101
|
Sribnick EA, Popovich PG, Hall MW. Central nervous system injury-induced immune suppression. Neurosurg Focus 2022; 52:E10. [PMID: 35104790 DOI: 10.3171/2021.11.focus21586] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 11/06/2022]
Abstract
Central nervous system trauma is a common cause of morbidity and mortality. Additionally, these injuries frequently occur in younger individuals, leading to lifetime expenses for patients and caregivers and the loss of opportunity for society. Despite this prevalence and multiple attempts to design a neuroprotectant, clinical trials for a pharmacological agent for the treatment of traumatic brain injury (TBI) or spinal cord injury (SCI) have provided disappointing results. Improvements in outcome from these disease processes in the past decades have been largely due to improvements in supportive care. Among the many challenges facing patients and caregivers following neurotrauma, posttraumatic nosocomial infection is a significant and potentially reversible risk factor. Multiple animal and clinical studies have provided evidence of posttraumatic systemic immune suppression, and injuries involving the CNS may be even more prone, leading to a higher risk for in-hospital infections following neurotrauma. Patients who have experienced neurotrauma with nosocomial infection have poorer recovery and higher risks of long-term morbidity and in-hospital mortality than patients without infection. As such, the etiology and reversal of postneurotrauma immune suppression is an important topic. There are multiple possible etiologies for these posttraumatic changes including the release of damage-associated molecular patterns, the activation of immunosuppressive myeloid-derived suppressor cells, and sympathetic nervous system activation. Postinjury systemic immunosuppression, particularly following neurotrauma, provides a challenge for clinicians but also an opportunity for improvement in outcome. In this review, the authors sought to outline the evidence of postinjury systemic immune suppression in both animal models and clinical research of TBI, TBI polytrauma, and SCI.
Collapse
Affiliation(s)
- Eric A Sribnick
- 1Department of Neurosurgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus.,2The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus
| | - Phillip G Popovich
- 3Department of Neuroscience.,4Center for Brain and Spinal Cord Repair.,5Belford Center for Spinal Cord Injury, and.,6Medical Scientist Training Program, The Ohio State University, College of Medicine, Columbus; and
| | - Mark W Hall
- 2The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus.,7Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
102
|
Go YY, Ju WM, Lee CM, Chae SW, Song JJ. Different Transcutaneous Auricular Vagus Nerve Stimulation Parameters Modulate the Anti-Inflammatory Effects on Lipopolysaccharide-Induced Acute Inflammation in Mice. Biomedicines 2022; 10:biomedicines10020247. [PMID: 35203459 PMCID: PMC8869637 DOI: 10.3390/biomedicines10020247] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Vagus nerve stimulation (VNS) is considered a potential method for anti-inflammation due to the involvement of the VN in the cholinergic anti-inflammatory pathway (CAP) formation of a connection between the central nervous system and peripheral immune cells that help relieve inflammation. However, whether a non-invasive transcutaneous auricular VNS (taVNS) modulates the inflammation levels via altering the parameter of taVNS is poorly understood. This study aimed to determine the differential inhibitory effects of taVNS on lipopolysaccharide (LPS)-induced systemic inflammation using electrical stimulation parameters such as pulse frequency and time. The taVNS-promoted CAP activity significantly recovered LPS-induced tissue injuries (lung, spleen, and intestine) and decreased inflammatory cytokine levels and tissue-infiltrated immune cells. Interestingly, the anti-inflammatory capacity of taVNS with 15 Hz was much higher than that of taVNS with 25 Hz. When a cytokine array was used to investigate the changes of inflammation and immune response-related cytokines/chemokines expression in taVNS with 15 Hz or 25 Hz treatment in LPS-induced endotoxemia in mice, most of the expression of cytokines/chemokines associated with pro-inflammation was severely decreased in taVNS with 15 Hz compared to 25 Hz. This study demonstrated that the taVNS parameter could differentially modulate the inflammation levels of animals, suggesting the importance of taVNS parameter selection for use in feasible interventions for acute inflammation treatment.
Collapse
Affiliation(s)
- Yoon-Young Go
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, 80 Guro-dong, Guro-gu, Seoul 08308, Korea; (Y.-Y.G.); (W.-M.J.); (C.-M.L.); (S.-W.C.)
- Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul 08308, Korea
| | - Won-Min Ju
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, 80 Guro-dong, Guro-gu, Seoul 08308, Korea; (Y.-Y.G.); (W.-M.J.); (C.-M.L.); (S.-W.C.)
| | - Chan-Mi Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, 80 Guro-dong, Guro-gu, Seoul 08308, Korea; (Y.-Y.G.); (W.-M.J.); (C.-M.L.); (S.-W.C.)
| | - Sung-Won Chae
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, 80 Guro-dong, Guro-gu, Seoul 08308, Korea; (Y.-Y.G.); (W.-M.J.); (C.-M.L.); (S.-W.C.)
- Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul 08308, Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, 80 Guro-dong, Guro-gu, Seoul 08308, Korea; (Y.-Y.G.); (W.-M.J.); (C.-M.L.); (S.-W.C.)
- Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul 08308, Korea
- Neurive Institute, Neurive Co., Ltd., Seoul 08308, Korea
- Correspondence: or ; Tel.: +82-2-2626-3186; Fax: +82-2-2626-0475
| |
Collapse
|
103
|
Mehranfard D, Speth RC. Cholinergic anti-inflammatory pathway and COVID-19. BIOIMPACTS : BI 2022; 12:171-174. [PMID: 35411295 PMCID: PMC8905591 DOI: 10.34172/bi.2022.23980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/28/2021] [Indexed: 01/09/2023]
Abstract
The cholinergic anti-inflammatory pathway (CAP) first described by Wang et al, 2003 has contemporary interest arising from the COVID-19 pandemic. While tobacco smoking has been considered an aggravating factor in the severity of COVID-19 infections, it has been suggested by some that the nicotine derived from tobacco could lessen the severity of COVID-19 infections. This spotlight briefly describes the CAP and its potential role as a therapeutic target for the treatment of COVID-19 infections using vagus nerve stimulation or selective alpha7 nicotinic acetylcholine receptor agonists.
Collapse
Affiliation(s)
- Danial Mehranfard
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Robert C. Speth
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
- Department of Pharmacology and Physiology, School of Medicine, Georgetown University, Washington, DC, USA
| |
Collapse
|
104
|
Falvey A, Metz CN, Tracey KJ, Pavlov VA. Peripheral nerve stimulation and immunity: the expanding opportunities for providing mechanistic insight and therapeutic intervention. Int Immunol 2022; 34:107-118. [PMID: 34498051 PMCID: PMC8783605 DOI: 10.1093/intimm/dxab068] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/07/2021] [Indexed: 12/29/2022] Open
Abstract
Pre-clinical research advances our understanding of the vagus nerve-mediated regulation of immunity and clinical trials successfully utilize electrical vagus nerve stimulation in the treatment of patients with inflammatory disorders. This symbiotic relationship between pre-clinical and clinical research exploring the vagus nerve-based 'inflammatory reflex' has substantially contributed to establishing the field of bioelectronic medicine. Recent studies identify a crosstalk between the vagus nerve and other neural circuitries in controlling inflammation and delineate new neural immunoregulatory pathways. Here we outline current mechanistic insights into the role of vagal and non-vagal neural pathways in neuro-immune communication and inflammatory regulation. We also provide a timely overview of expanding opportunities for bioelectronic neuromodulation in the treatment of various inflammatory disorders.
Collapse
Affiliation(s)
- Aidan Falvey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Christine N Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Kevin J Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Valentin A Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
105
|
Xiao Y, Tan C, Nie X, Li B, You M, Lan Y, Tang L. Rise in Postprandial GLP-1 Levels After Roux-en-Y Gastric Bypass: Involvement of the Vagus Nerve-Spleen Anti-inflammatory Axis in Type 2 Diabetic Rats. Obes Surg 2022; 32:1077-1085. [PMID: 35044600 DOI: 10.1007/s11695-021-05877-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE The mechanism underlying postprandial glucagon-like peptide-1 (GLP-1) changes after metabolic surgery remains mostly unclarified. This investigation aimed to address whether the vagus nerve-spleen anti-inflammatory axis is involved in the rise in postprandial GLP-1 levels in type 2 diabetes mellitus (T2DM) rats following metabolic surgery. MATERIALS AND METHODS T2DM rat model was established with a high-fat diet and a low dose of streptozotocin and subjected to Roux-en-Y gastric bypass (RYGB) and splenic denervation. A mixed-meal tolerance test for postprandial GLP-1 response was performed. TNF-α in the plasma, spleen, and ileum was measured by ELISA, and alpha 7 nicotinic acetylcholine receptor (α7nAChR) expression in the spleen was analyzed by Western blot. RESULTS Postprandial GLP-1 improvement by RYGB was accompanied by the reduction of TNF-α levels in spleen and ileum and up-regulation of splenic α7nAChR in T2DM rats. Splenic denervation abrogates a rise in postprandial GLP-1 levels in response to the mixed-meal challenge, along with higher TNF-α levels in spleen and ileum and down-regulation of splenicα7nAChR, compared with denervated sham rats. CONCLUSION Our results reveal that the vagus nerve-spleen anti-inflammatory axis mediates the rise of postprandial GLP-1 response after RYGB through lowering TNF-α contents in the intestinal tissue in T2DM rats.
Collapse
Affiliation(s)
- Yan Xiao
- Department of Day Surgery Center, Zhuzhou Central Hospital, Zhuzhou, 412000, China
| | - Chang Tan
- Department of Gynecology, Zhuzhou Central Hospital, Zhuzhou, 412000, China
| | - Xiaoya Nie
- Department of General Medicine, Zhuzhou Central Hospital, No. 116 Changjiang Road, Zhuzhou, 412000, China
| | - Baifeng Li
- Department of Day Surgery Center, Zhuzhou Central Hospital, Zhuzhou, 412000, China
| | - Miao You
- Department of Day Surgery Center, Zhuzhou Central Hospital, Zhuzhou, 412000, China
| | - Yunyun Lan
- Department of Intensive Care Unit, Zhuzhou Central Hospital, No.116 Changjiang Road, Zhuzhou, 412000, China.
| | - Liang Tang
- Department of General Medicine, Zhuzhou Central Hospital, No. 116 Changjiang Road, Zhuzhou, 412000, China.
| |
Collapse
|
106
|
Caravaca AS, Levine YA, Drake A, Eberhardson M, Olofsson PS. Vagus Nerve Stimulation Reduces Indomethacin-Induced Small Bowel Inflammation. Front Neurosci 2022; 15:730407. [PMID: 35095387 PMCID: PMC8789651 DOI: 10.3389/fnins.2021.730407] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
Crohn's disease is a chronic, idiopathic condition characterized by intestinal inflammation and debilitating gastrointestinal symptomatology. Previous studies of inflammatory bowel disease (IBD), primarily in colitis, have shown reduced inflammation after electrical or pharmacological activation of the vagus nerve, but the scope and kinetics of this effect are incompletely understood. To investigate this, we studied the effect of electrical vagus nerve stimulation (VNS) in a rat model of indomethacin-induced small intestinal inflammation. 1 min of VNS significantly reduced small bowel total inflammatory lesion area [(mean ± SEM) sham: 124 ± 14 mm2, VNS: 62 ± 14 mm2, p = 0.002], intestinal peroxidation and chlorination rates, and intestinal and systemic pro-inflammatory cytokine levels as compared with sham-treated animals after 24 h following indomethacin administration. It was not known whether this observed reduction of inflammation after VNS in intestinal inflammation was mediated by direct innervation of the gut or if the signals are relayed through the spleen. To investigate this, we studied the VNS effect on the small bowel lesions of splenectomized rats and splenic nerve stimulation (SNS) in intact rats. We observed that VNS reduced small bowel inflammation also in splenectomized rats but SNS alone failed to significantly reduce small bowel lesion area. Interestingly, VNS significantly reduced small bowel lesion area for 48 h when indomethacin administration was delayed. Thus, 1 min of electrical activation of the vagus nerve reduced indomethacin-induced intestinal lesion area by a spleen-independent mechanism. The surprisingly long-lasting and spleen-independent effect of VNS on the intestinal response to indomethacin challenge has important implications on our understanding of neural control of intestinal inflammation and its potential translation to improved therapies for IBD.
