151
|
INVESTIGATION OF THE INFLUENCE OF WEATHER CONDITIONS OF THE VEGETATIONAL PERIOD FOR THE FORMATION OF THE NUTRIENT VALUE OF CAULIFLOWER. EUREKA: LIFE SCIENCES 2018. [DOI: 10.21303/2504-5695.2018.00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The influence of weather conditions of the vegetation period on the formation of the food value of cauliflower was studied.
Weather conditions of the vegetation period influenced the formation of the food value of cauliflower. More dry substances 8,4–15,5 % depending on a hybrid accumulated in a drying and hot 2017 year. The content of dry substances in heads of early ripen hybrids of cauliflower during 2015–2017 was within 6,1–10,9 % depending on a hybrid. In 2016 and 2017 there accumulated more of them. The more total content of sugars, saccharose formed in heads of cauliflower in 2015 and 2017. The content of ascorbic acid in early ripen hybrids was higher in 2015, which weather conditions in the period of ripening of heads were less drying comparing with other ones.
It was established, that the main sign-indicator is the content of dry substances that directly correlated with weather conditions of the vegetation period. The content of dry substances in heads of early ripen hybrids has a strong reverse connection with an air humidity in the period of head formation: r=–0,8‑0,93, and also strong direct connections with a sum of precipitation and HTC of the vegetation period. The content of dry soluble substances has a strong reverse connection with an air humidity: r=–0,7–0,97.
There was elaborated a regression equation that helps to prognosticate the total content of sugars, saccharose, reducing sugars in cauliflower heads depending on dry soluble substances.
It was established, that the duration of the vegetation period in hybrids, studied in average for three years, was not equal and varied from 72 days in a hybrid of Livingston F1 (control) to 83 days in hybrid Kul F1.
Collapse
|
152
|
Kc S, Liu M, Zhang Q, Fan K, Shi Y, Ruan J. Metabolic Changes of Amino Acids and Flavonoids in Tea Plants in Response to Inorganic Phosphate Limitation. Int J Mol Sci 2018; 19:ijms19113683. [PMID: 30469347 PMCID: PMC6274676 DOI: 10.3390/ijms19113683] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 11/16/2022] Open
Abstract
The qualities of tea (Camellia sinensis) are not clearly understood in terms of integrated leading molecular regulatory network mechanisms behind inorganic phosphate (Pi) limitation. Thus, the present work aims to elucidate transcription factor-dependent responses of quality-related metabolites and the expression of genes to phosphate (P) starvation. The tea plant organs were subjected to metabolomics analysis by GC×GC-TOF/MS and UPLC-Q-TOF/MS along with transcription factors and 13 metabolic genes by qRT-PCR. We found P starvation upregulated SPX2 and the change response of Pi is highly dependent on young shoots. This led to increased change in abundance of carbohydrates (fructose and glucose), amino acids in leaves (threonine and methionine), and root (phenylalanine, alanine, tryptophan, and tyrosine). Flavonoids and their glycosides accumulated in leaves and root exposed to P limitation was consistent with the upregulated expression of anthocyanidin reductase (EC 1.3.1.77), leucoanthocyanidin dioxygenase (EC 1.4.11.19) and glycosyltransferases (UGT78D1, UGT78D2 and UGT57L12). Despite the similar kinetics and high correlation response of Pi and SPX2 in young shoots, predominating theanine and other amino acids (serine, threonine, glutamate, valine, methionine, phenylalanine) and catechin (EGC, EGCG and CG) content displayed opposite changes in response to Pi limitation between Fengqing and Longjing-43 tea cultivars.
Collapse
Affiliation(s)
- Santosh Kc
- Graduate School of the Chinese Academy of Agricultural Sciences (GSCAAS), Zhongguancun Nandajie, Haidian, Beijing 100081, China.
- Tea Research Institute (TRICAAS), 9 Meiling South Road, Hangzhou 310008, China.
| | - Meiya Liu
- Tea Research Institute (TRICAAS), 9 Meiling South Road, Hangzhou 310008, China.
| | - Qunfeng Zhang
- Tea Research Institute (TRICAAS), 9 Meiling South Road, Hangzhou 310008, China.
| | - Kai Fan
- Tea Research Institute (TRICAAS), 9 Meiling South Road, Hangzhou 310008, China.
| | - Yuanzhi Shi
- Tea Research Institute (TRICAAS), 9 Meiling South Road, Hangzhou 310008, China.
| | - Jianyun Ruan
- Tea Research Institute (TRICAAS), 9 Meiling South Road, Hangzhou 310008, China.
