101
|
Aronica TS, Carella M, Balistreri CR. Different Levels of Therapeutic Strategies to Recover the Microbiome to Prevent/Delay Acute Lymphoblastic Leukemia (ALL) or Arrest Its Progression in Children. Int J Mol Sci 2024; 25:3928. [PMID: 38612738 PMCID: PMC11012256 DOI: 10.3390/ijms25073928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Changes in the components, variety, metabolism, and products of microbiomes, particularly of the gut microbiome (GM), have been revealed to be closely associated with the onset and progression of numerous human illnesses, including hematological neoplasms. Among the latter pathologies, there is acute lymphoblastic leukemia (ALL), the most widespread malignant neoplasm in pediatric subjects. Accordingly, ALL cases present a typical dysfunctional GM during all its clinical stages and resulting inflammation, which contributes to its progression, altered response to therapy, and possible relapses. Children with ALL have GM with characteristic variations in composition, variety, and functions, and such alterations may influence and predict the complications and prognosis of ALL after chemotherapy treatment or stem cell hematopoietic transplants. In addition, growing evidence also reports the ability of GM to influence the formation, growth, and roles of the newborn's hematopoietic system through the process of developmental programming during fetal life as well as its susceptibility to the onset of onco-hematological pathologies, namely ALL. Here, we suggest some therapeutic strategies that can be applied at two levels of intervention to recover the microbiome and consequently prevent/delay ALL or arrest its progression.
Collapse
Affiliation(s)
- Tommaso Silvano Aronica
- Complex Operative Unit of Clinical Pathology, ARNAS Civico Di Cristina e Benfratelli Hospitals, 90127 Palermo, Italy; (T.S.A.); (M.C.)
| | - Miriam Carella
- Complex Operative Unit of Clinical Pathology, ARNAS Civico Di Cristina e Benfratelli Hospitals, 90127 Palermo, Italy; (T.S.A.); (M.C.)
| | - Carmela Rita Balistreri
- Cellular, Molecular and Clinical Pathological Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy
| |
Collapse
|
102
|
Li H, Wang X, Hu C, Cui J, Li H, Luo X, Hao Y. IL-6 Enhances the Activation of PI3K-AKT/mTOR-GSK-3β by Upregulating GRPR in Hippocampal Neurons of Autistic Mice. J Neuroimmune Pharmacol 2024; 19:12. [PMID: 38536552 PMCID: PMC10972920 DOI: 10.1007/s11481-024-10111-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/23/2024] [Indexed: 04/11/2024]
Abstract
Autism spectrum disorder (ASD) is a neurological disorder associated with brain inflammation. The underlying mechanisms could be attributed to the activation of PI3K signaling in the inflamed brain of ASD. Multiple studies highlight the role of GRPR in regulating ASD like abnormal behavior and enhancing the PI3K signaling. However, the molecular mechanism by which GRPR regulates PI3K signaling in neurons of individuals with ASD is still unclear. In this study, we utilized a maternal immune activation model to investigate the effects of GRPR on PI3K signaling in the inflamed brain of ASD mice. We used HT22 cells with and without GRPR to examine the impact of GRP-GRPR on the PI3K-AKT pathway with IL-6 treatment. We analyzed a dataset of hippocampus samples from ASD mice to identify hub genes. Our results demonstrated increased expression of IL-6, GRPR, and PI3K-AKT signaling in the hippocampus of ASD mice. Additionally, we observed increased GRPR expression and PI3K-AKT/mTOR activation in HT22 cells after IL-6 treatment, but decreased expression in HT22 cells with GRPR knockdown. NetworkAnalyst identified GSK-3β as the most crucial gene in the PI3K-AKT/mTOR pathway in the hippocampus of ASD. Furthermore, we found that IL-6 upregulated the expression of GSK-3β in HT22 cells by upregulating GRP-GRPR. Our findings suggest that IL-6 can enhance the activation of PI3K-AKT/mTOR-GSK-3β in hippocampal neurons of ASD mice by upregulating GRPR.
Collapse
Affiliation(s)
- Heli Li
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinyuan Wang
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cong Hu
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinru Cui
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao Li
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Hao
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
103
|
Griffin A, Bowles T, Solis L, Railey T, Beauti S, Robinson R, Spencer SK, Shaffery JP, Wallace K. Maternal immune suppression during pregnancy does not prevent abnormal behavior in offspring. Biol Sex Differ 2024; 15:27. [PMID: 38532505 DOI: 10.1186/s13293-024-00600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Offspring of hypertensive disorders of pregnancy are at an increased risk of developing neurodevelopmental and neurobehavioral disorders compared to offspring from non-affected pregnancies. Using rodent models of Preeclampsia (PreE; new onset of hypertension after 20 weeks gestation) and HELLP (hemolysis, elevated liver enzymes, and low platelets), we studied the behavioral outcome of their offspring in adolescence. METHODS A subset of dams received Orencia, a T-cell activation inhibitor, as T cells have been associated with the induction of hypertension and inflammation during pregnancy. We hypothesized that offspring from hypertensive dams would experience adverse behavioral outcomes in social, cognitive, locomotor, and anxiety tests, and offspring from dams treated with Orencia would demonstrate less adverse behaviors. RESULTS Male offspring of PreE + Orencia dams (p < 0.05) and female offspring from HELLP + Orencia dams (p < 0.05) spent more time playing compared to normal pregnant offspring. All offspring from hypertensive and Orencia-treated dams performed worse on the Barnes Maze test compared to normal pregnant. We also measured adult (postnatal day > 60) myelin basic protein (MBP) and NeuN expression in both the prefrontal cortex and hippocampus. In the hippocampus and prefrontal cortex, there was no difference in expression of either MBP or NeuN in all groups regardless of sex. CONCLUSION The results from this study suggest that offspring of hypertensive disorders of pregnancy have behavioral changes, specifically cognitive differences. This study has shown that there is a sex dependent difference in offspring neurobehavioral development, influenced in part by the type of hypertensive disorder of pregnancy, and alterations in the maternal immune system.
Collapse
Affiliation(s)
- Ashley Griffin
- Program in Neuroscience, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Teylor Bowles
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Lucia Solis
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Teryn Railey
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Samer Beauti
- Master's in Biomedical Science program, School of Graduate Studies in Health Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Reanna Robinson
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Shauna-Kay Spencer
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - James P Shaffery
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Kedra Wallace
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
104
|
Bhatia Z, Kumar S, Seshadri S. Composition and interaction of maternal microbiota with immune mediators during pregnancy and their outcome: A narrative review. Life Sci 2024; 340:122440. [PMID: 38278350 DOI: 10.1016/j.lfs.2024.122440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/26/2023] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
The connection between maternal microbiota and infant health has been greatly garnered interest for therapeutic purposes. The early resident microbiota perpetually exhibits much more flexibility as compared to that of the adults, and therefore, constant need of understanding the infant as well as maternal microbiota and their implications however has increased. In this review, we focus mainly on the diversity of overall maternal microbiota including the gut, vaginal, colostrum microbiota and how inflammatory markers fluctuate throughout the normal pregnancy as well in pregnancy with complications. The maternal body undergoes a cascade of physiological changes including hormonal, immunological and metabolic events to support the fetal development. These changes at the time of pregnancy have been correlated with alteration in the composition and diversity of maternal microbiota. Along with alteration in microbiome, the levels of circulatory cytokines fluctuate by complex network of inflammation, in order to prevent the fetal allograft throughout the pregnancy. The dynamic relationship of gut microbiota with the host and its immune system allows one to have greater insights of their role in pregnancy and newborn's health. Emerging evidence suggests that the vertical transmission of bacterial community from mother to newborn may begin in-utero which contributes in developing the immune system and infant gut microbiota.
Collapse
Affiliation(s)
- Zeel Bhatia
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Sunny Kumar
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Sriram Seshadri
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
105
|
Bashir B, Alam S, Khandale N, Birla D, Vishwas S, Pandey NK, Gupta G, Paudel KR, Dureja H, Kumar P, Singh TG, Kuppusamy G, Zacconi FC, Pinto TDJA, Dhanasekaran M, Gulati M, Dua K, Singh SK. Opening avenues for treatment of neurodegenerative disease using post-biotics: Breakthroughs and bottlenecks in clinical translation. Ageing Res Rev 2024; 95:102236. [PMID: 38369026 DOI: 10.1016/j.arr.2024.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Recent studies have indicated the significant involvement of the gut microbiome in both human physiology and pathology. Additionally, therapeutic interventions based on microbiome approaches have been employed to enhance overall health and address various diseases including aging and neurodegenerative disease (ND). Researchers have explored potential links between these areas, investigating the potential pathogenic or therapeutic effects of intestinal microbiota in diseases. This article provides a summary of established interactions between the gut microbiome and ND. Post-biotic is believed to mediate its neuroprotection by elevating the level of dopamine and reducing the level of α-synuclein in substantia nigra, protecting the loss of dopaminergic neurons, reducing the aggregation of NFT, reducing the deposition of amyloid β peptide plagues and ameliorating motor deficits. Moreover, mediates its neuroprotective activity by inhibiting the inflammatory response (decreasing the expression of TNFα, iNOS expression, free radical formation, overexpression of HIF-1α), apoptosis (i.e. active caspase-3, TNF-α, maintains the level of Bax/Bcl-2 ratio) and promoting BDNF secretion. It is also reported to have good antioxidant activity. This review offers an overview of the latest findings from both preclinical and clinical trials concerning the use of post-biotics in ND.
Collapse
Affiliation(s)
- Bushra Bashir
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Shahbaz Alam
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Nikhil Khandale
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Devendra Birla
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Narendra Kumar Pandey
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, India
| | - Flavia C Zacconi
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Terezinha de Jesus Andreoli Pinto
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Professor Lineu Prestes Street, Sao Paulo 05508-000, Brazil
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University Auburn, AL 36849, USA
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
106
|
Zhou S, Cui X, Chen J, Luo M, Ouyang W, Tong J, Xie Z, Le Y. Single exposure to anesthesia/surgery in neonatal mice induces cognitive impairment in young adult mice. Free Radic Biol Med 2024; 214:184-192. [PMID: 38369077 DOI: 10.1016/j.freeradbiomed.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND The effects of a solitary neonatal exposure to anesthesia plus surgery (anesthesia/surgery) on cognitive function and the underlying mechanism in developing brains remains largely undetermined. We, therefore, set out to investigate the impact of single exposure to anesthesia/surgery in neonatal mice. METHODS Six-day-old male and female mice received abdominal surgery under 3% sevoflurane plus 50% oxygen for 2 h. The new object recognition (NOR) and Morris water maze (MWM) were used to evaluate cognitive function in young adult mice. Western blot, ELISA and RT-PCR were used to measure levels of NR2B and IL-6 in medial prefrontal cortex and IL-6 in blood of the mice. We employed NR2B siRNA and IL-6 antibody in the interaction studies. RESULTS The anesthesia/surgery decreased the ratio of novel time to novel plus familiar time in NOR and the number of platform crossings, but not escape latency, in MWM compared to sham condition. The mice in anesthesia/surgery group had increased NR2B expression in medial prefrontal cortex, and IL-6 amounts in blood and medial prefrontal cortex. Local injection of NR2B siRNA in medial prefrontal cortex alleviated the anesthesia/surgery-induced cognitive impairment. IL-6 antibody mitigated the anesthesia/surgery-induced upregulation of NR2B and cognitive impairment in young adult mice. CONCLUSIONS These results suggest that a single neonatal exposure to anesthesia/surgery causes impairment of memory, but not learning, in young adult mice through IL-6-regulated increases in NR2B concentrations in medial prefrontal cortex, highlighting the need for further research on the underlying mechanisms of anesthesia/surgery's impact on cognitive function in developing brains.
Collapse
Affiliation(s)
- Songhua Zhou
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Xiaoyu Cui
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Jie Chen
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Manli Luo
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Wen Ouyang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Jianbin Tong
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA, 02129-2060
| | - Yuan Le
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China; Hunan Province Key Laboratory of Brain Homeostasis, The Third Xiangya Hospital, Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China.
| |
Collapse
|
107
|
Gumusoglu SB. The role of the placenta-brain axis in psychoneuroimmune programming. Brain Behav Immun Health 2024; 36:100735. [PMID: 38420039 PMCID: PMC10900837 DOI: 10.1016/j.bbih.2024.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/06/2024] [Accepted: 02/04/2024] [Indexed: 03/02/2024] Open
Abstract
Gestational exposures have enduring impacts on brain and neuroimmune development and function. Perturbations of pregnancy leading to placental structure/function deficits, cell stress, immune activation, and endocrine changes (metabolic, growth factors, etc.) all increase neuropsychiatric risk in offspring. The existing literature links obstetric diseases with placental involvement to offspring neuroimmune outcomes and neurodevelopmental risk. Psychoneuroimmune outcomes in offspring brain include changes to microglia, cytokine/chemokine production, cell stress, and long-term immunoreactivity. These outcomes are altered by structural, anti-angiogenic/hypoxic, inflammatory, and metabolic diseases of the placenta. This fetal programming occurs via direct placental passage or production of factors which can act directly on fetal brain substrates, or indirectly via action of circulating factors on intermediates in the placenta. Placental neuroendocrine, vascular/angiogenic, immune, and extracellular vesicular mechanisms are detailed. These mechanisms interact within various placental and pregnancy conditions. An increased understanding of the placental origins of psychoneuroimmunology will yield dividends for human health. Identifying maternal and placental biomarkers for fetal neuroimmune health may also revolutionize early diagnosis and precision psychiatry, empowering patients to make the best healthcare decisions for their families. Targeting placental mechanisms may be a valuable approach for the prevention and mitigation of intergenerational, lifelong neuropathology.