Collapse
Affiliation(s)
- April S. Caravaca
- Laboratory of Immunobiology, Department of Medicine, Karolinska University Hospital, Solna, Sweden
- MedTechLabs, BioClinicum, Stockholm Center for Bioelectronic Medicine, Karolinska University Hospital, Solna, Sweden
- SetPoint Medical, Inc., Valencia, CA, United States
| | - Yaakov A. Levine
- Laboratory of Immunobiology, Department of Medicine, Karolinska University Hospital, Solna, Sweden
- MedTechLabs, BioClinicum, Stockholm Center for Bioelectronic Medicine, Karolinska University Hospital, Solna, Sweden
- SetPoint Medical, Inc., Valencia, CA, United States
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, New York, NY, United States
| | - Anna Drake
- SetPoint Medical, Inc., Valencia, CA, United States
| | - Michael Eberhardson
- Laboratory of Immunobiology, Department of Medicine, Karolinska University Hospital, Solna, Sweden
- MedTechLabs, BioClinicum, Stockholm Center for Bioelectronic Medicine, Karolinska University Hospital, Solna, Sweden
- Department of Gastroenterology and Hepatology, University Hospital of Linköping, Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Peder S. Olofsson
- Laboratory of Immunobiology, Department of Medicine, Karolinska University Hospital, Solna, Sweden
- MedTechLabs, BioClinicum, Stockholm Center for Bioelectronic Medicine, Karolinska University Hospital, Solna, Sweden
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, New York, NY, United States
| |
Collapse
|
107
|
Alexandre YO, Schienstock D, Lee HJ, Gandolfo LC, Williams CG, Devi S, Pal B, Groom JR, Cao W, Christo SN, Gordon CL, Starkey G, D'Costa R, Mackay LK, Haque A, Ludewig B, Belz GT, Mueller SN. A diverse fibroblastic stromal cell landscape in the spleen directs tissue homeostasis and immunity. Sci Immunol 2022; 7:eabj0641. [PMID: 34995096 DOI: 10.1126/sciimmunol.abj0641] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yannick O Alexandre
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Dominik Schienstock
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Hyun Jae Lee
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Luke C Gandolfo
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC, Australia
| | - Cameron G Williams
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Sapna Devi
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Bhupinder Pal
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Joanna R Groom
- Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Wang Cao
- Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Susan N Christo
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Claire L Gordon
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Department of Infectious Diseases, Austin Health, Melbourne, VIC, Australia
| | - Graham Starkey
- Liver and Intestinal Transplant Unit, Austin Health, Melbourne, VIC, Australia.,Department of Surgery, University of Melbourne, Austin Health, Melbourne, VIC, Australia
| | - Rohit D'Costa
- DonateLife Victoria, Carlton, VIC, Australia.,Department of Intensive Care Medicine, Melbourne Health, Melbourne, VIC, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ashraful Haque
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
108
|
Somatosensory and autonomic neuronal regulation of the immune response. Nat Rev Neurosci 2022; 23:157-171. [PMID: 34997214 DOI: 10.1038/s41583-021-00555-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/11/2022]
Abstract
Bidirectional communication between the peripheral nervous system (PNS) and the immune system is a crucial part of an effective but balanced mammalian response to invading pathogens, tissue damage and inflammatory stimuli. Here, we review how somatosensory and autonomic neurons regulate immune cellular responses at barrier tissues and in peripheral organs. Immune cells express receptors for neuronal mediators, including neuropeptides and neurotransmitters, allowing neurons to influence their function in acute and chronic inflammatory diseases. Distinct subsets of peripheral sensory, sympathetic, parasympathetic and enteric neurons are able to signal to innate and adaptive immune cells to modulate their cellular functions. In this Review, we highlight recent studies defining the molecular mechanisms by which neuroimmune signalling mediates tissue homeostasis and pathology. Understanding the neural circuitry that regulates immune responses can offer novel targets for the treatment of a wide array of diseases.
Collapse
|
109
|
Beopoulos A, Gea M, Fasano A, Iris F. Autonomic Nervous System Neuroanatomical Alterations Could Provoke and Maintain Gastrointestinal Dysbiosis in Autism Spectrum Disorder (ASD): A Novel Microbiome-Host Interaction Mechanistic Hypothesis. Nutrients 2021; 14:65. [PMID: 35010940 PMCID: PMC8746684 DOI: 10.3390/nu14010065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Dysbiosis secondary to environmental factors, including dietary patterns, antibiotics use, pollution exposure, and other lifestyle factors, has been associated to many non-infective chronic inflammatory diseases. Autism spectrum disorder (ASD) is related to maternal inflammation, although there is no conclusive evidence that affected individuals suffer from systemic low-grade inflammation as in many psychological and psychiatric diseases. However, neuro-inflammation and neuro-immune abnormalities are observed within ASD-affected individuals. Rebalancing human gut microbiota to treat disease has been widely investigated with inconclusive and contradictory findings. These observations strongly suggest that the forms of dysbiosis encountered in ASD-affected individuals could also originate from autonomic nervous system (ANS) functioning abnormalities, a common neuro-anatomical alteration underlying ASD. According to this hypothesis, overactivation of the sympathetic branch of the ANS, due to the fact of an ASD-specific parasympathetic activity deficit, induces deregulation of the gut-brain axis, attenuating intestinal immune and osmotic homeostasis. This sets-up a dysbiotic state, that gives rise to immune and osmotic dysregulation, maintaining dysbiosis in a vicious cycle. Here, we explore the mechanisms whereby ANS imbalances could lead to alterations in intestinal microbiome-host interactions that may contribute to the severity of ASD by maintaining the brain-gut axis pathways in a dysregulated state.
Collapse
Affiliation(s)
- Athanasios Beopoulos
- Bio-Modeling Systems, Tour CIT, 3 Rue de l’Arrivée, 75015 Paris, France; (A.B.); (M.G.)
| | - Manuel Gea
- Bio-Modeling Systems, Tour CIT, 3 Rue de l’Arrivée, 75015 Paris, France; (A.B.); (M.G.)
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Center for Celiac Research and Treatment, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Boston, MA 022114, USA;
| | - François Iris
- Bio-Modeling Systems, Tour CIT, 3 Rue de l’Arrivée, 75015 Paris, France; (A.B.); (M.G.)
| |
Collapse
|
110
|
Herrlich A. Interorgan crosstalk mechanisms in disease: the case of acute kidney injury-induced remote lung injury. FEBS Lett 2021; 596:620-637. [PMID: 34932216 DOI: 10.1002/1873-3468.14262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/07/2022]
Abstract
Homeostasis and health of multicellular organisms with multiple organs depends on interorgan communication. Tissue injury in one organ disturbs this homeostasis and can lead to disease in multiple organs, or multiorgan failure. Many routes of interorgan crosstalk during homeostasis are relatively well known, but interorgan crosstalk in disease still lacks understanding. In particular, how tissue injury in one organ can drive injury at remote sites and trigger multiorgan failure with high mortality is poorly understood. As examples, acute kidney injury can trigger acute lung injury and cardiovascular dysfunction; pneumonia, sepsis or liver failure conversely can cause kidney failure; lung transplantation very frequently triggers acute kidney injury. Mechanistically, interorgan crosstalk after tissue injury could involve soluble mediators and their target receptors, cellular mediators, in particular immune cells, as well as newly identified neuro-immune connections. In this review, I will focus the discussion of deleterious interorgan crosstalk and its mechanistic concepts on one example, acute kidney injury-induced remote lung injury.
Collapse
Affiliation(s)
- Andreas Herrlich
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, MO, USA
| |
Collapse
|
111
|
Traumatic brain injury and hemorrhage in a juvenile rat model of polytrauma leads to immunosuppression and splenic alterations. J Neuroimmunol 2021; 361:577723. [PMID: 34619426 DOI: 10.1016/j.jneuroim.2021.577723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/18/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a common cause of morbidity and mortality. We have previously shown that TBI with a concurrent extra-cranial injury reliably leads to post-injury suppression of the innate immune system, but the impact of this injury on the adaptive immune system is unknown. We present data showing that combined injury reduced immune response as assayed in both blood and spleen samples and that these changes parallel apoptosis in the spleen. To assess the clinical relevance of these changes, we examined lungs for spontaneous bacterial colonization. METHODS For these studies, prepubescent (28 day old) rats were injured using a controlled cortical impact model and then 25% blood volume removal by arteriotomy, and injured animals were compared with sham injured animals. Blood and spleen samples at post-injury day 1 were incubated with or without immunostimulant and examined for IFN-γ production using an Eli-Spot assay. Spleen samples were also examined for apoptosis using Annexin V staining, and lungs were harvested and plated on blood agar to examine for spontaneous bacterial colonization. RESULTS Stimulations of whole blood and spleen samples with phorbol 12-myristate 13-acetate/ionomycin (PMA/I) at post-injury day 1 were associated with significant decreases in IFN-γ-positive cells/million in injured animals. Stimulation of whole blood with either PMA/I or pokeweed mitogen led to reduced tumor necrosis factor alpha production. Spleen from injured animals showed a marked increase in apoptosis. Lung samples showed a 300% increase in colonies per plate in injured animals. CONCLUSIONS These data suggest that the combined injury can lead to adaptive immunosuppression, and our findings further suggest a potential role for the spleen in altering leukocyte function following injury.
Collapse
|
112
|
Goldstein DS. Stress and the "extended" autonomic system. Auton Neurosci 2021; 236:102889. [PMID: 34656967 PMCID: PMC10699409 DOI: 10.1016/j.autneu.2021.102889] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 12/22/2022]
Abstract
This review updates three key concepts of autonomic neuroscience-stress, the autonomic nervous system (ANS), and homeostasis. Hans Selye popularized stress as a scientific idea. He defined stress variously as a stereotyped response pattern, a state that evokes this pattern, or a stimulus that evokes the state. According to the "homeostat" theory stress is a condition where a comparator senses a discrepancy between sensed afferent input and a response algorithm, the integrated error signal eliciting specific patterns of altered effector outflows. Scientific advances since Langley's definition of the ANS have incited the proposal here of the "extended autonomic system," or EAS, for three reasons. (1) Several neuroendocrine systems are bound inextricably to Langley's ANS. The first to be described, by Cannon in the early 1900s, involves the hormone adrenaline, the main effector chemical of the sympathetic adrenergic system. Other neuroendocrine systems are the hypothalamic-pituitary-adrenocortical system, the arginine vasopressin system, and the renin-angiotensin-aldosterone system. (2) An evolving body of research links the ANS complexly with inflammatory/immune systems, including vagal anti-inflammatory and catecholamine-related inflammasomal components. (3) A hierarchical network of brain centers (the central autonomic network, CAN) regulates ANS outflows. Embedded within the CAN is the central stress system conceptualized by Chrousos and Gold. According to the allostasis concept, homeostatic input-output curves can be altered in an anticipatory, feed-forward manner; and prolonged or inappropriate allostatic adjustments increase wear-and-tear (allostatic load), resulting in chronic, stress-related, multi-system disorders. This review concludes with sections on clinical and therapeutic implications of the updated concepts offered here.
Collapse
Affiliation(s)
- David S Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Autonomic Medicine Section, CNP/DIR/NINDS/NIH, 9000 Rockville Pike MSC-1620, Building 10 Room 8N260, Bethesda, MD 20892-1620, USA..
| |
Collapse
|
113
|
Diedrich A, Urechie V, Shiffer D, Rigo S, Minonzio M, Cairo B, Smith EC, Okamoto LE, Barbic F, Bisoglio A, Porta A, Biaggioni I, Furlan R. Transdermal auricular vagus stimulation for the treatment of postural tachycardia syndrome. Auton Neurosci 2021; 236:102886. [PMID: 34634682 PMCID: PMC8939715 DOI: 10.1016/j.autneu.2021.102886] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/26/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023]
Abstract
Postural Tachycardia Syndrome (POTS) is a chronic disorder characterized by symptoms of orthostatic intolerance such as fatigue, lightheadedness, dizziness, palpitations, dyspnea, chest discomfort and remarkable tachycardia upon standing. Non-invasive transdermal vagal stimulators have been applied for the treatment of epilepsy, anxiety, depression, headache, and chronic pain syndromes. Anti-inflammatory and immunomodulating effects after transdermal vagal stimulation raised interest for applications in other diseases. Patients with sympathetic overactivity, reduced cardiac vagal drive and presence of systemic inflammation like POTS may benefit from tVNS. This article will address crucial methodological aspects of tVNS and provide preliminary results of its acute and chronic use in POTS, with regards to its potential effectiveness on autonomic symptoms reduction and heart rate modulation.
Collapse
Affiliation(s)
- André Diedrich
- Vanderbilt Autonomic Dysfunction Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Vasile Urechie
- Vanderbilt Autonomic Dysfunction Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dana Shiffer
- Department of Biomedical Sciences, Humanitas University, Internal Medicine, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Stefano Rigo
- Humanitas University School of Medicine, Rozzano, Italy; Virgilio Research Project, Pieve Emanuele, Milan, Italy
| | - Maura Minonzio
- Department of Biomedical Sciences, Humanitas University, Internal Medicine, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Beatrice Cairo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy; Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Emily C Smith
- Vanderbilt Autonomic Dysfunction Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Luis E Okamoto
- Vanderbilt Autonomic Dysfunction Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Franca Barbic
- Department of Biomedical Sciences, Humanitas University, Internal Medicine, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy; Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy
| | - Andrea Bisoglio
- Humanitas University School of Medicine, Rozzano, Italy; Virgilio Research Project, Pieve Emanuele, Milan, Italy
| | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy; Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Italo Biaggioni
- Vanderbilt Autonomic Dysfunction Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Raffaello Furlan
- Department of Biomedical Sciences, Humanitas University, Internal Medicine, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy; Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy
| |
Collapse
|
114
|
Reijmen E, De Mey S, Van Damme H, De Ridder K, Gevaert T, De Blay E, Bouwens L, Collen C, Decoster L, De Couck M, Laoui D, De Grève J, De Ridder M, Gidron Y, Goyvaerts C. Transcutaneous Vagal Nerve Stimulation Alone or in Combination With Radiotherapy Stimulates Lung Tumor Infiltrating Lymphocytes But Fails to Suppress Tumor Growth. Front Immunol 2021; 12:772555. [PMID: 34925341 PMCID: PMC8671299 DOI: 10.3389/fimmu.2021.772555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022] Open
Abstract
The combination of radiotherapy (RT) with immunotherapy represents a promising treatment modality for non-small cell lung cancer (NSCLC) patients. As only a minority of patients shows a persistent response today, a spacious optimization window remains to be explored. Previously we showed that fractionated RT can induce a local immunosuppressive profile. Based on the evolving concept of an immunomodulatory role for vagal nerve stimulation (VNS), we tested its therapeutic and immunological effects alone and in combination with fractionated RT in a preclinical-translational study. Lewis lung carcinoma-bearing C57Bl/6 mice were treated with VNS, fractionated RT or the combination while a patient cohort with locally advanced NSCLC receiving concurrent radiochemotherapy (ccRTCT) was enrolled in a clinical trial to receive either sham or effective VNS daily during their 6 weeks of ccRTCT treatment. Preclinically, VNS alone or with RT showed no therapeutic effect yet VNS alone significantly enhanced the activation profile of intratumoral CD8+ T cells by upregulating their IFN-γ and CD137 expression. In the periphery, VNS reduced the RT-mediated rise of splenic, but not blood-derived, regulatory T cells (Treg) and monocytes. In accordance, the serological levels of protumoral CXCL5 next to two Treg-attracting chemokines CCL1 and CCL22 were reduced upon VNS monotherapy. In line with our preclinical findings on the lack of immunological changes in blood circulating immune cells upon VNS, immune monitoring of the peripheral blood of VNS treated NSCLC patients (n=7) did not show any significant changes compared to ccRTCT alone. As our preclinical data do suggest that VNS intensifies the stimulatory profile of the tumor infiltrated CD8+ T cells, this favors further research into non-invasive VNS to optimize current response rates to RT-immunotherapy in lung cancer patients.
