101
|
Pushparajah D, Jimenez S, Wong S, Alattas H, Nafissi N, Slavcev RA. Advances in gene-based vaccine platforms to address the COVID-19 pandemic. Adv Drug Deliv Rev 2021; 170:113-141. [PMID: 33422546 PMCID: PMC7789827 DOI: 10.1016/j.addr.2021.01.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/23/2020] [Accepted: 01/01/2021] [Indexed: 01/07/2023]
Abstract
The novel betacoronavirus, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has spread across the globe at an unprecedented rate since its first emergence in Wuhan City, China in December 2019. Scientific communities around the world have been rigorously working to develop a potent vaccine to combat COVID-19 (coronavirus disease 2019), employing conventional and novel vaccine strategies. Gene-based vaccine platforms based on viral vectors, DNA, and RNA, have shown promising results encompassing both humoral and cell-mediated immune responses in previous studies, supporting their implementation for COVID-19 vaccine development. In fact, the U.S. Food and Drug Administration (FDA) recently authorized the emergency use of two RNA-based COVID-19 vaccines. We review current gene-based vaccine candidates proceeding through clinical trials, including their antigenic targets, delivery vehicles, and route of administration. Important features of previous gene-based vaccine developments against other infectious diseases are discussed in guiding the design and development of effective vaccines against COVID-19 and future derivatives.
Collapse
Affiliation(s)
- Deborah Pushparajah
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Salma Jimenez
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada; Theraphage, 151 Charles St W Suite # 199, Kitchener, ON, N2G 1H6, Canada
| | - Shirley Wong
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Hibah Alattas
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Nafiseh Nafissi
- Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada
| | - Roderick A Slavcev
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada; Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada; Theraphage, 151 Charles St W Suite # 199, Kitchener, ON, N2G 1H6, Canada.
| |
Collapse
|
102
|
Li K, Wang C, Yang F, Cao W, Zhu Z, Zheng H. Virus-Host Interactions in Foot-and-Mouth Disease Virus Infection. Front Immunol 2021; 12:571509. [PMID: 33717061 PMCID: PMC7952751 DOI: 10.3389/fimmu.2021.571509] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/18/2021] [Indexed: 01/12/2023] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals, which has been regarded as a persistent challenge for the livestock industry in many countries. Foot-and-mouth disease virus (FMDV) is the etiological agent of FMD that can spread rapidly by direct and indirect transmission. FMDV is internalized into host cell by the interaction between FMDV capsid proteins and cellular receptors. When the virus invades into the cells, the host antiviral system is quickly activated to suppress the replication of the virus and remove the virus. To retain fitness and host adaptation, various viruses have evolved multiple elegant strategies to manipulate host machine and circumvent the host antiviral responses. Therefore, identification of virus-host interactions is critical for understanding the host defense against virus infections and the pathogenesis of the viral infectious diseases. This review elaborates on the virus-host interactions during FMDV infection to summarize the pathogenic mechanisms of FMD, and we hope it can provide insights for designing effective vaccines or drugs to prevent and control the spread of FMD and other diseases caused by picornaviruses.
Collapse
Affiliation(s)
- Kangli Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Congcong Wang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
103
|
Santa P, Garreau A, Serpas L, Ferriere A, Blanco P, Soni C, Sisirak V. The Role of Nucleases and Nucleic Acid Editing Enzymes in the Regulation of Self-Nucleic Acid Sensing. Front Immunol 2021; 12:629922. [PMID: 33717156 PMCID: PMC7952454 DOI: 10.3389/fimmu.2021.629922] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
Detection of microbial nucleic acids by the innate immune system is mediated by numerous intracellular nucleic acids sensors. Upon the detection of nucleic acids these sensors induce the production of inflammatory cytokines, and thus play a crucial role in the activation of anti-microbial immunity. In addition to microbial genetic material, nucleic acid sensors can also recognize self-nucleic acids exposed extracellularly during turn-over of cells, inefficient efferocytosis, or intracellularly upon mislocalization. Safeguard mechanisms have evolved to dispose of such self-nucleic acids to impede the development of autoinflammatory and autoimmune responses. These safeguard mechanisms involve nucleases that are either specific to DNA (DNases) or RNA (RNases) as well as nucleic acid editing enzymes, whose biochemical properties, expression profiles, functions and mechanisms of action will be detailed in this review. Fully elucidating the role of these enzymes in degrading and/or processing of self-nucleic acids to thwart their immunostimulatory potential is of utmost importance to develop novel therapeutic strategies for patients affected by inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Pauline Santa
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Anne Garreau
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Lee Serpas
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | | | - Patrick Blanco
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
- Immunology and Immunogenetic Department, Bordeaux University Hospital, Bordeaux, France
| | - Chetna Soni
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | - Vanja Sisirak
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| |
Collapse
|
104
|
Root-Bernstein R. Innate Receptor Activation Patterns Involving TLR and NLR Synergisms in COVID-19, ALI/ARDS and Sepsis Cytokine Storms: A Review and Model Making Novel Predictions and Therapeutic Suggestions. Int J Mol Sci 2021; 22:ijms22042108. [PMID: 33672738 PMCID: PMC7924650 DOI: 10.3390/ijms22042108] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/08/2023] Open
Abstract
Severe COVID-19 is characterized by a “cytokine storm”, the mechanism of which is not yet understood. I propose that cytokine storms result from synergistic interactions among Toll-like receptors (TLR) and nucleotide-binding oligomerization domain-like receptors (NLR) due to combined infections of SARS-CoV-2 with other microbes, mainly bacterial and fungal. This proposition is based on eight linked types of evidence and their logical connections. (1) Severe cases of COVID-19 differ from healthy controls and mild COVID-19 patients in exhibiting increased TLR4, TLR7, TLR9 and NLRP3 activity. (2) SARS-CoV-2 and related coronaviruses activate TLR3, TLR7, RIG1 and NLRP3. (3) SARS-CoV-2 cannot, therefore, account for the innate receptor activation pattern (IRAP) found in severe COVID-19 patients. (4) Severe COVID-19 also differs from its mild form in being characterized by bacterial and fungal infections. (5) Respiratory bacterial and fungal infections activate TLR2, TLR4, TLR9 and NLRP3. (6) A combination of SARS-CoV-2 with bacterial/fungal coinfections accounts for the IRAP found in severe COVID-19 and why it differs from mild cases. (7) Notably, TLR7 (viral) and TLR4 (bacterial/fungal) synergize, TLR9 and TLR4 (both bacterial/fungal) synergize and TLR2 and TLR4 (both bacterial/fungal) synergize with NLRP3 (viral and bacterial). (8) Thus, a SARS-CoV-2-bacterium/fungus coinfection produces synergistic innate activation, resulting in the hyperinflammation characteristic of a cytokine storm. Unique clinical, experimental and therapeutic predictions (such as why melatonin is effective in treating COVID-19) are discussed, and broader implications are outlined for understanding why other syndromes such as acute lung injury, acute respiratory distress syndrome and sepsis display varied cytokine storm symptoms.
Collapse
|
105
|
Mommert M, Perret M, Hockin M, Viel S, Belot A, Richard JC, Mezidi M, Fassier JB, Javouhey E, Hemmert A, Mallet F, Trouillet-Assant S, Brengel-Pesce K. Type-I Interferon assessment in 45 minutes using the FilmArray ® PCR platform in SARS-CoV-2 and other viral infections. Eur J Immunol 2021; 51:989-994. [PMID: 33314090 PMCID: PMC8248375 DOI: 10.1002/eji.202048978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/28/2020] [Accepted: 12/08/2020] [Indexed: 02/04/2023]
Abstract
Low concentrations of type‐I interferon (IFN) in blood seem to be associated with more severe forms of Coronavirus disease 2019 (COVID‐19). However, following the type‐I interferon response (IR) in early stage disease is a major challenge. We evaluated detection of a molecular interferon signature on a FilmArray® system, which includes PCR assays for four interferon stimulated genes. We analyzed three types of patient populations: (i) children admitted to a pediatric emergency unit for fever and suspected infection, (ii) ICU‐admitted patients with severe COVID‐19, and (iii) healthcare workers with mild COVID‐19. The results were compared to the reference tools, that is, molecular signature assessed with Nanostring® and IFN‐α2 quantification by SIMOA® (Single MOlecule Array). A strong correlation was observed between the IR measured by the FilmArray®, Nanostring®, and SIMOA® platforms (r‐Spearman 0.996 and 0.838, respectively). The FilmArray® panel could be used in the COVID‐19 pandemic to evaluate the IR in 45‐min with 2 min hand‐on‐time at hospitalization and to monitor the IR in future clinical trials.
Collapse
Affiliation(s)
- Marine Mommert
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Lyon Sud Hospital, Pierre-Bénite, France.,EA 7426 Pathophysiology of Injury-Induced Immunosuppression, Edouard Herriot Hospital, University of Lyon1-Hospices Civils de Lyon-bioMérieux, 5 Place d'Arsonval, Lyon Cedex 3, Lyon, France
| | - Magali Perret
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France.,Immunology Laboratory, Hospices Civils de Lyon, , Lyon Sud Hospital, Pierre-Bénite
| | | | - Sébastien Viel
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France.,Immunology Laboratory, Hospices Civils de Lyon, , Lyon Sud Hospital, Pierre-Bénite.,National Referee Centre for Rheumatic and AutoImmune and Systemic diseases in ChildrEn (RAISE).,Lyon Immunopathology Federation LIFE, Hospices Civils de Lyon, Lyon, France
| | - Alexandre Belot
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France.,National Referee Centre for Rheumatic and AutoImmune and Systemic diseases in childrEn (RAISE), Lyon, France.,Lyon Immunopathology Federation LIFE, Hospices Civils de Lyon, Lyon, France.,Pediatric Nephrology, Rheumatology, Dermatology Unit, Hospices Civils de Lyon, Lyon, France
| | | | - Mehdi Mezidi
- Medical Intensive Care Unit, Hospices Civils de Lyon, Croix Rousse Hospital, Lyon, France
| | - Jean-Baptiste Fassier
- Service de médecine du travail et des pathologies professionnelles, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Etienne Javouhey
- Pediatric Emergency Unit, Hôpital Femme Mère Enfants, Hospices Civils of Lyon, Lyon, France
| | -
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Lyon Sud Hospital, Pierre-Bénite, France.,EA 7426 Pathophysiology of Injury-Induced Immunosuppression, Edouard Herriot Hospital, University of Lyon1-Hospices Civils de Lyon-bioMérieux, 5 Place d'Arsonval, Lyon Cedex 3, Lyon, France.,Pediatric Emergency Unit, Hôpital Femme Mère Enfants, Hospices Civils of Lyon, Lyon, France
| | -
- Service de médecine du travail et des pathologies professionnelles, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | -
- Medical Intensive Care Unit, Hospices Civils de Lyon, Croix Rousse Hospital, Lyon, France
| | | | - François Mallet
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Lyon Sud Hospital, Pierre-Bénite, France.,EA 7426 Pathophysiology of Injury-Induced Immunosuppression, Edouard Herriot Hospital, University of Lyon1-Hospices Civils de Lyon-bioMérieux, 5 Place d'Arsonval, Lyon Cedex 3, Lyon, France
| | - Sophie Trouillet-Assant
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Lyon Sud Hospital, Pierre-Bénite, France.,International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
| | - Karen Brengel-Pesce
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Lyon Sud Hospital, Pierre-Bénite, France.,EA 7426 Pathophysiology of Injury-Induced Immunosuppression, Edouard Herriot Hospital, University of Lyon1-Hospices Civils de Lyon-bioMérieux, 5 Place d'Arsonval, Lyon Cedex 3, Lyon, France
| |
Collapse
|
106
|
Ruetsch C, Brglez V, Crémoni M, Zorzi K, Fernandez C, Boyer-Suavet S, Benzaken S, Demonchy E, Risso K, Courjon J, Cua E, Ichai C, Dellamonica J, Passeron T, Seitz-Polski B. Functional Exhaustion of Type I and II Interferons Production in Severe COVID-19 Patients. Front Med (Lausanne) 2021; 7:603961. [PMID: 33585507 PMCID: PMC7873370 DOI: 10.3389/fmed.2020.603961] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/18/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged in Wuhan in December 2019 and has since spread across the world. Even though the majority of patients remain completely asymptomatic, some develop severe systemic complications. In this prospective study we compared the immunological profile of 101 COVID-19 patients with either mild, moderate or severe form of the disease according to the WHO classification, as well as of 50 healthy subjects, in order to identify functional immune factors independently associated with severe forms of COVID-19. Plasma cytokine levels, and cytokine levels upon in vitro non-specific stimulation of innate and adaptive immune cells, were measured at several time points during the course of the disease. As described previously, inflammatory cytokines IL1β, IL6, IL8, and TNFα associated with cytokine storm were significantly increased in the plasma of moderate and severe COVID-19 patients (p < 0.0001 for all cytokines). During follow-up, plasma IL6 levels decreased between the moment of admission to the hospital and at the last observation carried forward for patients with favorable outcome (p = 0.02148). After in vitro stimulation of immune cells from COVID-19 patients, reduced levels of both type I and type II interferons (IFNs) upon in vitro stimulation were correlated with increased disease severity [type I IFN (IFNα): p > 0.0001 mild vs. moderate and severe; type II IFN (IFNγ): p = 0.0002 mild vs. moderate and p < 0.0001 mild vs. severe] suggesting a functional exhaustion of IFNs production. Stimulated IFNα levels lower than 2.1 pg/ml and IFNγ levels lower than 15 IU/mL at admission to the hospital were associated with more complications during hospitalization (p = 0.0098 and p =0.0002, respectively). A low IFNγ level was also confirmed by multivariable analysis [p = 0.0349 OR = 0.98 (0.962; 0.999)] as an independent factor of complications. In vitro treatment with type IFNα restored type IFNγ secretion in COVID-19 patients while the secretion of pro-inflammatory cytokines IL6 and IL1β remained stable or decreased, respectively. These results (a) demonstrate a functional exhaustion of both innate and adaptive immune response in severe forms of COVID-19; (b) identify IFNα and IFNγ as new potential biomarkers of severity; and (c) highlight the importance of targeting IFNs when considering COVID-19 treatment in order to re-establish a normal balance between inflammatory and Th1 effector cytokines.
