1451
|
Nasir Khan M, Mohammed A F. Nano-titanium Dioxide-induced Synthesis of Hydrogen Sulfide and Cysteine Augment Drought Tolerance in Eruca sativa. ACTA ACUST UNITED AC 2018. [DOI: 10.3923/ajps.2018.213.221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
1452
|
do Nascimento JL, de Almeida AAF, Barroso JP, Mangabeira PAO, Ahnert D, Sousa AGR, Silva JVS, Baligar VC. Physiological, ultrastructural, biochemical and molecular responses of young cocoa plants to the toxicity of Cr (III) in soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 159:272-283. [PMID: 29753828 DOI: 10.1016/j.ecoenv.2018.04.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/18/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
The objective of this study was to evaluate Cr toxicity in young plants of the CCN 51 Theobroma cacao genotype at different concentrations of Cr3+ in the soil (0, 100, 200, 400 and 600 mg kg-1) through physiological, ultrastructural, antioxidant and molecular changes. Doses of 400 and 600 mg Cr3+ kg-1 soil severely affected foliar gas exchange, promoted by damages in photosynthetic machinery evidenced by the decrease in CO2 fixation. Decreased expression of psbA and psbO genes, changes in enzymatic activity and lipid peroxidation also affected leaf gas exchange. A hormesis effect was observed at 100 mg Cr3+ kg-1 soil for the photosynthetic activity. As a metal exclusion response, the roots of the cocoa plants immobilized, on average, 75% of the total Cr absorbed. Ultrastructural changes in leaf mesophyll and roots, with destruction of mitochondria, plasmolysis and formation of vesicles, were related to the oxidative stress promoted by excess ROS. The activity of the antioxidant enzymes SOD, APX, GPX and CAT and the amino acid proline coincided with the greater expression of the sod cyt gene demonstrating synchronicity in the elimination of ROS. It was concluded, therefore, that the tolerance of the cocoa plants to the toxicity of Cr3+ depends on the concentration and time of exposure to the metal. Higher doses of Cr3+ in the soil promoted irreversible damage to the photosynthetic machinery and the cellular ultrastructure, interfering in the enzymatic and non-enzymatic systems related to oxidative stress and gene expression. However, the low mobility of the metal to the leaf is presented as a strategy of tolerance to Cr3+.
Collapse
Affiliation(s)
- Junea Leandro do Nascimento
- State University of Santa Cruz, Department of Biological Sciences, Rodovia Jorge Amado, km 16, 45662-900 Ilhéus, BA, Brazil
| | - Alex-Alan Furtado de Almeida
- State University of Santa Cruz, Department of Biological Sciences, Rodovia Jorge Amado, km 16, 45662-900 Ilhéus, BA, Brazil.
| | - Joedson P Barroso
- State University of Santa Cruz, Department of Biological Sciences, Rodovia Jorge Amado, km 16, 45662-900 Ilhéus, BA, Brazil
| | - Pedro A O Mangabeira
- State University of Santa Cruz, Department of Biological Sciences, Rodovia Jorge Amado, km 16, 45662-900 Ilhéus, BA, Brazil
| | - Dário Ahnert
- State University of Santa Cruz, Department of Biological Sciences, Rodovia Jorge Amado, km 16, 45662-900 Ilhéus, BA, Brazil
| | - Artur G R Sousa
- State University of Santa Cruz, Department of Biological Sciences, Rodovia Jorge Amado, km 16, 45662-900 Ilhéus, BA, Brazil
| | - José Vitor S Silva
- State University of Santa Cruz, Department of Biological Sciences, Rodovia Jorge Amado, km 16, 45662-900 Ilhéus, BA, Brazil
| | - Virupax C Baligar
- USDA-ARS-Beltsville Agricultural Research Center, Beltsville, MD, USA
| |
Collapse
|
1453
|
Wójcikowska B, Botor M, Morończyk J, Wójcik AM, Nodzyński T, Karcz J, Gaj MD. Trichostatin A Triggers an Embryogenic Transition in Arabidopsis Explants via an Auxin-Related Pathway. FRONTIERS IN PLANT SCIENCE 2018; 9:1353. [PMID: 30271420 PMCID: PMC6146766 DOI: 10.3389/fpls.2018.01353] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/28/2018] [Indexed: 05/23/2023]
Abstract
Auxin is an important regulator of plant ontogenies including embryo development and the exogenous application of this phytohormone has been found to be necessary for the induction of the embryogenic response in plant explants that have been cultured in vitro. However, in the present study, we show that treatment of Arabidopsis explants with trichostatin A (TSA), which is a chemical inhibitor of histone deacetylases, induces somatic embryogenesis (SE) without the exogenous application of auxin. We found that the TSA-treated explants generated somatic embryos that developed efficiently on the adaxial side of the cotyledons, which are the parts of an explant that are involved in auxin-induced SE. A substantial reduction in the activity of histone deacetylase (HDAC) was observed in the TSA-treated explants, thus confirming a histone acetylation-related mechanism of the TSA-promoted embryogenic response. Unexpectedly, the embryogenic effect of TSA was lower on the auxin-supplemented media and this finding further suggests an auxin-related mechanism of TSA-induced SE. Congruently, we found a significantly increased content of indolic compounds, which is indicative of IAA and an enhanced DR5::GUS signal in the TSA-treated explants. In line with these results, two of the YUCCA genes (YUC1 and YUC10), which are involved in auxin biosynthesis, were found to be distinctly up-regulated during TSA-induced SE and their expression was colocalised with the explant sites that are involved in SE. Beside auxin, ROS were extensively accumulated in response to TSA, thereby indicating that a stress-response is involved in TSA-triggered SE. Relevantly, we showed that the genes encoding the transcription factors (TFs) that have a regulatory function in auxin biosynthesis including LEC1, LEC2, BBM, and stress responses (MYB118) were highly up-regulated in the TSA-treated explants. Collectively, the results provide several pieces of evidence about the similarities between the molecular pathways of SE induction that are triggered by TSA and 2,4-D that involve the activation of the auxin-responsive TF genes that have a regulatory function in auxin biosynthesis and stress responses. The study suggests the involvement of histone acetylation in the auxin-mediated release of the embryogenic program of development in the somatic cells of Arabidopsis.
Collapse
Affiliation(s)
| | - Malwina Botor
- Department of Molecular Biology and Genetics, Medical University of SilesiaKatowice, Poland
| | - Joanna Morończyk
- Department of Genetics, University of Silesia in KatowiceKatowice, Poland
| | - Anna Maria Wójcik
- Department of Genetics, University of Silesia in KatowiceKatowice, Poland
| | - Tomasz Nodzyński
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU – Central European Institute of Technology, Masaryk UniversityBrno, Czechia
| | - Jagna Karcz
- Scanning Electron Microscopy Laboratory, University of Silesia in KatowiceKatowice, Poland
| | - Małgorzata D. Gaj
- Department of Genetics, University of Silesia in KatowiceKatowice, Poland
| |
Collapse
|
1454
|
Curcumin-mediated effects on anti-diabetic drug-induced cardiotoxicity. 3 Biotech 2018; 8:399. [PMID: 30221112 DOI: 10.1007/s13205-018-1425-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/01/2018] [Indexed: 01/02/2023] Open
Abstract
The present study was designed to compare the cardiotoxicity of two very commonly used anti-diabetic drugs namely pioglitazone (Pio) and metformin (Met); and to study the effects of curcumin (Curc) against these drug-induced cardiotoxicity. Curc, being an anti-oxidant molecule and having cardio-protective potential, can have promising synergistic effects in reducing the cardiac stress induced by anti-diabetic therapies. Various dose and time-dependent cell viability and oxidative stress assays were conducted to study cardiotoxic side-effects and Curc-mediated effects in cardiomyoblasts. Effects of Curc were also studied in hyperglycaemia induced cardiac stress in the presence of drugs. Quantitative assays for cell growth, reactive oxygen species (ROS) generation, lipid peroxidation and mitochondrial permeability followed by anti-oxidant enzymes and caspases activity assays were done to study the mechanism of action of the induced cardiotoxicity. Significant dose and time mediated deleterious effects of Pio and Met were witnessed. Oxidative stress studies showed a remarkable increase in ROS with increasing dose of anti-diabetic drugs. Increased caspase activity and altered mitochondrial integrity were also witnessed in presence of Met and Pio in cardiomyoblasts. These alterations were found to be significantly reduced when treated with Curc simultaneously. The study confirms that Met and Pio exert toxic effects on cardiac cells by generating oxidative stress. Curc, being an anti-oxidative molecule, can suppress this effect and, therefore, can be used as a supplement with anti-diabetic drugs to suppress the induced cardiac stress.
Collapse
|
1455
|
Guo X, Liu D, Chong K. Cold signaling in plants: Insights into mechanisms and regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:745-756. [PMID: 30094919 DOI: 10.1111/jipb.12706] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/08/2018] [Indexed: 05/18/2023]
Abstract
To survive under cold temperatures plants must be able to perceive a cold signal and transduce it into downstream components that induce appropriate defense mechanisms. In addition to inducing adaptive defenses, such as the production of osmotic factors to prevent freezing and the reprogramming of transcriptional pathways, cold temperatures induce changes in plant growth and development which can affect the plant life cycle. In this review, we summarize recent progress in characterizing cold-related genes and the pathways that allow transduction of the cold signal in plants, focusing primarily on studies in Arabidopsis thaliana and rice (Oryza sativa). We summarize cold perception and signal transduction from the plasma membrane to the nucleus, which involves cold sensors, calcium signals, calcium-binding proteins, mitogen-activated protein kinase cascades, and the C-repeat binding factor/dehydration-responsive element binding pathways, as well as trehalose metabolism. Finally, we describe the balance between plant organogenesis and cold tolerance mechanisms in rice. This review encapsulates the known cold signaling factors in plants and provides perspectives for ongoing cold signaling research.
Collapse
Affiliation(s)
- Xiaoyu Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongfeng Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
1456
|
He H, Qin J, Cheng X, Xu K, Teng L, Zhang D. Effects of exogenous 6-BA and NAA on growth and contents of medicinal ingredient of Phellodendron chinense seedlings. Saudi J Biol Sci 2018; 25:1189-1195. [PMID: 30174521 PMCID: PMC6117238 DOI: 10.1016/j.sjbs.2017.11.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/08/2017] [Accepted: 11/12/2017] [Indexed: 12/14/2022] Open
Abstract
Using Phellodendron chinense seedlings as material, and treated with different concentrations of exogenous 6-Benzylaminopurine (6-BA) and α-naphthyacetic acid (NAA), then observed the growth status. Furthermore, we detected the contents of chlorophyll and soluble sugar, the activities of antioxidases by spectrophotometry, and determined the contents of secondary metabolite by high performance liquid chromatograph. The results showed that different concentrations of exogenous 6-BA increases the fresh weights and plant heights of Phellodendron chinense seedlings, and enhances the contents of chlorophyll and soluble sugar. NAA promoted growth, but deduced the contents of soluble sugar. Compared with control, culturing for 40 d, proper concentrations 6-BA enhanced the activity levels of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), proper concentrations NAA increased the activity levels of SOD and CAT, but decreased the levels of POD compared with CK. Suitable concentrations 6-BA enhanced contents of berberine, phellodendrine and palmatine in stems, proper concentrations NAA increased contents of berberine and phellodendrine, but deduced contents of palmatine compared with CK. Based on these results, we concluded that the exogenous 6-BA and NAA had key regulation on the growth and contents of medicinal ingredient of Phellodendron chinense seedlings.