Collapse
MESH Headings
- Aged
- Animals
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/radiotherapy
- Carcinoma, Lewis Lung/therapy
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/radiotherapy
- Carcinoma, Non-Small-Cell Lung/therapy
- Combined Modality Therapy
- Female
- Humans
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Lung Neoplasms/radiotherapy
- Lung Neoplasms/therapy
- Lymphocytes, Tumor-Infiltrating/immunology
- Male
- Mice, Inbred C57BL
- Middle Aged
- Tumor Burden
- Vagus Nerve Stimulation
- Mice
Collapse
Affiliation(s)
- Eva Reijmen
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sven De Mey
- Department of Radiotherapy, Oncology Centre University Hospital Brussels (Universitair Ziekenhuis (UZ) Brussel), Brussels, Belgium
| | - Helena Van Damme
- Myeloid Cell Immunology Lab, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kirsten De Ridder
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thierry Gevaert
- Department of Radiotherapy, Oncology Centre University Hospital Brussels (Universitair Ziekenhuis (UZ) Brussel), Brussels, Belgium
| | - Emmy De Blay
- Cell Differentiation Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc Bouwens
- Cell Differentiation Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Christine Collen
- Department of Radiotherapy, Oncology Centre University Hospital Brussels (Universitair Ziekenhuis (UZ) Brussel), Brussels, Belgium
| | - Lore Decoster
- Laboratory of Medical and Molecular Oncology (LMMO), Department of Medical Oncology, Oncologisch Centrum, Universitair Ziekenhuis (UZ) Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Marijke De Couck
- Department of Public Health, Mental Health and Wellbeing Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
- Faculty of Health Care, University College Odisee, Aalst, Belgium
| | - Damya Laoui
- Myeloid Cell Immunology Lab, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jacques De Grève
- Laboratory of Medical and Molecular Oncology (LMMO), Department of Medical Oncology, Oncologisch Centrum, Universitair Ziekenhuis (UZ) Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, Oncology Centre University Hospital Brussels (Universitair Ziekenhuis (UZ) Brussel), Brussels, Belgium
| | - Yori Gidron
- Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Cleo Goyvaerts
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
115
|
Cleypool CGJ, Brinkman DJ, Mackaaij C, Nikkels PGJ, Nolte MA, Luyer MD, de Jonge WJ, Bleys RLAW. Age-Related Variation in Sympathetic Nerve Distribution in the Human Spleen. Front Neurosci 2021; 15:726825. [PMID: 34720859 PMCID: PMC8552063 DOI: 10.3389/fnins.2021.726825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction: The cholinergic anti-inflammatory pathway (CAIP) has been proposed as an efferent neural pathway dampening the systemic inflammatory response via the spleen. The CAIP activates the splenic neural plexus and a subsequent series of intrasplenic events, which at least require a close association between sympathetic nerves and T cells. Knowledge on this pathway has mostly been derived from rodent studies and only scarce information is available on the innervation of the human spleen. This study aimed to investigate the sympathetic innervation of different structures of the human spleen, the topographical association of nerves with T cells and age-related variations in nerve distribution. Materials and Methods: Spleen samples were retrieved from a diagnostic archive and were allocated to three age groups; neonates, 10–25 and 25–70 years of age. Sympathetic nerves and T cells were identified by immunohistochemistry for tyrosine hydroxylase (TH) and the membrane marker CD3, respectively. The overall presence of sympathetic nerves and T cells was semi-automatically quantified and expressed as total area percentage. A predefined scoring system was used to analyze the distribution of nerves within different splenic structures. Results: Sympathetic nerves were observed in all spleens and their number appeared to slightly increase from birth to adulthood and to decrease afterward. Irrespective to age, more than halve of the periarteriolar lymphatic sheaths (PALSs) contained sympathetic nerves in close association with T cells. Furthermore, discrete sympathetic nerves were observed in the capsule, trabeculae and red pulp and comparable to the total amount of sympathetic nerves, showed a tendency to decrease with age. No correlation was found between the number of T cells and sympathetic nerves. Conclusion: The presence of discrete sympathetic nerves in the splenic parenchyma, capsule and trabecular of human spleens could suggest a role in functions other than vasoregulation. In the PALS, sympathetic nerves were observed to be in proximity to T cells and is suggestive for the existence of the CAIP in humans. Since sympathetic nerve distribution shows interspecies and age-related variation, and our general understanding of the relative and spatial contribution of splenic innervation in immune regulation is incomplete, it remains difficult to estimate the anti-inflammatory potential of targeting splenic nerves in patients.
Collapse
Affiliation(s)
- Cindy G J Cleypool
- Division of Surgical Specialties, Department of Anatomy, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - David J Brinkman
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Surgery, Catharina Hospital, Eindhoven, Netherlands
| | - Claire Mackaaij
- Division of Surgical Specialties, Department of Anatomy, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Peter G J Nikkels
- Division of Laboratories, Pharmacy, Biomedical Genetics and Pathology, Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Martijn A Nolte
- Department of Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Misha D Luyer
- Department of Surgery, Catharina Hospital, Eindhoven, Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Ronald L A W Bleys
- Division of Surgical Specialties, Department of Anatomy, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
116
|
Chen P, Wang Q, Wan X, Yang M, Liu C, Xu C, Hu B, Feng J, Luo Z. Wireless electrical stimulation of the vagus nerves by ultrasound-responsive programmable hydrogel nanogenerators for anti-inflammatory therapy in sepsis. NANO ENERGY 2021; 89:106327. [DOI: 10.1016/j.nanoen.2021.106327] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
|
117
|
Tarnawski L, Olofsson PS. Inflammation neuroscience: neuro-immune crosstalk and interfaces. Clin Transl Immunology 2021; 10:e1352. [PMID: 34754449 PMCID: PMC8558388 DOI: 10.1002/cti2.1352] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/01/2021] [Accepted: 10/10/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a key process in antimicrobial defence and tissue repair, and failure to properly regulate inflammation can result in tissue damage and death. Neural circuits play important roles throughout the course of an inflammatory response, and the neurophysiological and molecular mechanisms are only partly understood. Here, we review key evidence for the neural regulation of inflammation and discuss emerging technologies to further map and harness this neurophysiology, a cornerstone in the rapidly evolving field of inflammation neuroscience.
Collapse
Affiliation(s)
- Laura Tarnawski
- Laboratory of ImmunobiologyDivision of Cardiovascular MedicineDepartment of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Stockholm Center for Bioelectronic MedicineMedTechLabsBioclinicumKarolinska University HospitalSolnaSweden
| | - Peder S Olofsson
- Laboratory of ImmunobiologyDivision of Cardiovascular MedicineDepartment of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Stockholm Center for Bioelectronic MedicineMedTechLabsBioclinicumKarolinska University HospitalSolnaSweden
- Institute of Bioelectronic MedicineFeinstein Institutes for Medical ResearchManhassetNYUSA
| |
Collapse
|
118
|
Huang Z, Tang J, Ji K. Exercise prevents HFD-induced insulin resistance risk: involvement of TNF-α level regulated by vagus nerve-related anti-inflammatory pathway in the spleen. Diabetol Metab Syndr 2021; 13:124. [PMID: 34717724 PMCID: PMC8556891 DOI: 10.1186/s13098-021-00712-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Regular physical exercise can improve insulin resistance in insulin target tissues. However, the mechanisms about the beneficial effect of exercise on insulin resistance are not yet fully resolved. This study was carried out to address whether insulin resistance improvement by exercise is involved in an anti-inflammatory pathway in the spleen in high-fat diet (HFD) feeding mice. METHODS Male C57Bl/6J mice with or without subdiaphragmatic vagotomy (sVNS) were subjected to medium-intensity treadmill exercise during HFD feeding. Glucose tolerance test and insulin tolerance test were detected, and spleen acetylcholine level, choline acetyltransferase activity (ChAT), protein kinase C (PKC) and tumor necrosis factor-alpha (TNF-α) were assayed. RESULTS We found that exercise significantly improves HFD-induced glucose intolerance and insulin resistance, along with an increase in acetylcholine level, ChAT activity, and PKC activity, and decrease in TNF-α level in the system and the spleen from HFD-fed mice. However, sVNS abolished the beneficial effect of exercise on glucose intolerance and insulin resistance, decreased acetylcholine level, ChAT activity, and PKC activity, and increase TNF-α level of the spleen in HFD-mice exercise intervention. CONCLUSIONS These data reveal that the prevention of HFD-associated insulin resistance by exercise intervention involves reducing splenic TNF-α level, which is mediated by cholinergic anti-inflammatory activity via influencing PKC activity, ChAT activity, and acetylcholine concentration in mice spleen.
Collapse
Affiliation(s)
- Zhengxi Huang
- Department of Physical Education, Wuhan College, No 333, Huangjiahu Road, Wuhan, 430212, Hubei Province, China
| | - Jialing Tang
- Department of Physical Education, Central South University, Changsha, 410083, Hunan Province, China.
| | - Kai Ji
- College of Physical Education, Wuhan Sports University, Wuhan, 430212, Hubei Province, China.
| |
Collapse
|
119
|
Kocaturk M, Yilmaz Z, Cansev M, Ozarda Y, Ceron JJ, Buturak A, Ulus IH. Choline or CDP-choline restores hypotension and improves myocardial and respiratory functions in dogs with experimentally - Induced endotoxic shock. Res Vet Sci 2021; 141:116-128. [PMID: 34715589 DOI: 10.1016/j.rvsc.2021.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 06/10/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022]
Abstract
Endotoxin shock is associated with severe impairments in cardiovascular and respiratory functions. We showed previously that choline or cytidine-5'-diphosphocholine (CDP-choline) provides beneficial effects in experimental endotoxin shock in dogs. The objective of the present study was to determine the effects of choline or CDP-choline on endotoxin-induced cardiovascular and respiratory dysfunctions. Dogs were treated intravenously (i.v.) with saline or endotoxin (LPS, 0.1 mg/kg) 5 min before i.v. infusion of saline, choline (20 mg/kg) or CDP-choline (70 mg/kg). Blood pressure, cardiac rate, myocardial and left ventricular functions, respiratory rate, blood gases, serum electrolytes and cardiac injury markers were determined before and at 0.5-48 h after endotoxin. Plasma tumor necrosis factor alpha (TNF-α), high mobility group box-1 (HMGB1), catecholamine and nitric oxide (NO) levels were measured 2 h and 24 h after the treatments. Endotoxin caused immediate and sustained reductions in blood pressure, cardiac output, pO2 and pH; changes in left ventricular functions, structure and volume parameters; and elevations in heart rate, respiratory rate, pCO2 and serum electrolytes (Na, K, Cl, Ca and P). Endotoxin also resulted in elevations in blood levels of cardiac injury markers, TNF-α, HMGB1, catecholamine and NO. In choline- or CDP-choline-treated dogs, all endotoxin effects were much smaller in magnitude and shorter in duration than observed values in controls. These data show that treatment with choline or CDP-choline improves functions of cardiovascular and respiratory systems in experimental endotoxemia and suggest that they may be useful in treatment of endotoxin shock in clinical setting.
Collapse
Affiliation(s)
- Meric Kocaturk
- Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, 16059 Bursa, Turkey.
| | - Zeki Yilmaz
- Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, 16059 Bursa, Turkey.
| | - Mehmet Cansev
- Department of Pharmacology, Bursa Uludag University School of Medicine, Bursa, Turkey.
| | - Yesim Ozarda
- Department of Medical Biochemistry, Istanbul Health and Technology University, School of Medicine, Istanbul, Turkey.
| | - Jose Joaquin Ceron
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia 30100, Spain.
| | - Ali Buturak
- Liv Hospital Vadi Istanbul, Cardiology Clinic, Istanbul, Turkey
| | - Ismail H Ulus
- Acibadem Mehmet Ali Aydinlar University Medical School, Department of Pharmacology, Istanbul, Turkey.
| |
Collapse
|
120
|
Carnevale L, Perrotta M, Lembo G. A Focused Review of Neural Recording and Stimulation Techniques With Immune-Modulatory Targets. Front Immunol 2021; 12:689344. [PMID: 34646261 PMCID: PMC8502970 DOI: 10.3389/fimmu.2021.689344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
The complex interactions established between the nervous and immune systems have been investigated for a long time. With the advent of small and portable devices to record and stimulate nerve activity, researchers from many fields began to be interested in how nervous activity can elicit immune responses and whether this activity can be manipulated to trigger specific immune responses. Pioneering works demonstrated the existence of a cholinergic inflammatory reflex, capable of controlling the systemic inflammatory response through a vagus nerve-mediated modulation of the spleen. This work inspired many different areas of technological and conceptual advancement, which are here reviewed to provide a concise reference for the main works expanding the knowledge on vagus nerve immune-modulatory capabilities. In these works the enabling technologies of peripheral nervous activity recordings were implemented and embody the current efforts aimed at controlling neural activity with modulating functions in immune response, both in experimental and clinical contexts.
