151
|
Neutralizing Monoclonal Antibodies That Target the Spike Receptor Binding Domain Confer Fc Receptor-Independent Protection against SARS-CoV-2 Infection in Syrian Hamsters. mBio 2021; 12:e0239521. [PMID: 34517754 PMCID: PMC8546861 DOI: 10.1128/mbio.02395-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein is the main target for neutralizing antibodies. These antibodies can be elicited through immunization or passively transferred as therapeutics in the form of convalescent-phase sera or monoclonal antibodies (MAbs). Potently neutralizing antibodies are expected to confer protection; however, it is unclear whether weakly neutralizing antibodies contribute to protection. Also, their mechanism of action in vivo is incompletely understood. Here, we demonstrate that 2B04, an antibody with an ultrapotent neutralizing activity (50% inhibitory concentration [IC50] of 0.04 μg/ml), protects hamsters against SARS-CoV-2 in a prophylactic and therapeutic infection model. Protection is associated with reduced weight loss and viral loads in nasal turbinates and lungs after challenge. MAb 2B04 also blocked aerosol transmission of the virus to naive contacts. We next examined three additional MAbs (2C02, 2C03, and 2E06), recognizing distinct epitopes within the receptor binding domain of spike protein that possess either minimal (2C02 and 2E06, IC50 > 20 μg/ml) or weak (2C03, IC50 of 5 μg/ml) virus neutralization capacity in vitro. Only 2C03 protected Syrian hamsters from weight loss and reduced lung viral load after SARS-CoV-2 infection. Finally, we demonstrated that Fc-Fc receptor interactions were not required for protection when 2B04 and 2C03 were administered prophylactically. These findings inform the mechanism of protection and support the rational development of antibody-mediated protection against SARS-CoV-2 infections.
Collapse
|
152
|
VanBlargan LA, Adams LJ, Liu Z, Chen RE, Gilchuk P, Raju S, Smith BK, Zhao H, Case JB, Winkler ES, Whitener BM, Droit L, Aziati ID, Bricker TL, Joshi A, Shi PY, Creanga A, Pegu A, Handley SA, Wang D, Boon ACM, Crowe JE, Whelan SPJ, Fremont DH, Diamond MS. A potently neutralizing SARS-CoV-2 antibody inhibits variants of concern by utilizing unique binding residues in a highly conserved epitope. Immunity 2021; 54:2399-2416.e6. [PMID: 34481543 PMCID: PMC8373659 DOI: 10.1016/j.immuni.2021.08.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/08/2021] [Accepted: 08/13/2021] [Indexed: 02/09/2023]
Abstract
With the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increased transmissibility and potential resistance, antibodies and vaccines with broadly inhibitory activity are needed. Here, we developed a panel of neutralizing anti-SARS-CoV-2 monoclonal antibodies (mAbs) that bound the receptor binding domain of the spike protein at distinct epitopes and blocked virus attachment to its host receptor, human angiotensin converting enzyme-2 (hACE2). Although several potently neutralizing mAbs protected K18-hACE2 transgenic mice against infection caused by ancestral SARS-CoV-2 strains, others induced escape variants in vivo or lost neutralizing activity against emerging strains. One mAb, SARS2-38, potently neutralized all tested SARS-CoV-2 variants of concern and protected mice against challenge by multiple SARS-CoV-2 strains. Structural analysis showed that SARS2-38 engaged a conserved epitope proximal to the receptor binding motif. Thus, treatment with or induction of neutralizing antibodies that bind conserved spike epitopes may limit the loss of potency of therapies or vaccines against emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Laura A VanBlargan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lucas J Adams
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rita E Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Saravanan Raju
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brittany K Smith
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Haiyan Zhao
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emma S Winkler
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bradley M Whitener
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lindsay Droit
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ishmael D Aziati
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Traci L Bricker
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Astha Joshi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Scott A Handley
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
153
|
Wheatley AK, Pymm P, Esterbauer R, Dietrich MH, Lee WS, Drew D, Kelly HG, Chan LJ, Mordant FL, Black KA, Adair A, Tan HX, Juno JA, Wragg KM, Amarasena T, Lopez E, Selva KJ, Haycroft ER, Cooney JP, Venugopal H, Tan LL, O Neill MT, Allison CC, Cromer D, Davenport MP, Bowen RA, Chung AW, Pellegrini M, Liddament MT, Glukhova A, Subbarao K, Kent SJ, Tham WH. Landscape of human antibody recognition of the SARS-CoV-2 receptor binding domain. Cell Rep 2021; 37:109822. [PMID: 34610292 PMCID: PMC8463300 DOI: 10.1016/j.celrep.2021.109822] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/22/2021] [Accepted: 09/20/2021] [Indexed: 11/21/2022] Open
Abstract
Potent neutralizing monoclonal antibodies are one of the few agents currently available to treat COVID-19. SARS-CoV-2 variants of concern (VOCs) that carry multiple mutations in the viral spike protein can exhibit neutralization resistance, potentially affecting the effectiveness of some antibody-based therapeutics. Here, the generation of a diverse panel of 91 human, neutralizing monoclonal antibodies provides an in-depth structural and phenotypic definition of receptor binding domain (RBD) antigenic sites on the viral spike. These RBD antibodies ameliorate SARS-CoV-2 infection in mice and hamster models in a dose-dependent manner and in proportion to in vitro, neutralizing potency. Assessing the effect of mutations in the spike protein on antibody recognition and neutralization highlights both potent single antibodies and stereotypic classes of antibodies that are unaffected by currently circulating VOCs, such as B.1.351 and P.1. These neutralizing monoclonal antibodies and others that bind analogous epitopes represent potentially useful future anti-SARS-CoV-2 therapeutics.
Collapse
Affiliation(s)
- Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Phillip Pymm
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Melanie H Dietrich
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Damien Drew
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Hannah G Kelly
- Department of Microbiology and Immunology, University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Li-Jin Chan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Francesca L Mordant
- Department of Microbiology and Immunology, University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Katrina A Black
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Amy Adair
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Kathleen M Wragg
- Department of Microbiology and Immunology, University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Thakshila Amarasena
- Department of Microbiology and Immunology, University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Ester Lopez
- Department of Microbiology and Immunology, University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Kevin J Selva
- Department of Microbiology and Immunology, University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Ebene R Haycroft
- Department of Microbiology and Immunology, University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - James P Cooney
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Hariprasad Venugopal
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Li Lynn Tan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Matthew T O Neill
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Cody C Allison
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Deborah Cromer
- Kirby Institute, University of New South Wales, Kensington, NSW 2052, Australia
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Kensington, NSW 2052, Australia
| | - Richard A Bowen
- Laboratory of Animal Reproduction and Biotechnology, Colorado State University, Fort Collins, CO 80523, USA
| | - Amy W Chung
- Department of Microbiology and Immunology, University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | | | - Alisa Glukhova
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia; Drug Discovery Biology, Monash Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville VIC 3052, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3010, Australia; Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
| | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
154
|
Garrett ME, Galloway JG, Wolf C, Logue JK, Franko N, Chu HY, Matsen FA, Overbaugh J. Comprehensive characterization of the antibody responses to SARS-CoV-2 Spike protein after infection and/or vaccination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34642694 PMCID: PMC8509098 DOI: 10.1101/2021.10.05.463210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background: Control of the COVID-19 pandemic will rely on SARS-CoV-2 vaccine-elicited antibodies to protect against emerging and future variants; an understanding of the unique features of the humoral responses to infection and vaccination, including different vaccine platforms, is needed to achieve this goal. Methods: The epitopes and pathways of escape for Spike-specific antibodies in individuals with diverse infection and vaccination history were profiled using Phage-DMS. Principal component analysis was performed to identify regions of antibody binding along the Spike protein that differentiate the samples from one another. Within these epitope regions we determined potential escape mutations by comparing antibody binding of peptides containing wildtype residues versus peptides containing a mutant residue. Results: Individuals with mild infection had antibodies that bound to epitopes in the S2 subunit within the fusion peptide and heptad-repeat regions, whereas vaccinated individuals had antibodies that additionally bound to epitopes in the N- and C-terminal domains of the S1 subunit, a pattern that was also observed in individuals with severe disease due to infection. Epitope binding appeared to change over time after vaccination, but other covariates such as mRNA vaccine dose, mRNA vaccine type, and age did not affect antibody binding to these epitopes. Vaccination induced a relatively uniform escape profile across individuals for some epitopes, whereas there was much more variation in escape pathways in in mildly infected individuals. In the case of antibodies targeting the fusion peptide region, which was a common response to both infection and vaccination, the escape profile after infection was not altered by subsequent vaccination. Conclusions: The finding that SARS-CoV-2 mRNA vaccination resulted in binding to additional epitopes beyond what was seen after infection suggests protection could vary depending on the route of exposure to Spike antigen. The relatively conserved escape pathways to vaccine-induced antibodies relative to infection-induced antibodies suggests that if escape variants emerge, they may be readily selected for across vaccinated individuals. Given that the majority of people will be first exposed to Spike via vaccination and not infection, this work has implications for predicting the selection of immune escape variants at a population level.
Collapse
|
155
|
Du L, Yang Y, Zhang X. Neutralizing antibodies for the prevention and treatment of COVID-19. Cell Mol Immunol 2021; 18:2293-2306. [PMID: 34497376 PMCID: PMC8424621 DOI: 10.1038/s41423-021-00752-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) initiates the infection process by binding to the viral cellular receptor angiotensin-converting enzyme 2 through the receptor-binding domain (RBD) in the S1 subunit of the viral spike (S) protein. This event is followed by virus-cell membrane fusion mediated by the S2 subunit, which allows virus entry into the host cell. Therefore, the SARS-CoV-2 S protein is a key therapeutic target, and prevention and treatment of coronavirus disease 2019 (COVID-19) have focused on the development of neutralizing monoclonal antibodies (nAbs) that target this protein. In this review, we summarize the nAbs targeting SARS-CoV-2 proteins that have been developed to date, with a focus on the N-terminal domain and RBD of the S protein. We also describe the roles that binding affinity, neutralizing activity, and protection provided by these nAbs play in the prevention and treatment of COVID-19 and discuss the potential to improve nAb efficiency against multiple SARS-CoV-2 variants. This review provides important information for the development of effective nAbs with broad-spectrum activity against current and future SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA.
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Xiujuan Zhang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| |
Collapse
|
156
|
Braxton AM, Creisher PS, Ruiz-Bedoya CA, Mulka KR, Dhakal S, Ordonez AA, Beck SE, Jain SK, Villano JS. Hamsters as a Model of Severe Acute Respiratory Syndrome Coronavirus-2. Comp Med 2021; 71:398-410. [PMID: 34588095 PMCID: PMC8594257 DOI: 10.30802/aalas-cm-21-000036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/02/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), rapidly spread across the world in late 2019, leading to a pandemic. While SARS-CoV-2 infections predominately affect the respiratory system, severe infections can lead to renal and cardiac injury and even death. Due to its highly transmissible nature and severe health implications, animal models of SARS-CoV-2 are critical to developing novel therapeutics and preventatives. Syrian hamsters (Mesocricetus auratus) are an ideal animal model of SARS-CoV-2 infections because they recapitulate many aspects of human infections. After inoculation with SARS-CoV-2, hamsters become moribund, lose weight, and show varying degrees of respiratory disease, lethargy, and ruffled fur. Histopathologically, their pulmonary lesions are consistent with human infections including interstitial to broncho-interstitial pneumonia, alveolar hemorrhage and edema, and granulocyte infiltration. Similar to humans, the duration of clinical signs and pulmonary pathology are short lived with rapid recovery by 14 d after infection. Immunocompromised hamsters develop more severe infections and mortality. Preclinical studies in hamsters have shown efficacy of therapeutics, including convalescent serum treatment, and preventatives, including vaccination, in limiting or preventing clinical disease. Although hamster studies have contributed greatly to our understanding of the pathogenesis and progression of disease after SARS-CoV-2 infection, additional studies are required to better characterize the effects of age, sex, and virus variants on clinical outcomes in hamsters. This review aims to describe key findings from studies of hamsters infected with SARS-CoV-2 and to highlight areas that need further investigation.
Collapse
Key Words
- ace2, angiotensin-converting enzyme 2
- covid-19, coronavirus disease 2019
- ct, computed tomography
- dpi, days post inoculation
- 18f-fdg, fluorine-18-fluorodeoxyglucose
- 18f-fds, fluorine-18-fluorodeoxysorbitol
- ggo, ground glass opacity
- ifny, interferon gamma
- il, interleukin
- il2rg ko, interleukin 2 receptor gamma chain knockout
- in, intranasal
- mo, months
- oc, intraocular
- pfu, plaque-forming units
- rag2 ko, recombination activating gene 2 knockout
- sars-cov, severe acute respiratory syndrome
- sars-cov-2, severe acute respiratory syndrome coronavirus 2
- tcid50, 50% tissue culture infective dose
- tmprss2, transmembrane protease serine 2
- tnf, tumor necrosis factor
- wk, weeks
Collapse
Affiliation(s)
- Alicia M Braxton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Patrick S Creisher
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, Maryland
| | - Camilo A Ruiz-Bedoya
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Katie R Mulka
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Santosh Dhakal
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, Maryland
| | - Alvaro A Ordonez
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sarah E Beck
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sanjay K Jain
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jason S Villano
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
157
|
Sholukh AM, Fiore-Gartland A, Ford ES, Miner MD, Hou YJ, Tse LV, Kaiser H, Zhu H, Lu J, Madarampalli B, Park A, Lempp FA, St. Germain R, Bossard EL, Kee JJ, Diem K, Stuart AB, Rupert PB, Brock C, Buerger M, Doll MK, Randhawa AK, Stamatatos L, Strong RK, McLaughlin C, Huang ML, Jerome KR, Baric RS, Montefiori D, Corey L. Evaluation of Cell-Based and Surrogate SARS-CoV-2 Neutralization Assays. J Clin Microbiol 2021; 59:e0052721. [PMID: 34288726 PMCID: PMC8451402 DOI: 10.1128/jcm.00527-21] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022] Open
Abstract
Determinants of protective immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection require the development of well-standardized, reproducible antibody assays. This need has led to the emergence of a variety of neutralization assays. Head-to-head evaluation of different SARS-CoV-2 neutralization platforms could facilitate comparisons across studies and laboratories. Five neutralization assays were compared using 40 plasma samples from convalescent individuals with mild to moderate coronavirus disease 2019 (COVID-19): four cell-based systems using either live recombinant SARS-CoV-2 or pseudotyped viral particles created with lentivirus (LV) or vesicular stomatitis virus (VSV) packaging and one surrogate enzyme-linked immunosorbent assay (ELISA)-based test that measures inhibition of the spike protein receptor binding domain (RBD) binding its receptor human angiotensin converting enzyme 2 (hACE2). Vero cells, Vero E6 cells, HEK293T cells expressing hACE2, and TZM-bl cells expressing hACE2 and transmembrane serine protease 2 were tested. All cell-based assays showed 50% neutralizing dilution (ND50) geometric mean titers (GMTs) that were highly correlated (Pearson r = 0.81 to 0.89) and ranged within 3.4-fold. The live virus assay and LV pseudovirus assays with HEK293T/hACE2 cells showed very similar mean titers, 141 and 178, respectively. ND50 titers positively correlated with plasma IgG targeting SARS-CoV-2 spike protein and RBD (r = 0.63 to 0.89), but moderately correlated with nucleoprotein IgG (r = 0.46 to 0.73). ND80 GMTs mirrored ND50 data and showed similar correlation between assays and with IgG concentrations. The VSV pseudovirus assay and LV pseudovirus assay with HEK293T/hACE2 cells in low- and high-throughput versions were calibrated against the WHO SARS-CoV-2 IgG standard. High concordance between the outcomes of cell-based assays with live and pseudotyped virions enables valid cross-study comparison using these platforms.