Collapse
Affiliation(s)
| | | | | | | | | | - Dangquan Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees (Ministry of Education) & Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| |
Collapse
|
1457
|
Qi J, Song CP, Wang B, Zhou J, Kangasjärvi J, Zhu JK, Gong Z. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:805-826. [PMID: 29660240 DOI: 10.1111/jipb.12654] [Citation(s) in RCA: 320] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/08/2018] [Indexed: 05/18/2023]
Abstract
Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors, including water status, light, CO2 levels and pathogen attack, as well as endogenous signals, such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli.
Collapse
Affiliation(s)
- Junsheng Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chun-Peng Song
- Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, Henan University, Kaifeng 475001, China
| | - Baoshan Wang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Ji'nan 250000, China
| | - Jianmin Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jaakko Kangasjärvi
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
1458
|
Zhu W, Gao E, Shaban M, Wang Y, Wang H, Nie X, Zhu L. GhUMC1, a blue copper-binding protein, regulates lignin synthesis and cotton immune response. Biochem Biophys Res Commun 2018; 504:75-81. [DOI: 10.1016/j.bbrc.2018.08.128] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023]
|
1459
|
Stewart JJ, Baker CR, Sharpes CS, Wong-Michalak ST, Polutchko SK, Adams WW, Demmig-Adams B. Effects of Foliar Redox Status on Leaf Vascular Organization Suggest Avenues for Cooptimization of Photosynthesis and Heat Tolerance. Int J Mol Sci 2018; 19:ijms19092507. [PMID: 30149544 PMCID: PMC6164678 DOI: 10.3390/ijms19092507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/19/2018] [Accepted: 08/22/2018] [Indexed: 01/23/2023] Open
Abstract
The interaction of heat stress with internal signaling networks was investigated through Arabidopsisthaliana mutants that were deficient in either tocopherols (vte1 mutant) or non-photochemical fluorescence quenching (NPQ; npq1, npq4, and npq1 npq4 mutants). Leaves of both vte1 and npq1 npq4 mutants that developed at a high temperature exhibited a significantly different leaf vascular organization compared to wild-type Col-0. Both mutants had significantly smaller water conduits (tracheary elements) of the xylem, but the total apparent foliar water-transport capacity and intrinsic photosynthetic capacity were similarly high in mutants and wild-type Col-0. This was accomplished through a combination of more numerous (albeit narrower) water conduits per vein, and a significantly greater vein density in both mutants relative to wild-type Col-0. The similarity of the phenotypes of tocopherol-deficient and NPQ-deficient mutants suggests that leaf vasculature organization is modulated by the foliar redox state. These results are evaluated in the context of interactions between redox-signaling pathways and other key regulators of plant acclimation to growth temperature, such as the C-repeat binding factor (CBF) transcription factors, several of which were upregulated in the antioxidant-deficient mutants. Possibilities for the future manipulation of the interaction between CBF and redox-signaling networks for the purpose of cooptimizing plant productivity and plant tolerance to extreme temperatures are discussed.
Collapse
Affiliation(s)
- Jared J Stewart
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA.
- School of Education, University of Colorado, Boulder, CO 80309-0249, USA.
| | - Christopher R Baker
- Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720-3102, USA.
| | - Carlie S Sharpes
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA.
| | | | - Stephanie K Polutchko
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA.
| | - William W Adams
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA.
| | - Barbara Demmig-Adams
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA.
| |
Collapse
|
1460
|
Swain L, Nanadikar MS, Borowik S, Zieseniss A, Katschinski DM. Transgenic Organisms Meet Redox Bioimaging: One Step Closer to Physiology. Antioxid Redox Signal 2018; 29:603-612. [PMID: 29320870 DOI: 10.1089/ars.2017.7469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Redox signaling is a common mechanism in the cellular response toward a variety of stimuli. For analyzing redox-dependent specific alterations in a cell, genetically encoded biosensors were highly instrumental in the past. To advance the knowledge about the importance of this signaling mechanism in vivo, models that are as close as possible to physiology are needed. Recent Advances: The development of transgenic (tg) redox biosensor animal models has enhanced the knowledge of redox signaling under patho(physio)logical conditions. So far, commonly used small animal models, that is, Caenorhabditis elegans, Drosophila melanogaster, and Danio rerio, and genetically modified mice were employed for redox biosensor transgenesis. However, especially the available mouse models are still limited. CRITICAL ISSUES The analysis of redox biosensor responses in vivo at the tissue level, especially for internal organs, is hampered by the detection limit of the available redox biosensors and microscopy techniques. Recent technical developments such as redox histology and the analysis of cell-type-specific biosensor responses need to be further refined and followed up in a systematic manner. FUTURE DIRECTIONS The usage of tg animal models in the field of redox signaling has helped to answer open questions. Application of the already established models and consequent development of more defined tg models will enable this research area to define the role of redox signaling in (patho)physiology in further depth. Antioxid. Redox Signal. 29, 603-612.
Collapse
Affiliation(s)
- Lija Swain
- 1 Vascular Biology Unit, Boston University School of Medicine, Boston University , Boston, Massachusetts
| | - Maithily S Nanadikar
- 2 Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August University of Göttingen , Göttingen, Germany
| | - Sergej Borowik
- 2 Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August University of Göttingen , Göttingen, Germany
| | - Anke Zieseniss
- 2 Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August University of Göttingen , Göttingen, Germany
| | - Dörthe M Katschinski
- 2 Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August University of Göttingen , Göttingen, Germany
| |
Collapse
|
1461
|
Response of Lablab purpureus L. to high temperature stress and role of exogenous protectants in mitigating high temperature induced oxidative damages. Mol Biol Rep 2018; 45:1375-1395. [PMID: 30109547 DOI: 10.1007/s11033-018-4301-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
Abstract
Present study was conducted to explore the role of exogenous salicylic acid (SA), sodium nitroprusside (SNP), abscisic acid (ABA) and proline (PRO) in mitigating high-temperature (HT) induced oxidative stress in different Lablab purpureus L. cultivars. The attempt was made to examine whether these phytohormones, when applied exogenously, were able to regulate plant morpho-physiological behavior by modulating genes and proteins involved in antioxidant defense system. The HT stress induced membrane damage, degraded chlorophyll, generated redox metabolites and significantly reduced growth and biomass in all the cultivars. Among all the four treatments, foliar application of SA and SNP were most effective in the regulation of growth and physiological processes of the cultivars compared to ABA and PRO applications. Thus, signifying the protective role of SA and SNP in mitigation of HT induced oxidative stress and conferring HT stress tolerance in the cultivars. Gene expression and leaf proteome analysis revealed that these phytohormones were also involved in regulation of defense related gene expression, stress inducible proteins and de novo synthesis of specific proteins under HT stress. The experimental findings depict that foliar applications of SA and SNP enhances HT stress tolerance in lablab cultivars by modulating antioxidant defense system and by regulating bio-physical growth more effectively as compared to ABA and PRO application.
Collapse
|
1462
|
Abstract
Reactive oxygen species (ROS) are produced by metabolic pathways in almost all cells. As signaling components, ROS are best known for their roles in abiotic and biotic stress-related events. However, recent studies have revealed that they are also involved in numerous processes throughout the plant life cycle, from seed development and germination, through to root, shoot and flower development. Here, we provide an overview of ROS production and signaling in the context of plant growth and development, highlighting the key functions of ROS and their interactions with plant phytohormonal networks.
Collapse
Affiliation(s)
- Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium, and Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium, and Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| |
Collapse
|
1463
|
Dutta S, Mitra M, Agarwal P, Mahapatra K, De S, Sett U, Roy S. Oxidative and genotoxic damages in plants in response to heavy metal stress and maintenance of genome stability. PLANT SIGNALING & BEHAVIOR 2018; 13:e1460048. [PMID: 29621424 PMCID: PMC6149466 DOI: 10.1080/15592324.2018.1460048] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/28/2018] [Indexed: 05/17/2023]
Abstract
Plants, being sessile in nature, are constantly exposed to various environmental stresses, such as solar UV radiations, soil salinity, drought and desiccation, rehydration, low and high temperatures and other vast array of air and soil borne chemicals, industrial waste products, metals and metalloids. These agents, either directly or indirectly via the induction of oxidative stress and overproduction of reactive oxygen species (ROS), frequently perturb the chemical or physical structures of DNA and induce both cytotoxic or genotoxic stresses. Such condition, in turn, leads to genome instability and thus eventually severely affecting plant health and crop yield. With the growing industrialization process and non-judicious use of chemical fertilizers, the heavy metal mediated chemical toxicity has become one of the major environmental threats for the plants around the globe. The heavy metal ions cause damage to the structural, enzymatic and non-enzymatic components of plant cell, often resulting in loss of cell viability, thus negatively impacting plant growth and development. Plants have also evolved with an extensive and highly efficient mechanism to respond and adapt under such heavy metal toxicity mediated stress conditions. In addition to morpho-anatomical, hormonal and biochemical responses, at the molecular level, plants respond to heavy metal stress induced oxidative and genotoxic damage via the rapid change in the expression of the responsive genes at the transcriptional level. Various families of transcription factors play crucial role in triggering such responses. Apart from transcriptional response, epigenetic modifications have also been found to be essential for maintenance of plant genome stability under genotoxic stress. This review represents a comprehensive survey of recent advances in our understanding of plant responses to heavy metal mediated toxicity in general with particular emphasis on the transcriptional and epigenetic responses and highlights the importance of understanding the potential targets in the associated pathways for improved stress tolerance in crops.
Collapse
Affiliation(s)
- Subhajit Dutta
- Department of Botany, UGC Centre of Advanced Studies, The University of Burdwan, Golapbag campus, Burdwan – 713104, West Bengal, India
| | - Mehali Mitra
- Department of Botany, UGC Centre of Advanced Studies, The University of Burdwan, Golapbag campus, Burdwan – 713104, West Bengal, India
| | - Puja Agarwal
- Department of Botany, UGC Centre of Advanced Studies, The University of Burdwan, Golapbag campus, Burdwan – 713104, West Bengal, India
| | - Kalyan Mahapatra
- Department of Botany, UGC Centre of Advanced Studies, The University of Burdwan, Golapbag campus, Burdwan – 713104, West Bengal, India
| | - Sayanti De
- Department of Botany, UGC Centre of Advanced Studies, The University of Burdwan, Golapbag campus, Burdwan – 713104, West Bengal, India
| | - Upasana Sett
- Department of Botany, UGC Centre of Advanced Studies, The University of Burdwan, Golapbag campus, Burdwan – 713104, West Bengal, India
| | - Sujit Roy
- Department of Botany, UGC Centre of Advanced Studies, The University of Burdwan, Golapbag campus, Burdwan – 713104, West Bengal, India
| |
Collapse
|
1464
|
D'Errico G, Vitiello G, De Tommaso G, Abdel-Gawad FK, Brundo MV, Ferrante M, De Maio A, Trocchia S, Bianchi AR, Ciarcia G, Guerriero G. Electron Spin Resonance (ESR) for the study of Reactive Oxygen Species (ROS) on the isolated frog skin (Pelophylax bergeri): A non-invasive method for environmental monitoring. ENVIRONMENTAL RESEARCH 2018; 165:11-18. [PMID: 29655038 DOI: 10.1016/j.envres.2018.03.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/16/2018] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Reactive oxygen species (ROS) in biological tissues of elected biosentinels represent an optimal biomarker for eco-monitoring of polluted areas. Electron spin resonance (ESR) is the most definitive method for detecting, quantifying and possibly identifying radicals in complex systems. OBJECTIVE A non-invasive method for monitoring polluted areas by the quantitative determination of ROS in frog skin biopsy is presented. METHODS We assessed by ESR spectroscopy the ROS level in adult male of Pelophylax bergeri, specie not a risk of extinction, collected from the polluted Sarno River (SA, Italy) basin. The spin-trap ESR method was validated by immunohistochemical analysis of the well-assessed pollution biomarkers cytochrome P450 aromatase 1A (CYP1A) and glutathione S-transferase (GST), and by determining the poly(ADPribose) polymerase (PARP) and GST enzymatic activity. RESULTS ROS concentration in skin samples from frogs collected in the polluted area is significantly higher than that determined for the unpolluted reference area. Immunohistochemical analysis of CYP1A and GST supported the reliability of our approach, even in the absence of evident morphological and ultrastructural differences. PARP activity assay, connected to possible oxidative DNA damage, and the detoxification index by GST enzymatic assay give statistically significant evidence that higher levels of ROS are associated to alterations of the different biomarkers. CONCLUSIONS ROS concentration, measured by ESR on isolated frog skin, through the presented non-lethal method, is a reliable biomarker for toxicity screening and represents a useful basic datum for future modelling studies on environmental monitoring and biodiversity loss prevention.