Collapse
Affiliation(s)
- Lorenzo Carnevale
- Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Department of Angiocardioneurology and Translational Medicine, Pozzilli (IS), Italy
| | - Marialuisa Perrotta
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Giuseppe Lembo
- Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Department of Angiocardioneurology and Translational Medicine, Pozzilli (IS), Italy.,Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
121
|
Muñoz AI, Vallejo-Castillo L, Fragozo A, Vázquez-Leyva S, Pavón L, Pérez-Sánchez G, Soria-Castro R, Mellado-Sánchez G, Cobos-Marin L, Pérez-Tapia SM. Increased survival in puppies affected by Canine Parvovirus type II using an immunomodulator as a therapeutic aid. Sci Rep 2021; 11:19864. [PMID: 34615970 PMCID: PMC8494837 DOI: 10.1038/s41598-021-99357-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/23/2021] [Indexed: 01/14/2023] Open
Abstract
Canine parvovirus type II (CPV-2) infection induces canine parvoviral enteritis (CPE), which in turn promotes sepsis and systemic inflammatory response syndrome (SIRS). Mortality in this disease is usually registered within 48-72 h post-hospitalization, the critical period of the illness. It has been recently described that the use of an immunomodulator, whose major component is monomeric ubiquitin (mUb) without the last two glycine residues (Ub∆GG), in pediatric human patients with sepsis augments survival. It is known that CXCR4 is the cell receptor of extracellular ubiquitin in humans. This work aimed to explore the effect of one immunomodulator (human Dialyzable Leukocyte Extract-hDLE) as a therapeutic auxiliary in puppies with sepsis and SIRS induced by CPE. We studied two groups of puppies with CPV-2 infection confirmed by polymerase chain reaction. The first group received conventional treatment (CT) and vehicle (V), while the second group received CT plus the immunomodulator (I). We assessed both groups' survival, clinical condition, number of erythrocytes, neutrophils, and lymphocytes during the hospitalization period. In addition, hematocrit, hemoglobin, plasma proteins and cortisol values, as well as norepinephrine/epinephrine and serotonin concentration were determined. Puppies treated with CT + I showed 81% survival, mild clinical signs, and a significant decrease in circulating neutrophils and lymphocytes in the critical period of the treatment. In contrast, the CT + V group presented a survival of 42%, severe clinical status, and no improvement of the parameters evaluated in the critical period of the disease. We determined in silico that human Ub∆GG can bind to dog CXCR4. In conclusion, the administration of a human immunomodulator (0.5 mg/day × 5 days) to puppies with CPE under six months of age reduces the severity of clinical signs, increases survival, and modulates inflammatory cell parameters. Further studies are necessary to take full advantage of these clinical findings, which might be mediated by the human Ub∆GG to canine CXCR4 interaction.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Biomarkers
- Dog Diseases/drug therapy
- Dog Diseases/mortality
- Dog Diseases/virology
- Dogs
- Drug Synergism
- Host-Pathogen Interactions
- Humans
- Immunologic Factors/pharmacology
- Immunologic Factors/therapeutic use
- Parvoviridae Infections/veterinary
- Parvovirus, Canine/physiology
- Prognosis
- Protein Binding
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/chemistry
- Receptors, CXCR4/metabolism
- Structure-Activity Relationship
- Treatment Outcome
Collapse
Affiliation(s)
- Adriana I Muñoz
- Departamento de Inmunología. Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, 11340, CDMX, México
| | - Luis Vallejo-Castillo
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México
| | - Ana Fragozo
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México
| | - Said Vázquez-Leyva
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigación en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Alcaldía Tlalpan, 14370, CDMX, México.
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Dirección de Investigación en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Alcaldía Tlalpan, 14370, CDMX, México
| | - Rodolfo Soria-Castro
- Departamento de Inmunología. Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, 11340, CDMX, México
| | - Gabriela Mellado-Sánchez
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México
| | - Laura Cobos-Marin
- Laboratorio de Virología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México, 04510, CDMX, México
| | - Sonia Mayra Pérez-Tapia
- Departamento de Inmunología. Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, 11340, CDMX, México.
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México.
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), ENCB, Instituto Politécnico Nacional (IPN), Alcaldía Miguel Hidalgo, 11340, CDMX, México.
| |
Collapse
|
122
|
Gonzalez-Gonzalez MA, Bendale GS, Wang K, Wallace GG, Romero-Ortega M. Platinized graphene fiber electrodes uncover direct spleen-vagus communication. Commun Biol 2021; 4:1097. [PMID: 34535751 PMCID: PMC8448843 DOI: 10.1038/s42003-021-02628-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/30/2021] [Indexed: 11/21/2022] Open
Abstract
Neural interfacing nerve fascicles along the splenic neurovascular plexus (SNVP) is needed to better understand the spleen physiology, and for selective neuromodulation of this major organ. However, their small size and anatomical location have proven to be a significant challenge. Here, we use a reduced liquid crystalline graphene oxide (rGO) fiber coated with platinum (Pt) as a super-flexible suture-like electrode to interface multiple SNVP. The Pt-rGO fibers work as a handover knot electrodes over the small SNVP, allowing sensitive recording from four splenic nerve terminal branches (SN 1–4), to uncover differential activity and axon composition among them. Here, the asymmetric defasciculation of the SN branches is revealed by electron microscopy, and the functional compartmentalization in spleen innervation is evidenced in response to hypoxia and pharmacological modulation of mean arterial pressure. We demonstrate that electrical stimulation of cervical and sub-diaphragmatic vagus nerve (VN), evokes activity in a subset of SN terminal branches, providing evidence for a direct VN control over the spleen. This notion is supported by adenoviral tract-tracing of SN branches, revealing an unconventional direct brain-spleen projection. High-performance Pt-rGO fiber electrodes, may be used for the fine neural modulation of other small neurovascular plexus at the point of entry of major organs as a bioelectronic medical alternative. Gonzalez-Gonzalez et al. use high-performance platinized graphene fiber electrodes to interface individual neurovascular plexus that innervate the spleen. Their approach provides evidence for distinct function of individual spleen terminal branches in organ function.
Collapse
Affiliation(s)
- Maria A Gonzalez-Gonzalez
- Biomedical Engineering and Biomedical Sciences, University of Houston, Health 2, 4849 Calhoun Rd., Room 6014, Houston, TX, 77204-6064, USA
| | - Geetanjali S Bendale
- Biomedical Engineering and Biomedical Sciences, University of Houston, Health 2, 4849 Calhoun Rd., Room 6014, Houston, TX, 77204-6064, USA
| | - Kezhong Wang
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Mario Romero-Ortega
- Biomedical Engineering and Biomedical Sciences, University of Houston, Health 2, 4849 Calhoun Rd., Room 6014, Houston, TX, 77204-6064, USA.
| |
Collapse
|
123
|
Vagus nerve stimulation activates two distinct neuroimmune circuits converging in the spleen to protect mice from kidney injury. Proc Natl Acad Sci U S A 2021; 118:2021758118. [PMID: 33737395 DOI: 10.1073/pnas.2021758118] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Acute kidney injury is highly prevalent and associated with high morbidity and mortality, and there are no approved drugs for its prevention and treatment. Vagus nerve stimulation (VNS) alleviates inflammatory diseases including kidney disease; however, neural circuits involved in VNS-induced tissue protection remain poorly understood. The vagus nerve, a heterogeneous group of neural fibers, innervates numerous organs. VNS broadly stimulates these fibers without specificity. We used optogenetics to selectively stimulate vagus efferent or afferent fibers. Anterograde efferent fiber stimulation or anterograde (centripetal) sensory afferent fiber stimulation both conferred kidney protection from ischemia-reperfusion injury. We identified the C1 neurons-sympathetic nervous system-splenic nerve-spleen-kidney axis as the downstream pathway of vagus afferent fiber stimulation. Our study provides a map of the neural circuits important for kidney protection induced by VNS, which is critical for the safe and effective clinical application of VNS for protection from acute kidney injury.
Collapse
|
124
|
Winek K, Soreq H, Meisel A. Regulators of cholinergic signaling in disorders of the central nervous system. J Neurochem 2021; 158:1425-1438. [PMID: 33638173 PMCID: PMC8518971 DOI: 10.1111/jnc.15332] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/23/2021] [Accepted: 02/21/2021] [Indexed: 12/14/2022]
Abstract
Cholinergic signaling is crucial in cognitive processes, and degenerating cholinergic projections are a pathological hallmark in dementia. Use of cholinesterase inhibitors is currently the main treatment option to alleviate symptoms of Alzheimer's disease and has been postulated as a therapeutic strategy in acute brain damage (stroke and traumatic brain injury). However, the benefits of this treatment are still not clear. Importantly, cholinergic receptors are expressed both by neurons and by astrocytes and microglia, and binding of acetylcholine to the α7 nicotinic receptor in glial cells results in anti-inflammatory response. Similarly, the brain fine-tunes the peripheral immune response over the cholinergic anti-inflammatory axis. All of these processes are of importance for the outcome of acute and chronic neurological disease. Here, we summarize the main findings about the role of cholinergic signaling in brain disorders and provide insights into the complexity of molecular regulators of cholinergic responses, such as microRNAs and transfer RNA fragments, both of which may fine-tune the orchestra of cholinergic mRNAs. The available data suggest that these small noncoding RNA regulators may include promising biomarkers for predicting disease course and assessing treatment responses and might also serve as drug targets to attenuate signaling cascades during overwhelming inflammation and to ameliorate regenerative capacities of neuroinflammation.
Collapse
Affiliation(s)
- Katarzyna Winek
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Hermona Soreq
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Andreas Meisel
- Department of Neurology with Experimental NeurologyCenter for Stroke Research BerlinNeuroCure Clinical Research CenterCharité‐Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
125
|
Buchmann Godinho D, da Silva Fiorin F, Schneider Oliveira M, Furian AF, Rechia Fighera M, Freire Royes LF. The immunological influence of physical exercise on TBI-induced pathophysiology: Crosstalk between the spleen, gut, and brain. Neurosci Biobehav Rev 2021; 130:15-30. [PMID: 34400178 DOI: 10.1016/j.neubiorev.2021.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is a non-degenerative and non-congenital insult to the brain and is recognized as a global public health problem, with a high incidence of neurological disorders. Despite the causal relationship not being entirely known, it has been suggested that multiorgan inflammatory response involving the autonomic nervous system and the spleen-gut brain axis dysfunction exacerbate the TBI pathogenesis in the brain. Thus, applying new therapeutic tools, such as physical exercise, have been described in the literature to act on the immune modulation induced by brain injuries. However, there are caveats to consider when interpreting the effects of physical exercise on this neurological injury. Given the above, this review will highlight the main findings of the literature involving peripheral immune responses in TBI-induced neurological damage and how changes in the cellular metabolism of the spleen-gut brain axis elicited by different protocols of physical exercise alter the pathophysiology induced by this neurological injury.
Collapse
Affiliation(s)
- Douglas Buchmann Godinho
- Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fernando da Silva Fiorin
- Programa de Pós-Graduação em Neuroengenharia, Instituto Internacional de Neurociências Edmond e Lily Safra, Instituto Santos Dumont, Macaíba, RN, Brazil
| | - Mauro Schneider Oliveira
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Ana Flavia Furian
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Michele Rechia Fighera
- Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Centro de Ciências da Saúde, Departamento de Clínica Médica e Pediatria, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | |
Collapse
|
126
|
Yang H, Zeng Q, Silverman HA, Gunasekaran M, George SJ, Devarajan A, Addorisio ME, Li J, Tsaava T, Shah V, Billiar TR, Wang H, Brines M, Andersson U, Pavlov VA, Chang EH, Chavan SS, Tracey KJ. HMGB1 released from nociceptors mediates inflammation. Proc Natl Acad Sci U S A 2021; 118:e2102034118. [PMID: 34385304 PMCID: PMC8379951 DOI: 10.1073/pnas.2102034118] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inflammation, the body's primary defensive response system to injury and infection, is triggered by molecular signatures of microbes and tissue injury. These molecules also stimulate specialized sensory neurons, termed nociceptors. Activation of nociceptors mediates inflammation through antidromic release of neuropeptides into infected or injured tissue, producing neurogenic inflammation. Because HMGB1 is an important inflammatory mediator that is synthesized by neurons, we reasoned nociceptor release of HMGB1 might be a component of the neuroinflammatory response. In support of this possibility, we show here that transgenic nociceptors expressing channelrhodopsin-2 (ChR2) directly release HMGB1 in response to light stimulation. Additionally, HMGB1 expression in neurons was silenced by crossing synapsin-Cre (Syn-Cre) mice with floxed HMGB1 mice (HMGB1f/f). When these mice undergo sciatic nerve injury to activate neurogenic inflammation, they are protected from the development of cutaneous inflammation and allodynia as compared to wild-type controls. Syn-Cre/HMGB1fl/fl mice subjected to experimental collagen antibody-induced arthritis, a disease model in which nociceptor-dependent inflammation plays a significant pathological role, are protected from the development of allodynia and joint inflammation. Thus, nociceptor HMGB1 is required to mediate pain and inflammation during sciatic nerve injury and collagen antibody-induced arthritis.
