101
|
Shade tolerance in Swarnaprabha rice is associated with higher rate of panicle emergence and positively regulated by genes of ethylene and cytokinin pathway. Sci Rep 2019; 9:6817. [PMID: 31048729 PMCID: PMC6497668 DOI: 10.1038/s41598-019-43096-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 03/06/2019] [Indexed: 12/27/2022] Open
Abstract
This study identifies characteristics of seedling, mature plant phenotypes, changes at genetic and genomic level associated with Swarnaprabha (SP) rice grown under prolonged shade and compared with Nagina 22 (N22). Coleoptile length under low red/far-red was intermediate between that in dark and red light in a 7-days growth frame. Whereas, highest rootlet number was discriminating in seedlings grown for 28 days in hydroponics. In shade, SP and N22 both showed several tolerant mature plant phenotypes, except the panicle length, yield per plant and % grain filling, which were higher in SP. Percentage decrease in yield / plant in shade showed significant positive correlation with increase in NDVI, decrease in panicle length and % grain filling (p ≤ 0.01). Rate of panicle emergence in shade was higher in SP than N22. Expression patterns of PHYTOCHROME INTERACTING FACTOR LIKE-13 and PHYTOCHROME B were contrasting in SP and N22 seedlings under continuous red or red/far-red. Microarray analysis revealed the up-regulation of most of the ethylene and cytokinin pathway genes in shade grown panicles of SP. Significant up-regulation of ETHYLENE RESPONSE ELEMENT BINDING PROTEIN-2, MOTHER OF FLOWERING TIME 1, and SHORT PANICLE1 genes in shade grown panicles of SP could explain its sustainable higher yield in shade.
Collapse
|
102
|
Aalipour H, Nikbakht A, Etemadi N. Co-inoculation of Arizona cypress with arbuscular mycorrhiza fungi and Pseudomonas fluorescens under fuel pollution. MYCORRHIZA 2019; 29:277-289. [PMID: 30900025 DOI: 10.1007/s00572-019-00888-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Air pollution in metropolitan areas of Iran has negatively impacted establishment, growth, and development of many woody plant species, threatening the health of urban forest species. This study was designed to investigate the effects of artificial inoculation of seedlings of a major urban forest tree, Arizona cypress (Cupressus arizonica Greene) with beneficial microorganisms under the stress of air pollution caused by exhaust emissions from fuel pollutants (FP). We conducted this research as a completely randomized design in a form of split-factorial with three factors comprising arbuscular mycorrhizal fungi (AMF) inoculation with Rhizophagus irregularis or Funneliformis mosseae or a mixture of both species, bacterial inoculation with Pseudomonas fluorescens and non-inoculated controls, and two levels of FP (fuel pollutants and non-fuel pollutants) using three replications of each treatment. Fuel pollutants significantly reduced root colonization, shoot and root dry weight, nutrient concentrations (N, P, K, and Fe), glomalin-related soil protein (GRSP), and chlorophyll concentration, while increasing proline content, enzyme activity, malondialdehyde (MDA), and hydrogen peroxide (H2O2) concentrations in Arizona cypress seedlings. Nevertheless, adverse effects of FP in the inoculated plants (especially AMF plants) were less than in the non-inoculated plants. Inoculations of AMF especially the mixture of both mycorrhizal species effectively alleviated the negative effects of FP on Arizona cypress seedlings. This promising effect was related to increased GRSP content in the media which improved concentrations of N, P, and Fe in plants, enhanced chlorophyll concentration, and elevated enzymatic antioxidants such as ascorbate peroxidase and glutathione peroxidase which resulted in increased dry mass of the plants under air pollution stress.
Collapse
Affiliation(s)
- Hamed Aalipour
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran
| | - Ali Nikbakht
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran.
| | - Nematollah Etemadi
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran
| |
Collapse
|
103
|
Garg N, Kashyap L. Joint effects of Si and mycorrhiza on the antioxidant metabolism of two pigeonpea genotypes under As (III) and (V) stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:7821-7839. [PMID: 30680683 DOI: 10.1007/s11356-019-04256-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Arsenic (As) is the most hazardous soil contaminant, which inactivates metabolic enzymes and restrains plant growth. To withstand As stress conditions, use of some alleviative tools, such as arbuscular mycorrhizal (AM) fungi and silicon (Si), has gained importance. Therefore, the present study evaluated comparative and interactive effects of Si and arbuscular mycorrhiza-Rhizophagus irregularis on phytotoxicity of arsenate (As V) and arsenite (As III) on plant growth, ROS generation, and antioxidant defense responses in pigeonpea genotypes (Tolerant-Pusa 2002; Sensitive-Pusa 991). Roots of As III treated plants accumulated significantly higher total As than As V supplemented plants, more in Pusa 991 than Pusa 2002, which corresponded to proportionately decreased plant growth, root to biomass ratio, and oxidative burst. Although Si nutrition and AM inoculations improved plant growth by significantly reducing As uptake and the resultant oxidative burst, AM was relatively more efficient in upregulating enzymatic and non-enzymatic antioxidant defense responses as well as ascorbate-glutathione pathway when compared with Si. Pusa 2002 was more receptive to Si nourishment due to its ability to establish more efficient mycorrhizal symbiosis, which led to higher Si uptake and lower As concentrations. Moreover, +Si+AM bestowed better metalloid resistance by further reducing ROS and strengthening antioxidants. Results demonstrated that the genotype with more efficient AM symbiosis in As-contaminated soils could accrue higher benefits of Si fertilization in terms of metalloid tolerance in pigeonpea.
Collapse
Affiliation(s)
- Neera Garg
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Lakita Kashyap
- Department of Botany, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
104
|
Dhuldhaj U, Pandya U, Singh S. Anti-Oxidative Response of Cyanobacterium Anabaena sp. strain PCC 7120 to Arsenite (As(III)). Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718060097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
105
|
Poli Y, Nallamothu V, Balakrishnan D, Ramesh P, Desiraju S, Mangrauthia SK, Voleti SR, Neelamraju S. Increased Catalase Activity and Maintenance of Photosystem II Distinguishes High-Yield Mutants From Low-Yield Mutants of Rice var. Nagina22 Under Low-Phosphorus Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:1543. [PMID: 30510556 PMCID: PMC6252357 DOI: 10.3389/fpls.2018.01543] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 10/02/2018] [Indexed: 05/28/2023]
Abstract
An upland rice variety, Nagina22 (N22) and its 137 ethyl methanesulfonate (EMS)-induced mutants, along with a sensitive variety, Jaya, was screened both in low phosphorus (P) field (Olsen P 1.8) and in normal field (Olsen P 24) during dry season. Based on the grain yield (YLD) of plants in normal field and plants in low P field, 27 gain of function (high-YLD represented as hy) and 9 loss of function (low-YLD represented as ly) mutants were selected and compared with N22 for physiological and genotyping studies. In low P field, hy mutants showed higher P concentration in roots, leaves, grains, and in the whole plant than in ly mutants at harvest. In low P conditions, F v/F m and qN were 24% higher in hy mutants than in ly mutants. In comparison with ly mutants, the superoxide dismutase (SOD) activity in the roots and leaves of hy mutants in low P fields was 9% and 41% higher at the vegetative stage, respectively, but 51% and 14% lower in the roots and leaves at the reproductive stage, respectively. However, in comparison with ly mutants, the catalase (CAT) activity in the roots and leaves of hy mutants in low P fields was 35% higher at the vegetative stage and 15% and 17% higher at the reproductive stage, respectively. Similarly, hy mutants in low P field showed 20% and 80% higher peroxidase (POD) activity in the roots and leaves at the vegetative stage, respectively, but showed 14% and 16% lower POD activity at the reproductive stage in the roots and leaves, respectively. Marker trait association analysis using 48 simple sequence repeat (SSR) markers and 10 Pup1 gene markers showed that RM3648 and RM451 in chromosome 4 were significantly associated with grain YLD, tiller number (TN), SOD, and POD activities in both the roots and leaves in low P conditions only. Similarly, RM3334 and RM6300 in chromosome 5 were associated with CAT activity in leaves in low P conditions. Notably, grain YLD was positively and significantly correlated with CAT activity in the roots and shoots, F v/F m and qN in low P conditions, and the shoots' P concentration and qN in normal conditions. Furthermore, CAT activity in shoots was positively and significantly correlated with TN in both low P and normal conditions. Thus, chromosomal regions and physiological traits that have a role in imparting tolerance to low P in the field were identified.
Collapse
Affiliation(s)
- Yugandhar Poli
- ICAR-Indian Institute of Rice Research, Hyderabad, India
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Sarker U, Oba S. Catalase, superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor. Sci Rep 2018; 8:16496. [PMID: 30405159 PMCID: PMC6220278 DOI: 10.1038/s41598-018-34944-0] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/18/2018] [Indexed: 01/24/2023] Open
Abstract
The study was performed to explore physiological, non-enzymatic and enzymatic detoxification pathways of reactive oxygen species (ROS) in tolerance of Amaranthus tricolor under drought stress. The tolerant genotype VA13 exhibited lower reduction in growth, photosynthetic pigments, relative water content (RWC) and negligible increment in electrolyte leakage (EL), lower increment in proline, guaiacol peroxidase (GPOX) activity compared to sensitive genotype VA15. This genotype also had higher catalase (CAT), superoxide dismutase (SOD), remarkable and dramatic increment in ascorbate-glutathione content, ascorbate-glutathione redox and ascorbate-glutathione cycle enzymes activity compared to sensitive genotype VA15. The negligible increment of ascorbate-glutathione content, ascorbate-glutathione redox and ascorbate-glutathione cycle enzymes activities and dramatic increment in malondialdehyde (MDA), hydrogen peroxide (H2O2) and EL were observed in the sensitive genotype VA15. SOD contributed superoxide radical dismutation and CAT contributed H2O2 detoxification in both sensitive and tolerant varieties, however, these had a great contribution in the tolerant variety. Conversely, proline and GPOX accumulation were higher in the sensitive variety compared to the tolerant variety. Increase in ascorbate-glutathione cycle enzymes activities, CAT, ascorbate-glutathione content, SOD, and ascorbate-glutathione redox clearly evident that CAT, ascorbate-glutathione cycle and SOD played a significant activity in ROS detoxification of tolerant A. tricolor variety.
Collapse
Affiliation(s)
- Umakanta Sarker
- The United Graduate School of Agricultural Science, Laboratory of Field Science, Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu, Japan.