Collapse
Affiliation(s)
- Serena B. Gumusoglu
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, 200 Hawkins Dr. Iowa City, IA, 52327, USA
- Department of Psychiatry, University of Iowa Carver College of Medicine, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
108
|
Jaswa EG, Cedars MI, Lindquist KJ, Bishop SL, Kim YS, Kaing A, Prahl M, Gaw SL, Corley J, Hoskin E, Cho YJ, Rogers E, Huddleston HG. In Utero Exposure to Maternal COVID-19 Vaccination and Offspring Neurodevelopment at 12 and 18 Months. JAMA Pediatr 2024; 178:258-265. [PMID: 38252445 PMCID: PMC10804280 DOI: 10.1001/jamapediatrics.2023.5743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 01/23/2024]
Abstract
Importance Uptake of COVID-19 vaccines among pregnant individuals was hampered by safety concerns around potential risks to unborn children. Data clarifying early neurodevelopmental outcomes of offspring exposed to COVID-19 vaccination in utero are lacking. Objective To determine whether in utero exposure to maternal COVID-19 vaccination was associated with differences in scores on the Ages and Stages Questionnaire, third edition (ASQ-3), at 12 and 18 months of age. Design, Setting, and Participants This prospective cohort study, Assessing the Safety of Pregnancy During the Coronavirus Pandemic (ASPIRE), enrolled pregnant participants from May 2020 to August 2021; follow-up of children from these pregnancies is ongoing. Participants, which included pregnant individuals and their offspring from all 50 states, self-enrolled online. Study activities were performed remotely. Exposure In utero exposure of the fetus to maternal COVID-19 vaccination during pregnancy was compared with those unexposed. Main Outcomes and Measures Neurodevelopmental scores on validated ASQ-3, completed by birth mothers at 12 and 18 months. A score below the established cutoff in any of 5 subdomains (communication, gross motor, fine motor, problem solving, social skills) constituted an abnormal screen for developmental delay. Results A total of 2487 pregnant individuals (mean [SD] age, 33.3 [4.2] years) enrolled at less than 10 weeks' gestation and completed research activities, yielding a total of 2261 and 1940 infants aged 12 and 18 months, respectively, with neurodevelopmental assessments. In crude analyses, 471 of 1541 exposed infants (30.6%) screened abnormally for developmental delay at 12 months vs 203 of 720 unexposed infants (28.2%; χ2 = 1.32; P = .25); the corresponding prevalences at 18 months were 262 of 1301 (20.1%) vs 148 of 639 (23.2%), respectively (χ2 = 2.35; P = .13). In multivariable mixed-effects logistic regression models adjusting for maternal age, race, ethnicity, education, income, maternal depression, and anxiety, no difference in risk for abnormal ASQ-3 screens was observed at either time point (12 months: adjusted risk ratio [aRR], 1.14; 95% CI, 0.97-1.33; 18 months: aRR, 0.88; 95% CI, 0.72-1.07). Further adjustment for preterm birth and infant sex did not affect results (12 months: aRR, 1.16; 95% CI, 0.98-1.36; 18 months: aRR, 0.87; 95% CI, 0.71-1.07). Conclusions and Relevance Results of this cohort study suggest that COVID-19 vaccination was safe during pregnancy from the perspective of infant neurodevelopment to 18 months of age. Additional longer-term research should be conducted to corroborate these findings and buttress clinical guidance with a strong evidence base.
Collapse
Affiliation(s)
- Eleni G. Jaswa
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Endocrinology and Infertility, University of California, San Francisco, San Francisco
| | - Marcelle I. Cedars
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Endocrinology and Infertility, University of California, San Francisco, San Francisco
| | - Karla J. Lindquist
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco
| | - Somer L. Bishop
- Department of Psychiatry, University of California, San Francisco, San Francisco
| | - Young-Shin Kim
- Department of Psychiatry, University of California, San Francisco, San Francisco
| | - Amy Kaing
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Endocrinology and Infertility, University of California, San Francisco, San Francisco
| | - Mary Prahl
- Department of Pediatrics, Division of Pediatric Infectious Disease and Global Health, University of California, San Francisco, San Francisco
| | - Stephanie L. Gaw
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Maternal Fetal Medicine, University of California, San Francisco, San Francisco
| | - Jamie Corley
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Endocrinology and Infertility, University of California, San Francisco, San Francisco
| | - Elena Hoskin
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Endocrinology and Infertility, University of California, San Francisco, San Francisco
| | - Yoon Jae Cho
- Department of Psychiatry, University of California, San Francisco, San Francisco
| | - Elizabeth Rogers
- Department of Pediatrics, Division of Neonatology, University of California, San Francisco, San Francisco
| | - Heather G. Huddleston
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Endocrinology and Infertility, University of California, San Francisco, San Francisco
| |
Collapse
|
109
|
Zhang HL, Hu S, Qu ST, Lv MD, Wang JJ, Liu XT, Yao JH, Ding YY, Xu GY. Inhibition of NKCC1 Ameliorates Anxiety and Autistic Behaviors Induced by Maternal Immune Activation in Mice. Curr Issues Mol Biol 2024; 46:1851-1864. [PMID: 38534737 DOI: 10.3390/cimb46030121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Autism spectrum disorder (ASD) is thought to result from susceptibility genotypes and environmental risk factors. The offspring of women who experience pregnancy infection have an increased risk for autism. Maternal immune activation (MIA) in pregnant animals produces offspring with autistic behaviors, making MIA a useful model for autism. However, how MIA causes autistic behaviors in offspring is not fully understood. Here, we show that NKCC1 is critical for mediating autistic behaviors in MIA offspring. We confirmed that MIA induced by poly(I:C) infection during pregnancy leads to autistic behaviors in offspring. We further demonstrated that MIA offspring showed significant microglia activation, excessive dendritic spines, and narrow postsynaptic density (PSD) in their prefrontal cortex (PFC). Then, we discovered that these abnormalities may be caused by overexpression of NKCC1 in MIA offspring's PFCs. Finally, we ameliorated the autistic behaviors using PFC microinjection of NKCC1 inhibitor bumetanide (BTN) in MIA offspring. Our findings may shed new light on the pathological mechanisms for autism caused by pregnancy infection.
Collapse
Affiliation(s)
- Hai-Long Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Suzhou Medical College of Soochow University, Medical Center of Soochow University, Suzhou 215123, China
| | - Shufen Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Suzhou Medical College of Soochow University, Medical Center of Soochow University, Suzhou 215123, China
| | - Shu-Ting Qu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Suzhou Medical College of Soochow University, Medical Center of Soochow University, Suzhou 215123, China
| | - Meng-Dan Lv
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Suzhou Medical College of Soochow University, Medical Center of Soochow University, Suzhou 215123, China
| | - Jun-Jun Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Suzhou Medical College of Soochow University, Medical Center of Soochow University, Suzhou 215123, China
| | - Xin-Ting Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Suzhou Medical College of Soochow University, Medical Center of Soochow University, Suzhou 215123, China
| | - Jia-He Yao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Suzhou Medical College of Soochow University, Medical Center of Soochow University, Suzhou 215123, China
| | - Yi-Yan Ding
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Suzhou Medical College of Soochow University, Medical Center of Soochow University, Suzhou 215123, China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Suzhou Medical College of Soochow University, Medical Center of Soochow University, Suzhou 215123, China
| |
Collapse
|
110
|
Vacharasin JM, Ward JA, McCord MM, Cox K, Imitola J, Lizarraga SB. Neuroimmune mechanisms in autism etiology - untangling a complex problem using human cellular models. OXFORD OPEN NEUROSCIENCE 2024; 3:kvae003. [PMID: 38665176 PMCID: PMC11044813 DOI: 10.1093/oons/kvae003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/13/2024] [Accepted: 01/31/2024] [Indexed: 04/28/2024]
Abstract
Autism spectrum disorder (ASD) affects 1 in 36 people and is more often diagnosed in males than in females. Core features of ASD are impaired social interactions, repetitive behaviors and deficits in verbal communication. ASD is a highly heterogeneous and heritable disorder, yet its underlying genetic causes account only for up to 80% of the cases. Hence, a subset of ASD cases could be influenced by environmental risk factors. Maternal immune activation (MIA) is a response to inflammation during pregnancy, which can lead to increased inflammatory signals to the fetus. Inflammatory signals can cross the placenta and blood brain barriers affecting fetal brain development. Epidemiological and animal studies suggest that MIA could contribute to ASD etiology. However, human mechanistic studies have been hindered by a lack of experimental systems that could replicate the impact of MIA during fetal development. Therefore, mechanisms altered by inflammation during human pre-natal brain development, and that could underlie ASD pathogenesis have been largely understudied. The advent of human cellular models with induced pluripotent stem cell (iPSC) and organoid technology is closing this gap in knowledge by providing both access to molecular manipulations and culturing capability of tissue that would be otherwise inaccessible. We present an overview of multiple levels of evidence from clinical, epidemiological, and cellular studies that provide a potential link between higher ASD risk and inflammation. More importantly, we discuss how stem cell-derived models may constitute an ideal experimental system to mechanistically interrogate the effect of inflammation during the early stages of brain development.
Collapse
Affiliation(s)
- Janay M Vacharasin
- Department of Biological Sciences, and Center for Childhood Neurotherapeutics, Univ. of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
- Department of Biological Sciences, Francis Marion University, 4822 East Palmetto Street, Florence, S.C. 29506, USA
| | - Joseph A Ward
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute of Brain Science, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Mikayla M McCord
- Department of Biological Sciences, and Center for Childhood Neurotherapeutics, Univ. of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Kaitlin Cox
- Department of Biological Sciences, and Center for Childhood Neurotherapeutics, Univ. of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Jaime Imitola
- Laboratory of Neural Stem Cells and Functional Neurogenetics, UConn Health, Departments of Neuroscience, Neurology, Genetics and Genome Sciences, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-5357, USA
| | - Sofia B Lizarraga
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute of Brain Science, Brown University, 70 Ship Street, Providence, RI 02903, USA
| |
Collapse
|
111
|
Chen JL, Dai HF, Kan XC, Wu J, Chen HW. The integrated bioinformatic analysis identifies immune microenvironment-related potential biomarkers for patients with gestational diabetes mellitus. Front Immunol 2024; 15:1296855. [PMID: 38449866 PMCID: PMC10917066 DOI: 10.3389/fimmu.2024.1296855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/22/2024] [Indexed: 03/08/2024] Open
Abstract
Background Gestational diabetes mellitus (GDM), a transient disease, may lead to short- or long-term adverse influences on maternal and fetal health. Therefore, its potential functions, mechanisms and related molecular biomarkers must be comprehended for the control, diagnosis and treatment of GDM. Methods The differentially expressed genes (DEGs) were identified using GSE49524 and GSE87295 associated with GDM from the Gene Expression Omnibus database, followed by function enrichment analysis, protein-protein interactions network construction, hub DEGs mining, diagnostic value evaluation and immune infiltration analysis. Finally, hub DEGs, the strongest related to immune infiltration, were screened as immune-related biomarkers. Results A hundred and seven DEGs were identified between patients with GDM and healthy individuals. Six hub genes with high diagnostic values, including ALDH1A1, BMP4, EFNB2, MME, PLAUR and SLIT2, were identified. Among these, two immune-related genes (PLAUR and SLIT2) with the highest absolute correlation coefficient were considered immune-related biomarkers in GDM. Conclusion Our study provides a comprehensive analysis of GDM, which would provide a foundation for the development of diagnosis and treatment of GDM.
Collapse
Affiliation(s)
- Jie-ling Chen
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, Guangdong, China
| | - Hui-fang Dai
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xin-chen Kan
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, Guangdong, China
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jie Wu
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, Guangdong, China
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong, China
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hong-Wu Chen
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, Guangdong, China
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong, China
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
112
|
Xu X, Han Y, Zhang B, Ren Q, Ma J, Liu S. Understanding immune microenvironment alterations in the brain to improve the diagnosis and treatment of diverse brain diseases. Cell Commun Signal 2024; 22:132. [PMID: 38368403 PMCID: PMC10874090 DOI: 10.1186/s12964-024-01509-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024] Open
Abstract
Abnormal inflammatory states in the brain are associated with a variety of brain diseases. The dynamic changes in the number and function of immune cells in cerebrospinal fluid (CSF) are advantageous for the early prediction and diagnosis of immune diseases affecting the brain. The aggregated factors and cells in inflamed CSF may represent candidate targets for therapy. The physiological barriers in the brain, such as the blood‒brain barrier (BBB), establish a stable environment for the distribution of resident immune cells. However, the underlying mechanism by which peripheral immune cells migrate into the brain and their role in maintaining immune homeostasis in CSF are still unclear. To advance our understanding of the causal link between brain diseases and immune cell status, we investigated the characteristics of immune cell changes in CSF and the molecular mechanisms involved in common brain diseases. Furthermore, we summarized the diagnostic and treatment methods for brain diseases in which immune cells and related cytokines in CSF are used as targets. Further investigations of the new immune cell subtypes and their contributions to the development of brain diseases are needed to improve diagnostic specificity and therapy.
