151
|
Abstract
The liver has a nervous system containing both afferent and efferent neurons that are involved in a number of processes. The afferent arm includes the sensation of lipids, glucose, and metabolites (after eating and drinking) and triggers the nervous system to make appropriate physiological changes. The efferent arm is essential for metabolic regulation, modulation of fibrosis and biliary function and the control of a number of other processes. Experimental models have helped us to establish how: (i) the liver is innervated by the autonomic nervous system; and (ii) the cell types that are involved in these processes. Thus, the liver acts as both a sensor and effector that is influenced by neurological signals and ablation. Understanding these processes hold significant implications in disease processes such as diabetes and obesity, which are influenced by appetite and hormonal signals.
Collapse
Affiliation(s)
- Kendal Jay Jensen
- Department of Medicine, Division of Gastroenterology, and Texas A&M Health Science Center, College of Medicine, Temple, Texas, USA
| | | | | |
Collapse
|
152
|
Carey M, Kehlenbrink S, Hawkins M. Evidence for central regulation of glucose metabolism. J Biol Chem 2013; 288:34981-8. [PMID: 24142701 DOI: 10.1074/jbc.r113.506782] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Evidence for central regulation of glucose homeostasis is accumulating from both animal and human studies. Central nutrient and hormone sensing in the hypothalamus appears to coordinate regulation of whole body metabolism. Central signals activate ATP-sensitive potassium (KATP) channels, thereby down-regulating glucose production, likely through vagal efferent signals. Recent human studies are consistent with this hypothesis. The contributions of direct and central inputs to metabolic regulation are likely of comparable magnitude, with somewhat delayed central effects and more rapid peripheral effects. Understanding central regulation of glucose metabolism could promote the development of novel therapeutic approaches for such metabolic conditions as diabetes mellitus.
Collapse
Affiliation(s)
- Michelle Carey
- From the Department of Medicine and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|
153
|
Diepenbroek C, Serlie MJ, Fliers E, Kalsbeek A, la Fleur SE. Brain areas and pathways in the regulation of glucose metabolism. Biofactors 2013; 39:505-13. [PMID: 23913677 DOI: 10.1002/biof.1123] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/28/2013] [Indexed: 11/11/2022]
Abstract
Glucose is the most important source of fuel for the brain and its concentration must be kept within strict boundaries to ensure the organism's optimal fitness. To maintain glucose homeostasis, an optimal balance between glucose uptake and glucose output is required. Besides managing acute changes in plasma glucose concentrations, the brain controls a daily rhythm in glucose concentrations. The various nuclei within the hypothalamus that are involved in the control of both these processes are well known. However, novel studies indicate an additional role for brain areas that are originally appreciated in other processes than glucose metabolism. Therefore, besides the classic hypothalamic pathways, we will review cortico-limbic brain areas and their role in glucose metabolism.
Collapse
Affiliation(s)
- Charlene Diepenbroek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | |
Collapse
|
154
|
Chang C, Yeh S, Lee SO, Chang TM. Androgen receptor (AR) pathophysiological roles in androgen-related diseases in skin, bone/muscle, metabolic syndrome and neuron/immune systems: lessons learned from mice lacking AR in specific cells. NUCLEAR RECEPTOR SIGNALING 2013; 11:e001. [PMID: 24653668 PMCID: PMC3960937 DOI: 10.1621/nrs.11001] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/28/2013] [Indexed: 12/19/2022]
Abstract
The androgen receptor (AR) is expressed ubiquitously and plays a variety of roles in a vast number of physiological and pathophysiological processes. Recent studies of AR knockout (ARKO) mouse models, particularly the cell type- or tissue-specific ARKO models, have uncovered many AR cell type- or tissue-specific pathophysiological roles in mice, which otherwise would not be delineated from conventional castration and androgen insensitivity syndrome studies. Thus, the AR in various specific cell types plays pivotal roles in production and maturation of immune cells, bone mineralization, and muscle growth. In metabolism, the ARs in brain, particularly in the hypothalamus, and the liver appear to participate in regulation of insulin sensitivity and glucose homeostasis. The AR also plays key roles in cutaneous wound healing and cardiovascular diseases, including atherosclerosis and abdominal aortic aneurysm. This article will discuss the results obtained from the total, cell type-, or tissue-specific ARKO models. The understanding of AR cell type- or tissue-specific physiological and pathophysiological roles using these in
vivo mouse models will provide useful information in uncovering AR roles in humans and eventually help us to develop better therapies via targeting the AR or its downstream signaling molecules to combat androgen/AR-related diseases.
Collapse
Affiliation(s)
- Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, USA (CC, SY, SOL, T-MC) and Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan (CC)
| | - Shuyuan Yeh
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, USA (CC, SY, SOL, T-MC) and Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan (CC)
| | - Soo Ok Lee
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, USA (CC, SY, SOL, T-MC) and Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan (CC)
| | - Ta-Min Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, USA (CC, SY, SOL, T-MC) and Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan (CC)
| |
Collapse
|
155
|
Youssef NA, Abdelmalek MF, Binks M, Guy CD, Omenetti A, Smith AD, Diehl AME, Suzuki A. Associations of depression, anxiety and antidepressants with histological severity of nonalcoholic fatty liver disease. Liver Int 2013; 33:1062-70. [PMID: 23560860 DOI: 10.1111/liv.12165] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/10/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Depression and anxiety are common in patients with nonalcoholic fatty liver disease (NAFLD). However, their associations with histological severity of NAFLD are unknown. AIM This study examined the association(s) of depression, anxiety and antidepressant pharmacotherapy with severity of histological features in patients with NAFLD. METHODS We analysed 567 patients with biopsy-proven NAFLD enrolled in the Duke NAFLD Clinical Database. Depressive and anxiety symptoms were assessed using the Hospital Anxiety & Depression Scale (HADS). The associations of depression and anxiety with severity of histological features of NAFLD were analysed using multiple logistic (or ordinal logistic) regression models with and without adjusting for confounding factors. RESULT Subclinical and clinical depression was noted in 53% and 14% of patients respectively. Subclinical and clinical anxiety was noted in 45% and 25% of patients respectively. After adjusting for confounders, depression was significantly associated with more severe hepatocyte ballooning in a dose-dependent manner (likelihood ratio test, P = 0.0201); adjusted cumulative odds ratio (COR) of subclinical and clinical depression for having a higher grade of hepatocyte ballooning were 2.1 [95% CI, 1.0, 4.4] and 3.6 [95% CI, 1.4, 8.8]. CONCLUSIONS In patients with NAFLD, depression was associated with more severe hepatocyte ballooning. Further investigation exploring pathobiological mechanisms underlying the observed associations and potential effects of antidepressant pharmacotherapy on NAFLD liver histology is warranted.
Collapse
Affiliation(s)
- Nagy A Youssef
- Department of Psychiatry, Duke University, Durham, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Zhang Q, Yu J, Liu B, Lv Z, Xia T, Xiao F, Chen S, Guo F. Central activating transcription factor 4 (ATF4) regulates hepatic insulin resistance in mice via S6K1 signaling and the vagus nerve. Diabetes 2013; 62:2230-9. [PMID: 23454693 PMCID: PMC3712031 DOI: 10.2337/db12-1050] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent studies have revealed that the central nervous system, particularly the hypothalamus, is critical for regulating insulin sensitivity in peripheral tissues. The aim of our current study is to investigate the possible involvement of hypothalamic activating transcription factor 4 (ATF4) in the regulation of insulin sensitivity in the liver. Here, we show that overexpression of ATF4 in the hypothalamus resulting from intracerebroventricular injection of adenovirus expressing ATF4 induces hepatic insulin resistance in mice and that inhibition of hypothalamic ATF4 by intracerebroventricular adenovirus expressing a dominant-negative ATF4 variant has the opposite effect. We also show that hypothalamic ATF4-induced insulin resistance is significantly blocked by selective hepatic vagotomy or by inhibiting activity of the mammalian target of rapamycin (mTOR) downstream target S6K1. Finally, we show that inhibition of hypothalamic ATF4 reverses hepatic insulin resistance induced by acute brain endoplasmic reticulum (ER) stress. Taken together, our study describes a novel central pathway regulating hepatic insulin sensitivity that is mediated by hypothalamic ATF4/mTOR/S6K1 signaling and the vagus nerve and demonstrates an important role for hypothalamic ATF4 in brain ER stress-induced hepatic insulin resistance. These results may lead to the identification of novel therapeutic targets for treating insulin resistance and associated metabolic diseases.
