101
|
Grotz AK, Abaitua F, Navarro-Guerrero E, Hastoy B, Ebner D, Gloyn AL. A CRISPR/Cas9 genome editing pipeline in the EndoC-βH1 cell line to study genes implicated in beta cell function. Wellcome Open Res 2019; 4:150. [PMID: 31976379 PMCID: PMC6961417 DOI: 10.12688/wellcomeopenres.15447.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2019] [Indexed: 12/30/2022] Open
Abstract
Type 2 diabetes (T2D) is a global pandemic with a strong genetic component, but most causal genes influencing the disease risk remain unknown. It is clear, however, that the pancreatic beta cell is central to T2D pathogenesis. In vitro gene-knockout (KO) models to study T2D risk genes have so far focused on rodent beta cells. However, there are important structural and functional differences between rodent and human beta cell lines. With that in mind, we have developed a robust pipeline to create a stable CRISPR/Cas9 KO in an authentic human beta cell line (EndoC-βH1). The KO pipeline consists of a dual lentiviral sgRNA strategy and we targeted three genes ( INS, IDE, PAM) as a proof of concept. We achieved a significant reduction in mRNA levels and complete protein depletion of all target genes. Using this dual sgRNA strategy, up to 94 kb DNA were cut out of the target genes and the editing efficiency of each sgRNA exceeded >87.5%. Sequencing of off-targets showed no unspecific editing. Most importantly, the pipeline did not affect the glucose-responsive insulin secretion of the cells. Interestingly, comparison of KO cell lines for NEUROD1 and SLC30A8 with siRNA-mediated knockdown (KD) approaches demonstrate phenotypic differences. NEUROD1-KO cells were not viable and displayed elevated markers for ER stress and apoptosis. NEUROD1-KD, however, only had a modest elevation, by 34%, in the pro-apoptotic transcription factor CHOP and a gene expression profile indicative of chronic ER stress without evidence of elevated cell death. On the other hand, SLC30A8-KO cells demonstrated no reduction in K ATP channel gene expression in contrast to siRNA silencing. Overall, this strategy to efficiently create stable KO in the human beta cell line EndoC-βH1 will allow for a better understanding of genes involved in beta cell dysfunction, their underlying functional mechanisms and T2D pathogenesis.
Collapse
Affiliation(s)
- Antje K. Grotz
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, OX3 7LE, UK
| | - Fernando Abaitua
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | | | - Benoit Hastoy
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, OX3 7LE, UK
| | - Daniel Ebner
- Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ, UK
| | - Anna L. Gloyn
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, OX3 7LE, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, OX3 7LE, UK
| |
Collapse
|
102
|
Hashimoto T, Mogami H, Tsuriya D, Morita H, Sasaki S, Kumada T, Suzuki Y, Urano T, Oki Y, Suda T. G-protein-coupled receptor 40 agonist GW9508 potentiates glucose-stimulated insulin secretion through activation of protein kinase Cα and ε in INS-1 cells. PLoS One 2019; 14:e0222179. [PMID: 31498851 PMCID: PMC6733457 DOI: 10.1371/journal.pone.0222179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/23/2019] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The mechanism by which G-protein-coupled receptor 40 (GPR40) signaling amplifies glucose-stimulated insulin secretion through activation of protein kinase C (PKC) is unknown. We examined whether a GPR40 agonist, GW9508, could stimulate conventional and novel isoforms of PKC at two glucose concentrations (3 mM and 20 mM) in INS-1D cells. METHODS Using epifluorescence microscopy, we monitored relative changes in the cytosolic fluorescence intensity of Fura2 as a marker of change in intracellular Ca2+ ([Ca2+]i) and relative increases in green fluorescent protein (GFP)-tagged myristoylated alanine-rich C kinase substrate (MARCKS-GFP) as a marker of PKC activation in response to GW9508 at 3 mM and 20 mM glucose. To assess the activation of the two PKC isoforms, relative increases in membrane fluorescence intensity of PKCα-GFP and PKCε-GFP were measured by total internal reflection fluorescence microscopy. Specific inhibitors of each PKC isotype were constructed and synthesized as peptide fusions with the third α-helix of the homeodomain of Antennapedia. RESULTS At 3 mM glucose, GW9508 induced sustained MARCKS-GFP translocation to the cytosol, irrespective of changes in [Ca2+]i. At 20 mM glucose, GW9508 induced sustained MARCKS-GFP translocation but also transient translocation that followed sharp increases in [Ca2+]i. Although PKCα translocation was rarely observed, PKCε translocation to the plasma membrane was sustained by GW9508 at 3 mM glucose. At 20 mM glucose, GW9508 induced transient translocation of PKCα and sustained translocation as well as transient translocation of PKCε. While the inhibitors (75 μM) of each PKC isotype reduced GW9508-potentiated, glucose-stimulated insulin secretion in INS-1D cells, the PKCε inhibitor had a more potent effect. CONCLUSION GW9508 activated PKCε but not PKCα at a substimulatory concentration of glucose. Both PKC isotypes were activated at a stimulatory concentration of glucose and contributed to glucose-stimulated insulin secretion in insulin-producing cells.
Collapse
Affiliation(s)
- Takuya Hashimoto
- 2nd Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
- * E-mail:
| | - Hideo Mogami
- Department of Health and Nutrition, Tokoha University, Shizuoka, Japan
| | - Daisuke Tsuriya
- 2nd Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Hiroshi Morita
- 2nd Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Shigekazu Sasaki
- 2nd Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tatsuro Kumada
- Department of Occupational Therapy, Tokoha University, Shizuoka, Japan
| | - Yuko Suzuki
- Department of Medical Physiology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tetsumei Urano
- Department of Medical Physiology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Yutaka Oki
- 2nd Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
- Department of Family and Community Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Takafumi Suda
- 2nd Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| |
Collapse
|
103
|
Lankatillake C, Huynh T, Dias DA. Understanding glycaemic control and current approaches for screening antidiabetic natural products from evidence-based medicinal plants. PLANT METHODS 2019; 15:105. [PMID: 31516543 PMCID: PMC6731622 DOI: 10.1186/s13007-019-0487-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/20/2019] [Indexed: 05/15/2023]
Abstract
Type 2 Diabetes Mellitus has reached epidemic proportions as a result of over-nutrition and increasingly sedentary lifestyles. Current therapies, although effective, are not without limitations. These limitations, the alarming increase in the prevalence of diabetes, and the soaring cost of managing diabetes and its complications underscores an urgent need for safer, more efficient and affordable alternative treatments. Over 1200 plant species are reported in ethnomedicine for treating diabetes and these represents an important and promising source for the identification of novel antidiabetic compounds. Evaluating medicinal plants for desirable bioactivity goes hand-in-hand with methods in analytical biochemistry for separating and identifying lead compounds. This review aims to provide a comprehensive summary of current methods used in antidiabetic plant research to form a useful resource for researchers beginning in the field. The review summarises the current understanding of blood glucose regulation and the general mechanisms of action of current antidiabetic medications, and combines knowledge on common experimental approaches for screening plant extracts for antidiabetic activity and currently available analytical methods and technologies for the separation and identification of bioactive natural products. Common in vivo animal models, in vitro models, in silico methods and biochemical assays used for testing the antidiabetic effects of plants are discussed with a particular emphasis on in vitro methods such as cell-based bioassays for screening insulin secretagogues and insulinomimetics. Enzyme inhibition assays and molecular docking are also highlighted. The role of metabolomics, metabolite profiling, and dereplication of data for the high-throughput discovery of novel antidiabetic agents is reviewed. Finally, this review also summarises sample preparation techniques such as liquid-liquid extraction, solid phase extraction, and supercritical fluid extraction, and the critical function of nuclear magnetic resonance and high resolution liquid chromatography-mass spectrometry for the dereplication, putative identification and structure elucidation of natural compounds from evidence-based medicinal plants.
Collapse
Affiliation(s)
- Chintha Lankatillake
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083 Australia
| | - Tien Huynh
- School of Science, RMIT University, Bundoora, VIC 3083 Australia
| | - Daniel A. Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, Bundoora, 3083 Australia
| |
Collapse
|
104
|
Scharfmann R, Staels W, Albagli O. The supply chain of human pancreatic β cell lines. J Clin Invest 2019; 129:3511-3520. [PMID: 31478912 PMCID: PMC6715382 DOI: 10.1172/jci129484] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Patients with type 1 or type 2 diabetes have an insufficiency in their functional β cell mass. To advance diabetes treatment and to work toward a cure, a better understanding of how to protect the pancreatic β cells against autoimmune or metabolic assaults (e.g., obesity, gestation) will be required. Over the past decades, β cell protection has been extensively investigated in rodents both in vivo and in vitro using isolated islets or rodent β cell lines. Transferring these rodent data to humans has long been challenging, at least partly for technical reasons: primary human islet preparations were scarce and functional human β cell lines were lacking. In 2011, we described a robust protocol of targeted oncogenesis in human fetal pancreas and produced the first functional human β cell line, and in subsequent years additional lines with specific traits. These cell lines are currently used by more than 150 academic and industrial laboratories worldwide. In this Review, we first explain how we developed the human β cell lines and why we think we succeeded where others, despite major efforts, did not. Next, we discuss the use of such functional human β cell lines and share some perspectives on their use to advance diabetes research.
Collapse
Affiliation(s)
- Raphael Scharfmann
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
| | - Willem Staels
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Brussels, Belgium
| | - Olivier Albagli
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
| |
Collapse
|
105
|
Van de Velde S, Wiater E, Tran M, Hwang Y, Cole PA, Montminy M. CREB Promotes Beta Cell Gene Expression by Targeting Its Coactivators to Tissue-Specific Enhancers. Mol Cell Biol 2019; 39:e00200-19. [PMID: 31182641 PMCID: PMC6692124 DOI: 10.1128/mcb.00200-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/22/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022] Open
Abstract
CREB mediates effects of cyclic AMP on cellular gene expression. Ubiquitous CREB target genes are induced following recruitment of CREB and its coactivators to promoter proximal binding sites. We found that CREB stimulates the expression of pancreatic beta cell-specific genes by targeting CBP/p300 to promoter-distal enhancer regions. Subsequent increases in histone acetylation facilitate recruitment of the coactivators CRTC2 and BRD4, leading to release of RNA polymerase II over the target gene body. Indeed, CREB-induced hyperacetylation of chromatin over superenhancers promoted beta cell-restricted gene expression, which is sensitive to inhibitors of CBP/p300 and BRD4 activity. Neurod1 appears critical in establishing nucleosome-free regions for recruitment of CREB to beta cell-specific enhancers. Deletion of a CREB-Neurod1-bound enhancer within the Lrrc10b-Syt7 superenhancer disrupted the expression of both genes and decreased beta cell function. Our results demonstrate how cross talk between signal-dependent and lineage-determining factors promotes the expression of cell-type-specific gene programs in response to extracellular cues.
Collapse
Affiliation(s)
- Sam Van de Velde
- Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Ezra Wiater
- Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Melissa Tran
- Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Yousang Hwang
- Department of Pharmacology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Philip A Cole
- Department of Medicine, Department of Biology, Chemistry & Molecular Pharmacology, Harvard Medical School, Division of Genetics, Boston, Massachusetts, USA
| | - Marc Montminy
- Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, California, USA
- The Salk Institute for Biological Studies, Peptide Biology Laboratories, La Jolla, California, USA
| |
Collapse
|
106
|
Pratt EPS, Harvey KE, Salyer AE, Hockerman GH. Regulation of cAMP accumulation and activity by distinct phosphodiesterase subtypes in INS-1 cells and human pancreatic β-cells. PLoS One 2019; 14:e0215188. [PMID: 31442224 PMCID: PMC6707593 DOI: 10.1371/journal.pone.0215188] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/11/2019] [Indexed: 01/09/2023] Open
Abstract
Pancreatic β-cells express multiple phosphodiesterase (PDE) subtypes, but the specific roles for each in β-cell function, particularly in humans, is not clear. We evaluated the cellular role of PDE1, PDE3, and PDE4 activity in the rat insulinoma cell line INS-1 and in primary human β-cells using subtype-selective PDE inhibitors. Using a genetically encoded, FRET-based cAMP sensor, we found that the PDE1 inhibitor 8MM-IBMX, elevated cAMP levels in the absence of glucose to a greater extent than either the PDE3 inhibitor cilostamide or the PDE4 inhibitor rolipram. In 18 mM glucose, PDE1 inhibition elevated cAMP levels to a greater extent than PDE3 inhibition in INS-1 cells, while PDE4 inhibition was without effect. Inhibition of PDE1 or PDE4, but not PDE3, potentiated glucose-stimulated insulin secretion in INS-1 cells. PDE1 inhibition, but not PDE3 or PDE4 inhibition, reduced palmitate-induced caspase-3/7 activation, and enhanced CREB phosphorylation in INS-1 cells. In human β-cells, only PDE3 or PDE4 inhibition increased cAMP levels in 1.7 mM glucose, but PDE1, PDE3, or PDE4 inhibition potentiated cAMP levels in 16.7 mM glucose. Inhibition of PDE1 or PDE4 increased cAMP levels to a greater extent in 16.7 mM glucose than in 1.7 mM glucose in human β-cells. In contrast, elevation of cAMP levels by PDE3 inhibition was not different at these glucose concentrations. PDE1 inhibition also potentiated insulin secretion from human islets, suggesting that the role of PDE1 may be conserved between INS-1 cells and human pancreatic β-cells. Our results suggest that inhibition of PDE1 may be a useful strategy to potentiate glucose-stimulated insulin secretion, and to protect β-cells from the toxic effects of excess fatty acids.