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Shinya Oba
- The United Graduate School of Agricultural Science, Laboratory of Field Science, Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu, Japan
| |
Collapse
|
107
|
Yugandhar P, Sun Y, Liu L, Negi M, Nallamothu V, Sun S, Neelamraju S, Rai V, Jain A. Characterization of the loss-of-function mutant NH101 for yield under phosphate deficiency from EMS-induced mutants of rice variety Nagina22. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:1-13. [PMID: 29957570 DOI: 10.1016/j.plaphy.2018.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/28/2018] [Accepted: 06/14/2018] [Indexed: 05/09/2023]
Abstract
In earlier studies at IIRR, Hyderabad, screening of ∼2000 EMS mutants of the rice variety Nagina22 (N22) resulted in the identification of 11 loss-of-function mutants with zero grain yield in Pi-deprived soil under field condition. Among these mutants, NH101 was selected for comparative analyses with N22 for various morphophysiological and/or molecular traits during growth in a hydroponic system (7 d) and in a pot soil (50% flowering) under different Pi regime. The total length of the seminal and adventitious roots, agronomic traits (panicle length and unfilled spikelet/panicle), activities of the antioxidant enzymes (SOD, POD, and APX), and the relative expression levels of the genes involved in the maintenance of Pi homeostasis (MPH) i.e., OsPHR2, SPX1/2 OsPT4, 6, and 8 showed significant increase in the Pi-deprived mutant compared with N22. Whereas, some of the traits showed significant reduction in NH101 than N22 such as number of tillers and filled spikelets/panicle, yield, contents of Pi and externally secreted APase, activity of CAT, and the relative expression levels of MPH genes i.e., OsmiR399a, OsPHO1;2, OsIPS1, OsPAP10a, OsPT2, 9, and 10. The study highlighted wide spectrum differential effects of the mutation in NH101 on various traits that play important roles governing the maintenance of Pi homeostasis. This mutant thus provides a rich repository of genetic material amenable for the identification of the genes that are pivotal for Pi use efficiency.
Collapse
Affiliation(s)
- Poli Yugandhar
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - Yafei Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lu Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Manisha Negi
- National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi, 110012, India
| | | | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Sarla Neelamraju
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India.
| | - Vandna Rai
- National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi, 110012, India
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India.
| |
Collapse
|
108
|
Swapnil P, Rai AK. Physiological responses to salt stress of salt-adapted and directly salt (NaCl and NaCl+Na 2SO 4 mixture)-stressed cyanobacterium Anabaena fertilissima. PROTOPLASMA 2018; 255:963-976. [PMID: 29352355 DOI: 10.1007/s00709-018-1205-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/10/2018] [Indexed: 05/13/2023]
Abstract
Soil salinity in nature is generally mixed type; however, most of the studies on salt toxicity are performed with NaCl and little is known about sulfur type of salinity (Na2SO4). Present study discerns the physiologic mechanisms responsible for salt tolerance in salt-adapted Anabaena fertilissima, and responses of directly stressed parent cells to NaCl and NaCl+Na2SO4 mixture. NaCl at 500 mM was lethal to the cyanobacterium, whereas salt-adapted cells grew luxuriantly. Salinity impaired gross photosynthesis, electron transport activities, and respiration in parent cells, but not in the salt-adapted cells, except a marginal increase in PSI activity. Despite higher Na+ concentration in the salt mixture, equimolar NaCl appeared more inhibitive to growth. Sucrose and trehalose content and antioxidant activities were maximal in 250 mM NaCl-treated cells, followed by salt mixture and was almost identical in salt-adapted (exposed to 500 mm NaCl) and control cells, except a marginal increase in ascorbate peroxidase activity and an additional fourth superoxide dismutase isoform. Catalase isoform of 63 kDa was induced only in salt-stressed cells. Salinity increased the uptake of intracellular Na+ and Ca2+ and leakage of K+ in parent cells, while cation level in salt-adapted cells was comparable to control. Though there was differential increase in intracellular Ca2+ under different salt treatments, ratio of Ca2+/Na+ remained the same. It is inferred that stepwise increment in the salt concentration enabled the cyanobacterium to undergo priming effect and acquire robust and efficient defense system involving the least energy.
Collapse
Affiliation(s)
- Prashant Swapnil
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Ashwani K Rai
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
109
|
Pereira SPP, Jesus F, Aguiar S, de Oliveira R, Fernandes M, Ranville J, Nogueira AJA. Phytotoxicity of silver nanoparticles to Lemna minor: Surface coating and exposure period-related effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:1389-1399. [PMID: 29096951 DOI: 10.1016/j.scitotenv.2017.09.275] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Silver nanoparticles (Ag NPs) exponential production raises concern about their environmental impact. The effects of Ag NPs to aquatic plants remain scarcely studied, especially in extended exposures. This paper aims to evaluate Ag NPs effects in Lemna minor at individual and sub-individual levels, focusing on three variables: Ag form (NPs versus ions - Ag+), NPs surface coating (citrate vs polyvinylpyrrolidone - PVP) and exposure period (7 vs 14days). Endpoints were assessed at individual level (specific growth rate, chlorosis incidence and number of fronds per colony) and sub-individual level (enzymatic activities of catalase (CAT), guaiacol peroxidase (GPx) and glutathione-S-transferase (GST)). Generally, plants exposed to all Ag forms underwent decays on growth rate and fronds per colony, and increases on chlorosis, GPX and GST, but no effects on CAT. The most sensitive endpoints were specific growth rate and GPx activity, showing significant effects down to 0.05mg/L for Ag NPs and 3μg/L for Ag+, after 14days. Ag+ showed higher toxicity with a 14d-EC50 of 0.0037mg Ag/L. Concerning surface coating, PVP-Ag NPs were more deleterious on growth rate and fronds per colony, whereas citrate-Ag NPs affected more the chlorosis incidence and GPx and GST activities. The exposure period significantly affected chlorosis: 14days triggered a chlorosis increase in Ag+-exposed plants and a decrease in Ag NPs-exposed plants when compared to 7days. Ag NPs induced an oxidative stress status in cells, thus ensuing upregulated enzymatic activity as a self-defense mechanism. Since Ag NPs dissolution might occur on a steady and continuous mode along time, and the average longevity of fronds, we propose longer exposures periods than the recommended by the OECD guideline. This approach would provide more relevant and holistic evidences on the overall response of freshwater plants to Ag NPs in an ecological relevant scenario.
Collapse
Affiliation(s)
- Susana P P Pereira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Fátima Jesus
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Sara Aguiar
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rhaul de Oliveira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, Brasília, Distrito Federal-Brazil
| | - Marco Fernandes
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - James Ranville
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO 80401, USA.
| | - António J A Nogueira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
110
|
Pellegrini E, Campanella A, Cotrozzi L, Tonelli M, Nali C, Lorenzini G. What about the detoxification mechanisms underlying ozone sensitivity in Liriodendron tulipifera? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8148-8160. [PMID: 28357799 DOI: 10.1007/s11356-017-8818-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/13/2017] [Indexed: 06/06/2023]
Abstract
Liriodendron tulipifera (known as the tulip tree) is a woody species that has been previously classified as sensitive to ozone (O3) in terms of visible leaf injuries and photosynthetic primary reactions. The objective of this work is to give a thorough description of the detoxification mechanisms that are at the basis of O3 sensitivity. Biochemical and molecular markers were used to characterize the response of 1-year-old saplings exposed to O3 (120 ppb, 5 h day-1, for 45 consecutive days) under controlled conditions. O3 effects resulted in a less efficient metabolism of Halliwell-Asada cycle as confirmed by the diminished capacity to convert the oxidized forms of ascorbate and glutathione in the reduced ones (AsA and GSH, respectively). The reduced activity of AsA and GSH regenerating enzymes indicates that de novo AsA biosynthesis occurred. This compound could be a cofactor of several plant-specific enzymes that are involved in the early part of the phenylpropanoid and flavonoid biosynthesis pathway, as confirmed by the significant rise of PAL activity (+75%). The induction of the defence-related secondary metabolites (in particular, rutin and caffeic acid were about threefold higher) and the concomitant increase in transcript levels of PAL and CHS genes (+120 and 30%, respectively) suggest that L. tulipifera utilized this route in order to partially counteract the O3-induced oxidative damage.
Collapse
Affiliation(s)
- Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Alessandra Campanella
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Mariagrazia Tonelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
111
|
Tsikrika K, Chu BS, Bremner DH, Lemos MA. The effect of different frequencies of ultrasound on the activity of horseradish peroxidase. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
112
|
Arunbabu V, Indu KS, Ramasamy EV. Leachate pollution index as an effective tool in determining the phytotoxicity of municipal solid waste leachate. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 68:329-336. [PMID: 28736051 DOI: 10.1016/j.wasman.2017.07.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/24/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Phytoremediation is a promising option for the treatment of municipal solid waste leachate. Combining the leachate pollution index with the phytotoxicity data will be useful in predicting the suitable concentration of leachate for the phytoremediation applications. Understanding the tolerant mechanisms of plants to leachate stress will further help to select the appropriate dose. The aim of the study was to investigate the effect of different concentrations of leachate on germination, growth, chlorophyll content and antioxidant enzyme activities in the plant Vigna unguiculata. The crude leachate has an LPI value of 31.99 with high concentration of organic matter, ammonia and dissolved solids. The results of the phytotoxicity study suggest that at lower concentrations the leachate enhanced the germination and promoted plant growth. Up to 5% concentration (v/v) of the leachate which had a LPI value of 11.84 the growth promotion was observed in V. unguiculata. This was made possible by the controlled modulation of reactive oxygen species through the enhanced antioxidant enzyme activities. However at higher concentration, the pollutants in leachate disrupt the enzyme activities and leads to the peroxidation of membrane lipids and significantly affected the plant growth. The study suggest that phytotoxic effects in plants are directly related to the LPI value and leachate with LPI values less than 10 are likely to promote plant growth and LPI values greater than 10 are likely to exert detrimental effect on the plant.