Collapse
Affiliation(s)
- Caroline Ruetsch
- Laboratoire d'Immunologie, Centre Hospitalier Universitaire (CHU) de Nice, Université Côte d'Azur, Nice, France
- Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, Université Côte d'Azur, Nice, France
| | - Vesna Brglez
- Unité de Recherche Clinique de la Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
| | - Marion Crémoni
- Unité de Recherche Clinique de la Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
| | - Kévin Zorzi
- Unité de Recherche Clinique de la Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
| | - Céline Fernandez
- Unité de Recherche Clinique de la Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
| | - Sonia Boyer-Suavet
- Unité de Recherche Clinique de la Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
| | - Sylvia Benzaken
- Laboratoire d'Immunologie, Centre Hospitalier Universitaire (CHU) de Nice, Université Côte d'Azur, Nice, France
| | - Elisa Demonchy
- Service d'Infectiologie, Centre Hospitalier Universitaire (CHU) de Nice, Université Côte d'Azur, Nice, France
| | - Karine Risso
- Service d'Infectiologie, Centre Hospitalier Universitaire (CHU) de Nice, Université Côte d'Azur, Nice, France
| | - Johan Courjon
- Service d'Infectiologie, Centre Hospitalier Universitaire (CHU) de Nice, Université Côte d'Azur, Nice, France
| | - Eric Cua
- Service d'Infectiologie, Centre Hospitalier Universitaire (CHU) de Nice, Université Côte d'Azur, Nice, France
| | - Carole Ichai
- Service de réanimation, Centre Hospitalier Universitaire (CHU) de Nice, Université Côte d'Azur, Nice, France
| | - Jean Dellamonica
- Unité de Recherche Clinique de la Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
- Service de réanimation, Centre Hospitalier Universitaire (CHU) de Nice, Université Côte d'Azur, Nice, France
| | - Thierry Passeron
- Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, Université Côte d'Azur, Nice, France
- Service de dermatologie, Centre Hospitalier Universitaire (CHU) de Nice, Université Côte d'Azur, Nice, France
| | - Barbara Seitz-Polski
- Laboratoire d'Immunologie, Centre Hospitalier Universitaire (CHU) de Nice, Université Côte d'Azur, Nice, France
- Unité de Recherche Clinique de la Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
| |
Collapse
|
107
|
Singh H, Koury J, Kaul M. Innate Immune Sensing of Viruses and Its Consequences for the Central Nervous System. Viruses 2021; 13:170. [PMID: 33498715 PMCID: PMC7912342 DOI: 10.3390/v13020170] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Viral infections remain a global public health concern and cause a severe societal and economic burden. At the organismal level, the innate immune system is essential for the detection of viruses and constitutes the first line of defense. Viral components are sensed by host pattern recognition receptors (PRRs). PRRs can be further classified based on their localization into Toll-like receptors (TLRs), C-type lectin receptors (CLR), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), NOD-like receptors (NLRs) and cytosolic DNA sensors (CDS). TLR and RLR signaling results in production of type I interferons (IFNα and -β) and pro-inflammatory cytokines in a cell-specific manner, whereas NLR signaling leads to the production of interleukin-1 family proteins. On the other hand, CLRs are capable of sensing glycans present in viral pathogens, which can induce phagocytic, endocytic, antimicrobial, and pro- inflammatory responses. Peripheral immune sensing of viruses and the ensuing cytokine response can significantly affect the central nervous system (CNS). But viruses can also directly enter the CNS via a multitude of routes, such as the nasal epithelium, along nerve fibers connecting to the periphery and as cargo of infiltrating infected cells passing through the blood brain barrier, triggering innate immune sensing and cytokine responses directly in the CNS. Here, we review mechanisms of viral immune sensing and currently recognized consequences for the CNS of innate immune responses to viruses.
Collapse
Affiliation(s)
- Hina Singh
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (H.S.); (J.K.)
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeffrey Koury
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (H.S.); (J.K.)
| | - Marcus Kaul
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (H.S.); (J.K.)
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
108
|
Zhong Z, McCafferty S, Opsomer L, Wang H, Huysmans H, De Temmerman J, Lienenklaus S, Portela Catani JP, Combes F, Sanders NN. Corticosteroids and cellulose purification improve, respectively, the in vivo translation and vaccination efficacy of sa-mRNAs. Mol Ther 2021; 29:1370-1381. [PMID: 33484964 DOI: 10.1016/j.ymthe.2021.01.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/18/2020] [Accepted: 01/12/2021] [Indexed: 12/22/2022] Open
Abstract
Synthetic mRNAs are an appealing platform with multiple biomedical applications ranging from protein replacement therapy to vaccination. In comparison with conventional mRNA, synthetic self-amplifying mRNAs (sa-mRNAs) are gaining interest because of their higher and longer-lasting expression. However, sa-mRNAs also elicit an innate immune response, which may complicate their clinical application. Approaches to reduce the innate immunity of sa-mRNAs have not been studied in detail. Here we investigated, in vivo, the effect of several innate immune inhibitors and a novel cellulose-based mRNA purification approach on the type I interferon (IFN) response and the translation and vaccination efficacy of our formerly developed sa-mRNA vaccine against Zika virus. Among the investigated inhibitors, we found that corticosteroids and especially topical application of clobetasol at the sa-mRNA injection site was the most efficient in suppressing the type I IFN response and increasing the translation of sa-mRNA. However, clobetasol prevented formation of antibodies against sa-mRNA-encoded antigens and should therefore be avoided in a vaccination context. Residual dsRNA by-products of the in vitro transcription reaction are known inducers of immediate type I IFN responses. We additionally demonstrate a drastic reduction of these dsRNA by-products upon cellulose-based purification, reducing the innate immune response and improving sa-mRNA vaccination efficacy.
Collapse
Affiliation(s)
- Zifu Zhong
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium
| | - Séan McCafferty
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; Cancer Research Institute (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Lisa Opsomer
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium
| | - Haixiu Wang
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Hanne Huysmans
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium
| | - Joyca De Temmerman
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - João Paulo Portela Catani
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium
| | - Francis Combes
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; Cancer Research Institute (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; Cancer Research Institute (CRIG), Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
109
|
Mai L, Asaduzzaman A, Noamani B, Fortin PR, Gladman DD, Touma Z, Urowitz MB, Wither J. The baseline interferon signature predicts disease severity over the subsequent 5 years in systemic lupus erythematosus. Arthritis Res Ther 2021; 23:29. [PMID: 33451338 PMCID: PMC7811214 DOI: 10.1186/s13075-021-02414-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/01/2021] [Indexed: 12/19/2022] Open
Abstract
Objectives Type I interferons (IFNs) play an important role in the pathophysiology of systemic lupus erythematosus (SLE). While cross-sectional data suggest an association between IFN-induced gene expression and SLE disease activity, interest in this as a biomarker of flare has been tempered by a lack of fluctuation with disease activity in the majority of patients. This led us to question whether IFN-induced gene expression might instead be a biomarker of overall disease severity, with patients with high levels spending more time in an active disease state. Methods Levels of five interferon-responsive genes were measured in the whole peripheral blood at baseline visit for 137 SLE patients subsequently followed for 5 years. Log transformed values were summed to yield a composite IFN5 score, and the correlation with various disease outcomes examined. Receiver operator characteristic analyses were performed for outcomes of interest. Kaplan-Meier curves were generated to compare the proportion of flare-free patients with high and low IFN5 scores over time. Results The baseline IFN5 score was positively correlated with the adjusted mean SLE disease activity index-2000, number of flares, adjusted mean prednisone dose, and number of new immunosuppressive medications over the subsequent 5 years. Optimal cut-offs for the IFN5 score were determined using Youden’s index and predicted more severe outcomes with 57–67% accuracy. A high baseline IFN5 level was associated with a significantly increased risk of subsequent flare. Conclusions Measurement of the type I IFN signature is a useful tool for predicting the subsequent disease activity course.
Collapse
Affiliation(s)
- Lloyd Mai
- Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Arundip Asaduzzaman
- Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Babak Noamani
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada
| | - Paul R Fortin
- Division of Rheumatology, Department of Medicine, Centre de recherche du CHU de Québec - Université Laval, Quebec City, QC, Canada
| | - Dafna D Gladman
- Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Canada.,University of Toronto Lupus Clinic, Centre for Prognosis Studies in the Rheumatic Diseases, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Zahi Touma
- Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Canada.,University of Toronto Lupus Clinic, Centre for Prognosis Studies in the Rheumatic Diseases, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Murray B Urowitz
- Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Canada.,University of Toronto Lupus Clinic, Centre for Prognosis Studies in the Rheumatic Diseases, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Joan Wither
- Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Canada. .,Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada. .,Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Canada. .,Schroeder Arthritis Institute, Krembil Research Institute, 5KD402, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada.
| |
Collapse
|
110
|
Zhao J, Zhao S, Ou J, Zhang J, Lan W, Guan W, Wu X, Yan Y, Zhao W, Wu J, Chodosh J, Zhang Q. COVID-19: Coronavirus Vaccine Development Updates. Front Immunol 2020; 11:602256. [PMID: 33424848 PMCID: PMC7785583 DOI: 10.3389/fimmu.2020.602256] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/26/2020] [Indexed: 12/27/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a newly emerged coronavirus, and has been pandemic since March 2020 and led to many fatalities. Vaccines represent the most efficient means to control and stop the pandemic of COVID-19. However, currently there is no effective COVID-19 vaccine approved to use worldwide except for two human adenovirus vector vaccines, three inactivated vaccines, and one peptide vaccine for early or limited use in China and Russia. Safe and effective vaccines against COVID-19 are in urgent need. Researchers around the world are developing 213 COVID-19 candidate vaccines, among which 44 are in human trials. In this review, we summarize and analyze vaccine progress against SARS-CoV, Middle-East respiratory syndrome Coronavirus (MERS-CoV), and SARS-CoV-2, including inactivated vaccines, live attenuated vaccines, subunit vaccines, virus like particles, nucleic acid vaccines, and viral vector vaccines. As SARS-CoV-2, SARS-CoV, and MERS-CoV share the common genus, Betacoronavirus, this review of the major research progress will provide a reference and new insights into the COVID-19 vaccine design and development.
Collapse
Affiliation(s)
- Jing Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shan Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Junxian Ou
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jing Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Wendong Lan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wenyi Guan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaowei Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuqian Yan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - James Chodosh
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| |
Collapse
|
111
|
Analysis of the Molecular Mechanisms of the Effects of Prunella vulgaris against Subacute Thyroiditis Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9810709. [PMID: 33273957 PMCID: PMC7676928 DOI: 10.1155/2020/9810709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/16/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022]
Abstract
Prunella vulgaris (PV) has a long history of application in traditional Chinese and Western medicine as a remedy for the treatment of subacute thyroiditis (SAT). This study applied network pharmacology to elucidate the mechanism of the effects of PV against SAT. Components of the potential therapeutic targets of PV and SAT-related targets were retrieved from databases. To construct a protein-protein interaction (PPI) network, the intersection of SAT-related targets and PV-related targets was input into the STRING platform. Gene ontology (GO) analysis and KEGG pathway enrichment analysis were carried out using the DAVID database. Networks were constructed by Cytoscape for visualization. The results showed that a total of 11 compounds were identified according to the pharmacokinetic parameters of ADME. A total of 126 PV-related targets and 2207 SAT-related targets were collected, and 83 overlapping targets were subsequently obtained. The results of the KEGG pathway and compound-target-pathway (C-T-P) network analysis suggested that the anti-SAT effect of PV mainly occurs through quercetin, luteolin, kaempferol, and beta-sitosterol and is most closely associated with their regulation of inflammation and apoptosis by targeting the PIK3CG, MAPK1, MAPK14, TNF, and PTGS2 proteins and the PI3K-Akt and TNF signaling pathways. The study demonstrated that quercetin, luteolin, kaempferol, and beta-sitosterol in PV may play a major role in the treatment of SAT, which was associated with the regulation of inflammation and apoptosis, by targeting the PI3K-Akt and TNF signaling pathways.
