101
|
Parenchymal and non-parenchymal immune cells in the brain: A critical role in regulating CNS functions. Int J Dev Neurosci 2019; 77:26-38. [PMID: 31026497 DOI: 10.1016/j.ijdevneu.2019.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/18/2019] [Accepted: 04/19/2019] [Indexed: 12/12/2022] Open
Abstract
The presence of immune cells in the central nervous system has long been the subject of research to find out their role. For a long time it was believed that the CNS was a privileged area from an immunological point of view, due to the presence of the blood-brain barrier (BBB), as circulating immune cells were unable to penetrate the brain parenchyma, at least until the integrity of the BBB was preserved. For this reason the study of the CNS immune system has focused on the functions of microglia, the immunocompetent resident element of the brain parenchyma that retain the ability to divide and self-renew during lifespan without any significant contribution from circulating blood cells. More recently, the presence of lymphatic vessels in the dural sinuses has been demonstrated with accompanying lymphocytes, monocytes and other immune cells. Moreover, meningeal macrophages, that is macrophages along the blood vessels and in the choroid plexus (CP), are also present. These non-parenchymal immune cells, together with microglia, can affect multiple CNS functions. Here, we discuss the functional role of parenchymal and non-parenchymal immune cells and their contribution to the regulation of neurogenesis.
Collapse
|
102
|
Clark SM, Notarangelo FM, Li X, Chen S, Schwarcz R, Tonelli LH. Maternal immune activation in rats blunts brain cytokine and kynurenine pathway responses to a second immune challenge in early adulthood. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:286-294. [PMID: 30267854 PMCID: PMC6249106 DOI: 10.1016/j.pnpbp.2018.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 01/07/2023]
Abstract
Maternal immune activation (MIA) with the viral mimic poly I:C provides an established rodent model for studying schizophrenia (SZ) and other human neurodevelopmental disorders. Postnatal infections are additional risk factors in SZ and may cumulatively contribute to the emergence of pathophysiology. Underlying mechanisms may involve metabolites of the kynurenine pathway (KP) of tryptophan degradation, which is readily induced by inflammatory stimuli. Here we compared the expression of selected cytokines and KP enzymes, and the levels of selected KP metabolites, in the brain of MIA offspring following a second, acute immune challenge with lipopolysaccharides (LPS) on postnatal day (PND) 35 (adolescence) or PND 60 (early adulthood). Assessed in adolescence, MIA did not alter the expression of pro-inflammatory cytokines (except TNF-α) or KP metabolite levels compared to controls, but substantially reduced the expression of the anti-inflammatory cytokines IL-4 and IL-10 and influenced the expression of two of the four KP enzymes examined (IDO1 and TDO2). LPS treatment caused distinct changes in the expression of pro- and anti-inflammatory cytokines, as well as KP enzymes in MIA offspring, but had no effect on KP metabolites compared to control rats. Several of these effects were blunted in MIA offspring receiving LPS on PND 60. Notably, LPS caused a significant reduction in brain kynurenine levels in these animals. Of relevance for SZ-related hypotheses, these results indicate that MIA leads to an increasingly defective, rather than an overactive, immune regulation of cerebral KP metabolism during the postnatal period.
Collapse
Affiliation(s)
- Sarah M Clark
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Francesca M Notarangelo
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xin Li
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Leonardo H Tonelli
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
103
|
Pruski M, Lang B. Primary Cilia-An Underexplored Topic in Major Mental Illness. Front Psychiatry 2019; 10:104. [PMID: 30886591 PMCID: PMC6409319 DOI: 10.3389/fpsyt.2019.00104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/12/2019] [Indexed: 12/20/2022] Open
Abstract
Though much progress has been made in recent years towards understanding the function and physiology of primary cilia, they remain a somewhat elusive organelle. Some studies have explored the role of primary cilia in the developing nervous system, and their dysfunction has been linked with several neurosensory deficits. Yet, very little has been written on their potential role in psychiatric disorders. This article provides an overview of some of the functions of primary cilia in signalling pathways, and demonstrates that they are a worthy candidate in psychiatric research. The links between primary cilia and major mental illness have been demonstrated to exist at several levels, spanning genetics, signalling pathways, and pharmacology as well as cell division and migration. The primary focus of this review is on the sensory role of the primary cilium and the neurodevelopmental hypothesis of psychiatric disease. As such, the primary cilium is demonstrated to be a key link between the cellular environment and cell behaviour, and hence of key importance in the considerations of the nature and nurture debate in psychiatric research.
Collapse
Affiliation(s)
- Michal Pruski
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Critical Care Laboratory, Critical Care Directorate, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Bing Lang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
104
|
Domen P, Michielse S, Peeters S, Viechtbauer W, van Os J, Marcelis M. Childhood trauma- and cannabis-associated microstructural white matter changes in patients with psychotic disorder: a longitudinal family-based diffusion imaging study. Psychol Med 2019; 49:628-638. [PMID: 29807550 DOI: 10.1017/s0033291718001320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Decreased white matter (WM) integrity in patients with psychotic disorder has been a consistent finding in diffusion tensor imaging (DTI) studies. However, the contribution of environmental risk factors to these WM alterations is rarely investigated. The current study examines whether individuals with (increased risk for) psychotic disorder will show increased WM integrity change over time with increasing levels of childhood trauma and cannabis exposure. METHODS DTI scans were obtained from 85 patients with a psychotic disorder, 93 non-psychotic siblings and 80 healthy controls, of which 60% were rescanned 3 years later. In a whole-brain voxel-based analysis, associations between change in fractional anisotropy (ΔFA) and environmental exposures as well as interactions between group and environmental exposure in the model of FA and ΔFA were investigated. Analyses were adjusted for a priori hypothesized confounding variables: age, sex, and level of education. RESULTS At baseline, no significant associations were found between FA and both environmental risk factors. At follow-up as well as over a 3-year interval, significant interactions between group and, respectively, cannabis exposure and childhood trauma exposure in the model of FA and ΔFA were found. Patients showed more FA decrease over time compared with both controls and siblings when exposed to higher levels of cannabis or childhood trauma. CONCLUSIONS Higher levels of cannabis or childhood trauma may compromise connectivity over the course of the illness in patients, but not in individuals at low or higher than average genetic risk for psychotic disorder, suggesting interactions between the environment and illness-related factors.
Collapse
Affiliation(s)
- Patrick Domen
- Department of Psychiatry and Neuropsychology,School for Mental Health and Neuroscience, Maastricht University, Maastricht,The Netherlands
| | - Stijn Michielse
- Department of Psychiatry and Neuropsychology,School for Mental Health and Neuroscience, Maastricht University, Maastricht,The Netherlands
| | - Sanne Peeters
- Department of Psychiatry and Neuropsychology,School for Mental Health and Neuroscience, Maastricht University, Maastricht,The Netherlands
| | - Wolfgang Viechtbauer
- Department of Psychiatry and Neuropsychology,School for Mental Health and Neuroscience, Maastricht University, Maastricht,The Netherlands
| | - Jim van Os
- Department of Psychiatry and Neuropsychology,School for Mental Health and Neuroscience, Maastricht University, Maastricht,The Netherlands
| | - Machteld Marcelis
- Department of Psychiatry and Neuropsychology,School for Mental Health and Neuroscience, Maastricht University, Maastricht,The Netherlands
| |
Collapse
|
105
|
On Wah DT, Kavaliers M, Bishnoi IR, Ossenkopp KP. Lipopolysaccharide (LPS) induced sickness in early adolescence alters the behavioral effects of the short-chain fatty acid, propionic acid, in late adolescence and adulthood: Examining anxiety and startle reactivity. Behav Brain Res 2019; 360:312-322. [DOI: 10.1016/j.bbr.2018.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/29/2018] [Accepted: 12/01/2018] [Indexed: 11/16/2022]
|
106
|
Ding Y, Ou Y, Su Q, Pan P, Shan X, Chen J, Liu F, Zhang Z, Zhao J, Guo W. Enhanced Global-Brain Functional Connectivity in the Left Superior Frontal Gyrus as a Possible Endophenotype for Schizophrenia. Front Neurosci 2019; 13:145. [PMID: 30863277 PMCID: PMC6399149 DOI: 10.3389/fnins.2019.00145] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/08/2019] [Indexed: 01/04/2023] Open
Abstract
The notion of dysconnectivity in schizophrenia has been put forward for many years and results in substantial attempts to explore altered functional connectivity (FC) within different networks with inconsistent results. Clinical, demographical, and methodological heterogeneity may contribute to the inconsistency. Forty-four patients with first-episode, drug-naive schizophrenia, 42 unaffected siblings of schizophrenia patients and 44 healthy controls took part in this study. Global-brain FC (GFC) was employed to analyze the imaging data. Compared with healthy controls, patients with schizophrenia and unaffected siblings shared enhanced GFC in the left superior frontal gyrus (SFG). In addition, patients had increased GFC mainly in the thalamo-cortical network, including the bilateral thalamus, bilateral posterior cingulate cortex (PCC)/precuneus, left superior medial prefrontal cortex (MPFC), right angular gyrus, and right SFG/middle frontal gyrus and decreased GFC in the left ITG/cerebellum Crus I. No other altered GFC values were observed in the siblings group relative to the control group. Further ROC analysis showed that increased GFC in the left SFG could separate the patients or the siblings from the controls with acceptable sensitivities. Our findings suggest that increased GFC in the left SFG may serve as a potential endophenotype for schizophrenia.
Collapse
Affiliation(s)
- Yudan Ding
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yangpan Ou
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qinji Su
- Mental Health Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pan Pan
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoxiao Shan
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhikun Zhang
- Mental Health Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
107
|
Tylš F, Brunovský M, Šulcová K, Kohútová B, Ryznarová Z, Kopeček M. Latent Schizencephaly With Psychotic Phenotype or Schizophrenia With Schizencephaly? A Case Report and Review of the Literature. Clin EEG Neurosci 2019; 50:13-19. [PMID: 29914267 DOI: 10.1177/1550059418781119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Although schizencephaly belongs to the class of neurodevelopmental disorders, which are a well-known predisposing factor for psychosis, there is a lack of relevant studies and diagnostic guidelines on this relationship. METHOD A case report of first-episode psychosis with persistent negative symptoms associated with schizencephaly is described and compared with 7 other cases found in the literature. RESULTS We found perinatal pathology, cognitive deficit, and EEG abnormality in a patient with atypical initial symptoms of psychosis such as olfactory hallucinations. Abnormal EEG findings (left frontal spikes and frontal intermittent rhythmic delta activity) called for magnetic resonance imaging, which revealed left parieto-occipital closed-lip schizencephaly. The patient exhibited a partial response to low-dose amisulpride treatment. CONCLUSION We conclude that schizencephaly in our patient was at first asymptomatic and later developed into clinically manifest schizophrenia-like disorder. Both magnetic resonance imaging and EEG were essential tools for establishing this diagnosis.