Collapse
|
157
|
Kimura K, Nakamura Y, Inaba Y, Matsumoto M, Kido Y, Asahara SI, Matsuda T, Watanabe H, Maeda A, Inagaki F, Mukai C, Takeda K, Akira S, Ota T, Nakabayashi H, Kaneko S, Kasuga M, Inoue H. Histidine augments the suppression of hepatic glucose production by central insulin action. Diabetes 2013; 62:2266-77. [PMID: 23474485 PMCID: PMC3712067 DOI: 10.2337/db12-1701] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glucose intolerance in type 2 diabetes is related to enhanced hepatic glucose production (HGP) due to the increased expression of hepatic gluconeogenic enzymes. Previously, we revealed that hepatic STAT3 decreases the expression of hepatic gluconeogenic enzymes and suppresses HGP. Here, we show that increased plasma histidine results in hepatic STAT3 activation. Intravenous and intracerebroventricular (ICV) administration of histidine-activated hepatic STAT3 reduced G6Pase protein and mRNA levels and augmented HGP suppression by insulin. This suppression of hepatic gluconeogenesis by histidine was abolished by hepatic STAT3 deficiency or hepatic Kupffer cell depletion. Inhibition of HGP by histidine was also blocked by ICV administration of a histamine H1 receptor antagonist. Therefore, histidine activates hepatic STAT3 and suppresses HGP via central histamine action. Hepatic STAT3 phosphorylation after histidine ICV administration was attenuated in histamine H1 receptor knockout (Hrh1KO) mice but not in neuron-specific insulin receptor knockout (NIRKO) mice. Conversely, hepatic STAT3 phosphorylation after insulin ICV administration was attenuated in NIRKO but not in Hrh1KO mice. These findings suggest that central histidine action is independent of central insulin action, while both have additive effects on HGP suppression. Our results indicate that central histidine/histamine-mediated suppression of HGP is a potential target for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Kumi Kimura
- Department of Physiology and Metabolism, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Japan
| | - Yusuke Nakamura
- Department of Physiology and Metabolism, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Japan
| | - Yuka Inaba
- Department of Physiology and Metabolism, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Japan
| | - Michihiro Matsumoto
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yoshiaki Kido
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Analytical Biomedical Sciences, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Shun-ichiro Asahara
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomokazu Matsuda
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Watanabe
- BRAND’S Brain Research Centre, Cerebos Pacific Limited, Singapore, Singapore
| | - Akifumi Maeda
- BRAND’S Brain Research Centre, Cerebos Pacific Limited, Singapore, Singapore
| | - Fuyuhiko Inagaki
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Chisato Mukai
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, Immunology Frontier Research Center, Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Tsuguhito Ota
- Department of Cell Metabolism and Nutrition, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Japan
| | | | - Shuichi Kaneko
- Department of Disease Control and Homeostasis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masato Kasuga
- Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroshi Inoue
- Department of Physiology and Metabolism, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Japan
- Corresponding author: Hiroshi Inoue,
| |
Collapse
|
158
|
Lebovitz HE, Ludvik B, Yaniv I, Haddad W, Schwartz T, Aviv R. Fasting plasma triglycerides predict the glycaemic response to treatment of type 2 diabetes by gastric electrical stimulation. A novel lipotoxicity paradigm. Diabet Med 2013; 30:687-93. [PMID: 23323566 PMCID: PMC3709131 DOI: 10.1111/dme.12132] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 11/12/2012] [Accepted: 01/10/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND Non-stimulatory, meal-mediated electrical stimulation of the stomach (TANTALUS-DIAMOND) improves glycaemic control and causes modest weight loss in patients with Type 2 diabetes who are inadequately controlled on oral anti-diabetic medications. The magnitude of the glycaemic response in clinical studies has been variable. A preliminary analysis of data from patients who had completed 6 months of treatment indicated that the glycaemic response to the electrical stimulation was inversely related to the baseline fasting plasma triglyceride level. METHOD An analysis of 40 patients who had had detailed longitudinal studies for 12 months. RESULTS Twenty-two patients with fasting plasma triglycerides ≤ 1.7 mmol/l had mean decreases in HbA1c after 3, 6 and 12 months of gastric contraction modulation treatment of -15 ± 2.1 mmol/mol (-1.39 ± 0.20%), -16 ± 2.2 mmol/mol (-1.48 ± 0.20%) and -14 ± 3.0 mmol/mol (-1.31 ± 0.26%), respectively. In contrast, 18 patients with fasting plasma triglyceride > 1.7 mmol/l had mean decreases in HbA1c of -7 ± 1.7 mmol/mol (-0.66 ± 0.16%), -5 ± 1.6 mmol/mol (-0.44 ± 0.18%) and -5 ± 1.7 mmol/mol (-0.42 ± 0.16%), respectively. Pearson's correlation coefficient between fasting plasma triglyceride and decreases in HbA1c at 12 months of treatment was 0.34 (P < 0.05). Homeostasis model assessment of insulin resistance was unchanged during 12 months of treatment in patients with high baseline fasting triglycerides, while it progressively improved in patients with low fasting plasma triglycerides. Patients with low fasting plasma triglycerides had a tendency to lose more weight than those with high fasting plasma triglycerides, but this did not achieve statistical significance. CONCLUSIONS The data presented suggest the existence of a triglyceride lipotoxic mechanism that interferes with gastric/neural mediated pathways that can regulate glycaemic control in patients with type 2 diabetes. The data suggest the existence of a triglyceride lipotoxic pathway that interferes with gastric/neural mediated pathways that can regulate glycaemic control.
Collapse
Affiliation(s)
- H E Lebovitz
- Department of Medicine, State University of New York Health Science Center at Brooklyn, Brooklyn, NY, USA.
| | | | | | | | | | | |
Collapse
|
159
|
Jiao J, Bae EJ, Bandyopadhyay G, Oliver J, Marathe C, Chen M, Hsu JY, Chen Y, Tian H, Olefsky JM, Saberi M. Restoration of euglycemia after duodenal bypass surgery is reliant on central and peripheral inputs in Zucker fa/fa rats. Diabetes 2013; 62:1074-83. [PMID: 23248171 PMCID: PMC3609588 DOI: 10.2337/db12-0681] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gastrointestinal bypass surgeries that result in rerouting and subsequent exclusion of nutrients from the duodenum appear to rapidly alleviate hyperglycemia and hyperinsulinemia independent of weight loss. While the mechanism(s) responsible for normalization of glucose homeostasis remains to be fully elucidated, this rapid normalization coupled with the well-known effects of vagal inputs into glucose homeostasis suggests a neurohormonally mediated mechanism. Our results show that duodenal bypass surgery on obese, insulin-resistant Zucker fa/fa rats restored insulin sensitivity in both liver and peripheral tissues independent of body weight. Restoration of normoglycemia was attributable to an enhancement in key insulin-signaling molecules, including insulin receptor substrate-2, and substrate metabolism through a multifaceted mechanism involving activation of AMP-activated protein kinase and downregulation of key regulatory genes involved in both lipid and glucose metabolism. Importantly, while central nervous system-derived vagal nerves were not essential for restoration of insulin sensitivity, rapid normalization in hepatic gluconeogenic capacity and basal hepatic glucose production required intact vagal innervation. Lastly, duodenal bypass surgery selectively altered the tissue concentration of intestinally derived glucoregulatory hormone peptides in a segment-specific manner. The present data highlight and support the significance of vagal inputs and intestinal hormone peptides toward normalization of glucose and lipid homeostasis after duodenal bypass surgery.
Collapse
Affiliation(s)
- Jian Jiao
- NGM Biopharmaceuticals, Inc., South San Francisco, California
| | - Eun Ju Bae
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Gautam Bandyopadhyay
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jason Oliver
- NGM Biopharmaceuticals, Inc., South San Francisco, California
| | - Chaitra Marathe
- NGM Biopharmaceuticals, Inc., South San Francisco, California
| | - Michael Chen
- NGM Biopharmaceuticals, Inc., South San Francisco, California
| | - Jer-Yuan Hsu
- NGM Biopharmaceuticals, Inc., South San Francisco, California
| | - Yu Chen
- NGM Biopharmaceuticals, Inc., South San Francisco, California
| | - Hui Tian
- NGM Biopharmaceuticals, Inc., South San Francisco, California
| | - Jerrold M. Olefsky
- Department of Medicine, University of California, San Diego, La Jolla, California
- Corresponding authors: Jerrold M. Olefsky, , and Maziyar Saberi,
| | - Maziyar Saberi
- NGM Biopharmaceuticals, Inc., South San Francisco, California
- Corresponding authors: Jerrold M. Olefsky, , and Maziyar Saberi,
| |
Collapse
|
160
|
Arrieta-Cruz I, Su Y, Knight CM, Lam TK, Gutiérrez-Juárez R. Evidence for a role of proline and hypothalamic astrocytes in the regulation of glucose metabolism in rats. Diabetes 2013; 62:1152-8. [PMID: 23274895 PMCID: PMC3609585 DOI: 10.2337/db12-0228] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The metabolism of lactate to pyruvate in the mediobasal hypothalamus (MBH) regulates hepatic glucose production. Because astrocytes and neurons are functionally linked by metabolic coupling through lactate transfer via the astrocyte-neuron lactate shuttle (ANLS), we reasoned that astrocytes might be involved in the hypothalamic regulation of glucose metabolism. To examine this possibility, we used the gluconeogenic amino acid proline, which is metabolized to pyruvate in astrocytes. Our results showed that increasing the availability of proline in rats either centrally (MBH) or systemically acutely lowered blood glucose. Pancreatic clamp studies revealed that this hypoglycemic effect was due to a decrease of hepatic glucose production secondary to an inhibition of glycogenolysis, gluconeogenesis, and glucose-6-phosphatase flux. The effect of proline was mimicked by glutamate, an intermediary of proline metabolism. Interestingly, proline's action was markedly blunted by pharmacological inhibition of hypothalamic lactate dehydrogenase (LDH) suggesting that metabolic flux through LDH was required. Furthermore, short hairpin RNA-mediated knockdown of hypothalamic LDH-A, an astrocytic component of the ANLS, also blunted the glucoregulatory action of proline. Thus our studies suggest not only a new role for proline in the regulation of hepatic glucose production but also indicate that hypothalamic astrocytes are involved in the regulatory mechanism as well.
Collapse
|
161
|
Zsombok A. Autonomic control and bariatric procedures. Auton Neurosci 2013; 177:81-6. [PMID: 23538033 DOI: 10.1016/j.autneu.2013.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 10/10/2012] [Accepted: 03/01/2013] [Indexed: 12/12/2022]
Abstract
The sudden improvement of metabolic profile and the remission of type 2 diabetes after bariatric surgery, well before weight loss, raise important new questions regarding glycemic control. Currently, various types of bariatric procedures target type 2 diabetes in obese and non-obese patients. Nevertheless, the origin of the dramatic metabolic improvements, including glucose homeostasis, is poorly understood, and the role of the gastrointestinal (GI) tract remains relatively speculative, as well as why these procedures are variably effective. One neglected explanation is that such interventions disrupt neural networks mediating GI-brain communication and could alter the autonomic output to the visceral organs, including the liver. Incretins, e.g., glucagon-like peptide 1 (GLP-1), have major influence on the central nervous system. Moreover, the level of GLP-1 is observed to significantly increase after bariatric surgery and could be a key factor in the weight-independent, anti-diabetic effect. Therefore, this review will evaluate the effect of GLP-1 on the central nervous system, with emphasis on the cellular effects of GLP-1, and will provide an overview of the autonomic control of the liver.