Collapse
Affiliation(s)
- V Arunbabu
- School of Environmental Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala 686560, India
| | - K S Indu
- School of Environmental Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala 686560, India
| | - E V Ramasamy
- School of Environmental Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala 686560, India.
| |
Collapse
|
113
|
Pandey R, Garg N. High effectiveness of Rhizophagus irregularis is linked to superior modulation of antioxidant defence mechanisms in Cajanus cajan (L.) Millsp. genotypes grown under salinity stress. MYCORRHIZA 2017; 27:669-682. [PMID: 28593465 DOI: 10.1007/s00572-017-0778-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/15/2017] [Indexed: 05/08/2023]
Abstract
Salinity stress leads to the production of reactive oxygen species (ROS) which can cause oxidative damage in plants. A correlation between antioxidant capacity and salt tolerance has been demonstrated in several plant species, which may be enhanced by inoculation with arbuscular mycorrhizal fungi (AMF). However, plant responses to mycorrhization may differ depending on the host plant as well as AMF isolate. It has been proposed that AMF sourced from stressed environments may be better suited as stress ameliorators than non-native/exotic ones. The present study compared the effectiveness of a native inoculum from saline soil and two exotic single isolates, Funneliformis mossseae and Rhizophagus irregularis (single or dual mix), and associated their effectiveness with modulation of antioxidant defence, in two Cajanus cajan (pigeonpea) genotypes (salt sensitive-Paras, salt tolerant-Pusa 2002) under NaCl stress. Plants subjected to NaCl (0-100 mM) recorded a substantial build-up of ROS, more in Paras than Pusa 2002. Although mycorrhization with all AMF improved plant biomass and reduced oxidative burst by strengthening antioxidant enzymatic activities, inoculation with R. irregularis (alone or in combination with F. mosseae) resulted in higher biomass accumulation which correlated with its higher root colonization and improved redox stability through rapid recycling of reduced ascorbate and glutathione. The study thus suggested that mitigation of salt-induced oxidative burden by increased activation of scavenging antioxidants is an important mechanism that determined the higher effectiveness of R. irregularis over the native saline mix in pigeonpea plants.
Collapse
Affiliation(s)
- Rekha Pandey
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Neera Garg
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
114
|
Dwivedi SK, Kumar S, Bhakta N, Singh SK, Rao KK, Mishra JS, Singh AK. Improvement of submergence tolerance in rice through efficient application of potassium under submergence-prone rainfed ecology of Indo-Gangetic Plain. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:907-916. [PMID: 32480619 DOI: 10.1071/fp17054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 05/19/2017] [Indexed: 06/11/2023]
Abstract
Potassium (K) is one of the limiting factors that negatively influenced rice growth and yield in submergence-prone soils. We conducted an experiment during the wet season of 2014-15 to achieve optimal doses of K and understand the effect of K application on submerged rice in terms of survival, chlorophyll content, non-structural carbohydrates (NSC), anti-oxidant activities and yield. Results revealed that chlorophyll and NSC content were significantly (P≤0.05) lower whereas the activity of anti-oxidants (catalase, superoxide dismutase and total peroxidase) were significantly (P≤0.05) higher after submergence compared with pre-submergence. Further, application of K at a higher basal dose (40kgha-1) was more beneficial to improve survival after de-submergence by maintaining NSC, chlorophyll content and higher activity of anti-oxidants with lower level of lipid peroxidation. Furthermore, results showed superiority of the treatments having application of higher doses with one foliar spray (T9-40kg K2O ha-1 (basal)+one foliar spray at 0.5% K at panicle initiation (PI) stage) for grain yield. We conclude that application of a higher dose of K with one foliar application at PI stage is more beneficial to enhance plant survival, better recovery and yield gain of rice during complete submergence.
Collapse
Affiliation(s)
- Sharad Kumar Dwivedi
- Indian Council of Agricultural Research - Research Complex for Eastern Region, Patna, Bihar- 800 014, India
| | - Santosh Kumar
- Indian Council of Agricultural Research - Research Complex for Eastern Region, Patna, Bihar- 800 014, India
| | - Narayan Bhakta
- Indian Council of Agricultural Research - Research Complex for Eastern Region, Patna, Bihar- 800 014, India
| | - Shishir Kant Singh
- Indian Council of Agricultural Research - Research Complex for Eastern Region, Patna, Bihar- 800 014, India
| | - Karnena Koteswara Rao
- Indian Council of Agricultural Research - Research Complex for Eastern Region, Patna, Bihar- 800 014, India
| | - Janki Sharan Mishra
- Indian Council of Agricultural Research - Research Complex for Eastern Region, Patna, Bihar- 800 014, India
| | - Anil Kumar Singh
- Indian Council of Agricultural Research - Research Complex for Eastern Region, Patna, Bihar- 800 014, India
| |
Collapse
|
115
|
Manimaran P, Venkata Reddy S, Moin M, Raghurami Reddy M, Yugandhar P, Mohanraj SS, Balachandran SM, Kirti PB. Activation-tagging in indica rice identifies a novel transcription factor subunit, NF-YC13 associated with salt tolerance. Sci Rep 2017; 7:9341. [PMID: 28839256 PMCID: PMC5570948 DOI: 10.1038/s41598-017-10022-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/02/2017] [Indexed: 12/19/2022] Open
Abstract
Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor with three distinct NF-YA, NF-YB and NF-YC subunits. It plays important roles in plant growth, development and stress responses. We have reported earlier on development of gain-of-function mutants in an indica rice cultivar, BPT-5204. Now, we screened 927 seeds from 70 Ac/Ds plants for salinity tolerance and identified one activation-tagged salt tolerant DS plant (DS-16, T3 generation) that showed enhanced expression of a novel 'histone-like transcription factor' belonging to rice NF-Y subfamily C and was named as OsNF-YC13. Localization studies using GFP-fusion showed that the protein is localized to nucleus and cytoplasm. Real time expression analysis confirmed upregulation of transcript levels of OsNF-YC13 during salt treatment in a tissue specific manner. Biochemical and physiological characterization of the DS-16 revealed enhanced K+/Na+ ratio, proline content, chlorophyll content, enzymes with antioxidant activity etc. DS-16 also showed transcriptional up-regulation of genes that are involved in salinity tolerance. In-silico analysis of OsNF-YC13 promoter region evidenced the presence of various key stress-responsive cis-regulatory elements. OsNF-YC13 subunit alone does not appear to have the capacity for direct transcription activation, but appears to interact with the B- subunits in the process of transactivation.
Collapse
Affiliation(s)
- P Manimaran
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India.
| | - S Venkata Reddy
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India
| | - Mazahar Moin
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India
| | - M Raghurami Reddy
- Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - Poli Yugandhar
- Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - S S Mohanraj
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India
| | - S M Balachandran
- Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - P B Kirti
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India.
| |
Collapse
|
116
|
Zhou Y, Yang Z, Gao L, Liu W, Liu R, Zhao J, You J. Changes in element accumulation, phenolic metabolism, and antioxidative enzyme activities in the red-skin roots of Panax ginseng. J Ginseng Res 2017; 41:307-315. [PMID: 28701871 PMCID: PMC5489752 DOI: 10.1016/j.jgr.2016.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Red-skin root disease has seriously decreased the quality and production of Panax ginseng (ginseng). METHODS To explore the disease's origin, comparative analysis was performed in different parts of the plant, particularly the epidermis, cortex, and/or fibrous roots of 5-yr-old healthy and diseased red-skin ginseng. The inorganic element composition, phenolic compound concentration, reactive oxidation system, antioxidant concentrations such as ascorbate and glutathione, activities of enzymes related to phenolic metabolism and oxidation, and antioxidative system particularly the ascorbate-glutathione cycle were examined using conventional methods. RESULTS Aluminum (Al), iron (Fe), magnesium, and phosphorus were increased, whereas manganese was unchanged and calcium was decreased in the epidermis and fibrous root of red-skin ginseng, which also contained higher levels of phenolic compounds, higher activities of the phenolic compound-synthesizing enzyme phenylalanine ammonia-lyase and the phenolic compound oxidation-related enzymes guaiacol peroxidase and polyphenoloxidase. As the substrate of guaiacol peroxidase, higher levels of H2O2 and correspondingly higher activities of superoxide dismutase and catalase were found in red-skin ginseng. Increased levels of ascorbate and glutathione; increased activities of l-galactose 1-dehydrogenase, ascorbate peroxidase, ascorbic acid oxidase, and glutathione reductase; and lower activities of dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione peroxidase were found in red-skin ginseng. Glutathione-S-transferase activity remained constant. CONCLUSION Hence, higher element accumulation, particularly Al and Fe, activated multiple enzymes related to accumulation of phenolic compounds and their oxidation. This might contribute to red-skin symptoms in ginseng. It is proposed that antioxidant and antioxidative enzymes, especially those involved in ascorbate-glutathione cycles, are activated to protect against phenolic compound oxidation.
Collapse
Key Words
- AAO, ascorbic acid oxidase
- APX, ascorbate peroxidase
- Al, aluminum
- Asc, ascorbate
- CAT, catalase
- DHA, dehydroascorbate
- DHAR, dehydroascorbate reductase
- GPX, glutathione peroxidase
- GR, glutathione reductase
- GSH, glutathione
- GST, glutathione-S-transferase
- GuPX, guaiacol peroxidase
- MDA, malondialdehyde
- MDHAR, monodehydroascorbate reductase
- PAL, phenylalanine ammonia-lyase
- PPO, polyphenoloxidase
- Panax ginseng
- SOD, superoxide dismutase
- ascorbate
- ginseng, Panax ginseng
- l-GalDH, l-galactose 1-dehydrogenase
- phenolic compounds
- red-skin ginseng disease
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiangfeng You
- Laboratory of Soil and Plant Molecular Genetics, College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
117
|
Hessini K, Kronzucker HJ, Abdelly C, Cruz C. Drought stress obliterates the preference for ammonium as an N source in the C 4 plant Spartina alterniflora. JOURNAL OF PLANT PHYSIOLOGY 2017; 213:98-107. [PMID: 28342331 DOI: 10.1016/j.jplph.2017.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
The C4 grass Spartina alterniflora is known for its unique salt tolerance and strong preference for ammonium (NH4+) as a nitrogen (N) source. We here examined whether Spartina's unique preference for NH4+ results in improved performance under drought stress. Manipulative greenhouse experiments were carried out to measure the effects of variable water availability and inorganic N sources on plant performance (growth, photosynthesis, antioxidant, and N metabolism). Drought strongly reduced leaf number and area, plant fresh and dry weight, and photosynthetic activity on all N sources, but the reduction was most pronounced on NH4+. Indeed, the growth advantage seen on NH4+ in the absence of drought, producing nearly double the biomass compared to growth on NO3-, was entirely obliterated under both intermediate and severe drought conditions (50 and 25% field capacity, respectively). Both fresh and dry weight became indistinguishable among N sources under drought. Major markers of the antioxidant capacity of the plant, the activities of the enzymes superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase, showed higher constitutive levels on NH4+. Catalase and glutathione reductase were specifically upregulated in NH4+-fed plants with increasing drought stress. This upregulation, however, failed to protect the plants from drought stress. Nitrogen metabolism was characterized by lower constitutive levels of glutamine synthetase in NH4+-fed plants, and a rise in glutamate dehydrogenase (GDH) activity under drought, accompanied by elevated proline levels in leaves. Our results support postulates on the important role of GDH induction, and its involvement in the synthesis of compatible solutes, under abiotic stress. We show that, despite this metabolic shift, S. alterniflora's sensitivity to drought does not benefit from growth on NH4+ and that the imposition of drought stress equalizes all N-source-related growth differences observed under non-drought conditions.
