis using modified Nutritional Risk Screening 2002 and modified Global Leadership Initiative on Malnutrition criteria (GLIM), respectively. An 18-month follow-up was carried out to assess the incidence and the associated risk factors for death and re-hospitalization. RESULTS The outcome was unknown for 33 patients. Death occurred in 39% of the 235 patients included in the follow-up. The risk of death was independently associated with malnutrition risk or diagnosis of malnutrition, whereas the male sex showed a protective association. The Kaplan-Meier survival curves showed that patients with diagnosis of malnutrition had lower survival rate. The re-hospitalization rate was 31% and was negatively associated with BMI≥25, and positively associated with length of hospitalisation for COVID-19 and with cancer comorbidity. CONCLUSIONS In hospitalized patients for SARS-CoV-2 disease, both malnutrition risk (p = 0.050) and diagnosis of malnutrition (p = 0.047 with modified GLIM and C-reactive protein >0.5 mg/dL; p = 0.024 with modified GLIM and C-reactive protein >5 mg/dL) were predictive risk factors for mortality, whereas male sex was associated with lower risk of death. Overweight at time of hospitalization and the length of hospitalisation were respectively protective and risk factor for re-hospitalization after discharge.
Collapse
Affiliation(s)
- Federico Ravaioli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Centre for Chronic Intestinal Failure, IRCCS AOUBO, Bologna, Italy
| | - Lucia Brodosi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Centre for Chronic Intestinal Failure, IRCCS AOUBO, Bologna, Italy
| | - Giulio Agnelli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Centre for Chronic Intestinal Failure, IRCCS AOUBO, Bologna, Italy
| | - Maria Giuseppina Albanese
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Centre for Chronic Intestinal Failure, IRCCS AOUBO, Bologna, Italy
| | - Chiara Baldo
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Centre for Chronic Intestinal Failure, IRCCS AOUBO, Bologna, Italy
| | - Bianca Baracco
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Centre for Chronic Intestinal Failure, IRCCS AOUBO, Bologna, Italy
| | - Lorenza Lambertini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Centre for Chronic Intestinal Failure, IRCCS AOUBO, Bologna, Italy
| | - Laura Leoni
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Centre for Chronic Intestinal Failure, IRCCS AOUBO, Bologna, Italy
| | - Lucia Magnani
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Centre for Chronic Intestinal Failure, IRCCS AOUBO, Bologna, Italy
| | - Alba Nicastri
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Centre for Chronic Intestinal Failure, IRCCS AOUBO, Bologna, Italy
| | - Federica Perazza
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Centre for Chronic Intestinal Failure, IRCCS AOUBO, Bologna, Italy
| | - Chiara Rossetti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Centre for Chronic Intestinal Failure, IRCCS AOUBO, Bologna, Italy
| | - Federica Sacilotto
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Centre for Chronic Intestinal Failure, IRCCS AOUBO, Bologna, Italy
| | - Michele Stecchi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Centre for Chronic Intestinal Failure, IRCCS AOUBO, Bologna, Italy
| | | | - Loris Pironi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Centre for Chronic Intestinal Failure, IRCCS AOUBO, Bologna, Italy.
| |
Collapse
|
104
|
Kaplow R, Willis P, Steele D, Swann J, Feistritzer NR. Clinician Wellbeing and Mental Health Assessment Across Two Acute Care Hospitals During the COVID-19 Pandemic. Nurs Adm Q 2024; 48:325-335. [PMID: 39213406 DOI: 10.1097/naq.0000000000000645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
OBJECTIVE The purposes of this study were to determine whether positive work environments affect clinician wellbeing and mental health, and to identify participants' priority interventions to improve clinician wellbeing. This study was designed to determine the potential benefit of modifying the aforementioned factors for clinicians and hospitals to impact positive patient outcomes. BACKGROUND The SARS-CoV-2 virus pandemic has become one of the leading causes of death in the United States and worldwide, and has exacerbated widespread burnout among health care professionals. This has resulted in negative collateral implications for the stability of the clinician workforce. A Clinician Wellbeing study (CWS) was launched in two Magnet®-designated hospitals in the southeast. The CWS was part of a multi-site collaborative research project led by the Center for Health Outcomes and Policy Research (CHOPR) at the University of Pennsylvania School of Nursing. METHOD A cross-sectional observational study design was implemented. Data were collected through anonymous surveys of 708 registered nurses (RNs) and advanced practice providers (APPs) working in two Magnet hospitals in the southeastern United States. Each participant completed 8 surveys. RESULTS Clinicians' self-reported level of burnout was higher for both RNs and APPs at Emory University Hospital than Emory Saint Joseph's Hospital including intent to leave and dissatisfaction with their jobs. RNs and APPs self-reported their overall health to be good or excellent and they reported sleep quality as fair. Both groups in both hospitals indicated that they experienced anxiety, depression, and stress. The APPs reported a higher percent that their work did not leave enough time for personal and family life. Data also indicated that the primary work environment concern was related to inadequate nurse staffing. CONCLUSIONS The data illuminated opportunities for the two hospitals to employ continuous improvement interventions to positively transform the work environment.
Collapse
Affiliation(s)
- Roberta Kaplow
- Author Affiliations: Emory University Hospital (Dr Kaplow, Ms Willis, and Dr Feistritzer), Atlanta, Georgia; Emory Saint Joseph's Hospital (Dr Steele and Ms Swann), Atlanta, Georgia; Emory Wesley Woods Hospital (Dr Feistritzer), Atlanta, Georgia; Emory Nell Hodgson Woodruff School of Nursing (Dr Feistritzer), Atlanta, Georgia
- Emory Saint Joseph's Hospital (Dr Steele and Ms Swann), Atlanta, Georgia
- Emory Wesley Woods Hospital (Dr Feistritzer), Atlanta, Georgia
- Emory Nell Hodgson Woodruff School of Nursing (Dr Feistritzer), Atlanta, Georgia
| | - Polly Willis
- Author Affiliations: Emory University Hospital (Dr Kaplow, Ms Willis, and Dr Feistritzer), Atlanta, Georgia; Emory Saint Joseph's Hospital (Dr Steele and Ms Swann), Atlanta, Georgia; Emory Wesley Woods Hospital (Dr Feistritzer), Atlanta, Georgia; Emory Nell Hodgson Woodruff School of Nursing (Dr Feistritzer), Atlanta, Georgia
- Emory Saint Joseph's Hospital (Dr Steele and Ms Swann), Atlanta, Georgia
- Emory Wesley Woods Hospital (Dr Feistritzer), Atlanta, Georgia
- Emory Nell Hodgson Woodruff School of Nursing (Dr Feistritzer), Atlanta, Georgia
| | - Dinah Steele
- Author Affiliations: Emory University Hospital (Dr Kaplow, Ms Willis, and Dr Feistritzer), Atlanta, Georgia; Emory Saint Joseph's Hospital (Dr Steele and Ms Swann), Atlanta, Georgia; Emory Wesley Woods Hospital (Dr Feistritzer), Atlanta, Georgia; Emory Nell Hodgson Woodruff School of Nursing (Dr Feistritzer), Atlanta, Georgia
- Emory Saint Joseph's Hospital (Dr Steele and Ms Swann), Atlanta, Georgia
- Emory Wesley Woods Hospital (Dr Feistritzer), Atlanta, Georgia
- Emory Nell Hodgson Woodruff School of Nursing (Dr Feistritzer), Atlanta, Georgia
| | - Julie Swann
- Author Affiliations: Emory University Hospital (Dr Kaplow, Ms Willis, and Dr Feistritzer), Atlanta, Georgia; Emory Saint Joseph's Hospital (Dr Steele and Ms Swann), Atlanta, Georgia; Emory Wesley Woods Hospital (Dr Feistritzer), Atlanta, Georgia; Emory Nell Hodgson Woodruff School of Nursing (Dr Feistritzer), Atlanta, Georgia
- Emory Saint Joseph's Hospital (Dr Steele and Ms Swann), Atlanta, Georgia
- Emory Wesley Woods Hospital (Dr Feistritzer), Atlanta, Georgia
- Emory Nell Hodgson Woodruff School of Nursing (Dr Feistritzer), Atlanta, Georgia
| | - Nancye R Feistritzer
- Author Affiliations: Emory University Hospital (Dr Kaplow, Ms Willis, and Dr Feistritzer), Atlanta, Georgia; Emory Saint Joseph's Hospital (Dr Steele and Ms Swann), Atlanta, Georgia; Emory Wesley Woods Hospital (Dr Feistritzer), Atlanta, Georgia; Emory Nell Hodgson Woodruff School of Nursing (Dr Feistritzer), Atlanta, Georgia
- Emory Saint Joseph's Hospital (Dr Steele and Ms Swann), Atlanta, Georgia
- Emory Wesley Woods Hospital (Dr Feistritzer), Atlanta, Georgia
- Emory Nell Hodgson Woodruff School of Nursing (Dr Feistritzer), Atlanta, Georgia
| |
Collapse
|
105
|
Xie S, Song Z, Chen R, Zhang X, Wu S, Chen J, Huang P, Liu H, Yu K, Zhang Y, Tan S, Liu J, Ma X, Zhang H, He X, Pan T. The SARS-unique domain (SUD) of SARS-CoV-2 nsp3 protein inhibits the antiviral immune responses through the NF-κB pathway. J Med Virol 2024; 96:e70007. [PMID: 39400381 DOI: 10.1002/jmv.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/14/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Nuclear factor κB (NF-κB) plays a crucial role in various cellular processes, including inflammatory and immune responses. Its activation is tightly regulated by the IKK (IκB kinase) complex. Upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the virus is initially recognized by the innate immune system and typically activates the NF-κB pathway, leading to a severe inflammatory response. However, the influence of viral proteins upon pro-inflammatory pathway is complicated. Here, we demonstrated that the viral protein nsp3 of SARS-CoV-2 exhibits an unusual function, which attenuated the NF-κB-mediated inflammatory response against SARS-CoV-2 infection in a unique manner. nsp3 interacted with the essential NF-κB modulator NEMO/IKKγ and promoted its polyubiquitylation via the E3 ubiquitin ligase CBL (Cbl Proto-Oncogene). Consequently, polyubiquitylated NEMO undergoes proteasome-dependent degradation, which disrupts NF-κB activation. Moreover, we found that the SARS unique domain (SUD) in nsp3 of SARS-CoV-2 is essential for inducing NEMO degradation, whereas this function is absent in SUD of SARS-CoV. The reduced activation of pro-inflammatory response at an early stage could mask the host immune response and faciliate excessive viral replication. Conversely, this finding may partially explain why SARS-CoV-2 causes a less inflammatory reaction than SARS-CoV, resulting in more mild or moderate COVID-19 cases and greater transmissibility. Given that NEMO is important for NF-κB activation, we propose that inhibiting polyubiquitylation and degradation of NEMO upon SARS-CoV-2 infection is a novel strategy to modulate the host inflammatory response.
Collapse
Affiliation(s)
- Siyi Xie
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Zheng Song
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ran Chen
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xu Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuangxin Wu
- Medical Research Center, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jingliang Chen
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Peiming Huang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Hanxin Liu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Kaixin Yu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yixin Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Siyu Tan
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jun Liu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiancai Ma
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou, China
| | - Hui Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou, China
| | - Xin He
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ting Pan
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| |
Collapse
|
106
|
Canha I, Silva MJ, Silva MA, Sarmento Costa M, Saraiva RO, Ruge A, Machado MV, Félix CS, Morão B, Figueiredo PN, Mendes M, Leal C, Calinas F. COVID-19 Vaccination in Liver Cirrhosis: Safety and Immune and Clinical Responses. GE PORTUGUESE JOURNAL OF GASTROENTEROLOGY 2024; 31:325-337. [PMID: 39360169 PMCID: PMC11444661 DOI: 10.1159/000534740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/12/2023] [Indexed: 10/04/2024]
Abstract
Introduction Three years after the beginning of the SARS-CoV-2 pandemic, the safety and efficacy of COVID-19 vaccination in liver cirrhosis (LC) patients remain controversial. We aimed to study the safety, immunological, and clinical responses of LC patients to COVID-19 vaccination. Methods Prospective multicentric study in adults with LC eligible for COVID-19 vaccination, without prior known infection. Patients were followed up until the timing of a booster dose, SARS-CoV-2 infection, or death. Spike-protein immunoglobulin G antibody titers for SARS-CoV-2 at 2 weeks, 3 months, and 6 months postvaccination were assessed. Antibody titers <33.8 binding antibody units (BAU)/mL were considered seronegative and <200 BAU/mL suboptimal. Postvaccination infection and its severity were registered. Results We included 124 LC patients, 81% males, mean aged 61 ± 10 years, with a mean follow-up of 221 ± 26 days. Alcohol was the most common (61%) cause of cirrhosis, and 7% were under immunosuppressants for autoimmune hepatitis; 69% had portal hypertension, 42% had a previous decompensation, and 21% had a Child-Pugh-Turcotte score of B/C. The type of vaccine administrated was BNT162b2 (n = 59, 48%), ChAdOx1nCoV-19 (n = 45, 36%), mRNA-1273 (n = 14, 11%), and Ad26.COV2.S (n = 6, 5%). Eighteen percent of the patients reported adverse events after vaccination, none serious. Median [Q1; Q3] antibody titers were 1,185 [280; 2,080] BAU/mL at 2 weeks, 301 [72; 1,175] BAU/mL at 3 months, and 192 [49; 656] BAU/mL at 6 months. There were seronegative and suboptimal antibody responses in 8% and 23% of the patients at 2 weeks, 16% and 38% at 3 months, and 22% and 48% at 6 months. Older age and adenovirus vector vaccines were the only factors associated with seronegative and suboptimal responses at 2 weeks and 3 months (p < 0.05) in a multivariable logistic regression analysis. Eleven patients (9%) were infected with SARS-CoV-2 during follow-up (3.8-6.6 months postvaccination), all with mild disease. There were no differences regarding the type of vaccine, and 73% had antibody titers >200 BAU/mL at 3 months. Conclusion COVID-19 vaccines in patients with LC were safe, without serious adverse events. The humoral and clinical responses were similar to the reported for the general population. Humoral response was adversely impacted by older age and adenovirus vector vaccines and unrelated to the liver disease severity.