Collapse
|
112
|
Mazewski C, Perez RE, Fish EN, Platanias LC. Type I Interferon (IFN)-Regulated Activation of Canonical and Non-Canonical Signaling Pathways. Front Immunol 2020; 11:606456. [PMID: 33329603 PMCID: PMC7719805 DOI: 10.3389/fimmu.2020.606456] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
For several decades there has been accumulating evidence implicating type I interferons (IFNs) as key elements of the immune response. Therapeutic approaches incorporating different recombinant type I IFN proteins have been successfully employed to treat a diverse group of diseases with significant and positive outcomes. The biological activities of type I IFNs are consequences of signaling events occurring in the cytoplasm and nucleus of cells. Biochemical events involving JAK/STAT proteins that control transcriptional activation of IFN-stimulated genes (ISGs) were the first to be identified and are referred to as "canonical" signaling. Subsequent identification of JAK/STAT-independent signaling pathways, critical for ISG transcription and/or mRNA translation, are denoted as "non-canonical" or "non-classical" pathways. In this review, we summarize these signaling cascades and discuss recent developments in the field, specifically as they relate to the biological and clinical implications of engagement of both canonical and non-canonical pathways.
Collapse
Affiliation(s)
- Candice Mazewski
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
- Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ricardo E. Perez
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
- Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eleanor N. Fish
- Toronto General Hospital Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
- Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| |
Collapse
|
113
|
Commensal Microbiota Modulation of Natural Resistance to Virus Infection. Cell 2020; 183:1312-1324.e10. [PMID: 33212011 DOI: 10.1016/j.cell.2020.10.047] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/24/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Interferon (IFN)-Is are crucial mediators of antiviral immunity and homeostatic immune system regulation. However, the source of IFN-I signaling under homeostatic conditions is unclear. We discovered that commensal microbes regulate the IFN-I response through induction of IFN-β by colonic DCs. Moreover, the mechanism by which a specific commensal microbe induces IFN-β was identified. Outer membrane (OM)-associated glycolipids of gut commensal microbes belonging to the Bacteroidetes phylum induce expression of IFN-β. Using Bacteroides fragilis and its OM-associated polysaccharide A, we determined that IFN-β expression was induced via TLR4-TRIF signaling. Antiviral activity of this purified microbial molecule against infection with either vesicular stomatitis virus (VSV) or influenza was demonstrated to be dependent on the induction of IFN-β. In a murine VSV infection model, commensal-induced IFN-β regulated natural resistance to virus infection. Due to the physiological importance of IFN-Is, discovery of an IFN-β-inducing microbial molecule represents a potential approach for the treatment of some human diseases.
Collapse
|
114
|
Tossberg JT, Heinrich RM, Farley VM, Crooke PS, Aune TM. Adenosine-to-Inosine RNA Editing of Alu Double-Stranded (ds)RNAs Is Markedly Decreased in Multiple Sclerosis and Unedited Alu dsRNAs Are Potent Activators of Proinflammatory Transcriptional Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2606-2617. [PMID: 33046502 PMCID: PMC7872017 DOI: 10.4049/jimmunol.2000384] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/14/2020] [Indexed: 12/27/2022]
Abstract
Sensors that detect dsRNA stimulate IFN responses as a defense against viral infection. IFN responses are also well documented in a variety of human autoimmune diseases, including relapsing-remitting multiple sclerosis (MS), in which increased IFN responses result from increased levels of double-stranded endogenous Alu RNAs. Mechanisms underlying increases in double-stranded Alu RNAs in MS are obscure. We find widespread loss of adenosine-to-inosine editing of Alu RNAs in MS. Unedited Alu RNAs are potent activators of both IFN and NF-κB responses via the dsRNA sensors, RIG-I, and TLR3. Minor editing of highly active Alu elements abrogates the ability to activate both transcriptional responses. Thus, adenosine-to-inosine editing may also represent an important defense against autoimmune diseases such as MS.
Collapse
Affiliation(s)
- John T Tossberg
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37212
| | - Rachel M Heinrich
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37212
| | - Virginia M Farley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37212
| | - Philip S Crooke
- Department of Mathematics, Vanderbilt University, Nashville, TN 37212; and
| | - Thomas M Aune
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37212;
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37212
| |
Collapse
|
115
|
Huerga Encabo H, Traveset L, Argilaguet J, Angulo A, Nistal-Villán E, Jaiswal R, Escalante CR, Gekas C, Meyerhans A, Aramburu J, López-Rodríguez C. The transcription factor NFAT5 limits infection-induced type I interferon responses. J Exp Med 2020; 217:132619. [PMID: 31816635 PMCID: PMC7062515 DOI: 10.1084/jem.20190449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/23/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Abstract
Huerga Encabo et al. show that NFAT5, previously characterized as a pro-inflammatory transcription factor, limits the IFN-I response to control antiviral defenses and preserve HSC quiescence. NFAT5 represses IFN-I and ISG expression through an evolutionarily conserved DNA element that prevents IRF3 recruitment to the IFNB1 enhanceosome. Type I interferon (IFN-I) provides effective antiviral immunity but can exacerbate harmful inflammatory reactions and cause hematopoietic stem cell (HSC) exhaustion; therefore, IFN-I expression must be tightly controlled. While signaling mechanisms that limit IFN-I induction and function have been extensively studied, less is known about transcriptional repressors acting directly on IFN-I regulatory regions. We show that NFAT5, an activator of macrophage pro-inflammatory responses, represses Toll-like receptor 3 and virus-induced expression of IFN-I in macrophages and dendritic cells. Mice lacking NFAT5 exhibit increased IFN-I production and better control of viral burden upon LCMV infection but show exacerbated HSC activation under systemic poly(I:C)-induced inflammation. We identify IFNβ as a primary target repressed by NFAT5, which opposes the master IFN-I inducer IRF3 by binding to an evolutionarily conserved sequence in the IFNB1 enhanceosome that overlaps a key IRF site. These findings illustrate how IFN-I responses are balanced by simultaneously opposing transcription factors.
Collapse
Affiliation(s)
- Hector Huerga Encabo
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laia Traveset
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jordi Argilaguet
- Infection Biology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Estanislao Nistal-Villán
- Microbiology Section, Departamento de Ciencias, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, CEU Universities, Madrid, Spain
| | - Rahul Jaiswal
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Carlos R Escalante
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Christos Gekas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Jose Aramburu
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
116
|
Gallizzi R, Sutera D, Spagnolo A, Bagnato AM, Cannavò SP, Grasso L, Guarneri C, Nunnari G, Mazza F, Pajno GB. Management of pernio-like cutaneous manifestations in children during the outbreak of COVID-19. Dermatol Ther 2020; 33:e14312. [PMID: 32949449 PMCID: PMC7536974 DOI: 10.1111/dth.14312] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/22/2022]
Abstract
During the outbreak of COVID‐19 many pernio‐like lesions have been increasingly reported. The aim of the study is to describe our management of these skin manifestations and to evaluate a possible correlation to SARS‐CoV‐2 infection. All patients underwent clinical and laboratory tests to detect a possible underlying connective disease and also to specific SARS‐CoV‐2 investigations such as oropharyngeal swab and IgG‐IgM serology. Nine patients aged between 5 and 15 years old were evaluated. Skin lesions observed were purplish, erythematous and oedematous, in some cases painful and itchy. Six out of nine had respiratory and systemic symptoms (cough, nasal congestion, chills, fever, and asthenia) that preceded cutaneous findings of approximately 2 weeks. Concerning blood exams, three out of nine had D‐dimer weakly increased, four had ANA positivity: two with a title 1:160, one with 1:320, and one with 1:5120 and a speckled pattern. The latter patient had also ENA SS‐A positive and RF positivity, confirmed at a second check, so as to allow us to make a diagnosis of connective tissue disease. Four out of nine had aPL positivity (IgM). Reactants acute phase were all negative. Oropharyngeal swabs and serology tests for SARS‐CoV‐2 was negative (borderline in one patient for IgM). No treatment was needed. Even if we do not have enough data to prove it, we hypothesize a correlation between pernio‐like lesions and SARS‐CoV‐2 infection for an increased number of these lesions described during the pandemic and also because such manifestations appeared when temperatures were mild and patients were at home in isolation for the lockdown. Many questions remain open about interaction host‐virus.
Collapse
Affiliation(s)
- Romina Gallizzi
- Department of Human Pathology of Adulthood and Childhood Gaetano Barresi, Unit of Pediatric, University of Messina, Messina, Italy
| | - Diana Sutera
- Department of Human Pathology of Adulthood and Childhood Gaetano Barresi, Unit of Pediatric, University of Messina, Messina, Italy
| | - Alessandra Spagnolo
- Department of Human Pathology of Adulthood and Childhood Gaetano Barresi, Unit of Pediatric, University of Messina, Messina, Italy
| | - Anna Maria Bagnato
- Department of Human Pathology of Adulthood and Childhood Gaetano Barresi, Unit of Pediatric, University of Messina, Messina, Italy
| | | | - Loredana Grasso
- Department of Services, Unit of Immunometry and Laboratory Diagnostic, University of Messina, Messina, Italy
| | - Claudio Guarneri
- Department of Biomedical and Dental Sciences and Morphofunctional imaging, Institute of Dermatology, University of Messina, Messina, Italy
| | - Giuseppe Nunnari
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Messina, Messina, Italy
| | - Francesca Mazza
- Department of Human Pathology of Adulthood and Childhood Gaetano Barresi, Unit of Pediatric, University of Messina, Messina, Italy
| | - Giovanni Battista Pajno
- Department of Human Pathology of Adulthood and Childhood Gaetano Barresi, Unit of Pediatric, University of Messina, Messina, Italy
| |
Collapse
|
117
|
Kardani K, Basimi P, Fekri M, Bolhassani A. Antiviral therapy for the sexually transmitted viruses: recent updates on vaccine development. Expert Rev Clin Pharmacol 2020; 13:1001-1046. [PMID: 32838584 DOI: 10.1080/17512433.2020.1814743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The sexually transmitted infections (STIs) caused by viruses including human T cell leukemia virus type-1 (HTLV-1), human immunodeficiency virus-1 (HIV-1), human simplex virus-2 (HSV-2), hepatitis C virus (HCV), hepatitis B virus (HBV), and human papillomavirus (HPV) are major public health issues. These infections can cause cancer or result in long-term health problems. Due to high prevalence of STIs, a safe and effective vaccine is required to overcome these fatal viruses. AREAS COVERED This review includes a comprehensive overview of the literatures relevant to vaccine development against the sexually transmitted viruses (STVs) using PubMed and Sciencedirect electronic search engines. Herein, we discuss the efforts directed toward development of effective vaccines using different laboratory animal models including mice, guinea pig or non-human primates in preclinical trials, and human in clinical trials with different phases. EXPERT OPINION There is no effective FDA approved vaccine against the sexually transmitted viruses (STVs) except for HBV and HPV as prophylactic vaccines. Many attempts are underway to develop vaccines against these viruses. There are several approaches for improving prophylactic or therapeutic vaccines such as heterologous prime/boost immunization, delivery system, administration route, adjuvants, etc. In this line, further studies can be helpful for understanding the immunobiology of STVs in human. Moreover, development of more relevant animal models is a worthy goal to induce effective immune responses in humans.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Parya Basimi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Mehrshad Fekri
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| |
Collapse
|
118
|
Nocito C, Lubinsky C, Hand M, Khan S, Patel T, Seliga A, Winfield M, Zuluaga-Ramirez V, Fernandes N, Shi X, Unterwald EM, Persidsky Y, Sriram U. Centrally Acting Angiotensin-Converting Enzyme Inhibitor Suppresses Type I Interferon Responses and Decreases Inflammation in the Periphery and the CNS in Lupus-Prone Mice. Front Immunol 2020; 11:573677. [PMID: 33042154 PMCID: PMC7522287 DOI: 10.3389/fimmu.2020.573677] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multi-organ damage. Neuropsychiatric lupus (NPSLE) is one of the most common manifestations of human SLE, often causing depression. Interferon-α (IFNα) is a central mediator in disease pathogenesis. Administration of IFNα to patients with chronic viral infections or cancers causes depressive symptoms. Angiotensin-converting enzyme (ACE) is part of the kallikrein-kinin/renin-angiotensin (KKS/RAS) system that regulates many physiological processes, including inflammation, and brain functions. It is known that ACE degrades bradykinin (BK) into inactive peptides. We have previously shown in an in vitro model of mouse bone-marrow-derived dendritic cells (BMDC) and human peripheral blood mononuclear cells that captopril (a centrally acting ACE inhibitor-ACEi) suppressed Type I IFN responsive gene (IRG) expression. In this report, we used the MRL/lpr lupus-prone mouse model, an established model to study NPSLE, to determine the in vivo effects of captopril on Type I IFN and associated immune responses in the periphery and brain and effects on behavior. Administering captopril to MRL/lpr mice decreased expression of IRGs in brain, spleen and kidney, decreased circulating and tissue IFNα levels, decreased microglial activation (IBA-1 expression) and reduced depressive-like behavior. Serotonin levels that are decreased in depression were increased by captopril treatment. Captopril also reduced autoantibody levels in plasma and immune complex deposition in kidney and brain. Thus, ACEi's may have potential for therapeutic use for systemic and NPSLE.