Collapse
Affiliation(s)
- Kamel Hessini
- Laboratory of Extremophiles Plants, Center of Biotechnology of Borj Cedria, University of Tunis El Manar, Tunisia; Biology Department, Faculty of Science, Taif University, Taif 888, Saudi Arabia.
| | - Herbert J Kronzucker
- Department of Biological Sciences & Canadian Centre for World Hunger Research, University of Toronto, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada; School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Chedly Abdelly
- Laboratory of Extremophiles Plants, Center of Biotechnology of Borj Cedria, University of Tunis El Manar, Tunisia
| | - Cristina Cruz
- Departamento de BiologiaVegetal, Faculdade de Ciencias de Lisboa, Centro de Biologia Ambiental-CBA, Campo Grande, Bloco C-2, Piso 4, 1749-016 Lisboa, Portugal
| |
Collapse
|
118
|
Singh D, Singh CK, Kumari S, Singh Tomar RS, Karwa S, Singh R, Singh RB, Sarkar SK, Pal M. Discerning morpho-anatomical, physiological and molecular multiformity in cultivated and wild genotypes of lentil with reconciliation to salinity stress. PLoS One 2017; 12:e0177465. [PMID: 28542267 PMCID: PMC5444645 DOI: 10.1371/journal.pone.0177465] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/27/2017] [Indexed: 01/19/2023] Open
Abstract
One hundred and sixty two genotypes of different Lens species were screened for salinity tolerance in hydroponics at 40, 80 and 120 mM sodium chloride (NaCl) for 30 d. The germination, seedling growth, biomass accumulation, seedling survivability, salinity scores, root and shoot anatomy, sodium ion (Na+), chloride ion (Cl-) and potassium ion (K+) concentrations, proline and antioxidant activities were measured to evaluate the performance of all the genotypes. The results were compared in respect of physiological (Na+, K+ and Cl-) and seed yield components obtained from field trials for salinity stress conducted during two years. Expression of salt tolerance in hydroponics was found to be reliable indicator for similarity in salt tolerance between genotypes and was evident in saline soil based comparisons. Impressive genotypic variation for salinity tolerance was observed among the genotypes screened under hydroponic and saline field conditions. Plant concentrations of Na+ and Cl- at 120 mM NaCl were found significantly correlated with germination, root and shoot length, fresh and dry weight of roots and shoots, seedling survivability, salinity scores and K+ under controlled conditions and ranked the genotypes along with their seed yield in the field. Root and shoot anatomy of tolerant line (PDL-1) and wild accession (ILWL-137) showed restricted uptake of Na+ and Cl- due to thick layer of their epidermis and endodermis as compared to sensitive cultigen (L-4076). All the genotypes were scanned using SSR markers for genetic diversity, which generated high polymorphism. On the basis of cluster analysis and population structure the contrasting genotypes were grouped into different classes. These markers may further be tested to explore their potential in marker-assisted selection.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
- * E-mail: (DS); (RS); (MP)
| | - Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shanti Kumari
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Sourabh Karwa
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajendra Singh
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
- * E-mail: (DS); (RS); (MP)
| | - Raja Bahadur Singh
- ICAR-All India Co-ordinated Research Project on Salt affected Soil and Saline Use in Irrigation Water in Agriculture, Raja Balwant Singh College, Bichpuri, Agra, India
| | | | - Madan Pal
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- * E-mail: (DS); (RS); (MP)
| |
Collapse
|
119
|
Venkatachalam P, Jayalakshmi N, Geetha N, Sahi SV, Sharma NC, Rene ER, Sarkar SK, Favas PJC. Accumulation efficiency, genotoxicity and antioxidant defense mechanisms in medicinal plant Acalypha indica L. under lead stress. CHEMOSPHERE 2017; 171:544-553. [PMID: 28039833 DOI: 10.1016/j.chemosphere.2016.12.092] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/03/2016] [Accepted: 12/19/2016] [Indexed: 05/28/2023]
Abstract
The present study was designed to assess the physiological and biochemical changes in roots and shoots of the herb Acalypha indica grown under hydroponic conditions during exposure to lead (Pb) (100-500 mg L-1) for 1-12 d. The accumulation of Pb by A. indica plants was found to be 121.6 and 17.5 mg g-1 dry weight (DW) in roots and shoots, respectively, when exposed to a Pb concentration of 500 mg L-1. The presence of Pb ions in stem, root and leaf tissues was confirmed by scanning electron microscope (SEM) and Energy-dispersive X-ray spectroscopy (EDX) analyses. Concerning the activity of antioxidant enzymes, viz., peroxidase (POX) catalase (CAT) and ascorbate peroxidase (APX), they were induced at various regimes during 5, 8 and 12 d of Pb exposure in both the leaves and roots than untreated controls. Lead treatment increased superoxide dismutase (SOD) activity in both the leaf and root tissues over control, irrespective of the duration of exposure. Anew, it was observed that Pb treatments induced variations in the number and intensity of protein bands. Random amplified polymorphic DNA (RAPD) results show that the Pb treatment caused genotoxicity on DNA molecules as evidenced by the amplification of new bands and the absence of normal DNA amplicons in treated plants. Results confirm that A. indica is a Pb accumulator species, and the antioxidants might play a crucial role in the detoxification of Pb-induced toxic effects.
Collapse
Affiliation(s)
- Perumal Venkatachalam
- Periyar University, Department of Biotechnology, Plant Genetic Engineering and Molecular Biology Lab, Periyar Palkalai Nagar, Salem, 636 011, Tamil Nadu, India.
| | - Narayanan Jayalakshmi
- Periyar University, Department of Biotechnology, Plant Genetic Engineering and Molecular Biology Lab, Periyar Palkalai Nagar, Salem, 636 011, Tamil Nadu, India
| | - Natesan Geetha
- Bharathiar University, Department of Botany, Coimbatore, 641 046, Tamil Nadu, India
| | - Shivendra V Sahi
- Western Kentucky University, Department of Biology, Bowling Green, KY, 42101, USA
| | - Nilesh C Sharma
- Western Kentucky University, Department of Biology, Bowling Green, KY, 42101, USA
| | - Eldon R Rene
- UNESCO-IHE Institute for Water Education, Department of Environmental Engineering & Water Technology, PO Box 3015, 2601 DA, Delft, The Netherlands
| | - Santosh K Sarkar
- University of Calcutta, Department of Marine Science, 35 Ballygunge Circular Road, Calcutta, 700019, West Bengal, India
| | - Paulo J C Favas
- University of Trás-os-Montes e Alto Douro, UTAD, School of Life Sciences and the Environment, Quinta de Prados, 5000-801, Vila Real, Portugal; MARE - Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, University of Coimbra, 3004-517, Coimbra, Portugal.
| |
Collapse
|
120
|
Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha N, Muralikrishna K, Bhattacharya RC, Tiwari M, Sharma N, Sahi SV. Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 110:118-127. [PMID: 27622847 DOI: 10.1016/j.plaphy.2016.09.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 07/24/2016] [Accepted: 09/03/2016] [Indexed: 05/21/2023]
Abstract
This report focuses on application of zinc oxide nanoparticles (ZnONPs) carrying phycomolecule ligands as a novel plant growth promoter aimed at increasing the crop productivity. The present investigation examined the effect of ZnONPs on plant growth characteristics, and associated biochemical changes in cotton (Gossypium hirsutum L.) following growth in a range of concentrations (25-200 mg L-l ZnONPs) in combination with 100 mM P in a hydroponic system. Treated plants registered an increase in growth and total biomass by 130.6% and 131%, respectively, over control. Results demonstrated a significant increase in the level of chlorophyll a (141.6%), b (134.7%), carotenoids (138.6%), and total soluble protein contents (179.4%); at the same time, a significant reduction (68%) in the level of malondialdehyde (MDA) in leaves with respect to control. Interestingly, a significant increase in superoxide dismutase (SOD, 264.2%), and peroxidase (POX, 182.8%) enzyme activities followed by a decrease in the catalase (CAT) activity, in response to above treatments. These results suggest that bioengineered ZnONPs interact with meristematic cells triggering biochemical pathways conducive to an accumulation of biomass. Further investigations will map out the mode of action involved in growth promotion.
Collapse
Affiliation(s)
- P Venkatachalam
- Department of Biotechnology, Periyar University, Periyar Palkalai Nagar, Salem, 636 011, Tamil Nadu, India.
| | - N Priyanka
- Department of Biotechnology, Periyar University, Periyar Palkalai Nagar, Salem, 636 011, Tamil Nadu, India
| | - K Manikandan
- Department of Biotechnology, Periyar University, Periyar Palkalai Nagar, Salem, 636 011, Tamil Nadu, India
| | - I Ganeshbabu
- Department of Biotechnology, Periyar University, Periyar Palkalai Nagar, Salem, 636 011, Tamil Nadu, India
| | - P Indiraarulselvi
- Department of Biotechnology, Periyar University, Periyar Palkalai Nagar, Salem, 636 011, Tamil Nadu, India
| | - N Geetha
- Department of Biotechnology, Mother Teresa Women's University, Kodaikanal, 624 102, Tamil Nadu, India
| | - K Muralikrishna
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110 012, India
| | - R C Bhattacharya
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110 012, India
| | - M Tiwari
- Department of Biology, Western Kentucky University, Bowling Green, KY, 42101, USA
| | - N Sharma
- Department of Biology, Western Kentucky University, Bowling Green, KY, 42101, USA
| | - S V Sahi
- Department of Biology, Western Kentucky University, Bowling Green, KY, 42101, USA
| |
Collapse
|
121
|
Venkatachalam P, Jayaraj M, Manikandan R, Geetha N, Rene ER, Sharma NC, Sahi SV. Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: A physiochemical analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 110:59-69. [PMID: 27622846 DOI: 10.1016/j.plaphy.2016.08.022] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/19/2016] [Accepted: 08/31/2016] [Indexed: 05/22/2023]
Abstract
The present study describes the role of zinc oxide nanoparticles (ZnONPs) in reversing oxidative stress symptoms induced by heavy metal (Cd and Pb) exposure in Leucaena leucocephala (Lam.) de Wit. Seedling growth was significantly enhanced with the augmentation of ZnONPs following Cd and Pb exposure. Heavy metal accumulations were recorded as 1253.1 mg Cd per kg DW and 1026.8 mg Pb per kg DW for the respective treatments. Results demonstrated that ZnONPs augmentation caused an increase in photosynthetic pigment and total soluble protein contents while a significant decrease in malondialdehyde (MDA-lipid peroxidation) content in leaves. Antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX) were, in turn, elevated in heavy metal-exposed leaves amended with ZnONPs. The ameliorating effect of ZnO nanoparticles on oxidative stress induced toxicity was also confirmed by the reduced MDA content and the elevated level of antioxidative enzyme activities in leaf tissues of L. leucocephala seedlings. Further, addition of ZnONPs in combination with Cd and Pb metals induced distinct genomic alterations such as presence of new DNA bands and/or absence of normal bands in the RAPD pattern of the exposed plants. This study uniquely suggests a potential role of zinc oxide nanoparticles in the remediation of heavy metal contaminated media.