Collapse
Affiliation(s)
- Inês Canha
- Gastroenterology Department, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Mário Jorge Silva
- Gastroenterology Department, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | | | - Mara Sarmento Costa
- Gastroenterology Department, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Rita Ornelas Saraiva
- Gastroenterology Department, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - André Ruge
- Gastroenterology Department, Centro Hospitalar de Leiria, Leiria, Portugal
| | - Mariana Verdelho Machado
- Gastroenterology Department, Hospital de Vila Franca de Xira, Vila Franca de Xira, Portugal
- Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina Sousa Félix
- Gastroenterology Department, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - Bárbara Morão
- Gastroenterology Department, Hospital Beatriz Ângelo, Lisbon, Portugal
| | - Pedro Narra Figueiredo
- Gastroenterology Department, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, Universidade de Coimbra, Coimbra, Portugal
| | - Milena Mendes
- Gastroenterology Department, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Carina Leal
- Gastroenterology Department, Centro Hospitalar de Leiria, Leiria, Portugal
| | - Filipe Calinas
- Gastroenterology Department, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| |
Collapse
|
107
|
Bentley JK, Kreger JE, Breckenridge HA, Singh S, Lei J, Li Y, Baker SC, Lumeng CN, Hershenson MB. Developing a mouse model of human coronavirus NL63 infection: comparison with rhinovirus-A1B and effects of prior rhinovirus infection. Am J Physiol Lung Cell Mol Physiol 2024; 327:L557-L573. [PMID: 39189801 DOI: 10.1152/ajplung.00149.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/28/2024] Open
Abstract
Human coronavirus (HCoV)-NL63 causes respiratory tract infections in humans and uses angiotensin-converting enzyme 2 (ACE2) as a receptor. We sought to establish a mouse model of HCoV-NL63 and determine whether prior rhinovirus (RV)-A1B infection affected HCoV-NL63 replication. HCoV-NL63 was propagated in LLC-MK2 cells expressing human ACE2. RV-A1B was grown in HeLa-H1 cells. C57BL6/J or transgenic mice expressing human ACE2 were infected intranasally with sham LLC-MK2 cell supernatant or 1 × 105 tissue culture infectious dose (TCID50) units HCoV-NL63. Wild-type mice were infected with 1 × 106 plaque-forming units (PFU) RV-A1B. Lungs were assessed for vRNA, bronchoalveolar lavage (BAL) cells, histology, HCoV-NL63 nonstructural protein 3 (nsp3), and host gene expression by next-generation sequencing and qPCR. To evaluate sequential infections, mice were infected with RV-A1B followed by HCoV-NL63 infection 4 days later. We report that hACE2 mice infected with HCoV-NL63 showed evidence of replicative infection with increased levels of vRNA, BAL neutrophils and lymphocytes, peribronchial and perivascular infiltrates, and expression of nsp3. Viral replication peaked 3 days after infection and inflammation persisted 6 days after infection. HCoV-NL63-infected hACE2 mice showed increased mRNA expression of IFNs, IFN-stimulated proteins, and proinflammatory cytokines. Infection with RV-A1B 4 days before HCoV-NL63 significantly decreased both HCoV-NL63 vRNA levels and airway inflammation. Mice infected with RV-A1B prior to HCoV-NL63 showed increased expression of antiviral proteins compared with sham-treated mice. In conclusion, we established a mouse model of HCoV-NL63 replicative infection characterized by relatively persistent viral replication and inflammation. Prior infection with RV-A1B reduced HCoV-NL63 replication and airway inflammation, indicative of viral interference.NEW & NOTEWORTHY We describe a mouse model of human coronavirus (HCoV) infection. Infection of transgenic mice expressing human angiotensin-converting enzyme 2 (ACE2) with HCoV-NL63 produced a replicative infection with peribronchial inflammation and nonstructural protein 3 expression. Mice infected with RV-A1B 4 days before HCoV-NL63 showed decreased HCoV-NL63 replication and airway inflammation and increased expression of antiviral proteins compared with sham-treated mice. This research may shed light on human coronavirus infections, viral interference, and viral-induced asthma exacerbations.
Collapse
Affiliation(s)
- J Kelley Bentley
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Jordan E Kreger
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Haley A Breckenridge
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Shilpi Singh
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Jing Lei
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Yiran Li
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Susan C Baker
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, United States
| | - Carey N Lumeng
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, United States
- Department Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Marc B Hershenson
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, United States
- Department Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| |
Collapse
|
108
|
Lin KJ, Turner KC, Rosario M, Harnisch LO, Davis JD, DiCioccio AT. Population Pharmacokinetics of Casirivimab and Imdevimab in Pediatric and Adult Non-Infected Individuals, Pediatric and Adult Ambulatory or Hospitalized Patients or Household Contacts of Patients Infected with SARS-COV-2. Pharm Res 2024; 41:1933-1949. [PMID: 39294447 PMCID: PMC11530482 DOI: 10.1007/s11095-024-03764-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/15/2024] [Indexed: 09/20/2024]
Abstract
INTRODUCTION Casirivimab (CAS) and imdevimab (IMD) are two fully human monoclonal antibodies that bind different epitopes on the receptor binding domain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and block host receptor interactions. CAS + IMD and was developed for the treatment and prevention of SARS-CoV-2 infections. METHODS A population pharmacokinetic (PopPK) analysis was conducted using pooled data from 7598 individuals from seven clinical studies to simultaneously fit concentration-time data of CAS and IMD and investigate selected covariates as sources of variability in PK parameters. The dataset comprised CAS + IMD-treated pediatric and adult non-infected individuals, ambulatory or hospitalized patients infected with SARS-CoV-2, or household contacts of patients infected with SARS-CoV-2. RESULTS CAS and IMD concentration-time data were both appropriately described simultaneously by a two-compartment model with first-order absorption following subcutaneous dose administration and first-order elimination. Clearance estimates of CAS and IMD were 0.193 and 0.236 L/day, respectively. Central volume of distribution estimates were 3.92 and 3.82 L, respectively. Among the covariates identified as significant, body weight and serum albumin had the largest impact (20-34%, and ~ 7-31% change in exposures at extremes, respectively), while all other covariates resulted in small differences in exposures. Application of the PopPK model included simulations to support dose recommendations in pediatrics based on comparable exposures of CAS and IMD between different weight groups in pediatrics and adults following weight-based dosing regimens. CONCLUSIONS This analysis provided important insights to characterize CAS and IMD PK simultaneously in a diverse patient population and informed pediatric dose selection.
Collapse
Affiliation(s)
- Kuan-Ju Lin
- Regeneron Pharmaceuticals, Inc, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA.
| | - Kenneth C Turner
- Regeneron Pharmaceuticals, Inc, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Maria Rosario
- Regeneron Pharmaceuticals, Inc, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Lutz O Harnisch
- Regeneron Pharmaceuticals, Inc, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - John D Davis
- Regeneron Pharmaceuticals, Inc, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - A Thomas DiCioccio
- Regeneron Pharmaceuticals, Inc, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| |
Collapse
|
109
|
Soni S, Antonescu L, Ro K, Horowitz JC, Mebratu YA, Nho RS. Influenza, SARS-CoV-2, and Their Impact on Chronic Lung Diseases and Fibrosis: Exploring Therapeutic Options. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1807-1822. [PMID: 39032604 PMCID: PMC11423761 DOI: 10.1016/j.ajpath.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Respiratory tract infections represent a significant global public health concern, disproportionately affecting vulnerable populations such as children, the elderly, and immunocompromised individuals. RNA viruses, particularly influenza viruses and coronaviruses, significantly contribute to respiratory illnesses, especially in immunosuppressed and elderly individuals. Influenza A viruses (IAVs) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to pose global health threats due to their capacity to cause annual epidemics, with profound implications for public health. In addition, the increase in global life expectancy is influencing the dynamics and outcomes of respiratory viral infections. Understanding the molecular mechanisms by which IAVs and SARS-CoV-2 contribute to lung disease progression is therefore crucial. The aim of this review is to comprehensively explore the impact of IAVs and SARS-CoV-2 on chronic lung diseases, with a specific focus on pulmonary fibrosis in the elderly. It also outlines potential preventive and therapeutic strategies and suggests directions for future research.
Collapse
Affiliation(s)
- Sourabh Soni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Laura Antonescu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Kaylin Ro
- Scripps Research Institute, San Diego, California
| | - Jeffrey C Horowitz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Yohannes A Mebratu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio.
| | - Richard S Nho
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
110
|
Sugawara Y, Iwagami M, Kikuchi K, Hashiba T, Yabushita S, Ryuzaki M, Nangaku M. Coronavirus disease 2019 vaccination effectiveness based on the 2021 Japanese dialysis registry. Nephrology (Carlton) 2024; 29:671-679. [PMID: 39023114 DOI: 10.1111/nep.14366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
AIM The effectiveness of the coronavirus disease (COVID-19) vaccine in Japanese patients undergoing haemodialysis has previously not been evaluated on a large scale. We analyzed data from the Japanese Society for Dialysis Therapy Renal Data Registry (JRDR), covering nearly all Japanese patients undergoing dialysis (~95% coverage), to examine the association between COVID-19 vaccination and infection or mortality. METHODS We used data from the JRDR end-of-year surveys conducted in 2020 and 2021, including information on the COVID-19 vaccination and infection months. COVID-19 infection incidence and its associated mortality rates based on vaccination status (time updated) and odds ratio (OR) (vaccinated vs. unvaccinated) were estimated monthly from April 2021, when vaccination commenced in Japan. RESULTS COVID-19 infection analysis included 228 865 patients (215 941 vaccinated and 12 924 unvaccinated patients at the end of 2021). The age- and sex-adjusted ORs (aORs) were significantly lower in August, September, October and November 2021, especially in September (aOR [95% confidence interval (CI)]: 0.25 [0.18-0.36]). Additional adjustments for past medical history and laboratory results rarely affected these results. Similarly, in the COVID-19-related mortality analysis with 228 731 patients, including 216 781 vaccinated and 11 950 unvaccinated at the end of 2021, COVID-19-related mortality risk was significantly lower in the vaccinated group in August, September, October and November (aOR [95% CI]: August, 0.32 [0.12-0.84], September, 0.04 [0.01-0.11]; October, 0.10 [0.01-0.81]; November, 0.05 [0.00-0.79]). CONCLUSION In Japanese patients undergoing haemodialysis, the first or second COVID-19 vaccine dose was significantly associated with decreased COVID-19 infection and mortality rates, suggesting its effectiveness in this population.
Collapse
Affiliation(s)
- Yuka Sugawara
- Division of Nephrology and Endocrinology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masao Iwagami
- Department of Health Services Research, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kan Kikuchi
- Division of Nephrology, Shimoochiai Clinic, Tokyo, Japan
| | - Toyohiro Hashiba
- Division of Nephrology and Endocrinology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Sayaka Yabushita
- Division of Nephrology and Endocrinology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Munekazu Ryuzaki
- Department of Nephrology, Tokyo Saiseikai Central Hospital, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
111
|
Kadokura K, Kato H, Yoshizumi K, Kamikuri M, Kamenosono A, Shinkawa N, Hamada Y, Kawamura H, Shimada T, Kuroda M, Sunagawa T. Rapid response to a COVID-19 outbreak at a nightclub in Kagoshima prefecture, Japan, in the early phase of the COVID-19 pandemic, June and July 2020: A descriptive epidemiological study. J Infect Chemother 2024; 30:1001-1007. [PMID: 38521457 DOI: 10.1016/j.jiac.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
INTRODUCTION During COVID-19 pandemic in Japan, nightclubs were identified as high-risk locations for COVID-19 outbreaks, but an outbreak investigation in this setting is challenging because of the anonymous and opportunistic nature of interactions. METHODS The joint rapid response team collected epidemiological data, conducted descriptive epidemiology to determine the characteristics of cases associated with the nightclub, and implemented countermeasures. Polymerase chain reaction (PCR) tests were performed by the Local Institute of Public Health, Kagoshima University, and several commercial laboratories. RESULTS Between June 15 and July 20, 2020, 121 individuals tested positive for SARS-CoV-2 (59 confirmed and 62 asymptomatic) of whom 8 were nightclub staff who had no travel history of outside Kagoshima, 66 were guests, and 47 were subsequent contacts. The median age was 32 years (interquartile range: 24-43 years). One individual showed severe symptoms but there were no fatal. The epidemic curve showed one peak on June 30 and July 1 with a limited number of cases subsequently. Of the 121 cases, 116 and 5 were in individuals living in and outside Kagoshima Prefecture, respectively. Haplotype network analysis showed 5 genome-wide single-nucleotide variants between the isolates before and during this outbreak. CONCLUSIONS There is a possibility that unidentified guests from outside Kagoshima Prefecture could infect staff who could subsequently spread the virus to guests and other staff, who were mainly a younger population. The rapid outbreak response enabled onward transmission in the community to be minimized. This outbreak investigation could provide insights for effective responses to challenging situations in future pandemic.
Collapse
Affiliation(s)
- Keisuke Kadokura
- Field Epidemiology Training Program, National Institute of Infectious Diseases, Tokyo, Japan; Chiba Prefectural Institute of Public Health, Chiba, Japan
| | - Hirofumi Kato
- Center for Field Epidemic Intelligence, Research and Professional Development, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Kayoko Yoshizumi
- Kagoshima City Public Health and Welfare Bureau, Kagoshima, Japan
| | - Miyuki Kamikuri
- Kagoshima City Public Health and Welfare Bureau, Kagoshima, Japan
| | - Akira Kamenosono
- Kagoshima Prefectural Health Promotion Division, Life, Health and Social Welfare Department, Kagoshima, Japan
| | - Naomi Shinkawa
- Department of Microbiology, Kagoshima Prefectural Institute for Environmental Research and Public Health, Kagoshima, Japan
| | - Yuka Hamada
- Department of Microbiology, Kagoshima Prefectural Institute for Environmental Research and Public Health, Kagoshima, Japan
| | - Hideki Kawamura
- Department of Infection Control and Prevention, Kagoshima University Hospital, Kagoshima, Japan
| | - Tomoe Shimada
- Center for Field Epidemic Intelligence, Research and Professional Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomimasa Sunagawa
- Center for Field Epidemic Intelligence, Research and Professional Development, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
112
|
Krishna B, Metaxaki M, Sithole N, Landín P, Martín P, Salinas-Botrán A. Cardiovascular disease and covid-19: A systematic review. IJC HEART & VASCULATURE 2024; 54:101482. [PMID: 39189008 PMCID: PMC11345335 DOI: 10.1016/j.ijcha.2024.101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024]
Abstract
Background Cardiovascular complications of COVID-19 are numerous and aspects of this phenomenon are not well known. The main objective of this manuscript is a systematic review of the acute and chronic cardiovascular complications secondary to COVID-19. Methods A systematic review of the literature through Medline via PubMed was conducted (2020-2024). Results There is a plethora of effects of COVID-19 on the heart in the acute setting. Here we discuss pathophysiology, myocardial infarctions, heart failure, Takotsubo Cardiomyopathy, myocardial injury, myocarditis and arrhythmias that are caused by COVID-19. Additionally, these cardiovascular injuries can linger and may be an underlying cause of some Long COVID symptoms. Conclusions Cardiovascular complications of COVID-19 are numerous and life-threatening. Long COVID can affect cardiovascular health. Microclotting induced by SARS-CoV-2 infection could be a therapeutic target for some aspects of Long Covid.