Collapse
Affiliation(s)
- Cassandra Nocito
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Cody Lubinsky
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Michelle Hand
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Sabeeya Khan
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Tulsi Patel
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Alecia Seliga
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Malika Winfield
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Viviana Zuluaga-Ramirez
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Nicole Fernandes
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Xiangdang Shi
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Ellen M Unterwald
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Uma Sriram
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
119
|
Piyush R, Rajarshi K, Chatterjee A, Khan R, Ray S. Nucleic acid-based therapy for coronavirus disease 2019. Heliyon 2020; 6:e05007. [PMID: 32984620 PMCID: PMC7501848 DOI: 10.1016/j.heliyon.2020.e05007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/02/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19), the pandemic that originated in China has already spread into more than 190 countries, resulting in huge loss of human life and many more are at the stake of losing it; if not intervened with the best therapeutics to contain the disease. For that aspect, various scientific groups are continuously involved in the development of an effective line of treatment to control the novel coronavirus from spreading rapidly. Worldwide scientists are evaluating various biomolecules and synthetic inhibitors against COVID-19; where the nucleic acid-based molecules may be considered as potential drug candidates. These molecules have been proved potentially effective against SARS-CoV, which shares high sequence similarity with SARS-CoV-2. Recent advancements in nucleic acid-based therapeutics are helpful in targeted drug delivery, safely and effectively. The use of nucleic acid-based molecules also known to regulate the level of gene expression inside the target cells. This review mainly focuses on various nucleic acid-based biologically active molecules and their therapeutic potentials in developing vaccines for SARS-CoV-2.
Collapse
Affiliation(s)
- Ravikant Piyush
- School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| | - Keshav Rajarshi
- School of Community Science and Technology (SOCSAT) Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah, West Bengal 711103, India
| | - Aroni Chatterjee
- Indian Council of Medical Research (ICMR)-Virus Research Laboratory, NICED, Kolkata, India
| | - Rajni Khan
- Motihari College of Engineering, Bariyarpur, Motihari, NH 28A, Furshatpur, Motihari, Bihar 845401, India
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University Motihari, 845401, India
| |
Collapse
|
120
|
Chodisetti SB, Fike AJ, Domeier PP, Choi NM, Soni C, Rahman ZSM. TLR7 Negatively Regulates B10 Cells Predominantly in an IFNγ Signaling Dependent Manner. Front Immunol 2020; 11:1632. [PMID: 32849556 PMCID: PMC7399053 DOI: 10.3389/fimmu.2020.01632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/18/2020] [Indexed: 01/12/2023] Open
Abstract
IL-10 producing B cells (B10 cells) play an important immunoregulatory role in various autoimmune and infection conditions. However, the factors that regulate their development and maintenance are incompletely understood. Recently, we and others have established a requirement for TLR7 in promoting autoimmune antibody forming cell (AFC) and germinal center (GC) responses. Here we report an important additional role of TLR7 in the negative regulation of B10 cell development. TLR7 overexpression or overstimulation promoted the reduction of B10 cells whereas TLR7 deficiency rescued these cells in both non-autoimmune and autoimmune-prone mice. TLR7 expression was further inversely correlated with B cell-dependent IL-10 production and its inhibition of CD4 T cell proliferation and IFNγ production in an in vitro B cell and T cell co-culture system. Further, B10 cells displayed elevated TLR7, IFNγR, and STAT1 expression compared to non-B10 cells. Interestingly, deficiency of IFNγR in TLR7 overexpressing lupus-prone mice rescued B10 cells from TLR7-mediated reduction. Finally, B cell intrinsic deletion of IFNγR was sufficient to restore B10 cells in the spleens of TLR7-promoted autoimmune mouse model. In conclusion, our findings demonstrate a novel role for the IFNγR-STAT1 pathway in TLR7-mediated negative regulation of B10 cell development.
Collapse
Affiliation(s)
- Sathi Babu Chodisetti
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Adam J Fike
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Phillip P Domeier
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Nicholas M Choi
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Chetna Soni
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
121
|
Di Domizio J, Belkhodja C, Chenuet P, Fries A, Murray T, Mondéjar PM, Demaria O, Conrad C, Homey B, Werner S, Speiser DE, Ryffel B, Gilliet M. The commensal skin microbiota triggers type I IFN-dependent innate repair responses in injured skin. Nat Immunol 2020; 21:1034-1045. [PMID: 32661363 DOI: 10.1038/s41590-020-0721-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 05/27/2020] [Indexed: 01/25/2023]
Abstract
Skin wounds heal by coordinated induction of inflammation and tissue repair, but the initiating events are poorly defined. Here we uncover a fundamental role of commensal skin microbiota in this process and show that it is mediated by the recruitment and the activation of type I interferon (IFN)-producing plasmacytoid DC (pDC). Commensal bacteria colonizing skin wounds trigger activation of neutrophils to express the chemokine CXCL10, which recruits pDC and acts as an antimicrobial protein to kill exposed microbiota, leading to the formation of CXCL10-bacterial DNA complexes. These complexes and not complexes with host-derived DNA activate pDC to produce type I IFNs, which accelerate wound closure by triggering skin inflammation and early T cell-independent wound repair responses, mediated by macrophages and fibroblasts that produce major growth factors required for healing. These findings identify a key function of commensal microbiota in driving a central innate wound healing response of the skin.
Collapse
Affiliation(s)
- Jeremy Di Domizio
- Department of Dermatology, CHUV University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Cyrine Belkhodja
- Department of Dermatology, CHUV University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Pauline Chenuet
- Laboratory of Experimental and Molecular Immunology and Neurogenetics, UMR 7355 CNRS-University of Orleans, Orleans, France
| | - Anissa Fries
- Department of Dermatology, CHUV University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Timothy Murray
- Department of Oncology, CHUV University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Paula Marcos Mondéjar
- Department of Oncology, CHUV University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Olivier Demaria
- Department of Dermatology, CHUV University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Curdin Conrad
- Department of Dermatology, CHUV University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Bernhard Homey
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Sabine Werner
- ETH Zurich, Institute of Molecular Health Sciences, Zurich, Switzerland
| | - Daniel E Speiser
- Department of Oncology, CHUV University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Bernhard Ryffel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics, UMR 7355 CNRS-University of Orleans, Orleans, France.,Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Health Sciences Faculty, University of Cape Town, and South Africa Medical Research Council, Cape Town, South Africa
| | - Michel Gilliet
- Department of Dermatology, CHUV University Hospital, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
122
|
Zhao Y, Qin L, Zhang P, Li K, Liang L, Sun J, Xu B, Dai Y, Li X, Zhang C, Peng Y, Feng Y, Li A, Hu Z, Xiang H, Ogg G, Ho LP, McMichael A, Jin R, Knight JC, Dong T, Zhang Y. Longitudinal COVID-19 profiling associates IL-1RA and IL-10 with disease severity and RANTES with mild disease. JCI Insight 2020; 5:139834. [PMID: 32501293 PMCID: PMC7406242 DOI: 10.1172/jci.insight.139834] [Citation(s) in RCA: 265] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Identifying immune correlates of COVID-19 disease severity is an urgent need for clinical management, vaccine evaluation, and drug development. Here, we present a temporal analysis of key immune mediators, cytokines, and chemokines in blood of hospitalized COVID-19 patients from serial sampling and follow-up over 4 weeks. METHODS A total of 71 patients with laboratory-confirmed COVID-19 admitted to Beijing You'an Hospital in China with either mild (53 patients) or severe (18 patients) disease were enrolled with 18 healthy volunteers. We measured 34 immune mediators, cytokines, and chemokines in peripheral blood every 4-7 days over 1 month per patient using a bioplex multiplex immunoassay. RESULTS We found that the chemokine RANTES (CCL5) was significantly elevated, from an early stage of the infection, in patients with mild but not severe disease. We also found that early production of inhibitory mediators including IL-10 and IL-1RA were significantly associated with disease severity, and a combination of CCL5, IL-1 receptor antagonist (IL-1RA), and IL-10 at week 1 may predict patient outcomes. The majority of cytokines that are known to be associated with the cytokine storm in virus infections such as IL-6 and IFN-γ were only significantly elevated in the late stage of severe COVID-19 illness. TNF-α and GM-CSF showed no significant differences between severe and mild cases. CONCLUSION Together, our data suggest that early intervention to increase expression of CCL5 may prevent patients from developing severe illness. Our data also suggest that measurement of levels of CCL5, as well as IL-1RA and IL-10 in blood individually and in combination, might be useful prognostic biomarkers to guide treatment strategies.
Collapse
Affiliation(s)
- Yan Zhao
- Beijing You’an Hospital, Capital Medical University, China
| | - Ling Qin
- Beijing You’an Hospital, Capital Medical University, China
| | | | - Kang Li
- Beijing You’an Hospital, Capital Medical University, China
| | - Lianchun Liang
- Beijing You’an Hospital, Capital Medical University, China
| | - Jianping Sun
- Beijing You’an Hospital, Capital Medical University, China
| | - Bin Xu
- Beijing You’an Hospital, Capital Medical University, China
| | - Yanchao Dai
- Beijing You’an Hospital, Capital Medical University, China
| | - Xuemei Li
- Beijing You’an Hospital, Capital Medical University, China
| | - Chi Zhang
- Beijing You’an Hospital, Capital Medical University, China
| | - Yanchun Peng
- Chinese Academy of Medical Science Oxford Institute (COI), and
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Yingmei Feng
- Beijing You’an Hospital, Capital Medical University, China
| | - Ang Li
- Beijing You’an Hospital, Capital Medical University, China
| | - Zhongjie Hu
- Beijing You’an Hospital, Capital Medical University, China
| | - Haiping Xiang
- Beijing You’an Hospital, Capital Medical University, China
| | - Graham Ogg
- Chinese Academy of Medical Science Oxford Institute (COI), and
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Ling-Pei Ho
- Chinese Academy of Medical Science Oxford Institute (COI), and
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Ronghua Jin
- Beijing You’an Hospital, Capital Medical University, China
| | - Julian C. Knight
- Wellcome Centre for Human Genetics
- Chinese Academy of Medical Science Oxford Institute (COI), and
| | - Tao Dong
- Chinese Academy of Medical Science Oxford Institute (COI), and
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Yonghong Zhang
- Beijing You’an Hospital, Capital Medical University, China
- Chinese Academy of Medical Science Oxford Institute (COI), and
| |
Collapse
|
123
|
Recent advances in the management of non-infectious posterior uveitis. Int Ophthalmol 2020; 40:3187-3207. [PMID: 32617804 DOI: 10.1007/s10792-020-01496-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To review the current regimens and novel therapeutic modalities in various stages of research and development for the management of non-infectious posterior uveitis (NIPU). METHODS We performed a thorough review of current literature using PubMed, Google Scholar and Clinicaltrials.gov to identify the published literature about the available therapeutics and novel drugs/therapies in different stages of clinical trials. RESULTS The current management regimen for non-infectious posterior uveitis includes corticosteroids, immunomodulatory therapies and anti-metabolites. However, NIPU requires long-term management for efficacious remission of the disease and to prevent disease relapse. Long-term safety issues associated with steroids have led to efforts to develop novel therapeutic agents including biological response modulators and immunosuppressants. The current therapeutic agents in various stages of development include calcineurin inhibitors, biologic response modifiers and a more a comprehensive modalities like ocular gene therapy as well as novel drug delivery mechanisms for higher bioavailability to the target tissues, with minimal systemic effects. CONCLUSION Novel efficacious therapeutic modalities under development will help overcome the challenges associated with the traditional therapeutic agents.
Collapse
|
124
|
Kim JH, Yoon JE, Nikapitiya C, Kim TH, Uddin MB, Lee HC, Kim YH, Hwang JH, Chathuranga K, Chathuranga WAG, Choi HS, Kim CJ, Jung JU, Lee CH, Lee JS. Small Heterodimer Partner Controls the Virus-Mediated Antiviral Immune Response by Targeting CREB-Binding Protein in the Nucleus. Cell Rep 2020; 27:2105-2118.e5. [PMID: 31091449 DOI: 10.1016/j.celrep.2019.04.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/01/2019] [Accepted: 04/15/2019] [Indexed: 01/16/2023] Open
Abstract
Small heterodimer partner (SHP) is an orphan nuclear receptor that acts as a transcriptional co-repressor by interacting with nuclear receptors and transcription factors. Although SHP plays a negative regulatory function in various signaling pathways, its role in virus infection has not been studied. Here, we report that SHP is a potent negative regulator of the virus-mediated type I IFN signaling that maintains homeostasis within the antiviral innate immune system. Upon virus infection, SHP interacts specifically with CREB-binding protein (CBP) in the nucleus, thereby obstructing CBP/β-catenin interaction competitively. Consequently, SHP-deficient cells enhance antiviral responses, including transcription of the type I IFN gene, upon virus infection. Furthermore, SHP-deficient mice show higher levels of IFN production and are more resistant to influenza A virus infection. Our results suggest that SHP is a nuclear regulator that blocks transcription of the type I IFN gene to inhibit excessive innate immune responses.