Collapse
Affiliation(s)
- P Venkatachalam
- Plant Genetic Engineering and Molecular Biology Lab, Department of Biotechnology, Periyar University, PeriyarPalkalai Nagar, Salem, 636 011, Tamil Nadu, India.
| | - M Jayaraj
- Plant Genetic Engineering and Molecular Biology Lab, Department of Biotechnology, Periyar University, PeriyarPalkalai Nagar, Salem, 636 011, Tamil Nadu, India
| | - R Manikandan
- Plant Genetic Engineering and Molecular Biology Lab, Department of Biotechnology, Periyar University, PeriyarPalkalai Nagar, Salem, 636 011, Tamil Nadu, India
| | - N Geetha
- Department of Biotechnology, Mother Teresa Women's University, Kodaikanal, 624 102, Tamil Nadu, India
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, PO Box 3015, 2601 DA Delft, The Netherlands
| | - N C Sharma
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA
| | - S V Sahi
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA
| |
Collapse
|
122
|
Singh S, Khemariya P, Rai A, Rai AC, Koley TK, Singh B. Carnauba wax-based edible coating enhances shelf-life and retain quality of eggplant ( Solanum melongena ) fruits. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
123
|
Garg N, Bhandari P. Interactive effects of silicon and arbuscular mycorrhiza in modulating ascorbate-glutathione cycle and antioxidant scavenging capacity in differentially salt-tolerant Cicer arietinum L. genotypes subjected to long-term salinity. PROTOPLASMA 2016; 253:1325-45. [PMID: 26468060 DOI: 10.1007/s00709-015-0892-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/30/2015] [Indexed: 05/08/2023]
Abstract
Salinity is the major environmental constraint that affects legume productivity by inducing oxidative stress. Individually, both silicon (Si) nutrition and mycorrhization have been reported to alleviate salt stress. However, the mechanisms adopted by both in mediating stress responses are poorly understood. Thus, pot trials were undertaken to evaluate comparative as well as interactive effects of Si and/or arbuscular mycorrhiza (AM) in alleviating NaCl toxicity in modulating oxidative stress and antioxidant defence mechanisms in two Cicer arietinum L. (chickpea) genotypes-HC 3 (salt-tolerant) and CSG 9505 (salt-sensitive). Plants subjected to different NaCl concentrations (0-100 mM) recorded a substantial increase in the rate of superoxide radical (O2 (·-)), H2O2, lipoxygenase (LOX) activity and malondialdehyde (MDA) content, which induced leakage of ions and disturbed Ca(2+)/Na(+) ratio in roots and leaves. Individually, Si and AM reduced oxidative burst by strengthening antioxidant enzymatic activities (superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (GPOX)). Si was relatively more efficient in reducing accumulation of stress metabolites, while mycorrhization significantly up-regulated antioxidant machinery and modulated ascorbate-glutathione (ASA-GSH) cycle. Combined applications of Si and AM complemented each other in reducing reactive oxygen species (ROS) build-up by further enhancing the antioxidant defence responses. Magnitude of ROS-mediated oxidative burden was lower in HC 3 which correlated strongly with more effective AM symbiosis, better capacity to accumulate Si and stronger defence response when compared with CSG 9505. Study indicated that Si and/or AM fungal amendments upgraded salt tolerance through a dynamic shift from oxidative destruction towards favourable antioxidant defence system in stressed chickpea plants.
Collapse
Affiliation(s)
- Neera Garg
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Purnima Bhandari
- Department of Botany, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
124
|
Singh D, Pal M, Singh CK, Taunk J, Jain P, Chaturvedi AK, Maurya S, Karwa S, Singh R, Tomar RSS, Nongthombam R, Chongtham N, Singh MP. Molecular Scanning and Morpho-Physiological Dissection of Component Mechanism in Lens Species in Response to Aluminium Stress. PLoS One 2016; 11:e0160073. [PMID: 27467074 PMCID: PMC4970855 DOI: 10.1371/journal.pone.0160073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/13/2016] [Indexed: 01/24/2023] Open
Abstract
Aluminium (Al) stress was imposed on 285 lentil genotypes at seedling stage under hydroponics to study its effects on morpho-physiological traits where resistant cultigens and wilds showed minimum reduction in root and shoot length and maximum root re-growth (RRG) after staining. Molecular assortment based on 46 simple sequence repeat (SSR) markers clustered the genotypes into 11 groups, where wilds were separated from the cultigens. Genetic diversity and polymorphism information content (PIC) varied between 0.148-0.775 and 0.140-0.739, respectively. Breeding lines which were found to be most resistant (L-7903, L-4602); sensitive cultivars (BM-4, L-4147) and wilds ILWL-185 (resistant), ILWL-436 (sensitive) were grouped into different clusters. These genotypes were also separated on the basis of population structure and Jaccard's similarity index and analysed to study Al resistance mechanism through determination of different attributes like localization of Al and callose, lipid peroxidation, secretion of organic acids and production of antioxidant enzymes. In contrast to sensitive genotypes, in resistant ones most of the Al was localized in the epidermal cells, where its movement to apoplastic region was restricted due to release of citrate and malate. Under acidic field conditions, resistant genotypes produced maximum seed yield/plant as compared to sensitive genotypes at two different locations i.e. Imphal, Manipur, India and Basar, Arunanchal Pradesh, India during 2012-13, 2013-14 and 2014-15. These findings suggest that Al stress adaptation in lentil is through exclusion mechanism and hybridization between the contrasting genotypes from distinct clusters can help in development of resistant varieties.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Madan Pal
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, India
| | - Chandan Kumar Singh
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Jyoti Taunk
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Priyanka Jain
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | | | - Sadhana Maurya
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, India
| | - Sourabh Karwa
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, India
| | - Rajendra Singh
- Division of Soil Science and Agricultural Chemistry, Indian Agricultural Research Institute, New Delhi, India
| | - Ram Sewak Singh Tomar
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, India
| | - Rita Nongthombam
- KVK West Siang, ICAR RC for NEH Region, A.P. Centre, Basar, Arunachal Pradesh, India
| | - Nandini Chongtham
- KVK Imphal East, Andro, Central Agricultural University, Imphal, Manipur, India
| | | |
Collapse
|
125
|
Govarthanan M, Kamala-Kannan S, Kim SA, Seo YS, Park JH, Oh BT. Synergistic effect of chelators and Herbaspirillum sp. GW103 on lead phytoextraction and its induced oxidative stress in Zea mays. Arch Microbiol 2016; 198:737-42. [DOI: 10.1007/s00203-016-1231-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
|
126
|
Sheetal KR, Singh SD, Anand A, Prasad S. Heavy metal accumulation and effects on growth, biomass and physiological processes in mustard. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40502-016-0221-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
127
|
Andrianos V, Stoikou V, Tsikrika K, Lamprou D, Stasinos S, Proestos C, Zabetakis I. Carotenoids and Antioxidant Enzymes as Biomarkers of the Impact of Heavy Metals in food Chain. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE 2016. [DOI: 10.12944/crnfsj.4.special-issue1.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Antioxidant enzymes (catalase and peroxidase) and carotenoids lutein and β-carotene are often used as biomarkers of metal contamination of water and agricultural soils. In this study, the effects of heavy metals present in irrigation water on the aforementioned carotenoids of potatoes Solanum tuberosum L. and carrots Daucus carota L., cultivated in a greenhouse and irrigated with a water solution including different levels of Cr(VI) and Ni(II) were investigated. These results were compared to the levels of the same metabolites that had been assessed in market-available potato and carrot samples. The findings indicated that the levels of the examined metabolites on the treated with Cr and Ni samples, resemble the levels of the same parameters in the market samples, originating from polluted areas. Therefore, the antioxidant enzymes, catalase and peroxidase, and the carotenoids, lutein and β-carotene, could be handled as indicators of heavy metal pollution.
Collapse
Affiliation(s)
- Vangelis Andrianos
- Laboratory of Food Chemistry, Department of Chemistry, University of Athens, 15771, Athens, Greece
| | - Vasiliki Stoikou
- Laboratory of Food Chemistry, Department of Chemistry, University of Athens, 15771, Athens, Greece
| | - Konstantina Tsikrika
- School of Science, Engineering & Technology, Abertay University, Dundee, Scotland
| | - Dimitra Lamprou
- Laboratory of Food Chemistry, Department of Chemistry, University of Athens, 15771, Athens, Greece
| | - Sotiris Stasinos
- Laboratory of Food Chemistry, Department of Chemistry, University of Athens, 15771, Athens, Greece
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, University of Athens, 15771, Athens, Greece
| | - Ioannis Zabetakis
- Laboratory of Food Chemistry, Department of Chemistry, University of Athens, 15771, Athens, Greece
| |
Collapse
|
128
|
Kumar P, Sharma V, Raje RS, Singh B. Low-dose gamma irradiation induces water activity, leaf K+/Na+, glycine betaine, antioxidant enzyme activity and reduces lipid peroxidation and protease activity to enhance salt tolerance in pigeonpea [Cajanus cajan (L.) Millsp]. J Radioanal Nucl Chem 2015. [DOI: 10.1007/s10967-015-4596-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
129
|
Khare T, Kumar V, Kishor PBK. Na+ and Cl(-) ions show additive effects under NaCl stress on induction of oxidative stress and the responsive antioxidative defense in rice. PROTOPLASMA 2015; 252:1149-65. [PMID: 25547963 DOI: 10.1007/s00709-014-0749-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/12/2014] [Indexed: 05/08/2023]
Abstract
Despite the fact that when subjected to salinity stress most plants accumulate high concentrations of sodium (Na(+)) and chloride (Cl(-)) ions in their tissues, major research has however been focused on the toxic effects of Na(+). Consequently, Cl(-) toxicity mechanisms in annual plants, particularly in inducing oxidative stress, are poorly understood. Here, the extent to which Na(+) and/or Cl(-) ions contribute in inducing oxidative stress and regulating the adaptive antioxidant defense is shown in two Indica rice genotypes differing in their salt tolerance. Equimolar (100 mM) concentrations of Na(+), Cl(-), and NaCl (EC ≈ 10 dS m(-1)) generated free-radical (O2 (•-), (•)OH) and non-radical (H2O2) forms of reactive oxygen species (ROS) and triggered cell death in leaves of 21-day-old hydroponically grown rice seedlings as evident by spectrophotometric quantifications and histochemical visualizations. The magnitude of ROS-mediated oxidative damage was higher in sensitive cultivar, whereas NaCl proved to be most toxic among the treatments. Salt treatments significantly increased activities of antioxidant enzymes and their isozymes including superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, and glutathione reductase. Na(+) and Cl(-) ions showed additive effects under NaCl in activating the antioxidant enzyme machinery, and responses were more pronounced in tolerant cultivar. The expression levels of SodCc2, CatA, and OsPRX1 genes were largely consistent with the activities of their corresponding enzymes. Salt treatments caused an imbalance in non-enzymatic antioxidants ascorbic acid, α-tocopherol, and polyphenols, with greater impacts under NaCl than Na(+) and Cl(-) separately. Results revealed that though Cl(-) was relatively less toxic than its counter-cation, its effects cannot be totally ignored. Both the cultivars responded in the same manner, but the tolerant cultivar maintained lower Na(+)/K(+) and ROS levels coupled with better antioxidant defense under all three salt treatments.