Collapse
Affiliation(s)
- B.A. Krishna
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - M. Metaxaki
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - N. Sithole
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Infectious Diseases, Cambridge University, Cambridge, United Kingdom
| | - P. Landín
- Department of Cardiology, Hospital Clínico San Carlos, Madrid, Spain
| | - P. Martín
- Department of Respiratory Medicine, Hospital Clínico San Carlos, Madrid, Spain
| | - A. Salinas-Botrán
- Department of Infectious Diseases, Hospital Clínico San Carlos, Madrid, Spain
- Department of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
113
|
Vestergaard LS, Pebody RG. Understanding excess mortality in Europe during the COVID-19 pandemic. THE LANCET REGIONAL HEALTH. EUROPE 2024; 45:101053. [PMID: 39279870 PMCID: PMC11402395 DOI: 10.1016/j.lanepe.2024.101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024]
Affiliation(s)
- Lasse S Vestergaard
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Richard G Pebody
- Clinical and Emerging Infections Directorate, UK Health Security Agency, London, England
| |
Collapse
|
114
|
Dalgalı P, Topsakal KG, Eser Mısır S, Samur Ergüven S, Duran GS, Görgülü S. Evaluating the Impact of Different Education Methods on Cleft Lip and Palate Anatomy Training. Cleft Palate Craniofac J 2024; 61:1743-1749. [PMID: 39324208 DOI: 10.1177/10556656241286754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
OBJECTIVE To compare the effects of different educational methods on short and long-term learning outcomes and to investigate the satisfaction and perception of cleft lip and palate (CLP) education among dental students. DESIGN The theoretical exam on CLP to determine their baseline level of knowledge was taken by the participants(T0). After the exam, the students were randomly divided into three groups and all students attended a lecture-based traditional education on CLP. Students in the first group (n = 40) received no additional teaching (Group A). Students in the second group (n = 38) received model teaching with 3D-printed models (Group B). The third group (n = 39) was trained in e-learning-supported education (Group C). The theoretical exam was repeated immediately after the education (T1/short-term learning), one week later (T2/early long-term learning), and one month later (T3/late long-term learning), and the effect of the education methods on information level was assessed. In addition, a post-training satisfaction questionnaire was administered to participants of Group B and Group C. RESULTS Both 3D model-based and e-learning-supported approaches significantly improved immediate knowledge of CLP. However, no significant differences were found in knowledge retention over time between the all methods. A majority of students favored the incorporation of both methods in orthodontic education. CONCLUSIONS While both 3D models and e-learning effectively enhance short-term CLP knowledge among dental students, their long-term educational impacts are comparable. However, student preferences indicated that the use of 3D-printed models and e-learning strategies may be useful augmentations to traditional lecture education.
Collapse
Affiliation(s)
- Perihan Dalgalı
- Department of Orthodontics, Gulhane Faculty of Dental Medicine, University of Health Sciences, Ankara, Türkiye
| | - Kübra Gülnur Topsakal
- Department of Orthodontics, Gulhane Faculty of Dental Medicine, University of Health Sciences, Ankara, Türkiye
| | - Selcen Eser Mısır
- Department of Orthodontics, Gulhane Faculty of Dental Medicine, University of Health Sciences, Ankara, Türkiye
| | - Sara Samur Ergüven
- Department of Oral and Maxillofacial Surgery, Gulhane Faculty of Dental Medicine, University of Health Sciences, Ankara, Türkiye
| | - Gökhan Serhat Duran
- Department of Orthodontics Faculty of Dentistry, Çanakkale 18 Mart University, Çanakkale, Türkiye
| | - Serkan Görgülü
- Department of Orthodontics, Gulhane Faculty of Dental Medicine, University of Health Sciences, Ankara, Türkiye
| |
Collapse
|
115
|
He J, Zhong R, Xue L, Wang Y, Chen Y, Xiong Z, Yang Z, Chen S, Liang W, He J. Exhaled Volatile Organic Compounds Detection in Pneumonia Screening: A Comprehensive Meta-analysis. Lung 2024; 202:501-511. [PMID: 39180684 PMCID: PMC11427597 DOI: 10.1007/s00408-024-00737-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Pneumonia is a common lower respiratory tract infection, and early diagnosis is crucial for timely treatment and improved prognosis. Traditional diagnostic methods for pneumonia, such as chest imaging and microbiological examinations, have certain limitations. Exhaled volatile organic compounds (VOCs) detection, as an emerging non-invasive diagnostic technique, has shown potential application value in pneumonia screening. METHOD A systematic search was conducted on PubMed, Embase, Cochrane Library, and Web of Science, with the retrieval time up to March 2024. The inclusion criteria were diagnostic studies evaluating exhaled VOCs detection for the diagnosis of pneumonia, regardless of the trial design type. A meta-analysis was performed using a bivariate model for sensitivity and specificity. RESULTS A total of 14 diagnostic studies were included in this meta-analysis. The pooled results demonstrated that exhaled VOCs detection had a combined sensitivity of 0.94 (95% CI: 0.92-0.95) and a combined specificity of 0.83 (95% CI: 0.81-0.84) in pneumonia screening, with an area under the summary receiver operating characteristic (SROC) curve (AUC) of 0.96. The pooled diagnostic odds ratio (DOR) was 104.37 (95% CI: 27.93-390.03), and the pooled positive and negative likelihood ratios (LR) were 8.98 (95% CI: 3.88-20.80) and 0.11 (95% CI: 0.05-0.22), indicating a high diagnostic performance. CONCLUSION This study highlights the potential of exhaled VOCs detection as an effective, non-invasive screening method for pneumonia, which could facilitate future diagnosis in pneumonia. Further high-quality, large-scale studies are required to confirm the clinical utility of exhaled VOCs detection in pneumonia screening. STUDY REGISTRATION PROSPERO, Review no. CRD42024520498.
Collapse
Affiliation(s)
- Juan He
- Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China.
| | - Ran Zhong
- Department of Thoracic Surgery and Oncology, National Center for Respiratory Health, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Linlu Xue
- Guangzhou Yuexiu Huanghuagang Street Community Health Service Center, Guangzhou, 510075, China
| | - Yixuan Wang
- Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Yang Chen
- Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Zihui Xiong
- Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Ziya Yang
- The First Clinical School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Sitong Chen
- ChromX Health Company Limited, Guangzhou, 510120, China
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, National Center for Respiratory Health, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, National Center for Respiratory Health, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
116
|
He R, Zuo Y, Yi K, Liu B, Song C, Li N, Geng Q. The role and therapeutic potential of itaconate in lung disease. Cell Mol Biol Lett 2024; 29:129. [PMID: 39354366 PMCID: PMC11445945 DOI: 10.1186/s11658-024-00642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024] Open
Abstract
Lung diseases triggered by endogenous or exogenous factors have become a major concern, with high morbidity and mortality rates, especially after the coronavirus disease 2019 (COVID-19) pandemic. Inflammation and an over-activated immune system can lead to a cytokine cascade, resulting in lung dysfunction and injury. Itaconate, a metabolite produced by macrophages, has been reported as an effective anti-inflammatory and anti-oxidative stress agent with significant potential in regulating immunometabolism. As a naturally occurring metabolite in immune cells, itaconate has been identified as a potential therapeutic target in lung diseases through its role in regulating inflammation and immunometabolism. This review focuses on the origin, regulation, and function of itaconate in lung diseases, and briefly discusses its therapeutic potential.
Collapse
Affiliation(s)
- Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Yifan Zuo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Ke Yi
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Bohao Liu
- Department of Thoracic Surgery, Jilin University, Changchun, China
| | - Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China.
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China.
| |
Collapse
|
117
|
Naga YS, El Keraie A, Abd ElHafeez SS, Zyada RS. Impact of COVID-19 pandemic on care of maintenance hemodialysis patients: a multicenter study. Clin Exp Nephrol 2024; 28:1040-1050. [PMID: 38702493 PMCID: PMC11493785 DOI: 10.1007/s10157-024-02495-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/22/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND The COVID-19 pandemic posed a challenge to hemodialysis (HD) patients. While most outpatient and elective medical services stopped during lockdown, HD patients continued to visit their dialysis centers. We aimed to assess how the initial phase of the pandemic affected patient care by comparing dialysis adequacy and other parameters of patient care before and during the first 10 months of the COVID-19 pandemic. METHODS In a retrospective multi-center observational study, all adult dialysis patients in five dialysis centers in Alexandria, Egypt were included. Dialysis adequacy, missed sessions, laboratory parameters and hospitalization were recorded. Data of the 10 months before and the 10 months after the pandemic were compared and predictors of adequacy were determined. RESULTS In the 388 HD patients included in the study, the number of missed sessions was higher during the pandemic with peaks during the first and second wave of the pandemic. The ratio of patients to nurses, phosphorus and parathormone levels were significantly higher during the pandemic, while urea reduction ratio, Kt/V, hemoglobin, calcium and albumin levels were significantly lower. In patients who reported difficult accessibility, missed HD sessions were higher during lockdown. Hospital admissions doubled during the pandemic, with COVID-19 infection being the main cause (45.5%). Number of patients per nurse and interdialytic weight gain were predictors of inadequate dialysis. CONCLUSION The COVID-19 pandemic and its related lockdown negatively affected multiple aspects of dialysis patient care. Continued access of optimum care in dialysis patients should be a priority in any future mass events.
Collapse
Affiliation(s)
- Yasmine Salah Naga
- Nephrology Unit, Internal Medicine department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ahmed El Keraie
- Nephrology Unit, Internal Medicine department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Samar Samy Abd ElHafeez
- Epidemiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Rowan Saad Zyada
- Kidney and Urology Centre, 347 Gamal Abd El Naser Street, Montaza, Alexandria, Egypt.
| |
Collapse
|
118
|
Rangel-Buitrago N, Adriana GC, Galgani F. The collateral effects of COVID-19 on coastal and marine environments. MARINE POLLUTION BULLETIN 2024; 207:116903. [PMID: 39213884 DOI: 10.1016/j.marpolbul.2024.116903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/24/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
The COVID-19 pandemic has generated a global health and economic crisis, significantly impacting coastal and marine environments. Lockdowns and restrictions, while necessary for public health, led to both positive and negative environmental consequences. Reduced human activity resulted in decreased pollution and habitat disruption, allowing for ecosystem recovery and improved water quality. However, the surge in single-use plastics and personal protective equipment (PPE) during the pandemic exacerbated plastic pollution. Additionally, the economic downturn severely affected coastal communities reliant on tourism and fisheries, highlighting the need for sustainable recovery strategies. This Special Issue explores these collateral effects, emphasizing the importance of adaptive management and resilient governance in safeguarding coastal and marine ecosystems against future crises.
Collapse
Affiliation(s)
- Nelson Rangel-Buitrago
- Programa de Física, Facultad de Ciencias Básicas, Universidad del Atlántico, Barranquilla, Atlántico, Colombia.
| | - Gracia C Adriana
- Programa de Biología, Facultad de Ciencias Básicas, Universidad del Atlántico, Barranquilla, Atlántico, Colombia
| | - Francois Galgani
- Unité Ressources marines en Polynésie Francaise, Institut français de recherche pour l'exploitation de la mer (Ifremer), BP 49, Vairao, Tahiti, French Polynesia
| |
Collapse
|
119
|
Pajuelo D, Dezortova M, Hajek M, Ibrahimova M, Ibrahim I. Metabolic changes assessed by 1H MR spectroscopy in the corpus callosum of post-COVID patients. MAGMA (NEW YORK, N.Y.) 2024; 37:937-946. [PMID: 38865058 PMCID: PMC11452436 DOI: 10.1007/s10334-024-01171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVE Many patients with long COVID experience neurological and psychological symptoms. Signal abnormalities on MR images in the corpus callosum have been reported. Knowledge about the metabolic profile in the splenium of the corpus callosum (CCS) may contribute to a better understanding of the pathophysiology of long COVID. MATERIALS AND METHODS Eighty-one subjects underwent proton MR spectroscopy examination. The metabolic concentrations of total N-acetylaspartate (NAA), choline-containing compounds (Cho), total creatine (Cr), myo-inositol (mI), and NAA/Cho in the CCS were statistically compared in the group of patients containing 58 subjects with positive IgG COVID-19 antibodies or positive SARS-CoV-2 qPCR test at least two months before the MR and the group of healthy controls containing 23 subjects with negative IgG antibodies. RESULTS An age-dependent effect of SARS-CoV-2 on Cho concentrations in the CCS has been observed. Considering the subjective threshold of age = 40 years, older patients showed significantly increased Cho concentrations in the CCS than older healthy controls (p = 0.02). NAA, Cr, and mI were unchanged. All metabolite concentrations in the CCS of younger post-COVID-19 patients remained unaffected by SARS-CoV-2. Cho did not show any difference between symptomatic and asymptomatic patients (p = 0.91). DISCUSSION Our results suggest that SARS-CoV-2 disproportionately increases Cho concentration in the CCS among older post-COVID-19 patients compared to younger ones. The observed changes in Cho may be related to the microstructural reorganization in the CCS also reported in diffusion measurements rather than increased membrane turnover. These changes do not seem to be related to neuropsychological problems of the post-COVID-19 patients. Further metabolic studies are recommended to confirm these observations.