Collapse
Affiliation(s)
- Evan P. S. Pratt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States of America
- Purdue University Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, United States of America
| | - Kyle E. Harvey
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States of America
| | - Amy E. Salyer
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States of America
| | - Gregory H. Hockerman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States of America
- * E-mail:
| |
Collapse
|
107
|
Cancer Cell Lines Are Useful Model Systems for Medical Research. Cancers (Basel) 2019; 11:cancers11081098. [PMID: 31374935 PMCID: PMC6721418 DOI: 10.3390/cancers11081098] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/17/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022] Open
Abstract
Cell lines are in vitro model systems that are widely used in different fields of medical research, especially basic cancer research and drug discovery. Their usefulness is primarily linked to their ability to provide an indefinite source of biological material for experimental purposes. Under the right conditions and with appropriate controls, authenticated cancer cell lines retain most of the genetic properties of the cancer of origin. During the last few years, comparing genomic data of most cancer cell lines has corroborated this statement and those that were observed studying the tumoral tissue equivalents included in the The Cancer Genome Atlas (TCGA) database. We are at the disposal of comprehensive open access cell line datasets describing their molecular and cellular alterations at an unprecedented level of accuracy. This aspect, in association with the possibility of setting up accurate culture conditions that mimic the in vivo microenvironment (e.g., three-dimensional (3D) coculture), has strengthened the importance of cancer cell lines for continuing to sustain medical research fields. However, it is important to consider that the appropriate use of cell lines needs to follow established guidelines for guaranteed data reproducibility and quality, and to prevent the occurrence of detrimental events (i.e., those that are linked to cross-contamination and mycoplasma contamination).
Collapse
|
108
|
Zhang Q, Pan Y, Zeng B, Zheng X, Wang H, Shen X, Li H, Jiang Q, Zhao J, Meng ZX, Li P, Chen Z, Wei H, Liu Z. Intestinal lysozyme liberates Nod1 ligands from microbes to direct insulin trafficking in pancreatic beta cells. Cell Res 2019; 29:516-532. [PMID: 31201384 PMCID: PMC6796897 DOI: 10.1038/s41422-019-0190-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023] Open
Abstract
Long-range communication between intestinal symbiotic bacteria and extra-intestinal organs can occur through circulating bacterial signal molecules, through neural circuits, or through cytokines or hormones from host cells. Here we report that Nod1 ligands derived from intestinal bacteria act as signal molecules and directly modulate insulin trafficking in pancreatic beta cells. The cytosolic peptidoglycan receptor Nod1 and its downstream adapter Rip2 are required for insulin trafficking in beta cells in a cell-autonomous manner. Mechanistically, upon recognizing cognate ligands, Nod1 and Rip2 localize to insulin vesicles, recruiting Rab1a to direct insulin trafficking through the cytoplasm. Importantly, intestinal lysozyme liberates Nod1 ligands into the circulation, thus enabling long-range communication between intestinal microbes and islets. The intestine-islet crosstalk bridged by Nod1 ligands modulates host glucose tolerance. Our study defines a new type of inter-organ communication based on circulating bacterial signal molecules, which has broad implications for understanding the mutualistic relationship between microbes and host.
Collapse
Affiliation(s)
- Qin Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Pan
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Benhua Zeng
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, 400038, China
| | - Xiaojiao Zheng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haifang Wang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xueying Shen
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Li
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Jiang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jiaxu Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Rd, Shanghai, 200031, China.,Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yueyang Rd, Shanghai, 200031, China
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Pingping Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zhengjun Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Rd, Shanghai, 200031, China.,Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yueyang Rd, Shanghai, 200031, China.,ShanghaiTech Univ, Sch Life Sci & Technol, 100 Haike Rd, Shanghai, 201210, China
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Zhihua Liu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
109
|
Saponara S, Fusi F, Spiga O, Trezza A, Hopkins B, Brimble MA, Rennison D, Bova S. The Selective Rat Toxicant Norbormide Blocks K ATP Channels in Smooth Muscle Cells But Not in Insulin-Secreting Cells. Front Pharmacol 2019; 10:598. [PMID: 31191321 PMCID: PMC6540933 DOI: 10.3389/fphar.2019.00598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/09/2019] [Indexed: 12/02/2022] Open
Abstract
Norbormide is a toxicant selective for rats to which it induces a widespread vasoconstriction. In a recent paper, we hypothesized a role of ATP-sensitive potassium (KATP) channels in norbormide-induced vasoconstriction. The current study was undertaken to verify this hypothesis by comparing the effects of norbormide with those of glibenclamide, a known KATP channel blocker. The whole-cell patch-clamp method was used to record KATP currents in myocytes freshly isolated from the rat and mouse caudal artery and from the rat gastric fundus, as well as in insulin-secreting pancreatic beta cells (INS-1 cells). Smooth muscle contractile function was assessed on either rat caudal artery rings or gastric fundus strips. Molecular modeling and docking simulation to KATP channel proteins were investigated in silico. Both norbormide (a racemic mixture of endo and exo isomers) and glibenclamide inhibited KATP currents in rat and mouse caudal artery myocytes, as well as in gastric fundus smooth muscle cells. In rat INS-1 cells, only glibenclamide blocked KATP channels, whereas norbormide was ineffective. The inhibitory effect of norbormide in rat caudal artery myocytes was not stereo-specific as both the endo isomers (active as vasoconstrictor) and the exo isomers (inactive as vasoconstrictor) had similar inhibitory activity. In rat caudal artery rings, norbormide-induced contraction was partially reverted by the KATP channel opener pinacidil. Computational approaches indicated the SUR subunit of KATP channels as the binding site for norbormide. KATP channel inhibition may play a role in norbormide-induced vasoconstriction, but does not explain the species selectivity, tissue selectivity, and stereoselectivity of its constricting activity. The lack of effect in INS-1 cells suggests a potential selectivity of norbormide for smooth muscle KATP channels.
Collapse
Affiliation(s)
- Simona Saponara
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Fabio Fusi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Alfonso Trezza
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Brian Hopkins
- Landcare Research, Lincoln, New Zealand.,School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - David Rennison
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Sergio Bova
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
110
|
The zinc transporter Zip14 (SLC39a14) affects Beta-cell Function: Proteomics, Gene expression, and Insulin secretion studies in INS-1E cells. Sci Rep 2019; 9:8589. [PMID: 31197210 PMCID: PMC6565745 DOI: 10.1038/s41598-019-44954-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022] Open
Abstract
Insulin secretion from pancreatic beta-cells is dependent on zinc ions as essential components of insulin crystals, zinc transporters are thus involved in the insulin secretory process. Zip14 (SLC39a14) is a zinc importing protein that has an important role in glucose homeostasis. Zip14 knockout mice display hyperinsulinemia and impaired insulin secretion in high glucose conditions. Endocrine roles for Zip14 have been established in adipocytes and hepatocytes, but not yet confirmed in beta-cells. In this study, we investigated the role of Zip14 in the INS-1E beta-cell line. Zip14 mRNA was upregulated during high glucose stimulation and Zip14 silencing led to increased intracellular insulin content. Large-scale proteomics showed that Zip14 silencing down-regulated ribosomal mitochondrial proteins, many metal-binding proteins, and others involved in oxidative phosphorylation and insulin secretion. Furthermore, proliferation marker Mki67 was down-regulated in Zip14 siRNA-treated cells. In conclusion, Zip14 gene expression is glucose sensitive and silencing of Zip14 directly affects insulin processing in INS-1E beta-cells. A link between Zip14 and ribosomal mitochondrial proteins suggests altered mitochondrial RNA translation, which could disturb mitochondrial function and thereby insulin secretion. This highlights a role for Zip14 in beta-cell functioning and suggests Zip14 as a future pharmacological target in the treatment of beta-cell dysfunction.
Collapse
|
111
|
Song X, Liang G, Shi M, Zhou L, Wang F, Zhang L, Huang F, Jiang G. Acute exposure to 3‑deoxyglucosone at high glucose levels impairs insulin secretion from β‑cells by downregulating the sweet taste receptor signaling pathway. Mol Med Rep 2019; 19:5015-5022. [PMID: 31059088 DOI: 10.3892/mmr.2019.10163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 04/10/2019] [Indexed: 11/06/2022] Open
Abstract
Sweet taste receptors (STRs) expressed on β‑cells stimulate insulin secretion in response to an increase in the circulating level of glucose, maintaining glucose homeostasis. 3‑Deoxyglucosone (3DG), a highly reactive α‑dicarbonyl compound, has been previously described as an independent factor associate with the development of prediabetes. In our previous study, pathological plasma levels of 3DG were induced in normal rats with a single intravenous injection of 50 mg/kg 3DG, and an acute rise in circulating 3DG induced glucose intolerance by impairing the function of pancreatic β‑cells. The present study aimed to investigate whether the deleterious effects of pathological plasma levels of 3DG on β‑cell function and insulin secretion were associated with STRs. INS‑1 cells, an in vitro model to study rat β‑cells, were treated with various concentrations of 3DG (1.85, 30.84 and 61.68 mM) or lactisole (5 mM). Pancreatic islets were collected from rats 2 h after a single intravenous injection of 50 mg/kg 3DG + 0.5 g/kg glucose. The insulin concentration was measured by ELISA. The protein expression levels of components of the STR signaling pathways were determined by western blot analysis. Treatment with 3DG and 25.5 mM glucose for 1 h significantly reduced insulin secretion by INS‑1 cells, which was consistent with the phenotype observed in INS‑1 cells treated with the STR inhibitor lactisole. Accordingly, islets isolated from rats treated with 3DG exhibited a significant reduction in insulin secretion following treatment with 25.5 mM glucose. Furthermore, acute exposure of INS‑1 cells to 3DG following treatment with 25.5 mM glucose for 1 h significantly reduced the protein expression level of the STR subunit taste 1 receptor member 3 and its downstream factors, transient receptor potential cation channel subfamily M member 5 and glucose transporter 2. Notably, islet tissues collected from rats treated with 3DG exhibited a similar downregulation of these factors. The present results suggested that acute exposure to pathologically relevant levels of 3DG in presence of high physiological levels of glucose decreased insulin secretion from β‑cells by, at least in part, downregulating the STR signaling pathway.
Collapse
Affiliation(s)
- Xiudao Song
- Basic Research Laboratory, Suzhou Academy of Wumen Chinese Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215009, P.R. China
| | - Guoqiang Liang
- Basic Research Laboratory, Suzhou Academy of Wumen Chinese Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215009, P.R. China
| | - Min Shi
- Basic Research Laboratory, Suzhou Academy of Wumen Chinese Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215009, P.R. China
| | - Liang Zhou
- Basic Research Laboratory, Suzhou Academy of Wumen Chinese Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215009, P.R. China
| | - Fei Wang
- Basic Research Laboratory, Suzhou Academy of Wumen Chinese Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215009, P.R. China
| | - Lurong Zhang
- Basic Research Laboratory, Suzhou Academy of Wumen Chinese Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215009, P.R. China
| | - Fei Huang
- Basic Research Laboratory, Suzhou Academy of Wumen Chinese Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215009, P.R. China
| | - Guorong Jiang
- Basic Research Laboratory, Suzhou Academy of Wumen Chinese Medicine, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215009, P.R. China
| |
Collapse
|
112
|
Ma Z, Ketelhuth DFJ, Wirström T, Ohki T, Forteza MJ, Wang H, Grill V, Wollheim CB, Björklund A. Increased uptake of oxLDL does not exert lipotoxic effects in insulin-secreting cells. J Mol Endocrinol 2019; 62:159-168. [PMID: 30917339 DOI: 10.1530/jme-18-0146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/27/2019] [Indexed: 01/13/2023]
Abstract
Modified lipoproteins can negatively affect beta cell function and survival. However, the mechanisms behind interactions of modified lipoproteins with beta cells - and in particular, relationships to increased uptake - are only partly clarified. By over-expressing the scavenger receptor CD36 (Tet-on), we increased the uptake of fluorescent low-density modified lipoprotein (oxLDL) into insulin-secreting INS-1 cells. The magnitude of uptake followed the degree of CD36 over-expression. CD36 over-expression increased concomitant efflux of 3H-cholesterol in proportion to the cellular contents of 3H-cholesterol. Exposure to concentrations of oxLDL from 20 to 100 µg/mL dose-dependently increased toxicity (evaluated by MTT) as well as apoptosis. However, the increased uptake of oxLDL due to CD36 over-expression did not exert additive effects on oxLDL toxicity - neither on viability, nor on glucose-induced insulin release and cellular content. Reciprocally, blocking CD36 receptors by Sulfo-N-Succinimidyl Oleate decreased the uptake of oxLDL but did not diminish the toxicity. Pancreatic islets of CD36-/- mice displayed reduced uptake of 3H-cholesterol-labeled oxLDL vs wild type but similar toxicity to oxLDL. OxLDL was found to increase the expression of CD36 in islets and INS-1 cells. In summary, given the experimental conditions, our results indicate that (1) increased uptake of oxLDL is not responsible for toxicity of oxLDL, (2) increased efflux of the cholesterol moiety of oxLDL counterbalances, at least in part, increased uptake and (3) oxLDL participates in the regulation of CD36 in pancreatic islets and in INS-1 cells.
Collapse
Affiliation(s)
- Z Ma
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - D F J Ketelhuth
- Department of Medicine, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - T Wirström
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - T Ohki
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - M J Forteza
- Department of Medicine, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - H Wang
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - V Grill
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Institute of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - C B Wollheim
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - A Björklund
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
113
|
Ho HJ, Shirakawa H, Hirahara K, Sone H, Kamiyama S, Komai M. Menaquinone-4 Amplified Glucose-Stimulated Insulin Secretion in Isolated Mouse Pancreatic Islets and INS-1 Rat Insulinoma Cells. Int J Mol Sci 2019; 20:ijms20081995. [PMID: 31018587 PMCID: PMC6515216 DOI: 10.3390/ijms20081995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 12/21/2022] Open
Abstract
Vitamin K2 is indispensable for blood coagulation and bone metabolism. Menaquinone-4 (MK-4) is the predominant homolog of vitamin K2, which is present in large amounts in the pancreas, although its function is unclear. Meanwhile, β-cell dysfunction following insulin secretion has been found to decrease in patients with type 2 diabetes mellitus. To elucidate the physiological function of MK-4 in pancreatic β-cells, we studied the effects of MK-4 treatment on isolated mouse pancreatic islets and rat INS-1 cells. Glucose-stimulated insulin secretion significantly increased in isolated islets and INS-1 cells treated with MK-4. It was further clarified that MK-4 enhanced cAMP levels, accompanied by the regulation of the exchange protein directly activated by the cAMP 2 (Epac2)-dependent pathway but not the protein kinase A (PKA)-dependent pathway. A novel function of MK-4 on glucose-stimulated insulin secretion was found, suggesting that MK-4 might act as a potent amplifier of the incretin effect. This study therefore presents a novel potential therapeutic approach for impaired insulinotropic effects.