Collapse
Affiliation(s)
- Andrea Zsombok
- Department of Physiology, Endocrinology Section, Tulane University, School of Medicine, 1430 Tulane Ave., SL39, New Orleans, LA 70112, United States; Department of Medicine, Endocrinology Section, Tulane University, School of Medicine, 1430 Tulane Ave., SL39, New Orleans, LA 70112, United States.
| |
Collapse
|
162
|
Abstract
Vascular endothelium is an important insulin target and plays a pivotal role in the development of metabolic insulin resistance provoked by the Western lifestyle. It acts as a "first-responder" to environmental stimuli such as nutrients, cytokines, chemokines and physical activity and regulates insulin delivery to muscle and adipose tissue and thereby affecting insulin-mediated glucose disposal by these tissues. In addition, it also regulates the delivery of insulin and other appetite regulating signals from peripheral tissues to the central nervous system thus influencing the activity of nuclei that regulate hepatic glucose production, adipose tissue lipolysis and lipogenesis, as well as food consumption. Resistance to insulin's vascular actions therefore broadly impacts tissue function and contribute to metabolic dysregulation. Moreover, vascular insulin resistance negatively impacts vascular health by affecting blood pressure regulation, vessel wall inflammation and atherogenesis thereby contributing to the burden of vascular disease seen with diabetes and metabolic syndrome. In the current review, we examined the evidence that supports the general concept of vascular endothelium as a target of insulin action and discussed the biochemical and physiological consequences of vascular insulin resistance.
Collapse
Affiliation(s)
- Eugene J Barrett
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | | |
Collapse
|
163
|
Sadagurski M, White MF. Integrating metabolism and longevity through insulin and IGF1 signaling. Endocrinol Metab Clin North Am 2013; 42:127-48. [PMID: 23391244 PMCID: PMC3982789 DOI: 10.1016/j.ecl.2012.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The insulin pathway coordinates growth, development, metabolic homoeostasis, fertility, and stress resistance, which influence life span. Compensatory hyperinsulinemia to overcome systemic insulin resistance circumvents the immediate consequences of hyperglycemia. Work on flies, nematodes, and mice indicate that excess insulin signaling damages cellular function and accelerates aging. Maintenance of the central nervous system (CNS) has particular importance for life span. Reduced insulin/IGF1 signaling in the CNS can dysregulate peripheral energy homeostasis and metabolism, promote obesity, and extend life span. Genetic manipulations of insulin/IGF1 signaling components are revealing neuronal circuits that might resolve the central regulation of systemic metabolism from organism longevity.
Collapse
Affiliation(s)
- Marianna Sadagurski
- Department of Endocrinology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | | |
Collapse
|
164
|
Arble DM, Sandoval DA. CNS control of glucose metabolism: response to environmental challenges. Front Neurosci 2013; 7:20. [PMID: 23550218 PMCID: PMC3581798 DOI: 10.3389/fnins.2013.00020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 02/04/2013] [Indexed: 01/07/2023] Open
Abstract
Over the last 15 years, considerable work has accumulated to support the role of the CNS in regulating postprandial glucose levels. As discussed in the first section of this review, the CNS receives and integrates information from afferent neurons, circulating hormones, and postprandially generated nutrients to subsequently direct changes in glucose output by the liver and glucose uptake by peripheral tissues. The second major component of this review focuses on the effects of external pressures, including high fat diet and changes to the light:dark cycle on CNS-regulating glucose homeostasis. We also discuss the interaction between these different pressures and how they contribute to the multifaceted mechanisms that we hypothesize contribute to the dysregulation of glucose in type 2 diabetes mellitus (T2DM). We argue that while current peripheral therapies serve to delay the progression of T2DM, generating combined obesity and T2DM therapies targeted at the CNS, the primary site of dysfunction for both diseases, would lead to a more profound impact on the progression of both diseases.
Collapse
Affiliation(s)
- Deanna M Arble
- Department of Medicine, University of Cincinnati Cincinnati, OH, USA
| | | |
Collapse
|
165
|
Williams KH, Shackel NA, Gorrell MD, McLennan SV, Twigg SM. Diabetes and nonalcoholic Fatty liver disease: a pathogenic duo. Endocr Rev 2013; 34:84-129. [PMID: 23238855 DOI: 10.1210/er.2012-1009] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent data increasingly support a complex interplay between the metabolic condition diabetes mellitus and the pathologically defined nonalcoholic fatty liver disease (NAFLD). NAFLD predicts the development of type 2 diabetes and vice versa, and each condition may serve as a progression factor for the other. Although the association of diabetes and NAFLD is likely to be partly the result of a "common soil," it is also probable that diabetes interacts with NAFLD through specific pathogenic mechanisms. In particular, through interrelated metabolic pathways currently only partly understood, diabetes appears to accelerate the progression of NAFLD to nonalcoholic steatohepatitis, defined by the presence of necroinflammation, with varying degrees of liver fibrosis. In the research setting, obstacles that have made the identification of clinically significant NAFLD, and particularly nonalcoholic steatohepatitis, difficult are being addressed with the use of new imaging techniques combined with risk algorithms derived from peripheral blood profiling. These techniques are likely to be used in the diabetes population in the near future. This review examines the pathogenic links between NAFLD and diabetes by exploring the epidemiological evidence in humans and also through newer animal models. Emerging technology to help screen noninvasively for differing pathological forms of NAFLD and the potential role of preventive and therapeutic approaches for NAFLD in the setting of diabetes are also examined.
Collapse
Affiliation(s)
- K H Williams
- Sydney Medical School and the Bosch Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | |
Collapse
|
166
|
Vogt MC, Brüning JC. CNS insulin signaling in the control of energy homeostasis and glucose metabolism - from embryo to old age. Trends Endocrinol Metab 2013; 24:76-84. [PMID: 23265947 DOI: 10.1016/j.tem.2012.11.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/07/2012] [Accepted: 11/13/2012] [Indexed: 10/27/2022]
Abstract
Central nervous system (CNS) insulin signaling regulates energy and glucose homeostasis by acting on hypothalamic neurocircuits and higher brain circuits such as the dopaminergic system. However, overnutrition, obesity, and type 2 diabetes mellitus (T2DM) induce insulin resistance selectively in different regions of the brain, thereby impairing energy homeostasis and augmenting disease progression. Moreover, fetal hyperinsulinemia in response to maternal overnutrition, obesity, and diabetes disrupts hypothalamic neurocircuit development and predisposes to metabolic disorders later in life. In light of the current obesity and diabetes epidemic, we review the molecular basis of insulin action and resistance in the CNS, mechanisms which are causal to the development of these metabolic disorders, both in the neonate and in the adult.
Collapse
Affiliation(s)
- Merly C Vogt
- Max Planck Institute for Neurological Research, D-50931 Cologne, Germany
| | | |
Collapse
|
167
|
|
168
|
Grayson BE, Seeley RJ, Sandoval DA. Wired on sugar: the role of the CNS in the regulation of glucose homeostasis. Nat Rev Neurosci 2013; 14:24-37. [PMID: 23232606 PMCID: PMC4231433 DOI: 10.1038/nrn3409] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Obesity and type 2 diabetes mellitus (T2DM)--disorders of energy homeostasis and glucose homeostasis, respectively--are tightly linked and the incidences of both conditions are increasing in parallel. The CNS integrates information regarding peripheral nutrient and hormonal changes and processes this information to regulate energy homeostasis. Recent findings indicate that some of the neural circuits and mechanisms underlying energy balance are also essential for the regulation of glucose homeostasis. We propose that disruption of these overlapping pathways links the metabolic disturbances associated with obesity and T2DM. A better understanding of these converging mechanisms may lead to therapeutic strategies that target both T2DM and obesity.
Collapse
Affiliation(s)
- Bernadette E Grayson
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio 45237, USA
| | | | | |
Collapse
|
169
|
Abstract
The vagus nerve has an important role in regulation of metabolic homeostasis, and efferent vagus nerve-mediated cholinergic signalling controls immune function and proinflammatory responses via the inflammatory reflex. Dysregulation of metabolism and immune function in obesity are associated with chronic inflammation, a critical step in the pathogenesis of insulin resistance and type 2 diabetes mellitus. Cholinergic mechanisms within the inflammatory reflex have, in the past 2 years, been implicated in attenuating obesity-related inflammation and metabolic complications. This knowledge has led to the exploration of novel therapeutic approaches in the treatment of obesity-related disorders.
Collapse
Affiliation(s)
- Valentin A Pavlov
- Center for Biomedical Science, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA.
| | | |
Collapse
|
170
|
Abstract
Diabetes is a major worldwide problem. Despite some progress in the development of new antidiabetic agents, the ability to maintain tight glycemic control in order to prevent renal, retinal, and neuropathic complications of diabetes without adverse complications still remains a challenge. Recent evidence suggests, however, that in addition to playing a key role in the regulation of energy homeostasis, the adiposity hormone leptin also plays an important role in the control of glucose metabolism via its actions in the brain. This review examines the role of leptin action in the central nervous system and the mechanisms whereby leptin mediates its effects to regulate glucose metabolism. These findings suggest that defects or dysfunction in leptin signaling may contribute to the etiology of diabetes and raise the possibility that either leptin or downstream targets of leptin may have therapeutic potential for the treatment of diabetes.
Collapse
Affiliation(s)
- Thomas H. Meek
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Gregory J. Morton
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
171
|
Liu X, Qi Y, Gao H, Jiao Y, Gu H, Miao J, Yuan Z. Maternal protein restriction induces alterations in insulin signaling and ATP sensitive potassium channel protein in hypothalami of intrauterine growth restriction fetal rats. J Clin Biochem Nutr 2012; 52:43-8. [PMID: 23341697 PMCID: PMC3541418 DOI: 10.3164/jcbn.12-28] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 06/20/2012] [Indexed: 12/13/2022] Open
Abstract
It is well recognized that intrauterine growth restriction leads to the development of insulin resistance and type 2 diabetes mellitus in adulthood. To investigate the mechanisms behind this "metabolic imprinting" phenomenon, we examined the impact of maternal undernutrition on insulin signaling pathway and the ATP sensitive potassium channel expression in the hypothalamus of intrauterine growth restriction fetus. Intrauterine growth restriction rat model was developed through maternal low protein diet. The expression and activated levels of insulin signaling molecules and K(ATP) protein in the hypothalami which were dissected at 20 days of gestation, were analyzed by western blot and real time PCR. The tyrosine phosphorylation levels of the insulin receptor substrate 2 and phosphatidylinositol 3'-kinase p85α in the hypothalami of intrauterine growth restriction fetus were markedly reduced. There was also a downregulation of the hypothalamic ATP sensitive potassium channel subunit, sulfonylurea receptor 1, which conveys the insulin signaling. Moreover, the abundances of gluconeogenesis enzymes were increased in the intrauterine growth restriction livers, though no correlation was observed between sulfonylurea receptor 1 and gluconeogenesis enzymes. Our data suggested that aberrant intrauterine milieu impaired insulin signaling in the hypothalamus, and these alterations early in life might contribute to the predisposition of the intrauterine growth restriction fetus toward the adult metabolic disorders.