Collapse
Affiliation(s)
- Dita Pajuelo
- Institute for Clinical and Experimental Medicine, Department of Diagnostic and Interventional Radiology, Videnska 1958/9, 140 21 PRAGUE 4, Prague, Czech Republic.
| | - Monika Dezortova
- Institute for Clinical and Experimental Medicine, Department of Diagnostic and Interventional Radiology, Videnska 1958/9, 140 21 PRAGUE 4, Prague, Czech Republic
| | - Milan Hajek
- Institute for Clinical and Experimental Medicine, Department of Diagnostic and Interventional Radiology, Videnska 1958/9, 140 21 PRAGUE 4, Prague, Czech Republic
| | - Marketa Ibrahimova
- Laboratory of Immunology, Thomayer University Hospital, Prague, Czech Republic
| | - Ibrahim Ibrahim
- Institute for Clinical and Experimental Medicine, Department of Diagnostic and Interventional Radiology, Videnska 1958/9, 140 21 PRAGUE 4, Prague, Czech Republic
| |
Collapse
|
120
|
Balisetty NPK, Therese AM, Rao A, Divya PD, John KKS. Assessment of the Effectiveness of Educating Elderly Residents in an Urban Community in South India on Managing Post-COVID-19 Musculoskeletal Complications. Cureus 2024; 16:e70857. [PMID: 39493210 PMCID: PMC11531827 DOI: 10.7759/cureus.70857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/03/2024] [Indexed: 11/05/2024] Open
Abstract
Objective This study aimed to enhance post-COVID-19 patients' understanding of musculoskeletal issues and their management through a structured educational program in the elderly population. Methodology The study included 60 participants. Each participant was assessed using sociodemographic tools and a structured knowledge questionnaire on post-COVID-19 musculoskeletal complications among elderly individuals. A pretest was conducted on all participants using these tools. Subsequently, a seven-day structured training program was administered, followed by a post-test using the same tools. A comparative analysis was performed to evaluate the difference in understanding between the pretest and post-test results. Results The pretest comprehension levels in the below-average and average groups showed a mean and standard deviation of 3±1.5 and 14.5±2.0, respectively, with a statistically significant p-value of 0.0001 and a t-value of 15.6. In the post-test, proficiency levels in the average and above-average groups demonstrated a mean and standard deviation of 18.2±1.5 and 24.5±3.6, respectively, with a statistically significant t-value of 6.88 and a p-value of 0.0001. Among the elderly participants, there was a substantial improvement in competence between the pre-and post-test scores, with a highly significant p-value of 0.0001. Conclusion Our study concluded that the elderly population was particularly vulnerable to various diseases and complications due to aging, making it essential to provide education on managing post-COVID-19 musculoskeletal issues.
Collapse
Affiliation(s)
| | - A Maria Therese
- Medical Surgical Nursing, Mother Theresa Post Graduate and Research Institute of Health Sciences, Puducherry, IND
| | - Abhilasha Rao
- Nursing, Eashwari Bai Memorial College of Nursing, Secunderabad, IND
| | - P D Divya
- Nursing, Eashwari Bai Memorial College of Nursing, Secunderabad, IND
| | - K K Shiny John
- Community Health Nursing, Eashwari Bai Memorial College of Nursing, Secunderabad, IND
| |
Collapse
|
121
|
Dehhaghi M, Heydari M, Panahi HKS, Lewin SR, Heng B, Brew BJ, Guillemin GJ. The roles of the kynurenine pathway in COVID-19 neuropathogenesis. Infection 2024; 52:2043-2059. [PMID: 38802702 PMCID: PMC11499433 DOI: 10.1007/s15010-024-02293-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the highly contagious respiratory disease Corona Virus Disease 2019 (COVID-19) that may lead to various neurological and psychological disorders that can be acute, lasting days to weeks or months and possibly longer. The latter is known as long-COVID or more recently post-acute sequelae of COVID (PASC). During acute COVID-19 infection, a strong inflammatory response, known as the cytokine storm, occurs in some patients. The levels of interferon-γ (IFN-γ), interferon-β (IFN-β), interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) are particularly increased. These cytokines are known to activate the enzyme indoleamine 2,3-dioxygenase 1 (IDO-1), catalysing the first step of tryptophan (Trp) catabolism through the kynurenine pathway (KP) leading to the production of several neurotoxic and immunosuppressive metabolites. There is already data showing elevation in KP metabolites both acutely and in PASC, especially regarding cognitive impairment. Thus, it is likely that KP involvement is significant in SARS-CoV-2 pathogenesis especially neurologically.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mostafa Heydari
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Hamed Kazemi Shariat Panahi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Bruce J Brew
- Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia.
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia.
- Departments of Neurology and Immunology, St. Vincent's Hospital, Sydney, NSW, Australia.
- University of Notre Dame, Darlinghurst, Sydney, NSW, Australia.
| | - Gilles J Guillemin
- Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Pertanian Bogor University, Bogor, Indonesia
| |
Collapse
|
122
|
Zhang D, Yang A, Sheng K, Fang S, Zhou L. Application of the second-generation sequencing technology of metagenomics in the detection of pathogens in respiratory patients. J Microbiol Methods 2024; 225:107021. [PMID: 39147284 DOI: 10.1016/j.mimet.2024.107021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
OBJECTIVE To explore the application value of the second-generation metagenomic next-generation sequencing (mNGS) in the detection of pathogens in patients with pulmonary infection. METHODS We conducted a retrospective analysis of 65 pulmonary infection cases treated at our institution and the Fifth People's Hospital of Shanghai between January 2021 and May 2023. All subjects were subjected to mNGS, targeted next-generation sequencing (tNGS), and conventional microbiological culture. A comparative analysis was performed to evaluate the diversity and quantity of pathogens identified by these methodologies and to appraise their respective diagnostic capabilities in pulmonary infection diagnostics. RESULTS The mNGS successfully identified etiological agents in 60 of the 65 cases, compared to tNGS, which yielded positive results in 42 cases, and conventional laboratory cultures, which detected pathogens in 24 cases. At the bacterial genus level, mNGS discerned 9 genera, 11 species, and 92 isolates of pathogenic bacteria, whereas tNGS identified 8 genera, 8 species, and 71 isolates. Conventional methods were less sensitive, detecting only 6 genera, 7 species, and 33 isolates. In terms of fungal detection, mNGS identified 4 fungal species, tNGS detected 4 isolates of the Candida genus, and conventional methods identified 2 isolates of the same genus. Viral detection at the species level revealed 10 species and 46 isolates by mNGS, whereas tNGS detected only 3 species and 7 isolates. The area under the receiver operating characteristic curve (AUC) with 95% confidence intervals for diagnosing pulmonary infections was 0.818 (0.671 to 0.966) for mNGS, 0.668 (0.475 to 0.860) for tNGS, and 0.721 (0.545 to 0.897) for conventional culture.The mNGS demonstrates superior diagnostic efficacy and pathogen detection breadth in critically ill patients with respiratory infections, offering a significant advantage by reducing the time to diagnosis. The enhanced sensitivity and comprehensive pathogen profiling of mNGS underscore its potential as a leading diagnostic tool in clinical microbiology.
Collapse
Affiliation(s)
- Danfeng Zhang
- Department of Geriatrics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China
| | - Ali Yang
- Department of Geriatric, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), No.2209 GuangXing Road, Shanghai 201600, China
| | - Kai Sheng
- Department of Geriatrics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China
| | - Shuyu Fang
- Department of Geriatrics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China.
| | - Liang Zhou
- Department of Neurosurgery, Shanghai Fifth People's Hospital, Fudan University, No.128 RuiLi Road, Shanghai 200240, China.
| |
Collapse
|
123
|
Pfaender S, Steinmann E. Editorial overview: Coronaviruses 2024. Curr Opin Microbiol 2024; 81:102523. [PMID: 39098125 DOI: 10.1016/j.mib.2024.102523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Affiliation(s)
- Stephanie Pfaender
- Research Unit Emerging Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany; University of Lübeck, Lübeck, Germany.
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; German Centre for Infection Research (DZIF), External Partner Site, Bochum, Germany.
| |
Collapse
|
124
|
Jiao J, Zeng D, Wu Y, Li C, Mo T. Programmable and ultra-efficient Argonaute protein-mediated nucleic acid tests: A review. Int J Biol Macromol 2024; 278:134755. [PMID: 39147338 DOI: 10.1016/j.ijbiomac.2024.134755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
With the attributes of high sensitivity, single-base resolution, multiplex detection capability, and programmability upon nucleic acid recognition, Argonaute (Ago)-based biosensing assays are increasingly recognized as one of the most promising tools for precise identification and quantification of target analytes. Employed as highly specific sequence recognition elements of these robust diagnostic methods, Agos are revolutionizing how nucleic acid targets are detected. A systematic and comprehensive summary of this emerging and rapid-advancing technology is necessary to give play to the potential of Ago-based biosensing assays. The structure and function of Agos were briefly overviewed at the beginning of the work, followed by a review of the recent advancements in employing Agos sensing for detecting various targets with a comprehensive analysis such as viruses, tumor biomarkers, pathogens, mycoplasma, and parasite. The significance and benefits of these platforms were then deliberated. In addition, the authors shared subjective viewpoints on the existing challenges and offered relevant guidance for the future progress of Agos assays. Finally, the future research outlook regarding Ago-based sensing in this field was also outlined. As such, this review is expected to offer valuable information and fresh perspectives for a broader group of researchers.
Collapse
Affiliation(s)
- Jinlong Jiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Dandan Zeng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yafang Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chentao Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tianlu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
125
|
Sun W, Yang T, Sun F, Liu P, Gao J, Lan X, Xu W, Pang Y, Li T, Li C, Liang Q, Chen H, Liu X, Tan W, Zhu H, Wang F, Cheng F, Zhai W, Kim HN, Zhang J, Zhang L, Lu L, Xi Q, Deng G, Huang Y, Jin X, Chen X, Liu W. An IGHG1 variant exhibits polarized prevalence and confers enhanced IgG1 antibody responses against life-threatening organisms. Nat Immunol 2024; 25:1809-1819. [PMID: 39261722 DOI: 10.1038/s41590-024-01944-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024]
Abstract
Evolutionary pressures sculpt population genetics, whereas immune adaptation fortifies humans against life-threatening organisms. How the evolution of selective genetic variation in adaptive immune receptors orchestrates the adaptation of human populations to contextual perturbations remains elusive. Here, we show that the G396R coding variant within the human immunoglobulin G1 (IgG1) heavy chain presents a concentrated prevalence in Southeast Asian populations. We uncovered a 190-kb genomic linkage disequilibrium block peaked in close proximity to this variant, suggestive of potential Darwinian selection. This variant confers heightened immune resilience against various pathogens and viper toxins in mice. Mechanistic studies involving severe acute respiratory syndrome coronavirus 2 infection and vaccinated individuals reveal that this variant enhances pathogen-specific IgG1+ memory B cell activation and antibody production. This G396R variant may have arisen on a Neanderthal haplotype background. These findings underscore the importance of an IGHG1 variant in reinforcing IgG1 antibody responses against life-threatening organisms, unraveling the intricate interplay between human evolution and immune adaptation.
Collapse
Affiliation(s)
- Wenbo Sun
- School of Life Sciences, Institute for Immunology, State Key Laboratory of Membrane Biology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Tingyu Yang
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Fengming Sun
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chongqing Key Laboratory for Research of Infectious Diseases, Chongqing, China
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | | | - Ji Gao
- School of Life Sciences, Institute for Immunology, State Key Laboratory of Membrane Biology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Xianmei Lan
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai, China
| | - Yuhong Pang
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Tong Li
- School of Life Sciences, Institute for Immunology, State Key Laboratory of Membrane Biology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Cuifeng Li
- School of Life Sciences, Institute for Immunology, State Key Laboratory of Membrane Biology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qingtai Liang
- NexVac Research Center, Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Haoze Chen
- NexVac Research Center, Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaohang Liu
- School of Life Sciences, Institute for Immunology, State Key Laboratory of Membrane Biology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Wenting Tan
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | | | - Fang Wang
- The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Fanjun Cheng
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Han-Na Kim
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea
- Biomedical Statistics Center Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Jingren Zhang
- NexVac Research Center, Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Linqi Zhang
- NexVac Research Center, Center for Infectious Disease Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of MOE/NHC/CAMS, School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai, China.
| | - Qiaoran Xi
- Key Laboratory of Protein Sciences (Ministry of Education), State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Guohong Deng
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
- Chongqing Key Laboratory for Research of Infectious Diseases, Chongqing, China.
| | - Yanyi Huang
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China.
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China.
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, China.
- School of Medicine, South China University of Technology, Guangzhou, China.
| | - Xiangjun Chen
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, China.
| | - Wanli Liu
- School of Life Sciences, Institute for Immunology, State Key Laboratory of Membrane Biology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
126
|
Gege C, Hahn F, Wangen C, Häge S, Herrmann A, Uhlig N, Eberlein V, Issmail L, Klopfleisch R, Grunwald T, Marschall M, Kohlhof H, Vitt D. Synthesis and Characterization of DHODH Inhibitors Based on the Vidofludimus Scaffold with Pronounced Anti-SARS-CoV-2 Activity. ChemMedChem 2024; 19:e202400292. [PMID: 38887198 DOI: 10.1002/cmdc.202400292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
New strategies for the rapid development of broad-spectrum antiviral therapies are urgently required for emerging and re-emerging viruses like the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Host-directed antivirals that target universal cellular metabolic pathways necessary for viral replication present a promising approach with broad-spectrum activity and low potential for development of viral resistance. Dihydroorotate dehydrogenase (DHODH) was identified as one of those universal host factors essential for the replication of many clinically relevant human pathogenic viruses. DHODH is the rate-limiting enzyme catalyzing the fourth step in the de novo pyrimidine synthesis. Therefore, it is also developed as a therapeutic target for many diseases relying on cellular pyrimidine resources, such as cancer, autoimmune diseases and viral or bacterial infection. Thus, several DHODH inhibitors, including vidofludimus calcium (VidoCa, IMU-838), are currently in development or have been investigated in clinical trials for the treatment of virus infections such as SARS-CoV-2-mediated coronavirus disease 19 (COVID-19). Here, we report the medicinal chemistry optimization of VidoCa that resulted in metabolically more stable derivatives with improved DHODH target inhibition in various mammalian species, which translated into improved efficacy against SARS-CoV-2.