Collapse
Affiliation(s)
- Huan Yang
- Laboratory of Biomedical Sciences, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030;
| | - Qiong Zeng
- Laboratory of Biomedical Sciences, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Harold A Silverman
- Laboratory of Biomedical Sciences, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Manojkumar Gunasekaran
- Laboratory of Biomedical Sciences, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Sam J George
- Laboratory of Biomedical Sciences, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Alex Devarajan
- Laboratory of Biomedical Sciences, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Meghan E Addorisio
- Laboratory of Biomedical Sciences, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Jianhua Li
- Laboratory of Biomedical Sciences, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Téa Tsaava
- Laboratory of Biomedical Sciences, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Vivek Shah
- Laboratory of Biomedical Sciences, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Haichao Wang
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Michael Brines
- Laboratory of Biomedical Sciences, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Valentin A Pavlov
- Laboratory of Biomedical Sciences, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030
- Donald and Barbara Zucker School of Medicine at Hofstra University, Hempstead, NY 11549
| | - Eric H Chang
- Laboratory of Biomedical Sciences, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030
- Donald and Barbara Zucker School of Medicine at Hofstra University, Hempstead, NY 11549
| | - Sangeeta S Chavan
- Laboratory of Biomedical Sciences, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030;
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030
- Donald and Barbara Zucker School of Medicine at Hofstra University, Hempstead, NY 11549
| | - Kevin J Tracey
- Laboratory of Biomedical Sciences, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030;
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030
- Donald and Barbara Zucker School of Medicine at Hofstra University, Hempstead, NY 11549
| |
Collapse
|
127
|
Chen H, Huang N, Li J, Sun J, Shi L, Zhang C, Zhao Y, Kong G, Li Z. Immune suppression reversal of the spleen: a promising strategy for improving the survival rate of sepsis in rats. Am J Transl Res 2021; 13:9005-9014. [PMID: 34540012 PMCID: PMC8430070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/05/2021] [Indexed: 06/13/2023]
Abstract
Evidence suggests that immune dysfunction exerts a central role in the morbidity and mortality of sepsis. As the spleen is the largest lymphatic tissue in the body, its influence on immune regulation during sepsis should be explored. In this study, we analysed the immune alterations of the spleen of septic rats and the effects of splenectomy at 6 h, 12 h, and 24 h following caecal ligation and puncture (CLP). Results showed declines in CD4+ T cells and elevations in lymphocyte apoptosis, the percentage of Treg cells, and inflammatory cytokine levels (TNF-α, IL-6, and IL-10) in the spleens of CLP-induced septic rats. Moreover, splenectomy improved the survival of septic rats and bacterial clearance from peripheral blood. CLP-induced apoptosis of lymphocytes and the decreased CD4+ T cell percentage in the peripheral blood could be reversed in splenectomy-treated rats. Splenectomy greatly decreased the number of white blood cells, lymphocytes, monocytes, neutrophils, and serum concentration of TNF-α and IL-10 after CLP. Moreover, splenectomy alleviated pathologic damage to the liver and lungs and weakened expression of CD163. These novel findings demonstrate that immune disorders of the spleen are important pathogenic factors during the course of severe sepsis. Splenectomy could alleviate apoptosis and reduction of lymphocytes induced by sepsis, and lower the level of inflammation in the body. Reversing the immune suppression of the spleen may be a novel strategy to improve sepsis survival.
Collapse
Affiliation(s)
- Haiyan Chen
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Core Research Laboratory, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Na Huang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Core Research Laboratory, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Jun Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Jin Sun
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Luyi Shi
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Chen Zhang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Yang Zhao
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Guangyao Kong
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Zongfang Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| |
Collapse
|
128
|
Duan H, Cai X, Luan Y, Yang S, Yang J, Dong H, Zeng H, Shao L. Regulation of the Autonomic Nervous System on Intestine. Front Physiol 2021; 12:700129. [PMID: 34335306 PMCID: PMC8317205 DOI: 10.3389/fphys.2021.700129] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Intestine is composed of various types of cells including absorptive epithelial cells, goblet cells, endocrine cells, Paneth cells, immunological cells, and so on, which play digestion, absorption, neuroendocrine, immunological function. Intestine is innervated with extrinsic autonomic nerves and intrinsic enteric nerves. The neurotransmitters and counterpart receptors are widely distributed in the different intestinal cells. Intestinal autonomic nerve system includes sympathetic and parasympathetic nervous systems, which regulate cellular proliferation and function in intestine under physiological and pathophysiological conditions. Presently, distribution and functional characteristics of autonomic nervous system in intestine were reviewed. How autonomic nervous system regulates intestinal cell proliferation was discussed. Function of autonomic nervous system on intestinal diseases was extensively reviewed. It might be helpful to properly manipulate autonomic nervous system during treating different intestinal diseases.
Collapse
Affiliation(s)
- Hongyi Duan
- Medical College of Nanchang University, Nanchang, China
| | - Xueqin Cai
- Medical College of Nanchang University, Nanchang, China
| | - Yingying Luan
- Medical College of Nanchang University, Nanchang, China
| | - Shuo Yang
- Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Juan Yang
- Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Hui Dong
- Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, China
| | - Huihong Zeng
- Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, China
| | - Lijian Shao
- Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, China
| |
Collapse
|
129
|
Circulating HMGB1 is elevated in veterans with Gulf War Illness and triggers the persistent pro-inflammatory microglia phenotype in male C57Bl/6J mice. Transl Psychiatry 2021; 11:390. [PMID: 34253711 PMCID: PMC8275600 DOI: 10.1038/s41398-021-01517-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Gulf War Illness (GWI) is a chronic, multi-symptom peripheral and CNS condition with persistent microglial dysregulation, but the mechanisms driving the continuous neuroimmune pathology are poorly understood. The alarmin HMGB1 is an autocrine and paracrine pro-inflammatory signal, but the role of circulating HMGB1 in persistent neuroinflammation and GWI remains largely unknown. Using the LPS model of the persistent microglial pro-inflammatory response, male C57Bl/6J mice injected with LPS (5 mg/kg IP) exhibited persistent changes in microglia morphology and elevated pro-inflammatory markers in the hippocampus, cortex, and midbrain 7 days after LPS injection, while the peripheral immune response had resolved. Ex vivo serum analysis revealed an augmented pro-inflammatory response to LPS when microglia cells were cultured with the 7-day LPS serum, indicating the presence of bioactive circulating factors that prime the microglial pro-inflammatory response. Elevated circulating HMGB1 levels were identified in the mouse serum 7 days after LPS administration and in the serum of veterans with GWI. Tail vein injection of rHMGB1 in male C57Bl/6 J mice elevated TNFα mRNA levels in the liver, hippocampus, and cortex, demonstrating HMGB1-induced peripheral and CNS effects. Microglia isolated at 7 days after LPS injection revealed a unique transcriptional profile of 17 genes when compared to the acute 3 H LPS response, 6 of which were also upregulated in the midbrain by rHMGB1, highlighting a distinct signature of the persistent pro-inflammatory microglia phenotype. These findings indicate that circulating HMGB1 is elevated in GWI, regulates the microglial neuroimmune response, and drives chronic neuroinflammation that persists long after the initial instigating peripheral stimulus.
Collapse
|
130
|
Trivedi G, Inoue D, Zhang L. Targeting low-risk myelodysplastic syndrome with novel therapeutic strategies. Trends Mol Med 2021; 27:990-999. [PMID: 34257007 DOI: 10.1016/j.molmed.2021.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/26/2022]
Abstract
Myelodysplastic syndrome (MDS) is a group of hematopoietic disorders with limited treatment options. Anemia is a common symptom in MDS, and although erythropoiesis-stimulating agents such as erythropoietin, lenalidomide, and luspatercept are available to treat anemia, many MDS patients do not respond to these first-line therapies. Therefore, alternative drug development strategies are needed to improve therapeutic efficacy. Splicing modulators to correct splicing-related defects have shown promising results in clinical trials. Targeting differentiation of early erythroid progenitors to increase the erythroid output in MDS is another novel approach, which has shown encouraging results at the pre-clinical stage. Together, these therapeutic strategies provide new avenues to target MDS symptoms untreatable previously.
Collapse
Affiliation(s)
- Gaurang Trivedi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Genetics Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan
| | - Lingbo Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
131
|
Pyridostigmine ameliorates preeclamptic features in pregnant rats by inhibiting tumour necrosis factor-α synthetsis and antagonizing tumour necrosis factor-α-related effects. J Hypertens 2021; 39:1774-1789. [PMID: 34232157 DOI: 10.1097/hjh.0000000000002932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Preeclampsia is a hypertensive disorder of pregnancy marked by an excessive inflammatory response. The anti-inflammatory effect of pyridostigmine (PYR) was previously reported; however, its role in hypertensive pregnancies remains unclear. We hypothesized that PYR could attenuate increased blood pressure and other pathological features in preeclampsia models. METHODS The expression of tumour necrosis factor (TNF)-α was evaluated in normal and preeclampsia pregnant women. PYR (20 mg/kg) was administered daily to reduced uterine perfusion pressure (RUPP) and TNF-α (150 ng/day) infused rats from gestation day 14 to GD19. In a cell culture experiment, the effect of acetylcholine (ACh) on TNF-α-stimulated primary human umbilical endothelial cells (HUVEC) was assessed. RESULTS Preeclampsia women had higher placental TNF-α expression than normal pregnant women. Mean arterial pressure (MAP) in the RUPP group was higher than in the Sham group. PYR inhibited serum and placental acetylcholinesterase activity in rats, and reduced MAP, placental oxidative stress, apoptosis and inflammation in the RUPP group but not in the Sham group. In addition, PYR significantly attenuated the TNF-α-induced increase in MAP, placental oxidative stress and apoptosis. Moreover, TNF-α decreased cell viability and increased the number of TUNEL-positive nuclei of HUVEC, which could largely be abolished by ACh treatment. CONCLUSION Collectively, PYR ameliorated hypertension and other preeclampsia-like symptoms in rat models of preeclampsia not only by inhibiting the synthesis of TNF-α but also by acting against TNF-α-induced detrimental effects directly, which is worthy of further investigation and may be used as a potential agent for preeclampsia management.
Collapse
|
132
|
Azabou E, Bao G, Costantino F, Jacota M, Lazizi C, Nkam L, Rottman M, Roux AL, Chevallier S, Grimaldi L, Breban M. Randomized Cross Over Study Assessing the Efficacy of Non-invasive Stimulation of the Vagus Nerve in Patients With Axial Spondyloarthritis Resistant to Biotherapies: The ESNV-SPA Study Protocol. Front Hum Neurosci 2021; 15:679775. [PMID: 34276328 PMCID: PMC8278783 DOI: 10.3389/fnhum.2021.679775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/31/2021] [Indexed: 01/04/2023] Open
Abstract
Axial spondyloarthritis (SpA), is a major cause of chronic pain and disability that profoundly alters the quality of life of patients. Nearly half of patients with SpA usually develop drug resistance. Non-pharmacological treatments targeting inflammation are an attractive alternative to drug administration. Vagus nerve stimulation (VNS), by promoting a cholinergic anti-inflammatory reflex holds promise for treating inflammatory disease. Inflammatory reflex signaling, which is enhanced by electrically stimulating the vagus nerve, significantly reduces cytokine production and attenuates disease severity in animal models of endotoxemia, sepsis, colitis, and other preclinical models of inflammatory diseases. It has been proposed that vagal efferent fibers release acetylcholine (Ach), which can interact with α7-subunit-containing nicotinic receptors expressed by tissue macrophages and other immune cells to rapidly inhibit the synthesis/release of pro-inflammatory cytokines such as TNFα, IL-1β, IL-6, and IL-18. External vagal nerve stimulation devices are now available that do not require surgery nor implantation to non-invasively stimulate the vagal nerve. This double-blind randomized cross-over clinical trial aims to study the change in SpA disease activity, according to Assessment in Ankylosing Spondylitis 20 (ASAS20) definition, after 12 weeks of non-invasive VNS treatment vs. non-specific dummy stimulation (control group). One hundred and twenty adult patients with drug resistant SpA, meeting the ASAS classification criteria, will be included in the study. Patients will be randomized into two parallel groups according to a cross over design: either active VNS for 12 weeks, then dummy stimulation for 12 weeks, or dummy stimulation for 12 weeks, then active VNS for 12 weeks. The two stimulation periods will be separated by a 4 weeks wash-out period. A transcutaneous auricular vagus nerve stimulator Tens Eco Plus SCHWA MEDICOTM France will be used in this study. The active VNS stimulation will be applied in the cymba conchae of the left ear upon the auricular branch of the vagus nerve, using low intensity (2–5 mA), once à week, during 1 h. Dummy stimulation will be performed under the same conditions and parameters as active VNS stimulation, but at an irrelevant anatomical site: the left ear lobule. This multicenter study was registered on ClinicalTrials.gov: NCT04286373.
Collapse
Affiliation(s)
- Eric Azabou
- Clinical Neurophysiology and Neuromodulation Unit, Department of Physiology, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Laboratory of Infection and Inflammation (2I)-Inserm UMR 1173, University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Guillaume Bao
- Clinical Neurophysiology and Neuromodulation Unit, Department of Physiology, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Laboratory of Infection and Inflammation (2I)-Inserm UMR 1173, University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Félicie Costantino
- Laboratory of Infection and Inflammation (2I)-Inserm UMR 1173, University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France.,Rheumatology Department, AP-HP, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt, France.,Laboratory of Excellence Inflamex, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Madalina Jacota
- Clinical Research Unit, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Boulogne-Billancourt, France, University of Versailles Saint-Quentin en Yvelines, Paris-Saclay University, Paris, France
| | - Chanez Lazizi
- Clinical Research Unit, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Boulogne-Billancourt, France, University of Versailles Saint-Quentin en Yvelines, Paris-Saclay University, Paris, France
| | - Lionelle Nkam
- Clinical Research Unit, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Boulogne-Billancourt, France, University of Versailles Saint-Quentin en Yvelines, Paris-Saclay University, Paris, France
| | - Martin Rottman
- Laboratory of Infection and Inflammation (2I)-Inserm UMR 1173, University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France.,Microbiology Laboratory, Raymond Poincaré Hospital, AP-HP Paris Saclay University, Paris, France
| | - Anne-Laure Roux
- Laboratory of Infection and Inflammation (2I)-Inserm UMR 1173, University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France.,Microbiology Laboratory, Raymond Poincaré Hospital, AP-HP Paris Saclay University, Paris, France
| | - Sylvain Chevallier
- Versailles Engineering Systems Laboratory (LISV), University of Versailles Saint Quentin en Yvelines (UVSQ), Vélizy, France
| | - Lamiae Grimaldi
- Clinical Research Unit, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Boulogne-Billancourt, France, University of Versailles Saint-Quentin en Yvelines, Paris-Saclay University, Paris, France
| | - Maxime Breban
- Laboratory of Infection and Inflammation (2I)-Inserm UMR 1173, University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France.,Rheumatology Department, AP-HP, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt, France.,Laboratory of Excellence Inflamex, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
133
|
Stakenborg N, Boeckxstaens GE. Bioelectronics in the brain-gut axis: focus on inflammatory bowel disease (IBD). Int Immunol 2021; 33:337-348. [PMID: 33788920 PMCID: PMC8183669 DOI: 10.1093/intimm/dxab014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/30/2021] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence shows that intestinal homeostasis is mediated by cross-talk between the nervous system, enteric neurons and immune cells, together forming specialized neuroimmune units at distinct anatomical locations within the gut. In this review, we will particularly discuss how the intrinsic and extrinsic neuronal circuitry regulates macrophage function and phenotype in the gut during homeostasis and aberrant inflammation, such as observed in inflammatory bowel disease (IBD). Furthermore, we will provide an overview of basic and translational IBD research using these neuronal circuits as a novel therapeutic tool. Finally, we will highlight the different challenges ahead to make bioelectronic neuromodulation a standard treatment for intestinal immune-mediated diseases.