Collapse
Affiliation(s)
- Filip Tylš
- 1 National Institute of Mental Health, Klecany, Topolová 748, Czech Republic.,2 The Department of Psychiatry, 3rd Faculty of Medicine, Charles University, Ruská 87, Czech Republic
| | - Martin Brunovský
- 1 National Institute of Mental Health, Klecany, Topolová 748, Czech Republic.,2 The Department of Psychiatry, 3rd Faculty of Medicine, Charles University, Ruská 87, Czech Republic
| | - Kateřina Šulcová
- 1 National Institute of Mental Health, Klecany, Topolová 748, Czech Republic.,2 The Department of Psychiatry, 3rd Faculty of Medicine, Charles University, Ruská 87, Czech Republic
| | - Barbora Kohútová
- 1 National Institute of Mental Health, Klecany, Topolová 748, Czech Republic.,2 The Department of Psychiatry, 3rd Faculty of Medicine, Charles University, Ruská 87, Czech Republic
| | - Zuzana Ryznarová
- 1 National Institute of Mental Health, Klecany, Topolová 748, Czech Republic.,3 Department of Radiology, Na Homolce Hospital, Prague, Czech Republic
| | - Miloslav Kopeček
- 1 National Institute of Mental Health, Klecany, Topolová 748, Czech Republic.,2 The Department of Psychiatry, 3rd Faculty of Medicine, Charles University, Ruská 87, Czech Republic
| |
Collapse
|
108
|
Development of the MAM model of schizophrenia in mice: Sex similarities and differences of hippocampal and prefrontal cortical function. Neuropharmacology 2019; 144:193-207. [DOI: 10.1016/j.neuropharm.2018.10.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/06/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
|
109
|
Schroeder A, van den Buuse M, Hill RA. Reelin Haploinsufficiency and Late-Adolescent Corticosterone Treatment Induce Long-Lasting and Female-Specific Molecular Changes in the Dorsal Hippocampus. Brain Sci 2018; 8:brainsci8070118. [PMID: 29941797 PMCID: PMC6070826 DOI: 10.3390/brainsci8070118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 12/24/2022] Open
Abstract
Reelin depletion and stress seem to affect similar pathways including GABAergic and glutamatergic signaling and both are implicated in psychiatric disorders in late adolescence/early adulthood. The interaction between reelin depletion and stress, however, remains unclear. To investigate this, male and female heterozygous reelin mice (HRM) and wildtype (WT) controls were treated with the stress hormone, corticosterone (CORT), during late adolescence to simulate chronic stress. Glucocorticoid receptors (GR), N-methyl-d-aspartate receptor (NMDAr) subunits, glutamic acid decarboxylase (GAD67) and parvalbumin (PV) were measured in the hippocampus and the prefrontal cortex (PFC) in adulthood. While no changes were seen in male mice, female HRM showed a significant reduction in GR expression in the dorsal hippocampus. In addition, CORT reduced GR levels as well as GluN2B and GluN2C subunits of NMDAr in the dorsal hippocampus in female mice only. CORT furthermore reduced GluN1 levels in the PFC of female mice. The combined effect of HRM and CORT treatment appeared to be additive in terms of GR expression in the dorsal hippocampus. Female-specific CORT-induced changes were associated with overall higher circulating CORT levels in female compared to male mice. This study shows differential effects of reelin depletion and CORT treatment on GR and NMDAr protein expression in male and female mice, suggesting that females are more susceptible to reelin haploinsufficiency as well as late-adolescent stress. These findings shed more light on female-specific vulnerability to stress and have implications for stress-associated mental illnesses with a female bias including anxiety and major depression.
Collapse
Affiliation(s)
- Anna Schroeder
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia.
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton 3168, Australia.
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Bundoora 3086 Australia.
- Department of Pharmacology, University of Melbourne, Parkville 3052, Australia.
- The College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville 4810, Australia.
| | - Rachel A Hill
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia.
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton 3168, Australia.
| |
Collapse
|
110
|
Novick AM, Levandowski ML, Laumann LE, Philip NS, Price LH, Tyrka AR. The effects of early life stress on reward processing. J Psychiatr Res 2018; 101:80-103. [PMID: 29567510 PMCID: PMC5889741 DOI: 10.1016/j.jpsychires.2018.02.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 01/19/2023]
Abstract
Early life stress (ELS), in the form of childhood maltreatment, abuse, or neglect, increases the risk for psychiatric sequelae later in life. The neurobiology of response to early stress and of reward processing overlap substantially, leading to the prediction that reward processing may be a primary mediator of the effects of early life stress. We describe a growing body of literature investigating the effects of early life stressors on reward processing in animals and humans. Despite variation in the reviewed studies, an emerging pattern of results indicates that ELS results in deficits of ventral striatum-related functions of reward responsiveness and approach motivation, especially when the stressor is experienced in early in development. For stressors experienced later in the juvenile period and adolescence, the animal literature suggests an opposite effect, in which ELS results in increased hedonic drive. Future research in this area will help elucidate the transdiagnostic impact of early life stress, and therefore potentially identify and intervene with at-risk youth, prior to the emergence of clinical psychopathology.
Collapse
Affiliation(s)
- Andrew M. Novick
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA,Corresponding author: Andrew M Novick, MD PhD, Butler Hospital, 345 Blackstone Blvd, Providence, RI 02906, USA,
| | - Mateus L. Levandowski
- Developmental Cognitive Neuroscience Lab (DCNL), Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Laura E. Laumann
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| | - Noah S. Philip
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA,Center for Neurorestoration and Neurotechnology, Providence VA, Providence, RI, USA
| | - Lawrence H. Price
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Audrey R. Tyrka
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
111
|
Decomposing P300 into correlates of genetic risk and current symptoms in schizophrenia: An inter-trial variability analysis. Schizophr Res 2018; 192:232-239. [PMID: 28400070 DOI: 10.1016/j.schres.2017.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/15/2017] [Accepted: 04/01/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND The P300 event-related potential (ERP) component, which reflects cognitive processing, is a candidate biomarker for schizophrenia. However, the role of P300 in the pathophysiology of schizophrenia remains unclear because averaged P300 amplitudes reflect both genetic predisposition and current clinical status. Thus, we sought to identify which aspects of P300 are associated with genetic risk versus symptomatic status via an inter-trial variability analysis. METHODS Auditory P300, clinical symptoms, and neurocognitive function assessments were obtained from forty-five patients with schizophrenia, thirty-two subjects at genetic high risk (GHR), thirty-two subjects at clinical high risk (CHR), and fifty-two healthy control (HC) participants. Both conventional averaging and inter-trial variability analyses were conducted for P300, and results were compared across groups using analysis of variance (ANOVA). Pearson's correlation was utilized to determine associations among inter-trial variability for P300, current symptoms and neurocognitive status. RESULTS Average P300 amplitude was reduced in the GHR, CHR, and schizophrenia groups compared with that in the HC group. P300 inter-trial variability was elevated in the CHR and schizophrenia groups but relatively normal in the GHR and HC groups. Furthermore, P300 inter-trial variability was significantly related to negative symptom severity and neurocognitive performance results in schizophrenia patients. CONCLUSIONS These results suggest that P300 amplitude is an endophenotype for schizophrenia and that greater inter-trial variability of P300 is associated with more severe negative and cognitive symptoms in schizophrenia patients.
Collapse
|
112
|
Sex-dependent impact of early-life stress and adult immobilization in the attribution of incentive salience in rats. PLoS One 2018; 13:e0190044. [PMID: 29324797 PMCID: PMC5764258 DOI: 10.1371/journal.pone.0190044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 12/07/2017] [Indexed: 01/17/2023] Open
Abstract
Early life stress (ELS) induces long-term effects in later functioning and interacts with further exposure to other stressors in adulthood to shape our responsiveness to reward-related cues. The attribution of incentive salience to food-related cues may be modulated by previous and current exposures to stressors in a sex-dependent manner. We hypothesized from human data that exposure to a traumatic (severe) adult stressor will decrease the attribution of incentive salience to reward-associated cues, especially in females, because these effects are modulated by previous ELS. To study these factors in Long-Evans rats, we used as an ELS model of restriction of nesting material and concurrently evaluated maternal care. In adulthood, the offspring of both sexes were exposed to acute immobilization (IMO), and several days after, a Pavlovian conditioning procedure was used to assess the incentive salience of food-related cues. Some rats developed more attraction to the cue predictive of reward (sign-tracking) and others were attracted to the location of the reward itself, the food-magazine (goal-tracking). Several dopaminergic markers were evaluated by in situ hybridization. The results showed that ELS increased maternal care and decreased body weight gain (only in females). Regarding incentive salience, in absolute control animals, females presented slightly greater sign-tracking behavior than males. Non-ELS male rats exposed to IMO showed a bias towards goal-tracking, whereas in females, IMO produced a bias towards sign-tracking. Animals of both sexes not exposed to IMO displayed an intermediate phenotype. ELS in IMO-treated females was able to reduce sign-tracking and decrease tyrosine hydroxylase expression in the ventral tegmental area and dopamine D1 receptor expression in the accumbens shell. Although the predicted greater decrease in females in sign-tracking after IMO exposure was not corroborated by the data, the results highlight the idea that sex is an important factor in the study of the long-term impact of early and adult stressors.
Collapse
|
113
|
Hefter D, Marti HH, Gass P, Inta D. Perinatal Hypoxia and Ischemia in Animal Models of Schizophrenia. Front Psychiatry 2018; 9:106. [PMID: 29651259 PMCID: PMC5884869 DOI: 10.3389/fpsyt.2018.00106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/16/2018] [Indexed: 12/12/2022] Open
Abstract
Intrauterine or perinatal complications constitute a major risk for psychiatric diseases. Infants who suffered from hypoxia-ischemia (HI) are at twofold risk to develop schizophrenia in later life. Several animal models attempt to reproduce these complications to study the yet unknown steps between an insult in early life and outbreak of the disease decades later. However, it is very challenging to find the right type and severity of insult leading to a disease-like phenotype in the animal, but not causing necrosis and focal neurological deficits. By contrast, too mild, repetitive insults may even be protective via conditioning effects. Thus, it is not surprising that animal models of hypoxia lead to mixed results. To achieve clinically translatable findings, better protocols are urgently needed. Therefore, we compare widely used models of hypoxia and HI and propose future directions for the field.