Collapse
Affiliation(s)
- Xiaotong Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yi Han
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People's Republic of China.
| | - Binlong Zhang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People's Republic of China
| | - Quanzhong Ren
- JST Sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, People's Republic of China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People's Republic of China
| |
Collapse
|
113
|
Suprunowicz M, Tomaszek N, Urbaniak A, Zackiewicz K, Modzelewski S, Waszkiewicz N. Between Dysbiosis, Maternal Immune Activation and Autism: Is There a Common Pathway? Nutrients 2024; 16:549. [PMID: 38398873 PMCID: PMC10891846 DOI: 10.3390/nu16040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neuropsychiatric condition characterized by impaired social interactions and repetitive stereotyped behaviors. Growing evidence highlights an important role of the gut-brain-microbiome axis in the pathogenesis of ASD. Research indicates an abnormal composition of the gut microbiome and the potential involvement of bacterial molecules in neuroinflammation and brain development disruptions. Concurrently, attention is directed towards the role of short-chain fatty acids (SCFAs) and impaired intestinal tightness. This comprehensive review emphasizes the potential impact of maternal gut microbiota changes on the development of autism in children, especially considering maternal immune activation (MIA). The following paper evaluates the impact of the birth route on the colonization of the child with bacteria in the first weeks of life. Furthermore, it explores the role of pro-inflammatory cytokines, such as IL-6 and IL-17a and mother's obesity as potentially environmental factors of ASD. The purpose of this review is to advance our understanding of ASD pathogenesis, while also searching for the positive implications of the latest therapies, such as probiotics, prebiotics or fecal microbiota transplantation, targeting the gut microbiota and reducing inflammation. This review aims to provide valuable insights that could instruct future studies and treatments for individuals affected by ASD.
Collapse
Affiliation(s)
| | | | | | | | - Stefan Modzelewski
- Department of Psychiatry, Medical University of Bialystok, pl. Wołodyjowskiego 2, 15-272 Białystok, Poland; (M.S.); (N.T.); (A.U.); (K.Z.); (N.W.)
| | | |
Collapse
|
114
|
Sanders AFP, Tirado B, Seider NA, Triplett RL, Lean RE, Neil JJ, Miller JP, Tillman R, Smyser TA, Barch DM, Luby JL, Rogers CE, Smyser CD, Warner BB, Chen E, Miller GE. Prenatal exposure to maternal disadvantage-related inflammatory biomarkers: associations with neonatal white matter microstructure. Transl Psychiatry 2024; 14:72. [PMID: 38307841 PMCID: PMC10837200 DOI: 10.1038/s41398-024-02782-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/04/2024] Open
Abstract
Prenatal exposure to heightened maternal inflammation has been associated with adverse neurodevelopmental outcomes, including atypical brain maturation and psychiatric illness. In mothers experiencing socioeconomic disadvantage, immune activation can be a product of the chronic stress inherent to such environmental hardship. While growing preclinical and clinical evidence has shown links between altered neonatal brain development and increased inflammatory states in utero, the potential mechanism by which socioeconomic disadvantage differentially impacts neural-immune crosstalk remains unclear. In the current study, we investigated associations between socioeconomic disadvantage, gestational inflammation, and neonatal white matter microstructure in 320 mother-infant dyads over-sampled for poverty. We analyzed maternal serum levels of four cytokines (IL-6, IL-8, IL-10, TNF-α) over the course of pregnancy in relation to offspring white matter microstructure and socioeconomic disadvantage. Higher average maternal IL-6 was associated with very low socioeconomic status (SES; INR < 200% poverty line) and lower neonatal corticospinal fractional anisotropy (FA) and lower uncinate axial diffusivity (AD). No other cytokine was associated with SES. Higher average maternal IL-10 was associated with lower FA and higher radial diffusivity (RD) in corpus callosum and corticospinal tracts, higher optic radiation RD, lower uncinate AD, and lower FA in inferior fronto-occipital fasciculus and anterior limb of internal capsule tracts. SES moderated the relationship between average maternal TNF-α levels during gestation and neonatal white matter diffusivity. When these interactions were decomposed, the patterns indicated that this association was significant and positive among very low SES neonates, whereby TNF-α was inversely and significantly associated with inferior cingulum AD. By contrast, among the more advantaged neonates (lower-to-higher SES [INR ≥ 200% poverty line]), TNF-α was positively and significantly associated with superior cingulum AD. Taken together, these findings suggest that the relationship between prenatal cytokine exposure and white matter microstructure differs as a function of SES. These patterns are consistent with a scenario where gestational inflammation's effects on white matter development diverge depending on the availability of foundational resources in utero.
Collapse
Affiliation(s)
- Ashley F P Sanders
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Brian Tirado
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Nicole A Seider
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Regina L Triplett
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rachel E Lean
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jeffrey J Neil
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - J Philip Miller
- Division of Biostatistics, Institute for Informatics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rebecca Tillman
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tara A Smyser
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, 63130, USA
| | - Joan L Luby
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Christopher D Smyser
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Barbara B Warner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Newborn Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Edith Chen
- Institute for Policy Research, Northwestern University, Evanston, IL, 60208, USA
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - Gregory E Miller
- Institute for Policy Research, Northwestern University, Evanston, IL, 60208, USA
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
115
|
Wang X, Ling Z, Luo T, Zhou Q, Zhao G, Li B, Xia K, Li J. Severity of Autism Spectrum Disorder Symptoms Associated with de novo Variants and Pregnancy-Induced Hypertension. J Autism Dev Disord 2024; 54:749-764. [PMID: 36445517 DOI: 10.1007/s10803-022-05824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 11/30/2022]
Abstract
Genetic factors, particularly, de novo variants (DNV), and an environment factor, exposure to pregnancy-induced hypertension (PIH), were reported to be associated with risk of autism spectrum disorder (ASD); however, how they jointly affect the severity of ASD symptom is unclear. We assessed the severity of core ASD symptoms affected by functional de novo variants or PIH. We selected phenotype data from Simon's Simplex Collection database, used genotypes from previous studies, and created linear regression models. We found that ASD patients carrying DNV with PIH exposure had increased adaptive and cognitive ability, decreased social problems, and enhanced repetitive behaviors; however, there was no difference in patients without DNV between those with or without PIH exposure. In addition, the DNV genes carried by patients exposed to PIH were enriched in ubiquitin-dependent proteolytic processes, highlighting how candidate genes in pathways and environments interact. The results indicate the joint contribution of DNV and PIH to ASD.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 41008, Hunan, China
- Centre for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 41008, Hunan, China
| | - Zhengbao Ling
- Centre for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 41008, Hunan, China
| | - Tengfei Luo
- Centre for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 41008, Hunan, China
| | - Qiao Zhou
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 41008, Hunan, China
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guihu Zhao
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 41008, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bin Li
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 41008, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Centre for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 41008, Hunan, China.
- University of South China, Hengyang, Hunan, China.
| | - Jinchen Li
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 41008, Hunan, China.
- Centre for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 41008, Hunan, China.
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
116
|
Gillespie B, Houghton MJ, Ganio K, McDevitt CA, Bennett D, Dunn A, Raju S, Schroeder A, Hill RA, Cardoso BR. Maternal selenium dietary supplementation alters sociability and reinforcement learning deficits induced by in utero exposure to maternal immune activation in mice. Brain Behav Immun 2024; 116:349-361. [PMID: 38142918 DOI: 10.1016/j.bbi.2023.12.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/24/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023] Open
Abstract
Maternal immune activation (MIA) during pregnancy increases the risk for the unborn foetus to develop neurodevelopmental conditions such as autism spectrum disorder and schizophrenia later in life. MIA mouse models recapitulate behavioural and biological phenotypes relevant to both conditions, and are valuable models to test novel treatment approaches. Selenium (Se) has potent anti-inflammatory properties suggesting it may be an effective prophylactic treatment against MIA. The aim of this study was to determine if Se supplementation during pregnancy can prevent adverse effects of MIA on offspring brain and behaviour in a mouse model. Selenium was administered via drinking water (1.5 ppm) to pregnant dams from gestational day (GD) 9 to birth, and MIA was induced at GD17 using polyinosinic:polycytidylic acid (poly-I:C, 20 mg/kg via intraperitoneal injection). Foetal placenta and brain cytokine levels were assessed using a Luminex assay and brain elemental nutrients assessed using inductively coupled plasma- mass spectrometry. Adult offspring were behaviourally assessed using a reinforcement learning paradigm, the three-chamber sociability test and the open field test. MIA elevated placental IL-1β and IL-17, and Se supplementation successfully prevented this elevation. MIA caused an increase in foetal brain calcium, which was prevented by Se supplement. MIA caused in offspring a female-specific reduction in sociability, which was recovered by Se, and a male-specific reduction in social memory, which was not recovered by Se. Exposure to poly-I:C or selenium, but not both, reduced performance in the reinforcement learning task. Computational modelling indicated that this was predominantly due to increased exploratory behaviour, rather than reduced rate of learning the location of the food reward. This study demonstrates that while Se may be beneficial in ameliorating sociability deficits caused by MIA, it may have negative effects in other behavioural domains. Caution in the use of Se supplementation during pregnancy is therefore warranted.
Collapse
Affiliation(s)
- Brendan Gillespie
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| | - Michael J Houghton
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Monash University, Clayton, VIC 3168, Australia
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Daniel Bennett
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| | - Ariel Dunn
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| | - Sharvada Raju
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia
| | - Anna Schroeder
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia.
| | - Rachel A Hill
- Department of Psychiatry, Monash University, Clayton, VIC 3168, Australia.
| | - Barbara R Cardoso
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC 3168, Australia.
| |
Collapse
|
117
|
Tamayo JM, Osman HC, Schwartzer JJ, Ashwood P. The influence of asthma on neuroinflammation and neurodevelopment: From epidemiology to basic models. Brain Behav Immun 2024; 116:218-228. [PMID: 38070621 DOI: 10.1016/j.bbi.2023.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Asthma is a highly heterogeneous inflammatory disease that can have a significant effect on both the respiratory system and central nervous system. Population based studies and animal models have found asthma to be comorbid with a number of neurological conditions, including depression, anxiety, and neurodevelopmental disorders. In addition, maternal asthma during pregnancy has been associated with neurodevelopmental disorders in the offspring, such as autism spectrum disorders and attention deficit hyperactivity disorder. In this article, we review the most current epidemiological studies of asthma that identify links to neurological conditions, both as it relates to individuals that suffer from asthma and the impacts asthma during pregnancy may have on offspring neurodevelopment. We also discuss the relevant animal models investigating these links, address the gaps in knowledge, and explore the potential future directions in this field.
Collapse
Affiliation(s)
- Juan M Tamayo
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA
| | - Hadley C Osman
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA
| | - Jared J Schwartzer
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA.
| |
Collapse
|
118
|
Shim S, Ha S, Choi J, Kwon HK, Cheon KA. Alterations in Plasma Cytokine Levels in Korean Children with Autism Spectrum Disorder. Yonsei Med J 2024; 65:70-77. [PMID: 38288647 PMCID: PMC10827638 DOI: 10.3349/ymj.2023.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 02/01/2024] Open
Abstract
PURPOSE Numerous studies have supported the role of the immune dysfunction in the pathogenesis of autism spectrum disorder (ASD); however, to our knowledge, no study has been conducted on plasma cytokine levels in children with ASD in South Korea. In this study, we aimed to analyze the immunological characteristics of Korean children with ASD through plasma cytokine analysis. MATERIALS AND METHODS Blood samples were collected from 94 ASD children (mean age 7.1; 81 males and 13 females) and 48 typically developing children (TDC) (mean age 7.3; 30 males and 18 females). Plasma was isolated from 1 mL of blood by clarifying with centrifugation at 8000 rpm at 4℃ for 10 min. Cytokines in plasma were measured with LEGENDplex HU Th cytokine panel (BioLegend, 741028) and LEGENDplex HU cytokine panel 2 (BioLegend, 740102). RESULTS Among 25 cytokines, innate immune cytokine [interleukin (IL)-33] was significantly decreased in ASD children compared with TDC. In acute phase proteins, tumor necrosis factor α (TNF-α) was significantly increased, while IL-6, another inflammation marker, was decreased in ASD children compared with TDC. The cytokines from T cell subsets, including interferon (IFN)-γ, IL-5, IL-13, and IL-17f, were significantly decreased in ASD children compared to TDC. IL-10, a major anti-inflammatory cytokine, and IL-9, which modulates immune cell growth and proliferation, were also significantly decreased in ASD children compared to TDC. CONCLUSION We confirmed that Korean children with ASD showed altered immune function and unique cytokine expression patterns distinct from TDC.
Collapse
Affiliation(s)
- Songjoo Shim
- Department of Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sungji Ha
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea.
| | - Juli Choi
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea.