Collapse
Affiliation(s)
- Christian Gege
- Immunic AG, Lochhamer Schlag 21, 82166, Gräfelfing, Germany
| | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054, Erlangen, Germany
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054, Erlangen, Germany
| | - Sigrun Häge
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054, Erlangen, Germany
| | | | - Nadja Uhlig
- Department of Vaccines and Infection Models, Unit Preclinical Validation, Fraunhofer-Institute for Cell Therapy and Immunology IZI, Perlickstrasse 1, 04103, Leipzig, Germany
| | - Valentina Eberlein
- Department of Vaccines and Infection Models, Unit Preclinical Validation, Fraunhofer-Institute for Cell Therapy and Immunology IZI, Perlickstrasse 1, 04103, Leipzig, Germany
| | - Leila Issmail
- Department of Vaccines and Infection Models, Unit Preclinical Validation, Fraunhofer-Institute for Cell Therapy and Immunology IZI, Perlickstrasse 1, 04103, Leipzig, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, 14163, Berlin, Germany
| | - Thomas Grunwald
- Department of Vaccines and Infection Models, Unit Preclinical Validation, Fraunhofer-Institute for Cell Therapy and Immunology IZI, Perlickstrasse 1, 04103, Leipzig, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054, Erlangen, Germany
| | - Hella Kohlhof
- Immunic AG, Lochhamer Schlag 21, 82166, Gräfelfing, Germany
| | - Daniel Vitt
- Immunic AG, Lochhamer Schlag 21, 82166, Gräfelfing, Germany
| |
Collapse
|
127
|
Siu RHP, Jesky RG, Fan YJ, Au-Yeung CCH, Kinghorn AB, Chan KH, Hung IFN, Tanner JA. Aptamer-Mediated Electrochemical Detection of SARS-CoV-2 Nucleocapsid Protein in Saliva. BIOSENSORS 2024; 14:471. [PMID: 39451684 PMCID: PMC11505747 DOI: 10.3390/bios14100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
Gold standard detection of SARS-CoV-2 by reverse transcription quantitative PCR (RT-qPCR) can achieve ultrasensitive viral detection down to a few RNA copies per sample. Yet, the lengthy detection and labor-intensive protocol limit its effectiveness in community screening. In view of this, a structural switching electrochemical aptamer-based biosensor (E-AB) targeting the SARS-CoV-2 nucleocapsid (N) protein was developed. Four N protein-targeting aptamers were characterized on an electrochemical cell configuration using square wave voltammetry (SWV). The sensor was investigated in an artificial saliva matrix optimizing the aptamer anchoring orientation, SWV interrogation frequency, and target incubation time. Rapid detection of the N protein was achieved within 5 min at a low nanomolar limit of detection (LOD) with high specificity. Specific N protein detection was also achieved in simulated positive saliva samples, demonstrating its feasibility for saliva-based rapid diagnosis. Further research will incorporate novel signal amplification strategies to improve sensitivity for early diagnosis.
Collapse
Affiliation(s)
- Ryan H. P. Siu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (R.H.P.S.); (R.G.J.); (C.C.H.A.-Y.); (A.B.K.)
| | - Robert G. Jesky
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (R.H.P.S.); (R.G.J.); (C.C.H.A.-Y.); (A.B.K.)
| | - Yu-Jing Fan
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; (Y.-J.F.); (I.F.-N.H.)
| | - Cyrus C. H. Au-Yeung
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (R.H.P.S.); (R.G.J.); (C.C.H.A.-Y.); (A.B.K.)
| | - Andrew B. Kinghorn
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (R.H.P.S.); (R.G.J.); (C.C.H.A.-Y.); (A.B.K.)
| | - Kwok-Hung Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR, China;
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; (Y.-J.F.); (I.F.-N.H.)
| | - Julian A. Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (R.H.P.S.); (R.G.J.); (C.C.H.A.-Y.); (A.B.K.)
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong SAR, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518000, China
| |
Collapse
|
128
|
Schultz IC, Dos Santos Pereira Andrade AC, Dubuc I, Laroche A, Allaeys I, Doré E, Bertrand N, Vallières L, Fradette J, Flamand L, Wink MR, Boilard E. Targeting Cytokines: Evaluating the Potential of Mesenchymal Stem Cell Derived Extracellular Vesicles in the Management of COVID-19. Stem Cell Rev Rep 2024:10.1007/s12015-024-10794-4. [PMID: 39340739 DOI: 10.1007/s12015-024-10794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
The Coronavirus Disease 2019 (COVID-19), caused by virus SARS-CoV-2, is characterized by massive inflammation and immune system imbalance. Despite the implementation of vaccination protocols, the accessibility of treatment remains uneven. Furthermore, the persistent threat of new variants underscores the urgent need for expanded research into therapeutic options for SARS-CoV-2. Mesenchymal stem cells (MSCs) are known for their immunomodulatory potential through the release of molecules into the extracellular space, either as soluble elements or carried by extracellular vesicles (EVs). The aim of this study was to evaluate the anti-inflammatory potential of EVs obtained from human adipose tissue (ASC-EVs) against SARS-CoV-2 infection. ASC-EVs were purified by size-exclusion chromatography, and co-culture assays confirmed that ASC-EVs were internalized by human lung cells and could colocalize with SARS-CoV-2 into early and late endosomes. To determine the functionality of ASC-EVs, lung cells were infected with SARS-CoV-2 in the presence of increasing concentrations of ASC-EVs, and the release of cytokines, chemokines and viruses were measured. While SARS-CoV-2 replication was significantly reduced only at the highest concentrations tested, multiplex analysis highlighted that lower concentrations of ASC-EV sufficed to prevent the production of immune modulators. Importantly, ASC-EVs did not contain detectable inflammatory cytokines, nor did they trigger inflammatory mediators, nor affect cellular viability. In conclusion, this work suggests that ASC-EVs have the potential to attenuate inflammation by decreasing the production of pro-inflammatory cytokines in lung cells following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Iago Carvalho Schultz
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Ana Claudia Dos Santos Pereira Andrade
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Isabelle Dubuc
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Audrée Laroche
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Isabelle Allaeys
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Etienne Doré
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Nicolas Bertrand
- Axe Endocrinologie et Néphrologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Luc Vallières
- Axe Neurosciences, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
| | - Julie Fradette
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Département de Chirurgie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
- Division of Regenerative Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
| | - Louis Flamand
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Marcia Rosangela Wink
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Eric Boilard
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada.
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada.
| |
Collapse
|
129
|
Midzi N, Mutsaka-Makuvaza MJ, Charimari LS, Mangwiro P, Manengureni T, Mugadza G. A qualitative study of knowledge, beliefs and misinformation regarding COVID-19 in selected districts in Zimbabwe. BMC Public Health 2024; 24:2637. [PMID: 39334096 PMCID: PMC11438260 DOI: 10.1186/s12889-024-20053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Lack of appropriate knowledge, incorrect beliefs and misinformation misleads people about the risks they face and how best to protect themselves. A study was conducted to explore the knowledge, beliefs and misinformation regarding COVID-19 in Zimbabwe. METHODS A qualitative study was conducted in September-October 2022 with a purposive sample of religious leaders, women leaders, youth leaders, health workers, village health workers, teachers, traditional healers, transporters, and the general population selected from ten sites across the country. In total there were 128 participants (30 key informants and 98 focus group discussion participants). At each site, 3 key informant interviews and one homogenous focus group discussion were conducted using semi-structured interviews and focus group discussion guides, respectively. The data were recorded on audiotapes, transcribed verbatim, and translated into English. Manual thematic analysis of the data was performed. FINDINGS Three themes were identified in this study: (1) beliefs about COVID-19, (2) knowledge about COVID-19 (knowledge of origin, definition, transmission, signs and symptoms and recommended preventive measures), and (3) misinformation about COVID-19 (regarding its nature, existence and recommended preventive measures). There was awareness of the origin, transmission, signs and symptoms of COVID-19 among the participants. Participants reported that Zimbabwean communities were conversant with public health measures such as maintaining social distancing, wearing masks, and maintaining hand hygiene. However, misinformation was also observed to have circulated among the communities. CONCLUSION Participants demonstrated good knowledge of COVID-19. However, the misinformation circulating in the country calls for the government to establish structures to monitor the legitimacy of information coming through different sources and invest in providing information through trusted sources. In any disease outbreak, the government should engage its citizenry to understand their knowledge, beliefs and any misinformation that might influence adherence to disease preventive measures.
Collapse
Affiliation(s)
- Nicholas Midzi
- National Institute of Health Research, Ministry of Health and Child Care, Harare, Zimbabwe
| | - Masceline Jenipher Mutsaka-Makuvaza
- National Institute of Health Research, Ministry of Health and Child Care, Harare, Zimbabwe.
- Department of Microbiology and Parasitology, School of Medicine and Pharmacy, University of Rwanda, Butare, Rwanda.
| | | | | | - Tonderai Manengureni
- National Institute of Health Research, Ministry of Health and Child Care, Harare, Zimbabwe
| | - Gladys Mugadza
- College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| |
Collapse
|
130
|
Zeigler Z, Acevedo A, Mews I, Lesser D, Koornneef A. Effect of wearing N95 masks for 10 hours on ambulatory blood pressure in healthy adults. Blood Press Monit 2024:00126097-990000000-00128. [PMID: 39436209 DOI: 10.1097/mbp.0000000000000729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The impact of wearing a face mask for an extended duration is unknown. This study aimed to determine if wearing a face mask for 10 h impacts blood pressure (BP) and arterial stiffness. Subjects received an ambulatory blood pressure cuff and were asked to wear it for 10 h while readings were taken every 15 min. During the face mask trial, subjects wore an N95 mask for 10 h. During the control, subjects did not wear a mask. Subjects were randomized to start their trial. An accelerometer was given to ensure no physical activity differences. Linear mixed models were used to determine group differences, and McNemar test was used to assess frequency differences when determining BP load. Twelve college-aged (20.5 ± 1.5 years) male (n = 5) and female (n = 7) individuals with normal BP participated in this study. There were no differences in time spent in any physical activity domain (all P > 0.05). There was no difference in brachial SBP (P = 0.688), brachial DBP (P = 0.063), central SBP (P = 0.875), central DBP (P = 0.246), heart rate (P = 0.125), and augmentation pressure (P = 0.158) between conditions. During mask condition, augmentation pressure was reduced by 5.2 ± 3.1% compared to control (P < 0.001). There were no frequency differences in the number of BP readings above 140 mmHg for SBP (P = 0.479) and >90 mmHg for DBP (P = 0.212). The current study found that wearing an N95 mask for 10 h did not affect brachial or central BP but significantly decreased augmentation pressure.
Collapse
Affiliation(s)
- Zachary Zeigler
- Exercise and Nutritional Sciences, College of Natural Science, Grand Canyon University, Phoenix, Arizona, USA
| | | | | | | | | |
Collapse
|
131
|
Matthews H, Watson J, Hermann S, Fleming K. Exclusive Breastfeeding Rates Upon Hospital Discharge at a Tertiary Centre Prior to and During the COVID-19 Pandemic. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2024; 46:102669. [PMID: 39343137 DOI: 10.1016/j.jogc.2024.102669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 10/01/2024]
Abstract
This study aimed to describe exclusive breastfeeding (EBF) rates at discharge at Sunnybrook Health Sciences Centre and explore factors that contributed to changes in breastfeeding rates during the COVID-19 pandemic. Overall, 4762 patient charts were reviewed, 2000 from the pre-pandemic period, and 2762 from the lockdown period. Data was collected on EBF status at discharge, on maternal health history, and on infant characteristics. EBF rates fell from 75.8% to 73.85% from the pre-COVID-19 to COVID-19 period. During the pandemic, EBF was positively associated with BMI <30, spontaneous conception, and infants at risk of low blood sugar. Non-spontaneous conception was associated with lower EBF.
Collapse
Affiliation(s)
| | - Jo Watson
- Breastfeeding Centre of Excellence, Sunnybrook Health Sciences Centre, Toronto, ON
| | - Sue Hermann
- Breastfeeding Centre of Excellence, Sunnybrook Health Sciences Centre, Toronto, ON
| | - Karen Fleming
- Department of Family and Community Medicine, Sunnybrook Health Sciences Centre, Toronto, ON
| |
Collapse
|
132
|
Xu R, Wu F, Shen L, Fan Z, Yu J, Huang Z. Experimental study on bioaerosols behavior and purification measures in a subway compartment. Sci Rep 2024; 14:22082. [PMID: 39333783 PMCID: PMC11436990 DOI: 10.1038/s41598-024-73933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024] Open
Abstract
Bioaerosols in public transportation systems raise critical environmental concerns, seriously threatening passenger health and safety. In this study, we investigate the spread characteristics of bioaerosols in a standard type-B subway compartment using both air sampling and sediment sampling methods. Additionally, without compromising indoor passenger comfort, two self-designed air purification devices, based on intense field dielectric (IFD) and dielectric barrier discharge (DBD) technologies, respectively, are successfully applied for the improvement of the subway air quality. The results show that bioaerosols can propagate rapidly throughout the entire compartment in 5 min via airborne transmission. Under the effect of the symmetric air ducts and compartment structure, the difference in bioaerosol concentration in the air is less than 10% between both ends of the compartment. Concurrent substantial bioaerosol deposition on the ground, seats, and windows underscores the risk of contact transmission. Furthermore, the real-time purification rates of the two devices integrated into the air conditioning system reach 59.40% and 44.98%, respectively. With their demonstrated high efficiency in purifying bioaerosols and modular design featuring low energy consumption, easy cleaning, and reusability, these devices stand out as viable long-term solutions for large traffic vehicles. These research findings provide practical equipment recommendations and installation strategies for optimizing indoor air quality in subways and are applicable to other similar transportation systems.
Collapse
Affiliation(s)
- Renze Xu
- School of Civil Engineering, Changsha University, Changsha, 410022, Hunan, China
| | - Fan Wu
- Key Laboratory of Traffic Safety on Track, School of Traffic & Transportation Engineering, Ministry of Education, Central South University, Changsha, 410075, Hunan, China
- Joint International Research Laboratory of Key Technologies for Rail Traffic Safety, Changsha, 410075, Hunan, China
| | - Lian Shen
- School of Civil Engineering, Changsha University, Changsha, 410022, Hunan, China.
| | - Zhiqiang Fan
- Key Laboratory of Traffic Safety on Track, School of Traffic & Transportation Engineering, Ministry of Education, Central South University, Changsha, 410075, Hunan, China
- Joint International Research Laboratory of Key Technologies for Rail Traffic Safety, Changsha, 410075, Hunan, China
| | - Jianci Yu
- Key Laboratory of Traffic Safety on Track, School of Traffic & Transportation Engineering, Ministry of Education, Central South University, Changsha, 410075, Hunan, China
- Joint International Research Laboratory of Key Technologies for Rail Traffic Safety, Changsha, 410075, Hunan, China
| | - Zhen Huang
- Design Institute of Hunan University, Changsha, 410082, Hunan, China
| |
Collapse
|
133
|
Nakayama S, Wakabayashi Y, Kawase K, Yamamoto A, Kitazawa T. Low visceral fat volume and hypoalbuminemia as prognostic markers in hospitalized patients with coronavirus disease 2019 during the omicron variant epidemic. Clin Nutr ESPEN 2024; 64:93-99. [PMID: 39332806 DOI: 10.1016/j.clnesp.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/01/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND & AIMS The rate of severe cases of coronavirus disease 2019 (COVID-19) has decreased since the Omicron variant became epidemic. Visceral fat volume was a risk factor for COVID-19 severity with prior prevalent variants, but whether visceral fat volume remains a risk factor for the Omicron variant is unclear. We investigated the associations of clinical factors including visceral fat volume with severity and mortality among hospitalized patients with COVID-19 during the Omicron variant epidemic. METHODS This was a single-center retrospective cohort study conducted at the Teikyo University Hospital in Japan. We included hospitalized patients with COVID-19 during the Omicron variant epidemic who underwent computed tomography of the abdomen. Clinical data were obtained from the medical records and visceral fat area (VFA) was measured using a 3-dimensional image analysis system volume analyzer. Severity was determined by the presence or absence of oxygen supplementation. RESULTS Among the 226 patients, 66 patients showed moderate severity and 29 patients were non-survivors. Hypoalbuminemia was associated with severity (odds ratio [OR] 3.93, 95 % confidence interval [CI] 1.91-8.07; p = 0.0002), and hypoalbuminemia (OR 8.38, 95%CI 2.37-29.58; p = 0.0010) and low VFA (OR 3.40, 95%CI 1.15-10.06; p = 0.027) were associated with mortality. Decision tree analysis showed that mortality rate in the hypoalbuminemia and low-VFA group (37.3 %) was significantly higher than in other groups (p ≤ 0.01). CONCLUSIONS Low visceral fat volume and hypoalbuminemia were associated with mortality in hospitalized patients with COVID-19 during the Omicron variant epidemic. Classification by VFA and serum albumin may allow simple prediction of mortality risk among hospitalized patients with COVID-19.