Collapse
Affiliation(s)
- Hsin-Jung Ho
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan.
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan.
- International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan.
| | - Keisukei Hirahara
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan.
| | - Hideyuki Sone
- Department of Health and Nutrition, Faculty of Human Life Studies, University of Niigata Prefecture, Niigata 950-8680, Japan.
| | - Shin Kamiyama
- Department of Health and Nutrition, Faculty of Human Life Studies, University of Niigata Prefecture, Niigata 950-8680, Japan.
| | - Michio Komai
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan.
| |
Collapse
|
114
|
Gerst F, Singer C, Noack K, Graf D, Kaiser G, Panse M, Kovarova M, Schleicher E, Häring HU, Drews G, Ullrich S. Glucose Responsiveness of β-Cells Depends on Fatty Acids. Exp Clin Endocrinol Diabetes 2019; 128:644-653. [PMID: 30986881 DOI: 10.1055/a-0884-2919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Glucose-stimulated insulin secretion (GSIS) is the gold standard for β-cell function. Both experimental and clinical diabetology, i. e., preceding transplantation of isolated human islets, depend on functional testing. However, multiple factors influence GSIS rendering the comparison of different in vitro tests of glucose responsiveness difficult. This study examined the influence of bovine serum albumin (BSA)-coupled fatty acids on GSIS. Isolated islet preparations of human donors and of 12-months old mice displayed impaired GSIS in the presence of 0.5% FFA-free BSA compared to 0.5% BSA (fraction V, not deprived from fatty acids). In aged INS-1E cells, i. e. at a high passage number, GSIS became highly sensitive to FFA-free BSA. Readdition of 30 µM palmitate or 30 µM oleate to FFA-free BSA did not rescue GSIS, while the addition of 100 µM palmitate and the raise of extracellular Ca2+from 1.3 to 2.6 mM improved glucose responsiveness. A high concentration of palmitate (600 µM), which fully activates FFA1, largely restored insulin secretion. The FFA1-agonist TUG-469 also increased insulin secretion but to a lesser extent than palmitate. Glucose- and TUG-induced Ca2+oscillations were impaired in glucose-unresponsive, i. e., aged INS-1E cells. These results suggest that fatty acid deprivation (FFA-free BSA) impairs GSIS mainly through an effect on Ca2+sensitivity.
Collapse
Affiliation(s)
- Felicia Gerst
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard-Karls-University of Tuebingen, Tübingen, Germany.,Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.)
| | - Christine Singer
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard-Karls-University of Tuebingen, Tübingen, Germany
| | - Katja Noack
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Dunia Graf
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Gabriele Kaiser
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard-Karls-University of Tuebingen, Tübingen, Germany.,Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.)
| | - Madhura Panse
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tübingen, Germany
| | - Marketa Kovarova
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tübingen, Germany
| | - Erwin Schleicher
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard-Karls-University of Tuebingen, Tübingen, Germany.,Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.)
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard-Karls-University of Tuebingen, Tübingen, Germany.,Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.)
| | - Gisela Drews
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Susanne Ullrich
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard-Karls-University of Tuebingen, Tübingen, Germany.,Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.)
| |
Collapse
|
115
|
Vig S, Buitinga M, Rondas D, Crèvecoeur I, van Zandvoort M, Waelkens E, Eizirik DL, Gysemans C, Baatsen P, Mathieu C, Overbergh L. Cytokine-induced translocation of GRP78 to the plasma membrane triggers a pro-apoptotic feedback loop in pancreatic beta cells. Cell Death Dis 2019; 10:309. [PMID: 30952835 PMCID: PMC6450900 DOI: 10.1038/s41419-019-1518-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 11/16/2022]
Abstract
The 78-kDa glucose-regulated protein (GRP78) is an ubiquitously expressed endoplasmic reticulum chaperone, with a central role in maintaining protein homeostasis. Recently, an alternative role for GRP78 under stress conditions has been proposed, with stress-induced extracellular secretion and translocation of GRP78 to the cell surface where it acts as a multifunctional signaling receptor. Here we demonstrate translocation of GRP78 to the surface of human EndoC-βH1 cells and primary human islets upon cytokine exposure, in analogy to observations in rodent INS-1E and MIN6 beta cell lines. We show that GRP78 is shuttled via the anterograde secretory pathway, through the Golgi complex and secretory granules, and identify the DNAJ homolog subfamily C member 3 (DNAJC3) as a GRP78-interacting protein that facilitates its membrane translocation. Evaluation of downstream signaling pathways, using N- and C-terminal anti-GRP78 blocking antibodies, demonstrates that both GRP78 signaling domains initiate pro-apoptotic signaling cascades in beta cells. Extracellular GRP78 itself is identified as a ligand for cell surface GRP78 (sGRP78), increasing caspase 3/7 activity and cell death upon binding, which is accompanied by enhanced Chop and Bax mRNA expression. These results suggest that inflammatory cytokines induce a self-destructive pro-apoptotic feedback loop through the secretion and membrane translocation of GRP78. This proapoptotic function distinguishes the role of sGRP78 in beta cells from its reported anti-apoptotic and proliferative role in cancer cells, opening the road for the use of compounds that block sGRP78 as potential beta cell-preserving therapies in type 1 diabetes.
Collapse
Affiliation(s)
- Saurabh Vig
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Mijke Buitinga
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Dieter Rondas
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Inne Crèvecoeur
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Marc van Zandvoort
- Department of Molecular Cell Biology and School for Nutrition and Translational Research in Metabolism NUTRIM, Maastricht University, Maastricht, The Netherlands
| | - Etienne Waelkens
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven, Belgium.,SyBioMa, KU Leuven, Leuven, Belgium
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Universite Libre de Bruxelles, Brussels, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Pieter Baatsen
- Electron Microscopy Platform of VIB Bio Imaging Core at KU Leuven and VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lut Overbergh
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
116
|
Yousf S, Sardesai DM, Mathew AB, Khandelwal R, Acharya JD, Sharma S, Chugh J. Metabolic signatures suggest o-phosphocholine to UDP-N-acetylglucosamine ratio as a potential biomarker for high-glucose and/or palmitate exposure in pancreatic β-cells. Metabolomics 2019; 15:55. [PMID: 30927092 DOI: 10.1007/s11306-019-1516-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/19/2019] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Chronic exposure to high-glucose and free fatty acids (FFA) alone/or in combination; and the resulting gluco-, lipo- and glucolipo-toxic conditions, respectively, have been known to induce dysfunction and apoptosis of β-cells in Diabetes. The molecular mechanisms and the development of biomarkers that can be used to predict similarities and differences behind these conditions would help in easier and earlier diagnosis of Diabetes. OBJECTIVES This study aims to use metabolomics to gain insight into the mechanisms by which β-cells respond to excess-nutrient stress and identify associated biomarkers. METHODS INS-1E cells were cultured in high-glucose, palmitate alone/or in combination for 24 h to mimic gluco-, lipo- and glucolipo-toxic conditions, respectively. Biochemical and cellular experiments were performed to confirm the establishment of these conditions. To gain molecular insights, abundant metabolites were identified and quantified using 1H-NMR. RESULTS No loss of cellular viability was observed in high-glucose while exposure to FFA alone/in combination with high-glucose was associated with increased ROS levels, membrane damage, lipid accumulation, and DNA double-strand breaks. Forty-nine abundant metabolites were identified and quantified using 1H-NMR. Chemometric pair-wise analysis in glucotoxic and lipotoxic conditions, when compared with glucolipotoxic conditions, revealed partial overlap in the dysregulated metabolites; however, the dysregulation was more significant under glucolipotoxic conditions. CONCLUSION The current study compared gluco-, lipo- and glucolipotoxic conditions in parallel and elucidated differences in metabolic pathways that play major roles in Diabetes. o-phosphocholine and UDP-N-acetylglucosamine were identified as common dysregulated metabolites and their ratio was proposed as a potential biomarker for these conditions.
Collapse
Affiliation(s)
- Saleem Yousf
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Devika M Sardesai
- Department of Biotechnology, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, 411007, India
| | - Abraham B Mathew
- Department of Biotechnology, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, 411007, India
| | - Rashi Khandelwal
- Department of Biotechnology, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, 411007, India
| | - Jhankar D Acharya
- Department of Zoology, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, India
| | - Shilpy Sharma
- Department of Biotechnology, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, 411007, India.
| | - Jeetender Chugh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India.
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, India.
| |
Collapse
|
117
|
Abstract
Diabetes mellitus is a multifactorial disease affecting increasing numbers of patients worldwide. Progression to insulin-dependent diabetes mellitus is characterized by the loss or dysfunction of pancreatic β-cells, but the pathomechanisms underlying β-cell failure in type 1 diabetes mellitus and type 2 diabetes mellitus are still poorly defined. Regeneration of β-cell mass from residual islet cells or replacement by β-like cells derived from stem cells holds great promise to stop or reverse disease progression. However, the development of new treatment options is hampered by our limited understanding of human pancreas organogenesis due to the restricted access to primary tissues. Therefore, the challenge is to translate results obtained from preclinical model systems to humans, which requires comparative modelling of β-cell biology in health and disease. Here, we discuss diverse modelling systems across different species that provide spatial and temporal resolution of cellular and molecular mechanisms to understand the evolutionary conserved genotype-phenotype relationship and translate them to humans. In addition, we summarize the latest knowledge on organoids, stem cell differentiation platforms, primary micro-islets and pseudo-islets, bioengineering and microfluidic systems for studying human pancreas development and homeostasis ex vivo. These new modelling systems and platforms have opened novel avenues for exploring the developmental trajectory, physiology, biology and pathology of the human pancreas.
Collapse
Affiliation(s)
- Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Technical University of Munich, Medical Faculty, Munich, Germany.
| |
Collapse
|
118
|
Ferri G, Digiacomo L, Lavagnino Z, Occhipinti M, Bugliani M, Cappello V, Caracciolo G, Marchetti P, Piston DW, Cardarelli F. Insulin secretory granules labelled with phogrin-fluorescent proteins show alterations in size, mobility and responsiveness to glucose stimulation in living β-cells. Sci Rep 2019; 9:2890. [PMID: 30814595 PMCID: PMC6393586 DOI: 10.1038/s41598-019-39329-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/15/2019] [Indexed: 11/13/2022] Open
Abstract
The intracellular life of insulin secretory granules (ISGs) from biogenesis to secretion depends on their structural (e.g. size) and dynamic (e.g. diffusivity, mode of motion) properties. Thus, it would be useful to have rapid and robust measurements of such parameters in living β-cells. To provide such measurements, we have developed a fast spatiotemporal fluctuation spectroscopy. We calculate an imaging-derived Mean Squared Displacement (iMSD), which simultaneously provides the size, average diffusivity, and anomalous coefficient of ISGs, without the need to extract individual trajectories. Clustering of structural and dynamic quantities in a multidimensional parametric space defines the ISGs' properties for different conditions. First, we create a reference using INS-1E cells expressing proinsulin fused to a fluorescent protein (FP) under basal culture conditions and validate our analysis by testing well-established stimuli, such as glucose intake, cytoskeleton disruption, or cholesterol overload. After, we investigate the effect of FP-tagged ISG protein markers on the structural and dynamic properties of the granule. While iMSD analysis produces similar results for most of the lumenal markers, the transmembrane marker phogrin-FP shows a clearly altered result. Phogrin overexpression induces a substantial granule enlargement and higher mobility, together with a partial de-polymerization of the actin cytoskeleton, and reduced cell responsiveness to glucose stimulation. Our data suggest a more careful interpretation of many previous ISG-based reports in living β-cells. The presented data pave the way to high-throughput cell-based screening of ISG structure and dynamics under various physiological and pathological conditions.
Collapse
Affiliation(s)
- Gianmarco Ferri
- NEST - Scuola Normale Superiore, Istituto Nanoscienze - CNR (CNR-NANO), Pisa, Italy
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Luca Digiacomo
- Department of Molecular Medicine, "La Sapienza" University of Rome, Rome, Italy
| | - Zeno Lavagnino
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Margherita Occhipinti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | | | - Giulio Caracciolo
- Department of Molecular Medicine, "La Sapienza" University of Rome, Rome, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Francesco Cardarelli
- NEST - Scuola Normale Superiore, Istituto Nanoscienze - CNR (CNR-NANO), Pisa, Italy.
| |
Collapse
|
119
|
Horton TM, Allegretti PA, Lee S, Moeller HP, Smith M, Annes JP. Zinc-Chelating Small Molecules Preferentially Accumulate and Function within Pancreatic β Cells. Cell Chem Biol 2019; 26:213-222.e6. [PMID: 30527998 PMCID: PMC6386607 DOI: 10.1016/j.chembiol.2018.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/21/2018] [Accepted: 10/22/2018] [Indexed: 12/27/2022]
Abstract
Diabetes is a hyperglycemic condition characterized by pancreatic β-cell dysfunction and depletion. Whereas methods for monitoring β-cell function in vivo exist, methods to deliver therapeutics to β cells are lacking. We leveraged the rare ability of β cells to concentrate zinc to preferentially trap zinc-binding molecules within β cells, resulting in β-cell-targeted compound delivery. We determined that zinc-rich β cells and islets preferentially accumulated TSQ (6-methoxy-8-p-toluenesulfonamido-quinoline) in a zinc-dependent manner compared with exocrine pancreas. Next, we asked whether appending a zinc-chelating moiety onto a β-cell replication-inducing compound was sufficient to confer preferential β-cell accumulation and activity. Indeed, the hybrid compound preferentially accumulated within rodent and human islets in a zinc-dependent manner and increased the selectivity of replication-promoting activity toward β cells. These data resolve the fundamental question of whether intracellular accumulation of zinc-chelating compounds is influenced by zinc content. Furthermore, application of this principle yielded a proof-of-concept method for β-cell-targeted drug delivery and bioactivity.