Collapse
Affiliation(s)
- Jae-Hoon Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea; Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Ji-Eun Yoon
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Chamilani Nikapitiya
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Tae-Hwan Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Md Bashir Uddin
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea; Faculty of Veterinary & Animal Science, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Hyun-Cheol Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jung Hwan Hwang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - W A Gayan Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Chul-Joong Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
125
|
Anti-interferon-α receptor 1 antibodies attenuate inflammation and organ injury following hemorrhagic shock. J Trauma Acute Care Surg 2020; 86:881-890. [PMID: 31009444 DOI: 10.1097/ta.0000000000002214] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Hemorrhagic shock (HS) is a life-threatening condition resulting from rapid and significant loss of intravascular volume, leading to hemodynamic instability and death. Inflammation contributes to the multiple organ injury in HS. Type I interferons (IFNs), such as IFN-α and IFN-β, are a family of cytokines that regulate the inflammatory response through binding to IFN-α receptor (IFNAR) which consists of IFNAR1 and IFNAR2 chains. We hypothesized that type I IFNs provoke inflammation and worsen organ injury in HS. METHODS Male C57BL/6 mice (20-25 g) underwent hemorrhage by controlled bleeding via the femoral artery to maintain a mean arterial pressure of 27 ± 2.5 mm Hg for 90 minutes, followed by resuscitation for 30 minutes with two times shed blood volume of Ringer's lactate solution containing 1 mg/kg body weight of anti-IFNAR1 antibody (Ab) or control isotype-matched IgG (IgG). Blood and tissue samples were collected at 20 hours after the resuscitation for various analyses. RESULTS The expression of IFN-α and IFN-β mRNAs was significantly elevated in lungs and liver of the mice after HS. The IFNAR1-Ab treatment significantly decreased serum levels of organ injury markers lactate dehydrogenase and aspartate aminotransferase, as well as improved the integrity of lung and liver morphology, compared to the IgG control. The protein levels of proinflammatory cytokines TNF-α and IL-6, and mRNA expression of proinflammatory chemokines monocyte chemoattractant protein (MCP)-1, MCP-2, macrophage inflammatory protein 2 (MIP-2), and keratinocyte cytokine (KC) in the lungs of the HS mice were significantly decreased after treated with IFNAR1-Ab. Moreover, the myeloperoxidase activity and number of apoptotic cells in the lungs of HS mice treated with IFNAR1-Ab were decreased in comparison to the IgG control. CONCLUSION Administration of IFNAR1-Ab reduces inflammation and tissue injury. Thus, type I IFN signaling may be a potential therapeutic target for mitigating organ dysfunction in patients suffering from HS. STUDY TYPE Translational animal model.
Collapse
|
126
|
Human Type I Interferon Antiviral Effects in Respiratory and Reemerging Viral Infections. J Immunol Res 2020; 2020:1372494. [PMID: 32455136 PMCID: PMC7231083 DOI: 10.1155/2020/1372494] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/17/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Type I interferons (IFN-I) are a group of related proteins that help regulate the activity of the immune system and play a key role in host defense against viral infections. Upon infection, the IFN-I are rapidly secreted and induce a wide range of effects that not only act upon innate immune cells but also modulate the adaptive immune system. While IFN-I and many IFN stimulated genes are well-known for their protective antiviral role, recent studies have associated them with potential pathogenic functions. In this review, we summarize the current knowledge regarding the complex effects of human IFN-I responses in respiratory as well as reemerging flavivirus infections of public health significance and the molecular mechanisms by which viral proteins antagonize the establishment of an antiviral host defense. Antiviral effects and immune modulation of IFN-stimulated genes is discussed in resisting and controlling pathogens. Understanding the mechanisms of these processes will be crucial in determining how viral replication can be effectively controlled and in developing safe and effective vaccines and novel therapeutic strategies.
Collapse
|
127
|
Zaidan M, Burtin M, Zhang JD, Blanc T, Barre P, Garbay S, Nguyen C, Vasseur F, Yammine L, Germano S, Badi L, Gubler MC, Gallazzini M, Friedlander G, Pontoglio M, Terzi F. Signaling pathways predisposing to chronic kidney disease progression. JCI Insight 2020; 5:126183. [PMID: 32376805 DOI: 10.1172/jci.insight.126183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
The loss of functional nephrons after kidney injury triggers the compensatory growth of the remaining ones to allow functional adaptation. However, in some cases, these compensatory events activate signaling pathways that lead to pathological alterations and chronic kidney disease. Little is known about the identity of these pathways and how they lead to the development of renal lesions. Here, we combined mouse strains that differently react to nephron reduction with molecular and temporal genome-wide transcriptome studies to elucidate the molecular mechanisms involved in these events. We demonstrated that nephron reduction led to 2 waves of cell proliferation: the first one occurred during the compensatory growth regardless of the genetic background, whereas the second one occurred, after a quiescent phase, exclusively in the sensitive strain and accompanied the development of renal lesions. Similarly, clustering by coinertia analysis revealed the existence of 2 waves of gene expression. Interestingly, we identified type I interferon (IFN) response as an early (first-wave) and specific signature of the sensitive (FVB/N) mice. Activation of type I IFN response was associated with G1/S cell cycle arrest, which correlated with p21 nuclear translocation. Remarkably, the transient induction of type I IFN response by poly(I:C) injections during the compensatory growth resulted in renal lesions in otherwise-resistant C57BL6 mice. Collectively, these results suggest that the early molecular and cellular events occurring after nephron reduction determine the risk of developing late renal lesions and point to type I IFN response as a crucial event of the deterioration process.
Collapse
Affiliation(s)
- Mohamad Zaidan
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Department of Growth and Signaling, Université de Paris, Paris, France.,Service de Néphrologie-Transplantation, Hôpital Bicêtre, Assistance Publique - Hôpitaux de Paris (AP-HP), Le Kremlin-Bicêtre, France
| | - Martine Burtin
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Department of Growth and Signaling, Université de Paris, Paris, France
| | - Jitao David Zhang
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Thomas Blanc
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Department of Growth and Signaling, Université de Paris, Paris, France.,Service de Chirurgie Viscérale et Urologie Pédiatrique, Hôpital Necker Enfants Malades, AP-HP, Paris, France
| | - Pauline Barre
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Department of Growth and Signaling, Université de Paris, Paris, France
| | - Serge Garbay
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Department of Growth and Signaling, Université de Paris, Paris, France
| | - Clément Nguyen
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Department of Growth and Signaling, Université de Paris, Paris, France
| | - Florence Vasseur
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Department of Growth and Signaling, Université de Paris, Paris, France
| | - Lucie Yammine
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Department of Growth and Signaling, Université de Paris, Paris, France
| | - Serena Germano
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Department of Growth and Signaling, Université de Paris, Paris, France
| | - Laura Badi
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | | | - Morgan Gallazzini
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Department of Growth and Signaling, Université de Paris, Paris, France
| | - Gérard Friedlander
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Department of Growth and Signaling, Université de Paris, Paris, France.,Service d'Explorations Fonctionnelles, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Marco Pontoglio
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Department of Growth and Signaling, Université de Paris, Paris, France
| | - Fabiola Terzi
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Department of Growth and Signaling, Université de Paris, Paris, France
| |
Collapse
|
128
|
Kidney dendritic cells: fundamental biology and functional roles in health and disease. Nat Rev Nephrol 2020; 16:391-407. [PMID: 32372062 DOI: 10.1038/s41581-020-0272-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2020] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are chief inducers of adaptive immunity and regulate local inflammatory responses across the body. Together with macrophages, the other main type of mononuclear phagocyte, DCs constitute the most abundant component of the intrarenal immune system. This network of functionally specialized immune cells constantly surveys its microenvironment for signs of injury or infection, which trigger the initiation of an immune response. In the healthy kidney, DCs coordinate effective immune responses, for example, by recruiting neutrophils for bacterial clearance in pyelonephritis. The pro-inflammatory actions of DCs can, however, also contribute to tissue damage in various types of acute kidney injury and chronic glomerulonephritis, as DCs recruit and activate effector T cells, which release toxic mediators and maintain tubulointerstitial immune infiltrates. These actions are counterbalanced by DC subsets that promote the activation and maintenance of regulatory T cells to support resolution of the immune response and allow kidney repair. Several studies have investigated the multiple roles for DCs in kidney homeostasis and disease, but it has become clear that current tools and subset markers are not sufficient to accurately distinguish DCs from macrophages. Multidimensional transcriptomic analysis studies promise to improve mononuclear phagocyte classification and provide a clearer view of DC ontogeny and subsets.
Collapse
|
129
|
Wang F, Kream RM, Stefano GB. An Evidence Based Perspective on mRNA-SARS-CoV-2 Vaccine Development. Med Sci Monit 2020; 26:e924700. [PMID: 32366816 PMCID: PMC7218962 DOI: 10.12659/msm.924700] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
The first outbreak of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurred in Wuhan, Hubei Province, China, in late 2019. The subsequent COVID-19 pandemic rapidly affected the health and economy of the world. The global approach to the pandemic was to isolate populations to reduce the spread of this deadly virus while vaccines began to be developed. In March 2020, the first phase I clinical trial of a novel lipid nanoparticle (LNP)-encapsulated mRNA-based vaccine, mRNA-1273, which encodes the spike protein (S protein) of SARS-CoV-2, began in the United States (US). The production of mRNA-based vaccines is a promising recent development in the production of vaccines. However, there remain significant challenges in the development and testing of vaccines as rapidly as possible to control COVID-19, which requires international collaboration. This review aims to describe the background to the rationale for the development of mRNA-based SARS-CoV-2 vaccines and the current status of the mRNA-1273 vaccine.
Collapse
Affiliation(s)
- Fuzhou Wang
- Group of Neuropharmacology and Neurophysiology, Division of Neuroscience, The Bonoi Academy of Science and Education, Chapel Hill, NC, U.S.A
- Institute for Translational Medicine on Molecular Function and Artificial Intelligence Imaging, Affiliated Foshan Hospital of Sun Yat-sen University, Foshan, Guangdong, P.R. China
| | | | - George B. Stefano
- International Scientific Information, Inc., Melville, NY, U.S.A
- Center for Cognitive and Molecular Neuroscience, First Faculty of Medicine Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
130
|
Jang HJ, Song KD. Expression patterns of innate immunity-related genes in response to polyinosinic:polycytidylic acid (poly[I:C]) stimulation in DF-1 chicken fibroblast cells. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2020; 62:385-395. [PMID: 32568266 PMCID: PMC7288226 DOI: 10.5187/jast.2020.62.3.385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/24/2022]
Abstract
Polyinosinic:polycytidylic acid (poly[I:C]) can stimulate Toll-like receptor 3 (TLR3) signaling pathways. In this study, DF-1 cells were treated with poly(I:C) at various concentrations and time points to examine the comparative expression patterns of innate immune response genes. The viability of DF-1 cells decreased from 77.41% to 38.68% when cells were treated different dose of poly(I:C) from 0.1 µg/mL to 100 µg/mL for 24 h respectively. The expressions of TLR3, TLR4, TLR7, TLR15, TLR21, IL1B, and IL10 were increased in dose- and time-dependent manners by poly(I:C) treatment. On the contrary, the expression patterns of interferon regulatory factors 7 (IRF7), Jun proto-oncogene, AP-1 transcription factor subunit (JUN), Nuclear Factor Kappa B Subunit 1 (NF-κB1), and IL8L2 were varied; IRF7 and IL8L2 were increasingly expressed whereas the expressions of JUN and NF-κB1 were decreased in a dose-dependent manner after they were early induced. In time-dependent analysis, IRF7 expression was significantly upregulated from 3 h to 24 h, whereas JUN and NF-κB1 expressions settled down from 6 h to 24 h after poly(I:C) treatment although they were induced at early time from 1 h to 3 h. Poly(I:C) treatment rapidly increased the expression of IL8L2 from 3 h to 6 h with a plateau at 6 h and then the expression of IL8L2 was dramatically decreased until 24 h after poly(I:C) treatment although the expression level was still higher than the non-treated control. These results may provide the basis for understanding host response to viral infection and its mimicry system in chickens.
Collapse
Affiliation(s)
- Hyun-Jun Jang
- Department of Animal Biotechnology,
Jeonbuk National University, Jeonju 54896, Korea
- The Animal Molecular Genetics and Breeding
Center, Jeonbuk National University, Jeonju 54896, Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology,
Jeonbuk National University, Jeonju 54896, Korea
- The Animal Molecular Genetics and Breeding
Center, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
131
|
Lee SB, Park YH, Chungu K, Woo SJ, Han ST, Choi HJ, Rengaraj D, Han JY. Targeted Knockout of MDA5 and TLR3 in the DF-1 Chicken Fibroblast Cell Line Impairs Innate Immune Response Against RNA Ligands. Front Immunol 2020; 11:678. [PMID: 32425931 PMCID: PMC7204606 DOI: 10.3389/fimmu.2020.00678] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/26/2020] [Indexed: 01/29/2023] Open
Abstract
The innate immune system, which senses invading pathogens, plays a critical role as the first line of host defense. After recognition of foreign RNA ligands (e.g., RNA viruses), host cells generate an innate immune or antiviral response via the interferon-mediated signaling pathway. Retinoic acid-inducible gene I (RIG-1) acts as a major sensor that recognizes a broad range of RNA ligands in mammals; however, chickens lack a RIG-1 homolog, meaning that RNA ligands should be recognized by other cellular sensors such as melanoma differentiation-associated protein 5 (MDA5) and toll-like receptors (TLRs). However, it is unclear which of these cellular sensors compensates for the loss of RIG-1 to act as the major sensor for RNA ligands. Here, we show that chicken MDA5 (cMDA5), rather than chicken TLRs (cTLRs), plays a pivotal role in the recognition of RNA ligands, including poly I:C and influenza virus. First, we used a knockdown approach to show that both cMDA5 and cTLR3 play roles in inducing interferon-mediated innate immune responses against RNA ligands in chicken DF-1 cells. Furthermore, targeted knockout of cMDA5 or cTLR3 in chicken DF-1 cells revealed that loss of cMDA5 impaired the innate immune responses against RNA ligands; however, the responses against RNA ligands were retained after loss of cTLR3. In addition, double knockout of cMDA5 and cTLR3 in chicken DF-1 cells abolished the innate immune responses against RNA ligands, suggesting that cMDA5 is the major sensor whereas cTLR3 is a secondary sensor. Taken together, these findings provide an understanding of the functional role of cMDA5 in the recognition of RNA ligands in chicken DF-1 cells and may facilitate the development of an innate immune-deficient cell line or chicken model.