Collapse
Affiliation(s)
- Shin Nakayama
- Department of Internal Medicine, Teikyo University, Itabashi-ku, Tokyo, Japan
| | | | - Kyotaro Kawase
- Department of Internal Medicine, Teikyo University, Itabashi-ku, Tokyo, Japan; Department of Infectious Diseases, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Ai Yamamoto
- Department of Internal Medicine, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Takatoshi Kitazawa
- Department of Internal Medicine, Teikyo University, Itabashi-ku, Tokyo, Japan.
| |
Collapse
|
134
|
Atef Y, Ito T, Masuda A, Kato Y, Nishimura A, Kanda Y, Kunisawa J, Kusakabe T, Nishida M. Diabetic Mice Spleen Vulnerability Contributes to Decreased Persistence of Antibody Production after SARS-CoV-2 Vaccine. Int J Mol Sci 2024; 25:10379. [PMID: 39408710 PMCID: PMC11476529 DOI: 10.3390/ijms251910379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/14/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
During the COVID-19 pandemic, diabetic and obese patients experienced higher rates of hospital admissions, severe illness, and mortality. However, vaccinations failed to provide those vulnerable populations the same level of protection against COVID-19 severity as those without diabetic and obese phenotypes. Our study aimed to investigate how diabetes mellitus (DM) impacts the immune response following vaccination including the artificially designed trimeric SARS-CoV-2 spike (S)-protein. By using two diabetic mouse models, ob/ob mice (obese, hyperglycemic, and insulin-resistant) and STZ-treated mice (insulin-deficient and hyperglycemic), we observed a significant reduction in S-protein-specific IgG antibody titer post-vaccination in both diabetic models compared to wild-type (WT) mice. Both diabetic mouse models exhibited significant abnormalities in spleen tissue, including marked reductions in splenic weight and the size of the white pulp regions. Furthermore, the splenic T-cell and B-cell zones were notably diminished, suggesting an underlying immune dysfunction that could contribute to impaired antibody production. Notably, vaccination with the S-protein, when paired with an optimal adjuvant, did not exacerbate diabetic cardiomyopathy, blood glucose levels, or liver function, providing reassurance about the vaccine's safety. These findings offer valuable insights into potential mechanisms responsible for the decreased persistence of antibody production in diabetic patients.
Collapse
Affiliation(s)
- Yara Atef
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomoya Ito
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Akitsu Masuda
- Laboratory of Creative Science for Insect Industries, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 819-0395, Japan;
| | - Yuri Kato
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Akiyuki Nishimura
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki 444-8787, Japan;
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences (NINS), Okazaki 444-8787, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8787, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki 210-9501, Japan;
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka 819-0395, Japan;
| | - Motohiro Nishida
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki 444-8787, Japan;
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences (NINS), Okazaki 444-8787, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8787, Japan
| |
Collapse
|
135
|
Ozawa M, Nakamura S, Yasuo N, Sekijima M. IEV2Mol: Molecular Generative Model Considering Protein-Ligand Interaction Energy Vectors. J Chem Inf Model 2024; 64:6969-6978. [PMID: 39254942 PMCID: PMC11423338 DOI: 10.1021/acs.jcim.4c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Generating drug candidates with desired protein-ligand interactions is a significant challenge in structure-based drug design. In this study, a new generative model, IEV2Mol, is proposed that incorporates interaction energy vectors (IEVs) between proteins and ligands obtained from docking simulations, which quantitatively capture the strength of each interaction type, such as hydrogen bonds, electrostatic interactions, and van der Waals forces. By integrating this IEV into an end-to-end variational autoencoder (VAE) framework that learns the chemical space from SMILES and minimizes the reconstruction error of the SMILES, the model can more accurately generate compounds with the desired interactions. To evaluate the effectiveness of IEV2Mol, we performed benchmark comparisons with randomly selected compounds, unconstrained VAE models (JT-VAE), and compounds generated by RNN models based on interaction fingerprints (IFP-RNN). The results show that the compounds generated by IEV2Mol retain a significantly greater percentage of the binding mode of the query structure than those of the other methods. Furthermore, IEV2Mol was able to generate compounds with interactions similar to those of the input compounds, regardless of structural similarity. The source code and trained models for IEV2Mol, JT-VAE, and IFP-RNN designed for generating compounds active against the DRD2, AA2AR, and AKT1, as well as the data sets (DM-QP-1M, active compounds to each protein, and ChEMBL33) utilized in this study, are released under the MIT License and available at https://github.com/sekijima-lab/IEV2Mol.
Collapse
Affiliation(s)
- Mami Ozawa
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Shogo Nakamura
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Nobuaki Yasuo
- Academy for Convergence of Materials and Informatics (TAC-MI), Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Masakazu Sekijima
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
136
|
Chao KY, Chen CY, Ji XR, Mu SC, Chien YH. Helmet Ventilation in a Child with COVID-19 and Acute Respiratory Distress Syndrome. Case Rep Pediatr 2024; 2024:5519254. [PMID: 39351076 PMCID: PMC11442037 DOI: 10.1155/2024/5519254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/07/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Background In pediatric patients with severe COVID-19, if the respiratory support provided using high-flow nasal cannula (HFNC) becomes insufficient, no definitive evidence exists to support the escalation to noninvasive ventilation (NIV) or mechanical ventilation (MV). Case Presentation. A 9-year-old boy being treated with face mask-delivered biphasic positive airway pressure ventilation developed fever, tachypnea, and frequent desaturation. The COVID-19 polymerase chain reaction test and urine antigen test for Streptococcus pneumoniae were both positive, and sputum culture yielded Pseudomonas aeruginosa. The do-not-resuscitate order precluded the use of endotracheal intubation. After 2 h of HFNC support, the respiratory rate oxygenation (ROX) index declined from 7.86 to 3.71, indicating impending HFNC failure. A helmet was used to deliver NIV, and SpO2 was maintained at >90%. Dyspnea and desaturation gradually improved, and the patient was switched to HFNC 6 days later and discharged 10 days later. Conclusion In some cases, acute respiratory distress syndrome severity cannot be measured using the oxygenation index or oxygenation saturation index, and the SpO2/FiO2 ratio and ROX index may serve as useful alternatives. Although NIV delivered through a facemask or HFNC is more popular than helmet-delivered NIV, in certain circumstances, it can help escalate respiratory support while providing adequate protection to healthcare professionals.
Collapse
Affiliation(s)
- Ke-Yun Chao
- Department of Respiratory TherapyFu Jen Catholic University HospitalFu Jen Catholic University, New Taipei City, Taiwan
- Department of Respiratory TherapyCollege of MedicineFu Jen Catholic University, New Taipei City, Taiwan
- School of Physical TherapyGraduate Institute of Rehabilitation SciencesChang Gung University, Taoyuan, Taiwan
- Artificial Intelligence Development CenterFu Jen Catholic University, New Taipei City, Taiwan
| | - Chao-Yu Chen
- Department of Respiratory TherapyFu Jen Catholic University HospitalFu Jen Catholic University, New Taipei City, Taiwan
- Department of Life ScienceFu Jen Catholic University, New Taipei City, Taiwan
| | - Xiao-Ru Ji
- Department of PediatricsFu Jen Catholic University HospitalFu Jen Catholic University, New Taipei City, Taiwan
| | - Shu-Chi Mu
- Department of PediatricsShin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of MedicineCollege of MedicineFu Jen Catholic University, New Taipei City, Taiwan
| | - Yu-Hsuan Chien
- Department of PediatricsFu Jen Catholic University HospitalFu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
137
|
Ebrahim Babai M, Kabiri A, Movahedi M, Ghahiri A, Hajhashemi M, Dehghan M. Evaluation of the Relationship between Early Clinical Manifestations and Changes in Biochemical, Inflammatory, and Coagulation Parameters and the Prognosis of Pregnant Women with COVID-19 Admitted to the ICU. Adv Biomed Res 2024; 13:76. [PMID: 39512403 PMCID: PMC11542693 DOI: 10.4103/abr.abr_257_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 11/15/2024] Open
Abstract
Background In the SARSCov2 virus epidemic, pregnant women are more susceptible to infectious diseases due to changes in biochemical parameters and are at higher risk of severe respiratory disease and pneumonia. This study aimed to evaluate the biochemical, inflammatory and coagulation parameters in pregnant women with severe disease conditions (as one of the high-risk groups) as well as prognosis and outcome. Materials and Methods This cross-sectional study was performed on 135 pregnant women with COVID-19 admitted to ICU. Demographic and clinical information and laboratory parameters of the patients were evaluated and recorded at the time of admission and in the next follow-up until discharge or death in addition to the outcome and also the pregnancy outcome. Results The mortality rate of pregnant women with COVID-19 was 9.6%. The mortality rate decreases with increasing Hb (OR (95% CI): 0.68 (0.47-0.99); P value = 0.043) and lymphocytes (OR (95% CI): 0.92 (0.85-0.96); P value = 0.028) and will increase significantly with increasing PT (OR (95% CI): 1.24 (1.01-1.51); P value = 0.037), INR (OR (95% CI): 1.89 (1.26-2.25); P value = 0.004), D-dimer (OR (95% CI): 1.68 (1.10-2.08); P value = 0.027), and LDH (OR (95% CI): 1.20 (1.01-1.61); P value = 0.010). Conclusion According to the results of the present study, inflammatory factors such as leukocytes, neutrophils, NLR, CRP have an increasing and lymphocytes have a decreasing trend, so that lymphocytopenia is more common in non-survivors. In addition, increase of PT, INR, D-dimer and LDH and decrease of Hb were significantly associated with increased chance of mortality. But fibrinogen, ferritin, ALT and AST were not significantly associated with mortality in these women.
Collapse
Affiliation(s)
- Mahtab Ebrahim Babai
- Department of Obstetrics and Gynecology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azita Kabiri
- Department of Obstetrics and Gynecology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Minoo Movahedi
- Department of Obstetrics and Gynecology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ataollah Ghahiri
- Department of Obstetrics and Gynecology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Hajhashemi
- Department of Obstetrics and Gynecology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Dehghan
- Department of Obstetrics and Gynecology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
138
|
de Coulon A, Scott M. A tale of two cities: London and New York City during Covid-19. PLoS One 2024; 19:e0305330. [PMID: 39312518 PMCID: PMC11419385 DOI: 10.1371/journal.pone.0305330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/28/2024] [Indexed: 09/25/2024] Open
Abstract
Using publicly available data, this paper investigates the diffusion of COVID-19 across neighborhoods in two major cities, London and New York. We link neighborhood demographics to incidence, and we investigate patterns of change over time in conjunction with changing policy responses to the pandemic. By comparing and contrasting these two cities, we are able to exploit surveillance and policy differences, demonstrating how each contributes information to the other. We conclude that better coordination can be translated into improved health policy.
Collapse
Affiliation(s)
- Augustin de Coulon
- Dept of Economics, Business School, King’s College London, London, United Kingdom
- IZA, Bonn, Germany
| | - Marc Scott
- Dept of Applied Statistics, Social Science, and Humanities, Steinhardt School, New York University, New York, NY, United States of America
- PRIISM Center, New York University, New York, NY, United States of America
| |
Collapse
|
139
|
Liu Y, Bai Z, Yang T, Yuan B, Han Y, Xiang Y, Zhou R, Sun J, Chen M, Hao C, Wang H. Changes in the epidemiology of pediatric brain abscesses pre- and post-COVID-19 pandemic: a single-center study. BMC Pediatr 2024; 24:600. [PMID: 39306664 PMCID: PMC11416000 DOI: 10.1186/s12887-024-05082-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND An increased incidence of brain abscesses was observed post-COVID-19 pandemic. However, it remains unclear how the COVID-19 pandemic influenced the epidemiology of brain abscesses. This study aimed to investigate changes in the epidemiology of brain abscesses pre- and post-COVID-19 pandemic. METHODS A retrospective study of demographic, clinical, radiological, and laboratory characteristics of patients with brain abscesses in Children's Hospital of Soochow University from 2015-2023 was performed. RESULTS A total of 34 patients were admitted to the hospital during the study. The post-COVID-19 cohort had an average of 5.5 cases/year, which is a 129.2% increase compared to the pre-COVID-19 cohort's average of 2.4 cases/year. Additionally, the rates of fever upon admission (86.36% vs 50%, p = 0.04) and experiencing high-grade fever within 6 weeks before admission (40.91% vs 8.33%, p = 0.044) were significantly increased. A potential rise in the rate of intensive care unit admission was observed (36.36% vs 8.33%, p = 0.113). The average value of globulin in the post-COVID cohort was significantly higher compared to the pre-COVID cohort (31.60 ± 5.97 vs 25.50 ± 5.08, p = 0.009). Streptococcal infections were the predominant cause of brain abscesses in both cohorts (40% vs 43.75%, p = 0.57). CONCLUSIONS There was a significant increase in the number of brain abscess patients after the COVID-19 pandemic. This underscores the importance of children receiving the streptococcal vaccine.