Collapse
Affiliation(s)
- Nathalie Stakenborg
- Center of Intestinal Neuro-immune Interaction, Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, University of Leuven, Herestraat 49, O&N1 bus 701, Leuven 3000, Belgium
| | - Guy E Boeckxstaens
- Center of Intestinal Neuro-immune Interaction, Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, University of Leuven, Herestraat 49, O&N1 bus 701, Leuven 3000, Belgium
| |
Collapse
|
134
|
Vagal Nerve Stimulation-Modulation of the Anti-Inflammatory Response and Clinical Outcome in Psoriatic Arthritis or Ankylosing Spondylitis. Mediators Inflamm 2021; 2021:9933532. [PMID: 34135691 PMCID: PMC8175141 DOI: 10.1155/2021/9933532] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023] Open
Abstract
Objectives The vagal nerve exerts an essential pathway in controlling the cholinergic anti-inflammatory reflex. Thus, the study is aimed at investigating the acute effect of a noninvasive transcutaneous vagus nerve stimulation on clinical disease activity and systemic levels of inflammation in patients with psoriatic arthritis or ankylosing spondylitis. Methods Twenty patients with psoriatic arthritis (PsA) and 20 patients with ankylosing spondylitis (AS) were included and stimulated bilaterally with a handheld vagal nerve stimulator for 120 seconds 3 times a day for 5 consecutive days. All patients were in remission. Cardiac vagal tone, clinical scores, CRP, and cytokine levels were assessed. Results In PsA and AS, decreased heart rate was observed, confirming compliance. Furthermore, in PsA, a clear reduction of clinical disease activity associated with a 20% reduction in CRP was shown. In AS, a reduction in interferon-γ, interleukin- (IL-) 8, and 10 was shown. No side effects were described. Conclusion This open-label study provides support for an anti-inflammatory effect of transcutaneous vagus nerve stimulation in patients with psoriatic arthritis and ankylosing spondylitis. The modulated immune response and reduced disease activity and CRP-levels raise the fascinating possibility of using neuromodulation as an add-on to existing pharmacological treatments.
Collapse
|
135
|
Ramkissoon CM, Güemes A, Vehi J. Overview of therapeutic applications of non-invasive vagus nerve stimulation: a motivation for novel treatments for systemic lupus erythematosus. Bioelectron Med 2021; 7:8. [PMID: 34030736 PMCID: PMC8145832 DOI: 10.1186/s42234-021-00069-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disorder that commonly affects the skin, joints, kidneys, and central nervous system. Although great progress has been made over the years, patients still experience unfavorable secondary effects from medications, increased economic burden, and higher mortality rates compared to the general population. To alleviate these current problems, non-invasive, non-pharmacological interventions are being increasingly investigated. One such intervention is non-invasive vagus nerve stimulation, which promotes the upregulation of the cholinergic anti-inflammatory pathway that reduces the activation and production of pro-inflammatory cytokines and reactive oxygen species, culpable processes in autoimmune diseases such as SLE. This review first provides a background on the important contribution of the autonomic nervous system to the pathogenesis of SLE. The gross and structural anatomy of the vagus nerve and its contribution to the inflammatory response are described afterwards to provide a general understanding of the impact of stimulating the vagus nerve. Finally, an overview of current clinical applications of invasive and non-invasive vagus nerve stimulation for a variety of diseases, including those with similar symptoms to the ones in SLE, is presented and discussed. Overall, the review presents neuromodulation as a promising strategy to alleviate SLE symptoms and potentially reverse the disease.
Collapse
Affiliation(s)
| | - Amparo Güemes
- Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London, UK
| | - Josep Vehi
- Institut d’Informàtica i Aplicacions, Universitat de Girona, Girona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
136
|
Donegà M, Fjordbakk CT, Kirk J, Sokal DM, Gupta I, Hunsberger GE, Crawford A, Cook S, Viscasillas J, Stathopoulou TR, Miranda JA, Dopson WJ, Goodwin D, Rowles A, McGill P, McSloy A, Werling D, Witherington J, Chew DJ, Perkins JD. Human-relevant near-organ neuromodulation of the immune system via the splenic nerve. Proc Natl Acad Sci U S A 2021; 118:e2025428118. [PMID: 33972441 PMCID: PMC8157920 DOI: 10.1073/pnas.2025428118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuromodulation of immune function by stimulating the autonomic connections to the spleen has been demonstrated in rodent models. Consequently, neuroimmune modulation has been proposed as a new therapeutic strategy for the treatment of inflammatory conditions. However, demonstration of the translation of these immunomodulatory mechanisms in anatomically and physiologically relevant models is still lacking. Additionally, translational models are required to identify stimulation parameters that can be transferred to clinical applications of bioelectronic medicines. Here, we performed neuroanatomical and functional comparison of the mouse, rat, pig, and human splenic nerve using in vivo and ex vivo preparations. The pig was identified as a more suitable model of the human splenic innervation. Using functional electrophysiology, we developed a clinically relevant marker of splenic nerve engagement through stimulation-dependent reversible reduction in local blood flow. Translation of immunomodulatory mechanisms were then assessed using pig splenocytes and two models of acute inflammation in anesthetized pigs. The pig splenic nerve was shown to locally release noradrenaline upon stimulation, which was able to modulate cytokine production by pig splenocytes. Splenic nerve stimulation was found to promote cardiovascular protection as well as cytokine modulation in a high- and a low-dose lipopolysaccharide model, respectively. Importantly, splenic nerve-induced cytokine modulation was reproduced by stimulating the efferent trunk of the cervical vagus nerve. This work demonstrates that immune responses can be modulated by stimulation of spleen-targeted autonomic nerves in translational species and identifies splenic nerve stimulation parameters and biomarkers that are directly applicable to humans due to anatomical and electrophysiological similarities.
Collapse
Affiliation(s)
- Matteo Donegà
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom;
| | - Cathrine T Fjordbakk
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | - Joseph Kirk
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | - David M Sokal
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom
| | - Isha Gupta
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom
| | - Gerald E Hunsberger
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom
| | - Abbe Crawford
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | - Simon Cook
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | - Jaime Viscasillas
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | | | - Jason A Miranda
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom
| | - Wesley J Dopson
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom
| | - David Goodwin
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | - Alison Rowles
- Non-Clinical Safety, GlaxoSmithKline, Ware SG12 0DP, United Kingdom
| | - Paul McGill
- Bioimaging, GlaxoSmithKline, Ware SG12 0DP, United Kingdom
| | - Alex McSloy
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, United Kingdom
| | - Jason Witherington
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom
| | - Daniel J Chew
- Translation and Engineering, Galvani Bioelectronics, Stevenage SG1 2NY, United Kingdom
| | - Justin D Perkins
- Clinical Sciences and Services, The Royal Veterinary College, Hatfield AL9 7TA, United Kingdom;
| |
Collapse
|
137
|
Klose CSN, Veiga-Fernandes H. Neuroimmune interactions in peripheral tissues. Eur J Immunol 2021; 51:1602-1614. [PMID: 33895990 DOI: 10.1002/eji.202048812] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/19/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022]
Abstract
Neuroimmune interactions have been revealed to be at the centre stage of tissue defence, organ homeostasis, and organismal physiology. Neuronal and immune cell subsets have been shown to colocalize in discrete tissue environments, forming neuroimmune cell units that constitute the basis for bidirectional interactions. These multitissue units drive coordinated neuroimmune responses to local and systemic signals, which represents an important challenge to our current views of mucosal physiology and immune regulation. In this review, we focus on the impact of reciprocal neuroimmune interactions, focusing on the anatomy of neuronal innervation and on the neuronal regulation of immune cells in peripheral tissues. Finally, we shed light on recent studies that explore how neuroimmune interactions maximise sensing and integration of environmental aggressions, modulating immune function in health and disease.
Collapse
Affiliation(s)
- Christoph S N Klose
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, Berlin, 12203, Germany
| | | |
Collapse
|
138
|
Wang F, Liu J, Hu X, Zhong Y, Wen F, Tang X, Yang S, Zhong S, Zhou Z, Yuan X, Li Y. The influence on oxidative stress markers, inflammatory factors and intestinal injury-related molecules in Wahui pigeon induced by lipopolysaccharide. PLoS One 2021; 16:e0251462. [PMID: 33979394 PMCID: PMC8115843 DOI: 10.1371/journal.pone.0251462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/27/2021] [Indexed: 11/30/2022] Open
Abstract
Introduction The intestinal structure is the foundation for various activities and functions in poultry. An important question concerns the changes in the intestinal status under endotoxin stimulation. This study aimed to investigate the mechanism of intestinal injury induced by lipopolysaccharide (LPS) in Wahui pigeons. Methods Thirty-six 28-day-old healthy Wahui pigeons were randomly divided into two groups. The experimental group was injected with LPS (100 μg/kg) once per day for five days, and the control group was treated with the same amount of sterile saline. Blood and the ileum were collected from pigeons on the first, third, and fifth days of the experiment and used for oxidative stress assessment, inflammatory factor detection, histopathological examination, and positive cell localization. In addition, intestinal injury indices and mRNA expression levels (tight junction proteins, inflammatory cytokines, and factors related to autophagy and apoptosis) were evaluated. Results Villi in the ileum were shorter in the LPS group than in the control group, and D-lactic acid levels in the serum were significantly increased. Glutathione and catalase levels significantly decreased, but the malondialdehyde content in the serum increased. TNF-α and IL-10 were detected at higher levels in the serum, with stronger positive signals and higher mRNA expression levels, in the LPS group than in the control group. In addition, the levels of TLR4, MyD88, NF-κB, and HMGB1 in the inflammatory signaling pathway were also upregulated. Finally, the mRNA expression of Claudin3, Occludin, and ZO-1 was significantly decreased; however, that of Beclin1 and Atg5 was increased in the LPS group. Conclusion Ileal pathological changes and oxidative stress were caused by LPS challenge; it is proposed that this triggering regulates the inflammatory response, causing excessive autophagy and apoptosis, promoting intestinal permeability, and leading to intestinal injury in Wahui pigeons.
Collapse
Affiliation(s)
- Fei Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Jin Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Xiaofen Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Youbao Zhong
- Technology Center of Experimental Animals, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Xiaoen Tang
- Fuzhou Husbandry Breeding Farm, Linchuan, 344000, Jiangxi, China
| | - Shanshan Yang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Shengwei Zhong
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Zuohong Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Xu Yuan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Yong Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
- * E-mail:
| |
Collapse
|
139
|
Azabou E, Bao G, Bounab R, Heming N, Annane D. Vagus Nerve Stimulation: A Potential Adjunct Therapy for COVID-19. Front Med (Lausanne) 2021; 8:625836. [PMID: 34026778 PMCID: PMC8137825 DOI: 10.3389/fmed.2021.625836] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) through excessive end organ inflammation. Despite improved understanding of the pathophysiology, management, and the great efforts worldwide to produce effective drugs, death rates of COVID-19 patients remain unacceptably high, and effective treatment is unfortunately lacking. Pharmacological strategies aimed at modulating inflammation in COVID-19 are being evaluated worldwide. Several drug therapies targeting this excessive inflammation, such as tocilizumab, an interleukin (IL)-6 inhibitor, corticosteroids, programmed cell death protein (PD)-1/PD-L1 checkpoint inhibition, cytokine-adsorption devices, and intravenous immunoglobulin have been identified as potentially useful and reliable approaches to counteract the cytokine storm. However, little attention is currently paid for non-drug therapeutic strategies targeting inflammatory and immunological processes that may be useful for reducing COVID-19-induced complications and improving patient outcome. Vagus nerve stimulation attenuates inflammation both in experimental models and preliminary data in human. Modulating the activity of cholinergic anti-inflammatory pathways (CAPs) described by the group of KJ Tracey has indeed become an important target of therapeutic research strategies for inflammatory diseases and sepsis. Non-invasive transcutaneous vagal nerve stimulation (t-VNS), as a non-pharmacological adjuvant, may help reduce the burden of COVID-19 and deserve to be investigated. VNS as an adjunct therapy in COVID-19 patients should be investigated in clinical trials. Two clinical trials on this topic are currently underway (NCT04382391 and NCT04368156). The results of these trials will be informative, but additional larger studies are needed.