Collapse
Affiliation(s)
- Dimitri Hefter
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Heidelberg, Germany.,RG Neuro- and Sensory Physiology, Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Hugo H Marti
- RG Neurovascular Research, Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Peter Gass
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Heidelberg, Germany
| | - Dragos Inta
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Heidelberg, Germany.,Department of Psychiatry, University of Basel, Basel, Switzerland
| |
Collapse
|
114
|
Márquez-Valadez B, Valle-Bautista R, García-López G, Díaz NF, Molina-Hernández A. Maternal Diabetes and Fetal Programming Toward Neurological Diseases: Beyond Neural Tube Defects. Front Endocrinol (Lausanne) 2018; 9:664. [PMID: 30483218 PMCID: PMC6243582 DOI: 10.3389/fendo.2018.00664] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022] Open
Abstract
The purpose of this review was to search for experimental or clinical evidence on the effect of hyperglycemia in fetal programming to neurological diseases, excluding evident neural tube defects. The lack of timely diagnosis and the inadequate control of diabetes during pregnancy have been related with postnatal obesity, low intellectual and verbal coefficients, language and motor deficits, attention deficit with hyperactivity, problems in psychosocial development, and an increased predisposition to autism and schizophrenia. It has been proposed that several childhood or adulthood diseases have their origin during fetal development through a phenomenon called fetal programming. However, not all the relationships between the outcomes mentioned above and diabetes during gestation are clear, well-studied, or have been related to fetal programming. To understand this relationship, it is imperative to understand how developmental processes take place in health, in order to understand how the functional cytoarchitecture of the central nervous system takes place; to identify changes prompted by hyperglycemia, and to correlate them with the above postnatal impaired functions. Although changes in the establishment of patterns during central nervous system fetal development are related to a wide variety of neurological pathologies, the mechanism by which several maternal conditions promote fetal alterations that contribute to impaired neural development with postnatal consequences are not clear. Animal models have been extremely useful in studying the effect of maternal pathologies on embryo and fetal development, since obtaining central nervous system tissue in humans with normal appearance during fetal development is an important limitation. This review explores the state of the art on this topic, to help establish the way forward in the study of fetal programming under hyperglycemia and its impact on neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Berenice Márquez-Valadez
- Department of Physiology and Cell Development, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rocío Valle-Bautista
- Department of Physiology and Cell Development, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Guadalupe García-López
- Department of Physiology and Cell Development, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Néstor Fabián Díaz
- Department of Physiology and Cell Development, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Anayansi Molina-Hernández
- Department of Physiology and Cell Development, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
- *Correspondence: Anayansi Molina-Hernández
| |
Collapse
|
115
|
Groves NJ, Zhou M, Jhaveri DJ, McGrath JJ, Burne THJ. Adult vitamin D deficiency exacerbates impairments caused by social stress in BALB/c and C57BL/6 mice. Psychoneuroendocrinology 2017; 86:53-63. [PMID: 28915381 DOI: 10.1016/j.psyneuen.2017.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/18/2017] [Accepted: 09/03/2017] [Indexed: 02/06/2023]
Abstract
Vitamin D deficiency is prevalent in adults throughout the world. Epidemiological studies have shown significant associations between vitamin D deficiency and an increased risk of various neuropsychiatric and neurodegenerative disorders, such as schizophrenia, depression, Alzheimer's disease and cognitive impairment. However, studies based on observational epidemiology cannot address questions of causality; they cannot determine if vitamin D deficiency is a causal factor leading to the adverse health outcome. The main aim of this study was to determine if AVD deficiency would exacerbate the effects of a secondary exposure, in this case social stress, in BALB/c mice and in the more resilient C57BL/6 mice. Ten-week old male BALB/c and C57BL/6 mice were fed a control or vitamin D deficient diet for 10 weeks, and the mice were further separated into one of two groups for social treatment, either Separated (SEP) or Social Defeat (DEF). SEP mice were placed two per cage with a perforated Plexiglas divider, whereas the DEF mice underwent 10days of social defeat prior to behavioural testing. We found that AVD-deficient mice were more vulnerable to the effects of social stress using a social avoidance test, and this was dependent on strain. These results support the hypothesis that vitamin D deficiency may exacerbate behavioural outcomes in mice vulnerable to stress, a finding that can help guide future studies. Importantly, these discoveries support the epidemiological link between vitamin D deficiency and neuropsychiatric and neurodegenerative disorders; and has provided clues that can guide future studies related to unravelling the mechanisms of action linking adult vitamin D deficiency and adverse brain related outcomes.
Collapse
Affiliation(s)
- Natalie J Groves
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Mei Zhou
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Dhanisha J Jhaveri
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia; Mater Research Institute, The University of Queensland, South Brisbane, QLD, Australia
| | - John J McGrath
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia; Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Richlands, QLD, Australia; National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
| | - Thomas H J Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia; Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Richlands, QLD, Australia.
| |
Collapse
|
116
|
Effects of omega-3 PUFA on immune markers in adolescent individuals at ultra-high risk for psychosis - Results of the randomized controlled Vienna omega-3 study. Schizophr Res 2017; 188:110-117. [PMID: 28126360 DOI: 10.1016/j.schres.2017.01.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 01/07/2017] [Accepted: 01/13/2017] [Indexed: 02/07/2023]
Abstract
Alterations of immune function have been reported in ultra-high risk (UHR) for psychosis patients causing expectations in terms of predictive meaningfulness and benefits of anti-inflammatory agents. According to a RCT in UHR-patients supplementation of omega-3 polyunsaturated fatty acids (PUFA) was effective in reducing transition to psychosis risk and to improve symptomatology. Based on preclinical findings, we now investigated state marker properties of and the influence of PUFA on immune markers in a RCT (clinical trials.gov Identifier: NCT00396643). In a longitudinal design we measured plasma levels of the pro-inflammatory interleukin 6 (IL-6), the soluble alpha (Tac) subunit of the interleukin 2 receptor (sIL-2r), and the circulating soluble form of the intercellular adhesion molecule one (sICAM-1), in 79 help-seeking UHR individuals (13-25years of age). Using linear mixed model (LMM) analysis, we investigated the effects of 12weeks supplementation of either 1.2g/d PUFA (n=38) or Placebo (n=41). At baseline, inflammatory markers were not altered in patients who later suffered transition to psychosis within one year (n=12; 11 PUFA-group, 1 PL-group). IL-6 was weakly inverse associated with omega-6 PUFA, and highly increased in nicotine users. In univariate tests of the LMM omega-3 PUFA caused a significant increase of sICAM-1 (p=0.022). PUFA did not significantly influence IL-6 or sIL-2r. The enhancement of sICAM-1 in the PUFA condition is suggestive for supportive effects on vascular immune response and immediate Th1 helper cell mediated immune answer, which was found disturbed in manifest schizophrenia, e.g. by facilitating the leukocyte adhesion and migration across the endothelium.
Collapse
|
117
|
Filatova S, Koivumaa-Honkanen H, Hirvonen N, Freeman A, Ivandic I, Hurtig T, Khandaker GM, Jones PB, Moilanen K, Miettunen J. Early motor developmental milestones and schizophrenia: A systematic review and meta-analysis. Schizophr Res 2017; 188:13-20. [PMID: 28131598 DOI: 10.1016/j.schres.2017.01.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 02/02/2023]
Abstract
The neurodevelopmental hypothesis of schizophrenia proposes that impaired brain development is a cause of the illness. Early motor developmental milestones, such as learning to walk, are predictors of later schizophrenia but studies have not been systematically reviewed. The aim of the present systematic review and meta-analysis was to explore the association between early motor developmental milestones and the risk of adult schizophrenia. In addition, we updated a systematic review on motor function and risk of schizophrenia. The PubMed, PsycINFO and Scopus databases were searched for original research articles published up to July 2015. Motor milestones were measured between ages 0 and 13years. Random effect meta-analysis calculated effect estimates (Hedges' g) for the association between individual motor milestones and schizophrenia risk. An electronic database and selected articles reference list search identified 5990 articles after removing duplicates. Sixty-nine full text articles were assessed for eligibility of which six were included in the review. Five studies provided sufficient data for meta-analyses. The following motor milestones were significantly associated with adult schizophrenia risk: walking unsupported (g=0.46; 95% CI 0.27-0.64; p<0.001), standing unsupported (g=0.28; 0.16-0.40; p<0.001) and sitting unsupported (g=0.18; 0.05-0.31; p=0.007). Results for the milestones 'holding head up' and 'grabbing object' were not statistically significant. Delayed walking, sitting and standing unsupported were associated with adult onset schizophrenia. The findings emphasise the importance of timely achievement of these motor milestones in childhood and can contribute to the identification of individuals at risk of psychosis.
Collapse
Affiliation(s)
- S Filatova
- Center for Life Course Health Research, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| | - H Koivumaa-Honkanen
- Institute of Clinical Medicine (Psychiatry), University of Eastern Finland, Kuopio, Finland; Departments of Psychiatry, Kuopio University Hospital, Kuopio, South-Savonia Hospital District, Mikkeli, North Karelia Central Hospital, Joensuu, SOSTERI, Savonlinna, SOTE, Iisalmi, Lapland Central Hospital, Rovaniemi, Finland
| | - N Hirvonen
- Information Studies, Faculty of Humanities, University of Oulu, Oulu, Finland
| | - A Freeman
- Klinik und Poliklinik für Psychiatrie und Psychotherapie der Universität, Leipzig, Germany
| | - I Ivandic
- Department of Medical Informatics, Biometry and Epidemiology - IBE, Chair for Public Health and Health Services Research, Research Unit for Biopsychosocial Health, LMU Munich, Germany
| | - T Hurtig
- Neuroscience Research Unit, University of Oulu, Oulu, Finland; PEDEGO Research Unit, Child Psychiatry, University of Oulu, Finland; Clinic of Child Psychiatry, University Hospital of Oulu, Finland
| | - G M Khandaker
- Department of Psychiatry, University of Cambridge, Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - P B Jones
- Department of Psychiatry, University of Cambridge, Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - K Moilanen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Neuroscience Research Unit, University of Oulu, Oulu, Finland; Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| | - J Miettunen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
118
|
Kawabe K. Effects of chronic forced-swim stress on behavioral properties in rats with neonatal repeated MK-801 treatment. Pharmacol Biochem Behav 2017. [PMID: 28647564 DOI: 10.1016/j.pbb.2017.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The two-hit hypothesis has been used to explain the onset mechanism of schizophrenia. It assumes that predisposition to schizophrenia is originally attributed to vulnerability in the brain which stems from genetic or early developmental factors, and that onset is triggered by exposure to later detrimental factors such as stress in adolescence or adulthood. Based on this hypothesis, the present study examined whether rats that had received neonatal repeated treatment with an N-methyl-d-aspartate (NMDA) receptor antagonist (MK-801), an animal model of schizophrenia, were vulnerable to chronic stress. Rats were treated with MK-801 (0.2mg/kg) or saline twice daily on postnatal days 7-20, and animals in the stress subgroups were subjected to 20days (5days/week×4weeks) of forced-swim stress in adulthood. Following this, behavioral tests (prepulse inhibition, spontaneous alternation, open-field, and forced-swim tests) were carried out. The results indicate that neonatal repeated MK-801 treatment in rats inhibits an increase in immobility in the forced-swim test after they have experienced chronic forced-swim stress. This suggests that rats that have undergone chronic neonatal repeated NMDA receptor blockade could have a reduced ability to habituate or adapt to a stressful situation, and supports the hypothesis that these rats are sensitive or vulnerable to stress.
Collapse
Affiliation(s)
- Kouichi Kawabe
- Graduate School of Literature and Human Sciences, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
| |
Collapse
|
119
|
Hsu KC, Wang FS. Model-based optimization approaches for precision medicine: A case study in presynaptic dopamine overactivity. PLoS One 2017; 12:e0179575. [PMID: 28614410 PMCID: PMC5470743 DOI: 10.1371/journal.pone.0179575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/31/2017] [Indexed: 01/04/2023] Open
Abstract
Precision medicine considers an individual’s unique physiological characteristics as strongly influential in disease vulnerability and in response to specific therapies. Predicting an individual’s susceptibility to developing an illness, making an accurate diagnosis, maximizing therapeutic effects, and minimizing adverse effects for treatment are essential in precision medicine. We introduced model-based precision medicine optimization approaches, including pathogenesis, biomarker detection, and drug target discovery, for treating presynaptic dopamine overactivity. Three classes of one-hit and two-hit enzyme defects were detected as the causes of disease states by the optimization approach of pathogenesis. The cluster analysis and support vector machine was used to detect optimal biomarkers in order to discriminate the accurate etiology from three classes of disease states. Finally, the fuzzy decision-making method was employed to discover common and specific drug targets for each classified disease state. We observed that more accurate diagnoses achieved higher satisfaction grades and dosed fewer enzyme targets to treat the disease. Furthermore, satisfaction grades for common drugs were lower than for specific ones, but common drugs could simultaneously treat several disease states that had different etiologies.