Collapse
Affiliation(s)
- Yuchen Liu
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Zhenjiang Bai
- Pediatric Intensive Care Unit, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Tianquan Yang
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Bin Yuan
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yong Han
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yongjun Xiang
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Ruxuan Zhou
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jingxuan Sun
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Min Chen
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Chuangli Hao
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Hangzhou Wang
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
140
|
Thippornchai N, Pengpanich S, Jaroenram W, Kosoltanapiwat N, Sukphopetch P, Kiatpathomchai W, Leaungwutiwong P. A colorimetric reverse-transcription loop-mediated isothermal amplification method targeting the L452R mutation to detect the Delta variant of SARS-CoV-2. Sci Rep 2024; 14:21961. [PMID: 39304686 DOI: 10.1038/s41598-024-72417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Abstract
The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered global difficulties for both individuals and economies, with new variants continuing to emerge. The Delta variant of SARS-CoV-2 remains most prevalent worldwide, and it affects the efficacy of coronavirus disease 2019 (COVID-19) vaccination. Expedited testing to detect the Delta variant of SARS-CoV-2 and monitor viral transmission is necessary. This study aimed to develop and evaluate a colorimetric reverse-transcription loop-mediated isothermal amplification (RT-LAMP) technique targeting the L452R mutation in the S gene for the specific detection of the Delta variant. In the test, positivity was indicated as a color change from purple to yellow. The assay's 95% limit of detection was 57 copies per reaction for the L452R (U1355G)-specific standard plasmid. Using 126 clinical samples, our assay displayed 100% specificity, 97.06% sensitivity, and 98.41% accuracy in identifying the Delta variant of SARS-CoV-2 compared to real-time RT-PCR. To our knowledge, this is the first colorimetric RT-LAMP assay that can differentiate the Delta variant from its generic SARS-CoV-2, enabling it as an approach for studying COVID-19 demography and facilitating proper effective control measure establishment to fight against the reemerging variants of SARS-CoV-2 in the future.
Collapse
Affiliation(s)
- Narin Thippornchai
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Sukanya Pengpanich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Rd., Klong Neung, Klong Luang, Pathum Thani, 12120, Thailand
| | - Wansadaj Jaroenram
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Rd., Klong Neung, Klong Luang, Pathum Thani, 12120, Thailand
| | - Nathamon Kosoltanapiwat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Wansika Kiatpathomchai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Rd., Klong Neung, Klong Luang, Pathum Thani, 12120, Thailand.
| | - Pornsawan Leaungwutiwong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
141
|
Wang Q, Peng W, Yang Y, Wu Y, Han R, Ding T, Zhang X, Liu J, Yang J, Liu J. Proteome and ubiquitinome analyses of the brain cortex in K18- hACE2 mice infected with SARS-CoV-2. iScience 2024; 27:110602. [PMID: 39211577 PMCID: PMC11357812 DOI: 10.1016/j.isci.2024.110602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/03/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Clinical research indicates that SARS-CoV-2 infection is linked to several neurological consequences, and the virus is still spreading despite the availability of vaccinations and antiviral medications. To determine how hosts respond to SARS-CoV-2 infection, we employed LC-MS/MS to perform ubiquitinome and proteome analyses of the brain cortexes from K18-hACE2 mice in the presence and absence of SARS-CoV-2 infection. A total of 8,024 quantifiable proteins and 5,220 quantifiable lysine ubiquitination (Kub) sites in 2023 proteins were found. Glutamatergic synapse, calcium signaling pathway, and long-term potentiation may all play roles in the neurological consequences of SARS-CoV-2 infection. Then, we observed possible interactions between 26 SARS-CoV-2 proteins/E3 ubiquitin-protein ligases/deubiquitinases and several differentially expressed mouse proteins or Kub sites. We present the first description of the brain cortex ubiquitinome in K18-hACE2 mice, laying the groundwork for further investigation into the pathogenic processes and treatment options for neurological dysfunction following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Qiaochu Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Wanjun Peng
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Yehong Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yue Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Rong Han
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Tao Ding
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Xutong Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Juntao Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Jiangfeng Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
142
|
Iqbal K, Banga A, Arif TB, Rathore SS, Bhurwal A, Naqvi SKB, Mehdi M, Kumar P, Salklan MM, Iqbal A, Ahmed J, Sharma N, Lal A, Kashyap R, Bansal V, Domecq JP. Anticoagulant use before COVID-19 diagnosis prevent COVID-19 associated acute venous thromboembolism or not: A systematic review and meta-analysis. World J Methodol 2024; 14:92983. [PMID: 39310244 PMCID: PMC11230074 DOI: 10.5662/wjm.v14.i3.92983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/24/2024] [Accepted: 05/11/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Coagulopathy and thromboembolic events are associated with poor outcomes in coronavirus disease 2019 (COVID-19) patients. There is conflicting evidence on the effects of chronic anticoagulation on mortality and severity of COVID-19 disease. AIM To summarize the body of evidence on the effects of pre-hospital anticoagulation on outcomes in COVID-19 patients. METHODS A Literature search was performed on LitCovid PubMed, WHO, and Scopus databases from inception (December 2019) till June 2023 for original studies reporting an association between prior use of anticoagulants and patient outcomes in adults with COVID-19. The primary outcome was the risk of thromboembolic events in COVID-19 patients taking anticoagulants. Secondary outcomes included COVID-19 disease severity, in terms of intensive care unit admission or invasive mechanical ventilation/intubation requirement in patients hospitalized with COVID-19 infection, and mortality. The random effects models were used to calculate crude and adjusted odds ratios (aORs) with 95% confidence intervals (95%CIs). RESULTS Forty-six observational studies met our inclusion criteria. The unadjusted analysis found no association between prior anticoagulation and thromboembolic event risk [n = 43851, 9 studies, odds ratio (OR)= 0.67 (0.22, 2.07); P = 0.49; I 2 = 95%]. The association between prior anticoagulation and disease severity was non-significant [n = 186782; 22 studies, OR = 1.08 (0.78, 1.49); P = 0.64; I 2 = 89%]. However, pre-hospital anticoagulation significantly increased all-cause mortality risk [n = 207292; 35 studies, OR = 1.72 (1.37, 2.17); P < 0.00001; I 2 = 93%]. Pooling adjusted estimates revealed a statistically non-significant association between pre-hospital anticoagulation and thromboembolic event risk [aOR = 0.87 (0.42, 1.80); P = 0.71], mortality [aOR = 0.94 (0.84, 1.05); P = 0.31], and disease severity [aOR = 0.96 (0.72, 1.26); P = 0.76]. CONCLUSION Prehospital anticoagulation was not significantly associated with reduced risk of thromboembolic events, improved survival, and lower disease severity in COVID-19 patients.
Collapse
Affiliation(s)
- Kinza Iqbal
- Department of Internal Medicine, Dow Medical College, Karachi 74200, Pakistan
| | - Akshat Banga
- Department of Internal Medicine, Sawai Man Singh Medical College, Jaipur 302004, India
| | - Taha Bin Arif
- Department of Internal Medicine, Dow Medical College, Karachi 74200, Pakistan
| | - Sawai Singh Rathore
- Department of Internal Medicine, Dr. Sampurnanand Medical College, Jodhpur 342003, Rajasthan, India
| | - Abhishek Bhurwal
- Department of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, NJ 08901, United States
| | | | - Muhammad Mehdi
- Department of Internal Medicine, Dow Medical College, Karachi 74200, Pakistan
| | - Pankaj Kumar
- Department of Internal Medicine, Dow Medical College, Karachi 74200, Pakistan
| | - Mitali Madhu Salklan
- Department of Internal Medicine, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak 124001, Haryana, India
| | - Ayman Iqbal
- Department of Internal Medicine, Dow Medical College, Karachi 74200, Pakistan
| | - Jawad Ahmed
- Department of Internal Medicine, Dow Medical College, Karachi 74200, Pakistan
| | - Nikhil Sharma
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, United States
| | - Amos Lal
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Rahul Kashyap
- Department of Research, Wellspan Health, York, PA 17403, United States
| | - Vikas Bansal
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, United States
| | - Juan Pablo Domecq
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, United States
| |
Collapse
|
143
|
Ma X, Huang T, Li X, Zhou X, Pan H, Du A, Zeng Y, Yuan K, Wang Z. Exploration of the link between COVID-19 and gastric cancer from the perspective of bioinformatics and systems biology. Front Med (Lausanne) 2024; 11:1428973. [PMID: 39371335 PMCID: PMC11449776 DOI: 10.3389/fmed.2024.1428973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Background Coronavirus disease 2019 (COVID-19), an infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has caused a global pandemic. Gastric cancer (GC) poses a great threat to people's health, which is a high-risk factor for COVID-19. Previous studies have found some associations between GC and COVID-19, whereas the underlying molecular mechanisms are not well understood. Methods We employed bioinformatics and systems biology to explore these links between GC and COVID-19. Gene expression profiles of COVID-19 (GSE196822) and GC (GSE179252) were obtained from the Gene Expression Omnibus (GEO) database. After identifying the shared differentially expressed genes (DEGs) for GC and COVID-19, functional annotation, protein-protein interaction (PPI) network, hub genes, transcriptional regulatory networks and candidate drugs were analyzed. Results We identified 209 shared DEGs between COVID-19 and GC. Functional analyses highlighted immune-related pathways as key players in both diseases. Ten hub genes (CDK1, KIF20A, TPX2, UBE2C, HJURP, CENPA, PLK1, MKI67, IFI6, IFIT2) were identified. The transcription factor/gene and miRNA/gene interaction networks identified 38 transcription factors (TFs) and 234 miRNAs. More importantly, we identified ten potential therapeutic agents, including ciclopirox, resveratrol, etoposide, methotrexate, trifluridine, enterolactone, troglitazone, calcitriol, dasatinib and deferoxamine, some of which have been reported to improve and treat GC and COVID-19. Conclusion This research offer valuable insights into the molecular interplay between COVID-19 and GC, potentially guiding future therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
144
|
Karmacharya A, Rai K, Siwakoti S, Khanal B, Bhattarai NR. COVID-19 breakthrough infections in vaccinated individuals at BPKIHS, Nepal. BMC Infect Dis 2024; 24:1003. [PMID: 39300352 DOI: 10.1186/s12879-024-09902-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Although there have been reports of COVID-19 breakthrough infections in vaccinated individuals, the vaccines have demonstrated a high efficacy in preventing severe illness and death. Nepal has reported fewer studies of COVID-19 breakthrough infections. Hence, this study has objective to assess the prevalence, and to describe clinical characteristics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) breakthrough infection. METHODS This descriptive study was conducted from January to December 2022. The study enrolled 200 individuals who had received the recommended doses of the COVID-19 vaccine and they were RT-PCR positive diagnosed with vaccine breakthrough infections after 14 days of completing the vaccination course. The patient's demographic and clinical profiles, as well as their outcomes in terms of severity, length of hospital stay, and mortality were recorded. RESULTS The prevalence of SARS-CoV2 infection was 6.3% (547/8682). Among fully vaccinated personnel, the prevalence of breakthrough infections was 6.2% (200/3175). This study found the Omicron variants in respondents. The mean age of the patients was 38.28 years, and 41.5% (83/200) of the breakthrough cases were healthcare workers. The mean time gap between the second dose of vaccination and a positive RT-PCR test was 354.68 days. Of the 200 breakthrough cases, 89% (178) had mild symptoms, 9% (17) had moderate symptoms requiring hospitalization, and 2% (4) were severe cases that required intensive care facility. Among the severe cases, 3 out 4 were above 60 years old. Furthermore, the patients greater than 60 years had longer hospital stays (p < 0.0001) however no deaths were recorded. CONCLUSION Fully vaccinated individuals can experience COVID-19 breakthrough infections and the majority of cases present with mild symptoms. Elderly patients have a higher likelihood of severe disease and longer hospital stay compared to younger patients. The results of this study emphasize the importance of vaccination in mitigating the severity of the disease.
Collapse
Affiliation(s)
- Abhishek Karmacharya
- Department of Microbiology, B. P. Koirala Institute of Health Sciences, Dharan, Nepal.
| | - Keshav Rai
- Department of Microbiology, B. P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Shraddha Siwakoti
- Department of Microbiology, B. P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Basudha Khanal
- Department of Microbiology, B. P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Narayan Raj Bhattarai
- Department of Microbiology, B. P. Koirala Institute of Health Sciences, Dharan, Nepal
| |
Collapse
|
145
|
Zhou W, Huang D, Liang Q, Huang T, Wang X, Pei H, Chen S, Liu L, Wei Y, Qin L, Xie Y. Early warning and predicting of COVID-19 using zero-inflated negative binomial regression model and negative binomial regression model. BMC Infect Dis 2024; 24:1006. [PMID: 39300391 PMCID: PMC11414173 DOI: 10.1186/s12879-024-09940-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND It is difficult to detect the outbreak of emergency infectious disease based on the exiting surveillance system. Here we investigate the utility of the Baidu Search Index, an indicator of how large of a keyword is in Baidu's search volume, in the early warning and predicting the epidemic trend of COVID-19. METHODS The daily number of cases and the Baidu Search Index of 8 keywords (weighted by population) from December 1, 2019 to March 15, 2020 were collected and analyzed with times series and Spearman correlation with different time lag. To predict the daily number of COVID-19 cases using the Baidu Search Index, Zero-inflated negative binomial regression was used in phase 1 and negative binomial regression model was used in phase 2 and phase 3 based on the characteristic of independent variable. RESULTS The Baidu Search Index of all keywords in Wuhan was significantly higher than Hubei (excluded Wuhan) and China (excluded Hubei). Before the causative pathogen was identified, the search volume of "Influenza" and "Pneumonia" in Wuhan increased with the number of new onset cases, their correlation coefficient was 0.69 and 0.59, respectively. After the pathogen was public but before COVID-19 was classified as a notifiable disease, the search volume of "SARS", "Pneumonia", "Coronavirus" in all study areas increased with the number of new onset cases with the correlation coefficient was 0.69 ~ 0.89, while "Influenza" changed to negative correlated (rs: -0.56 ~ -0.64). After COVID-19 was closely monitored, the Baidu Search Index of "COVID-19", "Pneumonia", "Coronavirus", "SARS" and "Mask" could predict the epidemic trend with 15 days, 5 days and 6 days lead time, respectively in Wuhan, Hubei (excluded Wuhan) and China (excluded Hubei). The predicted number of cases would increase 1.84 and 4.81 folds, respectively than the actual number of cases in Wuhan and Hubei (excluded Wuhan) from 21 January to 9 February. CONCLUSION The Baidu Search Index could be used in the early warning and predicting the epidemic trend of COVID-19, but the search keywords changed in different period. Considering the time lag from onset to diagnosis, especially in the areas with medical resources shortage, internet search data can be a highly effective supplement of the existing surveillance system.