Collapse
Affiliation(s)
- Gerardino D'Errico
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 4, I-80126 Naples, Italy; CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Florence, Italy.
| | - Giuseppe Vitiello
- CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Florence, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, I-80125 Naples, Italy
| | - Gaetano De Tommaso
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 4, I-80126 Naples, Italy
| | - Fagr Kh Abdel-Gawad
- Water Pollution Research Department, Centre of Excellence for Advanced Sciences (CEAS), National Research Centre, El Buhout St., Dokki, ET-12622 Giza, Egypt
| | - Maria Violetta Brundo
- Department of Biological, Geological and Environmental Science, University of Catania, Corso Italia 57, I-95129 Catania, Italy
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 78, I-95123 Catania, Italy
| | - Anna De Maio
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 4, I-80126 Naples, Italy
| | - Samantha Trocchia
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 4, I-80126 Naples, Italy
| | - Anna Rita Bianchi
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 4, I-80126 Naples, Italy
| | - Gaetano Ciarcia
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 4, I-80126 Naples, Italy; Interdepartmental Research Center for Environment (I.R.C.Env.), University of Naples Federico II, Via Mezzocannone 16, I-80134 Naples, Italy
| | - Giulia Guerriero
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 4, I-80126 Naples, Italy; Interdepartmental Research Center for Environment (I.R.C.Env.), University of Naples Federico II, Via Mezzocannone 16, I-80134 Naples, Italy
| |
Collapse
|
1465
|
Nguyen TN, Tuan PA, Mukherjee S, Son S, Ayele BT. Hormonal regulation in adventitious roots and during their emergence under waterlogged conditions in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4065-4082. [PMID: 29788353 PMCID: PMC6054230 DOI: 10.1093/jxb/ery190] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/14/2018] [Indexed: 05/21/2023]
Abstract
To gain insights into the molecular mechanisms underlying hormonal regulation in adventitious roots and during their emergence under waterlogged conditions in wheat, the present study investigated transcriptional regulation of genes related to hormone metabolism and transport in the root and stem node tissues. Waterlogging-induced inhibition of axile root elongation and lateral root formation, and promotion of surface adventitious and axile root emergence and aerenchyma formation are associated with enhanced expression levels of ethylene biosynthesis genes, ACS7 and ACO2, in both tissues. Inhibition of axile root elongation is also related to increased root indole acetic acid (IAA) and jasmonate (JA) levels that are associated with up-regulation of specific IAA biosynthesis/transport (TDC, YUC1, and PIN9) and JA metabolism (LOX8, AOS1, AOC1, and JAR1) genes, and transcriptional alteration of gibberellin (GA) metabolism genes (GA3ox2 and GA2ox8). Adventitious root emergence from waterlogged stem nodes is associated with increased levels of IAA and GA but decreased levels of cytokinin and abscisic acid (ABA), which are regulated through the expression of specific IAA biosynthesis/transport (TDC, YUC1, and PIN9), cytokinin metabolism (IPT5-2, LOG1, CKX5, and ZOG2), ABA biosynthesis (NCED1 and NCED2), and GA metabolism (GA3ox2 and GA2ox8) genes. These results enhance our understanding of the molecular mechanisms underlying the adaptive response of wheat to waterlogging.
Collapse
Affiliation(s)
- Tran-Nguyen Nguyen
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pham Anh Tuan
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shalini Mukherjee
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - SeungHyun Son
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
- Correspondence:
| |
Collapse
|
1466
|
Wang W, Chen D, Zhang X, Liu D, Cheng Y, Shen F. Role of plant respiratory burst oxidase homologs in stress responses. Free Radic Res 2018; 52:826-839. [DOI: 10.1080/10715762.2018.1473572] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Wei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Dongdong Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Xiaopei Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Dan Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Yingying Cheng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| | - Fafu Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, PR China
| |
Collapse
|
1467
|
Xu Z, Xin T, Bartels D, Li Y, Gu W, Yao H, Liu S, Yu H, Pu X, Zhou J, Xu J, Xi C, Lei H, Song J, Chen S. Genome Analysis of the Ancient Tracheophyte Selaginella tamariscina Reveals Evolutionary Features Relevant to the Acquisition of Desiccation Tolerance. MOLECULAR PLANT 2018; 11:983-994. [PMID: 29777775 DOI: 10.1016/j.molp.2018.05.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/30/2018] [Accepted: 05/07/2018] [Indexed: 05/18/2023]
Abstract
Resurrection plants, which are the "gifts" of natural evolution, are ideal models for studying the genetic basis of plant desiccation tolerance. Here, we report a high-quality genome assembly of 301 Mb for the diploid spike moss Selaginella tamariscina, a primitive vascular resurrection plant. We predicated 27 761 protein-coding genes from the assembled S. tamariscina genome, 11.38% (2363) of which showed significant expression changes in response to desiccation. Approximately 60.58% of the S. tamariscina genome was annotated as repetitive DNA, which is an almost 2-fold increase of that in the genome of desiccation-sensitive Selaginella moellendorffii. Genomic and transcriptomic analyses highlight the unique evolution and complex regulations of the desiccation response in S. tamariscina, including species-specific expansion of the oleosin and pentatricopeptide repeat gene families, unique genes and pathways for reactive oxygen species generation and scavenging, and enhanced abscisic acid (ABA) biosynthesis and potentially distinct regulation of ABA signaling and response. Comparative analysis of chloroplast genomes of several Selaginella species revealed a unique structural rearrangement and the complete loss of chloroplast NAD(P)H dehydrogenase (NDH) genes in S. tamariscina, suggesting a link between the absence of the NDH complex and desiccation tolerance. Taken together, our comparative genomic and transcriptomic analyses reveal common and species-specific desiccation tolerance strategies in S. tamariscina, providing significant insights into the desiccation tolerance mechanism and the evolution of resurrection plants.
Collapse
Affiliation(s)
- Zhichao Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Tianyi Xin
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Dorothea Bartels
- Institute of Molecular Plant Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Ying Li
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Wei Gu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Sai Liu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Haoying Yu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Xiangdong Pu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jianguo Zhou
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Caicai Xi
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hetian Lei
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China.
| | - Shilin Chen
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
1468
|
Van Ruyskensvelde V, Van Breusegem F, Van Der Kelen K. Post-transcriptional regulation of the oxidative stress response in plants. Free Radic Biol Med 2018; 122:181-192. [PMID: 29496616 DOI: 10.1016/j.freeradbiomed.2018.02.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/30/2022]
Abstract
Due to their sessile lifestyle, plants can be exposed to several kinds of stresses that will increase the production of reactive oxygen species (ROS), such as hydrogen peroxide, singlet oxygen, and hydroxyl radicals, in the plant cells and activate several signaling pathways that cause alterations in the cellular metabolism. Nevertheless, when ROS production outreaches a certain level, oxidative damage to nucleic acids, lipids, metabolites, and proteins will occur, finally leading to cell death. Until now, the most comprehensive and detailed readout of oxidative stress responses is undoubtedly obtained at the transcriptome level. However, transcript levels often do not correlate with the corresponding protein levels. Indeed, together with transcriptional regulations, post-transcriptional, translational, and/or post-translational regulations will shape the active proteome. Here, we review the current knowledge on the post-transcriptional gene regulation during the oxidative stress responses in planta.
Collapse
Affiliation(s)
- Valerie Van Ruyskensvelde
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| | - Katrien Van Der Kelen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
1469
|
Zandalinas SI, Mittler R. ROS-induced ROS release in plant and animal cells. Free Radic Biol Med 2018; 122:21-27. [PMID: 29203327 DOI: 10.1016/j.freeradbiomed.2017.11.028] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 01/08/2023]
Abstract
Reactive oxygen species (ROS) play a key signaling role in plant and animal cells. Among the many cellular mechanisms used to generate and transduce ROS signals, ROS-induced ROS release (RIRR) is emerging as an important pathway involved in different human pathologies and plant responses to environmental stress. RIRR is a process in which one cellular compartment or organelle generates or releases ROS, triggering the enhanced production or release of ROS by another compartment or organelle. It was initially described in animal cells and proposed to mediate mitochondria-to-mitochondria communication, but later expanded to include communication between mitochondria and plasma membrane-localized NADPH oxidases. In plants a process of RIRR was demonstrated to mediate long distance rapid systemic signaling in response to biotic and abiotic stress. This process is thought to involve the enhanced production of ROS by one cell that triggers the enhanced production of ROS by a neighboring cell in a process that propagates the enhanced "ROS production state" all the way from one part of the plant to another. In contrast to the intracellular nature of the RIRR process of animal cells, the plant RIRR process is therefore primarily studied at the cell-to-cell communication level. Studies on intracellular (organelle-to-organelle, or organelle-to-NADPH oxidase) RIRR pathways are very scarce in plants, whereas studies on cell-to-cell RIRR are very scarce in animals. Here we will attempt to highlight what is known in both systems and what each system can learn from the other.
Collapse
Affiliation(s)
- Sara I Zandalinas
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA
| | - Ron Mittler
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA.
| |
Collapse
|
1470
|
Ortega-Villasante C, Burén S, Blázquez-Castro A, Barón-Sola Á, Hernández LE. Fluorescent in vivo imaging of reactive oxygen species and redox potential in plants. Free Radic Biol Med 2018; 122:202-220. [PMID: 29627452 DOI: 10.1016/j.freeradbiomed.2018.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are by-products of aerobic metabolism, and excessive production can result in oxidative stress and cell damage. In addition, ROS function as cellular messengers, working as redox regulators in a multitude of biological processes. Understanding ROS signalling and stress responses requires methods for precise imaging and quantification to monitor local, subcellular and global ROS dynamics with high selectivity, sensitivity and spatiotemporal resolution. In this review, we summarize the present knowledge for in vivo plant ROS imaging and detection, using both chemical probes and fluorescent protein-based biosensors. Certain characteristics of plant tissues, for example high background autofluorescence in photosynthetic organs and the multitude of endogenous antioxidants, can interfere with ROS and redox potential detection, making imaging extra challenging. Novel methods and techniques to measure in vivo plant ROS and redox changes with better selectivity, accuracy, and spatiotemporal resolution are therefore desirable to fully acknowledge the remarkably complex plant ROS signalling networks.