Collapse
Affiliation(s)
- Xiaomei Liu
- Key Laboratory of Health Ministry for Congenital Malformations, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | | | | | | | | | | | | |
Collapse
|
172
|
|
173
|
Abstract
Liver fructose-1,6-bisphosphatase (FBPase) is a regulatory enzyme in gluconeogenesis that is elevated by obesity and dietary fat intake. Whether FBPase functions only in glucose metabolism or has other metabolic roles is currently unclear. In our recently published study, we examined the importance of liver FBPase in body weight regulation by performing a series of comprehensive physiological and biochemical assessments of energy balance and specific intervention studies in our transgenic mouse line that overexpresses FBPase specifically in the liver. Compared with negative littermates, these FBPase transgenic mice weighed 10% less, had 50% less adiposity, ate 15% less food but did not have altered energy expenditure. Increased circulating leptin and cholecystokinin levels, elevated fatty acid oxidation and reduced appetite stimulating neuropeptides, neuropeptide Y (NPY) and agouti-related peptide (AGRP), underpinned this phenotype. Blocking the action of FBPase returned food intake and body weight to those of the negative littermates. Our study is the first to identify liver FBPase as a previously unknown regulator of appetite and adiposity. Importantly, this work recognizes the liver as an important organ in appetite and body weight regulation. This commentary will provide further insight and expand on this novel concept that the liver does in fact play an important role in adiposity.
Collapse
|
174
|
Blaak EE, Antoine JM, Benton D, Björck I, Bozzetto L, Brouns F, Diamant M, Dye L, Hulshof T, Holst JJ, Lamport DJ, Laville M, Lawton CL, Meheust A, Nilson A, Normand S, Rivellese AA, Theis S, Torekov SS, Vinoy S. Impact of postprandial glycaemia on health and prevention of disease. Obes Rev 2012; 13:923-84. [PMID: 22780564 PMCID: PMC3494382 DOI: 10.1111/j.1467-789x.2012.01011.x] [Citation(s) in RCA: 319] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/11/2012] [Accepted: 04/27/2012] [Indexed: 12/11/2022]
Abstract
Postprandial glucose, together with related hyperinsulinemia and lipidaemia, has been implicated in the development of chronic metabolic diseases like obesity, type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). In this review, available evidence is discussed on postprandial glucose in relation to body weight control, the development of oxidative stress, T2DM, and CVD and in maintaining optimal exercise and cognitive performance. There is mechanistic evidence linking postprandial glycaemia or glycaemic variability to the development of these conditions or in the impairment in cognitive and exercise performance. Nevertheless, postprandial glycaemia is interrelated with many other (risk) factors as well as to fasting glucose. In many studies, meal-related glycaemic response is not sufficiently characterized, or the methodology with respect to the description of food or meal composition, or the duration of the measurement of postprandial glycaemia is limited. It is evident that more randomized controlled dietary intervention trials using effective low vs. high glucose response diets are necessary in order to draw more definite conclusions on the role of postprandial glycaemia in relation to health and disease. Also of importance is the evaluation of the potential role of the time course of postprandial glycaemia.
Collapse
Affiliation(s)
- E E Blaak
- Department of Human Biology, School of Nutrition & Toxicology Research and Metabolism (NUTRIM), Maastricht UniversityMaastricht, the Netherlands
| | | | - D Benton
- Department of Psychology, University of SwanseaWales, UK
| | - I Björck
- Division of Applied Nutrition and Food Chemistry, Department of Food Technology, Engineering and Nutrition, Lund UniversityLund, Sweden
| | - L Bozzetto
- Department of Clinical and Experimental Medicine, University Federico IINaples, Italy
| | - F Brouns
- Department of Human Biology, School of Nutrition & Toxicology Research and Metabolism (NUTRIM), Maastricht UniversityMaastricht, the Netherlands
| | - M Diamant
- Diabetes Center, Department of Internal Medicine, VU University Medical CenterAmsterdam, the Netherlands
| | - L Dye
- Institute of Psychological Sciences, University of LeedsLeeds, UK
| | - T Hulshof
- Kellogg EuropeDen Bosch, the Netherlands
| | - J J Holst
- Department of Biomedical Sciences and Novo Nordisk Foundation Centre of Basic Metabolic Research, University of CopenhagenCopenhagen, Denmark
| | - D J Lamport
- Institute of Psychological Sciences, University of LeedsLeeds, UK
| | - M Laville
- Centre de Recherche en Nutrition Humaine, Rhône-Alpes, Center for European Nutrition, Safety and Health, Centre Hospitalier Lyon SudLyon, France
| | - C L Lawton
- Institute of Psychological Sciences, University of LeedsLeeds, UK
| | | | - A Nilson
- Division of Applied Nutrition and Food Chemistry, Department of Food Technology, Engineering and Nutrition, Lund UniversityLund, Sweden
| | - S Normand
- Centre de Recherche en Nutrition Humaine, Rhône-Alpes, Center for European Nutrition, Safety and Health, Centre Hospitalier Lyon SudLyon, France
| | - A A Rivellese
- Department of Clinical and Experimental Medicine, University Federico IINaples, Italy
| | - S Theis
- Südzucker/BENEO GroupObrigheim, Germany
| | - S S Torekov
- Department of Biomedical Sciences and Novo Nordisk Foundation Centre of Basic Metabolic Research, University of CopenhagenCopenhagen, Denmark
| | - S Vinoy
- Kraft Foods, R&D Centre, Nutrition DepartmentSaclay, France
| |
Collapse
|
175
|
Miyamoto L, Ebihara K, Kusakabe T, Aotani D, Yamamoto-Kataoka S, Sakai T, Aizawa-Abe M, Yamamoto Y, Fujikura J, Hayashi T, Hosoda K, Nakao K. Leptin activates hepatic 5'-AMP-activated protein kinase through sympathetic nervous system and α1-adrenergic receptor: a potential mechanism for improvement of fatty liver in lipodystrophy by leptin. J Biol Chem 2012; 287:40441-7. [PMID: 23024365 DOI: 10.1074/jbc.m112.384545] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AMPK activation promotes glucose and lipid metabolism. RESULTS Hepatic AMPK activities were decreased in fatty liver from lipodystrophic mice, and leptin activated the hepatic AMPK via the α-adrenergic effect. CONCLUSION Leptin improved the fatty liver possibly by activating hepatic AMPK through the central and sympathetic nervous systems. SIGNIFICANCE Hepatic AMPK plays significant roles in the pathophysiology of lipodystrophy and metabolic action of leptin. Leptin is an adipocyte-derived hormone that regulates energy homeostasis. Leptin treatment strikingly ameliorates metabolic disorders of lipodystrophy, which exhibits ectopic fat accumulation and severe insulin-resistant diabetes due to a paucity of adipose tissue. Although leptin is shown to activate 5'-AMP-activated protein kinase (AMPK) in the skeletal muscle, the effect of leptin in the liver is still unclear. We investigated the effect of leptin on hepatic AMPK and its pathophysiological relevance in A-ZIP/F-1 mice, a model of generalized lipodystrophy. Here, we demonstrated that leptin activates hepatic AMPK through the central nervous system and α-adrenergic sympathetic nerves. AMPK activities were decreased in the fatty liver of A-ZIP/F-1 mice, and leptin administration increased AMPK activities in the liver as well as in skeletal muscle with significant reduction in triglyceride content. Activation of hepatic AMPK with A769662 also led to a decrease in hepatic triglyceride content and blood glucose levels in A-ZIP/F-1 mice. These results indicate that the down-regulation of hepatic AMPK activities plays a pathophysiological role in the metabolic disturbances of lipodystrophy, and the hepatic AMPK activation is involved in the therapeutic effects of leptin.
Collapse
Affiliation(s)
- Licht Miyamoto
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Grill HJ, Hayes MR. Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metab 2012; 16:296-309. [PMID: 22902836 PMCID: PMC4862653 DOI: 10.1016/j.cmet.2012.06.015] [Citation(s) in RCA: 357] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/20/2012] [Accepted: 06/08/2012] [Indexed: 02/07/2023]
Abstract
This Review highlights the processing and integration performed by hindbrain nuclei, focusing on the inputs received by nucleus tractus solitarius (NTS) neurons. These inputs include vagally mediated gastrointestinal satiation signals, blood-borne energy-related hormonal and nutrient signals, and descending neural signals from the forebrain. We propose that NTS (and hindbrain neurons, more broadly) integrate these multiple energy status signals and issue-output commands controlling the behavioral, autonomic, and endocrine responses that collectively govern energy balance. These hindbrain-mediated controls are neuroanatomically distributed; they involve endemic hindbrain neurons and circuits, hindbrain projections to peripheral circuits, and projections to and from midbrain and forebrain nuclei.