Collapse
Affiliation(s)
- Su Bin Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Young Hyun Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kelly Chungu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seung Je Woo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Soo Taek Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hee Jung Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Deivendran Rengaraj
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
132
|
Duan X, Sun P, Lan Y, Shen C, Zhang X, Hou S, Chen J, Ma B, Xia Y, Su C. 1IFN-α Modulates Memory Tfh Cells and Memory B Cells in Mice, Following Recombinant FMDV Adenoviral Challenge. Front Immunol 2020; 11:701. [PMID: 32411135 PMCID: PMC7200983 DOI: 10.3389/fimmu.2020.00701] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/27/2020] [Indexed: 11/13/2022] Open
Abstract
Follicular helper T (Tfh) cells regulate high-affinity antibody production. Some findings have indicated that Tfh cells could be differentiated into memory cells. Here we have investigated the effects of IFN-α, as an adjuvant, on the generation of memory Tfh cell and memory B cell responses. The data showed that adenoviral vectors expressing: (i) foot-and-mouth disease virus (FMDV) VP1 proteins and porcine IFN-α, or (ii) porcine IFN-α alone, potently enhanced the generation of memory Tfh cells, especially the CCR7 l o memory Tfh subset. Upon rechallenge with FMD recombinant adenoviral vaccines, IFN-α enhances Tfh cells activity, rapidly upregulating their signature Bcl-6, CXCR5, and IL-21 markers. The results suggest that IFN-α enhances the levels of the transcription factor Bcl-6 within Tfh cells, potentially by regulating STAT1. Additionally, IFN-α substantially increased the number of IgG1+ and CD86+ memory B cells, which are responsible for inducing the rapid effector functions of memory Tfh cells after vaccine reactivation, establishing the close relationship between memory B cell and memory Tfh cell subsets. In brief, IFN-α enhances the potency of FMD recombinant adenoviral vaccines to induce memory Tfh and memory B cell responses, thus elevating serum antibody titers. IFN-α administration therefore represents an attractive strategy for enhancing responses to vaccination.
Collapse
Affiliation(s)
- Xiangguo Duan
- Department of Laboratory Medicine, College of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Department of Laboratory Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Peng Sun
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yaru Lan
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Chunxiu Shen
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiaoyu Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Shaozhang Hou
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | | | - Bin Ma
- Department of Oncology Surgery, The First People's Hospital of Yinchuan, Yinchuan, China
| | - Yuhan Xia
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Chunxia Su
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
133
|
Trouillet-Assant S, Viel S, Gaymard A, Pons S, Richard JC, Perret M, Villard M, Brengel-Pesce K, Lina B, Mezidi M, Bitker L, Belot A. Type I IFN immunoprofiling in COVID-19 patients. J Allergy Clin Immunol 2020; 146:206-208.e2. [PMID: 32360285 PMCID: PMC7189845 DOI: 10.1016/j.jaci.2020.04.029] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Sophie Trouillet-Assant
- Joint Research Unit, Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France; International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France.
| | - Sebastien Viel
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France; Immunology Laboratory, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France; National Referee Centre for Rheumatic and AutoImmune and Systemic diseases in childrEn (RAISE), Lyon, France; Lyon Immunopathology Federation LIFE, Hospices Civils de Lyon, Lyon, France
| | - Alexandre Gaymard
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France; Virology Department, Infective Agents Institute, National Reference Center for Respiratory Viruses, North Hospital Network, Lyon, France.
| | - Sylvie Pons
- Joint Research Unit, Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Jean-Christophe Richard
- Lyon University, CREATIS, CNRS UMR5220, Inserm U1044, INSA, Lyon, France; Intensive Care Unit, Hospices Civils de Lyon, Lyon, France
| | - Magali Perret
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France; Immunology Laboratory, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Marine Villard
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France; Immunology Laboratory, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Karen Brengel-Pesce
- Joint Research Unit, Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Bruno Lina
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France; Virology Department, Infective Agents Institute, National Reference Center for Respiratory Viruses, North Hospital Network, Lyon, France
| | - Mehdi Mezidi
- Lyon University, CREATIS, CNRS UMR5220, Inserm U1044, INSA, Lyon, France; Intensive Care Unit, Hospices Civils de Lyon, Lyon, France
| | - Laurent Bitker
- Lyon University, CREATIS, CNRS UMR5220, Inserm U1044, INSA, Lyon, France; Intensive Care Unit, Hospices Civils de Lyon, Lyon, France
| | - Alexandre Belot
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France; National Referee Centre for Rheumatic and AutoImmune and Systemic diseases in childrEn (RAISE), Lyon, France; Lyon Immunopathology Federation LIFE, Hospices Civils de Lyon, Lyon, France; Pediatric Nephrology, Rheumatology, Dermatology Unit, Hospices Civils de Lyon, Lyon, France
| | | |
Collapse
|
134
|
He Y, Fu W, Cao K, He Q, Ding X, Chen J, Zhu L, Chen T, Ding L, Yang Y, Zhu C, Yuan S, Li Z, Zhao C, Zhang X, Xu J. IFN-κ suppresses the replication of influenza A viruses through the IFNAR-MAPK-Fos-CHD6 axis. Sci Signal 2020; 13:13/626/eaaz3381. [PMID: 32265337 DOI: 10.1126/scisignal.aaz3381] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Type I interferons (IFNs) are the first line of defense against viral infection. Using a mouse model of influenza A virus infection, we found that IFN-κ was one of the earliest responding type I IFNs after infection with H9N2, a low-pathogenic avian influenza A virus, whereas this early induction did not occur upon infection with the epidemic-causing H7N9 virus. IFN-κ efficiently suppressed the replication of various influenza viruses in cultured human lung cells, and chromodomain helicase DNA binding protein 6 (CHD6) was the major effector for the antiviral activity of IFN-κ, but not for that of IFN-α or IFN-β. The induction of CHD6 required both of the type I IFN receptor subunits IFNAR1 and IFNAR2, the mitogen-activated protein kinase (MAPK) p38, and the transcription factor c-Fos but was independent of signal transducer and activator of transcription 1 (STAT1) activity. In addition, we showed that pretreatment with IFN-κ protected mice from lethal influenza viral challenge. Together, our findings identify an IFN-κ-specific pathway that constrains influenza A virus and provide evidence that IFN-κ may have potential as a preventative and therapeutic agent against influenza A virus.
Collapse
Affiliation(s)
- Yongquan He
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China
| | - Weihui Fu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China
| | - Kangli Cao
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China
| | - Qian He
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China
| | - Xiangqing Ding
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China
| | - Jian Chen
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China
| | - Lingyan Zhu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China
| | - Tianyue Chen
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China
| | - Longfei Ding
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China
| | - Yu Yang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China
| | - Cuisong Zhu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China
| | - Songhua Yuan
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China
| | - Zejun Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P. R. China
| | - Chen Zhao
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China.
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China. .,State Key Laboratory for Infectious Disease Prevention and Control, China Centers for Disease Control and Prevention, Beijing 102206, P. R. China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, P. R. China. .,State Key Laboratory for Infectious Disease Prevention and Control, China Centers for Disease Control and Prevention, Beijing 102206, P. R. China
| |
Collapse
|
135
|
Gough MJ, Sharon S, Crittenden MR, Young KH. Using Preclinical Data to Design Combination Clinical Trials of Radiation Therapy and Immunotherapy. Semin Radiat Oncol 2020; 30:158-172. [PMID: 32381295 PMCID: PMC7213059 DOI: 10.1016/j.semradonc.2019.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunotherapies are rapidly entering the clinic as approved treatments for diverse cancer pathologies. Radiation therapy is an integral partner in cancer therapy, commonly as part of complicated multimodality approaches that optimize patient outcomes. Preclinical studies have demonstrated that the success of radiation therapy in tumor control is due in part to immune mechanisms, and that outcomes following radiation therapy can be improved through combination with a range of immunotherapies. However, preclinical models of cancer are very different from patient tumors, and the way these preclinical tumors are treated is often very different from standard of care treatment of patients. This review examines the preclinical and clinical data for the role of the immune system in radiation therapy outcomes, and how to integrate preclinical findings into clinical trials, using ongoing studies as examples.
Collapse
Affiliation(s)
- Michael J Gough
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR.
| | - Shay Sharon
- Department of Oral and Maxillofacial Surgery, Hadassah and Hebrew University Medical Center, Jerusalem, ISRAEL
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR; The Oregon Clinic, Portland, OR
| | - Kristina H Young
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR; The Oregon Clinic, Portland, OR
| |
Collapse
|
136
|
Hu M, Bogoyevitch MA, Jans DA. Impact of Respiratory Syncytial Virus Infection on Host Functions: Implications for Antiviral Strategies. Physiol Rev 2020; 100:1527-1594. [PMID: 32216549 DOI: 10.1152/physrev.00030.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of viral respiratory tract infection in infants, the elderly, and the immunocompromised worldwide, causing more deaths each year than influenza. Years of research into RSV since its discovery over 60 yr ago have elucidated detailed mechanisms of the host-pathogen interface. RSV infection elicits widespread transcriptomic and proteomic changes, which both mediate the host innate and adaptive immune responses to infection, and reflect RSV's ability to circumvent the host stress responses, including stress granule formation, endoplasmic reticulum stress, oxidative stress, and programmed cell death. The combination of these events can severely impact on human lungs, resulting in airway remodeling and pathophysiology. The RSV membrane envelope glycoproteins (fusion F and attachment G), matrix (M) and nonstructural (NS) 1 and 2 proteins play key roles in modulating host cell functions to promote the infectious cycle. This review presents a comprehensive overview of how RSV impacts the host response to infection and how detailed knowledge of the mechanisms thereof can inform the development of new approaches to develop RSV vaccines and therapeutics.
Collapse
Affiliation(s)
- MengJie Hu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
137
|
Yokoyama-Kokuryo W, Yamazaki H, Takeuchi T, Amano K, Kikuchi J, Kondo T, Nakamura S, Sakai R, Hirano F, Nanki T, Koike R, Harigai M. Identification of molecules associated with response to abatacept in patients with rheumatoid arthritis. Arthritis Res Ther 2020; 22:46. [PMID: 32164778 PMCID: PMC7068901 DOI: 10.1186/s13075-020-2137-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/21/2020] [Indexed: 12/20/2022] Open
Abstract
Background Abatacept (ABA) is a biological disease-modifying antirheumatic drug (bDMARD) for rheumatoid arthritis (RA). The aim of this study was to identify molecules that are associated with therapeutic responses to ABA in patients with RA. Methods Peripheral blood was collected using a PAX gene Blood RNA kit from 45 bDMARD-naïve patients with RA at baseline and at 6 months after the initiation of ABA treatment. Gene expression levels of responders (n = 27) and non-responders (n = 8) to ABA treatment among patients with RA at baseline were compared using a microarray. The gene expression levels were confirmed using real-time quantitative polymerase chain reaction (RT-qPCR). Results Gene expression analysis revealed that the expression levels of 218 genes were significantly higher and those of 392 genes were significantly lower in the responders compared to the non-responders. Gene ontology analysis of the 218 genes identified “response to type I interferon (IFN)” with 24 type I IFN-related genes. RT-qPCR confirmed that there was a strong correlation between the score calculated using the 24 genes and that using OAS3, MX1, and IFIT3 (type I IFN score) (rho with the type I IFN score 0.981); the type I IFN score was significantly decreased after treatment with ABA in the responders (p < 0.05), but not in the non-responders. The receiver operating characteristic curve analysis of the type I IFN score showed that sensitivity, specificity, and AUC (95% confidence interval) for the responders were 0.82, 1.00, and 0.92 (0.82–1.00), respectively. Further, RT-qPCR demonstrated higher expression levels of BATF2, LAMP3, CD83, CLEC4A, IDO1, IRF7, STAT1, STAT2, and TNFSF10 in the responders, all of which are dendritic cell-related genes or type I IFN-related genes with significant biological implications. Conclusion Type I IFN score and expression levels of the nine genes may serve as novel biomarkers associated with a clinical response to ABA in patients with RA.