Collapse
Affiliation(s)
- Cristina Ortega-Villasante
- Fisiología Vegetal, Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Stefan Burén
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Alfonso Blázquez-Castro
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Ángel Barón-Sola
- Fisiología Vegetal, Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Luis E Hernández
- Fisiología Vegetal, Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
1471
|
Czarnocka W, Karpiński S. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic Biol Med 2018; 122:4-20. [PMID: 29331649 DOI: 10.1016/j.freeradbiomed.2018.01.011] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/17/2017] [Accepted: 01/09/2018] [Indexed: 01/11/2023]
Abstract
In the natural environment, plants are exposed to a variety of biotic and abiotic stress conditions that trigger rapid changes in the production and scavenging of reactive oxygen species (ROS). The production and scavenging of ROS is compartmentalized, which means that, depending on stimuli type, they can be generated and eliminated in different cellular compartments such as the apoplast, plasma membrane, chloroplasts, mitochondria, peroxisomes, and endoplasmic reticulum. Although the accumulation of ROS is generally harmful to cells, ROS play an important role in signaling pathways that regulate acclimatory and defense responses in plants, such as systemic acquired acclimation (SAA) and systemic acquired resistance (SAR). However, high accumulations of ROS can also trigger redox homeostasis disturbance which can lead to cell death, and in consequence, to a limitation in biomass and yield production. Different ROS have various half-lifetimes and degrees of reactivity toward molecular components such as lipids, proteins, and nucleic acids. Thus, they play different roles in intra- and extra-cellular signaling. Despite their possible damaging effect, ROS should mainly be considered as signaling molecules that regulate local and systemic acclimatory and defense responses. Over the past two decades it has been proven that ROS together with non-photochemical quenching (NPQ), hormones, Ca2+ waves, and electrical signals are the main players in SAA and SAR, two physiological processes essential for plant survival and productivity in unfavorable conditions.
Collapse
Affiliation(s)
- Weronika Czarnocka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland; Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland; The Plant Breeding and Acclimatization Institute (IHAR) - National Research Institute, Radzików, 05-870 Błonie, Poland.
| |
Collapse
|
1472
|
González-Bosch C. Priming plant resistance by activation of redox-sensitive genes. Free Radic Biol Med 2018; 122:171-180. [PMID: 29277443 DOI: 10.1016/j.freeradbiomed.2017.12.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022]
Abstract
Priming by natural compounds is an interesting alternative for sustainable agriculture, which also contributes to explore the molecular mechanisms associated with stress tolerance. Although hosts and stress types eventually determine the mode of action of plant-priming agents, it highlights that many of them act on redox signalling. These include vitamins thiamine, riboflavin and quercetin; organic acids like pipecolic, azelaic and hexanoic; volatile organic compounds such as methyl jasmonate; cell wall components like chitosans and oligogalacturonides; H2O2, etc. This review provides data on how priming inducers promote stronger and faster responses to stress by modulating the oxidative environment, and interacting with signalling pathways mediated by salycilic acid, jasmonic acid and ethylene. The histone modifications involved in priming that affect the transcription of defence-related genes are also discussed. Despite the evolutionary distance between plants and animals, and the fact that the plant innate immunity takes place in each plant cell, they show many similarities in the molecular mechanisms that underlie pathogen perception and further signalling to activate defence responses. This review highlights the similarities between priming through redox signalling in plants and in mammalian cells. The strategies used by pathogens to manipulate the host´s recognition and the further activation of defences also show similarities in both kingdoms. Moreover, phytochemicals like sulforaphane and 12-oxo-phytodienoic acid prime both plant and mammalian responses by activating redox-sensitive genes. Hence research data into the priming of plant defences can provide additional information and a new viewpoint for priming mammalian defence, and vice versa.
Collapse
Affiliation(s)
- Carmen González-Bosch
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Instituto de Agroquímica y Tecnología de Alimentos (IATA/CSIC), Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
1473
|
Rai KK, Rai N, Rai SP. Salicylic acid and nitric oxide alleviate high temperature induced oxidative damage in Lablab purpureus L plants by regulating bio-physical processes and DNA methylation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 128:72-88. [PMID: 29763836 DOI: 10.1016/j.plaphy.2018.04.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/03/2018] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
Salicylic acid (SA) and sodium nitroprusside (SNP, NO donor) modulates plant growth and development processes and recent findings have also revealed their involvement in the regulation of epigenetic factors under stress condition. In the present study, some of these factors were comparatively studied in hyacinth bean plants subjected to high temperature (HT) environment (40-42 °C) with and without exogenous application of SA and SNP under field condition. Exogenous application of SA and SNP substantially modulated the growth and biophysical process of hyacinth bean plants under HT environment. Exogenous application of SA and SNP also remarkably regulated the activities of antioxidant enzymes, modulated mRNA level of certain enzymes, improves plant water relation, enhance photosynthesis and thereby increasing plant defence under HT. Coupled restriction enzyme digestion-random amplification (CRED-RA) technique revealed that many methylation changes were "dose dependent" and HT significantly increased DNA damages as evidenced by both increase and decrease in bands profiles, methylation and de-methylation pattern. Thus, the result of the present study clearly shows that exogenous SA and SNP regulates DNA methylation pattern, modulates stress-responsive genes and can impart transient HT tolerance by synchronizing growth and physiological acclimatization of plants, thus narrowing the gaps between physio-biochemical and molecular events in addressing HT tolerance.
Collapse
Affiliation(s)
- Krishna Kumar Rai
- Indian Institute of Vegetable Research, Post Box-01, P.O.-Jakhini, Shahanshahpur, Varanasi, 221305, Uttar Pradesh, India; Laboratory of Morphogenesis, Centre of Advance Study in Botany, Department of Botany, Faculty of Science, Banaras Hindu University (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Nagendra Rai
- Indian Institute of Vegetable Research, Post Box-01, P.O.-Jakhini, Shahanshahpur, Varanasi, 221305, Uttar Pradesh, India
| | - Shashi Pandey Rai
- Laboratory of Morphogenesis, Centre of Advance Study in Botany, Department of Botany, Faculty of Science, Banaras Hindu University (BHU), Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
1474
|
Mostofa MG, Ghosh A, Li ZG, Siddiqui MN, Fujita M, Tran LSP. Methylglyoxal - a signaling molecule in plant abiotic stress responses. Free Radic Biol Med 2018; 122:96-109. [PMID: 29545071 DOI: 10.1016/j.freeradbiomed.2018.03.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/16/2018] [Accepted: 03/06/2018] [Indexed: 01/03/2023]
Abstract
Abiotic stresses are the most common harmful factors, adversely affecting all aspects of plants' life. Plants have to elicit appropriate responses against multifaceted effects of abiotic stresses by reprogramming various cellular processes. Signaling molecules play vital roles in sensing environmental stimuli to modulate gene expression, metabolism and physiological processes in plants to cope with the adverse effects. Methylglyoxal (MG), a dicarbonyl compound, is known to accumulate in cells as a byproduct of various metabolic pathways, including glycolysis. Several works in recent years have demonstrated that MG could play signaling roles via Ca2+, reactive oxygen species (ROS), K+ and abscisic acid. Recently, global gene expression profiling has shown that MG could induce signaling cascades, and an overlap between MG-responsive and stress-responsive signaling events might exist in plants. Once overaccumulated in cells, MG can provoke detrimental effects by generating ROS, forming advanced glycation end products and inactivating antioxidant systems. Plants are also equipped with MG-detoxifying glyoxalase system to save cellular organelles from MG toxicity. Since MG has regulatory functions in plant growth and development, and glyoxalase system is an integral component of abiotic stress adaptation, an in-depth understanding on MG metabolism and glyoxalase system will help decipher mechanisms underlying plant responses to abiotic stresses. Here, we provide a comprehensive update on the current knowledge of MG production and detoxification in plants, and highlight the putative functions of glyoxalase system in mediating plant defense against abiotic stresses. We particularly emphasize on the dual roles of MG and its connection with glutathione-related redox regulation, which is crucial for plant defense and adaptive responses under changing environmental conditions.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh.
| | - Zhong-Guang Li
- School of Life Sciences, Yunnan Normal University, Kunming 650500, PR China.
| | - Md Nurealam Siddiqui
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.
| | - Lam-Son Phan Tran
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam; Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
1475
|
Ozgur R, Uzilday B, Iwata Y, Koizumi N, Turkan I. Interplay between the unfolded protein response and reactive oxygen species: a dynamic duo. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3333-3345. [PMID: 29415271 DOI: 10.1093/jxb/ery040] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/26/2018] [Indexed: 05/20/2023]
Abstract
Secretory proteins undergo modifications such as glycosylation and disulphide bond formation before proper folding, and move to their final destination via the endomembrane system. Accumulation of unfolded proteins in the endoplasmic reticulum (ER) due to suboptimal environmental conditions triggers a response called the unfolded protein response (UPR), which induces a set of genes that elevate protein folding capacity in the ER. This review aims to establish a connection among ER stress, UPR, and reactive oxygen species (ROS), which remains an unexplored topic in plants. For this, we focused on mechanisms of ROS production originating from ER stress, the interaction between ER stress and overall ROS signalling process in the cell, and the interaction of ER stress with other organellar ROS signalling pathways such as of the mitochondria and chloroplasts. The roles of the UPR during plant hormone signalling and abiotic and biotic stress responses are also discussed in connection with redox and ROS signalling.
Collapse
Affiliation(s)
- Rengin Ozgur
- Ege University, Faculty of Science, Department of Biology, Izmir, Turkey
| | - Baris Uzilday
- Ege University, Faculty of Science, Department of Biology, Izmir, Turkey
| | - Yuji Iwata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Naka-ku, Sakai Osaka, Japan
| | - Nozomu Koizumi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Naka-ku, Sakai Osaka, Japan
| | - Ismail Turkan
- Ege University, Faculty of Science, Department of Biology, Izmir, Turkey
| |
Collapse
|
1476
|
He H, Van Breusegem F, Mhamdi A. Redox-dependent control of nuclear transcription in plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3359-3372. [PMID: 29659979 DOI: 10.1093/jxb/ery130] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/27/2018] [Indexed: 05/03/2023]
Abstract
Redox-dependent regulatory networks are affected by altered cellular or extracellular levels of reactive oxygen species (ROS). Perturbations of ROS production and scavenging homeostasis have a considerable impact on the nuclear transcriptome. While the regulatory mechanisms by which ROS modulate gene transcription in prokaryotes, lower eukaryotes, and mammalian cells are well established, new insights into the mechanism underlying redox control of gene expression in plants have only recently been known. In this review, we aim to provide an overview of the current knowledge on how ROS and thiol-dependent transcriptional regulatory networks are controlled. We assess the impact of redox perturbations and oxidative stress on transcriptome adjustments using cat2 mutants as a model system and discuss how redox homeostasis can modify the various parts of the transcriptional machinery.
Collapse
Affiliation(s)
- Huaming He
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| |
Collapse
|
1477
|
Mangano S, Martínez Pacheco J, Marino-Buslje C, Estevez JM. How Does pH Fit in with Oscillating Polar Growth? TRENDS IN PLANT SCIENCE 2018; 23:479-489. [PMID: 29605100 DOI: 10.1016/j.tplants.2018.02.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/08/2018] [Accepted: 02/23/2018] [Indexed: 05/22/2023]
Abstract
Polar growth in root hairs and pollen tubes is an excellent model for investigating plant cell size regulation. While linear plant growth is historically explained by the acid growth theory, which considers that auxin triggers apoplastic acidification by activating plasma membrane P-type H+-ATPases (AHAs) along with cell wall relaxation over long periods, the apoplastic pH (apopH) regulatory mechanisms are unknown for polar growth. Polar growth is a fast process mediated by rapid oscillations that repeat every ∼20-40s. In this review, we explore a reactive oxygen species (ROS)-dependent mechanism that could generate oscillating apopH gradients in a coordinated manner with growth and Ca2+ oscillations. We propose possible mechanisms by which apopH oscillations are coordinated with polar growth together with ROS and Ca2+ waves.