Collapse
Affiliation(s)
- Kai-Cheng Hsu
- Department of Neurology, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Feng-Sheng Wang
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan
- * E-mail:
| |
Collapse
|
120
|
Monte AS, Mello BSF, Borella VCM, da Silva Araujo T, da Silva FER, Sousa FCFD, de Oliveira ACP, Gama CS, Seeman MV, Vasconcelos SMM, Lucena DFD, Macêdo D. Two-hit model of schizophrenia induced by neonatal immune activation and peripubertal stress in rats: Study of sex differences and brain oxidative alterations. Behav Brain Res 2017; 331:30-37. [PMID: 28527693 DOI: 10.1016/j.bbr.2017.04.057] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 02/06/2023]
Abstract
Schizophrenia is considered to be a developmental disorder with distinctive sex differences. Aiming to simulate the vulnerability of the third trimester of human pregnancy to the developmental course of schizophrenia, an animal model was developed, using neonatal poly(I:C) as a first-hit, and peripubertal stress as a second-hit, i.e. a two-hit model. Since, to date, there have been no references to sex differences in the two-hit model, our study sought to determine sex influences on the development of behavior and brain oxidative change in adult rats submitted to neonatal exposure to poly(I:C) on postnatal days 5-7 as well as peripubertal unpredictable stress (PUS). Our results showed that adult two-hit rats present sex-specific behavioral alterations, with females showing more pronounced deficits in prepulse inhibition of the startle reflex and hyperlocomotion, while males showing more deficits in social interaction. Male and female animals exhibited similar working memory deficits. The levels of the endogenous antioxidant, reduced glutathione, were decreased in the prefrontal cortex (PFC) of both male and female animals exposed to both poly(I:C) and poly(I:C)+PUS. Only females presented decrements in GSH levels in the striatum. Nitrite levels were increased in the PFC of male and in the striatum of female poly(I:C)+PUS rats. Increased lipid peroxidation was observed in the PFC of females and in the striatum of males and females exposed to poly(I:C) and poly(I:C)+PUS. Thus, the present study presents evidence for sex differences in behavior and oxidative brain change induced by a two-hit model of schizophrenia.
Collapse
Affiliation(s)
- Aline Santos Monte
- Drug Research and Development Center, Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| | - Bruna Stefânia Ferreira Mello
- Drug Research and Development Center, Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| | - Vládia Célia Moreira Borella
- Drug Research and Development Center, Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| | - Tatiane da Silva Araujo
- Drug Research and Development Center, Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| | | | - Francisca Cléa F de Sousa
- Drug Research and Development Center, Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| | | | - Clarissa Severino Gama
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Mary V Seeman
- Departament of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| | | | - David Freitas De Lucena
- Drug Research and Development Center, Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil; National Institute for Developmental Psychiatry (INCT - INPD, CNPq), Brazil.
| | - Danielle Macêdo
- Drug Research and Development Center, Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Brazil.
| |
Collapse
|
121
|
Hegyi H. Connecting myelin-related and synaptic dysfunction in schizophrenia with SNP-rich gene expression hubs. Sci Rep 2017; 7:45494. [PMID: 28382934 PMCID: PMC5382542 DOI: 10.1038/srep45494] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/27/2017] [Indexed: 12/12/2022] Open
Abstract
Combining genome-wide mapping of SNP-rich regions in schizophrenics and gene expression data in all brain compartments across the human life span revealed that genes with promoters most frequently mutated in schizophrenia are expression hubs interacting with far more genes than the rest of the genome. We summed up the differentially methylated “expression neighbors” of genes that fall into one of 108 distinct schizophrenia-associated loci with high number of SNPs. Surprisingly, the number of expression neighbors of the genes in these loci were 35 times higher for the positively correlating genes (32 times higher for the negatively correlating ones) than for the rest of the ~16000 genes. While the genes in the 108 loci have little known impact in schizophrenia, we identified many more known schizophrenia-related important genes with a high degree of connectedness (e.g. MOBP, SYNGR1 and DGCR6), validating our approach. Both the most connected positive and negative hubs affected synapse-related genes the most, supporting the synaptic origin of schizophrenia. At least half of the top genes in both the correlating and anti-correlating categories are cancer-related, including oncogenes (RRAS and ALDOA), providing further insight into the observed inverse relationship between the two diseases.
Collapse
Affiliation(s)
- Hedi Hegyi
- CEITEC - Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| |
Collapse
|
122
|
Bengoetxea X, Paternain L, Martisova E, Milagro FI, Martínez JA, Campión J, Ramírez MJ. Effects of perinatal diet and prenatal stress on the behavioural profile of aged male and female rats. J Psychopharmacol 2017; 31:356-364. [PMID: 28114845 DOI: 10.1177/0269881116686881] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The present work studies whether chronic prenatal stress (PS) influences the long-term sex-dependent neuropsychological status of offspring and the effects of an early dietary intervention in the dam. In addition, dams were fed with either a high-fat sugar diet (HFSD) or methyl donor supplemented diet (MDSD). PS procedure did not affect body weight of the offspring. MDSD induced decreases in body weight both in male and female offspring (1 month) that were still present in aged rats. HFSD induced an increase in body weight both in male and female offspring that did not persist in aged rats. In the Porsolt forced swimming test, only young males showed increases in immobility time that were reversed by MDSD. In old female rats (20 months), PS-induced cognitive impairment in both the novel object recognition test (NORT) and in the Morris water maze that was reversed by MDSD, whereas in old males, cognitive impairments and reversion by MDSD was evident only in the Morris water maze. HFSD induced cognitive impairment in both control and PS old rats, but there was no additive effect of PS and HFSD. It is proposed here that the diversity of symptoms following PS could arise from programming effects in early brain development and that these effects could be modified by dietary intake of the dam.
Collapse
Affiliation(s)
- Xabier Bengoetxea
- 1 Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
| | - Laura Paternain
- 2 Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Eva Martisova
- 1 Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
| | - Fermin I Milagro
- 2 Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,3 CIBERobn, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Carlos III Health Institute, Madrid, Spain
| | - J Alfredo Martínez
- 2 Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,3 CIBERobn, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Carlos III Health Institute, Madrid, Spain.,4 IDISNA, Navarra's Health Research Institute, Pamplona, Spain
| | - Javier Campión
- 2 Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,3 CIBERobn, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Carlos III Health Institute, Madrid, Spain
| | - María J Ramírez
- 1 Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain.,4 IDISNA, Navarra's Health Research Institute, Pamplona, Spain
| |
Collapse
|
123
|
Ghiani CA, Faundez V. Cellular and molecular mechanisms of neurodevelopmental disorders. J Neurosci Res 2017; 95:1093-1096. [PMID: 28225560 DOI: 10.1002/jnr.24041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Cristina A Ghiani
- Departments of Pathology & Laboratory Medicine and Psychiatry & Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Victor Faundez
- Department of Cell Biology and the Center for Social Translational Neuroscience, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
124
|
Liu C, Bousman CA, Pantelis C, Skafidas E, Zhang D, Yue W, Everall IP. Pathway-wide association study identifies five shared pathways associated with schizophrenia in three ancestral distinct populations. Transl Psychiatry 2017; 7:e1037. [PMID: 28221366 PMCID: PMC5438037 DOI: 10.1038/tp.2017.8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/30/2016] [Indexed: 02/08/2023] Open
Abstract
Genome-wide association studies have confirmed the polygenic nature of schizophrenia and suggest that there are hundreds or thousands of alleles associated with increased liability for the disorder. However, the generalizability of any one allelic marker of liability is remarkably low and has bred the notion that schizophrenia may be better conceptualized as a pathway(s) disorder. Here, we empirically tested this notion by conducting a pathway-wide association study (PWAS) encompassing 255 experimentally validated Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways among 5033 individuals diagnosed with schizophrenia and 5332 unrelated healthy controls across three distinct ethnic populations; European-American (EA), African-American (AA) and Han Chinese (CH). We identified 103, 74 and 87 pathways associated with schizophrenia liability in the EA, CH and AA populations, respectively. About half of these pathways were uniquely associated with schizophrenia liability in each of the three populations. Five pathways (serotonergic synapse, ubiquitin mediated proteolysis, hedgehog signaling, adipocytokine signaling and renin secretion) were shared across all three populations and the single-nucleotide polymorphism sets representing these five pathways were enriched for single-nucleotide polymorphisms with regulatory function. Our findings provide empirical support for schizophrenia as a pathway disorder and suggest schizophrenia is not only a polygenic but likely also a poly-pathway disorder characterized by both genetic and pathway heterogeneity.
Collapse
Affiliation(s)
- C Liu
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - C A Bousman
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of General Practice, The University of Melbourne, Parkville, VIC, Australia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - C Pantelis
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Electrical and Electronic Engineering, Centre for Neural Engineering (CfNE), University of Melbourne, Carlton South, VIC, Australia
- NorthWestern Mental Health, Melbourne, VIC, Australia
| | - E Skafidas
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Electrical and Electronic Engineering, Centre for Neural Engineering (CfNE), University of Melbourne, Carlton South, VIC, Australia
| | - D Zhang
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, China
- Peking-Tsinghua Joint Center for Life Sciences/PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - W Yue
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders (Peking University), Beijing, China
| | - I P Everall
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Electrical and Electronic Engineering, Centre for Neural Engineering (CfNE), University of Melbourne, Carlton South, VIC, Australia
- NorthWestern Mental Health, Melbourne, VIC, Australia
| |
Collapse
|
125
|
Combined effect of BCG vaccination and enriched environment promote neurogenesis and spatial cognition via a shift in meningeal macrophage M2 polarization. J Neuroinflammation 2017; 14:32. [PMID: 28183352 PMCID: PMC5301319 DOI: 10.1186/s12974-017-0808-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/01/2017] [Indexed: 02/08/2023] Open
Abstract
Background The spatial learning abilities of developing mice benefit from extrinsic cues, such as an enriched environment, with concomitant enhancement in cognitive functions. Interestingly, such enhancements can be further increased through intrinsic Bacillus Calmette-Guérin (BCG) vaccination. Results Here, we first report that combined neonatal BCG vaccination and exposure to an enriched environment (Enr) induced combined neurobeneficial effects, including hippocampal long-term potentiation, and increased neurogenesis and spatial learning and memory, in mice exposed to the Enr and vaccinated with BCG relative to those in the Enr that did not receive BCG vaccination. Neonatal BCG vaccination markedly induced anti-inflammatory meningeal macrophage polarization both in regular and Enr breeding mice. The meninges are composed of the pia mater, dura mater, and choroid plexus. Alternatively, this anti-inflammatory activity of the meninges occurred simultaneously with increased expression of the neurotrophic factors BDNF/IGF-1 and the M2 microglial phenotype in the hippocampus. Our results reveal a critical role for BCG vaccination in the regulation of neurogenesis and spatial cognition through meningeal macrophage M2 polarization and neurotrophic factor expression; these effects were completely or partially prevented by minocycline or anti-IL-10 antibody treatment, respectively. Conclusions Together, we first claim that immunological factor and environmental factor induce a combined effect on neurogenesis and cognition via a common pathway-meningeal macrophage M2 polarization. We also present a novel functional association between peripheral T lymphocytes and meningeal macrophages after evoking adaptive immune responses in the periphery whereby T lymphocytes are recruited to the meninges in response to systemic IFN-γ signaling. This leads to meningeal macrophage M2 polarization, subsequent to microglial M2 activation and neurotrophic factor expression, and eventually promotes a positive behavior. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0808-7) contains supplementary material, which is available to authorized users.