Collapse
Affiliation(s)
- Timothy M Horton
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Chemistry, Engineering and Medicine for Human Health (ChEM-H) Research Institute, Stanford, CA 94305, USA
| | - Paul A Allegretti
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA; Chemistry, Engineering and Medicine for Human Health (ChEM-H) Research Institute, Stanford, CA 94305, USA
| | - Sooyeon Lee
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA
| | - Hannah P Moeller
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Mark Smith
- Chemistry, Engineering and Medicine for Human Health (ChEM-H) Research Institute, Stanford, CA 94305, USA; Medicinal Chemistry Knowledge Center, Stanford CHEM-H, Stanford University, Stanford, CA 94305, USA
| | - Justin P Annes
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA; Chemistry, Engineering and Medicine for Human Health (ChEM-H) Research Institute, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
120
|
Eeyarestatin Compounds Selectively Enhance Sec61-Mediated Ca 2+ Leakage from the Endoplasmic Reticulum. Cell Chem Biol 2019; 26:571-583.e6. [PMID: 30799222 PMCID: PMC6483976 DOI: 10.1016/j.chembiol.2019.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/06/2018] [Accepted: 01/24/2019] [Indexed: 01/01/2023]
Abstract
Eeyarestatin 1 (ES1) inhibits p97-dependent protein degradation, Sec61-dependent protein translocation into the endoplasmic reticulum (ER), and vesicular transport within the endomembrane system. Here, we show that ES1 impairs Ca2+ homeostasis by enhancing the Ca2+ leakage from mammalian ER. A comparison of various ES1 analogs suggested that the 5-nitrofuran (5-NF) ring of ES1 is crucial for this effect. Accordingly, the analog ES24, which conserves the 5-NF domain of ES1, selectively inhibited protein translocation into the ER, displayed the highest potency on ER Ca2+ leakage of ES1 analogs studied and induced Ca2+-dependent cell death. Using small interfering RNA-mediated knockdown of Sec61α, we identified Sec61 complexes as the targets that mediate the gain of Ca2+ leakage induced by ES1 and ES24. By interacting with the lateral gate of Sec61α, ES1 and ES24 likely capture Sec61 complexes in a Ca2+-permeable, open state, in which Sec61 complexes allow Ca2+ leakage but are translocation incompetent. ES1, ES2, and ES24 deplete Ca2+ in ER ESR35 and ES47 do not affect cellular Ca2+ homeostasis The most potent eeyarestatin, ES24, comprises only the 5-nitrofuran domain ES1 and ES24 target Sec61 complexes in ER
Collapse
|
121
|
Colli ML, Paula FM, Marselli L, Marchetti P, Roivainen M, Eizirik DL, Op de Beeck A. Coxsackievirus B Tailors the Unfolded Protein Response to Favour Viral Amplification in Pancreatic β Cells. J Innate Immun 2019; 11:375-390. [PMID: 30799417 DOI: 10.1159/000496034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by islet inflammation and progressive pancreatic β cell destruction. The disease is triggered by a combination of genetic and environmental factors, but the mechanisms leading to the triggering of early innate and late adaptive immunity and consequent progressive pancreatic β cell death remain unclear. The insulin-producing β cells are active secretory cells and are thus particularly sensitive to endoplasmic reticulum (ER) stress. ER stress plays an important role in the pathologic pathway leading to autoimmunity, islet inflammation, and β cell death. We show here that group B coxsackievirus (CVB) infection, a putative causative factor for T1D, induces a partial ER stress in rat and human β cells. The activation of the PERK/ATF4/CHOP branch is blunted while the IRE1α branch leads to increased spliced XBP1 expression and c-Jun N-terminal kinase (JNK) activation. Interestingly, JNK1 activation is essential for CVB amplification in both human and rat β cells. Furthermore, a chemically induced ER stress preceding viral infection increases viral replication, in a process dependent on IRE1α activation. Our findings show that CVB tailors the unfolded protein response in β cells to support their replication, preferentially triggering the pro-viral IRE1α/XBP1s/JNK1 pathway while blocking the pro-apoptotic PERK/ATF4/CHOP pathway.
Collapse
Affiliation(s)
- Maikel L Colli
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Flavia M Paula
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Merja Roivainen
- Viral Infections Unit, Department of Infectious Disease, National Institute for Health and Welfare, Helsinki, Finland
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Anne Op de Beeck
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium,
| |
Collapse
|
122
|
Klec C, Madreiter-Sokolowski CT, Stryeck S, Sachdev V, Duta-Mare M, Gottschalk B, Depaoli MR, Rost R, Hay J, Waldeck-Weiermair M, Kratky D, Madl T, Malli R, Graier WF. Glycogen Synthase Kinase 3 Beta Controls Presenilin-1-Mediated Endoplasmic Reticulum Ca²⁺ Leak Directed to Mitochondria in Pancreatic Islets and β-Cells. Cell Physiol Biochem 2019; 52:57-75. [PMID: 30790505 PMCID: PMC6459368 DOI: 10.33594/000000005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 01/15/2019] [Indexed: 01/09/2023] Open
Abstract
Background/Aims In pancreatic β-cells, the intracellular Ca2+ homeostasis is an essential regulator of the cells’ major functions. The endoplasmic reticulum (ER) as interactive intracellular Ca2+ store balances cellular Ca2+. In this study basal ER Ca2+ homeostasis was evaluated in order to reveal potential β-cell-specificity of ER Ca2+ handling and its consequences for mitochondrial Ca2+, ATP and respiration. Methods The two pancreatic cell lines INS-1 and MIN-6, freshly isolated pancreatic islets, and the two non-pancreatic cell lines HeLA and EA.hy926 were used. Cytosolic, ER and mitochondrial Ca2+ and ATP measurements were performed using single cell fluorescence microscopy and respective (genetically-encoded) sensors/dyes. Mitochondrial respiration was monitored by respirometry. GSK3β activity was measured with ELISA. Results An atypical ER Ca2+ leak was observed exclusively in pancreatic islets and β-cells. This continuous ER Ca2+ efflux is directed to mitochondria and increases basal respiration and organellar ATP levels, is established by GSK3β-mediated phosphorylation of presenilin-1, and is prevented by either knockdown of presenilin-1 or an inhibition/knockdown of GSK3β. Expression of a presenlin-1 mutant that mimics GSK3β-mediated phosphorylation established a β-cell-like ER Ca2+ leak in HeLa and EA.hy926 cells. The ER Ca2+ loss in β-cells was compensated at steady state by Ca2+ entry that is linked to the activity of TRPC3. Conclusion Pancreatic β-cells establish a cell-specific ER Ca2+ leak that is under the control of GSK3β and directed to mitochondria, thus, reflecting a cell-specific intracellular Ca2+ handling for basal mitochondrial activity.
Collapse
Affiliation(s)
- Christiane Klec
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria
| | - Corina T Madreiter-Sokolowski
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria
| | - Sarah Stryeck
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria
| | - Vinay Sachdev
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria.,Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Madalina Duta-Mare
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria
| | - Benjamin Gottschalk
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria
| | - Maria R Depaoli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria
| | - Rene Rost
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria
| | - Jesse Hay
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria.,University of Montana, Division of Biological Sciences, Center for Structural & Functional Neuroscience, Missoula, MT, USA
| | - Markus Waldeck-Weiermair
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria.,BioTechMed, Graz, Austria
| | - Tobias Madl
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria.,BioTechMed, Graz, Austria
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria.,BioTechMed, Graz, Austria
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria.,BioTechMed, Graz, Austria.,Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria,
| |
Collapse
|
123
|
Leslie KA, Russell MA, Taniguchi K, Richardson SJ, Morgan NG. The transcription factor STAT6 plays a critical role in promoting beta cell viability and is depleted in islets of individuals with type 1 diabetes. Diabetologia 2019; 62:87-98. [PMID: 30338340 PMCID: PMC6290857 DOI: 10.1007/s00125-018-4750-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/14/2018] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS In type 1 diabetes, selective beta cell loss occurs within the inflamed milieu of insulitic islets. This milieu is generated via the enhanced secretion of proinflammatory cytokines and by the loss of anti-inflammatory molecules such as IL-4 and IL-13. While the actions of proinflammatory cytokines have been well-studied in beta cells, the effects of their anti-inflammatory counterparts have received relatively little attention and we have addressed this. METHODS Clonal beta cells, isolated human islets and pancreas sections from control individuals and those with type 1 diabetes were employed. Gene expression was measured using targeted gene arrays and by quantitative RT-PCR. Protein expression was monitored in cell extracts by western blotting and in tissue sections by immunocytochemistry. Target proteins were knocked down selectively with interference RNA. RESULTS Cytoprotection achieved with IL-4 and IL-13 is mediated by the early activation of signal transducer and activator of transcription 6 (STAT6) in beta cells, leading to the upregulation of anti-apoptotic proteins, including myeloid leukaemia-1 (MCL-1) and B cell lymphoma-extra large (BCLXL). We also report the induction of signal regulatory protein-α (SIRPα), and find that knockdown of SIRPα is associated with reduced beta cell viability. These anti-apoptotic proteins and their attendant cytoprotective effects are lost following siRNA-mediated knockdown of STAT6 in beta cells. Importantly, analysis of human pancreas sections revealed that STAT6 is markedly depleted in the beta cells of individuals with type 1 diabetes, implying the loss of cytoprotective responses. CONCLUSIONS/INTERPRETATION Selective loss of STAT6 may contribute to beta cell demise during the progression of type 1 diabetes.
Collapse
Affiliation(s)
- Kaiyven A Leslie
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK
| | - Mark A Russell
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK.
| | - Kazuto Taniguchi
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK
| | - Noel G Morgan
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building (Level 4), Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
124
|
Bornstedt ME, Gjerlaugsen N, Pepaj M, Bredahl MKL, Thorsby PM. Vitamin D Increases Glucose Stimulated Insulin Secretion from Insulin Producing Beta Cells (INS1E). Int J Endocrinol Metab 2019; 17:e74255. [PMID: 30881469 PMCID: PMC6408731 DOI: 10.5812/ijem.74255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/25/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Vitamin D affects the pancreatic beta cell function and in vitro studies have shown that vitamin D may influence insulin secretion, apoptosis, and gene regulation. However, the outcomes have differed and there has been uncertainty regarding the effect of different vitamin D metabolites on insulin secretion. OBJECTIVES We hypothesized that vitamin D could increase insulin secretion in insulin producing beta cells and investigated the effect of 25(OH) vitamin D and 1,25(OH)2 vitamin D on insulin secretion. METHODS The study was conducted in INS1E cells, an established insulinoma cell line from rat. The cells were divided into three groups; a control group, a group with 1,25(OH)2 vitamin D enriched medium (10 nM), and a group with 25(OH) vitamin D (10 nM) supplemented medium. After 72 hours of treatment, the cells underwent glucose stimulation at different concentrations (0, 5, 11, and 22 mM) for 60 minutes. RESULTS INS1E cells treated with 1,25(OH)2 vitamin D showed a trend towards increased insulin secretion at all glucose concentrations compared to control cells and at 22 mM glucose, the difference was significant (18.40 +/- 1.97 vs 12.90 +/- 2.22 nmol/L, P < 0.05). However, pretreatment with 25(OH) vitamin D did not show any significant increase in insulin secretion compared to cells without vitamin D treatment. There was no difference in insulin secretion in cells not stimulated with glucose. CONCLUSIONS Treatment with 1,25(OH)2 vitamin D combined with high levels of glucose increased insulin secretion in INS1E cells, whereas 25(OH) vitamin D had no effect. This suggests that glucose stimulated insulin secretion in INS1E beta cells appears to be related to the type of vitamin D metabolite treatment.
Collapse
Affiliation(s)
- Mette Eskild Bornstedt
- Hormone Laboratory, Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Corresponding Author: Hormone Laboratory, Departement of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.
| | - Nina Gjerlaugsen
- Hormone Laboratory, Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Milaim Pepaj
- Hormone Laboratory, Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - May K L Bredahl
- Hormone Laboratory, Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Per M Thorsby
- Hormone Laboratory, Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
125
|
McCann J, Ellis M, McGee SL, Aston-Mourney K. Class IIa HDACs do not influence beta-cell function under normal or high glucose conditions. Islets 2019; 11:112-118. [PMID: 31112063 PMCID: PMC6773392 DOI: 10.1080/19382014.2019.1617621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Inhibiting Class IIa Histone Deacetylase (HDAC) function is a promising approach to therapeutically enhance skeletal and cardiac muscle metabolic health in several chronic diseases including type 2 diabetes. However, the importance of Class IIa HDACs in the beta-cell remains unknown. As beta-cell function is vital to maintaining glycaemia it is essential that the importance of Class IIa HDACs in the beta-cell is determined. Here we used the INS-1E cell line cultured in normal glucose (11.1 mM) or hyperglycaemic (20 mM) conditions for 48 hrs to represent cells in a normal and diabetic environment respectively. Cells cultured in high glucose showed significantly reduced insulin secretory function and increased apoptotic signalling compared to cells cultured in normal glucose. Class IIa HDACS, HDAC-4 and -5, were not regulated at the transcript or protein level under normal or hyperglycaemic conditions suggesting that they may not play a role in beta-cell dysfunction. Furthermore, overexpression of wild-type HDAC-4 and -5 or dominant negative HDAC-4 and -5 did not alter insulin secretion, insulin mRNA expression or apoptotic signalling under normal or hyperglycaemic conditions. This suggests that Class IIa Histone Deacetylases do not play an important physiological role in the beta-cell under normal or diabetic conditions. Thus, Class IIa Histone Deacetylase inhibitors are not likely to have a detrimental effect on beta-cells supporting the use of these inhibitors to treat metabolic diseases such as type 2 diabetes.