Collapse
Affiliation(s)
- Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, University of Pune, Ganeshkhind, Pune, 411 016, India
| | | | | |
Collapse
|
130
|
Manikandan R, Sahi SV, Venkatachalam P. Impact assessment of mercury accumulation and biochemical and molecular response of Mentha arvensis: a potential hyperaccumulator plant. ScientificWorldJournal 2015; 2015:715217. [PMID: 25654134 PMCID: PMC4306221 DOI: 10.1155/2015/715217] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/15/2014] [Indexed: 01/24/2023] Open
Abstract
The present study was focused on examining the effect of Hg oxidative stress induced physiochemical and genetic changes in M. arvensis seedlings. The growth rate of Hg treated seedlings was decreased to 56.1% and 41.5% in roots and shoots, respectively, compared to the control. Accumulation of Hg level in both roots and shoots was increased with increasing the concentration of Hg. Superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) activities were found to be increased with increasing the Hg concentration up to 20 mg/L; however, it was decreased at 25 mg/L Hg concentration. The POX enzyme activity was positively correlated with Hg dose. The changes occurring in the random amplification of ploymorphic DNA (RAPD) profiles generated from Hg treated seedlings included variations in band intensity, disappearance of bands, and appearance of new bands compared with the control seedlings. It was concluded that DNA polymorphisms observed with RAPD profile could be used as molecular marker for the evaluation of heavy metal induced genotoxic effects in plant species. The present results strongly suggested that Mentha arvensis could be used as a potential phytoremediator plant in mercury polluted environment.
Collapse
Affiliation(s)
- R. Manikandan
- Plant Genetic Engineering and Molecular Biotechnology Lab, Department of Biotechnology, Periyar University, Salem, Tamil Nadu 636 011, India
| | - S. V. Sahi
- Department of Biology, Western Kentucky University, 1906 College Boulevard, No. 11080, Bowling Green, KY 42101-1080, USA
| | - P. Venkatachalam
- Plant Genetic Engineering and Molecular Biotechnology Lab, Department of Biotechnology, Periyar University, Salem, Tamil Nadu 636 011, India
| |
Collapse
|
131
|
Shen W, Chen G, Xu J, Zhen X, Ma J, Zhang X, Lv C, Gao Z. High light acclimation of Oryza sativa L. leaves involves specific photosynthetic-sourced changes of NADPH/NADP⁺ in the midvein. PROTOPLASMA 2015; 252:77-87. [PMID: 24888399 DOI: 10.1007/s00709-014-0662-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 05/22/2014] [Indexed: 06/03/2023]
Abstract
Previous studies have shown that exposure of Arabidopsis leaves to high light (HL) causes a systemic acquired acclimation (SAA) response in the vasculature. It has been postulated that C₄-like photosynthesis in the leaf veins triggers this response via the Mehler reaction. To investigate this proposed connection and extend SAA to other plants, we examined the redox state of NADPH, ascorbate (ASA), and glutathione (GSH) pools; levels and histochemical localization of O₂- and H₂O₂ signals; and activities of antioxidant enzymes in the midvein and leaf lamina of rice, when they were subjected to HL and low light. The results showed that (1) high NADPH/NADP(+) was generated by C₄-like photosynthesis under HL in the midvein and (2) SAA was colocally induced by HL, as indicated by the combined signaling network, including the decrease in redox status of ASA and GSH pools, accumulation of H₂O₂ and O₂- signals, and high superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities. The high correlations between these occurrences suggest that the enhanced NADPH/NADP(+) in HL-treated midveins might alter redox status of ASA and GSH pools and trigger H₂O₂ and O₂- signals during SAA via the Mehler reaction. These changes in turn upregulate SOD and APX activities in the midvein. In conclusion, SAA may be a common regulatory mechanism for the adaptation of angiosperms to HL. Manipulation of NADPH/NADP(+) levels by C₄-like photosynthesis promotes SAA under HL stress in the midvein.
Collapse
Affiliation(s)
- Weijun Shen
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Tewari K, Kumari S, Vinutha T, Singh B, Dahuja A. Gamma irradiation induces reduction in the off-flavour generation in soybean through enhancement of its antioxidant potential. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3803-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
133
|
Wang J, Zeng Q, Zhu J, Chen C, Liu G, Tang H. Apoplastic antioxidant enzyme responses to chronic free-air ozone exposure in two different ozone-sensitive wheat cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 82:183-193. [PMID: 24973575 DOI: 10.1016/j.plaphy.2014.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 06/10/2014] [Indexed: 06/03/2023]
Abstract
The effects of elevated ozone concentrations [O3] on two different ozone-sensitive wheat (Triticum aestivum L.) cultivars [Yangmai16 (Y16) and Yannong19 (Y19)] were investigated to determine the different apoplastic antioxidant mechanisms under O3-FACE (free-air controlled enrichment) condition. The results indicated that elevated [O3] (1.5 × ambient [O3]) induced increases in the production of superoxide anion (O2(-)), hydroxyl radical (HO), hydrogen peroxide (H2O2) and lipid peroxidation, and these results were more pronounced in the apoplasts of Y19 than in those of Y16. Apoplastic antioxidant enzymes were developmentally regulated and the effect of elevated [O3] depended on the developmental stage of wheat for both cultivars. In cultivar Y19, continuous O3 stress induced a decrease in the activity of apoplastic superoxide dismutase (SOD; EC 1.15.1.1), peroxidase (POD; EC 1.11.1.7) and ascorbate peroxidase (APX; EC 1.11.1.11) in the later growing stages, indicating Y19 appears to be the more sensitive cultivar and is prone to oxidative stress. The strategic response of antioxidant enzymes activities by Y16 in four different plant development stages (booting, flowering, filling and ripening) resulted in O3 stress-induced antioxidant defense responses, which indicated its higher tolerance to O3 stress. The same patterns of activity of apoplastic SOD and APX isozymes were observed in both Y16 and Y19 cultivars, while POD isozymes differed by cultivar in terms of the pattern of bands. The results of the present study show that O3 tolerance can be improved by regulating apoplastic ROS metabolism through the responses of apoplastic antioxidant enzymes to O3 stress in different plant development stages.
Collapse
Affiliation(s)
- Junli Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, PR China; Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qing Zeng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Jianguo Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Chen Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, PR China; Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Gang Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Haoye Tang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, PR China
| |
Collapse
|
134
|
Koramutla MK, Kaur A, Negi M, Venkatachalam P, Bhattacharya R. Elicitation of jasmonate-mediated host defense in Brassica juncea (L.) attenuates population growth of mustard aphid Lipaphis erysimi (Kalt.). PLANTA 2014; 240:177-94. [PMID: 24771023 DOI: 10.1007/s00425-014-2073-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 03/28/2014] [Indexed: 05/04/2023]
Abstract
The productivity of Brassica oilseeds is severely affected by its major pest: aphids. Unavailability of resistance source within the crossable germplasms has stalled the breeding efforts to derive aphid resistant cultivars. In this study, jasmonate-mediated host defense in Indian mustard Brassica juncea (L.) Czern. was evaluated and compared with regard to its elicitation in response to mustard aphid Lipaphis erysimi (Kalt.) and the defense elicitor methyl jasmonate (MeJ). Identification of jasmonate-induced unigenes in B. juncea revealed that most are orthologous to aphid-responsive genes, identified in taxonomically diverse plant-aphid interactions. The unigenes largely represented genes related to signal transduction, response to biotic and abiotic stimuli and homeostasis of reactive oxygen species (ROS), in addition to genes related to cellular and metabolic processes involved in cell organization, biogenesis, and development. Gene expression studies revealed induction of the key jasmonate biosynthetic genes (LOX, AOC, 12-OPDR), redox genes (CAT3 and GST6), and other downstream defense genes (PAL, ELI3, MYR, and TPI) by several folds, both in response to MeJ and plant-wounding. However, interestingly aphid infestation even after 24 h did not elicit any activation of these genes. In contrast, when the jasmonate-mediated host defense was elicited by exogenous application of MeJ the treated B. juncea plants showed a strong antibiosis effect on the infesting aphids and reduced the growth of aphid populations. The level of redox enzymes CAT, APX, and SOD, involved in ROS homeostasis in defense signaling, and several defense enzymes viz. POD, PPO, and PAL, remained high in treated plants. We conclude that in B. juncea, the jasmonate activated endogenous-defense, which is not effectively activated in response to mustard aphids, has the potential to reduce population growth of mustard aphids.
Collapse
Affiliation(s)
- Murali Krishna Koramutla
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, 110 012, India
| | | | | | | | | |
Collapse
|
135
|
Effect of salt stress on seedling growth and antioxidant enzymes in two contrasting rice introgression lines. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s40502-014-0061-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
136
|
Padmaja PG, Shwetha BL, Swetha G, Patil JV. Oxidative enzyme changes in sorghum infested by shoot fly. JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:193. [PMID: 25480976 PMCID: PMC5634055 DOI: 10.1093/jisesa/ieu055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 10/23/2013] [Indexed: 06/04/2023]
Abstract
This research investigated the role of oxidative enzymes in the defense response of sorghum, Sorghum bicolor (L.) Moench (Poales: Poaceae), to the sorghum shoot fly, Atherigona soccata Rondani (Diptera: Muscidae). Changes in polyphenol oxidase and peroxidase activity and total protein content were observed in resistant and susceptible sorghum genotypes in response to A. soccata feeding. Resistant plants exhibited higher levels of peroxidase and polyphenol oxidase activities and total protein content compared with susceptible plants. Peroxidase and polyphenol oxidase activities and total protein content in the infested resistant and susceptible genotypes were higher when compared with their control plants, respectively. These findings suggest that resistant genotypes may be able to tolerate shoot fly feeding by increasing their peroxidase and polyphenol oxidase activities. Among the enzymes examined, differences in isozyme profiles for peroxidase and polyphenol oxidase were detected between control and infested IS 18551, M35-1, 296B, SSV 84, and DJ 6514 plants. Differences in protein profiles were observed between A. soccata infested and their respective uninfested controls of all the genotypes. In conclusion, this study revealed that these defense enzymes and proteins might attribute to the resistance mechanisms in sorghum plants against A. soccata infestation.