Collapse
Affiliation(s)
- Harvey J Grill
- Graduate Group of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
177
|
Coppari R, Bjørbæk C. Leptin revisited: its mechanism of action and potential for treating diabetes. Nat Rev Drug Discov 2012; 11:692-708. [PMID: 22935803 PMCID: PMC4019022 DOI: 10.1038/nrd3757] [Citation(s) in RCA: 214] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the discovery of leptin in 1994, we now have a better understanding of the cellular and molecular mechanisms underlying its biological effects. In addition to its established anti-obesity effects, leptin exerts antidiabetic actions that are independent of its regulation of body weight and food intake. In particular, leptin can correct diabetes in animal models of type 1 and type 2 diabetes. In addition, long-term leptin replacement therapy improves glycaemic control, insulin sensitivity and plasma triglycerides in patients with severe insulin resistance due to lipodystrophy. These results have spurred enthusiasm for the use of leptin therapy to treat diabetes. Here, we review the current understanding of the glucoregulatory functions of leptin, emphasizing its central mechanisms of action and lessons learned from clinical studies, and discuss possible therapeutic applications of leptin in the treatment of type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Roberto Coppari
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas TX, 75390, USA
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- The Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, 92697, USA
| | - Christian Bjørbæk
- Department of Medicine, Division of Endocrinology and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA, 02215, USA
| |
Collapse
|
178
|
Yang M, Zhang Z, Wang C, Li K, Li S, Boden G, Li L, Yang G. Nesfatin-1 action in the brain increases insulin sensitivity through Akt/AMPK/TORC2 pathway in diet-induced insulin resistance. Diabetes 2012; 61:1959-68. [PMID: 22688332 PMCID: PMC3402309 DOI: 10.2337/db11-1755] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nesfatin-1, derived from nucleobindin 2, was recently identified as an anorexigenic signal peptide. However, its neural role in glucose homeostasis and insulin sensitivity is unknown. To evaluate the metabolic impact and underlying mechanisms of central nesfatin-1 signaling, we infused nesfatin-1 in the third cerebral ventricle of high-fat diet (HFD)-fed rats. The effects of central nesfatin-1 on glucose metabolism and changes in transcription factors and signaling pathways were assessed during euglycemic-hyperinsulinemic clamping. The infusion of nesfatin-1 into the third cerebral ventricle markedly inhibited hepatic glucose production (HGP), promoted muscle glucose uptake, and was accompanied by decreases in hepatic mRNA and protein expression and enzymatic activity of PEPCK in both standard diet- and HFD-fed rats. In addition, central nesfatin-1 increased insulin receptor (InsR)/insulin receptor substrate-1 (IRS-1)/AMP-dependent protein kinase (AMPK)/Akt kinase (Akt)/target of rapamycin complex (TORC) 2 phosphorylation and resulted in an increase in Fos immunoreactivity in the hypothalamic nuclei that mediate glucose homeostasis. Taken together, these results reveal what we believe to be a novel site of action of nesfatin-1 on HGP and the PEPCK/InsR/IRS-1/AMPK/Akt/TORC2 pathway and suggest that hypothalamic nesfatin-1 action through a neural-mediated pathway can contribute to increased peripheral and hepatic insulin sensitivity by decreasing gluconeogenesis and promoting peripheral glucose uptake in vivo.
Collapse
Affiliation(s)
- Mengliu Yang
- Department of Endocrinology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhihong Zhang
- Department of Endocrinology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chong Wang
- Department of Endocrinology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ke Li
- Department of Endocrinology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shengbing Li
- Department of Endocrinology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Guenther Boden
- Division of Endocrinology/Diabetes/Metabolism, Temple University School of Medicine, Philadelphia, Pennsylvania
- Clinical Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Ling Li
- Department of Endocrinology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Corresponding authors: Gangyi Yang, , and Ling Li,
| | - Gangyi Yang
- Department of Endocrinology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Corresponding authors: Gangyi Yang, , and Ling Li,
| |
Collapse
|
179
|
Saderi N, Salgado-Delgado R, Avendaño-Pradel R, Basualdo MDC, Ferri GL, Chávez-Macías L, Roblera JEO, Escobar C, Buijs RM. NPY and VGF immunoreactivity increased in the arcuate nucleus, but decreased in the nucleus of the Tractus Solitarius, of type-II diabetic patients. PLoS One 2012; 7:e40070. [PMID: 22808091 PMCID: PMC3394787 DOI: 10.1371/journal.pone.0040070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 05/31/2012] [Indexed: 11/23/2022] Open
Abstract
Ample animal studies demonstrate that neuropeptides NPY and α-MSH expressed in Arcuate Nucleus and Nucleus of the Tractus Solitarius, modulate glucose homeostasis and food intake. In contrast is the absence of data validating these observations for human disease. Here we compare the post mortem immunoreactivity of the metabolic neuropeptides NPY, αMSH and VGF in the infundibular nucleus, and brainstem of 11 type-2 diabetic and 11 non-diabetic individuals. α-MSH, NPY and tyrosine hydroxylase in human brain are localized in the same areas as in rodent brain. The similar distribution of NPY, α-MSH and VGF indicated that these neurons in the human brain may share similar functionality as in the rodent brain. The number of NPY and VGF immuno positive cells was increased in the infundibular nucleus of diabetic subjects in comparison to non-diabetic controls. In contrast, NPY and VGF were down regulated in the Nucleus of the Tractus Solitarius of diabetic patients. These results suggest an activation of NPY producing neurons in the arcuate nucleus, which, according to animal experimental studies, is related to a catabolic state and might be the basis for increased hepatic glucose production in type-2 diabetes.
Collapse
Affiliation(s)
- Nadia Saderi
- Dept. de Biologia Celular y Fisiologia, Instituto de Investigaciones Biomedicas, UNAM, Mexico City, Mexico
- NEF-Lab, Dept. Cytomorphology, University of Cagliari, Monserrato (CA), Italy
| | - Roberto Salgado-Delgado
- Dept. de Biologia Celular y Fisiologia, Instituto de Investigaciones Biomedicas, UNAM, Mexico City, Mexico
- Facultad de Ciencias, UASLP, San Luis Potosì, Mexico
| | | | - Maria del Carmen Basualdo
- Dept. de Biologia Celular y Fisiologia, Instituto de Investigaciones Biomedicas, UNAM, Mexico City, Mexico
| | - Gian-Luca Ferri
- NEF-Lab, Dept. Cytomorphology, University of Cagliari, Monserrato (CA), Italy
| | | | | | - Carolina Escobar
- Dept. de Anatomia, Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Ruud M. Buijs
- Dept. de Biologia Celular y Fisiologia, Instituto de Investigaciones Biomedicas, UNAM, Mexico City, Mexico
- * E-mail:
| |
Collapse
|
180
|
Bantubungi K, Prawitt J, Staels B. Control of metabolism by nutrient-regulated nuclear receptors acting in the brain. J Steroid Biochem Mol Biol 2012; 130:126-37. [PMID: 22033286 DOI: 10.1016/j.jsbmb.2011.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 10/04/2011] [Accepted: 10/08/2011] [Indexed: 12/22/2022]
Abstract
Today, we are witnessing a rising incidence of obesity worldwide. This increase is due to a sedentary life style, an increased caloric intake and a decrease in physical activity. Obesity contributes to the appearance of type 2 diabetes, dyslipidemia and cardiovascular complications due to atherosclerosis, and nephropathy. Therefore, the development of new therapeutic strategies may become a necessity. Given the metabolism controlling properties of nuclear receptors in peripheral organs (such as liver, adipose tissues, pancreas) and their implication in various processes underlying metabolic diseases, they constitute interesting therapeutic targets for obesity, dyslipidemia, cardiovascular disease and type 2 diabetes. The recent identification of the central nervous system as a player in the control of peripheral metabolism opens new avenues to our understanding of the pathophysiology of obesity and type 2 diabetes and potential novel ways to treat these diseases. While the metabolic functions of nuclear receptors in peripheral organs have been extensively investigated, little is known about their functions in the brain, in particular with respect to brain control of energy homeostasis. This review provides an overview of the relationships between nuclear receptors in the brain, mainly at the hypothalamic level, and the central regulation of energy homeostasis. In this context, we will particularly focus on the role of PPARα, PPARγ, LXR and Rev-erbα.
Collapse
Affiliation(s)
- Kadiombo Bantubungi
- Univ Lille Nord de France, INSERM UMR1011, UDSL, Institut Pasteur de Lille, Lille, France
| | | | | |
Collapse
|
181
|
Gao H, Miyata K, Bhaskaran MD, Derbenev AV, Zsombok A. Transient receptor potential vanilloid type 1-dependent regulation of liver-related neurons in the paraventricular nucleus of the hypothalamus diminished in the type 1 diabetic mouse. Diabetes 2012; 61:1381-90. [PMID: 22492526 PMCID: PMC3357291 DOI: 10.2337/db11-0820] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The paraventricular nucleus (PVN) of the hypothalamus controls the autonomic neural output to the liver, thereby participating in the regulation of hepatic glucose production (HGP); nevertheless, mechanisms controlling the activity of liver-related PVN neurons are not known. Transient receptor potential vanilloid type 1 (TRPV1) is involved in glucose homeostasis and colocalizes with liver-related PVN neurons; however, the functional role of TRPV1 regarding liver-related PVN neurons has to be elucidated. A retrograde viral tracer was used to identify liver-related neurons within the brain-liver circuit in control, type 1 diabetic, and insulin-treated mice. Our data indicate that TRPV1 regulates liver-related PVN neurons. This TRPV1-dependent excitation diminished in type 1 diabetic mice. In vivo and in vitro insulin restored TRPV1 activity in a phosphatidylinositol 3-kinase/protein kinase C-dependent manner and stimulated TRPV1 receptor trafficking to the plasma membrane. There was no difference in total TRPV1 protein expression; however, increased phosphorylation of TRPV1 receptors was observed in type 1 diabetic mice. Our data demonstrate that TRPV1 plays a pivotal role in the regulation of liver-related PVN neurons. Moreover, TRPV1-dependent excitation of liver-related PVN neurons diminishes in type 1 diabetes, thus indicating that the brain-liver autonomic circuitry is altered in type 1 diabetes and may contribute to the autonomic dysfunction of HGP.