Collapse
Affiliation(s)
- Waka Yokoyama-Kokuryo
- Department of Rheumatology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.,Department of Pharmacovigilance, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.,Department of Rheumatology, Japan Organization of Occupational Health and Safety Chubu Rosai Hospital, 1-10-6 Koumei, Minato-ku, Nagoya-City, Aichi, Japan
| | - Hayato Yamazaki
- Department of Rheumatology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.,Department of Pharmacovigilance, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Koichi Amano
- Department of Rheumatology and Clinical Immunology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe-shi, Saitama, 350-8550, Japan
| | - Jun Kikuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tsuneo Kondo
- Department of Rheumatology and Clinical Immunology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe-shi, Saitama, 350-8550, Japan
| | - Seiji Nakamura
- DNA Chip Research Inc, 1-15-1 Kaigan, Minato-ku, Tokyo, 105-0022, Japan
| | - Ryoko Sakai
- Department of Pharmacovigilance, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.,Department of Rheumatology, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Fumio Hirano
- Department of Rheumatology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.,Department of Pharmacovigilance, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Toshihiro Nanki
- Department of Rheumatology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.,Department of Pharmacovigilance, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.,Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Ryuji Koike
- Department of Rheumatology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.,Department of Pharmacovigilance, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Masayoshi Harigai
- Department of Rheumatology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan. .,Department of Pharmacovigilance, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan. .,Department of Rheumatology, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| |
Collapse
|
138
|
McCormack R, Hunte R, Podack ER, Plano GV, Shembade N. An Essential Role for Perforin-2 in Type I IFN Signaling. THE JOURNAL OF IMMUNOLOGY 2020; 204:2242-2256. [PMID: 32161097 DOI: 10.4049/jimmunol.1901013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/12/2020] [Indexed: 01/14/2023]
Abstract
Type I IFNs play a complex role in determining the fate of microbial pathogens and may also be deleterious to the host during bacterial and viral infections. Upon ligand binding, a receptor proximal complex consisting of IFN-α and -β receptors 1 and 2 (IFNAR1, IFNAR2, respectively), tyrosine kinase 2 (Tyk2), Jak1, and STAT2 are assembled and promote the phosphorylation of STAT1 and STAT2. However, how the IFNARs proximal complex is assembled upon binding to IFN is poorly understood. In this study, we show that the membrane-associated pore-forming protein Perforin-2 (P2) is critical for LPS-induced endotoxic shock in wild-type mice. Type I IFN-mediated JAK-STAT signaling is severely impaired, and activation of MAPKs and PI3K signaling pathways are delayed in P2-deficient mouse bone marrow-derived macrophages, mouse embryonic fibroblasts (MEFs), and human HeLa cells upon IFN stimulation. The P2 N-glycosylated extracellular membrane attack complex/perforin domain and the P2 domain independently associate with the extracellular regions of IFNAR1 and IFNAR2, respectively, in resting MEFs. In addition, the P2 cytoplasmic tail domain mediated the constitutive interaction between STAT2 and IFNAR2 in resting MEFs, an interaction that is dependent on the association of the extracellular regions of P2 and IFNAR2. Finally, the constitutive association of P2 with both receptors and STAT2 is critical for the receptor proximal complex assembly and reciprocal transphosphorylation of Jak1 and Tyk2 as well as the phosphorylation and activation of STAT1 and STAT2 upon IFN-β stimulation.
Collapse
Affiliation(s)
- Ryan McCormack
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Richard Hunte
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Eckhard R Podack
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136
| | - Gregory V Plano
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Noula Shembade
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136 .,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136
| |
Collapse
|
139
|
Jahanafrooz Z, Baradaran B, Mosafer J, Hashemzaei M, Rezaei T, Mokhtarzadeh A, Hamblin MR. Comparison of DNA and mRNA vaccines against cancer. Drug Discov Today 2020; 25:552-560. [PMID: 31843577 PMCID: PMC7080609 DOI: 10.1016/j.drudis.2019.12.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/23/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022]
Abstract
Nucleic acid vaccines (NAVs) have recently been tested as a cancer therapy. DNA and mRNA vaccines deliver genetic information encoding tumor antigens (TAs) to the host, which then produces immune responses against cancer cells that express the TAs. Although NAVs are easy, safe, and simple to manufacture, they have not so far been considered viable alternatives to peptide vaccines. Choosing the right TAs, insufficient immunogenicity, and the immunosuppressive nature of cancer are some challenges to this approach. In this review, we discuss approaches that been used to improve the efficiency of anticancer NAVs.
Collapse
Affiliation(s)
- Zohreh Jahanafrooz
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Mosafer
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Tayebeh Rezaei
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
140
|
Di Pietro M, Filardo S, Frasca F, Scagnolari C, Manera M, Sessa V, Antonelli G, Sessa R. Interferon-γ Possesses Anti-Microbial and Immunomodulatory Activity on a Chlamydia Trachomatis Infection Model of Primary Human Synovial Fibroblasts. Microorganisms 2020; 8:E235. [PMID: 32050567 PMCID: PMC7074713 DOI: 10.3390/microorganisms8020235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 11/16/2022] Open
Abstract
Chlamydia trachomatis, an obligate intracellular pathogen, is the most common cause of bacterial sexually transmitted diseases, and it is potentially responsible for severe chronic sequelae, such as reactive arthritis. To date, details of the mechanisms by which Chlamydiae induce innate antimicrobial pathways in synovial fibroblasts, are not well characterized; therefore, herein, we investigated the effects of interferon (IFN)α, IFNβ, and IFNγ on the infection, and replication phases of the C. trachomatis developmental cycle, as well as on the induction of pattern recognition receptors (PRRs) and IFN-related pathways. To do so, we set up an in vitro chlamydial-infection model of primary human synovial cells treated with IFNs before or after the infection. We then determined the number of chlamydial inclusion forming units and inclusion size, as well as the expression of toll like receptor (TLR)2, TLR3, TLR4, cyclic GMP-AMP synthase (cGAS), stimulator of IFN gene (STING), IRF9, ISG56, and GBP1. The main result of our study is the significant inhibition of C. trachomatis infection and replication in human synovial cells following the treatment with IFNγ, whereas IFN-I proved to be ineffective. Furthermore, IFNγ greatly upregulated all the PRRs and ISGs examined. In conclusion, IFNγ exhibited a potent anti-Chlamydia activity in human synovial cells as well as the ability to induce a strong increase of innate immune pathways.
Collapse
Affiliation(s)
- Marisa Di Pietro
- Section of Microbiology, Department of Public Health and Infectious Diseases, Sapienza University, 00185 Rome, Italy; (M.D.P.); (M.M.); (R.S.)
| | - Simone Filardo
- Section of Microbiology, Department of Public Health and Infectious Diseases, Sapienza University, 00185 Rome, Italy; (M.D.P.); (M.M.); (R.S.)
| | - Federica Frasca
- Laboratory of Virology, Department of Molecular Medicine, affiliated to Istituto Pasteur Italia–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy; (F.F.); (C.S.); (G.A.)
| | - Carolina Scagnolari
- Laboratory of Virology, Department of Molecular Medicine, affiliated to Istituto Pasteur Italia–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy; (F.F.); (C.S.); (G.A.)
| | - Martina Manera
- Section of Microbiology, Department of Public Health and Infectious Diseases, Sapienza University, 00185 Rome, Italy; (M.D.P.); (M.M.); (R.S.)
| | - Vincenzo Sessa
- Department of Orthopedics, San Giovanni Calibita-Fatebenefratelli Hospital, 00186 Rome, Italy;
| | - Guido Antonelli
- Laboratory of Virology, Department of Molecular Medicine, affiliated to Istituto Pasteur Italia–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy; (F.F.); (C.S.); (G.A.)
- Microbiology and Virology Unit, Hospital “Policlinico Umberto I”, Sapienza University, 00185 Rome, Italy
| | - Rosa Sessa
- Section of Microbiology, Department of Public Health and Infectious Diseases, Sapienza University, 00185 Rome, Italy; (M.D.P.); (M.M.); (R.S.)
| |
Collapse
|
141
|
Javaid N, Choi S. Toll-like Receptors from the Perspective of Cancer Treatment. Cancers (Basel) 2020; 12:E297. [PMID: 32012718 PMCID: PMC7072551 DOI: 10.3390/cancers12020297] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) represent a family of pattern recognition receptors that recognize certain pathogen-associated molecular patterns and damage-associated molecular patterns. TLRs are highly interesting to researchers including immunologists because of the involvement in various diseases including cancers, allergies, autoimmunity, infections, and inflammation. After ligand engagement, TLRs trigger multiple signaling pathways involving nuclear factor-κB (NF-κB), interferon-regulatory factors (IRFs), and mitogen-activated protein kinases (MAPKs) for the production of various cytokines that play an important role in diseases like cancer. TLR activation in immune as well as cancer cells may prevent the formation and growth of a tumor. Nonetheless, under certain conditions, either hyperactivation or hypoactivation of TLRs supports the survival and metastasis of a tumor. Therefore, the design of TLR-targeting agonists as well as antagonists is a promising immunotherapeutic approach to cancer. In this review, we mainly describe TLRs, their involvement in cancer, and their promising properties for anticancer drug discovery.
Collapse
Affiliation(s)
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea;
| |
Collapse
|
142
|
Mathian A, Mouries-Martin S, Dorgham K, Devilliers H, Barnabei L, Ben Salah E, Cohen-Aubart F, Garrido Castillo L, Haroche J, Hie M, Pineton de Chambrun M, Miyara M, Sterlin D, Pha M, Lê Thi Huong D, Rieux-Laucat F, Rozenberg F, Gorochov G, Amoura Z. Monitoring Disease Activity in Systemic Lupus Erythematosus With Single-Molecule Array Digital Enzyme-Linked Immunosorbent Assay Quantification of Serum Interferon-α. Arthritis Rheumatol 2020; 71:756-765. [PMID: 30507062 DOI: 10.1002/art.40792] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 11/18/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVE No simple or standardized assay is available to quantify interferon-α (IFNα) in routine clinical practice. Single-molecule array (Simoa) digital enzyme-linked immunosorbent assay (ELISA) technology enables direct IFNα quantification at attomolar (femtogram per milliliter [fg/ml]) concentrations. This study was undertaken to assess IFNα digital ELISA diagnostic performances to monitor systemic lupus erythematosus (SLE) activity. METHODS IFNα concentrations in serum samples from 150 consecutive SLE patients in a cross-sectional study were determined with digital ELISA and a functional biologic activity assay (bioassay). According to their Safety of Estrogens in Lupus Erythematosus National Assessment version of the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) flare composite scores, patients were divided into groups with inactive SLE (SLEDAI score of <4 or clinical SLEDAI score of 0) or active SLE (SLEDAI score of ≥4 or clinical SLEDAI score of >0), and into groups with no flare or mild/moderate flare or severe flare. RESULTS Based on serum samples from healthy blood donors, the abnormal serum IFNα level threshold value was 136 fg/ml. Next, using receiver operating characteristic curves for an SLE patient series that was widely heterogeneous in terms of disease activity and organ involvement, the threshold IFNα value associated with active disease was determined to be 266 fg/ml. The digital ELISA-assessed serum IFNα level was a better biomarker of disease activity than the Farr assay because its specificity, likelihood ratio for positive results, and positive predictive value better discerned active SLE or flare from inactive disease. The digital ELISA was more sensitive than the bioassay for detecting low-abnormal serum IFNα concentrations and identifying patients with low disease activity. CONCLUSION Direct serum IFNα determination with a highly sensitive assay might improve monitoring of clinical SLE activity and selection of the best candidates for anti-IFNα treatment.
Collapse
Affiliation(s)
- Alexis Mathian
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Suzanne Mouries-Martin
- Centre Hospitalier Universitaire de Dijon, Hôpital François-Mitterrand, Service de médecine interne et maladies systémiques (médecine interne 2), Dijon, France
| | - Karim Dorgham
- Sorbonne Université, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, Paris, France
| | - Hervé Devilliers
- Centre Hospitalier Universitaire de Dijon, Hôpital François-Mitterrand, Service de médecine interne et maladies systémiques (médecine interne 2) and Centre d'Investigation Clinique, Inserm CIC 1432, Dijon, France
| | - Laura Barnabei
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR-Institut Imagine, Sorbonne Paris Cité, Paris, France
| | - Elyès Ben Salah
- Sorbonne Université, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, Paris, France
| | - Fleur Cohen-Aubart
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Laura Garrido Castillo
- Sorbonne Université, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, Paris, France
| | - Julien Haroche
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Miguel Hie
- Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Paris, France
| | - Marc Pineton de Chambrun
- Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Paris, France
| | - Makoto Miyara
- Sorbonne Université, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, Paris, France
| | - Delphine Sterlin
- Sorbonne Université, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, Paris, France
| | - Micheline Pha
- Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Paris, France
| | - Du Lê Thi Huong
- Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Paris, France
| | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR-Institut Imagine, Sorbonne Paris Cité, Paris, France
| | - Flore Rozenberg
- Sorbonne Paris Cité, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Service de Virologie, Paris, France
| | - Guy Gorochov
- Sorbonne Université, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, Paris, France
| | - Zahir Amoura
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| |
Collapse
|
143
|
Sapre SU, Nair P. Potentiality of DNA Sensors in Activating Immune System in Emerging Viral Infectious Diseases. DYNAMICS OF IMMUNE ACTIVATION IN VIRAL DISEASES 2020. [PMCID: PMC7121249 DOI: 10.1007/978-981-15-1045-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
144
|
Aringer M. Inflammatory markers in systemic lupus erythematosus. J Autoimmun 2019; 110:102374. [PMID: 31812331 DOI: 10.1016/j.jaut.2019.102374] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 01/04/2023]
Abstract
While systemic lupus erythematosus (SLE) is an autoantibody and immune complex disease by nature, most of its organ manifestations are in fact inflammatory. SLE activity scores thus heavily rely on assessing inflammation in the various organs. This focus on clinical items demonstrates that routine laboratory markers of inflammation are still limited in their impact. The erythrocyte sedimentation rate (ESR) is used, but represents a rather crude overall measure. Anemia and diminished serum albumin play a role in estimating inflammatory activity, but both are reflecting more than one mechanism, and the association with inflammation is complex. C-reactive protein (CRP) is a better marker for infections than for SLE activity, where there is only a limited association, and procalcitonin (PCT) is also mainly used for detecting severe bacterial infection. Of the cytokines directly induced by immune complexes, type I interferons, interleukin-18 (IL-18) and tumor necrosis factor (TNF) are correlated with inflammatory disease activity. Still, precise and timely measurement is an issue, which is why they are not currently used for routine purposes. While somewhat more robust in the assays, IL-18 binding protein (IL-18BP) and soluble TNF-receptor 2 (TNF-R2), which are related to the respective cytokines, have not yet made it into clinical routine. The same is true for several chemokines that are increased with activity and relatively easy to measure, but still experimental parameters. In the urine, proteinuria leads and is essential for assessing kidney involvement, but may also result from damage. Similar to the situation in serum and plasma, several cytokines and chemokines perform reasonably well in scientific studies, but are not routine parameters. Cellular elements in the urine are more difficult to assess in the routine laboratory, where sufficient routine is not always available. Therefore, the analysis of urinary T cells may have potential for better monitoring renal inflammation.