Collapse
Affiliation(s)
- Anton M. Sholukh
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
| | - Andrew Fiore-Gartland
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
| | - Emily S. Ford
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Maurine D. Miner
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
| | - Yixuan J. Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Longping V. Tse
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Haiying Zhu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Joyce Lu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Bhanupriya Madarampalli
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Arnold Park
- Vir Biotechnology, San Francisco, California, USA
| | | | - Russell St. Germain
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
| | - Emily L. Bossard
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
| | - Jia Jin Kee
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
| | - Kurt Diem
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Andrew B. Stuart
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
| | - Peter B. Rupert
- Basic Sciences Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
| | - Chance Brock
- Basic Sciences Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
| | - Matthew Buerger
- Basic Sciences Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
| | - Margaret K. Doll
- Department of Population Health Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - April Kaur Randhawa
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
| | - Roland K. Strong
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
- Basic Sciences Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
| | - Colleen McLaughlin
- Department of Population Health Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Keith R. Jerome
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Lawrence Corey
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
158
|
Shook LL, Fallah PN, Silberman JN, Edlow AG. COVID-19 Vaccination in Pregnancy and Lactation: Current Research and Gaps in Understanding. Front Cell Infect Microbiol 2021; 11:735394. [PMID: 34604115 PMCID: PMC8481914 DOI: 10.3389/fcimb.2021.735394] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/31/2021] [Indexed: 01/21/2023] Open
Abstract
The COVID-19 pandemic has demonstrated the urgent need to develop vaccine strategies optimized for pregnant people and their newborns, as both populations are at risk of developing severe disease. Although not included in COVID-19 vaccine development trials, pregnant people have had access to these vaccines since their initial release in the US and abroad. The rapid development and distribution of novel COVID-19 vaccines to people at risk, including those who are pregnant and lactating, presents an unprecedented opportunity to further our understanding of vaccine-induced immunity in these populations. In this review, we aim to summarize the literature to date on COVID-19 vaccination in pregnancy and lactation and highlight opportunities for investigation that may inform future maternal vaccine development and implementation strategies.
Collapse
Affiliation(s)
- Lydia L. Shook
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, United States
| | - Parisa N. Fallah
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jason N. Silberman
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrea G. Edlow
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
159
|
Tong P, Gautam A, Windsor IW, Travers M, Chen Y, Garcia N, Whiteman NB, McKay LGA, Storm N, Malsick LE, Honko AN, Lelis FJN, Habibi S, Jenni S, Cai Y, Rennick LJ, Duprex WP, McCarthy KR, Lavine CL, Zuo T, Lin J, Zuiani A, Feldman J, MacDonald EA, Hauser BM, Griffths A, Seaman MS, Schmidt AG, Chen B, Neuberg D, Bajic G, Harrison SC, Wesemann DR. Memory B cell repertoire for recognition of evolving SARS-CoV-2 spike. Cell 2021; 184:4969-4980.e15. [PMID: 34332650 PMCID: PMC8299219 DOI: 10.1016/j.cell.2021.07.025] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/14/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022]
Abstract
Memory B cell reserves can generate protective antibodies against repeated SARS-CoV-2 infections, but with unknown reach from original infection to antigenically drifted variants. We charted memory B cell receptor-encoded antibodies from 19 COVID-19 convalescent subjects against SARS-CoV-2 spike (S) and found seven major antibody competition groups against epitopes recurrently targeted across individuals. Inclusion of published and newly determined structures of antibody-S complexes identified corresponding epitopic regions. Group assignment correlated with cross-CoV-reactivity breadth, neutralization potency, and convergent antibody signatures. Although emerging SARS-CoV-2 variants of concern escaped binding by many members of the groups associated with the most potent neutralizing activity, some antibodies in each of those groups retained affinity-suggesting that otherwise redundant components of a primary immune response are important for durable protection from evolving pathogens. Our results furnish a global atlas of S-specific memory B cell repertoires and illustrate properties driving viral escape and conferring robustness against emerging variants.
Collapse
Affiliation(s)
- Pei Tong
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Avneesh Gautam
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ian W Windsor
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Laboratory of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Meghan Travers
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yuezhou Chen
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas Garcia
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Noah B Whiteman
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lindsay G A McKay
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02115, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02115, USA
| | - Nadia Storm
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02115, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02115, USA
| | - Lauren E Malsick
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02115, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02115, USA
| | - Anna N Honko
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02115, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02115, USA
| | - Felipe J N Lelis
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shaghayegh Habibi
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yongfei Cai
- Laboratory of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Linda J Rennick
- The Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; The Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - W Paul Duprex
- The Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; The Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Kevin R McCarthy
- The Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; The Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Christy L Lavine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Teng Zuo
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Junrui Lin
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Adam Zuiani
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Elizabeth A MacDonald
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Blake M Hauser
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Anthony Griffths
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02115, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02115, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Aaron G Schmidt
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
| | - Bing Chen
- Laboratory of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
| | - Donna Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Goran Bajic
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Laboratory of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Laboratory of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Duane R Wesemann
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA.
| |
Collapse
|
160
|
Ullah I, Prévost J, Ladinsky MS, Stone H, Lu M, Anand SP, Beaudoin-Bussières G, Symmes K, Benlarbi M, Ding S, Gasser R, Fink C, Chen Y, Tauzin A, Goyette G, Bourassa C, Medjahed H, Mack M, Chung K, Wilen CB, Dekaban GA, Dikeakos JD, Bruce EA, Kaufmann DE, Stamatatos L, McGuire AT, Richard J, Pazgier M, Bjorkman PJ, Mothes W, Finzi A, Kumar P, Uchil PD. Live imaging of SARS-CoV-2 infection in mice reveals that neutralizing antibodies require Fc function for optimal efficacy. Immunity 2021; 54:2143-2158.e15. [PMID: 34453881 PMCID: PMC8372518 DOI: 10.1016/j.immuni.2021.08.015] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/27/2021] [Accepted: 08/11/2021] [Indexed: 12/29/2022]
Abstract
Neutralizing antibodies (NAbs) are effective in treating COVID-19, but the mechanism of immune protection is not fully understood. Here, we applied live bioluminescence imaging (BLI) to monitor the real-time effects of NAb treatment during prophylaxis and therapy of K18-hACE2 mice intranasally infected with SARS-CoV-2-nanoluciferase. Real-time imaging revealed that the virus spread sequentially from the nasal cavity to the lungs in mice and thereafter systemically to various organs including the brain, culminating in death. Highly potent NAbs from a COVID-19 convalescent subject prevented, and also effectively resolved, established infection when administered within three days. In addition to direct neutralization, depletion studies indicated that Fc effector interactions of NAbs with monocytes, neutrophils, and natural killer cells were required to effectively dampen inflammatory responses and limit immunopathology. Our study highlights that both Fab and Fc effector functions of NAbs are essential for optimal in vivo efficacy against SARS-CoV-2.
Collapse
Affiliation(s)
- Irfan Ullah
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Helen Stone
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Sai Priya Anand
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Kelly Symmes
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Corby Fink
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Yaozong Chen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | | | | | - Matthias Mack
- Universitätsklinikum Regensburg, Innere Medizin II - Nephrologie, Regensburg 93042, Germany
| | - Kunho Chung
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Craig B Wilen
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gregory A Dekaban
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5B7, Canada; Molecluar Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Emily A Bruce
- Division of Immunobiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405. USA
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Center, Seattle, WA 98195, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Center, Seattle, WA 98195, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
161
|
Kealy L, Good-Jacobson KL. Advances in understanding the formation and fate of B-cell memory in response to immunization or infection. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab018. [PMID: 36845573 PMCID: PMC8499879 DOI: 10.1093/oxfimm/iqab018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/06/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Immunological memory has the potential to provide lifelong protection against recurrent infections. As such, it has been crucial to the success of vaccines. Yet, the recent pandemic has illuminated key gaps in our knowledge related to the factors influencing effective memory formation and the inability to predict the longevity of immune protection. In recent decades, researchers have acquired a number of novel and powerful tools with which to study the factors underpinning humoral memory. These tools have been used to study the B-cell fate decisions that occur within the germinal centre (GC), a site where responding B cells undergo affinity maturation and are one of the major routes for memory B cell and high-affinity long-lived plasma cell formation. The advent of single-cell sequencing technology has provided an enhanced resolution for studying fate decisions within the GC and cutting-edge techniques have enabled researchers to model this reaction with more accuracy both in vitro and in silico. Moreover, modern approaches to studying memory B cells have allowed us to gain a better appreciation for the heterogeneity and adaptability of this vital class of B cells. Together, these studies have facilitated important breakthroughs in our understanding of how these systems operate to ensure a successful immune response. In this review, we describe recent advances in the field of GC and memory B-cell biology in order to provide insight into how humoral memory is formed, as well as the potential for generating lasting immunity to novel pathogens such as severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Liam Kealy
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia,Correspondence address. Department of Biochemistry and Molecular Biology, Monash University, Ground floor reception, 23 Innovation Walk (Bldg 77), Clayton, Victoria 3800 Australia. Tel: (+613) 990-29510; E-mail: ; Twitter: @KimLJacobson
| |
Collapse
|
162
|
Bégin P, Callum J, Jamula E, Cook R, Heddle NM, Tinmouth A, Zeller MP, Beaudoin-Bussières G, Amorim L, Bazin R, Loftsgard KC, Carl R, Chassé M, Cushing MM, Daneman N, Devine DV, Dumaresq J, Fergusson DA, Gabe C, Glesby MJ, Li N, Liu Y, McGeer A, Robitaille N, Sachais BS, Scales DC, Schwartz L, Shehata N, Turgeon AF, Wood H, Zarychanski R, Finzi A, Arnold DM. Convalescent plasma for hospitalized patients with COVID-19: an open-label, randomized controlled trial. Nat Med 2021; 27:2012-2024. [PMID: 34504336 PMCID: PMC8604729 DOI: 10.1038/s41591-021-01488-2] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022]
Abstract
The efficacy of convalescent plasma for coronavirus disease 2019 (COVID-19) is unclear. Although most randomized controlled trials have shown negative results, uncontrolled studies have suggested that the antibody content could influence patient outcomes. We conducted an open-label, randomized controlled trial of convalescent plasma for adults with COVID-19 receiving oxygen within 12 d of respiratory symptom onset (NCT04348656). Patients were allocated 2:1 to 500 ml of convalescent plasma or standard of care. The composite primary outcome was intubation or death by 30 d. Exploratory analyses of the effect of convalescent plasma antibodies on the primary outcome was assessed by logistic regression. The trial was terminated at 78% of planned enrollment after meeting stopping criteria for futility. In total, 940 patients were randomized, and 921 patients were included in the intention-to-treat analysis. Intubation or death occurred in 199/614 (32.4%) patients in the convalescent plasma arm and 86/307 (28.0%) patients in the standard of care arm—relative risk (RR) = 1.16 (95% confidence interval (CI) 0.94–1.43, P = 0.18). Patients in the convalescent plasma arm had more serious adverse events (33.4% versus 26.4%; RR = 1.27, 95% CI 1.02–1.57, P = 0.034). The antibody content significantly modulated the therapeutic effect of convalescent plasma. In multivariate analysis, each standardized log increase in neutralization or antibody-dependent cellular cytotoxicity independently reduced the potential harmful effect of plasma (odds ratio (OR) = 0.74, 95% CI 0.57–0.95 and OR = 0.66, 95% CI 0.50–0.87, respectively), whereas IgG against the full transmembrane spike protein increased it (OR = 1.53, 95% CI 1.14–2.05). Convalescent plasma did not reduce the risk of intubation or death at 30 d in hospitalized patients with COVID-19. Transfusion of convalescent plasma with unfavorable antibody profiles could be associated with worse clinical outcomes compared to standard care. A randomized trial in patients hospitalized with COVID-19 showed no benefit and potentially increased harm associated with the use of convalescent plasma, with subgroup analyses suggesting that the antibody profile in donor plasma is critical in determining clinical outcomes.
Collapse
Affiliation(s)
- Philippe Bégin
- Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec, Canada. .,Department of Medicine, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
| | - Jeannie Callum
- Department of Pathology and Molecular Medicine, Kingston Health Sciences Centre and Queen's University, Kingston, Ontario, Canada. .,Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada. .,Canadian Blood Services, Ottawa, Ontario, Canada.
| | - Erin Jamula
- McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - Richard Cook
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Nancy M Heddle
- Canadian Blood Services, Ottawa, Ontario, Canada.,McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada.,Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Alan Tinmouth
- Canadian Blood Services, Ottawa, Ontario, Canada.,Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Hospital Centre for Transfusion Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Michelle P Zeller
- Canadian Blood Services, Ottawa, Ontario, Canada.,McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada.,Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Guillaume Beaudoin-Bussières
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada.,CHUM Research Center, Montreal, Quebec, Canada
| | - Luiz Amorim
- Hemorio, Hospital and Regional Blood Center, Rio de Janeiro, Brazil
| | - Renée Bazin
- Héma-Québec, Medical Affairs and Innovation, Quebec City, Quebec, Canada
| | | | - Richard Carl
- Patient representative, Montreal, Quebec, Canada
| | - Michaël Chassé
- Department of Medicine, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Innovation Hub, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Melissa M Cushing
- Transfusion Medicine and Cellular Therapy, New York-Presbyterian, New York, NY, USA.,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Nick Daneman
- Department of Medicine, Division of Infectious Diseases, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Dana V Devine
- Canadian Blood Services, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeannot Dumaresq
- Département de médecine, CISSS de Chaudière-Appalaches, Lévis, Quebec, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Dean A Fergusson
- Canadian Blood Services, Ottawa, Ontario, Canada.,Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Caroline Gabe
- McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - Marshall J Glesby
- Division of Infectious Diseases, Weill Cornell Medical College, New York, NY, USA
| | - Na Li
- McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada.,Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada
| | - Yang Liu
- McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - Allison McGeer
- Department of Microbiology, Sinai Health System, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology and Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Nancy Robitaille
- Héma-Québec, Montreal, Quebec, Canada.,Division of Hematology and Oncology, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec, Canada.,Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada
| | - Bruce S Sachais
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.,New York Blood Center Enterprises, New York, NY, USA
| | - Damon C Scales
- Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Medicine, Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lisa Schwartz
- Department of Health Research Methods, Evidence & Impact, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Nadine Shehata
- Canadian Blood Services, Ottawa, Ontario, Canada.,Departments of Medicine, Laboratory Medicine and Pathobiology, Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Ontario, Canada.,Division of Hematology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Alexis F Turgeon
- Department of Anesthesiology and Critical Care Medicine, Division of Critical Care Medicine, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada.,CHU de Québec-Université Laval Research Centre, Population Health and Optimal Health Practices Research Unit, Trauma-Emergency-Critical Care Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Heidi Wood
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Ryan Zarychanski
- Department of Internal Medicine, Sections of Hematology/Medical Oncology and Critical Care, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrés Finzi
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada.,CHUM Research Center, Montreal, Quebec, Canada
| | | | - Donald M Arnold
- McMaster Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada. .,Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
163
|
Pinto D, Sauer MM, Czudnochowski N, Low JS, Tortorici MA, Housley MP, Noack J, Walls AC, Bowen JE, Guarino B, Rosen LE, di Iulio J, Jerak J, Kaiser H, Islam S, Jaconi S, Sprugasci N, Culap K, Abdelnabi R, Foo C, Coelmont L, Bartha I, Bianchi S, Silacci-Fregni C, Bassi J, Marzi R, Vetti E, Cassotta A, Ceschi A, Ferrari P, Cippà PE, Giannini O, Ceruti S, Garzoni C, Riva A, Benigni F, Cameroni E, Piccoli L, Pizzuto MS, Smithey M, Hong D, Telenti A, Lempp FA, Neyts J, Havenar-Daughton C, Lanzavecchia A, Sallusto F, Snell G, Virgin HW, Beltramello M, Corti D, Veesler D. Broad betacoronavirus neutralization by a stem helix-specific human antibody. Science 2021; 373:1109-1116. [PMID: 34344823 PMCID: PMC9268357 DOI: 10.1126/science.abj3321] [Citation(s) in RCA: 270] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
The spillovers of betacoronaviruses in humans and the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants highlight the need for broad coronavirus countermeasures. We describe five monoclonal antibodies (mAbs) cross-reacting with the stem helix of multiple betacoronavirus spike glycoproteins isolated from COVID-19 convalescent individuals. Using structural and functional studies, we show that the mAb with the greatest breadth (S2P6) neutralizes pseudotyped viruses from three different subgenera through the inhibition of membrane fusion, and we delineate the molecular basis for its cross-reactivity. S2P6 reduces viral burden in hamsters challenged with SARS-CoV-2 through viral neutralization and Fc-mediated effector functions. Stem helix antibodies are rare, oftentimes of narrow specificity, and can acquire neutralization breadth through somatic mutations. These data provide a framework for structure-guided design of pan-betacoronavirus vaccines eliciting broad protection.