Collapse
Affiliation(s)
- Wanwan Zhou
- Department of Epidemiology and Biostatistics, Guangxi Medical University, 22 Shuangyong Road, Qingxiu District, Nanning, Guangxi, 530021, China
| | - Daizheng Huang
- Institute of Life Science, Guangxi Medical University, Nanning, China
| | - Qiuyu Liang
- Department of Health Management, The People's Hospital of Guangxi Zhuang Autonomous Region & Research Center of Health Management, Guangxi Academy of Medical Sciences, Nanning, China
| | - Tengda Huang
- Department of Epidemiology and Biostatistics, Guangxi Medical University, 22 Shuangyong Road, Qingxiu District, Nanning, Guangxi, 530021, China
| | - Xiaomin Wang
- Department of Epidemiology and Biostatistics, Guangxi Medical University, 22 Shuangyong Road, Qingxiu District, Nanning, Guangxi, 530021, China
| | - Hengyan Pei
- Department of Epidemiology and Biostatistics, Guangxi Medical University, 22 Shuangyong Road, Qingxiu District, Nanning, Guangxi, 530021, China
| | - Shiwen Chen
- Department of Epidemiology and Biostatistics, Guangxi Medical University, 22 Shuangyong Road, Qingxiu District, Nanning, Guangxi, 530021, China
| | - Lu Liu
- Department of Epidemiology and Biostatistics, Guangxi Medical University, 22 Shuangyong Road, Qingxiu District, Nanning, Guangxi, 530021, China
| | - Yuxia Wei
- Department of Epidemiology and Biostatistics, Guangxi Medical University, 22 Shuangyong Road, Qingxiu District, Nanning, Guangxi, 530021, China
| | - Litai Qin
- Department of Epidemiology and Biostatistics, Guangxi Medical University, 22 Shuangyong Road, Qingxiu District, Nanning, Guangxi, 530021, China
| | - Yihong Xie
- Department of Epidemiology and Biostatistics, Guangxi Medical University, 22 Shuangyong Road, Qingxiu District, Nanning, Guangxi, 530021, China.
| |
Collapse
|
146
|
Muraoka D, Moi ML, Muto O, Nakatsukasa T, Deng S, Takashima C, Yamaguchi R, Sawada SI, Hayakawa H, Nguyen TTN, Haseda Y, Soga T, Matsushita H, Ikeda H, Akiyoshi K, Harada N. Low-frequency CD8 + T cells induced by SIGN-R1 + macrophage-targeted vaccine confer SARS-CoV-2 clearance in mice. NPJ Vaccines 2024; 9:173. [PMID: 39294173 PMCID: PMC11411095 DOI: 10.1038/s41541-024-00961-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/01/2024] [Indexed: 09/20/2024] Open
Abstract
Vaccine-induced T cells and neutralizing antibodies are essential for protection against SARS-CoV-2. Previously, we demonstrated that an antigen delivery system, pullulan nanogel (PNG), delivers vaccine antigen to lymph node medullary macrophages and thereby enhances the induction of specific CD8+ T cells. In this study, we revealed that medullary macrophage-selective delivery by PNG depends on its binding to a C-type lectin SIGN-R1. In a K18-hACE2 mouse model of SARS-CoV-2 infection, vaccination with a PNG-encapsulated receptor-binding domain of spike protein decreased the viral load and prolonged the survival in the CD8+ T cell- and B cell-dependent manners. T cell receptor repertoire analysis revealed that although the vaccine induced T cells at various frequencies, low-frequency specific T cells mainly promoted virus clearance. Thus, the induction of specific CD8+ T cells that respond quickly to viral infection, even at low frequencies, is important for vaccine efficacy and can be achieved by SIGN-R1+ medullary macrophage-targeted antigen delivery.
Collapse
Affiliation(s)
- Daisuke Muraoka
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan.
| | - Meng Ling Moi
- School of International Health, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.
| | - Osamu Muto
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cancer Informatics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takaaki Nakatsukasa
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Situo Deng
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Chieko Takashima
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Rui Yamaguchi
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cancer Informatics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shin-Ichi Sawada
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, Japan
| | - Haruka Hayakawa
- School of International Health, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | | | | | | | - Hirokazu Matsushita
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hiroaki Ikeda
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazunari Akiyoshi
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
147
|
Mena Lora AJ, Burgos R, Huber D, Sanchez L, Ali M, Krill C, Takhsh E, Bleasdale SC. Levees for a hundred-year flood: impact of a syndrome-based antimicrobial stewardship intervention for coronavirus disease 2019 on antimicrobial use and resistance. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2024; 4:e131. [PMID: 39346665 PMCID: PMC11427971 DOI: 10.1017/ash.2024.383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
Coronavirus disease 2019 can be indistinguishable from lower respiratory tract infections (LRTIs) caused by other viral and bacterial agents. This likely contributed to antimicrobial use (AU) and antimicrobial resistance (AMR) during the pandemic. Our antimicrobial stewardship program targeted the selection and duration of therapy for LRTIs and led to a reduction in AU and AMR.
Collapse
Affiliation(s)
- Alfredo J. Mena Lora
- University of Illinois at Chicago, Chicago, IL, USA
- Saint Anthony Hospital, Chicago, IL, USA
| | | | | | | | - Mirza Ali
- Saint Anthony Hospital, Chicago, IL, USA
| | | | | | | |
Collapse
|
148
|
Lin YY, Cho SF, Hsieh YL, Chuang YS, Hsu CE, Liu YC, Sung CC, Huang YH, Ku W, Hsieh MH, Huang YC, Tu HP, Wang CL, Ho CK. Positive vaccine beliefs linked to reduced mental stress in healthcare professionals during COVID-19: a retrospective study. Front Psychiatry 2024; 15:1402194. [PMID: 39359859 PMCID: PMC11445048 DOI: 10.3389/fpsyt.2024.1402194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/20/2024] [Indexed: 10/04/2024] Open
Abstract
Background and aim The COVID-19 pandemic has led to a significant adverse effect on the mental health of healthcare professionals. This study aims to assess the effects of the prolonged pandemic on burnout and mood disorders and to evaluate the influence of positive vaccination beliefs on these factors at a medical center during the extended COVID-19 pandemic. Methods This retrospective study analyzed the results of an online questionnaire survey including burnout status and mood disorders from 2020 to 2022. The factors related to mood moderate/severe disorders and the impact of the positive vaccine belief were also explored. Results The initial analysis revealed that healthcare professionals continued to experience significant levels of personal and work-related burnout, along with mood disorders. However, the scores and the percentage of moderate to severe burnout gradually decreased. Notably, the percentage of individuals with moderate to severe mood disorders also gradually declined (2020: 13.4%, 2021: 12.3%, 2022: 11.1%). The number of participants who need professional interventions decreased from 56.2% in 2020 to 45.9% in 2021, and 46% in 2022. Multivariate analysis revealed a positive vaccine belief was associated with a lower risk of moderate/severe mood disorders, with odd ratios (OR) and 95% confidence intervals (95% CI) of 0.38 (0.28 - 0.52) and 0.41 (0.30 - 0.52) in the 2021 and 2022 cohorts, respectively. Further investigation revealed that age over 50 was linked to a positive vaccine belief in 2021 and 2022. Within the 2022 cohort, working as nurses was identified as the independent factor associated with a less positive belief, with the OR and 95% CI of 0.49 (0.27 - 0.90). Conclusion The findings of the present study suggest burnout and mood disorders are still significant during the pandemic. A positive vaccine belief may mitigate pandemic-related mental distress. Further interventions to enhance the belief combined with other supporting measures are important in a long fight against the pandemic.
Collapse
Affiliation(s)
- Yu-Yin Lin
- Department of Preventive Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Occupational Safety and Health, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Occupational & Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Feng Cho
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ling Hsieh
- Department of Occupational Safety and Health, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yun-Shiuan Chuang
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-En Hsu
- Department of Occupational Safety and Health, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yun-Chen Liu
- Department of Occupational Safety and Health, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Chi Sung
- Department of Occupational Safety and Health, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Hsiu Huang
- Department of Occupational Safety and Health, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen Ku
- Department of Occupational Safety and Health, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meng-Hsuan Hsieh
- Department of Preventive Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Chin Huang
- Department of Occupational & Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Preventive Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Pin Tu
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Ling Wang
- Department of Occupational & Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Kung Ho
- Department of Occupational & Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
149
|
Fernandes E, Silva BMD, Goulart CDL, Valente J, Cubas-Vega N, Sato C, Rezende AG, Almeida TVR, de Amorim RLO, Salinas JL, Monteiro WM, Arêas GPT, Almeida-Val F. Exploring Prehospital Data for Pandemic Preparedness: A Western Brazilian Amazon Case Study on COVID-19. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1229. [PMID: 39338112 PMCID: PMC11431530 DOI: 10.3390/ijerph21091229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND The timely management of rapidly evolving epidemiological scenarios caused by disease outbreaks is crucial to prevent devastating consequences. However, delayed laboratory diagnostics can hamper swift health policy and epidemic response, especially in remote regions such as the western Brazilian Amazon. The aim of the article is to analyze the impact of the COVID-19 pandemic on the volume and characteristics of emergency medical services (EMS) in Manaus, focusing on how the pandemic affected sensitive indicators such as response time and the use of advanced life support ambulances. Additionally, the study seeks to understand how changes in prehospital EMS patterns, triggered by the pandemic, could be utilized as health surveillance tools, enabling a more rapid response in epidemic scenarios. METHODS This retrospective, descriptive study included data from the SAMU (Serviço de Atendimento Móvel de Urgência) medical records between January and June 2020. RESULTS A total of 45,581 calls resulted in mobile units being dispatched during this period. These patients were predominantly male (28,227, 61.9%), with a median age of 47 years (IQR 30-67). The median response time significantly increased during the pandemic, reaching a median of 45.9 min (IQR 30.6-67.7) (p < 0.001). EMS calls were reduced for trauma patients and increased for other medical emergencies, especially respiratory conditions, concomitantly to an escalation in the number of deaths caused by SARS and COVID-19 (p < 0.001). The employment of advanced life support ambulances was higher during the pandemic phase (p = 0.0007). CONCLUSION The COVID-19 pandemic resulted in a temporary disorder in the volume and reason for EMS calls in Manaus. Consequently, sensitive indicators like the response time and the employment of advanced life support ambulances were negatively affected. Sudden prehospital EMS pattern changes could play an important role in health surveillance systems, allowing for earlier establishment of countermeasures in epidemics. The impact of the COVID-19 pandemic on prehospital EMS and its role in health surveillance should be further explored.
Collapse
Affiliation(s)
- Eduardo Fernandes
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-010, Brazil
| | | | - Cássia da Luz Goulart
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus 69040-000, Brazil
| | - Jefferson Valente
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-010, Brazil
| | - Nádia Cubas-Vega
- Universidad Nacional Autónoma de Honduras, Tegucigalpa 11100, Honduras
| | - Camila Sato
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-010, Brazil
- Hospital de Pronto Socorro 28 de Agosto, Manaus 69057-000, Brazil
| | - Anna Gabriela Rezende
- Postgraduate Program in Health Sciences, Universidade Federal do Amazonas, Manaus 69000-000, Brazil
| | | | | | - Jorge Luis Salinas
- Division of Infectious Diseases & Geographic Medicine, Stanford University, Stanford, CA 94305, USA
| | - Wuelton Marcelo Monteiro
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-010, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus 69040-000, Brazil
| | | | - Fernando Almeida-Val
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-010, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus 69040-000, Brazil
- Postgraduate Program in Health Sciences, Universidade Federal do Amazonas, Manaus 69000-000, Brazil
| |
Collapse
|
150
|
Sartingen N, Stürmer V, Kaltenböck M, Müller TG, Schnitzler P, Kreshuk A, Kräusslich HG, Merle U, Mücksch F, Müller B, Pape C, Laketa V. Multiplex Microscopy Assay for Assessment of Therapeutic and Serum Antibodies against Emerging Pathogens. Viruses 2024; 16:1473. [PMID: 39339949 PMCID: PMC11437451 DOI: 10.3390/v16091473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The emergence of novel pathogens, exemplified recently by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlights the need for rapidly deployable and adaptable diagnostic assays to assess their impact on human health and guide public health responses in future pandemics. In this study, we developed an automated multiplex microscopy assay coupled with machine learning-based analysis for antibody detection. To achieve multiplexing and simultaneous detection of multiple viral antigens, we devised a barcoding strategy utilizing a panel of HeLa-based cell lines. Each cell line expressed a distinct viral antigen, along with a fluorescent protein exhibiting a unique subcellular localization pattern for cell classification. Our robust, cell segmentation and classification algorithm, combined with automated image acquisition, ensured compatibility with a high-throughput approach. As a proof of concept, we successfully applied this approach for quantitation of immunoreactivity against different variants of SARS-CoV-2 spike and nucleocapsid proteins in sera of patients or vaccinees, as well as for the study of selective reactivity of monoclonal antibodies. Importantly, our system can be rapidly adapted to accommodate other SARS-CoV-2 variants as well as any antigen of a newly emerging pathogen, thereby representing an important resource in the context of pandemic preparedness.
Collapse
Affiliation(s)
- Nuno Sartingen
- Department of Infectious Diseases, Virology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; (N.S.); (V.S.); (M.K.); (T.G.M.); (P.S.); (H.-G.K.); (F.M.); (B.M.)
| | - Vanessa Stürmer
- Department of Infectious Diseases, Virology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; (N.S.); (V.S.); (M.K.); (T.G.M.); (P.S.); (H.-G.K.); (F.M.); (B.M.)
| | - Matthias Kaltenböck
- Department of Infectious Diseases, Virology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; (N.S.); (V.S.); (M.K.); (T.G.M.); (P.S.); (H.-G.K.); (F.M.); (B.M.)
| | - Thorsten G. Müller
- Department of Infectious Diseases, Virology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; (N.S.); (V.S.); (M.K.); (T.G.M.); (P.S.); (H.-G.K.); (F.M.); (B.M.)
| | - Paul Schnitzler
- Department of Infectious Diseases, Virology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; (N.S.); (V.S.); (M.K.); (T.G.M.); (P.S.); (H.-G.K.); (F.M.); (B.M.)
| | - Anna Kreshuk
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; (N.S.); (V.S.); (M.K.); (T.G.M.); (P.S.); (H.-G.K.); (F.M.); (B.M.)
- German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Frauke Mücksch
- Department of Infectious Diseases, Virology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; (N.S.); (V.S.); (M.K.); (T.G.M.); (P.S.); (H.-G.K.); (F.M.); (B.M.)
| | - Barbara Müller
- Department of Infectious Diseases, Virology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; (N.S.); (V.S.); (M.K.); (T.G.M.); (P.S.); (H.-G.K.); (F.M.); (B.M.)
| | - Constantin Pape
- Institute of Computer Science, Göttingen University, 37073 Göttingen, Germany;
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), Göttingen University, 37073 Göttingen, Germany
| | - Vibor Laketa
- Department of Infectious Diseases, Virology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; (N.S.); (V.S.); (M.K.); (T.G.M.); (P.S.); (H.-G.K.); (F.M.); (B.M.)
- German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|