Collapse
Affiliation(s)
- Silvina Mangano
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Av. Patricias Argentinas 435, Buenos Aires CP C1405BWE, Argentina; These authors contributed equally to this work
| | - Javier Martínez Pacheco
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Av. Patricias Argentinas 435, Buenos Aires CP C1405BWE, Argentina; Department of Genetics and Phytopathology, Biological Research Division, Tobacco Research Institute, Carretera Tumbadero, 8 1/2 km, San Antonio de los Baños, Artemisa, Cuba; These authors contributed equally to this work
| | - Cristina Marino-Buslje
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Av. Patricias Argentinas 435, Buenos Aires CP C1405BWE, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Av. Patricias Argentinas 435, Buenos Aires CP C1405BWE, Argentina.
| |
Collapse
|
1478
|
Jiang G, Wu F, Li Z, Li T, Gupta VK, Duan X, Jiang Y. Sulfoxidation Regulation of Musa acuminata Calmodulin (MaCaM) Influences the Functions of MaCaM-Binding Proteins. PLANT & CELL PHYSIOLOGY 2018; 59:1214-1224. [PMID: 29566226 DOI: 10.1093/pcp/pcy057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/19/2018] [Indexed: 05/25/2023]
Abstract
Sulfoxidation of methionine in proteins by reactive oxygen species can cause conformational alteration or functional impairment, and can be reversed by methionine sulfoxide reductase (Msr). Currently, only a few potential Msr substrates have been confirmed in higher plants. Here, we investigated Msr-mediated sulfoxidation regulation of calmodulin (CaM) and its underlying biological significance in relation to banana fruit ripening and senescence. Expression of MaCaM1 and MaMsrA7 was up-regulated with increased ripening and senescence. We verified that MaCaM1 interacts with MaMsrA7 in vitro and in vivo, and sulfoxidated MaCaM1 could be partly repaired by MaMsrA7 (MaMsrA7 reduces oxidized residues Met77 and Met110 in MaCaM1). Furthermore, we investigated two known CaM-binding proteins, catalase (MaCAT1) and MaHY5-1. MaHY5-1 acts as a transcriptional repressor of carotenoid biosynthesis-related genes (MaPSY1, MaPSY2 and MaPSY3) in banana fruit. MaCaM1 could enhance the catalytic activity of MaCAT1 and the transcriptional repression activity of MaHY5-1 toward MaPSY2. Mimicked sulfoxidation in MaCaM1 did not affect the physical interactions of the protein with MaHY5-1 and MaCAT1, but reduced the catalytic activity of MaCAT1 and the transcriptional repression activity of MaHY5-1. Our data suggest that sulfoxidation modification in MaCaM1 by MaMsrA7 regulates antioxidant response and gene transcription, thereby being involved in regulation of ripening and senescence of banana fruit.
Collapse
Affiliation(s)
- Guoxiang Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Fuwang Wu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Zhiwei Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Vijai Kumar Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, School of Science, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
1479
|
Gruszka D, Janeczko A, Dziurka M, Pociecha E, Fodor J. Non-enzymatic antioxidant accumulations in BR-deficient and BR-insensitive barley mutants under control and drought conditions. PHYSIOLOGIA PLANTARUM 2018; 163:155-169. [PMID: 29215730 DOI: 10.1111/ppl.12674] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/27/2017] [Indexed: 05/12/2023]
Abstract
Drought is one of the most adverse stresses that affect plant growth and yield. Disturbances in metabolic activity resulting from drought cause overproduction of reactive oxygen species. It is postulated that brassinosteroids (BRs) regulate plant tolerance to the stress conditions, but the underlying mechanisms remain largely unknown. An involvement of endogenous BRs in regulation of the antioxidant homeostasis is not fully clarified either. Therefore, the aim of this study was to elucidate the role of endogenous BRs in regulation of non-enzymatic antioxidants in barley (Hordeum vulgare) under control and drought conditions. The plant material included the 'Bowman' cultivar and a group of semi-dwarf near-isogenic lines (NILs), representing mutants deficient in BR biosynthesis or signaling. In general, accumulations of 11 compounds representing various types of non-enzymatic antioxidants were analyzed under both conditions. The analyses of accumulations of reduced and oxidized forms of ascorbate indicated that the BR mutants contain significantly higher contents of dehydroascorbic acid under drought conditions when compared with the 'Bowman' cultivar. The analysis of glutathione accumulation indicated that under the control conditions the BR-insensitive NILs contained significantly lower concentrations of this antioxidant when compared with the rest of genotypes. Therefore, we postulate that BR sensitivity is required for normal accumulation of glutathione. A complete accumulation profile of various tocopherols indicated that functional BR biosynthesis and signaling are required for their normal accumulation under both conditions. Results of this study provided an insight into the role of endogenous BRs in regulation of the non-enzymatic antioxidant homeostasis.
Collapse
Affiliation(s)
- Damian Gruszka
- Department of Genetics, Faculty of Biology and Environment Protection, University of Silesia, Katowice, Poland
| | - Anna Janeczko
- The Franciszek Gorski Institute of Plant Physiology, Polish Academy of Sciences, Krakow, Poland
| | - Michal Dziurka
- The Franciszek Gorski Institute of Plant Physiology, Polish Academy of Sciences, Krakow, Poland
| | - Ewa Pociecha
- Department of Plant Physiology, University of Agriculture in Krakow, Krakow, Poland
| | - Jozsef Fodor
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
1480
|
Yang X, Li G, Tian Y, Song Y, Liang W, Zhang D. A Rice Glutamyl-tRNA Synthetase Modulates Early Anther Cell Division and Patterning. PLANT PHYSIOLOGY 2018; 177:728-744. [PMID: 29720556 PMCID: PMC6001321 DOI: 10.1104/pp.18.00110] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/20/2018] [Indexed: 05/04/2023]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) have housekeeping roles in protein synthesis, but little is known about how these aaRSs are involved in organ development. Here, we report that a rice (Oryza sativa) glutamyl-tRNA synthetase (OsERS1) maintains proper somatic cell organization and limits the overproliferation of male germ cells during early anther development. The expression of OsERS1 is specifically detectable in meristematic layer 2-derived cells of the early anther, and osers1 anthers exhibit overproliferation and disorganization of layer 2-derived cells, producing fused lobes and extra germ cells in early anthers. The conserved biochemical function of OsERS1 in ligating glutamate to tRNAGlu is enhanced by its cofactor aaRS OsARC. Furthermore, metabolomics profiling revealed that OsERS1 is an important node for multiple metabolic pathways, indicated by the accumulation of amino acids and tricarboxylic acid cycle components in osers1 anthers. Notably, the anther defects of the osers1 mutant are causally associated with the abnormal accumulation of hydrogen peroxide, which can reconstitute the osers1 phenotype when applied to wild-type anthers. Collectively, these findings demonstrate how aaRSs affect male organ development in plants, likely through protein synthesis, metabolic homeostasis, and redox status.
Collapse
Affiliation(s)
- Xiujuan Yang
- School of Agriculture, Food, and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gang Li
- School of Agriculture, Food, and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuesheng Tian
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Song
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dabing Zhang
- School of Agriculture, Food, and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
1481
|
Issawi M, Sol V, Riou C. Plant Photodynamic Stress: What's New? FRONTIERS IN PLANT SCIENCE 2018; 9:681. [PMID: 29875786 PMCID: PMC5974538 DOI: 10.3389/fpls.2018.00681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
In the 1970's, an unconventional stressful photodynamic treatment applied to plants was investigated in two directions. Exogenous photosensitizer treatment underlies direct photodynamic stress while treatment mediating endogenous photosensitizer over-accumulation pinpoints indirect photodynamic stress. For indirect photodynamic treatment, tetrapyrrole biosynthesis pathway was deregulated by 5-aminolevulenic acid or diphenyl ether. Overall, photodynamic stress involves the generation of high amount of reactive oxygen species leading to plant cell death. All these investigations were mainly performed to gain insight into new herbicide development but they were rapidly given up or limited due to the harmfulness of diphenyl ether and the high cost of 5-aminolevulinic acid treatment. Twenty years ago, plant photodynamic stress came back by way of crop transgenesis where for example protoporphyrin oxidases from human or bacteria were overexpressed. Such plants grew without dramatic effects of photodamage suggesting that plants tolerated induced photodynamic stress. In this review, we shed light on the occurrence of plant photodynamic stress and discuss challenging issues in the context of agriculture focusing on direct photodynamic modality. Indeed, we highlighted applications of exogenous PS especially porphyrins on plants, to further develop an emerged antimicrobial photodynamic treatment that could be a new strategy to kill plant pathogens without disturbing plant growth.
Collapse
Affiliation(s)
| | | | - Catherine Riou
- Laboratoire Peirene (EA7500), Faculté des Sciences et Techniques, Université de Limoges, Limoges, France
| |
Collapse
|
1482
|
Mukherjee G, Saha C, Naskar N, Mukherjee A, Mukherjee A, Lahiri S, Majumder AL, Seal A. An Endophytic Bacterial Consortium modulates multiple strategies to improve Arsenic Phytoremediation Efficacy in Solanum nigrum. Sci Rep 2018; 8:6979. [PMID: 29725058 PMCID: PMC5934359 DOI: 10.1038/s41598-018-25306-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 04/16/2018] [Indexed: 12/31/2022] Open
Abstract
Endophytic microbes isolated from plants growing in contaminated habitats possess specialized properties that help their host detoxify the contaminant/s. The possibility of using microbe-assisted phytoremediation for the clean-up of Arsenic (As) contaminated soils of the Ganga-Brahmaputra delta of India, was explored using As-tolerant endophytic microbes from an As-tolerant plant Lantana camara collected from the contaminated site and an intermediate As-accumulator plant Solanum nigrum. Endophytes from L. camara established within S. nigrum as a surrogate host. The microbes most effectively improved plant growth besides increasing bioaccumulation and root-to-shoot transport of As when applied as a consortium. Better phosphate nutrition, photosynthetic performance, and elevated glutathione levels were observed in consortium-treated plants particularly under As-stress. The consortium maintained heightened ROS levels in the plant without any deleterious effect and concomitantly boosted distinct antioxidant defense mechanisms in the shoot and root of As-treated plants. Increased consortium-mediated As(V) to As(III) conversion appeared to be a crucial step in As-detoxification/translocation. Four aquaporins were differentially regulated by the endophytes and/or As. The most interesting finding was the strong upregulation of an MRP transporter in the root by the As + endophytes, which suggested a major alteration of As-detoxification/accumulation pattern upon endophyte treatment that improved As-phytoremediation.