Collapse
Affiliation(s)
- Jacob McCann
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, Australia
| | - Megan Ellis
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, Australia
| | - Sean L. McGee
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, Australia
| | - Kathryn Aston-Mourney
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, Australia
- CONTACT Kathryn Aston-Mourney Deakin University, Building Nb, 75 Pigdons Rd, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
126
|
Hu Q, Niu Q, Song H, Wei S, Wang S, Yao L, Li YP. Polysaccharides from Portulaca oleracea L. regulated insulin secretion in INS-1 cells through voltage-gated Na + channel. Biomed Pharmacother 2018; 109:876-885. [PMID: 30551541 DOI: 10.1016/j.biopha.2018.10.113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/23/2022] Open
Abstract
The present study was undertaken to determine the involvement of voltage-gated Na+ channel (VGSC) and other mechanism related to insulin secretion in polysaccharides from Portulaca oleracea L. (POP)-induced secretion of insulin from insulin-secreting β-cell line cells (INS-1) cells. Our results showed that the concentration of insulin both in culture medium and inside INS-1 cells were increased under the existing of different concentration of glucose by POP or TTX, respectively. However, the effect POP on insulin secretion and production were blocked by TTX, a VGSC blocker. Meanwhile, POP improved the mitochondrial membrane potential (Δψm), increased adenosine triphosphate (ATP) production, depolarized cell membrane potential (MP) and increased intracellular Ca2+ levels ([Ca2+]i). Furthermore, POP treatment increased the expression level of Nav1.3 and decreased the expression level of Nav1.7. TTX treatment decreased the expression level of Nav1.3 and Nav1.7. On the other hand, POP also elevated the survival of INS-1 cells. These results suggested that POP induced-secretion/production of insulin in INS-1 cells were mediated by VGSC through its change of function and subunits expression and subsequent VGSC- dependent events such as change of intracellular Ca2+ releasing, ATP metabolism, cell membrane and mitochondrial membrane potential, and also improvement of INS-1 cell survival. Meanwhile, our data indicated the potentiality of developing POP to be a drug for diabetes treatment and VGSC as a therapeutic target in diabetes treatment is valuable to be investigated further.
Collapse
Affiliation(s)
- Qingjuan Hu
- School of Life science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, PR China
| | - Qingchuan Niu
- School of Life science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, PR China
| | - Hao Song
- School of Life science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, PR China
| | - Shanshan Wei
- School of Life science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, PR China
| | - Songhua Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, PR China
| | - Lihua Yao
- School of Life science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, PR China
| | - Yu-Ping Li
- School of Life science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, PR China.
| |
Collapse
|
127
|
Cosentino C, Toivonen S, Diaz Villamil E, Atta M, Ravanat JL, Demine S, Schiavo A, Pachera N, Deglasse JP, Jonas JC, Balboa D, Otonkoski T, Pearson ER, Marchetti P, Eizirik DL, Cnop M, Igoillo-Esteve M. Pancreatic β-cell tRNA hypomethylation and fragmentation link TRMT10A deficiency with diabetes. Nucleic Acids Res 2018; 46:10302-10318. [PMID: 30247717 PMCID: PMC6212784 DOI: 10.1093/nar/gky839] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/17/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022] Open
Abstract
Transfer RNAs (tRNAs) are non-coding RNA molecules essential for protein synthesis. Post-transcriptionally they are heavily modified to improve their function, folding and stability. Intronic polymorphisms in CDKAL1, a tRNA methylthiotransferase, are associated with increased type 2 diabetes risk. Loss-of-function mutations in TRMT10A, a tRNA methyltransferase, are a monogenic cause of early onset diabetes and microcephaly. Here we confirm the role of TRMT10A as a guanosine 9 tRNA methyltransferase, and identify tRNAGln and tRNAiMeth as two of its targets. Using RNA interference and induced pluripotent stem cell-derived pancreatic β-like cells from healthy controls and TRMT10A-deficient patients we demonstrate that TRMT10A deficiency induces oxidative stress and triggers the intrinsic pathway of apoptosis in β-cells. We show that tRNA guanosine 9 hypomethylation leads to tRNAGln fragmentation and that 5'-tRNAGln fragments mediate TRMT10A deficiency-induced β-cell death. This study unmasks tRNA hypomethylation and fragmentation as a hitherto unknown mechanism of pancreatic β-cell demise relevant to monogenic and polygenic forms of diabetes.
Collapse
Affiliation(s)
- Cristina Cosentino
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Sanna Toivonen
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Esteban Diaz Villamil
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Mohamed Atta
- CEA/Grenoble, DRF/BIG/LCBM UMR5249, Grenoble, France
| | - Jean-Luc Ravanat
- Université Grenoble Alpes, CEA, CNRS INAC, SyMMES UMR 5819, Grenoble, France
| | - Stéphane Demine
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Andrea Alex Schiavo
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Nathalie Pachera
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Jean-Philippe Deglasse
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d’ Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Jean-Christophe Jonas
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle d’ Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Diego Balboa
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ewan R Pearson
- Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, Ninewells Hospital and Medical School, Dundee, UK
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Décio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | |
Collapse
|
128
|
Dufurrena Q, Bäck N, Mains R, Hodgson L, Tanowitz H, Mandela P, Eipper B, Kuliawat R. Kalirin/Trio Rho GDP/GTP exchange factors regulate proinsulin and insulin secretion. J Mol Endocrinol 2018; 62:JME-18-0048.R2. [PMID: 30407917 PMCID: PMC6494717 DOI: 10.1530/jme-18-0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022]
Abstract
Key features for progression to pancreatic β-cell failure and disease are loss of glucose responsiveness and an increased ratio of secreted proinsulin to insulin. Proinsulin and insulin are stored in secretory granules (SGs) and the fine-tuning of hormone output requires signal mediated recruitment of select SG populations according to intracellular location and age. The GTPase Rac1 coordinates multiple signaling pathways that specify SG release and Rac1 activity is controlled in part by GDP/GTP exchange factors (GEFs). To explore the function of two large multidomain GEFs, Kalirin and Trio in β-cells, we manipulated their Rac1-specific GEF1 domain activity by using small molecule inhibitors and by genetically ablating Kalirin. We examined age related secretory granule behavior employing radiolabeling protocols. Loss of Kalirin/Trio function attenuated radioactive proinsulin release by reducing constitutive-like secretion and exocytosis of 2-hour old granules. At later chase times or at steady state, Kalirin/Trio manipulations decreased glucose stimulated insulin output. Finally, use of a Rac1 FRET biosensor with cultured β-cell lines, demonstrated that Kalirin/Trio GEF1 activity was required for normal rearrangement of Rac1 to the plasma membrane in response to glucose. Rac1 activation can be evoked by both glucose metabolism and signaling through the incretin glucagon-like peptide 1 (GLP-1) receptor. GLP-1 addition restored Rac1 localization/activity and insulin secretion in the absence of Kalirin, thereby assigning Kalirin's participation to stimulatory glucose signaling.
Collapse
Affiliation(s)
- Quinn Dufurrena
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY
| | - Nils Bäck
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Richard Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Herbert Tanowitz
- Departments of Pathology, Medicine, Albert Einstein College of Medicine, Bronx, NY
| | | | - Betty Eipper
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT
| | - Regina Kuliawat
- Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
129
|
Xu J, Jia YF, Tapadar S, Weaver JD, Raji IO, Pithadia DJ, Javeed N, García AJ, Choi DS, Matveyenko AV, Oyelere AK, Shin CH. Inhibition of TBK1/IKKε Promotes Regeneration of Pancreatic β-cells. Sci Rep 2018; 8:15587. [PMID: 30349097 PMCID: PMC6197228 DOI: 10.1038/s41598-018-33875-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/01/2018] [Indexed: 12/18/2022] Open
Abstract
β-cell proliferation induction is a promising therapeutic strategy to restore β-cell mass. By screening small molecules in a transgenic zebrafish model of type 1 diabetes, we identified inhibitors of non-canonical IκB kinases (IKKs), TANK-binding kinase 1 (TBK1) and IκB kinase ε (IKKε), as enhancers of β-cell regeneration. The most potent β-cell regeneration enhancer was a cinnamic acid derivative (E)-3-(3-phenylbenzo[c]isoxazol-5-yl)acrylic acid (PIAA), which, acting through the cAMP-dependent protein kinase A (PKA), stimulated β-cell-specific proliferation by increasing cyclic AMP (cAMP) levels and mechanistic target of rapamycin (mTOR) activity. A combination of PIAA and cilostamide, an inhibitor of β-cell-enriched cAMP hydrolyzing enzyme phosphodiesterase (PDE) 3, enhanced β-cell proliferation, whereas overexpression of PDE3 blunted the mitogenic effect of PIAA in zebrafish. PIAA augmented proliferation of INS-1β-cells and β-cells in mammalian islets including human islets with elevation in cAMP levels and insulin secretion. PIAA improved glycemic control in streptozotocin (STZ)-induced diabetic mice with increases in β-cell proliferation, β-cell area, and insulin content in the pancreas. Collectively, these data reveal an evolutionarily conserved and critical role of TBK1/IKKε suppression in expanding functional β-cell mass.
Collapse
Affiliation(s)
- Jin Xu
- School of Biological Sciences and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Yun-Fang Jia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Subhasish Tapadar
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jessica D Weaver
- Woodruff School of Mechanical Engineering and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Idris O Raji
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Deeti J Pithadia
- School of Biological Sciences and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Naureen Javeed
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Aleksey V Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Chong Hyun Shin
- School of Biological Sciences and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA. .,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
130
|
Resveratrol long-term treatment differentiates INS-1E beta-cell towards improved glucose response and insulin secretion. Pflugers Arch 2018; 471:337-345. [PMID: 30310992 DOI: 10.1007/s00424-018-2215-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/17/2018] [Accepted: 10/02/2018] [Indexed: 10/28/2022]
Abstract
The clonal INS-1E beta-cell line has proven to be instrumental for numerous studies investigating the mechanisms of glucose-stimulated insulin secretion. The composition of its culture medium has not changed over the years, although some compounds have been recently highlighted for their effects on tissue differentiation. The present study investigated the effects of long-term treatment of INS-1E cells with 1 μM resveratrol on glucose-stimulated insulin secretion, testing an extended glucose dose response. The data demonstrate that chronic exposure to low-dose resveratrol expands the range of the glucose dose response of INS-1E cells beyond 15 mM glucose. We also assessed whether such beneficial effects could be retained after resveratrol withdrawal from the culture medium. This was not the case as INS-1E cells deprived of resveratrol returned to the phenotype of naïve cells, i.e., exhibiting a plateau phase at 15 mM glucose. Of note, although resveratrol has antioxidant properties, it cannot substitute for β-mercaptoethanol normally present in the medium of INS-1E cells as a reducing agent. In conclusion, the addition of resveratrol as a standard component of the culture medium of INS-1E cells improves glucose-stimulated insulin secretion.
Collapse
|
131
|
Zhang C, Liu H, Chen S, Luo Y. Evaluating the effects of IADHFL on inhibiting DPP-IV activity and expression in Caco-2 cells and contributing to the amount of insulin released from INS-1 cells in vitro. Food Funct 2018; 9:2240-2250. [PMID: 29553151 DOI: 10.1039/c7fo01950e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Dipeptidyl peptidase-IV (DPP-IV) is a serine exo-peptidase that can inactivate incretins by removing N-terminal dipeptides. Currently, inhibiting the DPP-IV activity is a common treatment for type 2 diabetes (T2D). The goal of this study is to investigate whether IADHFL, a novel DPP-IV inhibitory peptide identified from bighead carp (Hypophthalmichthys nobilis), has the potential to modulate T2D. IADHFL remained stable after simulated gastrointestinal digestion and significantly decreased the activity and expression of both soluble and membrane-bound DPP-IV after 24 h and 48 h of treatment. Intact peptide absorption was observed, but a percentage of the peptide was degraded while passing through a monolayer of Caco-2 cells. In addition, a double-layered cell model showed that the peptide could increase insulin secretion from INS-1 cells after glucose treatments of 2.8 mM and 16.7 mM. Finally, IADHFL could regulate the expression levels of genes associated with insulin secretion and T2D in INS-1 cells.