Collapse
Affiliation(s)
- Hong Gao
- Department of Physiology, Tulane University, School of Medicine, New Orleans, Louisiana, USA.
| | | | | | | | | |
Collapse
|
182
|
Abstract
Lipid sensing and insulin signaling in the brain independently triggers a negative feedback system to lower glucose production and food intake. Here, we discuss the underlying molecular and neuronal mechanisms of lipid sensing and insulin signaling in the hypothalamus and how these mechanisms are affected in response to high-fat feeding. We propose that high-fat feeding concurrently disrupts hypothalamic insulin-signaling and lipid-sensing mechanisms and that experiments aimed to restore both insulin action and lipid sensing in the brain could effectively lower glucose production and food intake to restore metabolic homeostasis in type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Jessica T Y Yue
- Toronto General Research Institute, University Health Network, Toronto, Canada
| | | |
Collapse
|
183
|
Abstract
Muscarinic acetylcholine (ACh) receptors (mAChRs; M₁-M₅) regulate the activity of an extraordinarily large number of important physiological processes. During the past 10-15 years, studies with whole-body M₁-M₅ mAChR knockout mice have provided many new insights into the physiological and pathophysiological roles of the individual mAChR subtypes. This review will focus on the characterization of a novel generation of mAChR mutant mice, including mice in which distinct mAChR genes have been excised in a tissue- or cell type-specific fashion, various transgenic mouse lines that overexpress wild-type or different mutant M₃ mAChRs in certain tissues or cells only, as well as a novel M₃ mAChR knockin mouse strain deficient in agonist-induced M₃ mAChR phosphorylation. Phenotypic analysis of these new animal models has greatly advanced our understanding of the physiological roles of the various mAChR subtypes and has identified potential targets for the treatment of type 2 diabetes, schizophrenia, Parkinson's disease, drug addiction, cognitive disorders, and several other pathophysiological conditions.
Collapse
|
184
|
Vagal innervation of the hepatic portal vein and liver is not necessary for Roux-en-Y gastric bypass surgery-induced hypophagia, weight loss, and hypermetabolism. Ann Surg 2012; 255:294-301. [PMID: 22202582 DOI: 10.1097/sla.0b013e31823e71b7] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To determine the role of the common hepatic branch of the abdominal vagus on the beneficial effects of Roux-en-Y gastric bypass (RYGB) on weight loss, food intake, food choice, and energy expenditure in a rat model. BACKGROUND Although changes in gut hormone patterns are the leading candidates in RYGB's effects on appetite, weight loss, and reversal of diabetes, a potential role for afferent signaling through the vagal hepatic branch potentially sensing glucose levels in the hepatic portal vein has recently been suggested in a mouse model of RYGB. METHODS Male Sprague-Dawley rats underwent either RYGB alone (RYGB; n = 7), RYGB + common hepatic branch vagotomy (RYGB + HV; n = 6), or sham procedure (sham; n = 9). Body weight, body composition, meal patterns, food choice, energy expenditure, and fecal energy loss were monitored up to 3 months after intervention. RESULTS Both RYGB and RYGB + HV significantly reduced body weight, adiposity, meal size, and fat preference, and increased satiety, energy expenditure, and respiratory exchange rate compared with sham procedure, and there were no significant differences in these effects between RYGB and RYGB + HV rats. CONCLUSIONS Integrity of vagal nerve supply to the liver, hepatic portal vein, and the proximal duodenum provided by the common hepatic branch is not necessary for RYGB to reduce food intake and body weight or increase energy expenditure. Specifically, it is unlikely that a hepatic portal vein glucose sensor signaling RYGB-induced increased intestinal gluconeogenesis to the brain depends on vagal afferent fibers.
Collapse
|
185
|
Amin A, Murphy KG. Nutritional sensing and its utility in treating obesity. Expert Rev Endocrinol Metab 2012; 7:209-221. [PMID: 30764012 DOI: 10.1586/eem.12.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Obesity remains a major worldwide health problem, with current medical treatments being poorly effective. Nutrient sensing allows organs such as the GI tract and the brain to recognize and respond to fuel substrates such as carbohydrates, protein and fats. Specialized neural and hormonal pathways exist to facilitate and regulate these chemosensory mechanisms. Manipulation of factors involved in either central or peripheral chemosensory pathways may provide possible targets for the manipulation of appetite. However, further research is required to assess the utility of this approach to developing novel anti-obesity agents.
Collapse
Affiliation(s)
- Anjali Amin
- a Section of Investigative Medicine, Faculty of Medicine, Imperial College London, 6th Floor, Commonwealth Building, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Kevin G Murphy
- b Section of Investigative Medicine, Faculty of Medicine, Imperial College London, 6th Floor, Commonwealth Building, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
186
|
Farooqui AA, Farooqui T, Panza F, Frisardi V. Metabolic syndrome as a risk factor for neurological disorders. Cell Mol Life Sci 2012; 69:741-62. [PMID: 21997383 PMCID: PMC11115054 DOI: 10.1007/s00018-011-0840-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/08/2011] [Accepted: 09/15/2011] [Indexed: 02/07/2023]
Abstract
The metabolic syndrome is a cluster of common pathologies: abdominal obesity linked to an excess of visceral fat, insulin resistance, dyslipidemia and hypertension. At the molecular level, metabolic syndrome is accompanied not only by dysregulation in the expression of adipokines (cytokines and chemokines), but also by alterations in levels of leptin, a peptide hormone released by white adipose tissue. These changes modulate immune response and inflammation that lead to alterations in the hypothalamic 'bodyweight/appetite/satiety set point,' resulting in the initiation and development of metabolic syndrome. Metabolic syndrome is a risk factor for neurological disorders such as stroke, depression and Alzheimer's disease. The molecular mechanism underlying the mirror relationship between metabolic syndrome and neurological disorders is not fully understood. However, it is becoming increasingly evident that all cellular and biochemical alterations observed in metabolic syndrome like impairment of endothelial cell function, abnormality in essential fatty acid metabolism and alterations in lipid mediators along with abnormal insulin/leptin signaling may represent a pathological bridge between metabolic syndrome and neurological disorders such as stroke, Alzheimer's disease and depression. The purpose of this review is not only to describe the involvement of brain in the pathogenesis of metabolic syndrome, but also to link the pathogenesis of metabolic syndrome with neurochemical changes in stroke, Alzheimer's disease and depression to a wider audience of neuroscientists with the hope that this discussion will initiate more studies on the relationship between metabolic syndrome and neurological disorders.
Collapse
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43221, USA.
| | | | | | | |
Collapse
|
187
|
Levi J, Huynh FK, Denroche HC, Neumann UH, Glavas MM, Covey SD, Kieffer TJ. Hepatic leptin signalling and subdiaphragmatic vagal efferents are not required for leptin-induced increases of plasma IGF binding protein-2 (IGFBP-2) in ob/ob mice. Diabetologia 2012; 55:752-62. [PMID: 22202803 DOI: 10.1007/s00125-011-2426-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 11/28/2011] [Indexed: 01/19/2023]
Abstract
AIMS/HYPOTHESIS The fat-derived hormone leptin plays a crucial role in the maintenance of normal body weight and energy expenditure as well as in glucose homeostasis. Recently, it was reported that the liver-derived protein, insulin-like growth factor binding protein-2 (IGFBP-2), is responsible for at least some of the glucose-normalising effects of leptin. However, the exact mechanism by which leptin upregulates IGFBP-2 production is unknown. Since it is believed that circulating IGFBP-2 is predominantly derived from the liver and leptin has been shown to have both direct and indirect actions on the liver, we hypothesised that leptin signalling in hepatocytes or via brain-liver vagal efferents may mediate leptin control of IGFBP-2 production. METHODS To address our hypothesis, we assessed leptin action on glucose homeostasis and plasma IGFBP-2 levels in both leptin-deficient ob/ob mice with a liver-specific loss of leptin signalling and ob/ob mice with a subdiaphragmatic vagotomy. We also examined whether restoring hepatic leptin signalling in leptin receptor-deficient db/db mice could increase plasma IGFBP-2 levels. RESULTS Continuous leptin administration increased plasma IGFBP-2 levels in a dose-dependent manner, in association with reduced plasma glucose and insulin levels. Interestingly, leptin was still able to increase plasma IGFBP-2 levels and improve glucose homeostasis in both ob/ob mouse models to the same extent as their littermate controls. Further, restoration of hepatic leptin signalling in db/db mice did not increase either hepatic or plasma IGFBP-2 levels. CONCLUSIONS/INTERPRETATION Taken together, these data indicate that hepatic leptin signalling and subdiaphragmatic vagal inputs are not required for leptin upregulation of plasma IGFBP-2 nor blood glucose lowering in ob/ob mice.
Collapse
Affiliation(s)
- J Levi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | | | | | |
Collapse
|
188
|
Berglund ED, Vianna CR, Donato J, Kim MH, Chuang JC, Lee CE, Lauzon DA, Lin P, Brule LJ, Scott MM, Coppari R, Elmquist JK. Direct leptin action on POMC neurons regulates glucose homeostasis and hepatic insulin sensitivity in mice. J Clin Invest 2012; 122:1000-9. [PMID: 22326958 DOI: 10.1172/jci59816] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 01/04/2012] [Indexed: 01/01/2023] Open
Abstract
Leptin action on its receptor (LEPR) stimulates energy expenditure and reduces food intake, thereby lowering body weight. One leptin-sensitive target cell mediating these effects on energy balance is the proopiomelano-cortin (POMC) neuron. Recent evidence suggests that the action of leptin on POMC neurons regulates glucose homeostasis independently of its effects on energy balance. Here, we have dissected the physiological impact of direct leptin action on POMC neurons using a mouse model in which endogenous LEPR expression was prevented by a LoxP-flanked transcription blocker (loxTB), but could be reactivated by Cre recombinase. Mice homozygous for the Lepr(loxTB) allele were obese and exhibited defects characteristic of LEPR deficiency. Reexpression of LEPR only in POMC neurons in the arcuate nucleus of the hypothalamus did not reduce food intake, but partially normalized energy expenditure and modestly reduced body weight. Despite the moderate effects on energy balance and independent of changes in body weight, restoring LEPR in POMC neurons normalized blood glucose and ameliorated hepatic insulin resistance, hyperglucagonemia, and dyslipidemia. Collectively, these results demonstrate that direct leptin action on POMC neurons does not reduce food intake, but is sufficient to normalize glucose and glucagon levels in mice otherwise lacking LEPR.
Collapse
Affiliation(s)
- Eric D Berglund
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, Texas 75390-9051, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Sohn JW, Williams KW. Functional heterogeneity of arcuate nucleus pro-opiomelanocortin neurons: implications for diverging melanocortin pathways. Mol Neurobiol 2012; 45:225-33. [PMID: 22328135 DOI: 10.1007/s12035-012-8240-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 01/26/2012] [Indexed: 01/04/2023]
Abstract
Arcuate nucleus (ARC) pro-opiomelanocortin (POMC) neurons are essential regulators of food intake, energy expenditure, and glucose homeostasis. POMC neurons integrate several key metabolic signals that include neurotransmitters and hormones. The change in activity of POMC neurons is relayed to melanocortin receptors in distinct regions of the central nervous system. This review will summarize the role of leptin and serotonin receptors in regulating the activity of POMC neurons and provide a model in which different melanocortin pathways regulate energy and glucose homeostasis.