Collapse
Affiliation(s)
- Gairik Mukherjee
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Chinmay Saha
- Department of Endocrinology & Metabolism, Institute Of Post Graduate Medical Education & Research and SSKM Hospital, Room No. 9A, 4th Floor, Ronald Ross Building, 244, AJC Bose Road, Kolkata, 700020, India
| | - Nabanita Naskar
- Department of Environmental Science, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
- Saha Institute of Nuclear Physics, Sector - 1, Block - AF Bidhannagar, Kolkata, 700064, India
| | - Abhishek Mukherjee
- Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Arghya Mukherjee
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Susanta Lahiri
- Saha Institute of Nuclear Physics, Sector - 1, Block - AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Arun Lahiri Majumder
- Division of Plant Biology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Anindita Seal
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
1483
|
Liang X, Zhou JM. Receptor-Like Cytoplasmic Kinases: Central Players in Plant Receptor Kinase-Mediated Signaling. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:267-299. [PMID: 29719165 DOI: 10.1146/annurev-arplant-042817-040540] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Receptor kinases (RKs) are of paramount importance in transmembrane signaling that governs plant reproduction, growth, development, and adaptation to diverse environmental conditions. Receptor-like cytoplasmic kinases (RLCKs), which lack extracellular ligand-binding domains, have emerged as a major class of signaling proteins that regulate plant cellular activities in response to biotic/abiotic stresses and endogenous extracellular signaling molecules. By associating with immune RKs, RLCKs regulate multiple downstream signaling nodes to orchestrate a complex array of defense responses against microbial pathogens. RLCKs also associate with RKs that perceive brassinosteroids and signaling peptides to coordinate growth, pollen tube guidance, embryonic and stomatal patterning, floral organ abscission, and abiotic stress responses. The activity and stability of RLCKs are dynamically regulated not only by RKs but also by other RLCK-associated proteins. Analyses of RLCK-associated components and substrates have suggested phosphorylation relays as a major mechanism underlying RK-mediated signaling.
Collapse
Affiliation(s)
- Xiangxiu Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, 100101 Beijing, China;
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, 100101 Beijing, China;
| |
Collapse
|
1484
|
Walia A, Waadt R, Jones AM. Genetically Encoded Biosensors in Plants: Pathways to Discovery. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:497-524. [PMID: 29719164 DOI: 10.1146/annurev-arplant-042817-040104] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Genetically encoded biosensors that directly interact with a molecule of interest were first introduced more than 20 years ago with fusion proteins that served as fluorescent indicators for calcium ions. Since then, the technology has matured into a diverse array of biosensors that have been deployed to improve our spatiotemporal understanding of molecules whose dynamics have profound influence on plant physiology and development. In this review, we address several types of biosensors with a focus on genetically encoded calcium indicators, which are now the most diverse and advanced group of biosensors. We then consider the discoveries in plant biology made by using biosensors for calcium, pH, reactive oxygen species, redox conditions, primary metabolites, phytohormones, and nutrients. These discoveries were dependent on the engineering, characterization, and optimization required to develop a successful biosensor; they were also dependent on the methodological developments required to express, detect, and analyze the readout of such biosensors.
Collapse
Affiliation(s)
- Ankit Walia
- Sainsbury Laboratory, Cambridge University, Cambridge CB2 1LR, United Kingdom;
| | - Rainer Waadt
- Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, Heidelberg 69120, Germany
| | - Alexander M Jones
- Sainsbury Laboratory, Cambridge University, Cambridge CB2 1LR, United Kingdom;
| |
Collapse
|
1485
|
Sadhu A, Ghosh I, Moriyasu Y, Mukherjee A, Bandyopadhyay M. Role of cerium oxide nanoparticle-induced autophagy as a safeguard to exogenous H2O2-mediated DNA damage in tobacco BY-2 cells. Mutagenesis 2018; 33:161-177. [PMID: 29506140 DOI: 10.1093/mutage/gey004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/10/2018] [Indexed: 12/17/2023] Open
Abstract
The effect of cerium oxide nanoparticle (CeNP) in plants has elicited substantial controversy. While some investigators have reported that CeNP possesses antioxidant properties, others observed CeNP to induce reactive oxygen species (ROS). In spite of considerable research carried out on the effects of CeNP in metazoans, fundamental studies that can unveil its intracellular consequences linking ROS production, autophagy and DNA damage are lacking in plants. To elucidate the impact of CeNP within plant cells, tobacco BY-2 cells were treated with 10, 50 and 250 µg ml-1 CeNP (Ce10, Ce50 and Ce250), for 24 h. Results demonstrated concentration-dependent accumulation of Ca2+ and ROS at all CeNP treatment sets. However, significant DNA damage and alteration in antioxidant defence systems were noted prominently at Ce50 and Ce250. Moreover, Ce50 and Ce250 induced DNA damage, analysed by comet assay and DNA diffusion experiments, complied with the concomitant increase in ROS. Furthermore, to evaluate the antioxidant property of CeNP, treated cells were washed after 24 h (to minimise CeNP interference) and challenged with H2O2 for 3 h. Ce10 did not induce genotoxicity and H2O2 exposure to Ce10-treated cells showed lesser DNA breakage than cells treated with H2O2 only. Interestingly, Ce10 provided better protection over N-acetyl-L-cysteine against exogenous H2O2 in BY-2 cells. CeNP exposure to transgenic BY-2 cells expressing GFP-Atg8 fusion protein exhibited formation of autophagosomes at Ce10. Application of vacuolar protease inhibitor E-64c and fluorescent basic dye acridine orange, further demonstrated accumulation of particulate matters in the vacuole and occurrence of acidic compartments, the autophagolysosomes, respectively. BY-2 cells co-treated with CeNP and autophagy inhibitor 3-methyladenine exhibited increased DNA damage in Ce10 and cell death at all assessed treatment sets. Thus, current results substantiate an alternative autophagy-mediated, antioxidant and geno-protective role of CeNP, which will aid in deciphering novel phenomena of plant-nanoparticle interaction at cellular level.
Collapse
Affiliation(s)
- Abhishek Sadhu
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Ilika Ghosh
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Ballygunge Circular Road, Kolkata, India
| | - Yuji Moriyasu
- Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Saitama, Japan
| | - Anita Mukherjee
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Ballygunge Circular Road, Kolkata, India
| | - Maumita Bandyopadhyay
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
1486
|
Esposito S, Loppi S, Monaci F, Paoli L, Vannini A, Sorbo S, Maresca V, Fusaro L, Asadi Karam E, Lentini M, De Lillo A, Conte B, Cianciullo P, Basile A. In-field and in-vitro study of the moss Leptodictyum riparium as bioindicator of toxic metal pollution in the aquatic environment: Ultrastructural damage, oxidative stress and HSP70 induction. PLoS One 2018; 13:e0195717. [PMID: 29649272 PMCID: PMC5896978 DOI: 10.1371/journal.pone.0195717] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/28/2018] [Indexed: 01/30/2023] Open
Abstract
This study evaluates the effects of toxic metal pollution in the highly contaminated Sarno River (South Italy), by using the aquatic moss Leptodictyum riparium in bags at 3 representative sites of the river. Biological effects were assessed by metal bioaccumulation, ultrastructural changes, oxidative stress, as Reactive Oxygen Species (ROS) production and Glutathione S-transferase (GST) activity, as well as Heat Shock Proteins 70 (HSP70s) induction. The results showed that L. riparium is a valuable bioindicator for toxic metal pollution of water ecosystem, accumulating different amounts of toxic metals from the aquatic environment. Toxic metal pollution caused severe ultrastructural damage, as well as increased ROS production and induction of GST and HSP70s, in the samples exposed at the polluted sites. To assess the role and the effect of toxic metals on L. riparium, were also cultured in vitro with Cd, Cr, Cu, Fe, Ni, Pb, Zn at the same concentrations as measured at the 3 sites. Ultrastructure, ROS, GST, and HSP70s resulted severely affected by toxic metals. Based on our findings, we confirm L. riparium as a model organism in freshwater biomonitoring surveys, and GST and HSP70s as promising biomarkers of metal toxicity.
Collapse
Affiliation(s)
- Sergio Esposito
- Dipartimento di Biologia, University of Naples Federico II, Complesso Univ. Monte Sant'Angelo, Napoli, Italy
| | - Stefano Loppi
- Dipartimento di Scienze della Vita, University of Siena, Siena, Italy
| | - Fabrizio Monaci
- Dipartimento di Scienze della Vita, University of Siena, Siena, Italy
| | - Luca Paoli
- Dipartimento di Scienze della Vita, University of Siena, Siena, Italy
| | - Andrea Vannini
- Dipartimento di Scienze della Vita, University of Siena, Siena, Italy
| | - Sergio Sorbo
- Ce.S.M.A, Section of Microscopy, University of Naples Federico II, Complesso Univ. Monte Sant'Angelo, Napoli, Italy
| | - Viviana Maresca
- Dipartimento di Biologia, University of Naples Federico II, Complesso Univ. Monte Sant'Angelo, Napoli, Italy
| | - Lina Fusaro
- Dipartimento di Biologia Ambientale, Università Sapienza, Roma, Italy
| | - Elham Asadi Karam
- Biology Department, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Marco Lentini
- Dipartimento di Biologia, University of Naples Federico II, Complesso Univ. Monte Sant'Angelo, Napoli, Italy
| | - Alessia De Lillo
- Dipartimento di Biologia, University of Naples Federico II, Complesso Univ. Monte Sant'Angelo, Napoli, Italy
| | - Barbara Conte
- Dipartimento di Biologia, University of Naples Federico II, Complesso Univ. Monte Sant'Angelo, Napoli, Italy
| | | | - Adriana Basile
- Dipartimento di Biologia, University of Naples Federico II, Complesso Univ. Monte Sant'Angelo, Napoli, Italy
| |
Collapse
|
1487
|
Bafoil M, Jemmat A, Martinez Y, Merbahi N, Eichwald O, Dunand C, Yousfi M. Effects of low temperature plasmas and plasma activated waters on Arabidopsis thaliana germination and growth. PLoS One 2018; 13:e0195512. [PMID: 29630641 PMCID: PMC5891017 DOI: 10.1371/journal.pone.0195512] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/23/2018] [Indexed: 11/18/2022] Open
Abstract
Two plasma devices at atmospheric pressure (air dielectric barrier discharge and helium plasma jet) have been used to study the early germination of Arabidopsis thaliana seeds during the first days. Then, plasma activated waters are used during the later stage of plant development and growth until 42 days. The effects on both testa and endospserm ruptures during the germination stage are significant in the case of air plasma due to its higher energy and efficiency of producing reactive oxygen species than the case of helium plasma. The latter has shown distinct effects only for testa rupture. Analysis of germination stimulations are based on specific stainings for reactive oxygen species production, peroxidase activity and also membrane permeability tests. Furthermore, scanning electron microscopy (SEM) has shown a smoother seed surface for air plasma treated seeds that can explain the plasma induced-germination. During the growth stage, plants were watered using 4 kinds of water (tap and deionized waters activated or not by the low temperature plasma jet). With regards to other water kinds, the characterization of the tap water has shown a larger conductivity, acidity and concentration of reactive nitrogen and oxygen species. Only the tap water activated by the plasma jet has shown a significant effect on the plant growth. This effect could be correlated to reactive nitrogen species such as nitrite/nitrate species present in plasma activated tap water.