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Keun-Ah Cheon
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Child and Adolescent Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
119
|
López-Aranda MF, Bach K, Bui R, Phan M, Lu O, Thadani C, Luchetti A, Mandanas R, Herrera I, López-Ávalos MD, Silva AJ. Early Post-Natal Immune Activation Leads to Object Memory Deficits in Female Tsc2+/- Mice: The Importance of Including Both Sexes in Neuroscience Research. Biomedicines 2024; 12:203. [PMID: 38255309 PMCID: PMC10813674 DOI: 10.3390/biomedicines12010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
There is evidence that viral infections during pre-natal development constitute a risk factor for neuropsychiatric disorders and lead to learning and memory deficits. However, little is known about why viral infections during early post-natal development have a different impact on learning and memory depending on the sex of the subject. We previously showed that early post-natal immune activation induces hippocampal-dependent social memory deficits in a male, but not in a female, mouse model of tuberous sclerosis complex (TSC; Tsc2+/- mice). Here, we explored the impact of a viral-like immune challenge in object memory. We demonstrate that early post-natal immune activation (during the first 2 weeks of life) leads to object memory deficits in female, but not male, mice that are heterozygous for a gene responsible for tuberous sclerosis complex (Tsc2+/- mice), while no effect was observed in wild type (WT) mice. Moreover, we found that the same immune activation in Tsc2+/- adult mice was not able to cause object memory deficits in females, which suggests that the early post-natal development stage constitutes a critical window for the effects of immune challenge on adult memory. Also, our results suggest that mTOR plays a critical role in the observed deficit in object memory in female Tsc2+/- mice. These results, together with previous results published by our laboratory, showing sex-specific memory deficits due to early post-natal immune activation, reinforce the necessity of using both males and females for research studies. This is especially true for studies related to immune activation, since the higher levels of estrogens in females are known to affect inflammation and to provide neuroprotection.
Collapse
Affiliation(s)
- Manuel F. López-Aranda
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, 29010 Málaga, Spain
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, 29590 Málaga, Spain
| | - Karen Bach
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - Raymond Bui
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - Miranda Phan
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - Odilia Lu
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - Chirag Thadani
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - Alessandro Luchetti
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - Rochelle Mandanas
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - Isaiah Herrera
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - María Dolores López-Ávalos
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, 29590 Málaga, Spain
| | - Alcino J. Silva
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| |
Collapse
|
120
|
Lee HHC, Sahin M. Rodent Models for ASD Biomarker Development. ADVANCES IN NEUROBIOLOGY 2024; 40:189-218. [PMID: 39562446 DOI: 10.1007/978-3-031-69491-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Advances in molecular biology and genetics are increasingly revealing the complex etiology of autism spectrum disorder (ASD). In parallel, a number of biochemical, anatomical, and electrophysiological measures are emerging as potential disease-relevant biomarkers that could inform the diagnosis and clinical management of ASD. Rodent ASD models play a key role in ASD research as essential experimental tools. Nevertheless, there are challenges and limitations to the validity and translational value of rodent models, including genetic relevance and cognitive performance differences between humans and rodents. In this chapter, we begin with a brief history of autism research, followed by prominent examples of disease-relevant mouse models enabled by current knowledge of genetics, molecular biology, and bioinformatics. These ASD-associated rodent models enable quantifiable biomarker development. Finally, we discuss the prospects of ASD biomarker development.
Collapse
Affiliation(s)
- Henry H C Lee
- Rosamund Stone Zander Translational Neuroscience Center, F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
121
|
Breach MR, Akouri HE, Costantine S, Dodson CM, McGovern N, Lenz KM. Prenatal allergic inflammation in rats confers sex-specific alterations to oxytocin and vasopressin innervation in social brain regions. Horm Behav 2024; 157:105427. [PMID: 37743114 PMCID: PMC10842952 DOI: 10.1016/j.yhbeh.2023.105427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023]
Abstract
Prenatal exposure to inflammation via maternal infection, allergy, or autoimmunity increases one's risk for developing neurodevelopmental and psychiatric disorders. Many of these disorders are associated with altered social behavior, yet the mechanisms underlying inflammation-induced social impairment remain unknown. We previously found that a rat model of acute allergic maternal immune activation (MIA) produced deficits like those found in MIA-linked disorders, including impairments in juvenile social play behavior. The neuropeptides oxytocin (OT) and arginine vasopressin (AVP) regulate social behavior, including juvenile social play, across mammalian species. OT and AVP are also implicated in neuropsychiatric disorders characterized by social impairment, making them good candidate regulators of social deficits after MIA. We profiled how acute prenatal exposure to allergic MIA changed OT and AVP innervation in several brain regions important for social behavior in juvenile male and female rat offspring. We also assessed whether MIA altered additional behavioral phenotypes related to sociality and anxiety. We found that allergic MIA increased OT and AVP fiber immunoreactivity in the medial amygdala and had sex-specific effects in the nucleus accumbens, bed nucleus of the stria terminalis, and lateral hypothalamic area. We also found that MIA reduced ultrasonic vocalizations in neonates and increased the stereotypical nature of self-grooming behavior. Overall, these findings suggest that there may be sex-specific mechanisms underlying MIA-induced behavioral impairment and underscore OT and AVP as ideal candidates for future mechanistic studies.
Collapse
Affiliation(s)
- Michaela R Breach
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Habib E Akouri
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Sophia Costantine
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Claire M Dodson
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Nolan McGovern
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
122
|
Wang R, Feng W, Wang Y, Jiang Y, Lin Y, Chen X. Maternal obstructive sleep apnea aggravates metabolic dysfunction-associated fatty liver disease via HMGB1-TLR4 signaling-mediated endoplasmic reticulum stress in male offspring rats. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166889. [PMID: 37730152 DOI: 10.1016/j.bbadis.2023.166889] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
AIMS/HYPOTHESIS Maternal obstructive sleep apnea (MOSA) may inflict long-term metabolic effects on offspring. We hypothesize that MOSA increases the propensity for metabolic dysregulation in offspring and thus facilitates the development of metabolic dysfunction-associated fatty liver disease (MAFLD). This study aims to test the hypothesis and explore the underlying mechanism. METHODS The MOSA rat model of upper airway obstruction was established and fecundated. The postweaning male offspring (n = 171) from both the control group and MOSA group were randomly fed the normal chow diet (NCD, n = 89) or high-fat diet (HFD, n = 82) for the next 5 months. Liver function, lipid profile, glucose, and insulin levels were measured. Expression levels of fibrosis-related proteins and endoplasmic reticulum (ER) stress-related proteins in liver tissues were assessed using immunohistochemistry and western blotting. RESULTS MOSA increased body and liver weight in male offspring, along with augmented liver organ coefficient. Serum levels of aminotransferases, low-density lipoprotein, high-density lipoprotein, triglycerides, total cholesterol, total bile acid, fasting glucose, and insulin increased significantly. MOSA exacerbated HFD-induced hepatic steatosis and fibrosis. These effects were driven by the overactivated double-stranded RNA-activated protein kinase (PKR)-like eukaryotic initiation factor 2(PERK)-activating transcription factor (ATF)4-C/EBP homologous protein (CHOP) signaling pathway-induced ER stress, and hyperacetylation and release of high mobility group box-1(HMGB1) elicited above signaling in a TLR4-dependent manner. CONCLUSIONS These findings indicate that MOSA can exert prolonged adverse effects manifested as metabolic dysfunction in male offspring. Therefore, surveillance and management of OSA during pregnancy may be necessary to prevent and alleviate MAFLD in offspring.
Collapse
Affiliation(s)
- Ruhua Wang
- Department of Gastroenterology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Wei Feng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yonghong Jiang
- Department of Gastroenterology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Yiguang Lin
- Central Laboratory, Fist Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China..
| | - Xueqing Chen
- Department of Gastroenterology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China.
| |
Collapse
|
123
|
Traetta ME, Chaves Filho AM, Akinluyi ET, Tremblay MÈ. Neurodevelopmental and Neuropsychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:457-495. [PMID: 39207708 DOI: 10.1007/978-3-031-55529-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This chapter will focus on microglial involvement in neurodevelopmental and neuropsychiatric disorders, particularly autism spectrum disorder (ASD), schizophrenia and major depressive disorder (MDD). We will describe the neuroimmune risk factors that contribute to the etiopathology of these disorders across the lifespan, including both in early life and adulthood. Microglia, being the resident immune cells of the central nervous system, could play a key role in triggering and determining the outcome of these disorders. This chapter will review preclinical and clinical findings where microglial morphology and function were examined in the contexts of ASD, schizophrenia and MDD. Clinical evidence points out to altered microglial morphology and reactivity, as well as increased expression of pro-inflammatory cytokines, supporting the idea that microglial abnormalities are involved in these disorders. Indeed, animal models for these disorders found altered microglial morphology and homeostatic functions which resulted in behaviours related to these disorders. Additionally, as microglia have emerged as promising therapeutic targets, we will also address in this chapter therapies involving microglial mechanisms for the treatment of neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | - Elizabeth Toyin Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology and Therapeutics, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC, Canada.
- Axe Neurosciences, Center de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
124
|
Santoro A, Marino M, Vandenberg LN, Szychlinska MA, Lamparelli EP, Scalia F, Della Rocca N, D’Auria R, Pastorino GMG, Della Porta G, Operto FF, Viggiano A, Cappello F, Meccariello R. PLASTAMINATION: Outcomes on the Central Nervous System and Reproduction. Curr Neuropharmacol 2024; 22:1870-1898. [PMID: 38549522 PMCID: PMC11284724 DOI: 10.2174/1570159x22666240216085947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Environmental exposures to non-biodegradable and biodegradable plastics are unavoidable. Microplastics (MPs) and nanoplastics (NPs) from the manufacturing of plastics (primary sources) and the degradation of plastic waste (secondary sources) can enter the food chain directly or indirectly and, passing biological barriers, could target both the brain and the gonads. Hence, the worldwide diffusion of environmental plastic contamination (PLASTAMINATION) in daily life may represent a possible and potentially serious risk to human health. OBJECTIVE This review provides an overview of the effects of non-biodegradable and the more recently introduced biodegradable MPs and NPs on the brain and brain-dependent reproductive functions, summarizing the molecular mechanisms and outcomes on nervous and reproductive organs. Data from in vitro, ex vivo, non-mammalian and mammalian animal models and epidemiological studies have been reviewed and discussed. RESULTS MPs and NPs from non-biodegradable plastics affect organs, tissues and cells from sensitive systems such as the brain and reproductive organs. Both MPs and NPs induce oxidative stress, chronic inflammation, energy metabolism disorders, mitochondrial dysfunction and cytotoxicity, which in turn are responsible for neuroinflammation, dysregulation of synaptic functions, metabolic dysbiosis, poor gamete quality, and neuronal and reproductive toxicity. In spite of this mechanistic knowledge gained from studies of non-biodegradable plastics, relatively little is known about the adverse effects or molecular mechanisms of MPs and NPs from biodegradable plastics. CONCLUSION The neurological and reproductive health risks of MPs/NPs exposure warrant serious consideration, and further studies on biodegradable plastics are recommended.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Marianna Marino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Laura N. Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Marta Anna Szychlinska
- Faculty of Medicine and Surgery, Kore University of Enna, Cittadella Universitaria 94100 Enna (EN), Italy
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Federica Scalia
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Natalia Della Rocca
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Raffaella D’Auria
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Grazia Maria Giovanna Pastorino
- Child and Adolescence Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of 84100 Salerno, Salerno, Italy
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Francesca Felicia Operto
- Department of Science of Health School of Medicine, University Magna Graecia 88100 Catanzaro, Italy
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, 90127, Italy
| | - Rosaria Meccariello
- Department of Movement and Wellness Sciences, Parthenope University of Naples, 80133 Naples, Italy
| |
Collapse
|
125
|
Di Gesù CM, Buffington SA. The early life exposome and autism risk: a role for the maternal microbiome? Gut Microbes 2024; 16:2385117. [PMID: 39120056 PMCID: PMC11318715 DOI: 10.1080/19490976.2024.2385117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Autism spectrum disorders (ASD) are highly heritable, heterogeneous neurodevelopmental disorders characterized by clinical presentation of atypical social, communicative, and repetitive behaviors. Over the past 25 years, hundreds of ASD risk genes have been identified. Many converge on key molecular pathways, from translational control to those regulating synaptic structure and function. Despite these advances, therapeutic approaches remain elusive. Emerging data unearthing the relationship between genetics, microbes, and immunity in ASD suggest an integrative physiology approach could be paramount to delivering therapeutic breakthroughs. Indeed, the advent of large-scale multi-OMIC data acquisition, analysis, and interpretation is yielding an increasingly mechanistic understanding of ASD and underlying risk factors, revealing how genetic susceptibility interacts with microbial genetics, metabolism, epigenetic (re)programming, and immunity to influence neurodevelopment and behavioral outcomes. It is now possible to foresee exciting advancements in the treatment of some forms of ASD that could markedly improve quality of life and productivity for autistic individuals. Here, we highlight recent work revealing how gene X maternal exposome interactions influence risk for ASD, with emphasis on the intrauterine environment and fetal neurodevelopment, host-microbe interactions, and the evolving therapeutic landscape for ASD.