Collapse
Affiliation(s)
- Jong-Woo Sohn
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9077, USA
| | | |
Collapse
|
190
|
Osundiji MA, Lam DD, Shaw J, Yueh CY, Markkula SP, Hurst P, Colliva C, Roda A, Heisler LK, Evans ML. Brain glucose sensors play a significant role in the regulation of pancreatic glucose-stimulated insulin secretion. Diabetes 2012; 61:321-8. [PMID: 22210318 PMCID: PMC3266403 DOI: 10.2337/db11-1050] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/10/2011] [Indexed: 11/13/2022]
Abstract
As patients decline from health to type 2 diabetes, glucose-stimulated insulin secretion (GSIS) typically becomes impaired. Although GSIS is driven predominantly by direct sensing of a rise in blood glucose by pancreatic β-cells, there is growing evidence that hypothalamic neurons control other aspects of peripheral glucose metabolism. Here we investigated the role of the brain in the modulation of GSIS. To examine the effects of increasing or decreasing hypothalamic glucose sensing on glucose tolerance and insulin secretion, glucose or inhibitors of glucokinase, respectively, were infused into the third ventricle during intravenous glucose tolerance tests (IVGTTs). Glucose-infused rats displayed improved glucose handling, particularly within the first few minutes of the IVGTT, with a significantly lower area under the excursion curve within the first 10 min (AUC0-10). This was explained by increased insulin secretion. In contrast, infusion of the glucokinase inhibitors glucosamine or mannoheptulose worsened glucose tolerance and decreased GSIS in the first few minutes of IVGTT. Our data suggest a role for brain glucose sensors in the regulation of GSIS, particularly during the early phase. We propose that pharmacological agents targeting hypothalamic glucose-sensing pathways may represent novel therapeutic strategies for enhancing early phase insulin secretion in type 2 diabetes.
Collapse
Affiliation(s)
- Mayowa A. Osundiji
- Department of Medicine, University of Cambridge Metabolic Research Laboratories, and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, U.K
| | - Daniel D. Lam
- Department of Pharmacology, University of Cambridge, Cambridge, U.K
| | - Jill Shaw
- Department of Medicine, University of Cambridge Metabolic Research Laboratories, and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, U.K
- Department of Pharmacology, University of Cambridge, Cambridge, U.K
| | - Chen-Yu Yueh
- Department of Medicine, University of Cambridge Metabolic Research Laboratories, and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, U.K
- Department of Family Medicine, Chang Gung Memorial Hospital at Chiayi, Chang Gung Institute of Technology, Chiayi, Taiwan
| | - S. Pauliina Markkula
- Department of Medicine, University of Cambridge Metabolic Research Laboratories, and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, U.K
| | - Paul Hurst
- Department of Medicine, University of Cambridge Metabolic Research Laboratories, and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, U.K
| | - Carolina Colliva
- Department of Pharmaceutical Sciences, University of Bologna, Bologna, Italy
| | - Aldo Roda
- Department of Pharmaceutical Sciences, University of Bologna, Bologna, Italy
| | - Lora K. Heisler
- Department of Pharmacology, University of Cambridge, Cambridge, U.K
| | - Mark L. Evans
- Department of Medicine, University of Cambridge Metabolic Research Laboratories, and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, U.K
| |
Collapse
|
191
|
Jitrapakdee S. Transcription factors and coactivators controlling nutrient and hormonal regulation of hepatic gluconeogenesis. Int J Biochem Cell Biol 2012; 44:33-45. [DOI: 10.1016/j.biocel.2011.10.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/30/2011] [Accepted: 10/04/2011] [Indexed: 12/17/2022]
|
192
|
Su Y, Lam TK, He W, Pocai A, Bryan J, Aguilar-Bryan L, Gutiérrez-Juárez R. Hypothalamic leucine metabolism regulates liver glucose production. Diabetes 2012; 61:85-93. [PMID: 22187376 PMCID: PMC3237640 DOI: 10.2337/db11-0857] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Amino acids profoundly affect insulin action and glucose metabolism in mammals. Here, we investigated the role of the mediobasal hypothalamus (MBH), a key center involved in nutrient-dependent metabolic regulation. Specifically, we tested the novel hypothesis that the metabolism of leucine within the MBH couples the central sensing of leucine with the control of glucose production by the liver. We performed either central (MBH) or systemic infusions of leucine in Sprague-Dawley male rats during basal pancreatic insulin clamps in combination with various pharmacological and molecular interventions designed to modulate leucine metabolism in the MBH. We also examined the role of hypothalamic ATP-sensitive K(+) channels (K(ATP) channels) in the effects of leucine. Enhancing the metabolism of leucine acutely in the MBH lowered blood glucose through a biochemical network that was insensitive to rapamycin but strictly dependent on the hypothalamic metabolism of leucine to α-ketoisocaproic acid and, further, insensitive to acetyl- and malonyl-CoA. Functional K(ATP) channels were also required. Importantly, molecular attenuation of this central sensing mechanism in rats conferred susceptibility to developing hyperglycemia. We postulate that the metabolic sensing of leucine in the MBH is a previously unrecognized mechanism for the regulation of hepatic glucose production required to maintain glucose homeostasis.
Collapse
Affiliation(s)
- Ya Su
- Department of Medicine, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York
| | - Tony K.T. Lam
- Department of Medicine, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York
| | - Wu He
- Department of Medicine, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York
| | - Alessandro Pocai
- Department of Medicine, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York
| | - Joseph Bryan
- Pacific Northwest Research Institute, Seattle, Washington
| | | | - Roger Gutiérrez-Juárez
- Department of Medicine, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York
- Corresponding author: Roger Gutiérrez-Juárez,
| |
Collapse
|
193
|
Huang L, Qiu B, Yuan L, Zheng L, Li Q, Zhu S. Influence of fasting, insulin and glucose on ghrelin in the dorsal vagal complex in rats. J Endocrinol 2011; 211:257-62. [PMID: 21930685 DOI: 10.1530/joe-11-0147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The dorsal vagal complex (DVC) is an important site in which ghrelin plays an orexigenic role. However, the relationship between ghrelin expression in DVC and the energy status of the organism is unclear, as well as the role of the vagus nerve in this process. In this study, ghrelin expression in DVC neurons of rats was detected, then levels of ghrelin expression were observed under the conditions of regular diet, fasting, high blood glucose, low blood glucose, and following subdiaphragmatic vagotomy and vagus nerve electrostimulation. The results showed the following: 1) there was positive staining of ghrelin neurons in DVC; 2) ghrelin protein and mRNA levels in DVC increased under fasting condition; 3) Hyperglycemia, induced by glucose production, decreased DVC ghrelin levels and levels did not increase under hypoglycemia induced by insulin injection; 4) the dorsal trunk of the subdiaphragmatic vagus transmits a stimulatory signal to increase DVC ghrelin levels, whereas the ventral trunk transmits inhibitory information; and 5) DVC ghrelin levels decreased with 20 Hz stimulation on the ventral or dorsal trunk of subdiaphragmatic vagus nerves but increased with 1 Hz stimulation on the dorsal trunk. These results indicate that endogenous ghrelin is synthesized in DVC neurons. Conditions such as fasting, hyperglycemia, and hypoglycemia result in changes in DVC ghrelin levels in which the dorsal and ventral trunks of subdiaphragmatic vagus play different modulation roles.
Collapse
Affiliation(s)
- Lei Huang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, People's Republic of China
| | | | | | | | | | | |
Collapse
|
194
|
Functional plasticity of central TRPV1 receptors in brainstem dorsal vagal complex circuits of streptozotocin-treated hyperglycemic mice. J Neurosci 2011; 31:14024-31. [PMID: 21957263 DOI: 10.1523/jneurosci.2081-11.2011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Emerging data indicate that central neurons participate in diabetic processes by modulating autonomic output from neurons in the dorsal motor nucleus of the vagus (DMV). We tested the hypothesis that synaptic modulation by transient receptor potential vanilloid type 1 (TRPV1) receptors is reduced in the DMV in slices from a murine model of type 1 diabetes. The TRPV1 agonist capsaicin robustly enhanced glutamate release onto DMV neurons by acting at preterminal receptors in slices from intact mice, but failed to do so in slices from diabetic mice. TRPV1 receptor protein expression in the vagal complex was unaltered. Brief insulin preapplication restored TRPV1-dependent modulation of glutamate release in a PKC- and PI3K-dependent manner. The restorative effect of insulin was prevented by brefeldin A, suggesting that insulin induced TRPV1 receptor trafficking to the terminal membrane. Central vagal circuits critical to the autonomic regulation of metabolism undergo insulin-dependent synaptic plasticity involving TRPV1 receptor modulation in diabetic mice after several days of chronic hyperglycemia.