Collapse
Affiliation(s)
- Dora Pinto
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Maximilian M. Sauer
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Jun Siong Low
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | | | | | - Julia Noack
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - John E. Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Barbara Guarino
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | | | - Josipa Jerak
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | | | | | - Stefano Jaconi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Nicole Sprugasci
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Katja Culap
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Rana Abdelnabi
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, 3000 Leuven, Belgium
| | - Caroline Foo
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, 3000 Leuven, Belgium
| | - Lotte Coelmont
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, 3000 Leuven, Belgium
| | - Istvan Bartha
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Siro Bianchi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | - Jessica Bassi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Roberta Marzi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Eneida Vetti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Alessandro Ceschi
- Clinical Trial Unit, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
- Division of Clinical Pharmacology and Toxicology, Institute of Pharmacological Sciences of Southern Switzerland, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland
| | - Paolo Ferrari
- Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland
- Department of Medicine, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Pietro E. Cippà
- Department of Medicine, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland
| | - Olivier Giannini
- Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland
- Department of Medicine, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| | - Samuele Ceruti
- Intensive Care Unit, Clinica Luganese Moncucco, 6900 Lugano, Switzerland
| | - Christian Garzoni
- Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, 6900 Lugano, Switzerland
| | - Agostino Riva
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, 20157 Milan, Italy
| | - Fabio Benigni
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Elisabetta Cameroni
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Luca Piccoli
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Matteo S. Pizzuto
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | - David Hong
- Vir Biotechnology, San Francisco, CA 94158, USA
| | | | | | - Johan Neyts
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, 3000 Leuven, Belgium
| | | | - Antonio Lanzavecchia
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Herbert W. Virgin
- Vir Biotechnology, San Francisco, CA 94158, USA
- UT Southwestern Medical Center, Dallas, TX 75390, USA
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Martina Beltramello
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
164
|
Caniels TG, Bontjer I, van der Straten K, Poniman M, Burger JA, Appelman B, Lavell HAA, Oomen M, Godeke GJ, Valle C, Mögling R, van Willigen HDG, Wynberg E, Schinkel M, van Vught LA, Guerra D, Snitselaar JL, Chaturbhuj DN, Cuella Martin I, Moore JP, de Jong MD, Reusken C, Sikkens JJ, Bomers MK, de Bree GJ, van Gils MJ, Eggink D, Sanders RW. Emerging SARS-CoV-2 variants of concern evade humoral immune responses from infection and vaccination. SCIENCE ADVANCES 2021; 7:eabj5365. [PMID: 34516917 PMCID: PMC8442901 DOI: 10.1126/sciadv.abj5365] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/13/2021] [Indexed: 05/21/2023]
Abstract
Emerging SARS-CoV-2 variants of concern (VOCs) pose a threat to human immunity induced by natural infection and vaccination. We assessed the recognition of three VOCs (B.1.1.7, B.1.351, and P.1) in cohorts of COVID-19 convalescent patients (n = 69) and Pfizer-BioNTech vaccine recipients (n = 50). Spike binding and neutralization against all three VOCs were substantially reduced in most individuals, with the largest four- to sevenfold reduction in neutralization being observed against B.1.351. While hospitalized patients with COVID-19 and vaccinees maintained sufficient neutralizing titers against all three VOCs, 39% of nonhospitalized patients exhibited no detectable neutralization against B.1.351. Moreover, monoclonal neutralizing antibodies show sharp reductions in their binding kinetics and neutralizing potential to B.1.351 and P.1 but not to B.1.1.7. These data have implications for the degree to which pre-existing immunity can protect against subsequent infection with VOCs and informs policy makers of susceptibility to globally circulating SARS-CoV-2 VOCs.
Collapse
Affiliation(s)
- Tom G. Caniels
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Ilja Bontjer
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Karlijn van der Straten
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Meliawati Poniman
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Judith A. Burger
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Brent Appelman
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - H. A. Ayesha Lavell
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Melissa Oomen
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Gert-Jan Godeke
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Coralie Valle
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Ramona Mögling
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Hugo D. G. van Willigen
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Elke Wynberg
- Department of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Public Health Service of Amsterdam, Amsterdam, Netherlands
| | - Michiel Schinkel
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Lonneke A. van Vught
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Denise Guerra
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Jonne L. Snitselaar
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Devidas N. Chaturbhuj
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Isabel Cuella Martin
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Amsterdam UMC COVID-19 S3/HCW study group
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
- Department of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Public Health Service of Amsterdam, Amsterdam, Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Menno D. de Jong
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Chantal Reusken
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Jonne J. Sikkens
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Marije K. Bomers
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Godelieve J. de Bree
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Marit J. van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Dirk Eggink
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
165
|
Tortorici MA, Czudnochowski N, Starr TN, Marzi R, Walls AC, Zatta F, Bowen JE, Jaconi S, Di Iulio J, Wang Z, De Marco A, Zepeda SK, Pinto D, Liu Z, Beltramello M, Bartha I, Housley MP, Lempp FA, Rosen LE, Dellota E, Kaiser H, Montiel-Ruiz M, Zhou J, Addetia A, Guarino B, Culap K, Sprugasci N, Saliba C, Vetti E, Giacchetto-Sasselli I, Fregni CS, Abdelnabi R, Foo SYC, Havenar-Daughton C, Schmid MA, Benigni F, Cameroni E, Neyts J, Telenti A, Virgin HW, Whelan SPJ, Snell G, Bloom JD, Corti D, Veesler D, Pizzuto MS. Broad sarbecovirus neutralization by a human monoclonal antibody. Nature 2021; 597:103-108. [PMID: 34280951 PMCID: PMC9341430 DOI: 10.1038/s41586-021-03817-4] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023]
Abstract
The recent emergence of SARS-CoV-2 variants of concern1-10 and the recurrent spillovers of coronaviruses11,12 into the human population highlight the need for broadly neutralizing antibodies that are not affected by the ongoing antigenic drift and that can prevent or treat future zoonotic infections. Here we describe a human monoclonal antibody designated S2X259, which recognizes a highly conserved cryptic epitope of the receptor-binding domain and cross-reacts with spikes from all clades of sarbecovirus. S2X259 broadly neutralizes spike-mediated cell entry of SARS-CoV-2, including variants of concern (B.1.1.7, B.1.351, P.1, and B.1.427/B.1.429), as well as a wide spectrum of human and potentially zoonotic sarbecoviruses through inhibition of angiotensin-converting enzyme 2 (ACE2) binding to the receptor-binding domain. Furthermore, deep-mutational scanning and in vitro escape selection experiments demonstrate that S2X259 possesses an escape profile that is limited to a single substitution, G504D. We show that prophylactic and therapeutic administration of S2X259 protects Syrian hamsters (Mesocricetus auratus) against challenge with the prototypic SARS-CoV-2 and the B.1.351 variant of concern, which suggests that this monoclonal antibody is a promising candidate for the prevention and treatment of emergent variants and zoonotic infections. Our data reveal a key antigenic site that is targeted by broadly neutralizing antibodies and will guide the design of vaccines that are effective against all sarbecoviruses.
Collapse
Affiliation(s)
- M Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institut Pasteur and CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | | | - Tyler N Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Roberta Marzi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Fabrizia Zatta
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Stefano Jaconi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | - Zhaoqian Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Anna De Marco
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Samantha K Zepeda
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Dora Pinto
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Martina Beltramello
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Istvan Bartha
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | | | | | | | | | | | - Jiayi Zhou
- Vir Biotechnology, San Francisco, CA, USA
| | - Amin Addetia
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Katja Culap
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Nicole Sprugasci
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Christian Saliba
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Eneida Vetti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | | | - Rana Abdelnabi
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Shi-Yan Caroline Foo
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | | | - Michael A Schmid
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Fabio Benigni
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Elisabetta Cameroni
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Johan Neyts
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | | | | | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | | | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland.
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|
166
|
Jing W, Procko E. ACE2-based decoy receptors for SARS coronavirus 2. Proteins 2021; 89:1065-1078. [PMID: 33973262 PMCID: PMC8242511 DOI: 10.1002/prot.26140] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/16/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
SARS coronavirus 2 is neutralized by proteins that block receptor-binding sites on spikes that project from the viral envelope. In particular, substantial research investment has advanced monoclonal antibody therapies to the clinic where they have shown partial efficacy in reducing viral burden and hospitalization. An alternative is to use the host entry receptor, angiotensin-converting enzyme 2 (ACE2), as a soluble decoy that broadly blocks SARS-associated coronaviruses with limited potential for viral escape. Here, we summarize efforts to engineer higher affinity variants of soluble ACE2 that rival the potency of affinity-matured antibodies. Strategies have also been used to increase the valency of ACE2 decoys for avid spike interactions and to improve pharmacokinetics via IgG fusions. Finally, the intrinsic catalytic activity of ACE2 for the turnover of the vasoconstrictor angiotensin II may directly address COVID-19 symptoms and protect against lung and cardiovascular injury, conferring dual mechanisms of action unachievable by monoclonal antibodies. Soluble ACE2 derivatives therefore have the potential to be next generation therapeutics for addressing the immediate needs of the current pandemic and possible future outbreaks.
Collapse
Affiliation(s)
- Wenyang Jing
- Center for Biophysics and Quantitative BiologyUniversity of IllinoisUrbanaIllinoisUSA
| | - Erik Procko
- Center for Biophysics and Quantitative BiologyUniversity of IllinoisUrbanaIllinoisUSA
- Department of Biochemistry and Cancer Center at IllinoisUniversity of IllinoisUrbanaIllinoisUSA
| |
Collapse
|
167
|
Starr TN, Czudnochowski N, Liu Z, Zatta F, Park YJ, Addetia A, Pinto D, Beltramello M, Hernandez P, Greaney AJ, Marzi R, Glass WG, Zhang I, Dingens AS, Bowen JE, Tortorici MA, Walls AC, Wojcechowskyj JA, De Marco A, Rosen LE, Zhou J, Montiel-Ruiz M, Kaiser H, Dillen JR, Tucker H, Bassi J, Silacci-Fregni C, Housley MP, di Iulio J, Lombardo G, Agostini M, Sprugasci N, Culap K, Jaconi S, Meury M, Dellota E, Abdelnabi R, Foo SYC, Cameroni E, Stumpf S, Croll TI, Nix JC, Havenar-Daughton C, Piccoli L, Benigni F, Neyts J, Telenti A, Lempp FA, Pizzuto MS, Chodera JD, Hebner CM, Virgin HW, Whelan SPJ, Veesler D, Corti D, Bloom JD, Snell G. SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature 2021; 597:97-102. [PMID: 34261126 PMCID: PMC9282883 DOI: 10.1038/s41586-021-03807-6] [Citation(s) in RCA: 321] [Impact Index Per Article: 107.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
An ideal therapeutic anti-SARS-CoV-2 antibody would resist viral escape1-3, have activity against diverse sarbecoviruses4-7, and be highly protective through viral neutralization8-11 and effector functions12,13. Understanding how these properties relate to each other and vary across epitopes would aid the development of therapeutic antibodies and guide vaccine design. Here we comprehensively characterize escape, breadth and potency across a panel of SARS-CoV-2 antibodies targeting the receptor-binding domain (RBD). Despite a trade-off between in vitro neutralization potency and breadth of sarbecovirus binding, we identify neutralizing antibodies with exceptional sarbecovirus breadth and a corresponding resistance to SARS-CoV-2 escape. One of these antibodies, S2H97, binds with high affinity across all sarbecovirus clades to a cryptic epitope and prophylactically protects hamsters from viral challenge. Antibodies that target the angiotensin-converting enzyme 2 (ACE2) receptor-binding motif (RBM) typically have poor breadth and are readily escaped by mutations despite high neutralization potency. Nevertheless, we also characterize a potent RBM antibody (S2E128) with breadth across sarbecoviruses related to SARS-CoV-2 and a high barrier to viral escape. These data highlight principles underlying variation in escape, breadth and potency among antibodies that target the RBD, and identify epitopes and features to prioritize for therapeutic development against the current and potential future pandemics.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antibody Affinity
- Broadly Neutralizing Antibodies/chemistry
- Broadly Neutralizing Antibodies/immunology
- COVID-19/immunology
- COVID-19/virology
- COVID-19 Vaccines/chemistry
- COVID-19 Vaccines/immunology
- Cell Line
- Cricetinae
- Cross Reactions/immunology
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Female
- Humans
- Immune Evasion/genetics
- Immune Evasion/immunology
- Male
- Mesocricetus
- Middle Aged
- Models, Molecular
- SARS-CoV-2/chemistry
- SARS-CoV-2/classification
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Vaccinology
- COVID-19 Drug Treatment
Collapse
Affiliation(s)
- Tyler N Starr
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Fabrizia Zatta
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Amin Addetia
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Dora Pinto
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Martina Beltramello
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | - Allison J Greaney
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Roberta Marzi
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - William G Glass
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ivy Zhang
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Adam S Dingens
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Anna De Marco
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | - Jiayi Zhou
- Vir Biotechnology, San Francisco, CA, USA
| | | | | | | | | | - Jessica Bassi
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | | | | | - Gloria Lombardo
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | - Nicole Sprugasci
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Katja Culap
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Stefano Jaconi
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | | | - Rana Abdelnabi
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Shi-Yan Caroline Foo
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Elisabetta Cameroni
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Spencer Stumpf
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Tristan I Croll
- Cambridge Institute for Medical Research, Department of Haematology, University of Cambridge, Cambridge, UK
| | - Jay C Nix
- Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Luca Piccoli
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Fabio Benigni
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Johan Neyts
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | | | | | - Matteo S Pizzuto
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - John D Chodera
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Herbert W Virgin
- Vir Biotechnology, San Francisco, CA, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Davide Corti
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland.
| | - Jesse D Bloom
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
| | | |
Collapse
|
168
|
Dhakal S, Ruiz-Bedoya CA, Zhou R, Creisher PS, Villano JS, Littlefield K, Ruelas Castillo J, Marinho P, Jedlicka AE, Ordonez AA, Bahr M, Majewska N, Betenbaugh MJ, Flavahan K, Mueller ARL, Looney MM, Quijada D, Mota F, Beck SE, Brockhurst J, Braxton AM, Castell N, Stover M, D’Alessio FR, Metcalf Pate KA, Karakousis PC, Mankowski JL, Pekosz A, Jain SK, Klein SL. Sex Differences in Lung Imaging and SARS-CoV-2 Antibody Responses in a COVID-19 Golden Syrian Hamster Model. mBio 2021; 12:e0097421. [PMID: 34253053 PMCID: PMC8406232 DOI: 10.1128/mbio.00974-21] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
In the coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), more severe outcomes are reported in males than in females, including hospitalizations and deaths. Animal models can provide an opportunity to mechanistically interrogate causes of sex differences in the pathogenesis of SARS-CoV-2. Adult male and female golden Syrian hamsters (8 to 10 weeks of age) were inoculated intranasally with 105 50% tissue culture infective dose (TCID50) of SARS-CoV-2/USA-WA1/2020 and euthanized at several time points during the acute (i.e., virus actively replicating) and recovery (i.e., after the infectious virus has been cleared) phases of infection. There was no mortality, but infected male hamsters experienced greater morbidity, losing a greater percentage of body mass, developed more extensive pneumonia as noted on chest computed tomography, and recovered more slowly than females. Treatment of male hamsters with estradiol did not alter pulmonary damage. Virus titers in respiratory tissues, including nasal turbinates, trachea, and lungs, and pulmonary cytokine concentrations, including interferon-β (IFN-β) and tumor necrosis factor-α (TNF-α), were comparable between the sexes. However, during the recovery phase of infection, females mounted 2-fold greater IgM, IgG, and IgA responses against the receptor-binding domain of the spike protein (S-RBD) in both plasma and respiratory tissues. Female hamsters also had significantly greater IgG antibodies against whole-inactivated SARS-CoV-2 and mutant S-RBDs as well as virus-neutralizing antibodies in plasma. The development of an animal model to study COVID-19 sex differences will allow for a greater mechanistic understanding of the SARS-CoV-2-associated sex differences seen in the human population. IMPORTANCE Men experience more severe outcomes from coronavirus disease 2019 (COVID-19) than women. Golden Syrian hamsters were used to explore sex differences in the pathogenesis of a human isolate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). After inoculation, male hamsters experienced greater sickness, developed more severe lung pathology, and recovered more slowly than females. Sex differences in disease could not be reversed by estradiol treatment in males and were not explained by either virus replication kinetics or the concentrations of inflammatory cytokines in the lungs. During the recovery period, antiviral antibody responses in the respiratory tract and plasma, including to newly emerging SARS-CoV-2 variants, were greater in female than in male hamsters. Greater lung pathology during the acute phase combined with lower antiviral antibody responses during the recovery phase of infection in males than in females illustrate the utility of golden Syrian hamsters as a model to explore sex differences in the pathogenesis of SARS-CoV-2 and vaccine-induced immunity and protection.