Collapse
Affiliation(s)
- Maxime Bafoil
- LAPLACE, UMR CNRS 5213, Université Paul Sabatier, Toulouse, France
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville, Castanet Tolosan, France
| | - Achraf Jemmat
- LAPLACE, UMR CNRS 5213, Université Paul Sabatier, Toulouse, France
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville, Castanet Tolosan, France
| | - Yves Martinez
- Fédération de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
| | - Nofel Merbahi
- LAPLACE, UMR CNRS 5213, Université Paul Sabatier, Toulouse, France
| | - Olivier Eichwald
- LAPLACE, UMR CNRS 5213, Université Paul Sabatier, Toulouse, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville, Castanet Tolosan, France
- * E-mail: (MY); (CD)
| | - Mohammed Yousfi
- LAPLACE, UMR CNRS 5213, Université Paul Sabatier, Toulouse, France
- * E-mail: (MY); (CD)
| |
Collapse
|
1488
|
Zaki-Dizaji M, Akrami SM, Azizi G, Abolhassani H, Aghamohammadi A. Inflammation, a significant player of Ataxia-Telangiectasia pathogenesis? Inflamm Res 2018; 67:559-570. [PMID: 29582093 DOI: 10.1007/s00011-018-1142-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/03/2018] [Accepted: 03/21/2018] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Ataxia-Telangiectasia (A-T) syndrome is an autosomal recessive neurodegenerative disorder characterized by cerebellar ataxia, oculocutaneous telangiectasia, immunodeficiency, chromosome instability, radiosensitivity, and predisposition to malignancy. There is growing evidence that A-T patients suffer from pathologic inflammation that is responsible for many symptoms of this syndrome, including neurodegeneration, autoimmunity, cardiovascular disease, accelerated aging, and insulin resistance. In addition, epidemiological studies have shown A-T heterozygotes, somewhat like deficient patients, are susceptible to ionizing irradiation and have a higher risk of cancers and metabolic disorders. AREA COVERED This review summarizes clinical and molecular findings of inflammation in A-T syndrome. CONCLUSION Ataxia-Telangiectasia Mutated (ATM), a master regulator of the DNA damage response is the protein known to be associated with A-T and has a complex nuclear and cytoplasmic role. Loss of ATM function may induce immune deregulation and systemic inflammation.
Collapse
Affiliation(s)
- Majid Zaki-Dizaji
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Science, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Science, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Science, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran.
| |
Collapse
|
1489
|
Lou L, Li X, Chen J, Li Y, Tang Y, Lv J. Photosynthetic and ascorbate-glutathione metabolism in the flag leaves as compared to spikes under drought stress of winter wheat (Triticum aestivum L.). PLoS One 2018; 13:e0194625. [PMID: 29566049 PMCID: PMC5864061 DOI: 10.1371/journal.pone.0194625] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/06/2018] [Indexed: 11/18/2022] Open
Abstract
Ascorbate-glutathione (ASA-GSH) cycle is a major pathway of H2O2 scavenging and an effective mechanism of detoxification in plants. The differences in photosynthesis, chlorophyll content (Chl), relative water content (RWC), antioxidants and antioxidative enzyme activities involved in ASA-GSH metabolism were measured between the flag leaves and spike bracts (glumes and lemmas) during grain filling under drought stress. The expression of APX1, GRC1, DHAR, MDHAR, GPX1, and GS3 in ASA-GSH cycle was also measured. Compared with the flag leaves, the spike bracts exhibited stable net photosynthetic rate (PN) and chlorophyll content (Chl), a lower accumulation of reactive oxygen species (ROS), and more enhanced percentages of antioxidant enzyme activities and key enzymes gene transcription levels involved in ASA-GSH metabolism during the grain-filling stage under drought conditions. This could be the reasonable explanation for the more stable photosynthetic capacity in spikes, and the glumes and lemmas senesced later than the flag leaves at the late grain-filling stage. Also, the function of ASA-GSH cycle could not be ignored in alleviating oxidative damage by scavenging more excess ROS in spikes under drought stress.
Collapse
Affiliation(s)
- Lili Lou
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaorui Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Junxiu Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yue Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yan Tang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinyin Lv
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
1490
|
Matuszkiewicz M, Sobczak M, Cabrera J, Escobar C, Karpiński S, Filipecki M. The Role of Programmed Cell Death Regulator LSD1 in Nematode-Induced Syncytium Formation. FRONTIERS IN PLANT SCIENCE 2018; 9:314. [PMID: 29616052 PMCID: PMC5868158 DOI: 10.3389/fpls.2018.00314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 02/23/2018] [Indexed: 05/29/2023]
Abstract
Cyst-forming plant-parasitic nematodes are common pests of many crops. They inject secretions into host cells to induce the developmental and metabolic reprogramming that leads to the formation of a syncytium, which is the sole food source for growing nematodes. As in other host-parasite models, avirulence leads to rapid and local programmed cell death (PCD) known as the hypersensitive response (HR), whereas in the case of virulence, PCD is still observed but is limited to only some cells. Several regulators of PCD were analyzed to understand the role of PCD in compatible plant-nematode interactions. Thus, Arabidopsis plants carrying recessive mutations in LESION SIMULATING DISEASE1 (LSD1) family genes were subjected to nematode infection assays with juveniles of Heterodera schachtii. LSD1 is a negative and conditional regulator of PCD, and fewer and smaller syncytia were induced in the roots of lsd1 mutants than in wild-type Col-0 plants. Mutation in LSD ONE LIKE2 (LOL2) revealed a pattern of susceptibility to H. schachtii antagonistic to lsd1. Syncytia induced on lsd1 roots compared to Col0 showed significantly retarded growth, modified cell wall structure, increased vesiculation, and some myelin-like bodies present at 7 and 12 days post-infection. To place these data in a wider context, RNA-sequencing analysis of infected and uninfected roots was conducted. During nematode infection, the number of transcripts with changed expression in lsd1 was approximately three times smaller than in wild-type plants (1440 vs. 4206 differentially expressed genes, respectively). LSD1-dependent PCD in roots is thus a highly regulated process in compatible plant-nematode interactions. Two genes identified in this analysis, coding for AUTOPHAGY-RELATED PROTEIN 8F and 8H were down-regulated in syncytia in the presence of LSD1 and showed an increased susceptibility to nematode infection contrasting with lsd1 phenotype. Our data indicate that molecular regulators belonging to the LSD1 family play an important role in precise balancing of diverse PCD players during syncytium development required for successful nematode parasitism.
Collapse
Affiliation(s)
- Mateusz Matuszkiewicz
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Miroslaw Sobczak
- Department of Botany, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Javier Cabrera
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Carolina Escobar
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Stanislaw Karpiński
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Marcin Filipecki
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| |
Collapse
|
1491
|
Pottosin I, Zepeda-Jazo I, Bose J, Shabala S. An Anion Conductance, the Essential Component of the Hydroxyl-Radical-Induced Ion Current in Plant Roots. Int J Mol Sci 2018; 19:E897. [PMID: 29562632 PMCID: PMC5877758 DOI: 10.3390/ijms19030897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 01/21/2023] Open
Abstract
Oxidative stress signaling is essential for plant adaptation to hostile environments. Previous studies revealed the essentiality of hydroxyl radicals (HO•)-induced activation of massive K⁺ efflux and a smaller Ca2+ influx as an important component of plant adaptation to a broad range of abiotic stresses. Such activation would modify membrane potential making it more negative. Contrary to these expectations, here, we provide experimental evidence that HO• induces a strong depolarization, from -130 to -70 mV, which could only be explained by a substantial HO•-induced efflux of intracellular anions. Application of Gd3+ and NPPB, non-specific blockers of cation and anion conductance, respectively, reduced HO•-induced ion fluxes instantaneously, implying a direct block of the dual conductance. The selectivity of an early instantaneous HO•-induced whole cell current fluctuated from more anionic to more cationic and vice versa, developing a higher cation selectivity at later times. The parallel electroneutral efflux of K⁺ and anions should underlie a substantial leak of the cellular electrolyte, which may affect the cell's turgor and metabolic status. The physiological implications of these findings are discussed in the context of cell fate determination, and ROS and cytosolic K⁺ signaling.
Collapse
Affiliation(s)
- Igor Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima; Av. 25 de julio 965, Villa de San Sebastian, Colima, Col. 28045, Mexico.
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia.
| | - Isaac Zepeda-Jazo
- Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo, Av. Universidad 3000, Lomas de la Universidad, Sahuayo, Mich. 59103, Mexico.
| | - Jayakumar Bose
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Adelaide SA 5064, Australia.
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia.
| |
Collapse
|
1492
|
Optimization of Photosynthetic Productivity in Contrasting Environments by Regulons Controlling Plant Form and Function. Int J Mol Sci 2018; 19:ijms19030872. [PMID: 29543762 PMCID: PMC5877733 DOI: 10.3390/ijms19030872] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 01/06/2023] Open
Abstract
We review the role of a family of transcription factors and their regulons in maintaining high photosynthetic performance across a range of challenging environments with a focus on extreme temperatures and water availability. Specifically, these transcription factors include CBFs (C-repeat binding factors) and DREBs (dehydration-responsive element-binding), with CBF/DREB1 primarily orchestrating cold adaptation and other DREBs serving in heat, drought, and salinity adaptation. The central role of these modulators in plant performance under challenging environments is based on (i) interweaving of these regulators with other key signaling networks (plant hormones and redox signals) as well as (ii) their function in integrating responses across the whole plant, from light-harvesting and sugar-production in the leaf to foliar sugar export and water import and on to the plant's sugar-consuming sinks (growth, storage, and reproduction). The example of Arabidopsisthaliana ecotypes from geographic origins with contrasting climates is used to describe the links between natural genetic variation in CBF transcription factors and the differential acclimation of plant anatomical and functional features needed to support superior photosynthetic performance in contrasting environments. Emphasis is placed on considering different temperature environments (hot versus cold) and light environments (limiting versus high light), on trade-offs between adaptations to contrasting environments, and on plant lines minimizing such trade-offs.
Collapse
|
1493
|
Tian Y, Fan M, Qin Z, Lv H, Wang M, Zhang Z, Zhou W, Zhao N, Li X, Han C, Ding Z, Wang W, Wang ZY, Bai MY. Hydrogen peroxide positively regulates brassinosteroid signaling through oxidation of the BRASSINAZOLE-RESISTANT1 transcription factor. Nat Commun 2018. [PMID: 29540799 PMCID: PMC5852159 DOI: 10.1038/s41467-018-03463-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hydrogen peroxide (H2O2) is an important signaling molecule in plant developmental processes and stress responses. However, whether H2O2-mediated signaling crosstalks with plant hormone signaling is largely unclear. Here, we show that H2O2 induces the oxidation of the BRASSINAZOLE-RESISTANT1 (BZR1) transcription factor, which functions as a master regulator of brassinosteroid (BR) signaling. Oxidative modification enhances BZR1 transcriptional activity by promoting its interaction with key regulators in the auxin-signaling and light-signaling pathways, including AUXIN RESPONSE FACTOR6 (ARF6) and PHYTOCHROME INTERACTING FACTOR4 (PIF4). Genome-wide analysis shows that H2O2-dependent regulation of BZR1 activity plays a major role in modifying gene expression related to several BR-mediated biological processes. Furthermore, we show that the thioredoxin TRXh5 can interact with BZR1 and catalyzes its reduction. We conclude that reversible oxidation of BZR1 connects H2O2-mediated and thioredoxin-mediated redox signaling to BR signaling to regulate plant development. Hydrogen peroxide and brassinosteroids (BR) both regulate plant development and stress responses. Here Tian et al. show that hydrogen peroxide can trigger oxidation of the BR-responsive BZR1 transcription factor and promote its transcriptional activity, thereby linking BR and redox signaling.