Collapse
Affiliation(s)
- Eric Azabou
- Clinical Neurophysiology and Neuromodulation Unit, Departments of Physiology and Critical Care Medicine, Raymond Poincaré Hospital, Assistance Publique- Hôpitaux de Paris, Inserm UMR 1173, Infection and Inflammation (2I), University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Guillaume Bao
- Clinical Neurophysiology and Neuromodulation Unit, Departments of Physiology and Critical Care Medicine, Raymond Poincaré Hospital, Assistance Publique- Hôpitaux de Paris, Inserm UMR 1173, Infection and Inflammation (2I), University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Rania Bounab
- General Intensive Care Unit - Assistance Publique Hôpitaux de Paris, Raymond Poincaré Hospital, Assistance Publique- Hôpitaux de Paris, Inserm UMR 1173, Infection and Inflammation (2I), University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Nicholas Heming
- General Intensive Care Unit - Assistance Publique Hôpitaux de Paris, Raymond Poincaré Hospital, Assistance Publique- Hôpitaux de Paris, Inserm UMR 1173, Infection and Inflammation (2I), University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Djillali Annane
- General Intensive Care Unit - Assistance Publique Hôpitaux de Paris, Raymond Poincaré Hospital, Assistance Publique- Hôpitaux de Paris, Inserm UMR 1173, Infection and Inflammation (2I), University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France
| |
Collapse
|
140
|
Eberhardson M, Levine YA, Tarnawski L, Olofsson PS. The brain-gut axis, inflammatory bowel disease and bioelectronic medicine. Int Immunol 2021; 33:349-356. [PMID: 33912906 DOI: 10.1093/intimm/dxab018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
The hallmark of inflammatory bowel diseases (IBD) is chronic intestinal inflammation with typical onset in adolescents and young adults. An abundance of neutrophils is seen in the inflammatory lesions, but adaptive immunity is also an important player in the chronicity of the disease. There is an unmet need for new treatment options since modern medicines such as biological therapy with anti-cytokine antibodies still leave a substantial number of patients with persisting disease activity. The role of the central nervous system and its interaction with the gut in the pathophysiology of IBD have been brought to attention both in animal models and in humans after the discovery of the inflammatory reflex. The suggested control of gut immunity by the brain-gut axis represents a novel therapeutic target suitable for bioelectronic intervention. In this review, we discuss the role of the inflammatory reflex in gut inflammation and the recent advances in the treatment of IBD by intervening with the brain-gut axis through bioelectronic devices.
Collapse
Affiliation(s)
- Michael Eberhardson
- Department of Gastroenterology and Hepatology, University Hospital of Linköping, 581 91 Linköping, Sweden.,Department of Medicine, Center for Bioelectronic Medicine, Bioclinicum, Karolinska Institutet, 171 64 Stockholm, Sweden.,Department of Health, Medicine and Caring Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Yaakov A Levine
- Department of Medicine, Center for Bioelectronic Medicine, Bioclinicum, Karolinska Institutet, 171 64 Stockholm, Sweden.,SetPoint Medical, Valencia, CA 91355, USA
| | - Laura Tarnawski
- Department of Medicine, Center for Bioelectronic Medicine, Bioclinicum, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Peder S Olofsson
- Department of Medicine, Center for Bioelectronic Medicine, Bioclinicum, Karolinska Institutet, 171 64 Stockholm, Sweden.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| |
Collapse
|
141
|
Halder N, Lal G. Cholinergic System and Its Therapeutic Importance in Inflammation and Autoimmunity. Front Immunol 2021; 12:660342. [PMID: 33936095 PMCID: PMC8082108 DOI: 10.3389/fimmu.2021.660342] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Neurological and immunological signals constitute an extensive regulatory network in our body that maintains physiology and homeostasis. The cholinergic system plays a significant role in neuroimmune communication, transmitting information regarding the peripheral immune status to the central nervous system (CNS) and vice versa. The cholinergic system includes the neurotransmitter\ molecule, acetylcholine (ACh), cholinergic receptors (AChRs), choline acetyltransferase (ChAT) enzyme, and acetylcholinesterase (AChE) enzyme. These molecules are involved in regulating immune response and playing a crucial role in maintaining homeostasis. Most innate and adaptive immune cells respond to neuronal inputs by releasing or expressing these molecules on their surfaces. Dysregulation of this neuroimmune communication may lead to several inflammatory and autoimmune diseases. Several agonists, antagonists, and inhibitors have been developed to target the cholinergic system to control inflammation in different tissues. This review discusses how various molecules of the neuronal and non-neuronal cholinergic system (NNCS) interact with the immune cells. What are the agonists and antagonists that alter the cholinergic system, and how are these molecules modulate inflammation and immunity. Understanding the various functions of pharmacological molecules could help in designing better strategies to control inflammation and autoimmunity.
Collapse
Affiliation(s)
- Namrita Halder
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Girdhari Lal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| |
Collapse
|
142
|
Morales JY, Young-Stubbs CM, Shimoura CG, Kem WR, Uteshev VV, Mathis KW. Systemic Administration of α7-Nicotinic Acetylcholine Receptor Ligands Does Not Improve Renal Injury or Behavior in Mice With Advanced Systemic Lupus Erythematosus. Front Med (Lausanne) 2021; 8:642960. [PMID: 33928103 PMCID: PMC8076522 DOI: 10.3389/fmed.2021.642960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/18/2021] [Indexed: 01/04/2023] Open
Abstract
There is a critical need for safe treatment options to control inflammation in patients with systemic lupus erythematosus (SLE) since the inflammation contributes to morbidity and mortality in advanced disease. Endogenous neuroimmune mechanisms like the cholinergic anti-inflammatory pathway can be targeted to modulate inflammation, but the ability to manipulate such pathways and reduce inflammation and end organ damage has not been fully explored in SLE. Positive allosteric modulators (PAM) are pharmacological agents that inhibit desensitization of the nicotinic acetylcholine receptor (α7-nAChR), the main anti-inflammatory feature within the cholinergic anti-inflammatory pathway, and may augment α7-dependent cholinergic tone to generate therapeutic benefits in SLE. In the current study, we hypothesize that activating the cholinergic anti-inflammatory pathway at the level of the α7-nAChR with systemic administration of a partial agonist, GTS-21, and a PAM, PNU-120596, would reduce inflammation, eliminating the associated end organ damage in a mouse model of SLE with advanced disease. Further, we hypothesize that systemic α7 ligands will have central effects and improve behavioral deficits in SLE mice. Female control (NZW) and SLE mice (NZBWF1) were administered GTS-21 or PNU-120596 subcutaneously via minipumps for 2 weeks. We found that the increased plasma dsDNA autoantibodies, splenic and renal inflammation, renal injury and hypertension usually observed in SLE mice with advanced disease at 35 weeks of age were not altered by GTS-21 or PNU-120596. The anxiety-like behavior presented in SLE mice was also not improved by GTS-21 or PNU-120596. Although no significant beneficial effects of α7 ligands were observed in SLE mice at this advanced stage, we predict that targeting this receptor earlier in the pathogenesis of the disease may prove to be efficacious and should be addressed in future studies.
Collapse
Affiliation(s)
- Jessica Y Morales
- Department of Physiology and Anatomy, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| | - Cassandra M Young-Stubbs
- Department of Physiology and Anatomy, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| | - Caroline G Shimoura
- Department of Physiology and Anatomy, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| | - William R Kem
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Victor V Uteshev
- Department of Pharmacology and Neuroscience, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| | - Keisa W Mathis
- Department of Physiology and Anatomy, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
143
|
Mastitskaya S, Thompson N, Holder D. Selective Vagus Nerve Stimulation as a Therapeutic Approach for the Treatment of ARDS: A Rationale for Neuro-Immunomodulation in COVID-19 Disease. Front Neurosci 2021; 15:667036. [PMID: 33927594 PMCID: PMC8076564 DOI: 10.3389/fnins.2021.667036] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is the most severe form of acute lung injury. It is induced by sepsis, aspiration, and pneumonia, including that caused by SARS coronavirus and human influenza viruses. The main pathophysiological mechanism of ARDS is a systemic inflammatory response. Vagus nerve stimulation (VNS) can limit cytokine production in the spleen and thereby dampen any systemic inflammation and inflammation-induced tissue damage in the lungs and other organs. However, the effects of increased parasympathetic outflow to the lungs when non-selective VNS is applied may result in bronchoconstriction, increased mucus secretion and enhance local pulmonary inflammatory activity; this may outweigh the beneficial systemic anti-inflammatory action of VNS. Organ/function-specific therapy can be achieved by imaging of localized fascicle activity within the vagus nerve and selective stimulation of identified organ-specific fascicles. This may be able to provide selective neuromodulation of different pathways within the vagus nerve and offer a novel means to improve outcome in ARDS. This has motivated this review in which we discuss the mechanisms of anti-inflammatory effects of VNS, progress in selective VNS techniques, and a possible application for ARDS.
Collapse
Affiliation(s)
- Svetlana Mastitskaya
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | | | | |
Collapse
|
144
|
Mughrabi IT, Hickman J, Jayaprakash N, Thompson D, Ahmed U, Papadoyannis ES, Chang YC, Abbas A, Datta-Chaudhuri T, Chang EH, Zanos TP, Lee SC, Froemke RC, Tracey KJ, Welle C, Al-Abed Y, Zanos S. Development and characterization of a chronic implant mouse model for vagus nerve stimulation. eLife 2021; 10:e61270. [PMID: 33821789 PMCID: PMC8051950 DOI: 10.7554/elife.61270] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 04/02/2021] [Indexed: 12/17/2022] Open
Abstract
Vagus nerve stimulation (VNS) suppresses inflammation and autoimmune diseases in preclinical and clinical studies. The underlying molecular, neurological, and anatomical mechanisms have been well characterized using acute electrophysiological stimulation of the vagus. However, there are several unanswered mechanistic questions about the effects of chronic VNS, which require solving numerous technical challenges for a long-term interface with the vagus in mice. Here, we describe a scalable model for long-term VNS in mice developed and validated in four research laboratories. We observed significant heart rate responses for at least 4 weeks in 60-90% of animals. Device implantation did not impair vagus-mediated reflexes. VNS using this implant significantly suppressed TNF levels in endotoxemia. Histological examination of implanted nerves revealed fibrotic encapsulation without axonal pathology. This model may be useful to study the physiology of the vagus and provides a tool to systematically investigate long-term VNS as therapy for chronic diseases modeled in mice.
Collapse
Affiliation(s)
- Ibrahim T Mughrabi
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Jordan Hickman
- Departments of Neurosurgery, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Naveen Jayaprakash
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Dane Thompson
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
- The Elmezzi Graduate School of Molecular MedicineManhassetUnited States
| | - Umair Ahmed
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Eleni S Papadoyannis
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York UniversityNew YorkUnited States
- Department of Neuroscience and Physiology, Neuroscience Institute, Center for Neural Science, New York University School of Medicine, New York UniversityNew YorkUnited States
- Department of Otolaryngology, New York University School of Medicine, New York UniversityNew YorkUnited States
- Howard Hughes Medical Institute Faculty Scholar, New York University School of Medicine, New York UniversityNew YorkUnited States
| | - Yao-Chuan Chang
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Adam Abbas
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Timir Datta-Chaudhuri
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Eric H Chang
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Theodoros P Zanos
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Sunhee C Lee
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Robert C Froemke
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York UniversityNew YorkUnited States
- Department of Neuroscience and Physiology, Neuroscience Institute, Center for Neural Science, New York University School of Medicine, New York UniversityNew YorkUnited States
- Department of Otolaryngology, New York University School of Medicine, New York UniversityNew YorkUnited States
- Howard Hughes Medical Institute Faculty Scholar, New York University School of Medicine, New York UniversityNew YorkUnited States
| | - Kevin J Tracey
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Cristin Welle
- Departments of Neurosurgery, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| |
Collapse
|
145
|
Siqueira BS, Ceglarek VM, Gomes ECZ, Vettorazzi JF, Rentz T, Nenevê JZ, Volinski KZ, Moraes SS, Malta A, de Freitas Mathias PC, de Oliveira Emilio HR, Balbo SL, Grassiolli S. Vagotomy and Splenectomy Reduce Insulin Secretion and Interleukin-1β. Pancreas 2021; 50:607-616. [PMID: 33939676 DOI: 10.1097/mpa.0000000000001809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES This study aimed to evaluate the effect of vagotomy, when associated with splenectomy, on adiposity and glucose homeostasis in Wistar rats. METHODS Rats were divided into 4 groups: vagotomized (VAG), splenectomized (SPL), VAG + SPL, and SHAM. Glucose tolerance tests were performed, and physical and biochemical parameters evaluated. Glucose-induced insulin secretion and protein expression (Glut2/glucokinase) were measured in isolated pancreatic islets. Pancreases were submitted to histological and immunohistochemical analyses, and vagus nerve neural activity was recorded. RESULTS The vagotomized group presented with reduced body weight, growth, and adiposity; high food intake; reduced plasma glucose and triglyceride levels; and insulin resistance. The association of SPL with the VAG surgery attenuated, or abolished, the effects of VAG and reduced glucose-induced insulin secretion and interleukin-1β area in β cells, in addition to lowering vagal activity. CONCLUSIONS The absence of the spleen attenuated or blocked the effects of VAG on adiposity, triglycerides and glucose homeostasis, suggesting a synergistic effect of both on metabolism. The vagus nerve and spleen modulate the presence of interleukin-1β in β cells, possibly because of the reduction of glucose-induced insulin secretion, indicating a bidirectional flow between autonomous neural firing and the spleen, with repercussions for the endocrine pancreas.