| |
Collapse
|
153
|
Zhu L, Zhou Y, Li X, Zhao J, Guo N, Xing H. Metabolomics Analysis of Soybean Hypocotyls in Response to Phytophthora sojae Infection. FRONTIERS IN PLANT SCIENCE 2018; 9:1530. [PMID: 30405667 PMCID: PMC6206292 DOI: 10.3389/fpls.2018.01530] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/28/2018] [Indexed: 05/03/2023]
Abstract
Soybean is one of the most important economic and oil crops across the world. Phytophthora root rot (PRR), caused by Phytophthora sojae (P. sojae), is a major disease in most soybean-growing regions worldwide. Here, we investigated metabolic changes in hypocotyls of two soybean lines, Nannong 10-1 (resistant line, R) and 06-070583 (susceptible line, S), at two time points (12 and 36 hpi) after P. sojae infection and metabolic differences between the R line and the S line. In total, 90 differentially accumulated metabolites (DAMs) were identified after P. sojae infection; the levels of 50 metabolites differed between the R line and the S line. There are 28 DAMs that not only differentially accumulated between the R line and the S line but also differentially accumulated after P. sojae infection. Based on the changes of these DAMs in response to P. sojae infection in different lines and at different timepoints, and the differences in the contents of these DAMs between the R line and the S line, we speculated that DAMs, including sugars (monosaccharides and oligosaccharides), organic acids (oxalic acid, cumic acid), amino acid derivatives, and other secondary metabolites (mannitol, octanal, hypoxanthine, and daidzein etc.) may participate in the metabolic-level defense response of soybean to P. sojae. In this study, an integrated pathway-level analysis of transcriptomics (obtained by RNA-Seq) and metabolomics data illustrated the poor connections and interdependencies between the metabolic and transcriptional responses of soybean to P. sojae infection. This work emphasizes the value of metabolomic studies of plant-pathogen interactions and paves the way for future research of critical metabolic determinants of the soybean-P. sojae interaction.
Collapse
Affiliation(s)
| | | | | | | | - Na Guo
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Han Xing
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
154
|
Qian W, Xiao B, Wang L, Hao X, Yue C, Cao H, Wang Y, Li N, Yu Y, Zeng J, Yang Y, Wang X. CsINV5, a tea vacuolar invertase gene enhances cold tolerance in transgenic Arabidopsis. BMC PLANT BIOLOGY 2018; 18:228. [PMID: 30309330 PMCID: PMC6182829 DOI: 10.1186/s12870-018-1456-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/01/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Vacuolar invertases (VINs) have been reported to regulate plant growth and development and respond to abiotic stresses such as drought and cold. With our best knowledge, the functions of VIN genes little have been reported in tea plant (Camellia sinensis L.). Therefore, it is necessary to develop research in this field. RESULTS Here, we identified a VIN gene, CsINV5, which was induced by cold acclimation and sugar treatments in the tea plant. Histochemical assays results showed that the 1154 bp 5'-flanking sequence of CsINV5 drove β-glucuronidase (GUS) gene expression in roots, stems, leaves, flowers and siliques of transgenic Arabidopsis during different developmental stages. Moreover, promoter deletion analysis results revealed that an LTRE-related motif (CCGAAA) and a WBOXHVISO1 motif (TGACT) within the promoter region of CsINV5 were the core cis-elements in response to low temperature and sugar signaling, respectively. In addition, overexpression of CsINV5 in Arabidopsis promoted taproot and lateral root elongation through glucose-mediated effects on auxin signaling. Based on physiological and RNA-seq analysis, we found that overexpression of CsINV5 improved cold tolerance in transgenic Arabidopsis mainly by increasing the contents of glucose and fructose, the corresponding ratio of hexose to sucrose, and the transcription of osmotic-stress-related genes (P5CS1, P5CS2, AtLEA3, COR413-PM1 and COR15B) to adjust its osmotic potential. CONCLUSIONS Comprehensive experimental results suggest that overexpression of CsINV5 may enhance the cold tolerance of plant through the modification of cellular sugar compounds contents and osmotic regulation related pathways.