Collapse
Affiliation(s)
- Yanchen Tian
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Min Fan
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Zhaoxia Qin
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Hongjun Lv
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Minmin Wang
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Zhe Zhang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenying Zhou
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Na Zhao
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Xiaohui Li
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Chao Han
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Zhaojun Ding
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Wenfei Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Ming-Yi Bai
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China.
| |
Collapse
|
1494
|
Miranowicz-Dzierżawska K. A comparative study of using free radical generators in the testing of chosen oxidative stress parameters in the different types of cells. Toxicol Ind Health 2018. [PMID: 29519201 DOI: 10.1177/0748233717752090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to assess whether there are differences between the results of determining oxidative stress markers obtained from different origin cell lines after exposure to chemicals generating free radicals. The studies considered two markers of oxidative stress: the level of thiobarbituric acid reactive substances (TBARS) and superoxide dismutase activity. The evaluation was performed in five cell lines: Chinese hamster ovary (CHO-9) cells, lung adenocarcinoma A549, macrophages RAW264.7, skin carcinoma cells A431, and keratinocytes HaCaT. Three compounds generating free radicals were used as a source of reactive oxygen/nitrogen: 2,2'-azobis-2-methyl-propanimidamide dihydrochloride (AAPH), sodium persulfate (SP), and 3-morpholinosydnonimine hydrochloride (SIN-1). The most appropriate cell line to assess the level of TBARS proved to be the murine macrophage cell line RAW 264.7. Equally, good performance was observed in the lung cancer cell line A549, but only when tested with AAPH and SP. In the case of measuring superoxide dismutase activity, it appeared that the most suitable cell line was also the RAW 264.7 line, although dispersion increased significantly at the highest concentrations of AAPH and SP measurements. When choosing a cell line to determine oxidative stress, the specificity of the stress-inducing compound and the parameter determined should be taken into consideration.
Collapse
Affiliation(s)
- Katarzyna Miranowicz-Dzierżawska
- Laboratory of Toxicology, Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection-National Research Institute, Warsaw, Poland
| |
Collapse
|
1495
|
Pellegrini E, Campanella A, Cotrozzi L, Tonelli M, Nali C, Lorenzini G. What about the detoxification mechanisms underlying ozone sensitivity in Liriodendron tulipifera? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8148-8160. [PMID: 28357799 DOI: 10.1007/s11356-017-8818-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/13/2017] [Indexed: 06/06/2023]
Abstract
Liriodendron tulipifera (known as the tulip tree) is a woody species that has been previously classified as sensitive to ozone (O3) in terms of visible leaf injuries and photosynthetic primary reactions. The objective of this work is to give a thorough description of the detoxification mechanisms that are at the basis of O3 sensitivity. Biochemical and molecular markers were used to characterize the response of 1-year-old saplings exposed to O3 (120 ppb, 5 h day-1, for 45 consecutive days) under controlled conditions. O3 effects resulted in a less efficient metabolism of Halliwell-Asada cycle as confirmed by the diminished capacity to convert the oxidized forms of ascorbate and glutathione in the reduced ones (AsA and GSH, respectively). The reduced activity of AsA and GSH regenerating enzymes indicates that de novo AsA biosynthesis occurred. This compound could be a cofactor of several plant-specific enzymes that are involved in the early part of the phenylpropanoid and flavonoid biosynthesis pathway, as confirmed by the significant rise of PAL activity (+75%). The induction of the defence-related secondary metabolites (in particular, rutin and caffeic acid were about threefold higher) and the concomitant increase in transcript levels of PAL and CHS genes (+120 and 30%, respectively) suggest that L. tulipifera utilized this route in order to partially counteract the O3-induced oxidative damage.
Collapse
Affiliation(s)
- Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Alessandra Campanella
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Mariagrazia Tonelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
1496
|
Wang H, Shabala L, Zhou M, Shabala S. Hydrogen Peroxide-Induced Root Ca 2+ and K⁺ Fluxes Correlate with Salt Tolerance in Cereals: Towards the Cell-Based Phenotyping. Int J Mol Sci 2018; 19:E702. [PMID: 29494514 PMCID: PMC5877563 DOI: 10.3390/ijms19030702] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/16/2018] [Accepted: 02/22/2018] [Indexed: 12/25/2022] Open
Abstract
Salinity stress-induced production of reactive oxygen species (ROS) and associated oxidative damage is one of the major factors limiting crop production in saline soils. However, the causal link between ROS production and stress tolerance is not as straightforward as one may expect, as ROS may also play an important signaling role in plant adaptive responses. In this study, the causal relationship between salinity and oxidative stress tolerance in two cereal crops-barley (Hordeum vulgare) and wheat (Triticum aestivum)-was investigated by measuring the magnitude of ROS-induced net K⁺ and Ca2+ fluxes from various root tissues and correlating them with overall whole-plant responses to salinity. We have found that the association between flux responses to oxidative stress and salinity stress tolerance was highly tissue specific, and was also dependent on the type of ROS applied. No correlation was found between root responses to hydroxyl radicals and the salinity tolerance. However, when oxidative stress was administered via H₂O₂ treatment, a significant positive correlation was found for the magnitude of ROS-induced K⁺ efflux and Ca2+ uptake in barley and the overall salinity stress tolerance, but only for mature zone and not the root apex. The same trends were found for wheat. These results indicate high tissue specificity of root ion fluxes response to ROS and suggest that measuring the magnitude of H₂O₂-induced net K⁺ and Ca2+ fluxes from mature root zone may be used as a tool for cell-based phenotyping in breeding programs aimed to improve salinity stress tolerance in cereals.
Collapse
Affiliation(s)
- Haiyang Wang
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Lana Shabala
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Meixue Zhou
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
1497
|
Liang J, Wu P, Tan C, Jiang Y. White light-induced cell apoptosis by a conjugated polyelectrolyte through singlet oxygen generation. RSC Adv 2018; 8:9218-9222. [PMID: 35541876 PMCID: PMC9078657 DOI: 10.1039/c8ra00774h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/25/2018] [Indexed: 02/02/2023] Open
Abstract
A cationic conjugated polyelectrolyte (CPE) PPET3 with a poly(p-phenylene ethynylene terthiophene) backbone and quaternary ammonium side chains was designed and synthesized. It serves as an efficient photosensitizer for photodynamic therapy under white light irradiation and induces cell death through the mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Jiamei Liang
- Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
- The State Key Laboratory of Chemical Oncogenomics, The Graduate School at Shenzhen, Tsinghua University Shenzhen 518055 P. R. China +86-755-26036533
| | - Pan Wu
- Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
- The State Key Laboratory of Chemical Oncogenomics, The Graduate School at Shenzhen, Tsinghua University Shenzhen 518055 P. R. China +86-755-26036533
| | - Chunyan Tan
- Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
- The State Key Laboratory of Chemical Oncogenomics, The Graduate School at Shenzhen, Tsinghua University Shenzhen 518055 P. R. China +86-755-26036533
| | - Yuyang Jiang
- The State Key Laboratory of Chemical Oncogenomics, The Graduate School at Shenzhen, Tsinghua University Shenzhen 518055 P. R. China +86-755-26036533
- School of Pharmaceutical Sciences, Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
1498
|
Ghosh S, Roy P, Karmodak N, Jemmis ED, Mugesh G. Nanoisozymes: Crystal-Facet-Dependent Enzyme-Mimetic Activity of V 2 O 5 Nanomaterials. Angew Chem Int Ed Engl 2018; 57:4510-4515. [PMID: 29424075 DOI: 10.1002/anie.201800681] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 01/30/2023]
Abstract
Nanomaterials with enzyme-like activity (nanozymes) attract significant interest owing to their applications in biomedical research. Particularly, redox nanozymes that exhibit glutathione peroxidase (GPx)-like activity play important roles in cellular signaling by controlling the hydrogen peroxide (H2 O2 ) level. Herein we report, for the first time, that the redox properties and GPx-like activity of V2 O5 nanozyme depends not only on the size and morphology, but also on the crystal facets exposed on the surface within the same crystal system of the nanomaterials. These results suggest that the surface of the nanomaterials can be engineered to fine-tune their redox properties to act as "nanoisozymes" for specific biological applications.
Collapse
Affiliation(s)
- Sourav Ghosh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-, 560012, India
| | - Punarbasu Roy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-, 560012, India
| | - Naiwrit Karmodak
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-, 560012, India
| | - Eluvathingal D Jemmis
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-, 560012, India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-, 560012, India
| |
Collapse
|
1499
|
Ghosh S, Roy P, Karmodak N, Jemmis ED, Mugesh G. Nanoisozymes: Crystal-Facet-Dependent Enzyme-Mimetic Activity of V2
O5
Nanomaterials. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800681] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sourav Ghosh
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore- 560012 India
| | - Punarbasu Roy
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore- 560012 India
| | - Naiwrit Karmodak
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore- 560012 India
| | - Eluvathingal D. Jemmis
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore- 560012 India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore- 560012 India
| |
Collapse
|
1500
|
Mao C, Xiang Y, Liu X, Cui Z, Yang X, Li Z, Zhu S, Zheng Y, Yeung KWK, Wu S. Repeatable Photodynamic Therapy with Triggered Signaling Pathways of Fibroblast Cell Proliferation and Differentiation To Promote Bacteria-Accompanied Wound Healing. ACS NANO 2018; 12:1747-1759. [PMID: 29376340 DOI: 10.1021/acsnano.7b08500] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Despite the development of advanced antibacterial materials, bacterial infection is still a serious problem for wound healing because it usually induces severe complications and cannot be eradicated completely. Most current materials cannot simultaneously provide antibacterial activity, reusability, and biocompatibility as well as participate in stimulating cell behaviors to promote bacteria-accompanied wound healing. This work fabricated a hybrid hydrogel embedded with two-dimensional (2D) few-layer black phosphorus nanosheets (BPs) via simple electrostatic interaction. Within 10 min, 98.90% Escherichia coli and 99.51% Staphylococcus aureus can be killed rapidly by this hybrid, due to its powerful ability to produce singlet oxygen (1O2) under simulated visible light. In addition, this hydrogel also shows a high repeatability; that is, the antibacterial efficacy can still reach up to 95.6 and 94.58% against E. coli and S. aureus, respectively, even after challenging bacteria up to four times repeatedly. In vitro and in vivo results reveal that BPs in this hybrid hydrogel can promote the formation of the fibrinogen at the early stages during the tissue reconstruction process for accelerated incrustation. In addition, BPs can also trigger phosphoinositide 3-kinase (PI3K), phosphorylation of protein kinase B (Akt), and extracellular signal-regulated kinase (ERK1/2) signaling pathways for enhanced cellular proliferation and differentiation. Moreover, the hydrogel causes no appreciable abnormalities or damage to major organs (heart, liver, spleen, lung, and kidney) in rats during the wound healing process. Therefore, this BP-based hydrogel will have great potential as a safe multimodal therapeutic system for active wound healing and sterilization.
Collapse
Affiliation(s)
- Congyang Mao
- School of Materials Science & Engineering, Tianjin University , Tianjin 300072, China
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University , Wuhan 430062, China
| | - Yiming Xiang
- School of Materials Science & Engineering, Tianjin University , Tianjin 300072, China
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University , Wuhan 430062, China
| | - Xiangmei Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University , Wuhan 430062, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, Tianjin University , Tianjin 300072, China
| | - Xianjin Yang
- School of Materials Science & Engineering, Tianjin University , Tianjin 300072, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, Tianjin University , Tianjin 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, Tianjin University , Tianjin 300072, China
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University , Beijing 100871, China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics& Traumatology, Li KaShing Faculty of Medicine, The University of Hong Kong , Pokfulam, Hong Kong, China 999077
| | - Shuilin Wu
- School of Materials Science & Engineering, Tianjin University , Tianjin 300072, China
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University , Wuhan 430062, China
| |
Collapse
|