Collapse
Affiliation(s)
- Bruna Schumaker Siqueira
- From the Laboratory of Endocrine Physiology and Metabolism (LAFEM), Western Paraná State University (UNIOESTE)
| | - Vanessa Marieli Ceglarek
- From the Laboratory of Endocrine Physiology and Metabolism (LAFEM), Western Paraná State University (UNIOESTE)
| | | | | | - Thiago Rentz
- Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas
| | - Juliane Zanon Nenevê
- From the Laboratory of Endocrine Physiology and Metabolism (LAFEM), Western Paraná State University (UNIOESTE)
| | - Karoline Zanella Volinski
- From the Laboratory of Endocrine Physiology and Metabolism (LAFEM), Western Paraná State University (UNIOESTE)
| | - Sandra Schmidt Moraes
- From the Laboratory of Endocrine Physiology and Metabolism (LAFEM), Western Paraná State University (UNIOESTE)
| | - Ananda Malta
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá (UEM), Maringá
| | - Paulo Cezar de Freitas Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá (UEM), Maringá
| | | | - Sandra Lucinei Balbo
- From the Laboratory of Endocrine Physiology and Metabolism (LAFEM), Western Paraná State University (UNIOESTE)
| | - Sabrina Grassiolli
- From the Laboratory of Endocrine Physiology and Metabolism (LAFEM), Western Paraná State University (UNIOESTE)
| |
Collapse
|
146
|
Sokal DM, McSloy A, Donegà M, Kirk J, Colas RA, Dolezalova N, Gomez EA, Gupta I, Fjordbakk CT, Ouchouche S, Matteucci PB, Schlegel K, Bashirullah R, Werling D, Harman K, Rowles A, Yazicioglu RF, Dalli J, Chew DJ, Perkins JD. Splenic Nerve Neuromodulation Reduces Inflammation and Promotes Resolution in Chronically Implanted Pigs. Front Immunol 2021; 12:649786. [PMID: 33859641 PMCID: PMC8043071 DOI: 10.3389/fimmu.2021.649786] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/11/2021] [Indexed: 11/28/2022] Open
Abstract
Neuromodulation of the immune system has been proposed as a novel therapeutic strategy for the treatment of inflammatory conditions. We recently demonstrated that stimulation of near-organ autonomic nerves to the spleen can be harnessed to modulate the inflammatory response in an anesthetized pig model. The development of neuromodulation therapy for the clinic requires chronic efficacy and safety testing in a large animal model. This manuscript describes the effects of longitudinal conscious splenic nerve neuromodulation in chronically-implanted pigs. Firstly, clinically-relevant stimulation parameters were refined to efficiently activate the splenic nerve while reducing changes in cardiovascular parameters. Subsequently, pigs were implanted with a circumferential cuff electrode around the splenic neurovascular bundle connected to an implantable pulse generator, using a minimally-invasive laparoscopic procedure. Tolerability of stimulation was demonstrated in freely-behaving pigs using the refined stimulation parameters. Longitudinal stimulation significantly reduced circulating tumor necrosis factor alpha levels induced by systemic endotoxemia. This effect was accompanied by reduced peripheral monocytopenia as well as a lower systemic accumulation of CD16+CD14high pro-inflammatory monocytes. Further, lipid mediator profiling analysis demonstrated an increased concentration of specialized pro-resolving mediators in peripheral plasma of stimulated animals, with a concomitant reduction of pro-inflammatory eicosanoids including prostaglandins. Terminal electrophysiological and physiological measurements and histopathological assessment demonstrated integrity of the splenic nerves up to 70 days post implantation. These chronic translational experiments demonstrate that daily splenic nerve neuromodulation, via implanted electronics and clinically-relevant stimulation parameters, is well tolerated and is able to prime the immune system toward a less inflammatory, pro-resolving phenotype.
Collapse
Affiliation(s)
- David M. Sokal
- Translation and Engineering, Galvani Bioelectronics, Stevenage, United Kingdom
| | - Alex McSloy
- Clinical Science & Services, The Royal Veterinary College, Hatfield, United Kingdom
| | - Matteo Donegà
- Translation and Engineering, Galvani Bioelectronics, Stevenage, United Kingdom
| | - Joseph Kirk
- Clinical Science & Services, The Royal Veterinary College, Hatfield, United Kingdom
| | - Romain A. Colas
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| | - Nikola Dolezalova
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Esteban A. Gomez
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| | - Isha Gupta
- Translation and Engineering, Galvani Bioelectronics, Stevenage, United Kingdom
| | | | - Sebastien Ouchouche
- Translation and Engineering, Galvani Bioelectronics, Stevenage, United Kingdom
| | - Paul B. Matteucci
- Translation and Engineering, Galvani Bioelectronics, Stevenage, United Kingdom
| | - Kristina Schlegel
- Translation and Engineering, Galvani Bioelectronics, Stevenage, United Kingdom
| | - Rizwan Bashirullah
- Translation and Engineering, Galvani Bioelectronics, Stevenage, United Kingdom
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Kim Harman
- Clinical Science & Services, The Royal Veterinary College, Hatfield, United Kingdom
| | - Alison Rowles
- Non-Clinical Safety, GlaxoSmithKline, Ware, United Kingdom
| | | | - Jesmond Dalli
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| | - Daniel J. Chew
- Translation and Engineering, Galvani Bioelectronics, Stevenage, United Kingdom
| | - Justin D. Perkins
- Clinical Science & Services, The Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
147
|
Bonaz B, Sinniger V, Pellissier S. Therapeutic Potential of Vagus Nerve Stimulation for Inflammatory Bowel Diseases. Front Neurosci 2021; 15:650971. [PMID: 33828455 PMCID: PMC8019822 DOI: 10.3389/fnins.2021.650971] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
The vagus nerve is a mixed nerve, comprising 80% afferent fibers and 20% efferent fibers. It allows a bidirectional communication between the central nervous system and the digestive tract. It has a dual anti-inflammatory properties via activation of the hypothalamic pituitary adrenal axis, by its afferents, but also through a vago-vagal inflammatory reflex involving an afferent (vagal) and an efferent (vagal) arm, called the cholinergic anti-inflammatory pathway. Indeed, the release of acetylcholine at the end of its efferent fibers is able to inhibit the release of tumor necrosis factor (TNF) alpha by macrophages via an interneuron of the enteric nervous system synapsing between the efferent vagal endings and the macrophages and releasing acetylcholine. The vagus nerve also synapses with the splenic sympathetic nerve to inhibit the release of TNF-alpha by splenic macrophages. It can also activate the spinal sympathetic system after central integration of its afferents. This anti-TNF-alpha effect of the vagus nerve can be used in the treatment of chronic inflammatory bowel diseases, represented by Crohn’s disease and ulcerative colitis where this cytokine plays a key role. Bioelectronic medicine, via vagus nerve stimulation, may have an interest in this non-drug therapeutic approach as an alternative to conventional anti-TNF-alpha drugs, which are not devoid of side effects feared by patients.
Collapse
Affiliation(s)
- Bruno Bonaz
- Division of Hepato-Gastroenterology, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France.,Grenoble Institute of Neurosciences, Inserm U1216, University Grenoble Alpes, Grenoble, France
| | - Valérie Sinniger
- Division of Hepato-Gastroenterology, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France.,Grenoble Institute of Neurosciences, Inserm U1216, University Grenoble Alpes, Grenoble, France
| | - Sonia Pellissier
- Laboratoire Inter-Universitaire de Psychologie Personnalité, Cognition, Changement Social, University Grenoble Alpes, University Savoie Mont Blanc, Grenoble, France
| |
Collapse
|
148
|
Hilderman M, Bruchfeld A. The cholinergic anti-inflammatory pathway in chronic kidney disease-review and vagus nerve stimulation clinical pilot study. Nephrol Dial Transplant 2021; 35:1840-1852. [PMID: 33151338 PMCID: PMC7643692 DOI: 10.1093/ndt/gfaa200] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/17/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation and autonomic dysfunction are common findings in chronic and end-stage kidney disease and contribute to a markedly increased risk of mortality in this patient population. The cholinergic anti-inflammatory pathway (CAP) is a vagal neuro-immune circuit that upholds the homoeostatic balance of inflammatory activity in response to cell injury and pathogens. CAP models have been examined in preclinical studies to investigate its significance in a range of clinical inflammatory conditions and diseases. More recently, cervical vagus nerve stimulation (VNS) implants have been shown to be of potential benefit for patients with chronic autoimmune diseases such as rheumatoid arthritis and inflammatory bowel disease. We have previously shown that dialysis patients have a functional CAP ex vivo. Here we review the field and the potential role of the CAP in acute kidney injury and chronic kidney disease (CKD) as well as in hypertension. We also present a VNS pilot study in haemodialysis patients. Controlling inflammation by neuroimmune modulation may lead to new therapeutic modalities for improved treatment, outcome, prognosis and quality of life for patients with CKD.
Collapse
Affiliation(s)
- Marie Hilderman
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annette Bruchfeld
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
149
|
Kania AM, Weiler KN, Kurian AP, Opena ML, Orellana JN, Stauss HM. Activation of the cholinergic antiinflammatory reflex by occipitoatlantal decompression and transcutaneous auricular vagus nerve stimulation. J Osteopath Med 2021; 121:401-415. [PMID: 33694358 DOI: 10.1515/jom-2020-0071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/09/2020] [Indexed: 01/14/2023]
Abstract
CONTEXT The parasympathetic-mediated inflammatory reflex inhibits excessive proinflammatory cytokine production. Noninvasive techniques, including occipitoatlantal decompression (OA-D) and transcutaneous auricular vagus nerve stimulation (taVNS), have been demonstrated to increase parasympathetic tone. OBJECTIVES To test the hypothesis that OA-D and taVNS increase parasympathetic nervous system activity and inhibit proinflammatory cytokine mobilization and/or production. METHODS Healthy adult participants were randomized to receive OA-D (5 min of OA-D followed by 10 min of rest; n=8), taVNS (15 min; n=9), or no intervention (15 min, time control; n=10) on three consecutive days. Before and after these interventions, saliva samples were collected for determination of the cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor α (TNF-α). Arterial blood pressure and the electrocardiogram were recorded for a 30-min baseline, throughout the intervention, and during a 30-min recovery period to derive heart rate and blood pressure variability markers as indices of vagal and sympathetic control. RESULTS OA-D and taVNS increased root mean square of successive RR interval differences (RMSSD) and high frequency heart rate variability, which are established markers for parasympathetic modulation of cardiac function. In all three groups, the experimental protocol was associated with a significant increase in salivary cytokine concentrations. However, the increase in IL-1β was significantly less in the taVNS group (+66 ± 13 pg/mL; p<0.05) than in the time control group (+142 ± 24 pg/mL). A similar trend was observed in the taVNS group for TNF-α (+1.7 ± 0.3 pg/mL vs. 4.1 ± 1.3 pg/mL; p<0.10). In the OA-D group baseline IL-6, IL-8, and TNF-α levels on the third study day were significantly lower than on the first study day (IL-6: 2.3 ± 0.4 vs. 3.2 ± 0.6 pg/mL, p<0.05; IL-8: 190 ± 61 vs. 483 ± 125 pg/mL, p <0.05; TNF-α: 1.2 ± 0.3 vs. 2.3 ± 0.4 pg/mL, p<0.05). OA-D decreased mean blood pressure from the first (100 ± 8 mmHg) to the second (92 ± 6 mmHg; p<0.05) and third (93 ± 8 mmHg; p<0.05) study days and reduced low frequency spectral power of systolic blood pressure variability (19 ± 3 mmHg2 after OA-D vs. 28 ± 5 mmHg2 before OA-D; p<0.05), a marker of sympathetic modulation of vascular tone. OA-D also increased baroreceptor-heart rate reflex sensitivity from the first (13.7 ± 3.0 ms/mmHg) to the second (18.4 ± 4.3 ms/mmHg; p<0.05) and third (16.9 ± 4.2 ms/mmHg; p<0.05) study days. CONCLUSIONS Both OA-D and taVNS elicited antiinflammatory responses that were associated with increases in heart rate variability-derived markers for parasympathetic function. These findings suggest that OA-D and taVNS activate the parasympathetic antiinflammatory reflex. Furthermore, an antihypertensive effect was observed with OA-D that may be mediated by reduced sympathetic modulation of vascular tone and/or increased baroreceptor reflex sensitivity.
Collapse
Affiliation(s)
- Adrienne M Kania
- Department of Clinical Medicine, Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Kailee N Weiler
- Department of Clinical Medicine, Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Angeline P Kurian
- Department of Clinical Medicine, Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Marielle L Opena
- Department of Clinical Medicine, Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Jennifer N Orellana
- Department of Clinical Medicine, Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Harald M Stauss
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| |
Collapse
|
150
|
Murray K, Rude KM, Sladek J, Reardon C. Divergence of neuroimmune circuits activated by afferent and efferent vagal nerve stimulation in the regulation of inflammation. J Physiol 2021; 599:2075-2084. [PMID: 33491187 DOI: 10.1113/jp281189] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS It has previously been shown that afferent and efferent vagal nerve stimulation potently inhibits lipopolysaccharide (LPS)-induced inflammation Our data show inhibition of inflammation by efferent but not afferent vagal nerve stimulation requires T-cell derived acetylcholine We show that afferent and efferent neuroimmune circuits require β2 -adrenergic receptor signalling ABSTRACT: Chronic inflammation due to inappropriate immune cell activation can have significant effects on a variety of organ systems, reducing lifespan and quality of life. As such, highly targeted control of immune cell activation is a major therapeutic goal. Vagus nerve stimulation (VNS) has emerged as a therapeutic modality that exploits neuroimmune communication to reduce immune cell activation and consequently inflammation. Although vagal efferent fibres were originally identified as the primary driver of anti-inflammatory actions, the vagus nerve in most species of animals predominantly comprises afferent fibres. Stimulation of vagal afferent fibres can also reduce inflammation; it is, however, uncertain how these two neuroimmune circuits diverge. Here we show that afferent VNS induces a mechanism distinct from efferent VNS, ameliorating lipopolysaccharide (LPS)-induced inflammation independently of T-cell derived acetylcholine (ACh) which is required by efferent VNS. Using a β2 -adrenergic receptor antagonist (β2 -AR), we find that immune regulation induced by intact, afferent, or efferent VNS occurs in a β2- AR-dependent manner. Together, our findings indicate that intact VNS activates at least two distinct neuroimmune circuits each with unique mechanisms of action. Selective targeting of either the vagal efferent or afferent fibres may provide more personalized, robust and effective control over inappropriate immune responses.
Collapse
Affiliation(s)
- Kaitlin Murray
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, CA, USA
| | - Kavi M Rude
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, CA, USA
| | - Jessica Sladek
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, CA, USA
| | - Colin Reardon
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, CA, USA
| |
Collapse
|