Collapse
Affiliation(s)
- P G Padmaja
- Directorate of Sorghum Research, Rajendranagar, Hyderabad 500 030, India
| | - B L Shwetha
- Directorate of Sorghum Research, Rajendranagar, Hyderabad 500 030, India
| | - G Swetha
- Directorate of Sorghum Research, Rajendranagar, Hyderabad 500 030, India
| | - J V Patil
- Directorate of Sorghum Research, Rajendranagar, Hyderabad 500 030, India
| |
Collapse
|
137
|
Vanneste S, Friml J. Calcium: The Missing Link in Auxin Action. PLANTS (BASEL, SWITZERLAND) 2013; 2:650-75. [PMID: 27137397 PMCID: PMC4844386 DOI: 10.3390/plants2040650] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/07/2013] [Accepted: 10/10/2013] [Indexed: 01/18/2023]
Abstract
Due to their sessile lifestyles, plants need to deal with the limitations and stresses imposed by the changing environment. Plants cope with these by a remarkable developmental flexibility, which is embedded in their strategy to survive. Plants can adjust their size, shape and number of organs, bend according to gravity and light, and regenerate tissues that were damaged, utilizing a coordinating, intercellular signal, the plant hormone, auxin. Another versatile signal is the cation, Ca(2+), which is a crucial second messenger for many rapid cellular processes during responses to a wide range of endogenous and environmental signals, such as hormones, light, drought stress and others. Auxin is a good candidate for one of these Ca(2+)-activating signals. However, the role of auxin-induced Ca(2+) signaling is poorly understood. Here, we will provide an overview of possible developmental and physiological roles, as well as mechanisms underlying the interconnection of Ca(2+) and auxin signaling.
Collapse
Affiliation(s)
- Steffen Vanneste
- Plant Systems Biology, VIB, and Plant Biotechnology and Bio-informatics, Ghent University, Ghent 9052, Belgium.
| | - Jiří Friml
- Plant Systems Biology, VIB, and Plant Biotechnology and Bio-informatics, Ghent University, Ghent 9052, Belgium
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg 3400, Austria
| |
Collapse
|
138
|
Proline dehydrogenase regulates redox state and respiratory metabolism in Trypanosoma cruzi. PLoS One 2013; 8:e69419. [PMID: 23894476 PMCID: PMC3718742 DOI: 10.1371/journal.pone.0069419] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/10/2013] [Indexed: 11/19/2022] Open
Abstract
Over the past three decades, L-proline has become recognized as an important metabolite for trypanosomatids. It is involved in a number of key processes, including energy metabolism, resistance to oxidative and nutritional stress and osmoregulation. In addition, this amino acid supports critical parasite life cycle processes by acting as an energy source, thus enabling host-cell invasion by the parasite and subsequent parasite differentiation. In this paper, we demonstrate that L-proline is oxidized to Δ(1)-pyrroline-5-carboxylate (P5C) by the enzyme proline dehydrogenase (TcPRODH, E.C. 1.5.99.8) localized in Trypanosoma cruzi mitochondria. When expressed in its active form in Escherichia coli, TcPRODH exhibits a Km of 16.58±1.69 µM and a Vmax of 66±2 nmol/min mg. Furthermore, we demonstrate that TcPRODH is a FAD-dependent dimeric state protein. TcPRODH mRNA and protein expression are strongly upregulated in the intracellular epimastigote, a stage which requires an external supply of proline. In addition, when Saccharomyces cerevisiae null mutants for this gene (PUT1) were complemented with the TcPRODH gene, diminished free intracellular proline levels and an enhanced sensitivity to oxidative stress in comparison to the null mutant were observed, supporting the hypothesis that free proline accumulation constitutes a defense against oxidative imbalance. Finally, we show that proline oxidation increases cytochrome c oxidase activity in mitochondrial vesicles. Overall, these results demonstrate that TcPRODH is involved in proline-dependant cytoprotection during periods of oxidative imbalance and also shed light on the participation of proline in energy metabolism, which drives critical processes of the T. cruzi life cycle.
Collapse
|
139
|
Silva S, Pinto G, Correia B, Pinto-Carnide O, Santos C. Rye oxidative stress under long term Al exposure. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:879-89. [PMID: 23537706 DOI: 10.1016/j.jplph.2013.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 12/21/2012] [Accepted: 01/24/2013] [Indexed: 05/12/2023]
Abstract
Aluminium (Al) toxicity decreases plant growth. Secale cereale L. is among the most Al-tolerant crop species. In order to study the response to Al-long term exposure, two rye genotypes with different Al sensitivity ('D. Zlote' and 'Riodeva') were exposed to 1.11 and 1.85mM Al and the antioxidant responses were followed for 2 and 3 weeks in roots and leaves. Al toxicity signals, such as a severe decrease in root growth, occurred sooner in 'Riodeva.' The antioxidant response was dependent on the genotype, the organ, Al concentration and the exposure period. Al-exposed roots of 'D. Zlote' showed earlier enhancements of APX, SOD and G-POX activities than those of 'Riodeva.' 'D. Zlote' roots showed stimulation of the AsA-GSH cycle after the second week (when root growth inhibition was less severe), while later (when severe root growth inhibition was observed), oxidation of AsA and GSH pools was observed. In leaves of both genotypes, CAT, SOD and G-POX activities increased with Al exposure. In these leaves, the effect of AsA-GSH was time dependent, with maximum oxidation at the second week, followed by recovery. We confirmed that the oxidation state of AsA and GSH pools is involved in the detoxification of Al-induced oxidative stress. Moreover, our data demonstrate that the production of ROS does not correlate with the Al-induced root growth decrease. Finally, the differences observed over time indicate that long term exposure may provide additional information on rye sensitivity to Al, and contribute to a better understanding of this species' mechanisms of Al tolerance.
Collapse
Affiliation(s)
- Sónia Silva
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | | |
Collapse
|
140
|
Bhattacharya R, Koramutla MK, Negi M, Pearce G, Ryan CA. Hydroxyproline-rich glycopeptide signals in potato elicit signalling associated with defense against insects and pathogens. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 207:88-97. [PMID: 23602103 DOI: 10.1016/j.plantsci.2013.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/27/2013] [Accepted: 03/06/2013] [Indexed: 05/08/2023]
Abstract
HypSys peptides are 18-20 amino acids glycopeptide defense signal first discovered in tobacco and tomato that activate expression of defensive genes against insect-herbivores. Discovery of their orthologs in other Solanaceaous and nonsolanaceous plants demonstrated their possible ubiquitous nature and species specific functional diversity. In our continued search to establish the paradigm of defense signalling by HypSys peptides, we isolated a cDNA from potato leaves encoding putative analogs of tomato HypSys peptides flanked by conserved proteolytic cleavage sites. The gene encoding the cDNA was a member of a gene family in the tetraploid genome of potato and its expression was transcriptionally activated by wounding and methyl jasmonate. The deduced precursor protein contained a leader peptidase splice site and three putative HypSys peptides with conserved N- and C-termini along with central proline-rich motifs. In defense signalling, the three HypSys peptides elicit H₂O₂ generation in vivo and activate several antioxidant defensive enzymes in young potato leaves. Similar to potato systemin, the HypSys peptides activate the expression of octadecanoid pathway genes and protease inhibitors for insect defense. In addition, the HypSys peptides also activate the essential genes of the innate pathogen defense response in young potato leaves, acting as common elicitors of signalling associated with anti-herbivore and anti-pathogen defense in potato.
Collapse
Affiliation(s)
- Ramcharan Bhattacharya
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi 110012, India.
| | | | | | | | | |
Collapse
|
141
|
Booker F, Burkey K, Morgan P, Fiscus E, Jones A. Minimal influence of G-protein null mutations on ozone-induced changes in gene expression, foliar injury, gas exchange and peroxidase activity in Arabidopsis thaliana L. PLANT, CELL & ENVIRONMENT 2012; 35:668-81. [PMID: 21988569 PMCID: PMC4905725 DOI: 10.1111/j.1365-3040.2011.02443.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ozone (O(3)) uptake by plants leads to an increase in reactive oxygen species (ROS) in the intercellular space of leaves and induces signalling processes reported to involve the membrane-bound heterotrimeric G-protein complex. Therefore, potential G-protein-mediated response mechanisms to O(3) were compared between Arabidopsis thaliana L. lines with null mutations in the α- and β-subunits (gpa1-4, agb1-2 and gpa1-4/agb1-2) and Col-0 wild-type plants. Plants were treated with a range of O(3) concentrations (5, 125, 175 and 300 nL L(-1)) for 1 and 2 d in controlled environment chambers. Transcript levels of GPA1, AGB1 and RGS1 transiently increased in Col-0 exposed to 125 nL L(-1) O(3) compared with the 5 nL L(-1) control treatment. However, silencing of α and β G-protein genes resulted in little alteration of many processes associated with O(3) injury, including the induction of ROS-signalling genes, increased leaf tissue ion leakage, decreased net photosynthesis and stomatal conductance, and increased peroxidase activity, especially in the leaf apoplast. These results indicated that many responses to O(3) stress at physiological levels were not detectably influenced by α and β G-proteins.