Collapse
|
126
|
Liu W, Wang X, Hong W, Wang D, Chen X. Establishment of a schizophrenic animal model through chronic administration of MK-801 in infancy and social isolation in childhood. Infant Behav Dev 2017; 46:135-143. [DOI: 10.1016/j.infbeh.2017.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 01/26/2023]
|
127
|
|
128
|
Mehdi A, Schweinsburg BC, Zehgeer A, Connor DF, Luber MJ, Coffey BJ. Challenges in the Psychopharmacological Management of Very Early-Onset Schizophrenia and Anxiety. J Child Adolesc Psychopharmacol 2016; 26:944-947. [PMID: 27992258 PMCID: PMC6445206 DOI: 10.1089/cap.2016.29120.bjc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Askar Mehdi
- Division of Child and Adolescent Psychiatry, University of Connecticut Medical School, Farmington, Connecticut
| | - Brian C. Schweinsburg
- Division of Child and Adolescent Psychiatry, University of Connecticut Medical School, Farmington, Connecticut
| | - Asima Zehgeer
- Division of Child and Adolescent Psychiatry, University of Connecticut Medical School, Farmington, Connecticut
| | - Daniel F. Connor
- Division of Child and Adolescent Psychiatry, University of Connecticut Medical School, Farmington, Connecticut
| | - Maxwell J. Luber
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Barbara J. Coffey
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
129
|
Vogt D, Waeldin S, Hellhammer D, Meinlschmidt G. The role of early adversity and recent life stress in depression severity in an outpatient sample. J Psychiatr Res 2016; 83:61-70. [PMID: 27566836 DOI: 10.1016/j.jpsychires.2016.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 12/17/2022]
Abstract
Pre-, peri-, and postnatal stress have frequently been reported to be associated with negative health outcomes during adult life. However, it is unclear, if these factors independently predict mental health in adulthood. We estimated potential associations between reports of pre-, peri-, and postnatal stress and depression severity in outpatients (N = 473) diagnosed with depression, anxiety or somatoform disorders by their family physician. We retrospectively assessed pre-, peri-, and postnatal stress and measured depression severity as well as recent life stress using questionnaires. First, we estimated if depression severity was predicted by pre-, peri- and/or postnatal stress using multiple regression models. Second, we compared pre- and postnatal stress levels between patient subgroups of different degrees of depression severity, performing multilevel linear modeling. Third, we analyzed if an association between postnatal stress and current depression severity was mediated by recent life stress. We found no associations of pre-, or perinatal stress with depression severity (all p > 0.05). Higher postnatal stress was associated with higher depression severity (p < 0.001). Patients with moderately severe and severe depression reported higher levels of postnatal stress as compared to patients with none to minimal, or mild depression (all p < 0.05). Mediation analysis revealed a significant indirect effect via recent life stress of the association between postnatal stress and depression severity (p < 0.001). In patients diagnosed for depression, anxiety, and/or somatoform disorders, postnatal but neither pre- nor perinatal stress predicted depression severity in adult life. This association was mediated by recent life stress.
Collapse
Affiliation(s)
- Dominic Vogt
- University of Trier, Department of Clinical and Physiological Psychology, Trier, Germany
| | - Sandra Waeldin
- University of Trier, Department of Clinical and Physiological Psychology, Trier, Germany
| | - Dirk Hellhammer
- University of Trier, Department of Clinical and Physiological Psychology, Trier, Germany; Institute for Stress-Medicine, Max-Planck-Str. 22, 54295 Trier, Germany.
| | - Gunther Meinlschmidt
- University of Basel, Department of Psychology, Division of Clinical Psychology and Epidemiology, Basel, Switzerland; Ruhr-University Bochum, Faculty of Medicine, Bochum, Germany
| |
Collapse
|
130
|
Chuang YA, Hu TM, Chen CH, Hsu SH, Tsai HY, Cheng MC. Rare mutations and hypermethylation of the ARC gene associated with schizophrenia. Schizophr Res 2016; 176:106-113. [PMID: 27464451 DOI: 10.1016/j.schres.2016.07.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 11/19/2022]
Abstract
Activity-regulated cytoskeleton-associated protein (ARC), which interacts with the N-methyl-d-aspartate receptor (NMDAR) complex, is a critical effector molecule downstream of multiple neuronal signaling pathways. Dysregulation of the ARC/NMDAR complex can disrupt learning, memory, and normal brain functions. This study examined the role of ARC in susceptibility to schizophrenia. We used a resequencing strategy to identify the variants of ARC in 1078 subjects, including patients with schizophrenia and normal controls. We identified 16 known SNPs and 27 rare mutations. SNP-based analysis showed no association of ARC with schizophrenia. In addition, the rare mutations did not increase the burden in patients compared with controls. However, one patient-specific allele in the putative ARC promoter region and seven patient-specific mutants in ARC exon regions significantly reduced the reporter gene activity compared with ARC wild-type. Methylation of a putative ARC promoter attenuated reporter activity in vitro, suggesting that ARC expression is regulated by DNA methylation. Pyrosequencing revealed eight hypermethylated CpG sites in the putative ARC promoter region in 64 schizophrenic patients compared with 63 controls. Taken together, our results suggest that both rare variants and epigenetic regulation of ARC contribute to the pathogenesis of schizophrenia in some patients.
Collapse
Affiliation(s)
- Yang-An Chuang
- Department of Psychiatry, Yuli Mental Health Research Center, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Tsung-Ming Hu
- Department of Psychiatry, Yuli Mental Health Research Center, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou and Department and Graduate School of Biomedical Sciences Chang Gung University, Taoyuan, Taiwan
| | - Shih-Hsin Hsu
- Department of Psychiatry, Yuli Mental Health Research Center, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Hsin-Yao Tsai
- Department of Psychiatry, Yuli Mental Health Research Center, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Min-Chih Cheng
- Department of Psychiatry, Yuli Mental Health Research Center, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan; Center for General Education, St. Mary's Junior College of Medicine, Nursing and Management, Yilan County, Taiwan.
| |
Collapse
|
131
|
Does cannabidiol have a role in the treatment of schizophrenia? Schizophr Res 2016; 176:281-290. [PMID: 27374322 DOI: 10.1016/j.schres.2016.06.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 01/08/2023]
Abstract
Schizophrenia is a debilitating psychiatric disorder which places a significant emotional and economic strain on the individual and society-at-large. Unfortunately, currently available therapeutic strategies do not provide adequate relief and some patients are treatment-resistant. In this regard, cannabidiol (CBD), a non-psychoactive constituent of Cannabis sativa, has shown significant promise as a potential antipsychotic for the treatment of schizophrenia. However, there is still considerable uncertainty about the mechanism of action of CBD as well as the brain regions which are thought to mediate its putative antipsychotic effects. We argue that further research on CBD is required to fast-track its progress to the clinic and in doing so, we may generate novel insights into the neurobiology of schizophrenia.
Collapse
|
132
|
Estrogen receptor beta polymorphisms and cognitive performance in women: associations and modifications by genetic and environmental influences. J Neural Transm (Vienna) 2016; 123:1369-1379. [DOI: 10.1007/s00702-016-1620-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 09/05/2016] [Indexed: 01/18/2023]
|
133
|
Winett L, Wallack L, Richardson D, Boone-Heinonen J, Messer L. A Framework to Address Challenges in Communicating the Developmental Origins of Health and Disease. Curr Environ Health Rep 2016; 3:169-77. [PMID: 27449924 PMCID: PMC5560864 DOI: 10.1007/s40572-016-0102-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Findings from the field of Developmental Origins of Health and Disease (DOHaD) suggest that some of the most pressing public health problems facing communities today may begin much earlier than previously understood. In particular, this body of work provides evidence that social, physical, chemical, environmental, and behavioral influences in early life play a significant role in establishing vulnerabilities for chronic disease later in life. Further, because this work points to the importance of adverse environmental exposures that cluster in population groups, it suggests that existing opportunities to intervene at a population level may need to refocus their efforts "upstream" to sufficiently combat the fundamental causes of disease. To translate these findings into improved public health, however, the distance between scientific discovery and population application will need to be bridged by conversations across a breadth of disciplines and social roles. And importantly, those involved will likely begin without a shared vocabulary or conceptual starting point. The purpose of this paper is to support and inform the translation of DOHaD findings from the bench to population-level health promotion and disease prevention, by: (1) discussing the unique communication challenges inherent to translation of DOHaD for broad audiences, (2) introducing the First-hit/Second-hit Framework with an epidemiologic planning matrix as a model for conceptualizing and structuring communication around DOHaD, and (3) discussing the ways in which patterns of communicating DOHaD findings can expand the range of solutions considered and encourage discussion of population-level solutions in relation to one another, rather than in isolation.
Collapse
Affiliation(s)
- Liana Winett
- School of Community Health and OHSU/PSU School of Public Health, Portland State University, PO Box 751, Portland, OR, 97201, USA.
| | - Lawrence Wallack
- School of Community Health and OHSU/PSU School of Public Health, Portland State University, PO Box 751, Portland, OR, 97201, USA
| | - Dawn Richardson
- School of Community Health and OHSU/PSU School of Public Health, Portland State University, PO Box 751, Portland, OR, 97201, USA
| | - Janne Boone-Heinonen
- Public Health and Preventive Medicine and OHSU/PSU School of Public Health, Oregon Health and Science University, 3181 Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Lynne Messer
- School of Community Health and OHSU/PSU School of Public Health, Portland State University, PO Box 751, Portland, OR, 97201, USA
| |
Collapse
|
134
|
Hollins SL, Zavitsanou K, Walker FR, Cairns MJ. Alteration of transcriptional networks in the entorhinal cortex after maternal immune activation and adolescent cannabinoid exposure. Brain Behav Immun 2016; 56:187-96. [PMID: 26923065 DOI: 10.1016/j.bbi.2016.02.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 02/16/2016] [Accepted: 02/24/2016] [Indexed: 02/04/2023] Open
Abstract
Maternal immune activation (MIA) and adolescent cannabinoid exposure (ACE) have both been identified as major environmental risk factors for schizophrenia. We examined the effects of these two risk factors alone, and in combination, on gene expression during late adolescence. Pregnant rats were exposed to the viral infection mimic polyriboinosinic-polyribocytidylic acid (poly I:C) on gestational day (GD) 15. Adolescent offspring received daily injections of the cannabinoid HU210 for 14days starting on postnatal day (PND) 35. Gene expression was examined in the left entorhinal cortex (EC) using mRNA microarrays. We found prenatal treatment with poly I:C alone, or HU210 alone, produced relatively minor changes in gene expression. However, following combined treatments, offspring displayed significant changes in transcription. This dramatic and persistent alteration of transcriptional networks enriched with genes involved in neurotransmission, cellular signalling and schizophrenia, was associated with a corresponding perturbation in the expression of small non-coding microRNA (miRNA). These results suggest that a combination of environmental exposures during development leads to significant genomic remodeling that disrupts maturation of the EC and its associated circuitry with important implications as the potential antecedents of memory and learning deficits in schizophrenia and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sharon L Hollins
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia; Schizophrenia Research Institute, Sydney, NSW, Australia; Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
| | - Katerina Zavitsanou
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Frederick Rohan Walker
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia; Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia; Schizophrenia Research Institute, Sydney, NSW, Australia; Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia.
| |
Collapse
|
135
|
O'Reilly KC, Perica MI, Fenton AA. Memory deficits with intact cognitive control in the methylazoxymethanol acetate (MAM) exposure model of neurodevelopmental insult. Neurobiol Learn Mem 2016; 134 Pt B:294-303. [PMID: 27485950 DOI: 10.1016/j.nlm.2016.07.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/26/2016] [Accepted: 07/30/2016] [Indexed: 01/30/2023]
Abstract
Cognitive impairments are amongst the most debilitating deficits of schizophrenia and the best predictor of functional outcome. Schizophrenia is hypothesized to have a neurodevelopmental origin, making animal models of neurodevelopmental insult important for testing predictions that early insults will impair cognitive function. Rats exposed to methylazoxymethanol acetate (MAM) at gestational day 17 display morphological, physiological and behavioral abnormalities relevant to schizophrenia. Here we investigate the cognitive abilities of adult MAM rats. We examined brain activity in MAM rats by histochemically assessing cytochrome oxidase enzyme activity, a metabolic marker of neuronal activity. To assess cognition, we used a hippocampus-dependent two-frame active place avoidance paradigm to examine learning and spatial memory, as well as cognitive control and flexibility using the same environment and evaluating the same set of behaviors. We confirmed that adult MAM rats have altered hippocampal morphology and brain function, and that they are hyperactive in an open field. The latter likely indicates MAM rats have a sensorimotor gating deficit that is common to many animal models used for schizophrenia research. On first inspection, cognitive control seems impaired in MAM rats, indicated by more errors during the two-frame active place avoidance task. Because MAM rats are hyperactive throughout place avoidance training, we considered the possibility that the hyperlocomotion may account for the apparent cognitive deficits. These deficits were reduced on the basis of measures of cognitive performance that account for motor activity differences. However, though other aspects of memory are intact, the ability of MAM rats to express trial-to-trial memory is delayed compared to control rats. These findings suggest that spatial learning and cognitive abilities are largely intact, that the most prominent cognitive deficit is specific to acquiring memory in the MAM neurodevelopmental model, and that hyperactivity can confound assessments of cognition in animal models of mental dysfunction.