Collapse
Affiliation(s)
- Claudia M. Di Gesù
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Shelly A. Buffington
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
126
|
Gillespie B, Panthi S, Sundram S, Hill RA. The impact of maternal immune activation on GABAergic interneuron development: A systematic review of rodent studies and their translational implications. Neurosci Biobehav Rev 2024; 156:105488. [PMID: 38042358 DOI: 10.1016/j.neubiorev.2023.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Mothers exposed to infections during pregnancy disproportionally birth children who develop autism and schizophrenia, disorders associated with altered GABAergic function. The maternal immune activation (MIA) model recapitulates this risk factor, with many studies also reporting disruptions to GABAergic interneuron expression, protein, cellular density and function. However, it is unclear if there are species, sex, age, region, or GABAergic subtype specific vulnerabilities to MIA. Furthermore, to fully comprehend the impact of MIA on the GABAergic system a synthesised account of molecular, cellular, electrophysiological and behavioural findings was required. To this end we conducted a systematic review of GABAergic interneuron changes in the MIA model, focusing on the prefrontal cortex and hippocampus. We reviewed 102 articles that revealed robust changes in a number of GABAergic markers that present as gestationally-specific, region-specific and sometimes sex-specific. Disruptions to GABAergic markers coincided with distinct behavioural phenotypes, including memory, sensorimotor gating, anxiety, and sociability. Findings suggest the MIA model is a valid tool for testing novel therapeutics designed to recover GABAergic function and associated behaviour.
Collapse
Affiliation(s)
- Brendan Gillespie
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Sandesh Panthi
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Rachel A Hill
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
127
|
Petrova B, Lacey TE, Culhane AJ, Cui J, Raskin A, Misra A, Lehtinen MK, Kanarek N. Metabolomics of Mouse Embryonic CSF Following Maternal Immune Activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570507. [PMID: 38105934 PMCID: PMC10723469 DOI: 10.1101/2023.12.06.570507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The cerebrospinal fluid (CSF) serves various roles in the developing central nervous system (CNS), from neurogenesis to lifelong cognitive functions. Changes in CSF composition due to inflammation can impact brain function. We recently identified an abnormal cytokine signature in embryonic CSF (eCSF) following maternal immune activation (MIA), a mouse model of autism spectrum disorder (ASD). We hypothesized that MIA leads to other alterations in eCSF composition and employed untargeted metabolomics to profile changes in the eCSF metabolome in mice after inducing MIA with polyI:C. We report these data here as a resource, include a comprehensive MS1 and MS2 reference dataset, and present additional datasets comparing two mouse strains (CD-1 and C57Bl/6) and two developmental time points (E12.5 and E14.5). Targeted metabolomics further validated changes upon MIA. We show a significant elevation of glucocorticoids and kynurenine pathway related metabolites. Both pathways are relevant for suppressing inflammation or could be informative as disease biomarkers. Our resource should inform future mechanistic studies regarding the etiology of MIA neuropathology and roles and contributions of eCSF metabolites to brain development.
Collapse
|
128
|
Ellul P, Maruani A, Peyre H, Vantalon V, Hoareau D, Tiercelin H, Rosenzwajg M, Klatzmann D, Delorme R. Abnormal neutrophil-to-lymphocyte ratio in children with autism spectrum disorder and history of maternal immune activation. Sci Rep 2023; 13:22424. [PMID: 38104181 PMCID: PMC10725503 DOI: 10.1038/s41598-023-49789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023] Open
Abstract
Maternal immune activation (MIA), related to autoimmune/inflammatory diseases or acute infections, during the two first trimesters of pregnancy is a risk factor for autism spectrum disorders (ASD) in offspring. In mice, MIA has a long-term impact on offspring's immune equilibrium resulting in a pro-inflammatory phenotype. We therefore hypothesized that children with ASD and a history of MIA could display a similar phenotype specifically assessed by a higher neutrophil to lymphocyte ratio (NLR). In this study, we used a retrospective sample of 231 dyads involving children with ASD and their mothers. Among ASD patients, 12% had a history of MIA. The multivariate analysis revealed a significant association between NLR in children with ASD and maternal history of MIA (F = 2.27, p = 0.03). Using a categorical approach, we observed an abnormal NLR (over 3) in 7.4% of children with ASD MIA+ compared to 1.9% for MIA-. Our study supports the hypothesis suggesting an impact of MIA on the risk of ASD. Further studies could contribute to the development of biomarkers in MIA+ ASD and enable the development of targeted immunomodulatory therapies.
Collapse
Affiliation(s)
- Pierre Ellul
- Child and Adolescent Psychiatry Department, Robert Debre Hospital, APHP, 48 Boulevard Serurier, 75019, Paris, France.
- UMRS_959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université/INSERM, Paris, France.
| | - Anna Maruani
- Child and Adolescent Psychiatry Department, Robert Debre Hospital, APHP, 48 Boulevard Serurier, 75019, Paris, France
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| | - Hugo Peyre
- Child and Adolescent Psychiatry Department, Robert Debre Hospital, APHP, 48 Boulevard Serurier, 75019, Paris, France
| | - Valérie Vantalon
- Child and Adolescent Psychiatry Department, Robert Debre Hospital, APHP, 48 Boulevard Serurier, 75019, Paris, France
| | - Daphnée Hoareau
- Child and Adolescent Psychiatry Department, Robert Debre Hospital, APHP, 48 Boulevard Serurier, 75019, Paris, France
| | - Hugo Tiercelin
- Child and Adolescent Psychiatry Department, Robert Debre Hospital, APHP, 48 Boulevard Serurier, 75019, Paris, France
| | - Michelle Rosenzwajg
- UMRS_959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université/INSERM, Paris, France
| | - David Klatzmann
- UMRS_959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université/INSERM, Paris, France
| | - Richard Delorme
- Child and Adolescent Psychiatry Department, Robert Debre Hospital, APHP, 48 Boulevard Serurier, 75019, Paris, France
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| |
Collapse
|
129
|
Camacho-Concha N, Santana-Román ME, Sánchez NC, Velasco I, Pando-Robles V, Pedraza-Alva G, Pérez-Martínez L. Insights into Zika Virus Pathogenesis and Potential Therapeutic Strategies. Biomedicines 2023; 11:3316. [PMID: 38137537 PMCID: PMC10741857 DOI: 10.3390/biomedicines11123316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 12/24/2023] Open
Abstract
Zika virus (ZIKV) has emerged as a significant public health threat, reaching pandemic levels in 2016. Human infection with ZIKV can manifest as either asymptomatic or as an acute illness characterized by symptoms such as fever and headache. Moreover, it has been associated with severe neurological complications in adults, including Guillain-Barre syndrome, and devastating fetal abnormalities, like microcephaly. The primary mode of transmission is through Aedes spp. mosquitoes, and with half of the world's population residing in regions where Aedes aegypti, the principal vector, thrives, the reemergence of ZIKV remains a concern. This comprehensive review provides insights into the pathogenesis of ZIKV and highlights the key cellular pathways activated upon ZIKV infection. Additionally, we explore the potential of utilizing microRNAs (miRNAs) and phytocompounds as promising strategies to combat ZIKV infection.
Collapse
Affiliation(s)
- Nohemi Camacho-Concha
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - María E. Santana-Román
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - Nilda C. Sánchez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - Iván Velasco
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Ciudad de México 14269, Mexico
| | - Victoria Pando-Robles
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Morelos, Mexico;
| | - Gustavo Pedraza-Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| |
Collapse
|
130
|
Arenella M, Fanelli G, Kiemeney LA, McAlonan G, Murphy DG, Bralten J. Genetic relationship between the immune system and autism. Brain Behav Immun Health 2023; 34:100698. [PMID: 38020478 PMCID: PMC10663755 DOI: 10.1016/j.bbih.2023.100698] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common and complex neurodevelopmental condition. The pathophysiology of ASD is poorly defined; however, it includes a strong genetic component and there is increasing evidence to support a role of immune dysregulation. Nonetheless, it is unclear which immune phenotypes link to ASD through genetics. Hence, we investigated the genetic correlation between ASD and diverse classes of immune conditions and markers; and if these immune-related genetic factors link to specific autistic-like traits in the population. We estimated global and local genetic correlations between ASD (n = 55,420) and 11 immune phenotypes (n = 14,256-755,406) using genome-wide association study summary statistics. Subsequently, polygenic scores (PGS) for these immune phenotypes were calculated in a population-based sample (n = 2487) and associated to five autistic-like traits (i.e., attention to detail, childhood behaviour, imagination, rigidity, social skills), and a total autistic-like traits score. Sex-stratified PGS analyses were also performed. At the genome-wide level, ASD was positively correlated with allergic diseases (ALG), and negatively correlated with lymphocyte count, rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE) (FDR-p = 0.01-0.02). At the local genetic level, ASD was correlated with RA, C-reactive protein, and granulocytes and lymphocyte counts (p = 5.8 × 10-6-0.002). In the general population sample, increased genetic liability for SLE, RA, ALG, and lymphocyte levels, captured by PGS, was associated with the total autistic score and with rigidity and childhood behaviour (FDR-p = 0.03). In conclusion, we demonstrated a genetic relationship between ASD and immunity that depends on the type of immune phenotype considered; some increase likelihood whereas others may potentially help build resilience. Also, this relationship may be restricted to specific genetic loci and link to specific autistic dimensions (e.g., rigidity).
Collapse
Affiliation(s)
- Martina Arenella
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Giuseppe Fanelli
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lambertus A. Kiemeney
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Maudsley and South London NHS Foundation, London, United Kingdom
| | - Declan G. Murphy
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Maudsley and South London NHS Foundation, London, United Kingdom
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| |
Collapse
|
131
|
Sarieva K, Kagermeier T, Khakipoor S, Atay E, Yentür Z, Becker K, Mayer S. Human brain organoid model of maternal immune activation identifies radial glia cells as selectively vulnerable. Mol Psychiatry 2023; 28:5077-5089. [PMID: 36878967 PMCID: PMC9986664 DOI: 10.1038/s41380-023-01997-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 03/08/2023]
Abstract
Maternal immune activation (MIA) during critical windows of gestation is correlated with long-term neurodevelopmental deficits in the offspring, including increased risk for autism spectrum disorder (ASD) in humans. Interleukin 6 (IL-6) derived from the gestational parent is one of the major molecular mediators by which MIA alters the developing brain. In this study, we establish a human three-dimensional (3D) in vitro model of MIA by treating induced pluripotent stem cell-derived dorsal forebrain organoids with a constitutively active form of IL-6, Hyper-IL-6. We validate our model by showing that dorsal forebrain organoids express the molecular machinery necessary for responding to Hyper-IL-6 and activate STAT signaling upon Hyper-IL-6 treatment. RNA sequencing analysis reveals the upregulation of major histocompatibility complex class I (MHCI) genes in response to Hyper-IL-6 exposure, which have been implicated with ASD. We find a small increase in the proportion of radial glia cells after Hyper-IL-6 treatment through immunohistochemistry and single-cell RNA-sequencing. We further show that radial glia cells are the cell type with the highest number of differentially expressed genes, and Hyper-IL-6 treatment leads to the downregulation of genes related to protein translation in line with a mouse model of MIA. Additionally, we identify differentially expressed genes not found in mouse models of MIA, which might drive species-specific responses to MIA. Finally, we show abnormal cortical layering as a long-term consequence of Hyper-IL-6 treatment. In summary, we establish a human 3D model of MIA, which can be used to study the cellular and molecular mechanisms underlying the increased risk for developing disorders such as ASD.
Collapse
Affiliation(s)
- Kseniia Sarieva
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Theresa Kagermeier
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Shokoufeh Khakipoor
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ezgi Atay
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Zeynep Yentür
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
- Heidelberger Akademie der Wissenschaften, Heidelberg, Germany
| | - Katharina Becker
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Simone Mayer
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany.
- Heidelberger Akademie der Wissenschaften, Heidelberg, Germany.
| |
Collapse
|
132
|
Jain S, Oltman S, Rogers E, Ryckman K, Petersen M, Baer RJ, Rand L, Piao X, Jelliffe-Pawlowski L. Assessing for prenatal risk factors associated with infant neurologic morbidity using a multivariate analysis. J Perinatol 2023; 43:1486-1493. [PMID: 37950045 PMCID: PMC10716040 DOI: 10.1038/s41372-023-01820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To characterize the biochemical and demographic profiles of pregnant people with maternal immune activation (MIA) and identify the prenatal characteristics associated with neurologic morbidity in offspring. STUDY DESIGN This was a retrospective cohort study of 602 mother-infant dyads with births between 2009 and 2010 in California. Multivariable logistic regression was used to build a MIA vulnerability profile including mid-pregnancy biochemical markers and maternal demographic characteristics, and its relationship with infant neurologic morbidity was examined. RESULTS Of the 602 mother-infant dyads, 80 mothers and 61 infants had diagnoses suggestive of MIA and neurologic morbidity, respectively. Our model, including two demographic and seven biochemical characteristics, identified mothers with MIA with good performance (AUC:0.814; 95% CI:0.7-0.8). Three demographic and five inflammatory markers together identified 80% of infants with neurological morbidity (AUC:0.802, 95% CI:0.7-0.8). CONCLUSION Inflammatory environment in mothers with pre-existing risk factors like obesity, poverty, and prematurity renders offspring more susceptible to neurologic morbidities.