Collapse
Affiliation(s)
- Fitzgerald Booker
- US Department of Agriculture, Plant Science Research Unit, Raleigh, NC 27607, USA.
| | | | | | | | | |
Collapse
|
142
|
Y Y, GX W, LD Y, JY G, N L. Physiological responses of Kobresia pygmaea to warming in Qinghai-Tibetan Plateau permafrost region. ACTA OECOLOGICA 2012. [DOI: 10.1016/j.actao.2012.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
143
|
Garg N, Bhandari P. Influence of cadmium stress and arbuscular mycorrhizal fungi on nodule senescence in Cajanus cajan (L.) Millsp. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2012; 14:62-74. [PMID: 22567695 DOI: 10.1080/15226514.2011.573822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Cadmium (Cd) causes oxidative damage and affects nodulation and nitrogen fixation process of legumes. Arbuscular mycorrhizal (AM) fungi have been demonstrated to alleviate heavy metal stress of plants. The present study was conducted to assess role of AM in alleviating negative effects of Cd on nodule senescence in Cajanus cajan genotypes differing in their metal tolerance. Fifteen day-old plants were subjected to Cd treatments--25 mg and 50 mg Cd per kg dry soil and were grown with and without Glomus mosseae. Cd treatments led to a decline in mycorrhizal infection (MI), nodule number and dry weights which was accompanied by reductions in leghemoglobin content, nitrogenase activity, organic acid contents. Cd supply caused a marked decrease in nitrogen (N), phosphorus (P), and iron (Fe) contents. Conversely, Cd increased membrane permeability, thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), and Cd contents in nodules. AM inoculations were beneficial in reducing the above mentioned harmful effects of Cd and significantly improved nodule functioning. Activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) increased markedly in nodules of mycorrhizal-stressed plants. The negative effects of Cd were genotype and concentration dependent.
Collapse
Affiliation(s)
- Neera Garg
- Department of Botany, Panjab University, Chandigarh, India.
| | | |
Collapse
|
144
|
Sattelmacher B, Mühling KH, Pennewiß K. The apoplast - its significance for the nutrition of higher plants. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/jpln.1998.3581610502] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
145
|
Salama HM, Al-Rumaih M, Al-Dosary M. Effects of Riyadh cement industry pollutions on some physiological and morphological factors of Datura innoxia Mill. plant. Saudi J Biol Sci 2011; 18:227-37. [PMID: 23961129 PMCID: PMC3730572 DOI: 10.1016/j.sjbs.2011.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 04/29/2011] [Accepted: 05/01/2011] [Indexed: 11/28/2022] Open
Abstract
Cement factory emissions into air cause serious air pollution and affect the plant and animal life in the environment. Herein, we report the effects of cement industry emissions (O3, SO2 and NO2) in air, as pollutants, at Riyadh City on Datura innoxia Mill. plant. Morphological characters including plant height, leaves area and number, fresh and dry weight of shoot and root systems of D. innoxia showed a significant reduction from their normal control plants as a response to exposure to pollutant emissions. Chlorophyll and carotenoid contents recorded reductions in values compared to control plant, and the lowest values of chlorophyll A, B, total chlorophyll, carotenoids and total pigments were 0.431, 0.169, 0.60, 0.343 and 0.943 mg/g respectively at a distance of 1-5 m from the cement factory in fruiting stage. These changes in values may be attributed to a probable deceleration of the biosynthetic process rather than degradation of pigments. Further D. innoxia showed a significant (P < 0.01) reduction in non-reducing and total sugars, protein and total lipid contents compared with the control plant. The root system recorded the lowest values of reducing sugars (0.350 mg/g f. wt.), non-reducing sugars (0.116 mg/g f. wt.), total sugars (0.466 mg/g f. wt.), protein content (0.931 mg/g f. wt.) and total lipids content (0.669 mg/g f. wt.) in fruiting stage at a distance of 1-5 m from the cement factory. The peroxidase activity of shoot and root systems of the studied plant was also significantly higher than those of control plant. Thus a highest value of (29.616 units/g f. wt.) peroxidase activity was recorded in vegetative stage of shoot system at a distance 1-5 m from the cement factory. Results of the study indicated that cement industry emission strongly influence the physiology and morphology of date palm D. innoxia which contribute date fruits, a staple food in the Arab world.
Collapse
Affiliation(s)
- Hediat M.H. Salama
- King Saud University, Women Students-Medical Studies & Sciences Sections, Riyadh, Saudi Arabia
| | | | | |
Collapse
|
146
|
Heterosis for superoxide dismutase, peroxidase and catalase enzymes in the head of single cross-hybrids of cabbage (Brassica oleracea var. capitata). J Genet 2011; 89:217-21. [PMID: 20861573 DOI: 10.1007/s12041-010-0028-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
147
|
Zhang B, Wang XQ, Li X, Ni YQ, Li HY. Aluminum uptake and disease resistance in Nicotiana rustica leaves. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:655-63. [PMID: 20106526 DOI: 10.1016/j.ecoenv.2009.12.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 08/16/2009] [Accepted: 12/21/2009] [Indexed: 05/28/2023]
Abstract
The comparative effectiveness of aluminum hydroxide and aluminum chloride has been studied in the development of bacterial wilt infection on leaves of Nicotiana rustica cv. Gansu yellow flower. We have analyzed the changes of foliar H(2)O(2) content, as well as of non-enzymatic and enzymatic antioxidants under aluminum stress. Pretreatment with aluminum hydroxide before pathogen challenge reduced the development of Ralstonia solanacearum infection and decreased the extent of leaf injury. The pretreatment also reduced the Al uptake in comparison to pretreatment with aluminum chloride. H(2)O(2) generation was significantly enhanced by pretreatment with aluminum hydroxide. Increased NADPH oxidase and superoxide dismutase activities were correlated with limited infection. Aluminum hydroxide pretreatment shifted the leaf redox homeostasis of AsA/DHA and GSH/GSSG toward oxidation, yielding higher oxidant levels than aluminum chloride before bacterial inoculation. The results support the idea that aluminum hydroxide induced H(2)O(2) accumulation through non-enzymatic and enzymatic regulation, ultimately resulting in resistance to tobacco wilt disease.
Collapse
Affiliation(s)
- Bo Zhang
- MOE Key Laboratory of Arid and Grassland Ecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | | | | | | | | |
Collapse
|
148
|
Jiang L, Yang H. Prometryne-induced oxidative stress and impact on antioxidant enzymes in wheat. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:1687-93. [PMID: 19473703 DOI: 10.1016/j.ecoenv.2009.04.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 04/14/2009] [Accepted: 04/18/2009] [Indexed: 05/11/2023]
Abstract
Prometryne is one of the herbicides widely used for controlling weed/grass in agricultural practice. However, whether it has an adverse effect on crops is unknown. In this study, we investigated prometryne-induced oxidative stress in wheat (Triticum aestivum). Wheat plants were grown in soils with prometryne at 0-24 mgkg(-1) soil. The growth of wheat treated with prometryne was inhibited. Chlorophyll content significantly decreased even at the low level of prometryne (4 mgkg(-1) soil). Accumulation of thiobarbituric acid reactive substances (TBARS), an indicator of cellular peroxidation, increased, suggesting oxidative damage to the plants. The prometryne-induced oxidative stress triggered significant changes in activities of a variety of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX) and glutathione S-transferase (GST). Activities of the enzymes showed a general increase at low prometryne concentrations but a decrease at high levels. Analysis of non-denaturing polyacrylamide gel electrophoresis (PAGE) confirmed the results. To get an insight into the molecular response, a qRT-PCR-based assay was performed to analyze the transcript abundance of Cu/Zn-SOD and GST with prometryne exposure. Our analysis revealed that both genes displayed up-regulated expression patterns similar to the activities of the two enzymes. These data imply that prometryne-induced oxidative stress was responsible for the disturbance of the growth and antioxidant defensive systems in wheat plants.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Applied Chemistry, College of Sciences, Nanjing Agricultural University, Weigang No. 1, Outside the Zhongshan Men, Building of Chemistry, Nanjing 210095, China
| | | |
Collapse
|
149
|
Singh S, Agrawal SB, Agrawal M. Differential protection of ethylenediurea (EDU) against ambient ozone for five cultivars of tropical wheat. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:2359-2367. [PMID: 19386404 DOI: 10.1016/j.envpol.2009.03.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 03/16/2009] [Accepted: 03/19/2009] [Indexed: 05/27/2023]
Abstract
The antiozonant EDU (ethylenediurea) was used to assess the impact of ambient O(3) under field conditions on five cultivars of tropical wheat (Triticum aestivum L.). EDU solution (0 ppm and 400 ppm) was applied as soil drench (100 ml plant(-1)) 10 days after germination (DAG) at an interval of 12 days. EDU-treated plants showed significant increments in stomatal conductance, photosynthetic rate, variable fluorescence, total chlorophyll, ascorbic acid, proline and protein contents and protective enzymes (POX, SOD and APX) activities in HUW468, HUW510 and HUW234 cultivars, while, a reverse trend was observed for lipid peroxidation. EDU application restored grain yield significantly by maintaining higher levels of antioxidants, metabolites and enzymes in cultivars HUW468 and HUW510. Sonalika and PBW343 showed least response of measured parameters under EDU treatment suggesting their greater resistance to O(3). EDU, thus proved its usefulness in screening suitable wheat cultivars for areas experiencing elevated concentrations of O(3).
Collapse
Affiliation(s)
- Shalini Singh
- Laboratory of Air Pollution and Global Climatic Change, Ecology Research Circle, Department of Botany, Banaras Hindu University, Varanasi 221005, India
| | | | | |
Collapse
|
150
|
Almeselmani M, Deshmukh P, Sairam R. High temperature stress tolerance in wheat genotypes: Role of antioxidant defence enzymes. ACTA ACUST UNITED AC 2009. [DOI: 10.1556/aagr.57.2009.1.1] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Two wheat genotypes, C 306 (tolerant) and PBW 343 (susceptible to temperature stress) were grown in growth chambers in the phytotron facility of IARI, New Delhi. The plants were maintained at 18/23°C (control) and 25/35°C (temperature stress) night/day temperatures after maximum tillering. Water potential was significantly reduced at anthesis, and at 7 and 15 days after anthesis in both genotypes in the heat stress treatment, and a greater reduction was recorded in PBW 343. The membrane stability index was also lower in the heat stress treatment in both genotypes at the vegetative stage, at anthesis and at 15 days after anthesis, and a greater reduction was observed in PBW 343 than in C 306. The hydrogen peroxide content increased as the plants advanced in age, and a higher hydrogen peroxide content was recorded in PBW 343 than in C 306 at different stages of growth in the heat stress treatment. The superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR) and peroxidase (POX) activities increased significantly at all stages of growth in C 306 in response to heat stress treatment, while PBW 343 showed a significant reduction in catalase, glutathione reductase and peroxidase activities in the high temperature treatment. Northern blot showed a significant increase in the
APX
-mRNA level under heat stress at the vegetative and anthesis stages, and the expression was greater in C 306. From the results it is apparent that the antioxidant defence mechanism plays an important role in the heat stress tolerance of wheat genotypes.
Collapse
Affiliation(s)
- M. Almeselmani
- 1 Indian Agricultural Research Institute Division of Plant Physiology New Delhi India
| | - P. Deshmukh
- 1 Indian Agricultural Research Institute Division of Plant Physiology New Delhi India
| | - R. Sairam
- 1 Indian Agricultural Research Institute Division of Plant Physiology New Delhi India
| |
Collapse
|