Collapse
|
195
|
Kishore P, Boucai L, Zhang K, Li W, Koppaka S, Kehlenbrink S, Schiwek A, Esterson YB, Mehta D, Bursheh S, Su Y, Gutierrez-Juarez R, Muzumdar R, Schwartz GJ, Hawkins M. Activation of K(ATP) channels suppresses glucose production in humans. J Clin Invest 2011; 121:4916-20. [PMID: 22056385 DOI: 10.1172/jci58035] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 10/05/2011] [Indexed: 12/17/2022] Open
Abstract
Increased endogenous glucose production (EGP) is a hallmark of type 2 diabetes mellitus. While there is evidence for central regulation of EGP by activation of hypothalamic ATP-sensitive potassium (K(ATP)) channels in rodents, whether these central pathways contribute to regulation of EGP in humans remains to be determined. Here we present evidence for central nervous system regulation of EGP in humans that is consistent with complementary rodent studies. Oral administration of the K(ATP) channel activator diazoxide under fixed hormonal conditions substantially decreased EGP in nondiabetic humans and Sprague Dawley rats. In rats, comparable doses of oral diazoxide attained appreciable concentrations in the cerebrospinal fluid, and the effects of oral diazoxide were abolished by i.c.v. administration of the K(ATP) channel blocker glibenclamide. These results suggest that activation of hypothalamic K(ATP) channels may be an important regulator of EGP in humans and that this pathway could be a target for treatment of hyperglycemia in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Preeti Kishore
- Albert Einstein College of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Knight CM, Gutierrez-Juarez R, Lam TKT, Arrieta-Cruz I, Huang L, Schwartz G, Barzilai N, Rossetti L. Mediobasal hypothalamic SIRT1 is essential for resveratrol's effects on insulin action in rats. Diabetes 2011; 60:2691-700. [PMID: 21896928 PMCID: PMC3198094 DOI: 10.2337/db10-0987] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Sirtuin 1 (SIRT1) and its activator resveratrol are emerging as major regulators of metabolic processes. We investigate the site of resveratrol action on glucose metabolism and the contribution of SIRT1 to these effects. Because the arcuate nucleus in the mediobasal hypothalamus (MBH) plays a pivotal role in integrating peripheral metabolic responses to nutrients and hormones, we examined whether the actions of resveratrol are mediated at the MBH. RESEARCH DESIGN AND METHODS Sprague Dawley (SD) male rats received acute central (MBH) or systemic injections of vehicle, resveratrol, or SIRT1 inhibitor during basal pancreatic insulin clamp studies. To delineate the pathway(s) by which MBH resveratrol modulates hepatic glucose production, we silenced hypothalamic SIRT1 expression using a short hairpin RNA (shRNA) inhibited the hypothalamic ATP-sensitive potassium (K(ATP)) channel with glibenclamide, or selectively transected the hepatic branch of the vagus nerve while infusing resveratrol centrally. RESULTS Our studies show that marked improvement in insulin sensitivity can be elicited by acute administration of resveratrol to the MBH or during acute systemic administration. Selective inhibition of hypothalamic SIRT1 using a cell-permeable SIRT1 inhibitor or SIRT1-shRNA negated the effect of central and peripheral resveratrol on glucose production. Blockade of the K(ATP) channel and hepatic vagotomy significantly attenuated the effect of central resveratrol on hepatic glucose production. In addition, we found no evidence for hypothalamic AMPK activation after MBH resveratrol administration. CONCLUSIONS Taken together, these studies demonstrate that resveratrol improves glucose homeostasis mainly through a central SIRT1-dependent pathway and that the MBH is a major site of resveratrol action.
Collapse
Affiliation(s)
- Colette M Knight
- Department of Medicine, Diabetes Research Center, Albert EinsteinCollege of Medicine, Bronx, New York, USA.
| | | | | | | | | | | | | | | |
Collapse
|
197
|
Gautron L, Sakata I, Udit S, Zigman JM, Wood JN, Elmquist JK. Genetic tracing of Nav1.8-expressing vagal afferents in the mouse. J Comp Neurol 2011; 519:3085-101. [PMID: 21618224 PMCID: PMC3306808 DOI: 10.1002/cne.22667] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nav1.8 is a tetrodotoxin-resistant sodium channel present in large subsets of peripheral sensory neurons, including both spinal and vagal afferents. In spinal afferents, Nav1.8 plays a key role in signaling different types of pain. Little is known, however, about the exact identity and role of Nav1.8-expressing vagal neurons. Here we generated mice with restricted expression of tdTomato fluorescent protein in all Nav1.8-expressing afferent neurons. As a result, intense fluorescence was visible in the cell bodies, central relays, and sensory endings of these neurons, revealing the full extent of their innervation sites in thoracic and abdominal viscera. For instance, vagal and spinal Nav1.8-expressing endings were seen clearly within the gastrointestinal mucosa and myenteric plexus, respectively. In the gastrointestinal muscle wall, labeled endings included a small subset of vagal tension receptors but not any stretch receptors. We also examined the detailed innervation of key metabolic tissues such as liver and pancreas and evaluated the anatomical relationship of Nav1.8-expressing vagal afferents with select enteroendocrine cells (i.e., ghrelin, glucagon, GLP-1). Specifically, our data revealed the presence of Nav1.8-expressing vagal afferents in several metabolic tissues and varying degrees of proximity between Nav1.8-expressing mucosal afferents and enteroendocrine cells, including apparent neuroendocrine apposition. In summary, this study demonstrates the power and versatility of the Cre-LoxP technology to trace identified visceral afferents, and our data suggest a previously unrecognized role for Nav1.8-expressing vagal neurons in gastrointestinal functions.
Collapse
Affiliation(s)
- Laurent Gautron
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | | | | | | | | | |
Collapse
|
198
|
Teff KL, Kim SF. Atypical antipsychotics and the neural regulation of food intake and peripheral metabolism. Physiol Behav 2011; 104:590-8. [PMID: 21664918 PMCID: PMC3139777 DOI: 10.1016/j.physbeh.2011.05.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/26/2011] [Accepted: 05/31/2011] [Indexed: 12/18/2022]
Abstract
The atypical antipsychotics (AAPs) are associated with weight gain and an increased incidence of metabolic disease including type 2 diabetes mellitus. Epidemiological, cross-sectional and prospective studies suggest that two of the AAPs, olanzapine and clozapine, cause the most dramatic weight gain and metabolic impairments including increased fasting glucose, insulin and triglycerides. Relative to the other AAPs, both olanzapine and clozapine exhibit a particularly high antagonistic affinity for histamine and muscarinic receptors which have been hypothesized as mediators of the reported increase in weight and glucose abnormalities. In this article, we review the current evidence for the AAP associated weight gain and abnormal glucose metabolism. We postulate that the effects of the AAPs on food intake and peripheral metabolism are initially independently regulated but with increasing body adiposity, the early AAP-induced impairments in peripheral metabolism will be exacerbated, thereby establishing a vicious cycle such that the effects of the AAP are magnified by the known pathophysiological consequences of obesity. Furthermore, we examine how inhibition of the histaminergic pathway may mediate increases in food intake and the potential role of the vagus nerve in the reported peripheral metabolic effects.
Collapse
Affiliation(s)
- Karen L Teff
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
199
|
Ramnanan CJ, Saraswathi V, Smith MS, Donahue EP, Farmer B, Farmer TD, Neal D, Williams PE, Lautz M, Mari A, Cherrington AD, Edgerton DS. Brain insulin action augments hepatic glycogen synthesis without suppressing glucose production or gluconeogenesis in dogs. J Clin Invest 2011; 121:3713-23. [PMID: 21865644 DOI: 10.1172/jci45472] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 06/22/2011] [Indexed: 01/26/2023] Open
Abstract
In rodents, acute brain insulin action reduces blood glucose levels by suppressing the expression of enzymes in the hepatic gluconeogenic pathway, thereby reducing gluconeogenesis and endogenous glucose production (EGP). Whether a similar mechanism is functional in large animals, including humans, is unknown. Here, we demonstrated that in canines, physiologic brain hyperinsulinemia brought about by infusion of insulin into the head arteries (during a pancreatic clamp to maintain basal hepatic insulin and glucagon levels) activated hypothalamic Akt, altered STAT3 signaling in the liver, and suppressed hepatic gluconeogenic gene expression without altering EGP or gluconeogenesis. Rather, brain hyperinsulinemia slowly caused a modest reduction in net hepatic glucose output (NHGO) that was attributable to increased net hepatic glucose uptake and glycogen synthesis. This was associated with decreased levels of glycogen synthase kinase 3β (GSK3β) protein and mRNA and with decreased glycogen synthase phosphorylation, changes that were blocked by hypothalamic PI3K inhibition. Therefore, we conclude that the canine brain senses physiologic elevations in plasma insulin, and that this in turn regulates genetic events in the liver. In the context of basal insulin and glucagon levels at the liver, this input augments hepatic glucose uptake and glycogen synthesis, reducing NHGO without altering EGP.
Collapse
Affiliation(s)
- Christopher J Ramnanan
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Satapathy SK, Ochani M, Dancho M, Hudson LK, Rosas-Ballina M, Valdes-Ferrer SI, Olofsson PS, Harris YT, Roth J, Chavan S, Tracey KJ, Pavlov VA. Galantamine alleviates inflammation and other obesity-associated complications in high-fat diet-fed mice. Mol Med 2011; 17:599-606. [PMID: 21738953 PMCID: PMC3146607 DOI: 10.2119/molmed.2011.00083] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 03/07/2011] [Indexed: 01/14/2023] Open
Abstract
Obesity, a serious and growing health threat, is associated with low-grade inflammation that plays a role in mediating its adverse consequences. Previously, we have discovered a role for neural cholinergic signaling in controlling inflammation, and demonstrated that the cholinergic agent galantamine suppresses excessive proinflammatory cytokine release. The main objective of this study was to examine the efficacy of galantamine, a clinically-approved drug, in alleviating obesity-related inflammation and associated complications. After 8 wks on a high-fat diet, C57BL/6J mice were treated with either galantamine (4 mg/kg, intraperitoneally [i.p.]) or saline for 4 wks in parallel with mice on a low-fat diet and treated with saline. Galantamine treatment of obese mice significantly reduced body weight, food intake, abdominal adiposity, plasma cytokine and adipokine levels, and significantly improved blood glucose, insulin resistance and hepatic steatosis. In addition, galantamine alleviated impaired insulin sensitivity and glucose intolerance significantly. These results indicate a previously unrecognized potential of galantamine in alleviating obesity, inflammation and other obesity-related complications in mice. These findings are of interest for studying the efficacy of this clinically-approved drug in the context of human obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Sanjaya K Satapathy
- Division of Gastroenterology, North Shore-Long Island Jewish Health System, New Hyde Park, New York, United States of America
| | - Mahendar Ochani
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Meghan Dancho
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - LaQueta K Hudson
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Mauricio Rosas-Ballina
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Sergio I Valdes-Ferrer
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Peder S Olofsson
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Yael Tobi Harris
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
- Division of Endocrinology and Metabolism, North Shore- Long Island Jewish Health System, New Hyde Park, New York, United States of America
| | - Jesse Roth
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Sangeeta Chavan
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Kevin J Tracey
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Valentin A Pavlov
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| |
Collapse
|