Collapse
Affiliation(s)
- Santosh Dhakal
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Camilo A. Ruiz-Bedoya
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ruifeng Zhou
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Patrick S. Creisher
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jason S. Villano
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Kirsten Littlefield
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Paula Marinho
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Anne E. Jedlicka
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Alvaro A. Ordonez
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Melissa Bahr
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natalia Majewska
- Advanced Mammalian Biomanufacturing Innovation Center, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michael J. Betenbaugh
- Advanced Mammalian Biomanufacturing Innovation Center, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kelly Flavahan
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alice R. L. Mueller
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Monika M. Looney
- Department of Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Darla Quijada
- Department of Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Filipa Mota
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sarah E. Beck
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jacqueline Brockhurst
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Alicia M. Braxton
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Natalie Castell
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Mitchel Stover
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Franco R. D’Alessio
- Department of Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Kelly A. Metcalf Pate
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Petros C. Karakousis
- Department of Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Joseph L. Mankowski
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sanjay K. Jain
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sabra L. Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
169
|
Amanat F, Strohmeier S, Lee WH, Bangaru S, Ward AB, Coughlan L, Krammer F. Murine Monoclonal Antibodies against the Receptor Binding Domain of SARS-CoV-2 Neutralize Authentic Wild-Type SARS-CoV-2 as Well as B.1.1.7 and B.1.351 Viruses and Protect In Vivo in a Mouse Model in a Neutralization-Dependent Manner. mBio 2021; 12:e0100221. [PMID: 34311574 PMCID: PMC8406178 DOI: 10.1128/mbio.01002-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022] Open
Abstract
After first emerging in late 2019 in China, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has since caused a pandemic leading to millions of infections and deaths worldwide. Vaccines have been developed and authorized, but the supply of these vaccines is currently limited. With new variants of the virus now emerging and spreading globally, it is essential to develop therapeutics that are broadly protective and bind conserved epitopes in the receptor binding domain (RBD) or the full-length spike protein of SARS-CoV-2. In this study, we generated mouse monoclonal antibodies (MAbs) against different epitopes on the RBD and assessed binding and neutralization of authentic SARS-CoV-2. We demonstrate that antibodies with neutralizing activity, but not nonneutralizing antibodies, lower viral titers in the lungs when administered in a prophylactic setting in vivo in a mouse challenge model. In addition, most of the MAbs cross-neutralize the B.1.351 as well as the B.1.1.7 variant in vitro. IMPORTANCE Cross-neutralization of SARS-CoV-2 variants by RBD-targeting antibodies is still not well understood, and very little is known about the potential protective effect of nonneutralizing antibodies in vivo. Using a panel of mouse monoclonal antibodies, we investigate both of these points.
Collapse
Affiliation(s)
- Fatima Amanat
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shirin Strohmeier
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Sandhya Bangaru
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Lynda Coughlan
- University of Maryland School of Medicine, Maryland, USA
| | - Florian Krammer
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
170
|
Li D, Sempowski GD, Saunders KO, Acharya P, Haynes BF. SARS-CoV-2 Neutralizing Antibodies for COVID-19 Prevention and Treatment. Annu Rev Med 2021; 73:1-16. [PMID: 34428080 DOI: 10.1146/annurev-med-042420-113838] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prophylactic and therapeutic drugs are urgently needed to combat coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Over the past year, SARS-CoV-2 neutralizing antibodies have been developed for preventive or therapeutic uses. While neutralizing antibodies target the spike protein, their neutralization potency and breadth vary according to recognition epitopes. Several potent SARS-CoV-2 antibodies have shown degrees of success in preclinical or clinical trials, and the US Food and Drug Administration has issued emergency use authorization for two neutralizing antibody cocktails. Nevertheless, antibody therapy for SARS-CoV-2 still faces potential challenges, including emerging viral variants of concern that have antibody-escape mutations and the potential for antibody-mediated enhancement of infection or inflammation. This review summarizes representative SARS-CoV-2 neutralizing antibodies that have been reported and discusses prospects and challenges for the development of the next generation of COVID-19 preventive or therapeutic antibodies. Expected final online publication date for the Annual Review of Medicine, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Dapeng Li
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA; .,Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA; .,Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA.,Department of Pathology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA; .,Department of Surgery, Duke University School of Medicine, Durham, North Carolina 27710, USA.,Department of Immunology, Duke University School of Medicine, Durham, North Carolina 27710, USA.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA; .,Department of Surgery, Duke University School of Medicine, Durham, North Carolina 27710, USA.,Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA; .,Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA.,Department of Immunology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
171
|
Ryu DK, Song R, Kim M, Kim YI, Kim C, Kim JI, Kwon KS, Tijsma AS, Nuijten PM, van Baalen CA, Hermanus T, Kgagudi P, Moyo-Gwete T, Moore PL, Choi YK, Lee SY. Therapeutic effect of CT-P59 against SARS-CoV-2 South African variant. Biochem Biophys Res Commun 2021; 566:135-140. [PMID: 34119826 PMCID: PMC8180667 DOI: 10.1016/j.bbrc.2021.06.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022]
Abstract
The global circulation of newly emerging variants of SARS-CoV-2 is a new threat to public health due to their increased transmissibility and immune evasion. Moreover, currently available vaccines and therapeutic antibodies were shown to be less effective against new variants, in particular, the South African (SA) variant, termed 501Y.V2 or B.1.351. To assess the efficacy of the CT-P59 monoclonal antibody against the SA variant, we sought to perform as in vitro binding and neutralization assays, and in vivo animal studies. CT-P59 neutralized B.1.1.7 variant to a similar extent as to wild type virus. CT-P59 showed reduced binding affinity against a RBD (receptor binding domain) triple mutant containing mutations defining B.1.351 (K417N/E484K/N501Y) also showed reduced potency against the SA variant in live virus and pseudovirus neutralization assay systems. However, in vivo ferret challenge studies demonstrated that a therapeutic dosage of CT-P59 was able to decrease B.1.351 viral load in the upper and lower respiratory tracts, comparable to that observed for the wild type virus. Overall, although CT-P59 showed reduced in vitro neutralizing activity against the SA variant, sufficient antiviral effect in B.1.351-infected animals was confirmed with a clinical dosage of CT-P59, suggesting that CT-P59 has therapeutic potential for COVID-19 patients infected with SA variant.
Collapse
Affiliation(s)
- Dong-Kyun Ryu
- Biotechnology Research Institute, Celltrion Inc., Incheon, Republic of Korea
| | - Rina Song
- Biotechnology Research Institute, Celltrion Inc., Incheon, Republic of Korea
| | - Minsoo Kim
- Biotechnology Research Institute, Celltrion Inc., Incheon, Republic of Korea
| | - Young-Il Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Cheolmin Kim
- Biotechnology Research Institute, Celltrion Inc., Incheon, Republic of Korea
| | - Jong-In Kim
- Biotechnology Research Institute, Celltrion Inc., Incheon, Republic of Korea
| | - Ki-Sung Kwon
- Biotechnology Research Institute, Celltrion Inc., Incheon, Republic of Korea
| | | | | | | | - Tandile Hermanus
- National Institute for Communicable Disease, Johannesburg of the National Health Laboratory Services, South Africa
| | - Prudence Kgagudi
- National Institute for Communicable Disease, Johannesburg of the National Health Laboratory Services, South Africa
| | - Thandeka Moyo-Gwete
- National Institute for Communicable Disease, Johannesburg of the National Health Laboratory Services, South Africa
| | - Penny L Moore
- National Institute for Communicable Disease, Johannesburg of the National Health Laboratory Services, South Africa
| | - Young Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Soo-Young Lee
- Biotechnology Research Institute, Celltrion Inc., Incheon, Republic of Korea.
| |
Collapse
|
172
|
van Doremalen N, Purushotham JN, Schulz JE, Holbrook MG, Bushmaker T, Carmody A, Port JR, Yinda CK, Okumura A, Saturday G, Amanat F, Krammer F, Hanley PW, Smith BJ, Lovaglio J, Anzick SL, Barbian K, Martens C, Gilbert SC, Lambe T, Munster VJ. Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces viral shedding after SARS-CoV-2 D614G challenge in preclinical models. Sci Transl Med 2021; 13:eabh0755. [PMID: 34315826 PMCID: PMC9267380 DOI: 10.1126/scitranslmed.abh0755] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022]
Abstract
ChAdOx1 nCoV-19/AZD1222 is an approved adenovirus-based vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) currently being deployed globally. Previous studies in rhesus macaques revealed that intramuscular vaccination with ChAdOx1 nCoV-19/AZD1222 provided protection against pneumonia but did not reduce shedding of SARS-CoV-2 from the upper respiratory tract. Here, we investigated whether intranasally administered ChAdOx1 nCoV-19 reduces detection of virus in nasal swabs after challenging vaccinated macaques and hamsters with SARS-CoV-2 carrying a D614G mutation in the spike protein. Viral loads in swabs obtained from intranasally vaccinated hamsters were decreased compared to control hamsters, and no viral RNA or infectious virus was found in lung tissue after a direct challenge or after direct contact with infected hamsters. Intranasal vaccination of rhesus macaques resulted in reduced virus concentrations in nasal swabs and a reduction in viral loads in bronchoalveolar lavage and lower respiratory tract tissue. Intranasal vaccination with ChAdOx1 nCoV-19/AZD1222 reduced virus concentrations in nasal swabs in two different SARS-CoV-2 animal models, warranting further investigation as a potential vaccination route for COVID-19 vaccines.
Collapse
Affiliation(s)
- Neeltje van Doremalen
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Jyothi N Purushotham
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Jonathan E Schulz
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Myndi G Holbrook
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Trenton Bushmaker
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Aaron Carmody
- Research Technologies Branch, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT 59840, USA
| | - Julia R Port
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Claude K Yinda
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Atsushi Okumura
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patrick W Hanley
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Brian J Smith
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Sarah L Anzick
- Research Technologies Branch, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT 59840, USA
| | - Kent Barbian
- Research Technologies Branch, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT 59840, USA
| | - Craig Martens
- Research Technologies Branch, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT 59840, USA
| | - Sarah C Gilbert
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Teresa Lambe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Vincent J Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| |
Collapse
|
173
|
Li D, Edwards RJ, Manne K, Martinez DR, Schäfer A, Alam SM, Wiehe K, Lu X, Parks R, Sutherland LL, Oguin TH, McDanal C, Perez LG, Mansouri K, Gobeil SMC, Janowska K, Stalls V, Kopp M, Cai F, Lee E, Foulger A, Hernandez GE, Sanzone A, Tilahun K, Jiang C, Tse LV, Bock KW, Minai M, Nagata BM, Cronin K, Gee-Lai V, Deyton M, Barr M, Von Holle T, Macintyre AN, Stover E, Feldman J, Hauser BM, Caradonna TM, Scobey TD, Rountree W, Wang Y, Moody MA, Cain DW, DeMarco CT, Denny TN, Woods CW, Petzold EW, Schmidt AG, Teng IT, Zhou T, Kwong PD, Mascola JR, Graham BS, Moore IN, Seder R, Andersen H, Lewis MG, Montefiori DC, Sempowski GD, Baric RS, Acharya P, Haynes BF, Saunders KO. In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell 2021; 184:4203-4219.e32. [PMID: 34242577 PMCID: PMC8232969 DOI: 10.1016/j.cell.2021.06.021] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/06/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022]
Abstract
SARS-CoV-2-neutralizing antibodies (NAbs) protect against COVID-19. A concern regarding SARS-CoV-2 antibodies is whether they mediate disease enhancement. Here, we isolated NAbs against the receptor-binding domain (RBD) or the N-terminal domain (NTD) of SARS-CoV-2 spike from individuals with acute or convalescent SARS-CoV-2 or a history of SARS-CoV infection. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific modes of binding. Select RBD NAbs also demonstrated Fc receptor-γ (FcγR)-mediated enhancement of virus infection in vitro, while five non-neutralizing NTD antibodies mediated FcγR-independent in vitro infection enhancement. However, both types of infection-enhancing antibodies protected from SARS-CoV-2 replication in monkeys and mice. Three of 46 monkeys infused with enhancing antibodies had higher lung inflammation scores compared to controls. One monkey had alveolar edema and elevated bronchoalveolar lavage inflammatory cytokines. Thus, while in vitro antibody-enhanced infection does not necessarily herald enhanced infection in vivo, increased lung inflammation can rarely occur in SARS-CoV-2 antibody-infused macaques.
Collapse
Affiliation(s)
- Dapeng Li
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kartik Manne
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - S Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laura L Sutherland
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas H Oguin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Lautaro G Perez
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sophie M C Gobeil
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katarzyna Janowska
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Victoria Stalls
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Megan Kopp
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Fangping Cai
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Esther Lee
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Andrew Foulger
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Giovanna E Hernandez
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Aja Sanzone
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kedamawit Tilahun
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chuancang Jiang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Longping V Tse
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin W Bock
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenneth Cronin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Victoria Gee-Lai
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Margaret Deyton
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tarra Von Holle
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Andrew N Macintyre
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Erica Stover
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Blake M Hauser
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | - Trevor D Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wes Rountree
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - C Todd DeMarco
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Christopher W Woods
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Center for Applied Genomics and Precision Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Elizabeth W Petzold
- Center for Applied Genomics and Precision Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Aaron G Schmidt
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | | | | | | | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
174
|
Chen RE, Winkler ES, Case JB, Aziati ID, Bricker TL, Joshi A, Darling TL, Ying B, Errico JM, Shrihari S, VanBlargan LA, Xie X, Gilchuk P, Zost SJ, Droit L, Liu Z, Stumpf S, Wang D, Handley SA, Stine WB, Shi PY, Davis-Gardner ME, Suthar MS, Knight MG, Andino R, Chiu CY, Ellebedy AH, Fremont DH, Whelan SPJ, Crowe JE, Purcell L, Corti D, Boon ACM, Diamond MS. In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains. Nature 2021; 596:103-108. [PMID: 34153975 PMCID: PMC8349859 DOI: 10.1038/s41586-021-03720-y] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
Rapidly emerging SARS-CoV-2 variants jeopardize antibody-based countermeasures. Although cell culture experiments have demonstrated a loss of potency of several anti-spike neutralizing antibodies against variant strains of SARS-CoV-21-3, the in vivo importance of these results remains uncertain. Here we report the in vitro and in vivo activity of a panel of monoclonal antibodies (mAbs), which correspond to many in advanced clinical development by Vir Biotechnology, AbbVie, AstraZeneca, Regeneron and Lilly, against SARS-CoV-2 variant viruses. Although some individual mAbs showed reduced or abrogated neutralizing activity in cell culture against B.1.351, B.1.1.28, B.1.617.1 and B.1.526 viruses with mutations at residue E484 of the spike protein, low prophylactic doses of mAb combinations protected against infection by many variants in K18-hACE2 transgenic mice, 129S2 immunocompetent mice and hamsters, without the emergence of resistance. Exceptions were LY-CoV555 monotherapy and LY-CoV555 and LY-CoV016 combination therapy, both of which lost all protective activity, and the combination of AbbVie 2B04 and 47D11, which showed a partial loss of activity. When administered after infection, higher doses of several mAb cocktails protected in vivo against viruses with a B.1.351 spike gene. Therefore, many-but not all-of the antibody products with Emergency Use Authorization should retain substantial efficacy against the prevailing variant strains of SARS-CoV-2.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/immunology
- Antibodies, Viral/pharmacology
- Antibodies, Viral/therapeutic use
- COVID-19/genetics
- COVID-19/immunology
- COVID-19/prevention & control
- COVID-19/virology
- Chlorocebus aethiops
- Female
- Humans
- Male
- Mesocricetus/immunology
- Mesocricetus/virology
- Mice
- Mice, Transgenic
- Neutralization Tests
- Post-Exposure Prophylaxis
- Pre-Exposure Prophylaxis
- SARS-CoV-2/drug effects
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Serine Endopeptidases/genetics
- Serine Endopeptidases/metabolism
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Vero Cells
Collapse
Affiliation(s)
- Rita E Chen
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Emma S Winkler
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Ishmael D Aziati
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Traci L Bricker
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Astha Joshi
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Tamarand L Darling
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Baoling Ying
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - John M Errico
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Swathi Shrihari
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Laura A VanBlargan
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seth J Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lindsay Droit
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Spencer Stumpf
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - David Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Scott A Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | | | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Meredith E Davis-Gardner
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Mehul S Suthar
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Miguel Garcia Knight
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Charles Y Chiu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Davide Corti
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
175
|
Telenti A, Arvin A, Corey L, Corti D, Diamond MS, García-Sastre A, Garry RF, Holmes EC, Pang PS, Virgin HW. After the pandemic: perspectives on the future trajectory of COVID-19. Nature 2021; 596:495-504. [PMID: 34237771 DOI: 10.1038/s41586-021-03792-w] [Citation(s) in RCA: 212] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
There is a realistic expectation that the global effort in vaccination will bring the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) under control. Nonetheless, uncertainties remain about the type of long-term association that the virus will establish with the human population and, in particular, whether coronavirus disease 2019 (COVID-19) will become an endemic disease. Although the trajectory is difficult to predict, the conditions, concepts and variables that influence this transition can be anticipated. Persistence of SARS-CoV-2 as an endemic virus, perhaps with seasonal epidemic peaks, may be fuelled by pockets of susceptible individuals and waning immunity after infection or vaccination, changes in the virus through antigenic drift that diminish protection and re-entries from zoonotic reservoirs. Here we review relevant observations from previous epidemics and discuss the potential evolution of SARS-CoV-2 as it adapts during persistent transmission in the presence of a level of population immunity. Lack of effective surveillance or adequate response could enable the emergence of new epidemic or pandemic patterns from an endemic infection of SARS-CoV-2. There are key pieces of data that are urgently needed in order to make good decisions; we outline these and propose a way forward.