Collapse
Affiliation(s)
- Chi Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China
| | - Huaigao Liu
- Beijing Guotai Biotechnology Co., Ltd, Beijing 100011, China.
| | - Shangwu Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China
| | - Yongkang Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China
| |
Collapse
|
132
|
Taneera J, Prasad RB, Dhaiban S, Mohammed AK, Haataja L, Arvan P, Hamad M, Groop L, Wollheim CB. Silencing of the FTO gene inhibits insulin secretion: An in vitro study using GRINCH cells. Mol Cell Endocrinol 2018; 472:10-17. [PMID: 29890211 PMCID: PMC6559235 DOI: 10.1016/j.mce.2018.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/14/2018] [Accepted: 06/07/2018] [Indexed: 01/01/2023]
Abstract
Expression of fat mass and obesity-associated gene (FTO) and ADP-ribosylation factor-like 15 (ARL15) in human islets is inversely correlated with HbA1c. However, their impact on insulin secretion is still ambiguous. Here in, we investigated the role of FTO and ARL15 using GRINCH (Glucose-Responsive Insulin-secreting C-peptide-modified Human proinsulin) clonal rat β-cells. GRINCH cells have inserted GFP into the human C-peptide insulin gene. Hence, secreted CpepGFP served to monitor insulin secretion. mRNA silencing of FTO in GRINCH cells showed a significant reduction in glucose but not depolarization-stimulated insulin secretion, whereas ARL15 silencing had no effect. A significant down-regulation of insulin mRNA was observed in FTO knockdown cells. Type-2 Diabetic islets revealed a reduced expression of FTO mRNA. In conclusion, our data suggest that fluorescent CpepGFP released from GRINCH cells may serve as a convenient marker for insulin secretion. Silencing of FTO expression, but not ARL15, inhibits insulin secretion by affecting metabolic signaling.
Collapse
Affiliation(s)
- Jalal Taneera
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; Lund University Diabetes Center, Malmoe, Lund University, Sweden.
| | - Rashmi B Prasad
- Lund University Diabetes Center, Malmoe, Lund University, Sweden
| | - Sarah Dhaiban
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdul Khader Mohammed
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Leena Haataja
- Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, USA
| | - Peter Arvan
- Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, USA
| | - Mawieh Hamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Leif Groop
- Lund University Diabetes Center, Malmoe, Lund University, Sweden; Finnish Institute for Molecular Medicine (FIMM), Helsinki University, Finland
| | - Claes B Wollheim
- Lund University Diabetes Center, Malmoe, Lund University, Sweden; Department of Cell Physiology and Metabolism, University Medical Center. Geneva, Switzerland
| |
Collapse
|
133
|
Zibolka J, Bazwinsky-Wutschke I, Mühlbauer E, Peschke E. Distribution and density of melatonin receptors in human main pancreatic islet cell types. J Pineal Res 2018; 65:e12480. [PMID: 29464840 DOI: 10.1111/jpi.12480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/12/2018] [Indexed: 12/15/2022]
Abstract
Recent investigations of our group established that melatonin modulates hormone secretion of pancreatic islets via melatonin receptor types MT1 and MT2. Expression of MT1 and MT2 has been shown in mouse, rat, and human pancreatic islets as well as in the β-, α-, and δ-cell lines INS-1, αTC1.9, and QGP-1. In view of these earlier investigations, this study was performed to analyze in detail the distribution and density of melatonin receptors on the main islet cell types in human pancreatic tissue obtained from nondiabetic and type 2 diabetic patients. Immunohistochemical analysis established the presence of MT1 and MT2 in β-, α-, and δ-cells, but notably, with differences in receptor density. In general, the lowest MT1 and MT2 receptor density was measured in α-cells compared to the 2 other cell types. In type 2 diabetic islets, MT1 and MT2 receptor density was increased in δ-cells compared to normoglycemic controls. In human islets in batch culture of a nondiabetic donor, an increase of somatostatin secretion was observed under melatonin treatment while in islets of a type 2 diabetic donor, an inhibitory influence could be observed, especially in the presence of 5.5 mmol/L glucose. These data suggest the following: i) cell-type-specific density of MT1 and MT2 receptors in human pancreatic islets, which should be considered in context of the hormone secretion of islets, ii) the influence of diabetes on density of MT1 and MT2 as well as iii) the differential impact of melatonin on somatostatin secretion of nondiabetic and type 2 diabetic islets.
Collapse
Affiliation(s)
- Juliane Zibolka
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ivonne Bazwinsky-Wutschke
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | | |
Collapse
|
134
|
Millership SJ, Da Silva Xavier G, Choudhury AI, Bertazzo S, Chabosseau P, Pedroni SM, Irvine EE, Montoya A, Faull P, Taylor WR, Kerr-Conte J, Pattou F, Ferrer J, Christian M, John RM, Latreille M, Liu M, Rutter GA, Scott J, Withers DJ. Neuronatin regulates pancreatic β cell insulin content and secretion. J Clin Invest 2018; 128:3369-3381. [PMID: 29864031 PMCID: PMC6063487 DOI: 10.1172/jci120115] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/17/2018] [Indexed: 02/06/2023] Open
Abstract
Neuronatin (Nnat) is an imprinted gene implicated in human obesity and widely expressed in neuroendocrine and metabolic tissues in a hormone- and nutrient-sensitive manner. However, its molecular and cellular functions and precise role in organismal physiology remain only partly defined. Here we demonstrate that mice lacking Nnat globally or specifically in β cells display impaired glucose-stimulated insulin secretion leading to defective glucose handling under conditions of nutrient excess. In contrast, we report no evidence for any feeding or body weight phenotypes in global Nnat-null mice. At the molecular level neuronatin augments insulin signal peptide cleavage by binding to the signal peptidase complex and facilitates translocation of the nascent preprohormone. Loss of neuronatin expression in β cells therefore reduces insulin content and blunts glucose-stimulated insulin secretion. Nnat expression, in turn, is glucose-regulated. This mechanism therefore represents a novel site of nutrient-sensitive control of β cell function and whole-animal glucose homeostasis. These data also suggest a potential wider role for Nnat in the regulation of metabolism through the modulation of peptide processing events.
Collapse
Affiliation(s)
- Steven J. Millership
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Gabriela Da Silva Xavier
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | | | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Pauline Chabosseau
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Silvia M.A. Pedroni
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Elaine E. Irvine
- MRC London Institute of Medical Sciences, London, United Kingdom
| | - Alex Montoya
- MRC London Institute of Medical Sciences, London, United Kingdom
| | - Peter Faull
- MRC London Institute of Medical Sciences, London, United Kingdom
| | - William R. Taylor
- Computational Cell and Molecular Biology Laboratory, Francis Crick Institute, London, United Kingdom
| | - Julie Kerr-Conte
- European Genomic Institute for Diabetes, UMR 1190 Translational Research for Diabetes, INSERM, CHU Lille, University of Lille, Lille, France
| | - Francois Pattou
- European Genomic Institute for Diabetes, UMR 1190 Translational Research for Diabetes, INSERM, CHU Lille, University of Lille, Lille, France
| | - Jorge Ferrer
- Beta Cell Genome Regulation Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Mark Christian
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Rosalind M. John
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - James Scott
- National Heart and Lung Institute, Department of Medicine, Imperial College London, London, United Kingdom
| | - Dominic J. Withers
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
135
|
Rebuffat SA, Sidot E, Guzman C, Azay-Milhau J, Jover B, Lajoix AD, Peraldi-Roux S. Adipose tissue derived-factors impaired pancreatic β-cell function in diabetes. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3378-3387. [PMID: 30048752 DOI: 10.1016/j.bbadis.2018.07.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
Inflammatory factors produced and secreted by adipose tissue, in particular peri-pancreatic adipose tissue (P-WAT), may influence pancreatic β-cell dysfunction. Using the ZDF Rat model of diabetes, we show the presence of infiltrating macrophage (ED1 staining) on pancreatic tissue and P-WAT in the pre-diabetes stage of the disease. Then, when the T2D is installed, infiltrating cells decreased. Meanwhile, the P-WAT conditioned-medium composition, in terms of inflammatory factors, varies during the onset of the T2D. Using chemiarray technology, we observed an over expression of CXCL-1, -2, -3, CCL-3/MIP-1α and CXCL-5/LIX and TIMP-1 in the 9 weeks old obese ZDF pre-diabetic rat model. Surprisingly, the expression profile of these factors decreased when animals become diabetic (12 weeks obese ZDF rats). The expression of these inflammatory proteins is highly associated with inflammatory infiltrate. P-WAT conditioned-medium from pre-diabetes rats stimulates insulin secretion, cellular proliferation and apoptosis of INS-1 cells. However, inhibition of conditioned-medium chemokines acting via CXCR2 receptor do not change cellular proliferation apoptosis and insulin secretion of INS-1 cells induced by P-WAT conditioned-medium. Taken together, these results show that among the secreted chemokines, increased expression of CXCL-1, -2, -3 and CXCL-5/LIX in P-WAT conditioned-medium is concomitant with the onset of the T2D but do not exerted a direct effect on pancreatic β-cell dysfunction.
Collapse
Affiliation(s)
- Sandra A Rebuffat
- EA 7288, Biocommunication en Cardio-metabolique (BC2M), Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 5, France.
| | - Emmanuelle Sidot
- EA 7288, Biocommunication en Cardio-metabolique (BC2M), Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 5, France
| | - Caroline Guzman
- EA 7288, Biocommunication en Cardio-metabolique (BC2M), Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 5, France
| | - Jacqueline Azay-Milhau
- EA 7288, Biocommunication en Cardio-metabolique (BC2M), Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 5, France
| | - Bernard Jover
- EA 7288, Biocommunication en Cardio-metabolique (BC2M), Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 5, France
| | - Anne-Dominique Lajoix
- EA 7288, Biocommunication en Cardio-metabolique (BC2M), Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 5, France
| | - Sylvie Peraldi-Roux
- EA 7288, Biocommunication en Cardio-metabolique (BC2M), Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 5, France
| |
Collapse
|
136
|
Luo Y, Zhang X, Li Y, Deng J, Li X, Qu Y, Lu Y, Liu T, Gao Z, Lin B. High-glucose 3D INS-1 cell model combined with a microfluidic circular concentration gradient generator for high throughput screening of drugs against type 2 diabetes. RSC Adv 2018; 8:25409-25416. [PMID: 35539797 PMCID: PMC9082620 DOI: 10.1039/c8ra04040k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/07/2018] [Indexed: 01/22/2023] Open
Abstract
In vitro models for screening of drugs against type 2 diabetes are crucial for the pharmaceutical industry. This paper presents a new approach for integration of a three-dimensionally-cultured insulinoma cell line (INS-1 cell) incubated in a high concentration of glucose as a new model. In this model, INS-1 cells tended to aggregate in the 3D gel (basement membrane extractant, BME), in a similar way to 3D in vivo cell culture models. The proliferation of INS-1 cells in BME was initially promoted and then suppressed by the high concentration of glucose, and the function of insulin secretion also was initially enhanced and then inhibited by the high concentration of glucose. These phenomena were similar to hyperglycemia symptoms, proving the validity of the proposed model. This model can help find the drugs that stimulate insulin secretion. Then, we identified the difference between the new model and the traditional two-dimensional model in terms of cell morphology, inhibition rate of cell proliferation, and insulin secretion. Simultaneously, we developed a circular drug concentration gradient generator based on microfluidic technology. We integrated the high-glucose 3D INS-1 cell model and the circular concentration gradient generator in the same microdevice, tested the utility of this microdevice in the field of drug screening with glipizide as a model drug, and found that the microdevice was more sensitive than the traditional device to screen the anti-diabetic drugs.
Collapse
Affiliation(s)
- Yong Luo
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering & School of Pharmaceutical Science and Technology, Dalian University of Technology Dalian 116024 China
- State Key Laboratory of Bioelectronics, Southeast University Nanjing 210096 China
| | - Xiuli Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Yujiao Li
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering & School of Pharmaceutical Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Jiu Deng
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering & School of Pharmaceutical Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Xiaorui Li
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering & School of Pharmaceutical Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Yueyang Qu
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering & School of Pharmaceutical Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Yao Lu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Tingjiao Liu
- Section of Oral Pathology, College of Stomatology, Dalian Medical University Dalian 116044 China
| | - Zhigang Gao
- State Key Laboratory of Fine Chemicals, Department of Chemical Engineering & School of Pharmaceutical Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Bingcheng Lin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
137
|
Luna-Vital DA, Gonzalez de Mejia E. Anthocyanins from purple corn activate free fatty acid-receptor 1 and glucokinase enhancing in vitro insulin secretion and hepatic glucose uptake. PLoS One 2018; 13:e0200449. [PMID: 29995924 PMCID: PMC6040766 DOI: 10.1371/journal.pone.0200449] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/26/2018] [Indexed: 11/21/2022] Open
Abstract
The objective of this study was to evaluate the ability of anthocyanins (ANC) present in purple corn to enhance insulin secretion and hepatic glucose uptake in pancreatic cells and hepatocytes, through activation of the free fatty acid receptor-1 (FFAR1) and glucokinase (GK), respectively. Using a dual-layer cell culture with Caco-2 cells, INS-1E or HepG2 cells were treated with an anthocyanin-rich extract from the pericarp of purple corn (PCW), as well as pure ANC cyanidin-3-O-glucoside (C3G), peonidin-3-O-glucoside, pelargonidin-3-O-glucoside. Delphinidin-3-O-glucoside (D3G) was used for comparative purposes. Semipurified C3G (C3G-P) and condensed forms (CF-P) isolated from PCW were also used. At 100 μM, the pure ANC enhanced glucose-stimulated insulin secretion (GSIS) in INS-1E cells ranging from 18% to 40% (p<0.05) compared to untreated cells. PCW increased GSIS by 51%. D3G was the most effective anthocyanin activating FFAR1 (EC50: 196.6 μM). PCW had activating potential on FFAR1 (EC50: 77 μg/mL). PCW, as well as C3G and D3G increased the expression of FFAR1, PLC, and phosphorylation of PKD, related to the FFAR1-dependent insulin secretory pathway. The treatment with 100 μM of P3G and C3G increased (p<0.05) glucose uptake in HepG2 cells by 19% and 31%. PCW increased the glucose uptake in HepG2 cells by 48%. It was determined that CF-P was the most effective for activating GK (EC50: 39.9 μM) and the PCW extracts had an efficacy of EC50: 44 μg/mL. The ANC in purple corn also reduced AMPK phosphorylation and PEPCK expression in HepG2 cells, known to be related to reduction in gluconeogenesis. It is demonstrated for the first time that dietary ANC can enhance the activity of novel biomarkers FFAR1 and GK and potentially ameliorate type-2 diabetes comorbidities.