Collapse
Affiliation(s)
- Wenjun Qian
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong China
| | - Bin Xiao
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi China
| | - Lu Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xinyuan Hao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Chuan Yue
- Department of Tea Science, College of Horticulture, Fujian A & F University, Fuzhou, China
| | - Hongli Cao
- Department of Tea Science, College of Horticulture, Fujian A & F University, Fuzhou, China
| | - Yuchun Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Nana Li
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Youben Yu
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi China
| | - Jianming Zeng
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Yajun Yang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xinchao Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| |
Collapse
|
155
|
Köpnick C, Grübe M, Stock J, Senula A, Mock HP, Nagel M. Changes of soluble sugars and ATP content during DMSO droplet freezing and PVS3 droplet vitrification of potato shoot tips. Cryobiology 2018; 85:79-86. [PMID: 30257179 DOI: 10.1016/j.cryobiol.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/05/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
The potato's great genetic diversity needs to be maintained for future agricultural applications and can be preserved at ultra-low temperatures. To decipher detailed physiological processes, the aim of the study was to analyze the regrowth in 28 gene bank accessions and to reveal metabolite changes in a subset of four accessions that showed pronounced differences after shoot tip cryopreservation using DMSO droplet freezing and PVS3 droplet vitrification. Regrowth varied in all 28 genotypes ranging from 5% ('Kagiri') to 100% ('Karakter') and was higher after PVS3 droplet vitrification (71 ± 19%) than after cryopreservation using DMSO (54 ± 17%). Sucrose, glucose, and fructose were analyzed and showed significant increases after pre-culture in combination with PVS3 or DMSO and liquid nitrogen treatment and were reduced during regeneration. In contrast, adenosine triphosphate (ATP) reached its minimum concentration after cryoprotection and liquid nitrogen treatment and recovered most quickly after PVS3 droplet vitrification. A shortening of the explant pre-culture period reduced dramatically the regrowth after PVS3 vitrification. However, correlations between the shoot tip regrowth and sugar concentration were absent and significant at a low extent with ATP (r = 0.4, P < 0.01). Interestingly, several sub-cultivations of the donor plants from the previous stock affected negatively the regrowth. In conclusion, the cryopreservation protocol, genotypes, pre-culture period and number of sub-cultures affect the regrowth ability of explants, which was best estimated by the ATP concentration after low-temperature treatment. Due to the superior performance of PVS3, the routine potato cryopreservation at the Gatersleben gene bank was changed to PVS3 droplet vitrification.
Collapse
Affiliation(s)
- Claudia Köpnick
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstraße 3, 06466, Seeland, Germany
| | - Marion Grübe
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstraße 3, 06466, Seeland, Germany
| | - Johanna Stock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstraße 3, 06466, Seeland, Germany
| | - Angelika Senula
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstraße 3, 06466, Seeland, Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstraße 3, 06466, Seeland, Germany
| | - Manuela Nagel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstraße 3, 06466, Seeland, Germany.
| |
Collapse
|
156
|
Rezaee F, Lahouti M, Maleki M, Ganjeali A. Comparative proteomics analysis of whitetop (Lepidium draba L.) seedlings in response to exogenous glucose. Int J Biol Macromol 2018; 120:2458-2465. [PMID: 30193920 DOI: 10.1016/j.ijbiomac.2018.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/02/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022]
Abstract
In this research, a comparative proteomics approach was conducted to understand the physiological processes behind the sulforaphane formation in whitetop seedlings in response to exogenous glucose. Initially, 5-day-old whitetop seedlings were elicited by different concentrations (0, 166, 250, 277, 360 mM) of glucose for 72 h. According to the results, sulforaphane formation was influenced in a dose-dependent manner by glucose, and was maximized with the concentrations of 166 and 250 mM. Consequently, 2-dimensional gel electrophoresis was performed on the 166 mM glucose-elicited seedlings and it was shown that 25 protein spots were differentially expressed between glucose-elicited seedlings and control. Two hypothetical (were down-regulated) and 9 unique proteins (44% and 56% up- and down-regulated, respectively) were identified based on the Mass spectrometry analysis. According to the functional classification of the unique proteins, photosynthetic, chaperone, energy metabolism, signaling and sorting related proteins are marked in response to the glucose elicitation. This is the first report to successfully identify the Abscisic acid receptor PYR1-like and sorting nexin 1 isoform X1 by proteomics technique. In addition, the role of the sorting nexin 1 isoform X1 in the glucose-elicited whitetop seedling is reported for the first time.