Collapse
Affiliation(s)
- Amalio Telenti
- Vir Biotechnology, San Francisco, CA, USA. .,Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA.
| | - Ann Arvin
- Vir Biotechnology, San Francisco, CA, USA.
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland.
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA. .,Department of Medicine, Washington University School of Medicine, St Louis, MO, USA. .,Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Robert F Garry
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, USA.
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia.
| | | | - Herbert W Virgin
- Vir Biotechnology, San Francisco, CA, USA. .,Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA. .,Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
176
|
Hassan AO, Shrihari S, Gorman MJ, Ying B, Yuan D, Raju S, Chen RE, Dmitriev IP, Kashentseva E, Adams LJ, Mann C, Davis-Gardner ME, Suthar MS, Shi PY, Saphire EO, Fremont DH, Curiel DT, Alter G, Diamond MS. An intranasal vaccine durably protects against SARS-CoV-2 variants in mice. Cell Rep 2021; 36:109452. [PMID: 34289385 PMCID: PMC8270739 DOI: 10.1016/j.celrep.2021.109452] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/11/2021] [Accepted: 07/02/2021] [Indexed: 01/06/2023] Open
Abstract
SARS-CoV-2 variants that attenuate antibody neutralization could jeopardize vaccine efficacy. We recently reported the protective activity of an intranasally administered spike protein-based chimpanzee adenovirus-vectored vaccine (ChAd-SARS-CoV-2-S) in animals, which has advanced to human trials. Here, we assessed its durability, dose response, and cross-protective activity in mice. A single intranasal dose of ChAd-SARS-CoV-2-S induced durably high neutralizing and Fc effector antibody responses in serum and S-specific IgG and IgA secreting long-lived plasma cells in the bone marrow. Protection against a historical SARS-CoV-2 strain was observed across a 100-fold vaccine dose range and over a 200-day period. At 6 weeks or 9 months after vaccination, serum antibodies neutralized SARS-CoV-2 strains with B.1.351, B.1.1.28, and B.1.617.1 spike proteins and conferred almost complete protection in the upper and lower respiratory tracts after challenge with variant viruses. Thus, in mice, intranasal immunization with ChAd-SARS-CoV-2-S provides durable protection against historical and emerging SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Ahmed O Hassan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Swathi Shrihari
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew J Gorman
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | - Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dansu Yuan
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | - Saravanan Raju
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rita E Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Igor P Dmitriev
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elena Kashentseva
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lucas J Adams
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Colin Mann
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Meredith E Davis-Gardner
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mehul S Suthar
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Departments of Microbiology and Immunology, University of Texas Medical Branch, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David T Curiel
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
177
|
Martinez DR, Schäfer A, Leist SR, Li D, Gully K, Yount B, Feng JY, Bunyan E, Porter DP, Cihlar T, Montgomery SA, Haynes BF, Baric RS, Nussenzweig MC, Sheahan TP. Prevention and therapy of SARS-CoV-2 and the B.1.351 variant in mice. Cell Rep 2021; 36:109450. [PMID: 34289384 PMCID: PMC8270748 DOI: 10.1016/j.celrep.2021.109450] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/22/2021] [Accepted: 07/02/2021] [Indexed: 01/08/2023] Open
Abstract
Improving clinical care for individuals infected with SARS-CoV-2 variants is a global health priority. Small-molecule antivirals like remdesivir (RDV) and biologics such as human monoclonal antibodies (mAbs) have demonstrated therapeutic efficacy against SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19). It is not known whether combination RDV/mAb will improve outcomes over single-agent therapies or whether antibody therapies will remain efficacious against variants. Here, we show that a combination of two mAbs in clinical trials, C144 and C135, have potent antiviral effects against even when initiated 48 h after infection and have therapeutic efficacy in vivo against the B.1.351 variant of concern (VOC). Combining RDV and antibodies provided a modest improvement in outcomes compared with single agents. These data support the continued use of RDV to treat SARS-CoV-2 infections and the continued clinical development of the C144 and C135 antibody combination to treat patients infected with SARS-CoV-2 variants.
Collapse
Affiliation(s)
- David R Martinez
- Department of Epidemiology, READDI Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Alexandra Schäfer
- Department of Epidemiology, READDI Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, READDI Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dapeng Li
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Kendra Gully
- Department of Epidemiology, READDI Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Boyd Yount
- Department of Epidemiology, READDI Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joy Y Feng
- Gilead Sciences, Inc., Foster City, CA, USA
| | | | | | | | - Stephanie A Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, READDI Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michel C Nussenzweig
- The Rockefeller University, New York, NY, USA; The Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Timothy P Sheahan
- Department of Epidemiology, READDI Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
178
|
Amanat F, Thapa M, Lei T, Ahmed SMS, Adelsberg DC, Carreño JM, Strohmeier S, Schmitz AJ, Zafar S, Zhou JQ, Rijnink W, Alshammary H, Borcherding N, Reiche AG, Srivastava K, Sordillo EM, van Bakel H, Turner JS, Bajic G, Simon V, Ellebedy AH, Krammer F. SARS-CoV-2 mRNA vaccination induces functionally diverse antibodies to NTD, RBD, and S2. Cell 2021; 184:3936-3948.e10. [PMID: 34192529 PMCID: PMC8185186 DOI: 10.1016/j.cell.2021.06.005] [Citation(s) in RCA: 211] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/14/2021] [Accepted: 06/02/2021] [Indexed: 01/12/2023]
Abstract
In this study we profiled vaccine-induced polyclonal antibodies as well as plasmablast-derived mAbs from individuals who received SARS-CoV-2 spike mRNA vaccine. Polyclonal antibody responses in vaccinees were robust and comparable to or exceeded those seen after natural infection. However, the ratio of binding to neutralizing antibodies after vaccination was greater than that after natural infection and, at the monoclonal level, we found that the majority of vaccine-induced antibodies did not have neutralizing activity. We also found a co-dominance of mAbs targeting the NTD and RBD of SARS-CoV-2 spike and an original antigenic-sin like backboost to spikes of seasonal human coronaviruses OC43 and HKU1. Neutralizing activity of NTD mAbs but not RBD mAbs against a clinical viral isolate carrying E484K as well as extensive changes in the NTD was abolished, suggesting that a proportion of vaccine-induced RBD binding antibodies may provide substantial protection against viral variants carrying single E484K RBD mutations.
Collapse
Affiliation(s)
- Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mahima Thapa
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tinting Lei
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shaza M Sayed Ahmed
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel C Adelsberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aaron J Schmitz
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sarah Zafar
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Julian Q Zhou
- AbCellera Biologics Inc., Vancouver, BC V5Y 0A1, Canada
| | - Willemijn Rijnink
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hala Alshammary
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicholas Borcherding
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ana Gonzalez Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Komal Srivastava
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Emilia Mia Sordillo
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jackson S Turner
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Goran Bajic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ali H Ellebedy
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
179
|
Case JB, Chen RE, Cao L, Ying B, Winkler ES, Johnson M, Goreshnik I, Pham MN, Shrihari S, Kafai NM, Bailey AL, Xie X, Shi PY, Ravichandran R, Carter L, Stewart L, Baker D, Diamond MS. Ultrapotent miniproteins targeting the SARS-CoV-2 receptor-binding domain protect against infection and disease. Cell Host Microbe 2021; 29:1151-1161.e5. [PMID: 34192518 PMCID: PMC8221914 DOI: 10.1016/j.chom.2021.06.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/23/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022]
Abstract
Despite the introduction of public health measures and spike protein-based vaccines to mitigate the COVID-19 pandemic, SARS-CoV-2 infections and deaths continue to have a global impact. Previously, we used a structural design approach to develop picomolar range miniproteins targeting the SARS-CoV-2 spike receptor-binding domain. Here, we investigated the capacity of modified versions of one lead miniprotein, LCB1, to protect against SARS-CoV-2-mediated lung disease in mice. Systemic administration of LCB1-Fc reduced viral burden, diminished immune cell infiltration and inflammation, and completely prevented lung disease and pathology. A single intranasal dose of LCB1v1.3 reduced SARS-CoV-2 infection in the lung when given as many as 5 days before or 2 days after virus inoculation. Importantly, LCB1v1.3 protected in vivo against a historical strain (WA1/2020), an emerging B.1.1.7 strain, and a strain encoding key E484K and N501Y spike protein substitutions. These data support development of LCB1v1.3 for prevention or treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rita E Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Longxing Cao
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emma S Winkler
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Max Johnson
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Inna Goreshnik
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Minh N Pham
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Swathi Shrihari
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Natasha M Kafai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Adam L Bailey
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Lance Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
180
|
Tauzin A, Nayrac M, Benlarbi M, Gong SY, Gasser R, Beaudoin-Bussières G, Brassard N, Laumaea A, Vézina D, Prévost J, Anand SP, Bourassa C, Gendron-Lepage G, Medjahed H, Goyette G, Niessl J, Tastet O, Gokool L, Morrisseau C, Arlotto P, Stamatatos L, McGuire AT, Larochelle C, Uchil P, Lu M, Mothes W, De Serres G, Moreira S, Roger M, Richard J, Martel-Laferrière V, Duerr R, Tremblay C, Kaufmann DE, Finzi A. A single dose of the SARS-CoV-2 vaccine BNT162b2 elicits Fc-mediated antibody effector functions and T cell responses. Cell Host Microbe 2021; 29:1137-1150.e6. [PMID: 34133950 PMCID: PMC8175625 DOI: 10.1016/j.chom.2021.06.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/06/2021] [Accepted: 06/01/2021] [Indexed: 12/17/2022]
Abstract
While the standard regimen of the BNT162b2 mRNA vaccine for SARS-CoV-2 includes two doses administered 3 weeks apart, some public health authorities are spacing these doses, raising concerns about efficacy. However, data indicate that a single dose can be up to 90% effective starting 14 days post-administration. To assess the mechanisms contributing to protection, we analyzed humoral and T cell responses three weeks after a single BNT162b2 dose. We observed weak neutralizing activity elicited in SARS-CoV-2 naive individuals but strong anti-receptor binding domain and spike antibodies with Fc-mediated effector functions and cellular CD4+ T cell responses. In previously infected individuals, a single dose boosted all humoral and T cell responses, with strong correlations between T helper and antibody immunity. Our results highlight the potential role of Fc-mediated effector functions and T cell responses in vaccine efficacy. They also provide support for spacing doses to vaccinate more individuals in conditions of vaccine scarcity.
Collapse
Affiliation(s)
- Alexandra Tauzin
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Manon Nayrac
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
| | - Shang Yu Gong
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2BA, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | - Annemarie Laumaea
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Dani Vézina
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Sai Priya Anand
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2BA, Canada
| | | | | | | | | | - Julia Niessl
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada; Consortium for HIV/AIDS Vaccine Development (CHAVD), La Jolla, CA, USA
| | - Olivier Tastet
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
| | - Laurie Gokool
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
| | | | | | - Leonidas Stamatatos
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA 98109, USA; University of Washington, Department of Global Health, Seattle, WA 98109, USA
| | - Andrew T McGuire
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA 98109, USA
| | - Catherine Larochelle
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département des Neurosciences, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Pradeep Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Gaston De Serres
- Institut National de Santé Publique du Québec, Quebec, QC, H2P 1E2, Canada
| | - Sandrine Moreira
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada
| | - Michel Roger
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada; Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Valérie Martel-Laferrière
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Cécile Tremblay
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada.
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Médecine, Université de Montréal, Montreal, QC H3T 1J4, Canada; Consortium for HIV/AIDS Vaccine Development (CHAVD), La Jolla, CA, USA.
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2BA, Canada.
| |
Collapse
|
181
|
Kaku Y, Kuwata T, Zahid HM, Hashiguchi T, Noda T, Kuramoto N, Biswas S, Matsumoto K, Shimizu M, Kawanami Y, Shimura K, Onishi C, Muramoto Y, Suzuki T, Sasaki J, Nagasaki Y, Minami R, Motozono C, Toyoda M, Takahashi H, Kishi H, Fujii K, Tatsuke T, Ikeda T, Maeda Y, Ueno T, Koyanagi Y, Iwagoe H, Matsushita S. Resistance of SARS-CoV-2 variants to neutralization by antibodies induced in convalescent patients with COVID-19. Cell Rep 2021; 36:109385. [PMID: 34237284 PMCID: PMC8226103 DOI: 10.1016/j.celrep.2021.109385] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/16/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022] Open
Abstract
Administration of convalescent plasma or neutralizing monoclonal antibodies (mAbs) is a potent therapeutic option for coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, SARS-CoV-2 variants with mutations in the spike protein have emerged in many countries. To evaluate the efficacy of neutralizing antibodies induced in convalescent patients against emerging variants, we isolate anti-spike mAbs from two convalescent COVID-19 patients infected with prototypic SARS-CoV-2 by single-cell sorting of immunoglobulin-G-positive (IgG+) memory B cells. Anti-spike antibody induction is robust in these patients, and five mAbs have potent neutralizing activities. The efficacy of most neutralizing mAbs and convalescent plasma samples is maintained against B.1.1.7 and mink cluster 5 variants but is significantly decreased against variants B.1.351 from South Africa and P.1 from Brazil. However, mAbs with a high affinity for the receptor-binding domain remain effective against these neutralization-resistant variants. Rapid spread of these variants significantly impacts antibody-based therapies and vaccine strategies against SARS-CoV-2.