Collapse
Affiliation(s)
- Samhita Jain
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, CA, USA.
| | - Scott Oltman
- California Preterm Birth Initiative, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
| | - Elizabeth Rogers
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Kelli Ryckman
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - Mark Petersen
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Rebecca J Baer
- California Preterm Birth Initiative, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Larry Rand
- California Preterm Birth Initiative, University of California San Francisco, San Francisco, CA, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Xianhua Piao
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, CA, USA
- Newborn Brain Research Institute, University of California, San Francisco, CA, USA
- Weill Institute for Neuroscience, University of California, San Francisco, CA, USA
| | - Laura Jelliffe-Pawlowski
- California Preterm Birth Initiative, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
| |
Collapse
|
133
|
Yang CT, Lin CH, Lin MC. Gestational hypertension and risk of atopic diseases in offspring, a national-wide cohort study. Front Pediatr 2023; 11:1283782. [PMID: 38078331 PMCID: PMC10701899 DOI: 10.3389/fped.2023.1283782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/10/2023] [Indexed: 01/17/2025] Open
Abstract
INTRODUCTION Gestational hypertension can lead to complications, such as preeclampsia. Preeclampsia is one of leading causes of perinatal morbidity and mortality. Abnormal placentation, immune dysregulation, and maternal inflammatory response are possible etiologies. The burden of atopic diseases is increasing worldwide. Prenatal exposure might play a role in the pathogenesis of these two diseases. The aim of this study was to evaluate the association between gestational hypertension and atopic diseases from a nationwide perspective. MATERIAL AND METHODS The primary data were retrieved from Taiwan's National Health Insurance Research Database. The Maternal and Child Health Database was used to generate links between mothers and children. From 2004 to 2019, mothers with a diagnosis of gestational hypertension were identified as cases. The control groups were matched to the cases by maternal age, neonatal gender, date of birth, at a control-to-case ratio of 4:1. Each child was reviewed to confirm the diagnosis of atopic disease. Covariates including both maternal and neonatal factors were also collected. RESULTS A total of 1,935,874 primiparas were enrolled in this study. After excluding 16,851 mothers with a history of hypertension, a total of 1,919,023 offspring were included in the study for the period 2004-2019. Gestational hypertension was associated with asthma (HR, 1.12, 95% CI, 1.02-1.23) and atopic dermatitis (HR, 1.10, 95% CI, 1.00-1.21) in offspring after controlling for cofactors. Nevertheless, gestational hypertension did not play an independent factor for allergic rhinitis (HR, 1.02, 95% CI, 0.95-1.10) or urticaria (HR, 1.02, 95% CI, 0.91-1.15). CONCLUSION Maternal gestational hypertension increases the cumulative risk for asthma and atopic dermatitis in offspring.
Collapse
Affiliation(s)
- Chun-Ti Yang
- Children’s Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ching-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ming-Chih Lin
- Children’s Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Food and Nutrition, Providence University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
134
|
Power SD, Stewart E, Zielke LG, Byrne EP, Douglas A, Ortega-de San Luis C, Lynch L, Ryan TJ. Immune activation state modulates infant engram expression across development. SCIENCE ADVANCES 2023; 9:eadg9921. [PMID: 37939176 PMCID: PMC10631722 DOI: 10.1126/sciadv.adg9921] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
Infantile amnesia is possibly the most ubiquitous form of memory loss in mammals. We investigated how memories are stored in the brain throughout development by integrating engram labeling technology with mouse models of infantile amnesia. Here, we found a phenomenon in which male offspring in maternal immune activation models of autism spectrum disorder do not experience infantile amnesia. Maternal immune activation altered engram ensemble size and dendritic spine plasticity. We rescued the same apparently forgotten infantile memories in neurotypical mice by optogenetically reactivating dentate gyrus engram cells labeled during complex experiences in infancy. Furthermore, we permanently reinstated lost infantile memories by artificially updating the memory engram, demonstrating that infantile amnesia is a reversible process. Our findings suggest not only that infantile amnesia is due to a reversible retrieval deficit in engram expression but also that immune activation during development modulates innate, and reversible, forgetting switches that determine whether infantile amnesia will occur.
Collapse
Affiliation(s)
- Sarah D. Power
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Erika Stewart
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Louisa G. Zielke
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Eric P. Byrne
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Aaron Douglas
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Clara Ortega-de San Luis
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Lydia Lynch
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Tomás J. Ryan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia
- Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON, Canada
| |
Collapse
|
135
|
Sharova V, Ignatiuk V, Izvolskaia M, Zakharova L. Disruption of Intranasal GnRH Neuronal Migration Route into the Brain Induced by Proinflammatory Cytokine IL-6: Ex Vivo and In Vivo Rodent Models. Int J Mol Sci 2023; 24:15983. [PMID: 37958965 PMCID: PMC10648422 DOI: 10.3390/ijms242115983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Maternal immune activation results in altered levels of cytokines in the maternal-fetal system, which has a negative impact on fetal development, including the gonadotropin-releasing hormone (GnRH) system, which is crucial for the reproduction. Suppression of GnRH-neuron migration may be associated with cytokine imbalances, and primarily with proinflammatory cytokine interleukin (IL)-6. This study aimed to determine the effects of IL-6 and monoclonal antibody to IL-6 or IL-6R or polyclonal IgG on the formation of migration route of GnRH-neurons in ex vivo and in vivo rodent models on day 11.5 of embryonic development. The increased level of IL-6 in mouse nasal explants suppressed peripherin-positive fiber outgrowth, while this led to an increase in the number of GnRH-neurons in the nose and olfactory bulbs and a decrease in their number in the fetal brain. This effect is likely to be realized via IL-6 receptors along the olfactory nerves. The suppressive effect of IL-6 was diminished by monoclonal antibodies to IL-6 or its receptors and by IgG.
Collapse
Affiliation(s)
- Viktoria Sharova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilov Street, 26, 119334 Moscow, Russia
| | | | | | | |
Collapse
|
136
|
Ramasauskaite D, Grinciute D. Review of short-term and long-term adverse effects of covid-19 vaccination during pregnancy. Travel Med Infect Dis 2023; 56:102667. [PMID: 37951411 DOI: 10.1016/j.tmaid.2023.102667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/22/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND The covid-19 pandemic sparked a debate about the safety of vaccines during pregnancy. However, pregnant women were excluded from the Pfizer-BioNTech vaccine phase 3 trials. As two years have passed since the first Covid-19 vaccine and more studies have been conducted, we want to evaluate the scientific literature to determine any actual risks in taking the vaccine during pregnancy. METHODS We conducted literature research using PubMed and Google Scholar databases from January to April 2023. As the review considers short- and long-term adverse effects it was divided into two parts. The first part was conducted as a systematic review. The second concerning long-term negative effects due to lack of research is a literature review. The inclusion criteria for the systematic review part were singleton pregnancies, women vaccinated during pregnancy, and studies from 2020 and later. The most common short-term pregnancy adverse effects were included in the search: preterm delivery, small gestation age, intrauterine death, congenital defects, stillborn, fetal growth retardation, spontaneous abortion. Maternal immune activation was the primary concern for the long-term adverse effects and whether vaccination could cause it. The search terms included maternal immune activation, fetal neurodevelopment, neuropsychiatric disorders and the studies used were from 2019. RESULTS Most studies showed no significant difference in short-term adverse effects between vaccinated and non-vaccinated women and their fetuses. However, the literature is insufficient to evaluate possible long-term adverse effects. CONCLUSION Available evidence supports the safety of administering SARS-CoV-2 vaccines to pregnant women, but further systematic reviews and meta-analyses are essential. Maternal immune activation caused by vaccination may impact a child's neurodevelopment and should be a concern for future studies.
Collapse
Affiliation(s)
- Diana Ramasauskaite
- Center of Obstetrics and Gynaecology, Vilnius University Faculty of Medicine, PO: Santariškių 2, Vilnius, LT08661, Lithuania.
| | | |
Collapse
|
137
|
Sarieva K, Hildebrand F, Kagermeier T, Yentür Z, Becker K, Mayer S. Pluripotent stem cell-derived neural progenitor cells can be used to model effects of IL-6 on human neurodevelopment. Dis Model Mech 2023; 16:dmm050306. [PMID: 37921007 PMCID: PMC10629675 DOI: 10.1242/dmm.050306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
Maternal immune activation (MIA) increases the risks for neurodevelopmental disorders in offspring through inflammatory cytokines, including interleukin-6 (IL-6). We therefore aimed to establish a human two-dimensional (2D) in vitro neural model to investigate the effects of IL-6 exposure on neurodevelopment. IL-6 signal transduction requires two receptors: interleukin-6 signal transducer (IL6ST) and interleukin-6 receptor (IL6R). Prenatally, neural cells lack IL6R, and hence cannot elicit cis IL-6 signaling, but IL6R can be provided by microglia in trans. We demonstrate here that an immortalized human neural progenitor cell (NPC) line, ReNCell CX, expresses IL6ST and elicits both cis and trans IL-6 signaling, limiting its use as a model of MIA. In contrast, induced pluripotent stem cell (iPSC)-derived NPCs only activate the IL-6 cascade in trans. Activation of the trans IL-6 cascade did not result in increased proliferation of iPSC-derived NPCs or ReNCell CX, as has been demonstrated in animal models. iPSC-derived NPCs upregulated NR2F1 expression in response to IL-6 signaling in line with analogous experiments in organoids. Thus, iPSC-derived NPCs can be used to model gene expression changes in response to MIA in 2D cultures.
Collapse
Affiliation(s)
- Kseniia Sarieva
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Felix Hildebrand
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Theresa Kagermeier
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Zeynep Yentür
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, 72076 Tübingen, Germany
- Heidelberg Academy of Sciences and Humanities, 69117 Heidelberg, Germany
| | - Katharina Becker
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Simone Mayer
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
- Heidelberg Academy of Sciences and Humanities, 69117 Heidelberg, Germany
| |
Collapse
|
138
|
Ciryam P, Gerzanich V, Simard JM. Interleukin-6 in Traumatic Brain Injury: A Janus-Faced Player in Damage and Repair. J Neurotrauma 2023; 40:2249-2269. [PMID: 37166354 PMCID: PMC10649197 DOI: 10.1089/neu.2023.0135] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Traumatic brain injury (TBI) is a common and often devastating illness, with wide-ranging public health implications. In addition to the primary injury, victims of TBI are at risk for secondary neurological injury by numerous mechanisms. Current treatments are limited and do not target the profound immune response associated with injury. This immune response reflects a convergence of peripheral and central nervous system-resident immune cells whose interaction is mediated in part by a disruption in the blood-brain barrier (BBB). The diverse family of cytokines helps to govern this communication and among these, Interleukin (IL)-6 is a notable player in the immune response to acute neurological injury. It is also a well-established pharmacological target in a variety of other disease contexts. In TBI, elevated IL-6 levels are associated with worse outcomes, but the role of IL-6 in response to injury is double-edged. IL-6 promotes neurogenesis and wound healing in animal models of TBI, but it may also contribute to disruptions in the BBB and the progression of cerebral edema. Here, we review IL-6 biology in the context of TBI, with an eye to clarifying its controversial role and understanding its potential as a target for modulating the immune response in this disease.
Collapse
Affiliation(s)
- Prajwal Ciryam
- Shock Trauma Neurocritical Care, Program in Trauma, R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
139
|
Yin W, Norrbäck M, Levine SZ, Rivera N, Buxbaum JD, Zhu H, Yip B, Reichenberg A, Askling J, Sandin S. Maternal rheumatoid arthritis and risk of autism in the offspring. Psychol Med 2023; 53:7300-7308. [PMID: 37092864 PMCID: PMC10593909 DOI: 10.1017/s0033291723000855] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Maternal Rheumatoid Arthritis (RA) is suggested to increase the risk of Autism Spectrum Disorder (ASD) in the offspring, mainly through inflammation/autoimmunity, but the association is unclear. A prospective population-based cohort study was implemented to examine the association between maternal RA and offspring ASD. METHODS We included all children born alive in Sweden from 1995 to 2015, followed up through 2017. Diagnoses of ASD and RA were clinically ascertained from National Patient Register. We quantified the association by hazard ratios (HR) and two-sided 95% confidence intervals (CI), from Cox regression after detailed adjustment for potential confounders. We examined RA serostatus, etiological subgroups and the timing of exposure. To closer examine the underlying mechanism for the association, we included a negative control group for RA, arthralgia, with similar symptomology as RA but free from inflammation/autoimmunity. RESULTS Of 3629 children born to mothers with RA, 70 (1.94%) were diagnosed with ASD, compared to 28 892 (1.92%) of 1 503 908 children born to mothers without RA. Maternal RA before delivery was associated with an increased risk of offspring ASD (HR = 1.43, 95% CI 1.11-1.84), especially for seronegative RA (HR = 1.61, 95% CI 1.12-2.30). No similar association was observed for paternal RA, maternal sisters with RA, or RA diagnosed after delivery. Maternal arthralgia displayed as high risks for offspring ASD as did maternal RA (HR = 1.41, 95% CI 1.24-1.60). CONCLUSIONS In Sweden, maternal RA before delivery was associated with an increased risk of offspring ASD. The comparable association between maternal arthralgia and ASD risk suggests other pathways of risk than autoimmunity/inflammation, acting jointly or independently of RA.
Collapse
Affiliation(s)
- Weiyao Yin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Mattias Norrbäck
- Clinical Epidemiology Division, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Natalia Rivera
- Department of Medicine Solna, Respiratory Medicine Division, Karolinska Institutet, Stockholm, Sweden
- Rheumatology Division, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Joseph D. Buxbaum
- Seaver Autism Center for Research and Treatment at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Hailin Zhu
- Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Benjamin Yip
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Johan Askling
- Clinical Epidemiology Division, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Rheumatology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Sven Sandin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Seaver Autism Center for Research and Treatment at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, USA
- Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
140
|
Priller J, Schäfer S, Safaiyan S. [Nature and immune mechanisms of mental illnesses]. DER NERVENARZT 2023; 94:1010-1018. [PMID: 37815590 DOI: 10.1007/s00115-023-01554-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
The impacts of nature and climate change on mental health are substantial but the underlying mechanisms are still poorly understood. The immune system in particular could play an important role. Therefore, the German Center for Mental Health (DZPG) in Munich will use state of the art model systems to elucidate the role of the immune system in the pathogenesis of mental disorders under altered environmental conditions and to develop preventive treatment strategies.