Collapse
Affiliation(s)
- Fatemeh Rezaee
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehrdad Lahouti
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mahmood Maleki
- Department of Biotechnology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran
| | - Ali Ganjeali
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
157
|
Zhao X, Liu Y, Liu X, Jiang J. Comparative Transcriptome Profiling of Two Tomato Genotypes in Response to Potassium-Deficiency Stress. Int J Mol Sci 2018; 19:ijms19082402. [PMID: 30110976 PMCID: PMC6121555 DOI: 10.3390/ijms19082402] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 02/01/2023] Open
Abstract
Tomato is a crop that requires a sufficient supply of potassium (K) for optimal productivity and quality. K+-deficiency stress decreases tomato yield and quality. To further delve into the mechanism of the response to K+-deficiency and to screen out low-K+ tolerant genes in tomatoes, BGISEQ-500-based RNA sequencing was performed using two tomato genotypes (low-K+ tolerant JZ34 and low-K+ sensitive JZ18). We identified 1936 differentially expressed genes (DEGs) in JZ18 and JZ34 at 12 and 24 h after K+-deficiency treatment. According to the Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analyses, the DEGs that changed significantly primarily included transcription factors, transporters, kinases, oxidative stress proteins, and hormone signaling-and glycometabolism-related genes. The experimental results confirmed the induced expression of the responsive genes in the low-K+ signaling pathway. The largest group of DEGs comprised up to 110 oxidative stress-related genes. In total, 19 ethylene response factors (ERFs) demonstrated differential expression between JZ18 and JZ34 in response to K+-deficiency. Furthermore, we confirmed 20 DEGs closely related to K+-deficiency stress by quantitative RT-PCR (qRT-PCR), some of which affected the root configuration, these DEGs could be further studied for use as molecular targets to explore novel approaches, and to acquire more effective K acquisition efficiencies for tomatoes. A hypothesis involving possible cross-talk between phytohormone signaling cues and reactive oxygen species (ROS) leading to root growth in JZ34 is proposed. The results provide a comprehensive foundation for the molecular mechanisms involved in the response of tomatoes to low K+ stress.
Collapse
Affiliation(s)
- Xiaoming Zhao
- The Key Laboratory of Protected Horticulture Ministry of Education, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
- College of Agriculture, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Yang Liu
- The Key Laboratory of Protected Horticulture Ministry of Education, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xin Liu
- The Key Laboratory of Protected Horticulture Ministry of Education, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jing Jiang
- The Key Laboratory of Protected Horticulture Ministry of Education, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
158
|
Abid M, Ali S, Qi LK, Zahoor R, Tian Z, Jiang D, Snider JL, Dai T. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Sci Rep 2018. [PMID: 29545536 DOI: 10.1038/s41598-018-21441-21447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Defining the metabolic strategies used by wheat to tolerate and recover from drought events will be important for ensuring yield stability in the future, but studies addressing this critical research topic are limited. To this end, the current study quantified the physiological, biochemical, and agronomic responses of a drought tolerant and drought sensitive cultivar to periods of water deficit and recovery. Drought stress caused a reversible decline in leaf water relations, membrane stability, and photosynthetic activity, leading to increased reactive oxygen species (ROS) generation, lipid peroxidation and membrane injury. Plants exhibited osmotic adjustment through the accumulation of soluble sugars, proline, and free amino acids and increased enzymatic and non-enzymatic antioxidant activities. After re-watering, leaf water potential, membrane stability, photosynthetic processes, ROS generation, anti-oxidative activities, lipid peroxidation, and osmotic potential completely recovered for moderately stressed plants and did not fully recover in severely stressed plants. Higher photosynthetic rates during drought and rapid recovery after re-watering produced less-pronounced yield declines in the tolerant cultivar than the sensitive cultivar. These results suggested that the plant's ability to maintain functions during drought and to rapidly recover after re-watering during vegetative periods are important for determining final productivity in wheat.
Collapse
Affiliation(s)
- Muhammad Abid
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, 210095, P. R. China
- Department of Soil and water Conservation, Directorate General of Field, Narowal, 51800, Punjab, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Allama Iqbal Road 38000, Government College University, Faisalabad, Pakistan
| | - Lei Kang Qi
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, 210095, P. R. China
| | - Rizwan Zahoor
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, 210095, P. R. China
| | - Zhongwei Tian
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, 210095, P. R. China
| | - Dong Jiang
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, 210095, P. R. China
| | - John L Snider
- Department of Crop and Soil Sciences, University of Georgia, Tifton, Georgia, 31794, USA
| | - Tingbo Dai
- Key Laboratory of Crop Physiology, Ecology and Production Management, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, 210095, P. R. China.