Collapse
Affiliation(s)
- Yu Kaku
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Takeo Kuwata
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto 860-0811, Japan.
| | - Hasan Md Zahid
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Takao Hashiguchi
- Labolatory of Medical Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Noriko Kuramoto
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shashwata Biswas
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kaho Matsumoto
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Mikiko Shimizu
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yoko Kawanami
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kazuya Shimura
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Chiho Onishi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yukiko Muramoto
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Tateki Suzuki
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Jiei Sasaki
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoji Nagasaki
- Division of Infectious Diseases, Clinical Research Institute, National Hospitalization Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Rumi Minami
- Internal Medicine, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Chihiro Motozono
- Division of Infection and immunity, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Mako Toyoda
- Division of Infection and immunity, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Hiroshi Takahashi
- Department of Respiratory Medicine, Kumamoto City Hospital, Kumamoto 862-8505, Japan
| | - Hiroto Kishi
- Department of Respiratory Medicine, Kumamoto City Hospital, Kumamoto 862-8505, Japan
| | - Kazuhiko Fujii
- Department of Respiratory Medicine, Kumamoto City Hospital, Kumamoto 862-8505, Japan
| | - Tsuneyuki Tatsuke
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yosuke Maeda
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takamasa Ueno
- Division of Infection and immunity, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Hajime Iwagoe
- Department of Infectious Disease, Kumamoto City Hospital, Kumamoto 862-8505, Japan
| | - Shuzo Matsushita
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto 860-0811, Japan.
| |
Collapse
|
182
|
Jennewein MF, MacCamy AJ, Akins NR, Feng J, Homad LJ, Hurlburt NK, Seydoux E, Wan YH, Stuart AB, Edara VV, Floyd K, Vanderheiden A, Mascola JR, Doria-Rose N, Wang L, Yang ES, Chu HY, Torres JL, Ozorowski G, Ward AB, Whaley RE, Cohen KW, Pancera M, McElrath MJ, Englund JA, Finzi A, Suthar MS, McGuire AT, Stamatatos L. Isolation and characterization of cross-neutralizing coronavirus antibodies from COVID-19+ subjects. Cell Rep 2021; 36:109353. [PMID: 34237283 PMCID: PMC8216847 DOI: 10.1016/j.celrep.2021.109353] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/21/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
SARS-CoV-2 is one of three coronaviruses that have crossed the animal-to-human barrier and caused widespread disease in the past two decades. The development of a universal human coronavirus vaccine could prevent future pandemics. We characterize 198 antibodies isolated from four COVID-19+ subjects and identify 14 SARS-CoV-2 neutralizing antibodies. One targets the N-terminal domain (NTD), one recognizes an epitope in S2, and 11 bind the receptor-binding domain (RBD). Three anti-RBD neutralizing antibodies cross-neutralize SARS-CoV-1 by effectively blocking binding of both the SARS-CoV-1 and SARS-CoV-2 RBDs to the ACE2 receptor. Using the K18-hACE transgenic mouse model, we demonstrate that the neutralization potency and antibody epitope specificity regulates the in vivo protective potential of anti-SARS-CoV-2 antibodies. All four cross-neutralizing antibodies neutralize the B.1.351 mutant strain. Thus, our study reveals that epitopes in S2 can serve as blueprints for the design of immunogens capable of eliciting cross-neutralizing coronavirus antibodies.
Collapse
Affiliation(s)
- Madeleine F Jennewein
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA 98109, USA
| | - Anna J MacCamy
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA 98109, USA
| | - Nicholas R Akins
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA 98109, USA
| | - Junli Feng
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA 98109, USA
| | - Leah J Homad
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA 98109, USA
| | - Nicholas K Hurlburt
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA 98109, USA
| | - Emilie Seydoux
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA 98109, USA
| | - Yu-Hsin Wan
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA 98109, USA
| | - Andrew B Stuart
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA 98109, USA
| | - Venkata Viswanadh Edara
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30322, USA
| | - Katharine Floyd
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30322, USA
| | - Abigail Vanderheiden
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30322, USA
| | - John R Mascola
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | | | - Lingshu Wang
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Helen Y Chu
- University of Washington, Department of Medicine, Seattle, WA 98109, USA
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rachael E Whaley
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA 98109, USA
| | - Kristen W Cohen
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA 98109, USA
| | - Marie Pancera
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA 98109, USA; Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - M Juliana McElrath
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA 98109, USA; University of Washington, Department of Medicine, Seattle, WA 98109, USA; University of Washington, Department of Global Health, Seattle, WA 98109, USA
| | - Janet A Englund
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, WA 98109, USA
| | | | - Mehul S Suthar
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30322, USA.
| | - Andrew T McGuire
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA 98109, USA; University of Washington, Department of Global Health, Seattle, WA 98109, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| | - Leonidas Stamatatos
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Disease Division, Seattle, WA 98109, USA; University of Washington, Department of Global Health, Seattle, WA 98109, USA.
| |
Collapse
|
183
|
Greaney AJ, Starr TN, Barnes CO, Weisblum Y, Schmidt F, Caskey M, Gaebler C, Cho A, Agudelo M, Finkin S, Wang Z, Poston D, Muecksch F, Hatziioannou T, Bieniasz PD, Robbiani DF, Nussenzweig MC, Bjorkman PJ, Bloom JD. Mapping mutations to the SARS-CoV-2 RBD that escape binding by different classes of antibodies. Nat Commun 2021; 12:4196. [PMID: 34234131 PMCID: PMC8263750 DOI: 10.1038/s41467-021-24435-8] [Citation(s) in RCA: 260] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/11/2021] [Indexed: 11/28/2022] Open
Abstract
Monoclonal antibodies targeting a variety of epitopes have been isolated from individuals previously infected with SARS-CoV-2, but the relative contributions of these different antibody classes to the polyclonal response remains unclear. Here we use a yeast-display system to map all mutations to the viral spike receptor-binding domain (RBD) that escape binding by representatives of three potently neutralizing classes of anti-RBD antibodies with high-resolution structures. We compare the antibody-escape maps to similar maps for convalescent polyclonal plasmas, including plasmas from individuals from whom some of the antibodies were isolated. While the binding of polyclonal plasma antibodies are affected by mutations across multiple RBD epitopes, the plasma-escape maps most resemble those of a single class of antibodies that target an epitope on the RBD that includes site E484. Therefore, although the human immune system can produce antibodies that target diverse RBD epitopes, in practice the polyclonal response to infection is skewed towards a single class of antibodies targeting an epitope that is already undergoing rapid evolution.
Collapse
Affiliation(s)
- Allison J Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Genome Sciences & Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Tyler N Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yiska Weisblum
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Alice Cho
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Marianna Agudelo
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Shlomo Finkin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Daniel Poston
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | | | - Paul D Bieniasz
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Institute for Research in Biomedicine, Universita della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Michel C Nussenzweig
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
184
|
Moriyama S, Adachi Y, Sato T, Tonouchi K, Sun L, Fukushi S, Yamada S, Kinoshita H, Nojima K, Kanno T, Tobiume M, Ishijima K, Kuroda Y, Park ES, Onodera T, Matsumura T, Takano T, Terahara K, Isogawa M, Nishiyama A, Kawana-Tachikawa A, Shinkai M, Tachikawa N, Nakamura S, Okai T, Okuma K, Matano T, Fujimoto T, Maeda K, Ohnishi M, Wakita T, Suzuki T, Takahashi Y. Temporal maturation of neutralizing antibodies in COVID-19 convalescent individuals improves potency and breadth to circulating SARS-CoV-2 variants. Immunity 2021; 54:1841-1852.e4. [PMID: 34246326 PMCID: PMC8249673 DOI: 10.1016/j.immuni.2021.06.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/03/2021] [Accepted: 06/18/2021] [Indexed: 12/22/2022]
Abstract
Antibody titers against SARS-CoV-2 slowly wane over time. Here, we examined how time affects antibody potency. To assess the impact of antibody maturation on durable neutralizing activity against original SARS-CoV-2 and emerging variants of concern (VOCs), we analyzed receptor binding domain (RBD)-specific IgG antibodies in convalescent plasma taken 1-10 months after SARS-CoV-2 infection. Longitudinal evaluation of total RBD IgG and neutralizing antibody revealed declining total antibody titers but improved neutralization potency per antibody to original SARS-CoV-2, indicative of antibody response maturation. Neutralization assays with authentic viruses revealed that early antibodies capable of neutralizing original SARS-CoV-2 had limited reactivity toward B.1.351 (501Y.V2) and P.1 (501Y.V3) variants. Antibodies from late convalescents exhibited increased neutralization potency to VOCs, suggesting persistence of cross-neutralizing antibodies in plasma. Thus, maturation of the antibody response to SARS-CoV-2 potentiates cross-neutralizing ability to circulating variants, suggesting that declining antibody titers may not be indicative of declining protection.
Collapse
Affiliation(s)
- Saya Moriyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Yu Adachi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Takashi Sato
- Tokyo Shinagawa Hospital, Tokyo, 140-8522, Japan
| | - Keisuke Tonouchi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan; Department of Life Science and Medical Bioscience, Waseda University, Tokyo, 162-8480, Japan
| | - Lin Sun
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Souichi Yamada
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Hitomi Kinoshita
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Kiyoko Nojima
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, 208-0011, Japan
| | - Takayuki Kanno
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Minoru Tobiume
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Keita Ishijima
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Yudai Kuroda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Eun-Sil Park
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Takayuki Matsumura
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Tomohiro Takano
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Kazutaka Terahara
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Masanori Isogawa
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Ayae Nishiyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | | | - Natsuo Tachikawa
- Yokohama Municipal Citizen's Hospital, Kanagawa, 221-0855, Japan
| | | | | | - Kazu Okuma
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, 208-0011, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Tsuguto Fujimoto
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Makoto Ohnishi
- National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Takaji Wakita
- National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.
| |
Collapse
|
185
|
Van Rompay KKA, Olstad KJ, Sammak RL, Dutra J, Watanabe JK, Usachenko JL, Immareddy R, Verma A, Shaan Lakshmanappa Y, Schmidt BA, Roh JW, Elizaldi SR, Allen AM, Muecksch F, Lorenzi JCC, Lockwood S, Pollard RE, Yee JL, Nham PB, Ardeshir A, Deere JD, Patterson J, Dang Q, Hatziioannou T, Bieniasz PD, Iyer SS, Hartigan-O’Connor DJ, Nussenzweig MC, Reader JR. Early treatment with a combination of two potent neutralizing antibodies improves clinical outcomes and reduces virus replication and lung inflammation in SARS-CoV-2 infected macaques. PLoS Pathog 2021; 17:e1009688. [PMID: 34228761 PMCID: PMC8284825 DOI: 10.1371/journal.ppat.1009688] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/16/2021] [Accepted: 06/03/2021] [Indexed: 01/08/2023] Open
Abstract
There is an urgent need for effective therapeutic interventions against SARS-CoV-2, including new variants that continue to arise. Neutralizing monoclonal antibodies have shown promise in clinical studies. We investigated the therapeutic efficacy of a combination of two potent monoclonal antibodies, C135-LS and C144-LS that carry half-life extension mutations, in the rhesus macaque model of COVID-19. Twelve young adult macaques (three groups of four animals) were inoculated intranasally and intra-tracheally with a high dose of SARS-CoV-2 and 24 hours later, treated intravenously with a high (40 mg/kg) or low (12 mg/kg) dose of the C135-LS and C144-LS antibody combination, or a control monoclonal antibody. Animals were monitored for 7 days. Compared to the control animals, animals treated with either dose of the anti-SARS-CoV-2 antibodies showed similarly improved clinical scores, lower levels of virus replication in upper and lower respiratory tract, and significantly reduced interstitial pneumonia, as measured by comprehensive lung histology. In conclusion, this study provides proof-of-concept in support of further clinical development of these monoclonal antibodies against COVID-19 during early infection.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/blood
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibodies, Viral/therapeutic use
- COVID-19/pathology
- COVID-19/therapy
- COVID-19/virology
- Disease Models, Animal
- Female
- Lung/diagnostic imaging
- Lung/pathology
- Macaca mulatta
- Male
- Multivariate Analysis
- Radiography
- Respiratory System/virology
- SARS-CoV-2/immunology
- SARS-CoV-2/physiology
- Time Factors
- Treatment Outcome
- Virus Replication/immunology
Collapse
Affiliation(s)
- Koen K. A. Van Rompay
- California National Primate Research Center, University of California, Davis, United States of America
- Department of Pathology, Microbiology and Immunology, University of California, Davis, California, United States of America
| | - Katherine J. Olstad
- California National Primate Research Center, University of California, Davis, United States of America
- Department of Pathology, Microbiology and Immunology, University of California, Davis, California, United States of America
| | - Rebecca L. Sammak
- California National Primate Research Center, University of California, Davis, United States of America
| | - Joseph Dutra
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California, United States of America
| | - Jennifer K. Watanabe
- California National Primate Research Center, University of California, Davis, United States of America
| | - Jodie L. Usachenko
- California National Primate Research Center, University of California, Davis, United States of America
| | - Ramya Immareddy
- California National Primate Research Center, University of California, Davis, United States of America
| | - Anil Verma
- Center for Immunology and Infectious Diseases, University of California, Davis, California, United States of America
| | - Yashavanth Shaan Lakshmanappa
- Center for Immunology and Infectious Diseases, University of California, Davis, California, United States of America
| | - Brian A. Schmidt
- Center for Immunology and Infectious Diseases, University of California, Davis, California, United States of America
| | - Jamin W. Roh
- Center for Immunology and Infectious Diseases, University of California, Davis, California, United States of America
| | - Sonny R. Elizaldi
- Center for Immunology and Infectious Diseases, University of California, Davis, California, United States of America
| | - A. Mark Allen
- California National Primate Research Center, University of California, Davis, United States of America
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
| | - Julio C. C. Lorenzi
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, United States of America
| | - Sarah Lockwood
- California National Primate Research Center, University of California, Davis, United States of America
| | - Rachel E. Pollard
- School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - JoAnn L. Yee
- California National Primate Research Center, University of California, Davis, United States of America
| | - Peter B. Nham
- California National Primate Research Center, University of California, Davis, United States of America
| | - Amir Ardeshir
- California National Primate Research Center, University of California, Davis, United States of America
| | - Jesse D. Deere
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California, United States of America
| | - Jean Patterson
- Translational Research Section, Virology Branch, DMID/NIAID/NIH, Rockville, Maryland, United States of America
| | - Que Dang
- Preclinical Research and Development Branch, Vaccine Research Program, DAIDS/NIAID/NIH, Rockville, Maryland, United States of America
| | - Theodora Hatziioannou
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
| | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Smita S. Iyer
- California National Primate Research Center, University of California, Davis, United States of America
- Department of Pathology, Microbiology and Immunology, University of California, Davis, California, United States of America
- Center for Immunology and Infectious Diseases, University of California, Davis, California, United States of America
| | - Dennis J. Hartigan-O’Connor
- California National Primate Research Center, University of California, Davis, United States of America
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California, United States of America
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - J. Rachel Reader
- California National Primate Research Center, University of California, Davis, United States of America
- Department of Pathology, Microbiology and Immunology, University of California, Davis, California, United States of America
| |
Collapse
|
186
|
Ullah I, Prévost J, Ladinsky MS, Stone H, Lu M, Anand SP, Beaudoin-Bussières G, Symmes K, Benlarbi M, Ding S, Gasser R, Fink C, Chen Y, Tauzin A, Goyette G, Bourassa C, Medjahed H, Mack M, Chung K, Wilen CB, Dekaban GA, Dikeakos JD, Bruce EA, Kaufmann DE, Stamatatos L, McGuire AT, Richard J, Pazgier M, Bjorkman PJ, Mothes W, Finzi A, Kumar P, Uchil PD. Live Imaging of SARS-CoV-2 Infection in Mice Reveals Neutralizing Antibodies Require Fc Function for Optimal Efficacy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33791699 DOI: 10.1101/2021.03.22.436337] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neutralizing antibodies (NAbs) are effective in treating COVID-19 but the mechanism of immune protection is not fully understood. Here, we applied live bioluminescence imaging (BLI) to monitor the real-time effects of NAb treatment in prophylaxis and therapy of K18-hACE2 mice intranasally infected with SARS-CoV-2-nanoluciferase. We could visualize virus spread sequentially from the nasal cavity to the lungs and thereafter systemically to various organs including the brain, which culminated in death. Highly potent NAbs from a COVID-19 convalescent subject prevented, and also effectively resolved, established infection when administered within three days. In addition to direct Fab-mediated neutralization, Fc effector interactions of NAbs with monocytes, neutrophils and natural killer cells were required to effectively dampen inflammatory responses and limit immunopathology. Our study highlights that both Fab and Fc effector functions of NAbs are essential for optimal in vivo efficacy against SARS-CoV-2.