Collapse
Affiliation(s)
- Kally C O'Reilly
- Center for Neural Science, New York University, New York, NY 10003, United States
| | - Maria I Perica
- Center for Neural Science, New York University, New York, NY 10003, United States
| | - André A Fenton
- Center for Neural Science, New York University, New York, NY 10003, United States; Department of Physiology, SUNY Downstate Medical Center, Brooklyn, NY, United States.
| |
Collapse
|
136
|
Mitterauer B. Nonfunctional Glial Proteins in Tripartite Synapses: A Pathophysiological Model of Schizophrenia. Neuroscientist 2016; 11:192-8. [PMID: 16013114 DOI: 10.1177/1073858404265745] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A model for the pathophysiology of schizophrenia is proposed that focuses on an unbalance of transmission in tripartite synapses. Synaptically associated astrocytes should be viewed as integral modulatory elements of tripartite synapses consisting of the presynapse, the postsynapse, and the glial element. Astrocytes may secrete glial binding protein into the synaptic cleft, thus binding free neurotransmitters and thereby reducing the levels of neurotransmitters available for stimulating the postsynapse. Astrocytes also have membrane-bound receptors for neurotransmitters, and when these bind neurotransmitters, the astrocytes upregulate the amount of binding protein secreted into the synapse, resulting in a negative feedback to the presynaptic terminal. The hypothesis presented here is that glia lose their negative feedback function due to loss of function mutations in the genes encoding the binding proteins and glial receptors. The mutations generate proteins that cannot be occupied by their cognate substances of the neuronal system, primarily neurotransmitters. Therefore, the glial-neuronal interaction in tripartite synapses affected becomes totally unbalanced, and the glia lose their inhibitory or boundary-setting function. As a result, neural flux is unconstrained by normal glial boundaries, also the flux of thought on the phenomenological level. Schizophrenia may be caused by the inability to delimit conceptual boundaries.
Collapse
Affiliation(s)
- Bernhard Mitterauer
- Institute of Forensic Neuropsychiatry and Gotthard Günther Archives, University of Salzburg, Austria.
| |
Collapse
|
137
|
Hollins SL, Cairns MJ. MicroRNA: Small RNA mediators of the brains genomic response to environmental stress. Prog Neurobiol 2016; 143:61-81. [PMID: 27317386 DOI: 10.1016/j.pneurobio.2016.06.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/24/2016] [Accepted: 06/11/2016] [Indexed: 01/09/2023]
Abstract
The developmental processes that establish the synaptic architecture of the brain while retaining capacity for activity-dependent remodeling, are complex and involve a combination of genetic and epigenetic influences. Dysregulation of these processes can lead to problems with neural circuitry which manifest in humans as a range of neurodevelopmental syndromes, such as schizophrenia, bipolar disorder and fragile X mental retardation. Recent studies suggest that prenatal, postnatal and intergenerational environmental factors play an important role in the aetiology of stress-related psychopathology. A number of these disorders have been shown to display epigenetic changes in the postmortem brain that reflect early life experience. These changes affect the regulation of gene expression though chromatin remodeling (transcriptional) and post-transcriptional influences, especially small noncoding microRNA (miRNA). These dynamic and influential molecules appear to play an important function in both brain development and its adaption to stress. In this review, we examine the role of miRNA in mediating the brain's response to both prenatal and postnatal environmental perturbations and explore how stress- induced alterations in miRNA expression can regulate the stress response via modulation of the immune system. Given the close relationship between environmental stress, miRNA, and brain development/function, we assert that miRNA hold a significant position at the molecular crossroads between neural development and adaptations to environmental stress. A greater understanding of the dynamics that mediate an individual's predisposition to stress-induced neuropathology has major human health benefits and is an important area of research.
Collapse
Affiliation(s)
- Sharon L Hollins
- School of Biomedical Sciences and Pharmacy and the Hunter Medical Research Institute, the University of Newcastle, Callaghan, NSW 2308, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy and the Hunter Medical Research Institute, the University of Newcastle, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, NSW, Australia.
| |
Collapse
|
138
|
Crider A, Pillai A. The Neurobiological Basis for Social Affiliation in Autism Spectrum Disorder and Schizophrenia. Curr Behav Neurosci Rep 2016; 3:154-164. [DOI: 10.1007/s40473-016-0079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
139
|
Fraguas D, Díaz-Caneja CM, Pina-Camacho L, Janssen J, Arango C. Progressive brain changes in children and adolescents with early-onset psychosis: A meta-analysis of longitudinal MRI studies. Schizophr Res 2016; 173:132-139. [PMID: 25556081 DOI: 10.1016/j.schres.2014.12.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Studies on longitudinal brain volume changes in patients with early-onset psychosis (EOP) are particularly valuable for understanding the neurobiological basis of brain abnormalities associated with psychosis. However, findings have not been consistent across studies in this population. We aimed to conduct a meta-analysis on progressive brain volume changes in children and adolescents with EOP. METHODS A systematic literature search of magnetic resonance imaging (MRI) studies comparing longitudinal brain volume changes in children and adolescents with EOP and healthy controls was conducted. The annualized rates of relative change in brain volume by region of interest (ROI) were used as raw data for the meta-analysis. The effect of age, sex, duration of illness, and specific diagnosis on volume change was also evaluated. RESULTS Five original studies with 156 EOP patients (mean age at baseline MRI in the five studies ranged from 13.3 to 16.6years, 67.31% males) and 163 age- and sex-matched healthy controls, with a mean duration of follow-up of 2.46years (range 2.02-3.40), were included. Frontal gray matter (GM) was the only region in which significant differences in volume change over time were found between patients and controls (Hedges' g -0.435, 95% confidence interval (CI): -0.678 to -0.193, p<0.001). Younger age at baseline MRI was associated with greater loss of temporal GM volume over time in patients as compared with controls (p=0.005). Within patients, a diagnosis of schizophrenia was related to greater occipital GM volume loss over time (p=0.001). CONCLUSIONS Compared with healthy individuals, EOP patients show greater progressive frontal GM loss over the first few years after illness onset. Age at baseline MRI and diagnosis of schizophrenia appear to be significant moderators of particular specific brain volume changes.
Collapse
Affiliation(s)
- David Fraguas
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, CIBERSAM, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Covadonga M Díaz-Caneja
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, CIBERSAM, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Laura Pina-Camacho
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, CIBERSAM, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Madrid, Spain; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, King's College London, London, UK
| | - Joost Janssen
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, CIBERSAM, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Madrid, Spain; Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, The Netherlands
| | - Celso Arango
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, CIBERSAM, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
140
|
Jevtić G, Nikolić T, Mirčić A, Stojković T, Velimirović M, Trajković V, Marković I, Trbovich AM, Radonjić NV, Petronijević ND. Mitochondrial impairment, apoptosis and autophagy in a rat brain as immediate and long-term effects of perinatal phencyclidine treatment - influence of restraint stress. Prog Neuropsychopharmacol Biol Psychiatry 2016; 66:87-96. [PMID: 26655035 DOI: 10.1016/j.pnpbp.2015.11.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/24/2015] [Accepted: 11/30/2015] [Indexed: 01/09/2023]
Abstract
Phencyclidine (PCP) acts as a non-competitive antagonist of glutamatergic N-methyl-d-aspartate receptor. Its perinatal administration to rats causes pathophysiological changes that mimick some pathological features of schizophrenia (SCH). Numerous data indicate that abnormalities in mitochondrial structure and function could be associated with the development of SCH. Mitochondrial dysfunction could result in the activation of apoptosis and/or autophagy. The aim of this study was to assess immediate and long-term effects of perinatal PCP administration and acute restraint stress on the activity of respiratory chain enzymes, expression of apoptosis and autophagy markers and ultrastructural changes in the cortex and hippocampus of the rat brain. Six groups of rats were subcutaneously treated on 2nd, 6th, 9th and 12th postnatal days (P), with either PCP (10mg/kg) or saline (0.9% NaCl). One NaCl and one PCP group were sacrificed on P13, while other two NaCl and PCP groups were sacrificed on P70. The remaining two NaCl and PCP groups were subjected to 1h restraint stress prior sacrifice on P70. Activities of respiratory chain enzymes were assessed spectrophotometrically. Expression of caspase 3 and AIF as markers of apoptosis and Beclin 1, p62 and LC3, as autophagy markers, was assessed by Western blot. Morphological changes of cortical and hippocampal ultrastructure were determined by transmission electron microscopy. Immediate effects of perinatal PCP administration at P13 were increased activities of complex I in the hippocampus and cytochrome c oxidase (COX) in the cortex and hippocampus implying mitochondrial dysfunction. These changes were followed by increased expression of apoptotic markers. However the measurement of autophagy markers at this time point has revealed decrease of this process in cortex and the absence of changes in hippocampus. At P70 the activity of complex I was unchanged while COX activity was significantly decreased in cortex and increased in the hippocampus. Expressions of apoptotic markers were still significantly higher in PCP perinatally treated rats in all investigated structures, but the changes of autophagy markers have indicated increased level of autophagy also in both structures. Restraint stress on P70 has caused increase of COX activity both in NaCl and PCP perinatally treated rats, but this increase was lower in PCP group. Also, restraint stress resulted in decrease of apoptotic and increase of autophagy processes especially in the hippocampus of PCP perinatally treated group. The presence of apoptosis and autophagy in the brain was confirmed by transmission electron microscopy. In this study we have demonstrated for the first time the presence of autophagy in PCP model of SCH. Also, we have shown increased sensitivity of PCP perinatally treated rats to restraint stress, manifested in alterations of apoptotic and autophagy markers. The future studies are necessary to elucidate the role of mitochondria in the pathophysiology of SCH and putative significance for development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Gordana Jevtić
- Institute of Clinical and Medical Biochemistry, School of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia
| | - Tatjana Nikolić
- Institute of Clinical and Medical Biochemistry, School of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia
| | - Aleksandar Mirčić
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Višegradska 26, 11000 Belgrade, Serbia
| | - Tihomir Stojković
- Institute of Clinical and Medical Biochemistry, School of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia
| | - Milica Velimirović
- Institute of Clinical and Medical Biochemistry, School of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia
| | - Vladimir Trajković
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr Subotića 1, 11000 Belgrade, Serbia
| | - Ivanka Marković
- Institute of Clinical and Medical Biochemistry, School of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia
| | - Alexander M Trbovich
- Department of Pathological Physiology, School of Medicine, University of Belgrade, Dr Subotića 9, 11000 Belgrade, Serbia
| | - Nevena V Radonjić
- Institute of Clinical and Medical Biochemistry, School of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia
| | - Nataša D Petronijević
- Institute of Clinical and Medical Biochemistry, School of Medicine, University of Belgrade, Pasterova 2, 11000 Belgrade, Serbia.
| |
Collapse
|
141
|
Rubino T, Parolaro D. The Impact of Exposure to Cannabinoids in Adolescence: Insights From Animal Models. Biol Psychiatry 2016; 79:578-85. [PMID: 26344755 DOI: 10.1016/j.biopsych.2015.07.024] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/16/2015] [Accepted: 07/31/2015] [Indexed: 01/10/2023]
Abstract
The regular use of cannabis during adolescence is of particular concern because use by this age group seems to be associated with an increased likelihood of deleterious consequences, as reported by several epidemiologic studies. However, despite their unquestionable value, epidemiologic data are inconclusive. Modeling the adolescent phase in animals appears to be a useful approach to investigate the impact of cannabis use on the adolescent brain. In these models, adolescent cannabinoid exposure has been reported to cause long-term impairment in specific components of learning and memory and to have differential effects on anxiety, social behavior, and depressive-like signs. These findings suggest that it may represent, per se or in association with other hits, a risk factor for developing psychotic-like symptoms in adulthood. The neurobiological bases of this association include the induction of alterations in the maturational events of the endocannabinoid system occurring in the adolescent brain. Alterations in the endocannabinoid system may profoundly dysregulate developmental processes in some neurotransmitter systems, such as gamma-aminobutyric acid and glutamate, mainly in the cortex. The resulting picture strongly resembles the one present in schizophrenic patients, highlighting the translational value of this experimental approach.