Collapse
Affiliation(s)
- Diego A. Luna-Vital
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
138
|
Nardelli TR, Vanzela EC, Benedicto KC, Brozzi F, Fujita A, Cardozo AK, Eizirik DL, Boschero AC, Ortis F. Prolactin protects against cytokine-induced beta-cell death by NFκB and JNK inhibition. J Mol Endocrinol 2018; 61:25-36. [PMID: 29632026 DOI: 10.1530/jme-16-0257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/09/2018] [Indexed: 12/25/2022]
Abstract
Type 1 diabetes is caused by an autoimmune assault that induces progressive beta-cell dysfunction and dead. Pro-inflammatory cytokines, such as interleukin 1 beta (IL1B), tumor necrosis factor (TNF) and interferon gamma (IFNG) contribute for beta-cell death, which involves the activation of the nuclear factor kappa B (NFκB) and c- Jun N-terminal kinase (JNK). Prolactin (PRL), a physiological mediator for beta-cell proliferation, was shown to protect beta cells against cytokines pro-apoptotic effects. We presently investigated the mechanisms involved in the protective effects of prolactin against cytokine-induced beta-cell death. The findings obtained indicate that STAT3 activation is involved in the anti-apoptotic role of PRL in rat beta cells. PRL prevents the activation of JNK via AKT and promotes a shift from expression of pro- to anti-apoptotic proteins downstream of the JNK cascade. Furthermore, PRL partially prevents the activation of NFκB and the transcription of its target genes IkBa, Fas, Mcp1, A20 and Cxcl10 and also decreases NO production. On the other hand, the pro-survival effects of PRL do not involve modulation of cytokine-induced endoplasmic reticulum stress. These results suggest that the beneficial effects of PRL in beta cells involve augmentation of anti-apoptotic mechanisms and, at the same time, reduction of pro-apoptotic effectors, rendering beta cells better prepared to deal with inflammatory insults. The better understanding of the pro-survival mechanisms modulated by PRL in beta cells can provide tools to prevent cell demise during an autoimmune attack or following islet transplantation.
Collapse
Affiliation(s)
- Tarlliza R Nardelli
- Department of Structural and Functional Biology, Laboratory of Endocrine Pancreas and Metabolism, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Emerielle C Vanzela
- Department of Structural and Functional Biology, Laboratory of Endocrine Pancreas and Metabolism, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Keli C Benedicto
- Department of Structural and Functional Biology, Laboratory of Endocrine Pancreas and Metabolism, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Flora Brozzi
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - André Fujita
- Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo (USP), São Paulo, Brazil
| | - Alessandra K Cardozo
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Décio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Antonio C Boschero
- Department of Structural and Functional Biology, Laboratory of Endocrine Pancreas and Metabolism, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fernanda Ortis
- Department of Cell and Developmental Biology, Institute of Biomedical Science (ICB), University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
139
|
Increased toxicity of amylin (Islet Amyloid Polypeptide) in beta cells induced by photochemical internalization. Photodiagnosis Photodyn Ther 2018; 23:218-220. [PMID: 29936141 DOI: 10.1016/j.pdpdt.2018.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND Amylin and oligomers formed from amylin are implicated in demise of beta cells in type 2 diabetes. However, whether putative toxicity is exerted intra or extracellularly is unclear. Use of photochemical internalization (PCI) technique may give clues for impact of intracellular toxicity. AIM (a) To optimize the concentration and exposure set up of the photosensitizing compound meso-disulfonated tetraphenyl chlorin TPCS2a (Amphinex®) for use in insulin producing beta cells and (b) to utilize the photosensitizing technique to probe for intracellular effects in beta cells by amylin. MATERIALS AND METHODS The titration of TPCS2a and blue light exposure was evaluated by MTT assay. The insulin producing INS-1 832/13 beta cells were incubated with the photosensitizing agent TPCS2a prior to exposure of amylin. Viability and function were further evaluated by standard biochemical techniques. RESULTS A protocol was developed for use in INS-1 832/13 cells in which the optimal concentration of TPCS2a was found to be 4ng/ml. Using this protocol human amylin (10 μM, 8 h) in combination with TPCS2a (4 ng/ml, 18 h) and blue light exposure (60 s) exerted toxic effects above those by TPCS2a and illumination alone as measured by MTT (15 ± 3.6%, n = 6, p < 0.007) for effect of amylin exposure. On the other hand, rat amylin (which does not form oligomers) had no effect. Insulin secretion was non-significantly reduced by the combination of human amylin with TPCS2a and illumination compared to TPCS2a and illumination alone. Cellular insulin content was not affected, nor were measured parameters of apoptosis and necrosis. CONCLUSION PCI technology could be a useful tool to induce endosomal rupture in clonal beta cells. The present results using PCI are compatible with intracellular negative effects following exposure to amylin.
Collapse
|
140
|
Kitamoto T, Sakurai K, Lee EY, Yokote K, Accili D, Miki T. Distinct roles of systemic and local actions of insulin on pancreatic β-cells. Metabolism 2018; 82:100-110. [PMID: 29320716 PMCID: PMC7391221 DOI: 10.1016/j.metabol.2017.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/16/2017] [Accepted: 12/31/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Pancreatic β-cell mass and function are critical in glucose homeostasis. Their regulatory mechanisms have been studied principally under experimental conditions of reduced β-cell numbers, such as β-cell ablation and partial pancreatectomy. In the present study, we generated an opposite mouse model with an excessive amount of ectopic β-cells, and analyzed its consequence on β-cell mass and survival. METHODS Mice underwent sub-renal transplantation (SRT) of pseudo-islets generated from a pancreatic β-cell line MIN6 or intra-pancreatic transplantation (IPT) of MIN6 cells, and morphological and functional changes of their endocrine pancreata were analyzed. Cellular fate of pancreatic β-cells after transplantation was traced using RipCre:Rosa26-tdTomato mice. By using MIN6 cells, we evaluated the roles of extracellular glucose, membrane potential, and insulin signaling on β-cell survival. RESULTS SRT mice developed severe, progressive hypoglycemia associated with marked reduction in insulin-positive (Ins+) cell mass and apparent increase in apoptotic Ins+ cells. In in vitro experiments of MIN6 cells, insulin signaling blockade potently induced cell death, suggesting that local insulin action is required for β-cell survival. In fact, IPT (i.e. transplantation close to endogenous β-cells) resulted in fewer apoptotic Ins+ cells compared with those induced by SRT. On the other hand, β-cell mass was decreased in proportion to the decrease in blood glucose levels in both SRT and IPT mice, suggesting a contribution of hypoglycemia induced by systemic hyperinsulinemia. CONCLUSION Insulin plays distinct roles in β-cell survival and β-cell mass regulation through its local and systemic actions on β-cells, respectively.
Collapse
Affiliation(s)
- Takumi Kitamoto
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan; Department of Clinical Cell Biology and Medicine, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan; Division of Endocrinology, Department of Medicine, Columbia University, New York 10032, USA
| | - Kenichi Sakurai
- Center for Preventive Medical Sciences, Chiba University, Chiba 263-8522, Japan
| | - Eun Young Lee
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan
| | - Domenico Accili
- Division of Endocrinology, Department of Medicine, Columbia University, New York 10032, USA
| | - Takashi Miki
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan.
| |
Collapse
|
141
|
Hofving T, Arvidsson Y, Almobarak B, Inge L, Pfragner R, Persson M, Stenman G, Kristiansson E, Johanson V, Nilsson O. The neuroendocrine phenotype, genomic profile and therapeutic sensitivity of GEPNET cell lines. Endocr Relat Cancer 2018; 25. [PMID: 29540494 PMCID: PMC8133373 DOI: 10.1530/erc-17-0445e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tobias Hofving
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Correspondence should be addressed to T Hofving:
| | - Yvonne Arvidsson
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Bilal Almobarak
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Linda Inge
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Roswitha Pfragner
- Institute of Pathophysiology and Immunology, Center for Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Marta Persson
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Göran Stenman
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Viktor Johanson
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ola Nilsson
- Sahlgrenska Cancer Center, Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
142
|
Knocking down Insulin Receptor in Pancreatic Beta Cell lines with Lentiviral-Small Hairpin RNA Reduces Glucose-Stimulated Insulin Secretion via Decreasing the Gene Expression of Insulin, GLUT2 and Pdx1. Int J Mol Sci 2018; 19:ijms19040985. [PMID: 29587416 PMCID: PMC5979368 DOI: 10.3390/ijms19040985] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/13/2018] [Accepted: 03/21/2018] [Indexed: 12/18/2022] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disorder characterized by beta cell dysfunction and insulin resistance in fat, muscle and liver cells. Recent studies have shown that the development of insulin resistance in pancreatic beta cell lines may contribute to beta cell dysfunction in T2D. However, there still is a lack of detailed investigations regarding the mechanisms by which insulin deficiency may contribute in diabetes. In this study, we firstly established a stable insulin receptor knockdown cell line in pancreatic beta cells INS-1 (InsRβKD cells) using anti InsRβ small hairpin RNA (InsRβ-shRNA) encoded by lentiviral vectors. The resultant InsRβKD cells demonstrated a significantly reduced expression of InsRβ as determined by real-time PCR and Western blotting analyses. Upon removing glucose from the medium, these cells exhibited a significant decrease in insulin gene expression and protein secretion in response to 20 mM glucose stimulation. In accordance with this insulin reduction, the glucose uptake efficiency as indicated by a 3[H]-2-deoxy-d-glucose assay also decreased. Furthermore, InsRβKD cells showed a dramatic decrease in glucose transporter 2 (GLUT2, encoded by SLC2A2) and pancreatic duodenal homeobox (Pdx1) mRNA expression compared to the controls. These data collectively suggest that pancreatic beta cell insulin resistance contributes to the development of beta cell dysfunction by impairing pancreatic beta cell glucose sensation through the Pdx1- GLUT2 pathway. InsRβKD cells provide a good model to further investigate the mechanism of β-cell dysfunction in T2D.
Collapse
|
143
|
Jacquet A, Cottet-Rousselle C, Arnaud J, Julien Saint Amand K, Ben Messaoud R, Lénon M, Demeilliers C, Moulis JM. Mitochondrial Morphology and Function of the Pancreatic β-Cells INS-1 Model upon Chronic Exposure to Sub-Lethal Cadmium Doses. TOXICS 2018; 6:E20. [PMID: 29565305 PMCID: PMC6027415 DOI: 10.3390/toxics6020020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 11/29/2022]
Abstract
The impact of chronic cadmium exposure and slow accumulation on the occurrence and development of diabetes is controversial for human populations. Islets of Langerhans play a prominent role in the etiology of the disease, including by their ability to secrete insulin. Conversion of glucose increase into insulin secretion involves mitochondria. A rat model of pancreatic β-cells was exposed to largely sub-lethal levels of cadmium cations applied for the longest possible time. Cadmium entered cells at concentrations far below those inducing cell death and accumulated by factors reaching several hundred folds the basal level. The mitochondria reorganized in response to the challenge by favoring fission as measured by increased circularity at cadmium levels already ten-fold below the median lethal dose. However, the energy charge and respiratory flux devoted to adenosine triphosphate synthesis were only affected at the onset of cellular death. The present data indicate that mitochondria participate in the adaptation of β-cells to even a moderate cadmium burden without losing functionality, but their impairment in the long run may contribute to cellular dysfunction, when viability and β-cells mass are affected as observed in diabetes.
Collapse
Affiliation(s)
- Adeline Jacquet
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Inserm, Universite Grenoble Alpes, 38000 Grenoble, France.
| | - Cécile Cottet-Rousselle
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Inserm, Universite Grenoble Alpes, 38000 Grenoble, France.
| | - Josiane Arnaud
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Inserm, Universite Grenoble Alpes, 38000 Grenoble, France.
- Biochemistry, Molecular Biology and Environmental Toxicology (SB2TE), Grenoble University Hospital, CS 10217, 38043 Grenoble, France.
| | - Kevin Julien Saint Amand
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Inserm, Universite Grenoble Alpes, 38000 Grenoble, France.
| | - Raoua Ben Messaoud
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Inserm, Universite Grenoble Alpes, 38000 Grenoble, France.
| | - Marine Lénon
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Inserm, Universite Grenoble Alpes, 38000 Grenoble, France.
| | - Christine Demeilliers
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Inserm, Universite Grenoble Alpes, 38000 Grenoble, France.
| | - Jean-Marc Moulis
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Inserm, Universite Grenoble Alpes, 38000 Grenoble, France.
- CEA-Grenoble, Bioscience and Biotechnology Institute (BIG), 38054 Grenoble, France.
| |
Collapse
|
144
|
Wang Z, Peng L, Song YL, Xu S, Hua Z, Fang N, Zhai M, Liu H, Fang Q, Deng T, Zhang W, Chen YJ, Lou J. Pseudo-hemorrhagic region formation in pancreatic neuroendocrine tumors is a result of blood vessel dilation followed by endothelial cell detachment. Oncol Lett 2018. [PMID: 29541192 PMCID: PMC5835859 DOI: 10.3892/ol.2018.7840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aberrant blood vessel formation and hemorrhage may contribute to tumor progression and are potential targets in the treatment of several types of cancer. Pancreatic neuroendocrine tumors (PNETs) are highly vascularized, particularly when they are well-differentiated. However, the process of vascularization and endothelial cell detachment in PNETs is poorly understood. In the present study, 132 PNET clinical samples were examined and a special type of hemorrhagic region was observed in ~30% of the samples regardless of tumor subtype. These hemorrhagic regions were presented as blood-filled caverns with a smooth boundary and were unlined by endothelial cells. Based on the extensive endothelial cell detachment observed in the clinical samples, the formation process of these blood-filled caverns was hypothesized. Blood vessel dilation followed by detachment of endothelial cells from the surrounding tumor tissue was speculated. This was further supported using an INS-1 xenograft insulinoma model. As the formation process was distinct from the typical diffusive hemorrhage, it was named ‘pseudo-hemorrhage’. Furthermore, it was demonstrated that epithelial (E-) cadherin and β-catenin were overexpressed in tumor cells surrounding these pseudo-hemorrhagic regions. Therefore, even though no statistically significant association of pseudo-hemorrhage with clinical features (metastasis or disease recurrence) was identified, the high levels of E-cadherin and β-catenin expression may suggest that a number of features of normal islet cells are retained.