Collapse
Affiliation(s)
- Josef Priller
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Klinikum rechts der Isar, TU München, Ismaninger Str. 22, 81675, München, Deutschland.
- Deutsches Zentrum für Psychische Gesundheit (DZPG), Standort München, München, Deutschland.
- CCBS und UK DRI, University of Edinburgh, Edinburgh, Großbritannien.
- Neuropsychiatrie und Labor für Molekulare Psychiatrie, Charité - Universitätsmedizin Berlin, Berlin, Deutschland.
| | - Simon Schäfer
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Klinikum rechts der Isar, TU München, Ismaninger Str. 22, 81675, München, Deutschland
- Deutsches Zentrum für Psychische Gesundheit (DZPG), Standort München, München, Deutschland
| | - Shima Safaiyan
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Klinikum rechts der Isar, TU München, Ismaninger Str. 22, 81675, München, Deutschland
- Deutsches Zentrum für Psychische Gesundheit (DZPG), Standort München, München, Deutschland
| |
Collapse
|
141
|
Jain S, Allen IE, Song D, Piao X. Cytokine responses to SARS-COV2 infection in mother-infant dyads: a systematic review and meta-analysis. Front Pediatr 2023; 11:1277697. [PMID: 37915987 PMCID: PMC10616592 DOI: 10.3389/fped.2023.1277697] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Background The COVID-19 pandemic has affected a significant number of pregnant women worldwide, but studies on immune responses have presented conflicting results. This study aims to systematically review cytokine profiles in pregnant women with SARS-CoV-2 infection and their infants to evaluate immune responses and potential transplacental transfer of cytokines. Materials and methods A comprehensive search of 4 databases was conducted to identify relevant studies. Inclusion criteria included studies measuring individual cytokines in pregnant women and/or their neonates. Studies were evaluated for quality, and data were extracted for analysis. Meta-analyses were performed using the random-effects model. Results Seventeen studies met the inclusion criteria, including data from 748 pregnant women and 287 infants. More than three of these studies evaluated data of 20 cytokines in maternal serum, and data of 10 cytokines was available from cord blood samples. Only the serum level of CXCL10 was significantly up-regulated in SARS-CoV-2 positive pregnant women (n = 339) compared to SARS-CoV-2 negative pregnant women (n = 409). Subset analysis of maternal samples (n = 183) collected during the acute phase of COVID-19 infection showed elevated CXCL10 and IFN-γ. No significant differences in cytokine levels were found between cord blood samples collected from infants born to mothers with (n = 97) and without (n = 190) COVID-19 during gestation. Subset analysis of cord blood samples collected during the acute phase of maternal infection was limited by insufficient data. The heterogeneity among the studies was substantial. Conclusion The findings suggest that maternal cytokines responses to SARS-CoV-2 infection during pregnancy are not significantly dysregulated, except for CXCL10 and IFN-γ during the acute phase of illness. No evidence of increased cytokine levels in cord blood samples was observed, although this could be impacted by the time period between initial maternal infection and cord blood collection. These results provide some reassurance to parents and healthcare providers but should be interpreted cautiously due to study variations and limitations.
Collapse
Affiliation(s)
- Samhita Jain
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Isabel Elaine Allen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Dongli Song
- Department of Pediatrics, Division of Neonatology, Santa Clara Valley Medical Center, San Jose, CA, United States
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Xianhua Piao
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
- Newborn Brain Research Institute, University of California, San Francisco, San Francisco, CA, United States
- Weill Institute for Neuroscience, University of California, San Francisco, San Francisco CA, United States
| |
Collapse
|
142
|
Lesh TA, Iosif AM, Tanase C, Vlasova RM, Ryan AM, Bennett J, Hogrefe CE, Maddock RJ, Geschwind DH, Van de Water J, McAllister AK, Styner MA, Bauman MD, Carter CS. Extracellular free water elevations are associated with brain volume and maternal cytokine response in a longitudinal nonhuman primate maternal immune activation model. Mol Psychiatry 2023; 28:4185-4194. [PMID: 37582858 PMCID: PMC10867284 DOI: 10.1038/s41380-023-02213-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023]
Abstract
Maternal infection has emerged as an important environmental risk factor for neurodevelopmental disorders, including schizophrenia and autism spectrum disorders. Animal model systems of maternal immune activation (MIA) suggest that the maternal immune response plays a significant role in the offspring's neurodevelopment and behavioral outcomes. Extracellular free water is a measure of freely diffusing water in the brain that may be associated with neuroinflammation and impacted by MIA. The present study evaluates the brain diffusion characteristics of male rhesus monkeys (Macaca mulatta) born to MIA-exposed dams (n = 14) treated with a modified form of the viral mimic polyinosinic:polycytidylic acid at the end of the first trimester. Control dams received saline injections at the end of the first trimester (n = 10) or were untreated (n = 4). Offspring underwent diffusion MRI scans at 6, 12, 24, 36, and 45 months. Offspring born to MIA-exposed dams showed significantly increased extracellular free water in cingulate cortex gray matter starting as early as 6 months of age and persisting through 45 months. In addition, offspring gray matter free water in this region was significantly correlated with the magnitude of the maternal IL-6 response in the MIA-exposed dams. Significant correlations between brain volume and extracellular free water in the MIA-exposed offspring also indicate converging, multimodal evidence of the impact of MIA on brain development. These findings provide strong evidence for the construct validity of the nonhuman primate MIA model as a system of relevance for investigating the pathophysiology of human neurodevelopmental psychiatric disorders. Elevated free water in individuals exposed to immune activation in utero could represent an early marker of a perturbed or vulnerable neurodevelopmental trajectory.
Collapse
Affiliation(s)
- Tyler A Lesh
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Ana-Maria Iosif
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Costin Tanase
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Roza M Vlasova
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Amy M Ryan
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
- California National Primate Research Center, Davis, CA, USA
| | - Jeffrey Bennett
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | | | - Richard J Maddock
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - Daniel H Geschwind
- Neurogenetics Program, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Judy Van de Water
- MIND Institute, University of California, Davis, CA, USA
- Rheumatology/Allergy and Clinical Immunology, University of California, Davis, CA, USA
| | - A Kimberley McAllister
- MIND Institute, University of California, Davis, CA, USA
- Center for Neuroscience, University of California, Davis, CA, USA
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
- California National Primate Research Center, Davis, CA, USA
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
143
|
Fujii S, Murata Y, Imamura Y, Nakachi Y, Bundo M, Kubota-Sakashita M, Kato T, Iwamoto K. Sex-dependent behavioral alterations in a poly(I:C)-induced maternal immune activation mouse model without segment filamentous bacteria. Neurosci Lett 2023; 814:137467. [PMID: 37652351 DOI: 10.1016/j.neulet.2023.137467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Maternal immune activation is one of the environmental risk factors for offspring to develop psychiatric disorders. A synthetic viral mimetic immunogen, polyinosinic-polycytidylic acid (poly(I:C)), is used to induce maternal immune activation in animal models of psychiatric disorders. In the mouse poly(I:C) model, the existence of segment filamentous bacteria (SFB) in the maternal intestine has been reported to be important for the induction of ASD-related behavioral alterations as well as atypical cortical development called cortical patches. This study aimed to elucidate the effect of a single poly(I:C) injection during embryonic day (E) 9 to E16 on offspring's behavior in the ensured absence of maternal SFB by vancomycin drinking in C57BL/6N mice. The cortical patches were not found at either injection timings with poly(I:C) or PBS vehicle, tested in male or female offspring at postnatal day 0 or 1. Prepulse inhibition was decreased in male adult offspring most strongly at poly(I:C) injection timings later than E11, whereas a modest but significant decrease was observed in female offspring with an injection during E12 to E15. The decrease in social interaction was observed in female offspring most conspicuously at injection timings later than E11, whereas a significant decrease was observed in male offspring with an injection during E12 to E15. In conclusion, this study indicated that behavioral alterations could be induced without maternal SFB. The effect on behavior was substantially different between males and females.
Collapse
Affiliation(s)
- Shinya Fujii
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto 860-8556, Japan
| | - Yui Murata
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto 860-8556, Japan
| | - Yuko Imamura
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto 860-8556, Japan
| | - Yutaka Nakachi
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto 860-8556, Japan
| | - Miki Bundo
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto 860-8556, Japan
| | - Mie Kubota-Sakashita
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Molecular Pathology of Mood Disorders, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Tadafumi Kato
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Molecular Pathology of Mood Disorders, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto 860-8556, Japan.
| |
Collapse
|
144
|
Mujtaba S, Patro IK, Patro N. Multiple Early Life Stressors as Risk Factors for Neurodevelopmental Abnormalities in the F1 Wistar Rats. Brain Sci 2023; 13:1360. [PMID: 37891729 PMCID: PMC10605318 DOI: 10.3390/brainsci13101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Cumulative exposure to multiple early life stressors is expected to affect behavioral development, causing increased susceptibility to neuropsychiatric disorders. The present study was designed to mimic such conditions in a rat model to study behavioral impairments during adolescence and adulthood. Female Wistar rats (n = 32; 140-150 gm) were switched to a low protein (LP; 8% protein) or control (20% protein) diet 15 days prior to conception, and then the diet regime was maintained throughout the experimental period. Pups born to control and LP dams were intraperitoneally injected with deltamethrin (DLT-pyrethroid insecticide; 0.7 mg/kg body weight; PND 1 to 7), lipopolysaccharide (LPS-bacterial endotoxin; 0.3 mg/kg body weight; PND 3 and 5), or DLT+LPS, on designated days forming eight experimental groups (Control, LP, Control+LPS, LP+LPS, Control+DLT, LP+DLT, Control+DLT+LPS and LP+DLT+LPS). Neurobehavioral assessments were performed in F1 rats (1, 3, 6 months) by open field, elevated plus maze, light and dark box, and rotarod tests. LP rats were found to be highly susceptible to either singular or cumulative exposure as compared to their age-matched control counterparts, showing significantly severe behavioral abnormalities, such as hyperactivity, attention deficits and low anxiety, the hallmark symptoms of neuropsychiatric disorders like schizophrenia and ADHD, suggesting thereby that early life multi-hit exposure may predispose individuals to developmental disorders.
Collapse
Affiliation(s)
- Syed Mujtaba
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India; (S.M.); (I.K.P.)
- School of Studies in Zoology, Jiwaji University, Gwalior 474011, India
| | - Ishan Kumar Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India; (S.M.); (I.K.P.)
- School of Studies in Zoology, Jiwaji University, Gwalior 474011, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India; (S.M.); (I.K.P.)
| |
Collapse
|
145
|
Warner BB, Rosa BA, Ndao IM, Tarr PI, Miller JP, England SK, Luby JL, Rogers CE, Hall-Moore C, Bryant RE, Wang JD, Linneman LA, Smyser TA, Smyser CD, Barch DM, Miller GE, Chen E, Martin J, Mitreva M. Social and psychological adversity are associated with distinct mother and infant gut microbiome variations. Nat Commun 2023; 14:5824. [PMID: 37726348 PMCID: PMC10509221 DOI: 10.1038/s41467-023-41421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
Health disparities are driven by underlying social disadvantage and psychosocial stressors. However, how social disadvantage and psychosocial stressors lead to adverse health outcomes is unclear, particularly when exposure begins prenatally. Variations in the gut microbiome and circulating proinflammatory cytokines offer potential mechanistic pathways. Here, we interrogate the gut microbiome of mother-child dyads to compare high-versus-low prenatal social disadvantage, psychosocial stressors and maternal circulating cytokine cohorts (prospective case-control study design using gut microbiomes from 121 dyads profiled with 16 S rRNA sequencing and 89 dyads with shotgun metagenomic sequencing). Gut microbiome characteristics significantly predictive of social disadvantage and psychosocial stressors in the mothers and children indicate that different discriminatory taxa and related pathways are involved, including many species of Bifidobacterium and related pathways across several comparisons. The lowest inter-individual gut microbiome similarity was observed among high-social disadvantage/high-psychosocial stressors mothers, suggesting distinct environmental exposures driving a diverging gut microbiome assembly compared to low-social disadvantage/low-psychosocial stressors controls (P = 3.5 × 10-5 for social disadvantage, P = 2.7 × 10-15 for psychosocial stressors). Children's gut metagenome profiles at 4 months also significantly predicted high/low maternal prenatal IL-6 (P = 0.029), with many bacterial species overlapping those identified by social disadvantage and psychosocial stressors. These differences, based on maternal social and psychological status during a critical developmental window early in life, offer potentially modifiable targets to mitigate health inequities.