Collapse
|
187
|
Duerr R, Crosse KM, Valero-Jimenez AM, Dittmann M. SARS-CoV-2 Portrayed against HIV: Contrary Viral Strategies in Similar Disguise. Microorganisms 2021; 9:1389. [PMID: 34198973 PMCID: PMC8307803 DOI: 10.3390/microorganisms9071389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 and HIV are zoonotic viruses that rapidly reached pandemic scale, causing global losses and fear. The COVID-19 and AIDS pandemics ignited massive efforts worldwide to develop antiviral strategies and characterize viral architectures, biological and immunological properties, and clinical outcomes. Although both viruses have a comparable appearance as enveloped viruses with positive-stranded RNA and envelope spikes mediating cellular entry, the entry process, downstream biological and immunological pathways, clinical outcomes, and disease courses are strikingly different. This review provides a systemic comparison of both viruses' structural and functional characteristics, delineating their distinct strategies for efficient spread.
Collapse
Affiliation(s)
- Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; (K.M.C.); (A.M.V.-J.); (M.D.)
| | | | | | | |
Collapse
|
188
|
Chan CEZ, Seah SGK, Chye DH, Massey S, Torres M, Lim APC, Wong SKK, Neo JJY, Wong PS, Lim JH, Loh GSL, Wang D, Boyd-Kirkup JD, Guan S, Thakkar D, Teo GH, Purushotorman K, Hutchinson PE, Young BE, Low JG, MacAry PA, Hentze H, Prativadibhayankara VS, Ethirajulu K, Comer JE, Tseng CTK, Barrett ADT, Ingram PJ, Brasel T, Hanson BJ. The Fc-mediated effector functions of a potent SARS-CoV-2 neutralizing antibody, SC31, isolated from an early convalescent COVID-19 patient, are essential for the optimal therapeutic efficacy of the antibody. PLoS One 2021; 16:e0253487. [PMID: 34161386 PMCID: PMC8221499 DOI: 10.1371/journal.pone.0253487] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
Although SARS-CoV-2-neutralizing antibodies are promising therapeutics against COVID-19, little is known about their mechanism(s) of action or effective dosing windows. We report the generation and development of SC31, a potent SARS-CoV-2 neutralizing antibody, isolated from a convalescent patient. Antibody-mediated neutralization occurs via an epitope within the receptor-binding domain of the SARS-CoV-2 Spike protein. SC31 exhibited potent anti-SARS-CoV-2 activities in multiple animal models. In SARS-CoV-2 infected K18-human ACE2 transgenic mice, treatment with SC31 greatly reduced viral loads and attenuated pro-inflammatory responses linked to the severity of COVID-19. Importantly, a comparison of the efficacies of SC31 and its Fc-null LALA variant revealed that the optimal therapeutic efficacy of SC31 requires Fc-mediated effector functions that promote IFNγ-driven anti-viral immune responses, in addition to its neutralization ability. A dose-dependent efficacy of SC31 was observed down to 5mg/kg when administered before viral-induced lung inflammatory responses. In addition, antibody-dependent enhancement was not observed even when infected mice were treated with SC31 at sub-therapeutic doses. In SARS-CoV-2-infected hamsters, SC31 treatment significantly prevented weight loss, reduced viral loads, and attenuated the histopathology of the lungs. In rhesus macaques, the therapeutic potential of SC31 was evidenced through the reduction of viral loads in both upper and lower respiratory tracts to undetectable levels. Together, the results of our preclinical studies demonstrated the therapeutic efficacy of SC31 in three different models and its potential as a COVID-19 therapeutic candidate.
Collapse
Affiliation(s)
- Conrad E. Z. Chan
- Biological Defence Programme, DSO National Laboratories, Singapore, Singapore
| | - Shirley G. K. Seah
- Biological Defence Programme, DSO National Laboratories, Singapore, Singapore
| | - De Hoe Chye
- Biological Defence Programme, DSO National Laboratories, Singapore, Singapore
| | - Shane Massey
- Department of Microbiology & Immunology and Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Maricela Torres
- Department of Microbiology & Immunology and Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Angeline P. C. Lim
- Biological Defence Programme, DSO National Laboratories, Singapore, Singapore
| | - Steven K. K. Wong
- Biological Defence Programme, DSO National Laboratories, Singapore, Singapore
| | - Jacklyn J. Y. Neo
- Biological Defence Programme, DSO National Laboratories, Singapore, Singapore
| | - Pui San Wong
- Biological Defence Programme, DSO National Laboratories, Singapore, Singapore
| | - Jie Hui Lim
- Biological Defence Programme, DSO National Laboratories, Singapore, Singapore
| | - Gary S. L. Loh
- Biological Defence Programme, DSO National Laboratories, Singapore, Singapore
| | - Dongling Wang
- Biological Defence Programme, DSO National Laboratories, Singapore, Singapore
| | | | - Siyu Guan
- Hummingbird Bioscience, Singapore, Singapore
| | | | - Guo Hui Teo
- Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Kiren Purushotorman
- Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Paul E. Hutchinson
- Life Science Institute, National University of Singapore, Singapore, Singapore
| | | | - Jenny G. Low
- Singapore General Hospital, Singapore, Singapore
- Programme in Emerging Infectious Disease, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Paul A. MacAry
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hannes Hentze
- Experimental Drug Development Centre, Therapeutics Development, A*STAR Research Entities (ARES), Singapore, Singapore
| | | | - Kantharaj Ethirajulu
- Experimental Drug Development Centre, Therapeutics Development, A*STAR Research Entities (ARES), Singapore, Singapore
| | - Jason E. Comer
- Department of Microbiology & Immunology and Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Chien-Te K. Tseng
- Department of Microbiology & Immunology and Center of Biodefense and Emerging Disease, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Alan D. T. Barrett
- Department of Pathology and Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States of America
| | | | - Trevor Brasel
- Department of Microbiology & Immunology and Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Brendon John Hanson
- Biological Defence Programme, DSO National Laboratories, Singapore, Singapore
| |
Collapse
|
189
|
Woopen C, Schleußner K, Akgün K, Ziemssen T. Approach to SARS-CoV-2 Vaccination in Patients With Multiple Sclerosis. Front Immunol 2021; 12:701752. [PMID: 34234787 PMCID: PMC8256163 DOI: 10.3389/fimmu.2021.701752] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022] Open
Abstract
For more than a year now, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been causing the coronavirus disease (COVID-19) pandemic with high mortality and detrimental effects on society, economy, and individual lives. Great hopes are being placed on vaccination as one of the most potent escape strategies from the pandemic and multiple vaccines are already in clinical use. However, there is still a lot of insecurity about the safety and efficacy of vaccines in patients with autoimmune diseases like multiple sclerosis (MS), especially under treatment with immunomodulatory or immunosuppressive drugs. We propose strategic approaches to SARS-CoV-2 vaccination management in MS patients and encourage fellow physicians to measure the immune response in their patients. Notably, both humoral and cellular responses should be considered since the immunological equivalent for protection from SARS-CoV-2 after infection or vaccination still remains undefined and will most likely involve antiviral cellular immunity. It is important to gain insights into the vaccine response of immunocompromised patients in order to be able to deduce sensible strategies for vaccination in the future.
Collapse
Affiliation(s)
| | | | | | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany
| |
Collapse
|
190
|
Wuertz KM, Barkei EK, Chen WH, Martinez EJ, Lakhal-Naouar I, Jagodzinski LL, Paquin-Proulx D, Gromowski GD, Swafford I, Ganesh A, Dong M, Zeng X, Thomas PV, Sankhala RS, Hajduczki A, Peterson CE, Kuklis C, Soman S, Wieczorek L, Zemil M, Anderson A, Darden J, Hernandez H, Grove H, Dussupt V, Hack H, de la Barrera R, Zarling S, Wood JF, Froude JW, Gagne M, Henry AR, Mokhtari EB, Mudvari P, Krebs SJ, Pekosz AS, Currier JR, Kar S, Porto M, Winn A, Radzyminski K, Lewis MG, Vasan S, Suthar M, Polonis VR, Matyas GR, Boritz EA, Douek DC, Seder RA, Daye SP, Rao M, Peel SA, Joyce MG, Bolton DL, Michael NL, Modjarrad K. A SARS-CoV-2 spike ferritin nanoparticle vaccine protects against heterologous challenge with B.1.1.7 and B.1.351 virus variants in Syrian golden hamsters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.06.16.448525. [PMID: 34159328 PMCID: PMC8219092 DOI: 10.1101/2021.06.16.448525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The emergence of SARS-CoV-2 variants of concern (VOC) requires adequate coverage of vaccine protection. We evaluated whether a spike ferritin nanoparticle vaccine (SpFN), adjuvanted with the Army Liposomal Formulation QS21 (ALFQ), conferred protection against the B.1.1.7 and B.1.351 VOCs in Syrian golden hamsters. SpFN-ALFQ was administered as either single or double-vaccination (0 and 4 week) regimens, using a high (10 μg) or low (0.2 μg) immunogen dose. Animals were intranasally challenged at week 11. Binding antibody responses were comparable between high- and low-dose groups. Neutralizing antibody titers were equivalent against WA1, B.1.1.7, and B.1.351 variants following two high dose two vaccinations. SpFN-ALFQ vaccination protected against SARS-CoV-2-induced disease and viral replication following intranasal B.1.1.7 or B.1.351 challenge, as evidenced by reduced weight loss, lung pathology, and lung and nasal turbinate viral burden. These data support the development of SpFN-ALFQ as a broadly protective, next-generation SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Kathryn McGuckin Wuertz
- U.S. Military HIV Research Program, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
| | - Erica K. Barkei
- Veterinary Pathology Division, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland USA
| | - Elizabeth J. Martinez
- Emerging Infectious Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland USA
| | - Ines Lakhal-Naouar
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland USA
- Diagnostics Countermeasures Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
| | - Linda L. Jagodzinski
- Diagnostics Countermeasures Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland USA
| | - Gregory D. Gromowski
- Virus Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
| | - Isabella Swafford
- U.S. Military HIV Research Program, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland USA
| | - Akshaya Ganesh
- U.S. Military HIV Research Program, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
- Oak Ridge Institute of Science and Education, Oak Ridge, Tennessee USA
| | - Ming Dong
- U.S. Military HIV Research Program, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland USA
| | - Xiankun Zeng
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland USA
| | - Paul V. Thomas
- Emerging Infectious Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland USA
| | - Rajeshwer S. Sankhala
- Emerging Infectious Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland USA
| | - Agnes Hajduczki
- Emerging Infectious Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland USA
| | - Caroline E. Peterson
- Emerging Infectious Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland USA
| | - Caitlin Kuklis
- Virus Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
| | - Sandrine Soman
- Virus Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
| | - Lindsay Wieczorek
- U.S. Military HIV Research Program, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland USA
| | - Michelle Zemil
- U.S. Military HIV Research Program, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland USA
| | - Alexander Anderson
- Emerging Infectious Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
- Oak Ridge Institute of Science and Education, Oak Ridge, Tennessee USA
| | - Janice Darden
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland USA
- Diagnostics Countermeasures Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
| | - Heather Hernandez
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland USA
- Diagnostics Countermeasures Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
| | - Hannah Grove
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland USA
- Diagnostics Countermeasures Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
| | - Vincent Dussupt
- U.S. Military HIV Research Program, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland USA
| | - Holly Hack
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland USA
- Diagnostics Countermeasures Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
| | - Rafael de la Barrera
- Pilot Bioproduction Facility, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
| | - Stasya Zarling
- Pilot Bioproduction Facility, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
| | - James F. Wood
- Pilot Bioproduction Facility, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
| | - Jeffrey W. Froude
- Pilot Bioproduction Facility, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
| | - Matthew Gagne
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland USA
| | - Amy R. Henry
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland USA
| | - Elham Bayat Mokhtari
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland USA
| | - Prakriti Mudvari
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland USA
| | - Shelly J. Krebs
- U.S. Military HIV Research Program, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland USA
| | - Andrew S. Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland USA
| | - Jeffrey R. Currier
- Virus Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
| | | | | | | | | | | | - Sandhya Vasan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland USA
| | - Mehul Suthar
- Emory Vaccine Center, Department of Pediatrics, Emory School of Medicine, Atlanta, Georgia USA
| | - Victoria R. Polonis
- U.S. Military HIV Research Program, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
| | - Gary R. Matyas
- U.S. Military HIV Research Program, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
| | - Eli A. Boritz
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland USA
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland USA
| | - Robert A. Seder
- Cellular Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland USA
| | - Sharon P. Daye
- One Health Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
| | - Mangala Rao
- U.S. Military HIV Research Program, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
| | - Sheila A. Peel
- Diagnostics Countermeasures Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
| | - M. Gordon Joyce
- Emerging Infectious Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland USA
- These authors contributed equally
| | - Diane L. Bolton
- U.S. Military HIV Research Program, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland USA
- These authors contributed equally
| | - Nelson L. Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
- These authors contributed equally
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, Maryland USA
- These authors contributed equally
| |
Collapse
|
191
|
Lee WS, Selva KJ, Davis SK, Wines BD, Reynaldi A, Esterbauer R, Kelly HG, Haycroft ER, Tan HX, Juno JA, Wheatley AK, Hogarth PM, Cromer D, Davenport MP, Chung AW, Kent SJ. Decay of Fc-dependent antibody functions after mild to moderate COVID-19. Cell Rep Med 2021; 2:100296. [PMID: 33997824 PMCID: PMC8106889 DOI: 10.1016/j.xcrm.2021.100296] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/26/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022]
Abstract
The capacity of antibodies to engage with immune cells via the Fc region is important in preventing and controlling many infectious diseases. The evolution of such antibodies during convalescence from coronavirus disease 2019 (COVID-19) is largely unknown. We develop assays to measure Fc-dependent antibody functions against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-expressing cells in serial samples from subjects primarily with mild-moderate COVID-19 up to 149 days post-infection. We find that S-specific antibodies capable of engaging Fcγ receptors decay over time, with S-specific antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP) activity within plasma declining accordingly. Although there is significant decay in ADCC and ADP activity, they remain readily detectable in almost all subjects at the last time point studied (94%) in contrast with neutralization activity (70%). Although it remains unclear the degree to which Fc effector functions contribute to protection against SARS-CoV-2 re-infection, our results indicate that antibodies with Fc effector functions persist longer than neutralizing antibodies.
Collapse
Affiliation(s)
- Wen Shi Lee
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kevin John Selva
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Samantha K. Davis
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Bruce D. Wines
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Hannah G. Kelly
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
| | - Ebene R. Haycroft
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jennifer A. Juno
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Adam K. Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
| | - P. Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Deborah Cromer
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Miles P. Davenport
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Amy W. Chung
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
192
|
Shiakolas AR, Kramer KJ, Wrapp D, Richardson SI, Schäfer A, Wall S, Wang N, Janowska K, Pilewski KA, Venkat R, Parks R, Manamela NP, Raju N, Fechter EF, Holt CM, Suryadevara N, Chen RE, Martinez DR, Nargi RS, Sutton RE, Ledgerwood JE, Graham BS, Diamond MS, Haynes BF, Acharya P, Carnahan RH, Crowe JE, Baric RS, Morris L, McLellan JS, Georgiev IS. Cross-reactive coronavirus antibodies with diverse epitope specificities and Fc effector functions. Cell Rep Med 2021; 2:100313. [PMID: 34056628 PMCID: PMC8139315 DOI: 10.1016/j.xcrm.2021.100313] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/17/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022]
Abstract
The continual emergence of novel coronaviruses (CoV), such as severe acute respiratory syndrome-(SARS)-CoV-2, highlights the critical need for broadly reactive therapeutics and vaccines against this family of viruses. From a recovered SARS-CoV donor sample, we identify and characterize a panel of six monoclonal antibodies that cross-react with CoV spike (S) proteins from the highly pathogenic SARS-CoV and SARS-CoV-2, and demonstrate a spectrum of reactivity against other CoVs. Epitope mapping reveals that these antibodies recognize multiple epitopes on SARS-CoV-2 S, including the receptor-binding domain, the N-terminal domain, and the S2 subunit. Functional characterization demonstrates that the antibodies mediate phagocytosis-and in some cases trogocytosis-but not neutralization in vitro. When tested in vivo in murine models, two of the antibodies demonstrate a reduction in hemorrhagic pathology in the lungs. The identification of cross-reactive epitopes recognized by functional antibodies expands the repertoire of targets for pan-coronavirus vaccine design strategies.