Collapse
Affiliation(s)
- Tiziana Rubino
- Department of Theoretical and Applied Sciences, Biomedical Research Division, and Neuroscience Center, University of Insubria, Busto Arsizi, Italy..
| | - Daniela Parolaro
- Department of Theoretical and Applied Sciences, Biomedical Research Division, and Neuroscience Center, University of Insubria, Busto Arsizi, Italy
| |
Collapse
|
142
|
A two-hit model of suicide-trait-related behaviors in the context of a schizophrenia-like phenotype: Distinct effects of lithium chloride and clozapine. Physiol Behav 2016; 156:48-58. [DOI: 10.1016/j.physbeh.2016.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/18/2015] [Accepted: 01/05/2016] [Indexed: 01/30/2023]
|
143
|
Blomström Å, Karlsson H, Gardner R, Jörgensen L, Magnusson C, Dalman C. Associations Between Maternal Infection During Pregnancy, Childhood Infections, and the Risk of Subsequent Psychotic Disorder--A Swedish Cohort Study of Nearly 2 Million Individuals. Schizophr Bull 2016; 42:125-33. [PMID: 26303935 PMCID: PMC4681563 DOI: 10.1093/schbul/sbv112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Recent studies question whether the risk for psychotic disorder associated with prenatal exposure to infection are due to infections per se, or to shared susceptibility of both infections and psychiatric disorders. Moreover, the potential link between prenatal infection and serious infections during childhood, another alleged risk factor for psychotic disorder, remains unknown. The aim of this study was to investigate the role of maternal infections during pregnancy in context of parental psychiatric disorders and subsequent childhood infections. METHOD All children born in Sweden 1978-1997 were linked to the National Patient Register. Hazard ratios of nonaffective psychosis were estimated in relation to maternal infection during pregnancy and odds ratios of childhood infection were calculated in relation to maternal infection during pregnancy. Relative excess risk due to interaction (RERI) estimated biological synergism between parental psychiatric disorder and maternal infection during pregnancy, and between maternal infection during pregnancy and childhood infection. RESULTS Maternal infection during pregnancy was not statistically significantly associated with offspring psychosis (adjusted hazard ratio: 1.06, 95% CI 0.88-1.27). However, maternal infection during pregnancy and maternal psychiatric disorders acted synergistically in offspring psychosis development (RERI 1.33, 95% CI 0.27-2.38). Maternal infection during pregnancy increased the risk of offspring childhood infections (OR 1.50, 95% CI 1.45-1.54). These 2 factors also interacted in psychosis development (RERI 0.63, 95% CI 0.12-1.14). CONCLUSIONS Among mothers with a history of psychiatric disease, infection during pregnancy increases the risk of psychosis in offspring. Maternal infections during pregnancy appear to contribute to the risk of childhood infections, which together render the child more vulnerable to psychosis development.
Collapse
Affiliation(s)
- Åsa Blomström
- Department of Public Health Sciences, Division of Public Health Epidemiology, Karolinska Institutet, Stockholm, Sweden;
| | - Håkan Karlsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Renee Gardner
- Department of Public Health Sciences, Division of Public Health Epidemiology, Karolinska Institutet, Stockholm, Sweden
| | - Lena Jörgensen
- Department of Public Health Sciences, Division of Public Health Epidemiology, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Magnusson
- Department of Public Health Sciences, Division of Public Health Epidemiology, Karolinska Institutet, Stockholm, Sweden
| | - Christina Dalman
- Department of Public Health Sciences, Division of Public Health Epidemiology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
144
|
Shu C, Xiao L, Tang J, Wang G, Zhang X, Wang X. Blunted behavioral and molecular responses to chronic mild stress in adult rats with experience of infancy maternal separation. TOHOKU J EXP MED 2015; 235:81-7. [PMID: 25742865 DOI: 10.1620/tjem.235.81] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Childhood adversity has profound and persistent effects on brain functions and has been implicated in the etiology of depression. Brain-derived neurotrophic factor (BDNF) and cAMP response element-binding protein (CREB) play critical roles during brain development to maintain neuronal function and structural integrity in adulthood. We therefore investigated the long-term effects of early life adversity on the depression-related behavior and the expression of BDNF and CREB in the hippocampus. Male Sprague-Dawley newborn rats were subjected to maternal separation for 3 h/day on postnatal days 2-14. After the postnatal day 90, rats with or without the experience of infancy maternal separation received a series of unpredictable chronic mild stress (CMS) for 21 days. Sucrose preference and spontaneous activity in the open field test were recorded, and the expression of BDNF and CREB in the hippocampus was measured by real-time RT-PCR and Western blot analyses. Before exposure to CMS, the rats with maternal separation showed the significant decreases in sucrose preference, spontaneous activity, and hippocampal expression of BDNF and CREB, compared to the animals without maternal separation. In contrast, the rats without maternal separation showed greater decreases of the above indictors after CMS, the levels of which were lower than those observed in the rats with maternal separation. Thus, early life adversity leads to long-term decreases in the capacity of enjoying sweetness, spontaneous activity, and hippocampal expression of BDNF and CREB. Moreover, childhood neglect may decrease the neurobehavioral plasticity, thereby blunting the responses to adulthood stress and increasing the susceptibility to depression.
Collapse
Affiliation(s)
- Chang Shu
- Department of Psychiatry, Renmin Hospital, Wuhan University, Hubei, P.R. China
| | | | | | | | | | | |
Collapse
|
145
|
DeVylder JE, Jahn DR, Doherty T, Wilson CS, Wilcox HC, Schiffman J, Hilimire MR. Social and psychological contributions to the co-occurrence of sub-threshold psychotic experiences and suicidal behavior. Soc Psychiatry Psychiatr Epidemiol 2015; 50:1819-30. [PMID: 26493307 DOI: 10.1007/s00127-015-1139-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/13/2015] [Indexed: 12/21/2022]
Abstract
PURPOSE Psychotic experiences and suicidal behavior commonly co-occur in the general population, which can have implications for suicide prevention approaches. However, little is known about the nature of this relation in non-clinical samples. This cross-sectional study aimed to address a research gap by testing whether the relation between psychotic experiences and suicide-related outcomes (ideation, intent, and attempts) is explained by common social and psychological factors. METHODS Young adult college students (N = 590) were assessed for psychotic experiences, suicidal behavior, and a comprehensive set of 24 potential shared risk factors selected through review of past epidemiological studies and meta-analyses. Nonparametric bootstrapped regression models were used to examine whether these factors attenuated or eliminated the associations between psychotic experiences and suicide-related outcomes. RESULTS Psychotic experiences were associated with greater risk for suicidal ideation and behaviors. Adjustment for psychosocial factors, particularly those contributing to cumulative stress, accounted for the associations between psychotic experiences and suicide-related outcomes, except broadly defined suicidal ideation. CONCLUSIONS These results suggest that the robust associations between psychotic experiences and suicidal behavior demonstrated in past studies may be primarily explained by shared risk factors, rather than by causal relations. In our sample, suicidal behavior and sub-threshold psychosis appear to be trans diagnostic clinical outcomes that share common causes, notably cumulative stress, but do not cause one another.
Collapse
Affiliation(s)
- Jordan E DeVylder
- School of Social Work, University of Maryland, 525 W Redwood Street, Baltimore, MD, 21201, USA.
| | - Danielle R Jahn
- VA Capitol Health Care Network (VISN 5) Mental Illness Research, Education, and Clinical Center, Baltimore, MD, USA.,Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tracie Doherty
- School of Social Work, University of Maryland, 525 W Redwood Street, Baltimore, MD, 21201, USA
| | - Camille S Wilson
- Department of Psychology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Holly C Wilcox
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jason Schiffman
- Department of Psychology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Matthew R Hilimire
- Department of Psychology, The College of William and Mary, Williamsburg, VA, USA
| |
Collapse
|
146
|
Resting-state cerebellar-cerebral networks are differently affected in first-episode, drug-naive schizophrenia patients and unaffected siblings. Sci Rep 2015; 5:17275. [PMID: 26608842 PMCID: PMC4660304 DOI: 10.1038/srep17275] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/27/2015] [Indexed: 11/20/2022] Open
Abstract
Dysconnectivity hypothesis posits that schizophrenia is a disorder with dysconnectivity of the cortico-cerebellar-thalamic-cortical circuit (CCTCC). However, it remains unclear to the changes of the cerebral connectivity with the cerebellum in schizophrenia patients and unaffected siblings. Forty-nine patients with first-episode, drug-naive schizophrenia patients, 46 unaffected siblings of schizophrenia patients and 46 healthy controls participated in the study. Seed-based resting-state functional connectivity approach was employed to analyze the data. Compared with the controls, the patients and the siblings share increased default-mode network (DMN) seed – right Crus II connectivity. The patients have decreased right dorsal attention network (DAN) seed – bilateral cerebellum 4,5 connectivity relative to the controls. By contrast, the siblings exhibit increased FC between the right DAN seed and the right cerebellum 6 and right cerebellum 4,5 compared to the controls. No other abnormal connectivities (executive control network and salience network) are observed in the patients/siblings relative to the controls. There are no correlations between abnormal cerebellar-cerebral connectivities and clinical variables. Cerebellar-cerebral connectivity of brain networks within the cerebellum are differently affected in first-episode, drug-naive schizophrenia patients and unaffected siblings. Increased DMN connectivity with the cerebellum may serve as potential endophenotype for schizophrenia.
Collapse
|
147
|
Ayhan Y, McFarland R, Pletnikov MV. Animal models of gene-environment interaction in schizophrenia: A dimensional perspective. Prog Neurobiol 2015; 136:1-27. [PMID: 26510407 DOI: 10.1016/j.pneurobio.2015.10.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 09/07/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022]
Abstract
Schizophrenia has long been considered as a disorder with multifactorial origins. Recent discoveries have advanced our understanding of the genetic architecture of the disease. However, even with the increase of identified risk variants, heritability estimates suggest an important contribution of non-genetic factors. Various environmental risk factors have been proposed to play a role in the etiopathogenesis of schizophrenia. These include season of birth, maternal infections, obstetric complications, adverse events at early childhood, and drug abuse. Despite the progress in identification of genetic and environmental risk factors, we still have a limited understanding of the mechanisms whereby gene-environment interactions (G × E) operate in schizophrenia and psychoses at large. In this review we provide a critical analysis of current animal models of G × E relevant to psychotic disorders and propose that dimensional perspective will advance our understanding of the complex mechanisms of these disorders.