Collapse
Affiliation(s)
- Martin Aringer
- University Medical Center and Faculty of Medicine Carl Gustav Carus at the TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
145
|
Bo-Shun Z, Li LJ, Qian Z, Zhen W, Peng Y, Guo-Dong Z, Wen-Jian S, Xue-Fei C, Jiang S, Zhi-Jing X. Co-infection of H9N2 influenza virus and Pseudomonas aeruginosa contributes to the development of hemorrhagic pneumonia in mink. Vet Microbiol 2019; 240:108542. [PMID: 31902499 DOI: 10.1016/j.vetmic.2019.108542] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 01/01/2023]
Abstract
Influenza A virus (IAV) and bacteria co-infection can influence the host clinical conditions. Both H9N2 IAV and Pseudomonas aeruginosa (P. aeruginosa) are potential pathogens of respiratory diseases in mink. In this study, to clarify the effects of H9N2 IAV and P. aeruginosa co-infections on hemorrhagic pneumonia in mink, we carried out to establish the mink models of the two-pathogen co-infections in different orders. Compared with the single infections with H9N2 IAV or P. aeruginosa, the mink co-infected with H9N2 IAV and P. aeruginosa showed severe respiratory diseases, and exacerbated histopathological lesions and more obvious apoptosis in the lung tissues. H9N2 IAV shedding and viral loads in the lungs of the mink co-infected with H9N2 IAV and P. aeruginosa were higher than those in the mink with single H9N2 IAV infection. Furthermore, the clearance of P. aeruginosa in the co-infected mink lungs was delayed. In addition, the anti-H9N2 antibody titers in mink with P. aeruginosa co-infection following H9N2 IAV infection were significantly higher than those of the other groups. This implied that H9N2 IAV and P. aeruginosa co-infection contributed to the development of hemorrhagic pneumonia in mink, and that P. aeruginosa should play a major role in the disease. The exact interaction mechanism among H9N2 IAV, P. aeruginosa and the host needs to be further investigated.
Collapse
Affiliation(s)
- Zhang Bo-Shun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Li-Juan Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Zhu Qian
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Wang Zhen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Yuan Peng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Zhou Guo-Dong
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Shi Wen-Jian
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Chu Xue-Fei
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Shijin Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Xie Zhi-Jing
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China.
| |
Collapse
|
146
|
Myoung J, Lee JY, Min KS. Methyltransferase of a cell culture-adapted hepatitis E inhibits the MDA5 receptor signaling pathway. J Microbiol 2019; 57:1126-1131. [PMID: 31758397 PMCID: PMC7090864 DOI: 10.1007/s12275-019-9478-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
Abstract
Hepatitis E virus (HEV) is a causative agent of acute hepatitis and jaundice. The number of human infections is approximated to be over 20 million cases per year. The transmission is mainly via the fecal-oral route and contaminated water and food are considered to be a major source of infection. As a mouse model is not available, a recent development of a cell culture-adapted HEV strain (47832c) is considered as a very important tools for molecular analysis of HEV pathogenesis in cells. Previously, we demonstrated that HEV-encoded methyltransferase (MeT) encoded by the 47832c strain inhibits MDA5- and RIG-I-mediated activation of interferon β (IFN-β) promoter. Here, we report that MeT impairs the phosphorylation and activation of interferon regulatory factor 3 and the p65 subunit of NF-κB in a dose-dependent manner. In addition, the MeT encoded by the 47832c, but not that of HEV clinical or field isolates (SAR-55, Mex-14, KC-1, and ZJ-1), displays the inhibitory effect. A deeper understanding of MeTmediated suppression of IFN-β expression would provide basis of the cell culture adaptation of HEV.
Collapse
Affiliation(s)
- Jinjong Myoung
- Korea Zoonosis Research Institute, Genetic Engineering Research Institute and Department of Bioactive Material Science, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Jeong Yoon Lee
- Korea Zoonosis Research Institute, Genetic Engineering Research Institute and Department of Bioactive Material Science, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Kang Sang Min
- Korea Zoonosis Research Institute, Genetic Engineering Research Institute and Department of Bioactive Material Science, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
147
|
Lane TR, Massey C, Comer JE, Anantpadma M, Freundlich JS, Davey RA, Madrid PB, Ekins S. Repurposing the antimalarial pyronaridine tetraphosphate to protect against Ebola virus infection. PLoS Negl Trop Dis 2019; 13:e0007890. [PMID: 31751347 PMCID: PMC6894882 DOI: 10.1371/journal.pntd.0007890] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/05/2019] [Accepted: 10/29/2019] [Indexed: 12/28/2022] Open
Abstract
Recent outbreaks of the Ebola virus (EBOV) have focused attention on the dire need for antivirals to treat these patients. We identified pyronaridine tetraphosphate as a potential candidate as it is an approved drug in the European Union which is currently used in combination with artesunate as a treatment for malaria (EC50 between 420 nM—1.14 μM against EBOV in HeLa cells). Range-finding studies in mice directed us to a single 75 mg/kg i.p. dose 1 hr after infection which resulted in 100% survival and statistically significantly reduced viremia at study day 3 from a lethal challenge with mouse-adapted EBOV (maEBOV). Further, an EBOV window study suggested we could dose pyronaridine 2 or 24 hrs post-exposure to result in similar efficacy. Analysis of cytokine and chemokine panels suggests that pyronaridine may act as an immunomodulator during an EBOV infection. Our studies with pyronaridine clearly demonstrate potential utility for its repurposing as an antiviral against EBOV and merits further study in larger animal models with the added benefit of already being used as a treatment against malaria. To date there is no approved drug for Ebola Virus infection. Our approach has been to assess drugs that are already approved for other uses in various countries. Using computational models, we have previously identified three such drugs and demonstrated their activity against the Ebola virus in vitro. We now report on the in vitro absorption, metabolism, distribution, excretion and pharmacokinetic properties of one of these molecules, namely the antimalarial pyronaridine. We justify efficacy testing in the mouse model of ebola infection. We also demonstrate that a single dose of this drug is 100% effective against the virus. This study provides important preclinical evaluation of this already approved drug and justifies its selection for larger animal efficacy studies.
Collapse
Affiliation(s)
- Thomas R. Lane
- Collaborations Pharmaceuticals, Inc., Raleigh, NC, United States of America
| | - Christopher Massey
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Jason E. Comer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States of America
- Institutional Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, United States of America
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Manu Anantpadma
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, United States of America
| | - Joel S. Freundlich
- Departments of Pharmacology, Physiology, and Neuroscience & Medicine, Center for Emerging and Reemerging Pathogens, Rutgers University–New Jersey Medical School, NJ, United States of America
| | - Robert A. Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, United States of America
| | | | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., Raleigh, NC, United States of America
- * E-mail:
| |
Collapse
|
148
|
Type I and Type III Interferons Differ in Their Adjuvant Activities for Influenza Vaccines. J Virol 2019; 93:JVI.01262-19. [PMID: 31511392 DOI: 10.1128/jvi.01262-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022] Open
Abstract
Type I and type III interferons (IFNs) can promote adaptive immune responses in mice and improve vaccine-induced resistance to viral infections. The adjuvant effect of type III IFN (IFN-λ) specifically boosts mucosal immunity by an indirect mechanism, involving IFN-λ-induced production of thymic stromal lymphopoietin (TSLP), a cytokine that activates immune cells. To date, it remained unclear whether the previously described adjuvant effect of type I IFN (IFN-α/β) would also depend on TSLP and whether type I IFN stimulates different antibody subtypes. Here, we show that after infection with a live attenuated influenza virus, mice lacking functional type I IFN receptors failed to produce normal amounts of virus-specific IgG2c and IgA antibodies. In contrast, mice lacking functional IFN-λ receptors contained normal levels of virus-specific IgG2c but had reduced IgG1 and IgA antibody levels. When applied together with protein antigen, IFN-α stimulated the production of antigen-specific IgA and IgG2c to a greater extent than IgG1, irrespective of whether the mice expressed functional TSLP receptors and irrespective of whether the vaccine was applied by the intranasal or the intraperitoneal route. Taken together, these results demonstrate that the adjuvant activities of type I and type III IFNs are mechanistically distinct.IMPORTANCE Interferons can shape antiviral immune responses, but it is not well understood how they influence vaccine efficacy. We find that type I IFN preferentially promotes the production of antigen-specific IgG2c and IgA antibodies after infection with a live attenuated influenza virus or after immunization with influenza subunit vaccines. In contrast, type III IFN specifically enhances influenza virus-specific IgG1 and IgA production. The adjuvant effect of type I IFN was not dependent on TSLP, which is essential for the adjuvant effect of type III IFN. Type I IFN boosted vaccine-induced antibody production after immunization by the intranasal or the intraperitoneal route, whereas type III IFN exhibited its adjuvant activity only when the vaccine was delivered by the mucosal route. Our findings demonstrate that type I and type III IFNs trigger distinct pathways to enhance the efficacy of vaccines. This knowledge might be used to design more efficient vaccines against infectious diseases.
Collapse
|
149
|
Liu D, Zheng H, Li Y, Zhou P, Jin H, Luo R. Molecular cloning and functional characterization of duck Janus kinase 1. Mol Immunol 2019; 117:29-36. [PMID: 31733446 DOI: 10.1016/j.molimm.2019.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/06/2019] [Accepted: 10/29/2019] [Indexed: 11/30/2022]
Abstract
Janus kinase 1 (JAK1) is a member of JAK family of non-receptor protein tyrosine kinases that plays critical roles in transducing cytokine signals via JAK-signal transducer and activator of transcription (STAT) signaling pathway. The importance of JAK1 in innate immunity has been well-studied in mammals and fish, yet in avian remains largely unknown. Here, we cloned the full-length of the duck JAK1 (duJAK1) gene for the first time. DuJAK1 encoded a protein of 1152 amino acids and possessed high amino acid identity with goose and budgerigar JAK1s. The duJAK1 was expressed in all detected tissues, especially high in the thymus and bursa of Fabricius. Overexpression of duJAK1 significantly activated ISRE promoter activity and induced duck viperin, 2', 5'-OAS, MX, PKR and ZAP expression. Knockdown of duJAK1 by small interfering RNA significantly inhibited duck Tembusu virus (DTMUV)-, duck Enteritis virus (DEV)-, poly (I:C)-, poly (dA:dT)- or Sendai virus (SeV)-induced ISRE promoter activation. Furthermore, duJAK1 exhibited antiviral activity against DTMUV infection. These results will help us understand the function of JAK family proteins in duck antiviral immunity.
Collapse
Affiliation(s)
- Dejian Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Huijun Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Yaqian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Peng Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China.
| |
Collapse
|
150
|
Domeier PP, Chodisetti SB, Schell SL, Kawasawa YI, Fasnacht MJ, Soni C, Rahman ZSM. B-Cell-Intrinsic Type 1 Interferon Signaling Is Crucial for Loss of Tolerance and the Development of Autoreactive B Cells. Cell Rep 2019; 24:406-418. [PMID: 29996101 PMCID: PMC6089613 DOI: 10.1016/j.celrep.2018.06.046] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/09/2018] [Accepted: 06/11/2018] [Indexed: 01/03/2023] Open
Abstract
Type 1 interferon (T1IFN) signaling promotes inflammation and lupus pathology, but its role in autoreactive B cell development in the antibody-forming cell (AFC) and germinal center (GC) pathways is unclear. Using a lupus model that allows for focused study of the AFC and GC responses, we show that T1IFN signaling is crucial for autoreactive B cell development in the AFC and GC pathways. Through bone marrow chimeras, DNA-reactive B cell transfer, and GC-specific Cre mice, we confirm that IFNαR signaling in B cells promotes autoreactive B cell development into both pathways. Transcriptomic analysis reveals gene expression alterations in multiple signaling pathways in non-GC and GC B cells in the absence of IFNαR. Finally, we find that T1IFN signaling promotes autoreactive B cell development in the AFC and GC pathways by regulating BCR signaling. These data suggest value for anti-IFNαR therapy in individuals with elevated T1IFN activity before clinical disease onset. The B-cell-intrinsic mechanisms of type 1 interferon (T1IFN) signaling in regulating B cell tolerance is unclear. Domeier et al. show that T1IFN signaling in B cells causes loss of B cell tolerance, promoting autoreactive B cell development into the antibody-forming cell and germinal center pathways by regulating BCR signaling.
Collapse
Affiliation(s)
- Phillip P Domeier
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Sathi Babu Chodisetti
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Stephanie L Schell
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Yuka Imamura Kawasawa
- Departments of Pharmacology and Biochemistry and Molecular Biology, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Melinda J Fasnacht
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Chetna Soni
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA.
| |
Collapse
|