Collapse
Affiliation(s)
- Andrea R. Shiakolas
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kevin J. Kramer
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Simone I. Richardson
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Steven Wall
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nianshuang Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Katarzyna Janowska
- Division of Structural Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kelsey A. Pilewski
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rohit Venkat
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nelia P. Manamela
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Clinton M. Holt
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Rita E. Chen
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David R. Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Rachel S. Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel E. Sutton
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Julie E. Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael S. Diamond
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Priyamvada Acharya
- Division of Structural Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert H. Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Lynn Morris
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
- Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
193
|
Anand SP, Prévost J, Nayrac M, Beaudoin-Bussières G, Benlarbi M, Gasser R, Brassard N, Laumaea A, Gong SY, Bourassa C, Brunet-Ratnasingham E, Medjahed H, Gendron-Lepage G, Goyette G, Gokool L, Morrisseau C, Bégin P, Martel-Laferrière V, Tremblay C, Richard J, Bazin R, Duerr R, Kaufmann DE, Finzi A. Longitudinal analysis of humoral immunity against SARS-CoV-2 Spike in convalescent individuals up to 8 months post-symptom onset. Cell Rep Med 2021; 2:100290. [PMID: 33969322 PMCID: PMC8097665 DOI: 10.1016/j.xcrm.2021.100290] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/25/2021] [Accepted: 04/27/2021] [Indexed: 12/20/2022]
Abstract
With the recent approval of highly effective coronavirus disease 2019 (COVID-19) vaccines, functional and lasting immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently under investigation as antibody levels in plasma were shown to decline during convalescence. Since the absence of antibodies does not equate to absence of immune memory, we evaluate the presence of SARS-CoV-2-specific memory B cells in convalescent individuals. Here, we report a longitudinal assessment of humoral immune responses on 32 donors up to 8 months post-symptom onset. Our observations indicate that anti-Spike and anti-receptor binding domain (RBD) immunoglobulin M (IgM) in plasma decay rapidly, whereas the reduction of IgG is less prominent. Neutralizing activity also declines rapidly when compared to Fc-effector functions. Concomitantly, the frequencies of RBD-specific IgM+ B cells wane significantly when compared to RBD-specific IgG+ B cells, which remain stable. Our results add to the current understanding of immune memory following SARS-CoV-2 infection, which is critical for secondary infection prevention and vaccine efficacy.
Collapse
Affiliation(s)
- Sai Priya Anand
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Manon Nayrac
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | - Annemarie Laumaea
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Shang Yu Gong
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | | | - Elsa Brunet-Ratnasingham
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | | | | | - Laurie Gokool
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | | | - Philippe Bégin
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- CHU Ste-Justine, Montreal, QC H3T 1C5, Canada
| | - Valérie Martel-Laferrière
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Cécile Tremblay
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Renée Bazin
- Héma-Québec, Affaires Médicales et Innovation, Quebec, QC G1V 5C3, Canada
| | - Ralf Duerr
- Departments of Pathology and Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Daniel E. Kaufmann
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Médecine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Andrés Finzi
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| |
Collapse
|
194
|
Corti D, Purcell LA, Snell G, Veesler D. Tackling COVID-19 with neutralizing monoclonal antibodies. Cell 2021; 184:3086-3108. [PMID: 34087172 PMCID: PMC8152891 DOI: 10.1016/j.cell.2021.05.005] [Citation(s) in RCA: 240] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/25/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
Monoclonal antibodies (mAbs) have revolutionized the treatment of several human diseases, including cancer and autoimmunity and inflammatory conditions, and represent a new frontier for the treatment of infectious diseases. In the last 20 years, innovative methods have allowed the rapid isolation of mAbs from convalescent subjects, humanized mice, or libraries assembled in vitro and have proven that mAbs can be effective countermeasures against emerging pathogens. During the past year, an unprecedentedly large number of mAbs have been developed to fight coronavirus disease 2019 (COVID-19). Lessons learned from this pandemic will pave the way for the development of more mAb-based therapeutics for other infectious diseases. Here, we provide an overview of SARS-CoV-2-neutralizing mAbs, including their origin, specificity, structure, antiviral and immunological mechanisms of action, and resistance to circulating variants, as well as a snapshot of the clinical trials of approved or late-stage mAb therapeutics.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/immunology
- Angiotensin-Converting Enzyme 2/metabolism
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antibodies, Viral/therapeutic use
- COVID-19/pathology
- COVID-19/virology
- Humans
- SARS-CoV-2/immunology
- SARS-CoV-2/isolation & purification
- SARS-CoV-2/metabolism
- Spike Glycoprotein, Coronavirus/immunology
- COVID-19 Drug Treatment
Collapse
Affiliation(s)
- Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland.
| | | | | | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
195
|
Cimolai N. Passive Immunity Should and Will Work for COVID-19 for Some Patients. Clin Hematol Int 2021; 3:47-68. [PMID: 34595467 PMCID: PMC8432400 DOI: 10.2991/chi.k.210328.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
In the absence of effective antiviral chemotherapy and still in the context of emerging vaccines for severe acute respiratory syndrome-CoV-2 infections, passive immunotherapy remains a key treatment and possible prevention strategy. What might initially be conceived as a simplified donor-recipient process, the intricacies of donor plasma, IV immunoglobulins, and monoclonal antibody modality applications are becoming more apparent. Key targets of such treatment have largely focused on virus neutralization and the specific viral components of the attachment Spike protein and its constituents (e.g., receptor binding domain, N-terminal domain). The cumulative laboratory and clinical experience suggests that beneficial protective and treatment outcomes are possible. Both a dose- and a time-dependency emerge. Lesser understood are the concepts of bioavailability and distribution. Apart from direct antigen binding from protective immunoglobulins, antibody effector functions have potential roles in outcome. In attempting to mimic the natural but variable response to infection or vaccination, a strong functional polyclonal approach attracts the potential benefits of attacking antigen diversity, high antibody avidity, antibody persistence, and protection against escape viral mutation. The availability and ease of administration for any passive immunotherapy product must be considered in the current climate of need. There is never a perfect product, but yet there is considerable room for improving patient outcomes. Given the variability of human genetics, immunity, and disease, and given the nuances of the virus and its potential for change, passive immunotherapy can be developed that will be effective for some but not all patients. An understanding of such patient variability and limitations is just as important as the understanding of the direct interactions between immunotherapy and virus.
Collapse
Affiliation(s)
- Nevio Cimolai
- Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, Children’s and Women’s Health Centre of British Columbia, 4480 Oak Street, Vancouver, BC, Canada V6H 3V4
| |
Collapse
|
196
|
Cromer D, Juno JA, Khoury D, Reynaldi A, Wheatley AK, Kent SJ, Davenport MP. Prospects for durable immune control of SARS-CoV-2 and prevention of reinfection. Nat Rev Immunol 2021; 21:395-404. [PMID: 33927374 PMCID: PMC8082486 DOI: 10.1038/s41577-021-00550-x] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 12/16/2022]
Abstract
Immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is central to long-term control of the current pandemic. Despite our rapidly advancing knowledge of immune memory to SARS-CoV-2, understanding how these responses translate into protection against reinfection at both the individual and population levels remains a major challenge. An ideal outcome following infection or after vaccination would be a highly protective and durable immunity that allows for the establishment of high levels of population immunity. However, current studies suggest a decay of neutralizing antibody responses in convalescent patients, and documented cases of SARS-CoV-2 reinfection are increasing. Understanding the dynamics of memory responses to SARS-CoV-2 and the mechanisms of immune control are crucial for the rational design and deployment of vaccines and for understanding the possible future trajectories of the pandemic. Here, we summarize our current understanding of immune responses to and immune control of SARS-CoV-2 and the implications for prevention of reinfection.
Collapse
Affiliation(s)
- Deborah Cromer
- Kirby Institute, University of New South Wales, Sydney, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David Khoury
- Kirby Institute, University of New South Wales, Sydney, Australia
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Sydney, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| | | |
Collapse
|
197
|
Caniels TG, Bontjer I, van der Straten K, Poniman M, Burger JA, Appelman B, Lavell AHA, Oomen M, Godeke GJ, Valle C, Mögling R, van Willigen HDG, Wynberg E, Schinkel M, van Vught LA, Guerra D, Snitselaar JL, Chaturbhuj DN, Martin IC, Moore JP, de Jong MD, Reusken C, Sikkens JJ, Bomers MK, de Bree GJ, van Gils MJ, Eggink D, Sanders RW. Emerging SARS-CoV-2 variants of concern evade humoral immune responses from infection and vaccination. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 34100023 DOI: 10.1101/2021.05.26.21257441] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Emerging SARS-CoV-2 variants pose a threat to human immunity induced by natural infection and vaccination. We assessed the recognition of three variants of concern (B.1.1.7, B.1.351 and P.1) in cohorts of COVID-19 patients ranging in disease severity (n = 69) and recipients of the Pfizer/BioNTech vaccine (n = 50). Spike binding and neutralization against all three VOC was substantially reduced in the majority of samples, with the largest 4-7-fold reduction in neutralization being observed against B.1.351. While hospitalized COVID-19 patients and vaccinees maintained sufficient neutralizing titers against all three VOC, 39% of non-hospitalized patients did not neutralize B.1.351. Moreover, monoclonal neutralizing antibodies (NAbs) show sharp reductions in their binding kinetics and neutralizing potential to B.1.351 and P.1, but not to B.1.1.7. These data have implications for the degree to which pre-existing immunity can protect against subsequent infection with VOC and informs policy makers of susceptibility to globally circulating SARS-CoV-2 VOC.
Collapse
|
198
|
Lee CY, Lowen AC. Animal models for SARS-CoV-2. Curr Opin Virol 2021; 48:73-81. [PMID: 33906125 PMCID: PMC8023231 DOI: 10.1016/j.coviro.2021.03.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
Since its first detection in December 2019, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has rapidly spread worldwide, resulting in over 79.2 million documented cases in one year. Lack of pre-existing immunity against this newly emerging virus has pushed the urgent development of anti-viral therapeutics and vaccines to reduce the spread of the virus and alleviate disease. Appropriate animal models recapitulating the pathogenesis of and host responses to SARS-CoV-2 infection in humans have and will continue to accelerate this development process. Several animal models including mice, hamsters, ferrets, and non-human primates have been evaluated and actively applied in preclinical studies. However, since each animal model has unique features, it is necessary to weigh the strengths and weaknesses of each according to the goals of the study. Here, we summarize the key features, strengths and weaknesses of animal models for SARS-CoV-2, focusing on their application in anti-viral therapeutic and vaccine development.
Collapse
Affiliation(s)
- Chung-Young Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States; Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States.
| |
Collapse
|
199
|
Inchingolo AD, Dipalma G, Inchingolo AM, Malcangi G, Santacroce L, D’Oria MT, Isacco CG, Bordea IR, Candrea S, Scarano A, Morandi B, Del Fabbro M, Farronato M, Tartaglia GM, Balzanelli MG, Ballini A, Nucci L, Lorusso F, Taschieri S, Inchingolo F. The 15-Months Clinical Experience of SARS-CoV-2: A Literature Review of Therapies and Adjuvants. Antioxidants (Basel) 2021; 10:881. [PMID: 34072708 PMCID: PMC8226610 DOI: 10.3390/antiox10060881] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for the coronavirus disease of 2019 (COVID-19) that emerged in December 2019 in Wuhan, China, and rapidly spread worldwide, with a daily increase in confirmed cases and infection-related deaths. The World Health Organization declared a pandemic on the 11th of March 2020. COVID-19 presents flu-like symptoms that become severe in high-risk medically compromised subjects. The aim of this study was to perform an updated overview of the treatments and adjuvant protocols for COVID-19. METHODS A systematic literature search of databases was performed (MEDLINE PubMed, Google Scholar, UpToDate, Embase, and Web of Science) using the keywords: "COVID-19", "2019-nCoV", "coronavirus" and "SARS-CoV-2" (date range: 1 January 2019 to 31st October 2020), focused on clinical features and treatments. RESULTS The main treatments retrieved were antivirals, antimalarials, convalescent plasma, immunomodulators, corticosteroids, anticoagulants, and mesenchymal stem cells. Most of the described treatments may provide benefits to COVID-19 subjects, but no one protocol has definitively proven its efficacy. CONCLUSIONS While many efforts are being spent worldwide in research aimed at identifying early diagnostic methods and evidence-based effective treatments, mass vaccination is thought to be the best option against this disease in the near future.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (G.D.); (A.M.I.); (L.S.); (M.T.D.); (C.G.I.); (F.I.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (G.D.); (A.M.I.); (L.S.); (M.T.D.); (C.G.I.); (F.I.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (G.D.); (A.M.I.); (L.S.); (M.T.D.); (C.G.I.); (F.I.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (G.D.); (A.M.I.); (L.S.); (M.T.D.); (C.G.I.); (F.I.)
| | - Luigi Santacroce
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (G.D.); (A.M.I.); (L.S.); (M.T.D.); (C.G.I.); (F.I.)
| | - Maria Teresa D’Oria
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (G.D.); (A.M.I.); (L.S.); (M.T.D.); (C.G.I.); (F.I.)
- Department of Medical and Biological Sciences, University of Udine, Via delle Scienze, 206, 33100 Udine, Italy
| | - Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (G.D.); (A.M.I.); (L.S.); (M.T.D.); (C.G.I.); (F.I.)
- Research at Human Stem Cells Research Center HSC, Ho Chi Minh 70000, Vietnam
- Embryology and Regenerative Medicine and Immunology, Pham Chau Trinh University of Medicine Hoi An, Hoi An 70000, Vietnam
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania;
| | - Sebastian Candrea
- Department of Oral Rehabilitation, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania;
- Department of Pedodontics, County Hospital Cluj-Napoca, 400000 Cluj-Napoca, Romania
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Benedetta Morandi
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122 Milan, Italy; (B.M.); (M.D.F.); (M.F.); (G.M.T.); (S.T.)
- Dental Clinic, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122 Milan, Italy; (B.M.); (M.D.F.); (M.F.); (G.M.T.); (S.T.)
- Dental Clinic, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy
| | - Marco Farronato
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122 Milan, Italy; (B.M.); (M.D.F.); (M.F.); (G.M.T.); (S.T.)
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122 Milan, Italy; (B.M.); (M.D.F.); (M.F.); (G.M.T.); (S.T.)
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Mario Giosuè Balzanelli
- SET-118, Department of Pre-Hospital and Emergency-San Giuseppe Moscati Hospital, 74100 Taranto, Italy;
| | - Andrea Ballini
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Campus Universitario, University of Bari, 70125 Bari, Italy;
- Department of Precision Medicine, University of Campania, 80138 Naples, Italy
| | - Ludovica Nucci
- Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80100 Naples, Italy;
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Silvio Taschieri
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122 Milan, Italy; (B.M.); (M.D.F.); (M.F.); (G.M.T.); (S.T.)
- Dental Clinic, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy
- Department of Oral Surgery, Institute of Dentistry, I. M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (G.D.); (A.M.I.); (L.S.); (M.T.D.); (C.G.I.); (F.I.)
| |
Collapse
|
200
|
Keeler SP, Fox JM. Requirement of Fc-Fc Gamma Receptor Interaction for Antibody-Based Protection against Emerging Virus Infections. Viruses 2021; 13:v13061037. [PMID: 34072720 PMCID: PMC8226613 DOI: 10.3390/v13061037] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Identification of therapeutics against emerging and re-emerging viruses remains a continued priority that is only reinforced by the recent SARS-CoV-2 pandemic. Advances in monoclonal antibody (mAb) isolation, characterization, and production make it a viable option for rapid treatment development. While mAbs are traditionally screened and selected based on potency of neutralization in vitro, it is clear that additional factors contribute to the in vivo efficacy of a mAb beyond viral neutralization. These factors include interactions with Fc receptors (FcRs) and complement that can enhance neutralization, clearance of infected cells, opsonization of virions, and modulation of the innate and adaptive immune response. In this review, we discuss recent studies, primarily using mouse models, that identified a role for Fc-FcγR interactions for optimal antibody-based protection against emerging and re-emerging virus infections.
Collapse
Affiliation(s)
- Shamus P. Keeler
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Julie M. Fox
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Correspondence:
| |
Collapse
|