Collapse
Affiliation(s)
- Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang, Beijing 100029, P.R. China
| | - Liang Peng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang, Beijing 100029, P.R. China
| | - Yu-Li Song
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Shiqing Xu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang, Beijing 100029, P.R. China
| | - Zhan Hua
- Department of General Surgery, China-Japan Friendship Hospital, Chaoyang, Beijing 100029, P.R. China
| | - Ni Fang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| | - Min Zhai
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang, Beijing 100029, P.R. China
| | - Honglin Liu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang, Beijing 100029, P.R. China
| | - Qing Fang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang, Beijing 100029, P.R. China
| | - Tingting Deng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang, Beijing 100029, P.R. China
| | - Wenjian Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang, Beijing 100029, P.R. China
| | - Yuan-Jia Chen
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Jinning Lou
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chaoyang, Beijing 100029, P.R. China
| |
Collapse
|
145
|
Hofving T, Arvidsson Y, Almobarak B, Inge L, Pfragner R, Persson M, Stenman G, Kristiansson E, Johanson V, Nilsson O. The neuroendocrine phenotype, genomic profile and therapeutic sensitivity of GEPNET cell lines. Endocr Relat Cancer 2018; 25:367-380. [PMID: 29444910 PMCID: PMC5827037 DOI: 10.1530/erc-17-0445] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/15/2018] [Indexed: 12/23/2022]
Abstract
Experimental models of neuroendocrine tumour disease are scarce, and no comprehensive characterisation of existing gastroenteropancreatic neuroendocrine tumour (GEPNET) cell lines has been reported. In this study, we aimed to define the molecular characteristics and therapeutic sensitivity of these cell lines. We therefore performed immunophenotyping, copy number profiling, whole-exome sequencing and a large-scale inhibitor screening of seven GEPNET cell lines. Four cell lines, GOT1, P-STS, BON-1 and QGP-1, displayed a neuroendocrine phenotype while three others, KRJ-I, L-STS and H-STS, did not. Instead, these three cell lines were identified as lymphoblastoid. Characterisation of remaining authentic GEPNET cell lines by copy number profiling showed that GOT1, among other chromosomal alterations, harboured losses on chromosome 18 encompassing the SMAD4 gene, while P-STS had a loss on 11q. BON-1 had a homozygous loss of CDKN2A and CDKN2B, and QGP-1 harboured amplifications of MDM2 and HMGA2 Whole-exome sequencing revealed both disease-characteristic mutations (e.g. ATRX mutation in QGP-1) and, for patient tumours, rare genetic events (e.g. TP53 mutation in P-STS, BON-1 and QGP-1). A large-scale inhibitor screening showed that cell lines from pancreatic NETs to a greater extent, when compared to small intestinal NETs, were sensitive to inhibitors of MEK. Similarly, neuroendocrine NET cells originating from the small intestine were considerably more sensitive to a group of HDAC inhibitors. Taken together, our results provide a comprehensive characterisation of GEPNET cell lines, demonstrate their relevance as neuroendocrine tumour models and explore their therapeutic sensitivity to a broad range of inhibitors.
Collapse
Affiliation(s)
- Tobias Hofving
- Sahlgrenska Cancer CenterDepartment of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Yvonne Arvidsson
- Sahlgrenska Cancer CenterDepartment of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Bilal Almobarak
- Sahlgrenska Cancer CenterDepartment of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Linda Inge
- Sahlgrenska Cancer CenterDepartment of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Roswitha Pfragner
- Institute of Pathophysiology and ImmunologyCenter for Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Marta Persson
- Sahlgrenska Cancer CenterDepartment of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Göran Stenman
- Sahlgrenska Cancer CenterDepartment of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical SciencesChalmers University of Technology, Gothenburg, Sweden
| | - Viktor Johanson
- Department of SurgeryInstitute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ola Nilsson
- Sahlgrenska Cancer CenterDepartment of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
146
|
Green AD, Vasu S, Flatt PR. Cellular models for beta-cell function and diabetes gene therapy. Acta Physiol (Oxf) 2018; 222. [PMID: 29226587 DOI: 10.1111/apha.13012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023]
Abstract
Diabetes is characterized by the destruction and/or relative dysfunction of insulin-secreting beta-cells in the pancreatic islets of Langerhans. Consequently, considerable effort has been made to understand the physiological processes governing insulin production and secretion in these cells and to elucidate the mechanisms involved in their deterioration in the pathogenesis of diabetes. To date, considerable research has exploited clonal beta-cell lines derived from rodent insulinomas. Such cell lines have proven to be a great asset in diabetes research, in vitro drug testing, and studies of beta-cell physiology and provide a sustainable, and in many cases, more practical alternative to the use of animals or primary tissue. However, selection of the most appropriate rodent beta cell line is often challenging and no single cell line entirely recapitulates the properties of human beta-cells. The generation of stable human beta-cell lines would provide a much more suitable model for studies of human beta-cell physiology and pathology and could potentially be used as a readily available source of implantable insulin-releasing tissue for cell-based therapies of diabetes. In this review, we discuss the history, development, functional characteristics and use of available clonal rodent beta-cell lines, as well as reflecting on recent advances in the generation of human-derived beta-cell lines, their use in research studies and their potential for cell therapy of diabetes.
Collapse
Affiliation(s)
- A. D. Green
- SAAD Centre for Pharmacy & Diabetes; School of Biomedical Sciences; University of Ulster; Coleraine UK
| | - S. Vasu
- SAAD Centre for Pharmacy & Diabetes; School of Biomedical Sciences; University of Ulster; Coleraine UK
- Cell Growth and Metabolism Section; Diabetes, Endocrinology, and Obesity Branch; NIDDK; National Institutes of Health; Bethesda MD USA
| | - P. R. Flatt
- SAAD Centre for Pharmacy & Diabetes; School of Biomedical Sciences; University of Ulster; Coleraine UK
| |
Collapse
|
147
|
Harada N, Yoda Y, Yotsumoto Y, Masuda T, Takahashi Y, Katsuki T, Kai K, Shiraki N, Inui H, Yamaji R. Androgen signaling expands β-cell mass in male rats and β-cell androgen receptor is degraded under high-glucose conditions. Am J Physiol Endocrinol Metab 2018; 314:E274-E286. [PMID: 29138225 DOI: 10.1152/ajpendo.00211.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A deficient pancreatic β-cell mass increases the risk of type 2 diabetes mellitus. Here, we investigated the effects of testosterone on the development of pancreatic β-cell mass in male rats. The β-cell mass of male rats castrated at 6 wk of age was reduced to ~30% of that of control rats at 16 wk of age, and castration caused glucose intolerance. Loss of β-cell mass occurred because of decreases in islet density per pancreas and β-cell cluster size. Castration was negatively associated with the number of Ki-67-positive β-cells and positively associated with the number of TUNEL-positive β-cells. These β-cell changes could be prevented by testosterone treatment. In contrast, castration did not affect β-cell mass in male mice. Androgen receptor (AR) localized differently in mouse and rat β-cells. Testosterone enhanced the viability of INS-1 and INS-1 #6, which expresses high levels of AR, in rat β-cell lines. siRNA-mediated AR knockdown or AR antagonism with hydroxyflutamide attenuated this enhancement. Moreover, testosterone did not stimulate INS-1 β-cell viability under high d-glucose conditions. In INS-1 β-cells, d-glucose dose dependently (5.5-22.2 mM) downregulated AR protein levels both in the presence and absence of testosterone. The intracellular calcium chelator (BAPTA-AM) could prevent this decrease in AR expression. AR levels were also reduced by a calcium ionophore (A23187), but not by insulin, in the absence of the proteasome inhibitor MG132. Our results indicate that testosterone regulates β-cell mass, at least in part, by AR activation in the β-cells of male rats and that the β-cell AR is degraded under hyperglycemic conditions.
Collapse
Affiliation(s)
- Naoki Harada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka , Japan
| | - Yasuhiro Yoda
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka , Japan
| | - Yusuke Yotsumoto
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka , Japan
| | - Tatsuya Masuda
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka , Japan
| | - Yuji Takahashi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka , Japan
| | - Takahiro Katsuki
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka , Japan
| | - Kenji Kai
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka , Japan
| | - Nobuaki Shiraki
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa , Japan
| | - Hiroshi Inui
- Division of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka , Japan
| | - Ryoichi Yamaji
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka , Japan
| |
Collapse
|
148
|
Morita A, Ouchi M, Terada M, Kon H, Kishimoto S, Satoh K, Otani N, Hayashi K, Fujita T, Inoue KI, Anzai N. Reproducible insulin secretion from isolated rat pancreas preparations using an organ bath. Exp Anim 2018; 67:15-22. [PMID: 28757517 PMCID: PMC5814310 DOI: 10.1538/expanim.17-0059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/06/2017] [Indexed: 01/10/2023] Open
Abstract
Diabetes mellitus is a lifestyle-related disease that is characterized by inappropriate or diminished insulin secretion. Ex vivo pharmacological studies of hypoglycemic agents are often conducted using perfused pancreatic preparations. Pancreas preparations for organ bath experiments do not require cannulation and are therefore less complex than isolated perfused pancreas preparations. However, previous research has generated almost no data on insulin secretion from pancreas preparations using organ bath preparations. The purpose of this study was to investigate the applicability of isolated rat pancreas preparations using the organ bath technique in the quantitative analysis of insulin secretion from β-cells. We found that insulin secretion significantly declined during incubation in the organ bath, whereas it was maintained in the presence of 1 µM GLP-1. Conversely, amylase secretion exhibited a modest increase during incubation and was not altered in the presence of GLP-1. These results demonstrate that the pancreatic organ bath preparation is a sensitive and reproducible method for the ex vivo assessment of the pharmacological properties of hypoglycemic agents.
Collapse
Affiliation(s)
- Asuka Morita
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Motoshi Ouchi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Misao Terada
- Laboratory Animal Research Center, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Hiroe Kon
- Laboratory Animal Research Center, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Satoko Kishimoto
- Research Support Center, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Keitaro Satoh
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Naoyuki Otani
- Department of Clinical Pharmacology and Therapeutics, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Keitaro Hayashi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Tomoe Fujita
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Ken-Ichi Inoue
- Research Support Center, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
149
|
Hiramoto M, Udagawa H, Ishibashi N, Takahashi E, Kaburagi Y, Miyazawa K, Funahashi N, Nammo T, Yasuda K. A type 2 diabetes-associated SNP in KCNQ1 (rs163184) modulates the binding activity of the locus for Sp3 and Lsd1/Kdm1a, potentially affecting CDKN1C expression. Int J Mol Med 2018; 41:717-728. [PMID: 29207083 PMCID: PMC5752166 DOI: 10.3892/ijmm.2017.3273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 11/01/2017] [Indexed: 01/23/2023] Open
Abstract
Although genome-wide association studies have shown that potassium voltage-gated channel subfamily Q member 1 (KCNQ1) is one of the genes that is most significantly associated with type 2 diabetes mellitus (T2DM), functionally annotating disease-associated single nucleotide polymorphisms (SNPs) remains a challenge. Recently, our group described a novel strategy to identify proteins that bind to SNP-containing loci in an allele-specific manner. The present study successfully applied this strategy to investigate rs163184, a T2DM susceptibility SNP located in the intronic region of KCNQ1. Comparative analysis of DNA-binding proteins revealed that the binding activities for the genomic region containing SNP rs163184 differed between alleles for several proteins, including Sp3 and Lsd1/Kdm1a. Sp3 preferentially bound to the non-risk rs163184 allele and stimulated transcriptional activity in an artificial promoter containing this region. Lsd1/Kdm1a was identified to be preferentially recruited to the non-risk allele of the rs163184 region and reduced Sp3-dependent transcriptional activity in the artificial promoter. In addition, expression of the nearby cyclin‑dependent kinase inhibitor 1C (CDKN1C) gene was revealed to be upregulated after SP3 knockdown in cells that possessed non-risk alleles. This suggests that CDKN1C is potentially one of the functional targets of SNP rs163184, which modulates the binding activity of the locus for Sp3 and Lsd1/Kdm1a.
Collapse
Affiliation(s)
- Masaki Hiramoto
- Department of Metabolic Disorder, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo 162-8655
- Department of Biochemistry, Tokyo Medical University, Tokyo 160-8402
| | - Haruhide Udagawa
- Department of Metabolic Disorder, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo 162-8655
| | - Naoko Ishibashi
- Department of Metabolic Disorder, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo 162-8655
| | - Eri Takahashi
- Department of Diabetic Complications, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Yasushi Kaburagi
- Department of Diabetic Complications, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Tokyo 160-8402
| | - Nobuaki Funahashi
- Department of Metabolic Disorder, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo 162-8655
| | - Takao Nammo
- Department of Metabolic Disorder, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo 162-8655
| | - Kazuki Yasuda
- Department of Metabolic Disorder, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo 162-8655
| |
Collapse
|
150
|
Kuo PC, Yang CJ, Lee YC, Chen PC, Liu YC, Wu SN. The comprehensive electrophysiological study of curcuminoids on delayed-rectifier K + currents in insulin-secreting cells. Eur J Pharmacol 2018; 819:233-241. [DOI: 10.1016/j.ejphar.2017.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 12/16/2022]
|