Collapse
Affiliation(s)
- Yavuz Ayhan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Hacettepe University Faculty of Medicine, Department of Psychiatry, Turkey
| | - Ross McFarland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, USA
| | - Mikhail V Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, USA.
| |
Collapse
|
148
|
French L, Gray C, Leonard G, Perron M, Pike GB, Richer L, Séguin JR, Veillette S, Evans CJ, Artiges E, Banaschewski T, Bokde AWL, Bromberg U, Bruehl R, Buchel C, Cattrell A, Conrod PJ, Flor H, Frouin V, Gallinat J, Garavan H, Gowland P, Heinz A, Lemaitre H, Martinot JL, Nees F, Orfanos DP, Pangelinan MM, Poustka L, Rietschel M, Smolka MN, Walter H, Whelan R, Timpson NJ, Schumann G, Smith GD, Pausova Z, Paus T. Early Cannabis Use, Polygenic Risk Score for Schizophrenia and Brain Maturation in Adolescence. JAMA Psychiatry 2015; 72:1002-11. [PMID: 26308966 PMCID: PMC5075969 DOI: 10.1001/jamapsychiatry.2015.1131] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
IMPORTANCE Cannabis use during adolescence is known to increase the risk for schizophrenia in men. Sex differences in the dynamics of brain maturation during adolescence may be of particular importance with regard to vulnerability of the male brain to cannabis exposure. OBJECTIVE To evaluate whether the association between cannabis use and cortical maturation in adolescents is moderated by a polygenic risk score for schizophrenia. DESIGN, SETTING, AND PARTICIPANTS Observation of 3 population-based samples included initial analysis in 1024 adolescents of both sexes from the Canadian Saguenay Youth Study (SYS) and follow-up in 426 adolescents of both sexes from the IMAGEN Study from 8 European cities and 504 male youth from the Avon Longitudinal Study of Parents and Children (ALSPAC) based in England. A total of 1577 participants (aged 12-21 years; 899 [57.0%] male) had (1) information about cannabis use; (2) imaging studies of the brain; and (3) a polygenic risk score for schizophrenia across 108 genetic loci identified by the Psychiatric Genomics Consortium. Data analysis was performed from March 1 through December 31, 2014. MAIN OUTCOMES AND MEASURES Cortical thickness derived from T1-weighted magnetic resonance images. Linear regression tests were used to assess the relationships between cannabis use, cortical thickness, and risk score. RESULTS Across the 3 samples of 1574 participants, a negative association was observed between cannabis use in early adolescence and cortical thickness in male participants with a high polygenic risk score. This observation was not the case for low-risk male participants or for the low- or high-risk female participants. Thus, in SYS male participants, cannabis use interacted with risk score vis-à-vis cortical thickness (P = .009); higher scores were associated with lower thickness only in males who used cannabis. Similarly, in the IMAGEN male participants, cannabis use interacted with increased risk score vis-à-vis a change in decreasing cortical thickness from 14.5 to 18.5 years of age (t137 = -2.36; P = .02). Finally, in the ALSPAC high-risk group of male participants, those who used cannabis most frequently (≥61 occasions) had lower cortical thickness than those who never used cannabis (difference in cortical thickness, 0.07 [95% CI, 0.01-0.12]; P = .02) and those with light use (<5 occasions) (difference in cortical thickness, 0.11 [95% CI, 0.03-0.18]; P = .004). CONCLUSIONS AND RELEVANCE Cannabis use in early adolescence moderates the association between the genetic risk for schizophrenia and cortical maturation among male individuals. This finding implicates processes underlying cortical maturation in mediating the link between cannabis use and liability to schizophrenia.
Collapse
Affiliation(s)
- Leon French
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | - Courtney Gray
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | - Gabriel Leonard
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Michel Perron
- Groupe d'Étude des Conditions de vie et des Besoins de la Population, Cégep de Jonquiere, Jonquiere, Saguenay, Quebec, Canada 4Department of Human Sciences, University of Quebec in Chicoutimi, Chicoutimi, Quebec, Canada
| | - G Bruce Pike
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada6Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Louis Richer
- Department of Health Sciences, University of Quebec in Chicoutimi, Chicoutimi, Quebec, Canada
| | - Jean R Séguin
- Department of Psychiatry and Centre de Recherche du Centre Hospitalier Universitaire Ste-Justine, University de Montréal, Montreal, Quebec, Canada
| | - Suzanne Veillette
- Groupe d'Étude des Conditions de vie et des Besoins de la Population, Cégep de Jonquiere, Jonquiere, Saguenay, Quebec, Canada 4Department of Human Sciences, University of Quebec in Chicoutimi, Chicoutimi, Quebec, Canada
| | - C John Evans
- School of Psychology, Cardiff University, Cardiff, Wales
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Medicale (INSERM), Unité Mixte de Recherche (UMR) 1000, Research Unit Imaging and Psychiatry, Commissariat à l'Énergie Atomique (CEA), Direction des Sciences du Vivant, Institut d'Imagerie Biomédicale, Serv
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arun W L Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neurosciences, Trinity College, Dublin, Ireland
| | - Uli Bromberg
- Institut für Systemische Neurowissenschaften, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | - Christian Buchel
- Institut für Systemische Neurowissenschaften, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Cattrell
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England20Medical Research Council-Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London
| | - Patricia J Conrod
- Department of Psychiatry and Centre de Recherche du Centre Hospitalier Universitaire Ste-Justine, University de Montréal, Montreal, Quebec, Canada19Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Jurgen Gallinat
- Institut für Systemische Neurowissenschaften, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington24Department of Psychology, University of Vermont, Burlington
| | - Penny Gowland
- School of Physics and Astronomy, University of Nottingham, Nottingham, England
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Herve Lemaitre
- Institut National de la Santé et de la Recherche Medicale (INSERM), Unité Mixte de Recherche (UMR) 1000, Research Unit Imaging and Psychiatry, Commissariat à l'Énergie Atomique (CEA), Direction des Sciences du Vivant, Institut d'Imagerie Biomédicale, Serv
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Medicale (INSERM), Unité Mixte de Recherche (UMR) 1000, Research Unit Imaging and Psychiatry, Commissariat à l'Énergie Atomique (CEA), Direction des Sciences du Vivant, Institut d'Imagerie Biomédicale, Serv
| | - Frauke Nees
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | - Luise Poustka
- Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marcella Rietschel
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Whelan
- Department of Psychology, University College Dublin, Dublin, Ireland
| | - Nic J Timpson
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, England
| | - Gunter Schumann
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England20Medical Research Council-Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, England
| | - Zdenka Pausova
- Department of Physiology and Experimental Medicine, Hospital for Sick Children, University of Toronto, Ontario, Canada31Department of Physiology, University of Toronto, Ontario, Canada32Department of Nutritional Sciences, University of Toronto, Ontario, C
| | - Tomáš Paus
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada33Department of Psychology, University of Toronto, Ontario, Canada34Department of Psychiatry, University of Toronto, Ontario, Canada35Child Mind Institute, New York, New York
| |
Collapse
|
149
|
O'Donoghue B, Lyne J, Madigan K, Lane A, Turner N, O'Callaghan E, Clarke M. Environmental factors and the age at onset in first episode psychosis. Schizophr Res 2015; 168:106-12. [PMID: 26232243 DOI: 10.1016/j.schres.2015.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/09/2015] [Accepted: 07/04/2015] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Factors that influence the age at onset in psychotic disorders could provide valuable insights into precipitating or causative factors of the disorder. Despite being established risk factors, it is not yet known whether migration status, place of birth, social class at birth and season of birth influence the age at onset of psychotic disorders. This study aimed to determine whether these environmental factors, in addition to cannabis abuse and obstetric complications, influence the age at onset. Additionally, we investigated whether environmental factors could have a cumulative effect on the age at onset. METHOD Data was obtained from two first episode of psychosis (FEP) cohort studies. Diagnosis was established using the Structured Clinical Interview for DSM IV diagnoses. RESULTS The age at onset was determined for 555 individuals with a FEP and the median age at onset was 27.3years. Individuals with a history of cannabis abuse had an earlier age at onset by nearly six years. There was a trend for a history of obstetric complications to be associated with a younger age at onset by 2.7years and this was significant in the subgroup with a family history of psychosis. Social class at birth, migration status, place of birth and season of birth were not associated with the age at onset. Exposure to a higher number of environmental factors was associated with an earlier age at onset. CONCLUSIONS Cannabis and obstetric complications are associated with an earlier age at onset and there appears to be a cumulative effect of exposure to multiple environmental factors.
Collapse
Affiliation(s)
- Brian O'Donoghue
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Australia.
| | - John Lyne
- DETECT Early Intervention for Psychosis Service, Avila House, Blackrock Business Park, Dublin 4, Ireland; University College Dublin, Belfield, Dublin 4, Ireland.
| | - Kevin Madigan
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Australia; Institute of Leadership, Royal College of Surgeons, Ireland.
| | - Abbie Lane
- University College Dublin, Belfield, Dublin 4, Ireland.
| | - Niall Turner
- DETECT Early Intervention for Psychosis Service, Avila House, Blackrock Business Park, Dublin 4, Ireland.
| | - Eadbhard O'Callaghan
- DETECT Early Intervention for Psychosis Service, Avila House, Blackrock Business Park, Dublin 4, Ireland; University College Dublin, Belfield, Dublin 4, Ireland
| | - Mary Clarke
- DETECT Early Intervention for Psychosis Service, Avila House, Blackrock Business Park, Dublin 4, Ireland; University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
150
|
Geaghan M, Cairns MJ. MicroRNA and Posttranscriptional Dysregulation in Psychiatry. Biol Psychiatry 2015; 78:231-9. [PMID: 25636176 DOI: 10.1016/j.biopsych.2014.12.009] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/11/2014] [Accepted: 12/03/2014] [Indexed: 11/27/2022]
Abstract
Psychiatric syndromes, including schizophrenia, mood disorders, and autism spectrum disorders, are characterized by a complex range of symptoms, including psychosis, depression, mania, and cognitive deficits. Although the mechanisms driving pathophysiology are complex and remain largely unknown, advances in the understanding of gene association and gene networks are providing significant clues to their etiology. In recent years, small noncoding RNA molecules known as microRNA (miRNA) have emerged as potential players in the pathophysiology of mental illness. These small RNAs regulate hundreds of target transcripts by modifying their stability and translation on a broad scale, influencing entire gene networks in the process. There is evidence to suggest that numerous miRNAs are dysregulated in postmortem neuropathology of neuropsychiatric disorders, and there is strong genetic support for association of miRNA genes and their targets with these conditions. This review presents the accumulated evidence linking miRNA dysregulation and dysfunction with schizophrenia, bipolar disorder, major depressive disorder, and autism spectrum disorders and the potential of miRNAs as biomarkers or therapeutics for these disorders. We further assess the functional roles of some outstanding miRNAs associated with these conditions and how they may be influencing the development of psychiatric symptoms.
Collapse
Affiliation(s)
- Michael Geaghan
- School of Biomedical Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia.; Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Murray J Cairns
- School of Biomedical Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia.; Schizophrenia Research Institute, Sydney, Australia.; Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, Newcastle, New South Wales, Australia..
| |
Collapse
|