Collapse
Affiliation(s)
- Barbara B Warner
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA.
| | - Bruce A Rosa
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - I Malick Ndao
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Phillip I Tarr
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - J Philip Miller
- Institute for Informatics, Data Science and Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Sarah K England
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Joan L Luby
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Cynthia E Rogers
- Departments of Psychiatry and Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Carla Hall-Moore
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Renay E Bryant
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Jacqueline D Wang
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Laura A Linneman
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Tara A Smyser
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Christopher D Smyser
- Departments of Neurology, Pediatrics and Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Deanna M Barch
- Department of Psychological and Brain Sciences, Psychiatry, & Radiology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Gregory E Miller
- Institute for Policy Research & Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - Edith Chen
- Institute for Policy Research & Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - John Martin
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Makedonka Mitreva
- Departments of Medicine and Genetics, and McDonnell Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
146
|
Clark DN, O'Neil SM, Xu L, Steppe JT, Savage JT, Raghunathan K, Filiano AJ. Prolonged STAT1 activation in neurons drives a pathological transcriptional response. J Neuroimmunol 2023; 382:578168. [PMID: 37556887 PMCID: PMC10527980 DOI: 10.1016/j.jneuroim.2023.578168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
Neurons require physiological IFN-γ signaling to maintain central nervous system (CNS) homeostasis, however, pathological IFN-γ signaling can cause CNS pathologies. The downstream signaling mechanisms that cause these drastically different outcomes in neurons has not been well studied. We hypothesized that different levels of IFN-γ signaling in neurons results in differential activation of its downstream transcription factor, signal transducer and activator of transduction 1 (STAT1), causing varying outcomes. Using primary cortical neurons, we showed that physiological IFN-γ elicited brief and transient STAT1 activation, whereas pathological IFN-γ induced prolonged STAT1 activation, which primed the pathway to be more responsive to a subsequent IFN-γ challenge. This is an IFN-γ specific response, as other IFNs and cytokines did not elicit such STAT1 activation nor priming in neurons. Additionally, we did not see the same effect in microglia or astrocytes, suggesting this non-canonical IFN-γ/STAT1 signaling is unique to neurons. Prolonged STAT1 activation was facilitated by continuous janus kinase (JAK) activity, even in the absence of IFN-γ. Finally, although IFN-γ initially induced a canonical IFN-γ transcriptional response in neurons, pathological levels of IFN-γ caused long-term changes in synaptic pathway transcripts. Overall, these findings suggest that IFN-γ signaling occurs via non-canonical mechanisms in neurons, and differential STAT1 activation may explain how neurons have both homeostatic and pathological responses to IFN-γ signaling.
Collapse
Affiliation(s)
- Danielle N Clark
- Department of Integrative Immunobiology, Duke University, Durham, NC 27705, USA; Marcus Center for Cellular Cures, Duke University, Durham, NC 27705, USA
| | - Shane M O'Neil
- Marcus Center for Cellular Cures, Duke University, Durham, NC 27705, USA
| | - Li Xu
- Marcus Center for Cellular Cures, Duke University, Durham, NC 27705, USA
| | - Justin T Steppe
- Department of Pathology, Duke University, Durham, NC 27705, USA
| | - Justin T Savage
- Department of Neurobiology, Duke University, Durham, NC 27705, USA
| | | | - Anthony J Filiano
- Department of Integrative Immunobiology, Duke University, Durham, NC 27705, USA; Department of Pathology, Duke University, Durham, NC 27705, USA; Department of Neurosurgery, Duke University, Durham, NC 27705, USA; Marcus Center for Cellular Cures, Duke University, Durham, NC 27705, USA.
| |
Collapse
|
147
|
Tan Y, Taibl KR, Dunlop AL, Barr DB, Panuwet P, Yakimavets V, Kannan K, Corwin EJ, Ryan PB, Eatman JA, Liang D, Eick SM. Association between a Mixture of Per- and Polyfluoroalkyl Substances (PFAS) and Inflammatory Biomarkers in the Atlanta African American Maternal-Child Cohort. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13419-13428. [PMID: 37649345 PMCID: PMC10900195 DOI: 10.1021/acs.est.3c04688] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been identified as environmental contributors to adverse birth outcomes. One potential mechanistic pathway could be through PFAS-related inflammation and cytokine production. Here, we examined associations between a PFAS mixture and inflammatory biomarkers during early and late pregnancy from participants enrolled in the Atlanta African American Maternal-Child Cohort (N = 425). Serum concentrations of multiple PFAS were detected in >90% samples at 8-14 weeks gestation. Serum concentrations of interferon-γ (IFN-γ), interleukin 6 (IL-6), interleukin 10 (IL-10), tumor necrosis factor-α (TNF-α), and C-reactive protein (CRP) were measured at up to two time points (8-14 weeks and 24-30 weeks gestation). The effect of the PFAS mixture on each inflammatory biomarker was examined using quantile g-computation, Bayesian kernel machine regression (BKMR), Bayesian Weighted Sums (BWS), and weighted quantile sum (WQS) regression. Across all models, the PFAS mixture was associated with increased IFN-γ, IL-10, and TNF-α at both time points, with the strongest effects being observed at 24-30 weeks. Using quantile g-computation, increasing concentrations of a PFAS mixture were associated with a 29% (95% confidence interval = 18.0%, 40.7%) increase in TNF-α at 24-30 weeks. Similarly, using BWS, the PFAS mixture was associated with increased TNF-α at 24-30 weeks (summed effect = 0.29, 95% highest posterior density = 0.17, 0.41). The PFAS mixture was also positively associated with TNF-α at 24-30 weeks using BKMR [75th vs 50th percentile: 17.1% (95% credible interval = 7.7%, 27.4%)]. Meanwhile, PFOS was consistently the main drivers of overall mixture effect across four methods. Our findings indicated an increase in prenatal PFAS exposure is associated with an increase in multiple pro-inflammatory cytokines, potentially contributing to adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Youran Tan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Kaitlin R. Taibl
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Anne L. Dunlop
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, 30329, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Volha Yakimavets
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York, NY, 10016, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, 10016, NY, USA
| | | | - P. Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Jasmin A. Eatman
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| | - Stephanie M. Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30329, USA
| |
Collapse
|
148
|
Sur D, Agranyoni O, Kirby M, Cohen N, Bagaev A, Karandasheva K, Shmerkin E, Gorobets D, Savita BK, Avneri R, Divon MS, Lax E, Michaelevski I, Pinhasov A. Nurture outpaces nature: fostering with an attentive mother alters social dominance in a mouse model of stress sensitivity. Mol Psychiatry 2023; 28:3816-3828. [PMID: 37845494 DOI: 10.1038/s41380-023-02273-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023]
Abstract
Maternal care is critical for epigenetic programming during postnatal brain development. Stress is recognized as a critical factor that may affect maternal behavior, yet owing to high heterogeneity in stress response, its impact varies among individuals. We aimed here to understand the connection between inborn stress vulnerability, maternal care, and early epigenetic programming using mouse populations that exhibit opposite poles of the behavioral spectrum (social dominance [Dom] and submissiveness [Sub]) and differential response to stress. In contrast to stress-resilient Dom dams, stress-vulnerable Sub dams exhibit significantly lower maternal attachment, serum oxytocin, and colonic Lactobacillus reuteri populations. Sub offspring showed a reduced hippocampal expression of key methylation genes at postnatal day (PND) 7 and a lack of developmentally-dependent increase in 5-methylcytosine (5-mC) at PND 21. In addition, Sub pups exhibit significant hypermethylation of gene promoters connected with glutamatergic synapses and behavioral responses. We were able to reverse the submissive endophenotype through cross-fostering Sub pups with Dom dams (Sub/D). Thus, Sub/D pups exhibited elevated hippocampal expression of DNMT3A at PND 7 and increased 5-mC levels at PND 21. Furthermore, adult Sub/D offspring exhibited increased sociability, social dominance, and hippocampal glutamate and monoamine levels resembling the neurochemical profile of Dom mice. We postulate that maternal inborn stress vulnerability governs epigenetic patterning sculpted by maternal care and intestinal microbiome diversity during early developmental stages and shapes the array of gene expression patterns that may dictate neuronal architecture with a long-lasting impact on stress sensitivity and the social behavior of offspring.
Collapse
Affiliation(s)
- Debpali Sur
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Oryan Agranyoni
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Michael Kirby
- Dr. Miriam and Sheldon G. Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Naamah Cohen
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Anastasia Bagaev
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Kristina Karandasheva
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Elena Shmerkin
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Denis Gorobets
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Brajesh Kumar Savita
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Raphael Avneri
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Mali-Salmon Divon
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
- Dr. Miriam and Sheldon G. Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Elad Lax
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Izhak Michaelevski
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel
| | - Albert Pinhasov
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ramat HaGolan St 65, 4077625, Ariel, Israel.
- Dr. Miriam and Sheldon G. Adelson School of Medicine, Ariel University, Ariel, Israel.
| |
Collapse
|
149
|
Karanikas E. The Gordian knot of the immune-redox systems' interactions in psychosis. Int Clin Psychopharmacol 2023; 38:285-296. [PMID: 37351570 DOI: 10.1097/yic.0000000000000481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
During the last decades the attempt to enlighten the pathobiological substrate of psychosis, from merely focusing on neurotransmitters, has expanded into new areas like the immune and redox systems. Indeed, the inflammatory hypothesis concerning psychosis etiopathology has exponentially grown with findings reflecting dysfunction/aberration of the immune/redox systems' effector components namely cytokines, chemokines, CRP, complement system, antibodies, pro-/anti-oxidants, oxidative stress byproducts just to name a few. Yet, we still lie far from comprehending the underlying cellular mechanisms, their causality directions, and the moderating/mediating parameters affecting these systems; let alone the inter-systemic (between immune and redox) interactions. Findings from preclinical studies on the stress field have provided evidence indicative of multifaceted interactions among the immune and redox components so tightly intertwined as a Gordian knot. Interestingly the literature concerning the interactions between these same systems in the context of psychosis appears minimal (if not absent) and ambiguous. This review attempts to draw a frame of the immune-redox systems' interactions starting from basic research on the stress field and expanding on clinical studies with cohorts with psychosis, hoping to instigate new avenues of research.
Collapse
Affiliation(s)
- Evangelos Karanikas
- Department of Psychiatry, 424 General Military Hospital, Ring Road, Nea Efkarpia, Thessaloniki, Greece
| |
Collapse
|
150
|
Yu X, Mostafijur Rahman M, Carter SA, Lin JC, Zhuang Z, Chow T, Lurmann FW, Kleeman MJ, Martinez MP, van Donkelaar A, Martin RV, Eckel SP, Chen Z, Levitt P, Schwartz J, Hackman D, Chen JC, McConnell R, Xiang AH. Prenatal air pollution, maternal immune activation, and autism spectrum disorder. ENVIRONMENT INTERNATIONAL 2023; 179:108148. [PMID: 37595536 PMCID: PMC10792527 DOI: 10.1016/j.envint.2023.108148] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/12/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) risk is highly heritable, with potential additional non-genetic factors, such as prenatal exposure to ambient particulate matter with aerodynamic diameter < 2.5 µm (PM2.5) and maternal immune activation (MIA) conditions. Because these exposures may share common biological effect pathways, we hypothesized that synergistic associations of prenatal air pollution and MIA-related conditions would increase ASD risk in children. OBJECTIVES This study examined interactions between MIA-related conditions and prenatal PM2.5 or major PM2.5 components on ASD risk. METHODS In a population-based pregnancy cohort of children born between 2001 and 2014 in Southern California, 318,751 mother-child pairs were followed through electronic medical records (EMR); 4,559 children were diagnosed with ASD before age 5. Four broad categories of MIA-related conditions were classified, including infection, hypertension, maternal asthma, and autoimmune conditions. Average exposures to PM2.5 and four PM2.5 components, black carbon (BC), organic matter (OM), nitrate (NO3-), and sulfate (SO42-), were estimated at maternal residential addresses during pregnancy. We estimated the ASD risk associated with MIA-related conditions, air pollution, and their interactions, using Cox regression models to adjust for covariates. RESULTS ASD risk was associated with MIA-related conditions [infection (hazard ratio 1.11; 95% confidence interval 1.05-1.18), hypertension (1.30; 1.19-1.42), maternal asthma (1.22; 1.08-1.38), autoimmune disease (1.19; 1.09-1.30)], with higher pregnancy PM2.5 [1.07; 1.03-1.12 per interquartile (3.73 μg/m3) increase] and with all four PM2.5 components. However, there were no interactions of each category of MIA-related conditions with PM2.5 or its components on either multiplicative or additive scales. CONCLUSIONS MIA-related conditions and pregnancy PM2.5 were independently associations with ASD risk. There were no statistically significant interactions of MIA conditions and prenatal PM2.5 exposure with ASD risk.
Collapse
Affiliation(s)
- Xin Yu
- Spatial Science Institute, University of Southern California, Los Angeles, CA, USA
| | - Md Mostafijur Rahman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, USA
| | - Sarah A Carter
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Jane C Lin
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Zimin Zhuang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Ting Chow
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | | | - Michael J Kleeman
- Department of Civil and Environmental Engineering, University of California, Davis, Davis, CA,USA
| | - Mayra P Martinez
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Aaron van Donkelaar
- Department of Energy, Environmental & Chemical Engineering, Washington University at St. Louis, St. Louis, MO 63130, USA
| | - Randall V Martin
- Department of Energy, Environmental & Chemical Engineering, Washington University at St. Louis, St. Louis, MO 63130, USA
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pat Levitt
- Department of Pediatrics and Program in Developmental Neuroscience and Neurogenetics, Keck School of Medicine, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daniel Hackman
- USC Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anny H Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA.
| |
Collapse
|