| |
Collapse
|
159
|
Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Sci Rep 2018; 8:4615. [PMID: 29545536 PMCID: PMC5854670 DOI: 10.1038/s41598-018-21441-7] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 01/15/2018] [Indexed: 11/26/2022] Open
Abstract
Defining the metabolic strategies used by wheat to tolerate and recover from drought events will be important for ensuring yield stability in the future, but studies addressing this critical research topic are limited. To this end, the current study quantified the physiological, biochemical, and agronomic responses of a drought tolerant and drought sensitive cultivar to periods of water deficit and recovery. Drought stress caused a reversible decline in leaf water relations, membrane stability, and photosynthetic activity, leading to increased reactive oxygen species (ROS) generation, lipid peroxidation and membrane injury. Plants exhibited osmotic adjustment through the accumulation of soluble sugars, proline, and free amino acids and increased enzymatic and non-enzymatic antioxidant activities. After re-watering, leaf water potential, membrane stability, photosynthetic processes, ROS generation, anti-oxidative activities, lipid peroxidation, and osmotic potential completely recovered for moderately stressed plants and did not fully recover in severely stressed plants. Higher photosynthetic rates during drought and rapid recovery after re-watering produced less-pronounced yield declines in the tolerant cultivar than the sensitive cultivar. These results suggested that the plant’s ability to maintain functions during drought and to rapidly recover after re-watering during vegetative periods are important for determining final productivity in wheat.
Collapse
|
160
|
Wang W, Su X, Tian Z, Liu Y, Zhou Y, He M. Transcriptome profiling provides insights into dormancy release during cold storage of Lilium pumilum. BMC Genomics 2018; 19:196. [PMID: 29703130 PMCID: PMC6389108 DOI: 10.1186/s12864-018-4536-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/06/2018] [Indexed: 12/31/2022] Open
Abstract
Background Bulbs of the ornamental flower Lilium pumilum enter a period of dormancy after flowering in spring, and require exposure to cold for a period of time in order to release dormancy. Previous studies focused mainly on anatomical, physiological and biochemical changes during dormancy release. There are no dormancy studies of the northern cold-hardy wild species of Lilium at the molecular level. This study observed bulb cell and starch granule ultrastructures during cold storage; and analysed the transcriptome using sequencing. The combination of morphological and transcriptomic methods provides valuable insights into dormancy release during cold storage of Lilium pumilum. Results Ultrastructural changes reflected dormancy release during cold storage of the bulbs. We compared gene expression levels among samples at 0 (S1 stage), 30 (S2 stage), 60 (S3 stage) and 90 (S4 stage) d of cold storage, with 0 d as the control. The data showed that some regulatory pathways such as carbohydrate metabolism and plant hormone signal transduction were activated to break dormancy. Some differentially expressed genes (DEGs) related to antioxidant activity, epigenetic modification and transcription factors were induced to respond to low temperature conditions. These genes constituted a complex regulatory mechanism of dormancy release. Conclusions Cytological data related to dormancy regulation was obtained through histomorphological observation; transcriptome sequencing provided comprehensive sequences and digital gene expression tag profiling (DGE) data, and bulb cell ultrastructural changes were closely related to DEGs. The novel Lilium pumilum genetic information from this study provides a reference for the regulation of dormancy by genetic engineering using molecular biology tools. Electronic supplementary material The online version of this article (10.1186/s12864-018-4536-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wang Wang
- Northeast Forestry University, Harbin, China
| | - Xiaoxia Su
- Northeast Forestry University, Harbin, China
| | | | - Yu Liu
- Northeast Forestry University, Harbin, China
| | - Yunwei Zhou
- Northeast Forestry University, Harbin, China.
| | - Miao He
- Northeast Forestry University, Harbin, China.
| |
Collapse
|
161
|
Jing X, Wang H, Gong B, Liu S, Wei M, Ai X, Li Y, Shi Q. Secondary and sucrose metabolism regulated by different light quality combinations involved in melon tolerance to powdery mildew. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 124:77-87. [PMID: 29353685 DOI: 10.1016/j.plaphy.2017.12.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/09/2017] [Accepted: 12/29/2017] [Indexed: 06/07/2023]
Abstract
We evaluated the effect of different light combinations on powdery mildew resistance and growth of melon seedlings. Light-emitting diodes were used as the light source and there were five light combinations: white light (420-680 nm); blue light (460 nm); red light (635 nm); RB31 (ratio of red and blue light, 3: 1); and RB71 (ratio of red and blue light, 7: 1). Compared with other treatments, blue light significantly decreased the incidence of powdery mildew in leaves of melon seedlings. Under blue light, H2O2 showed higher accumulation, and the content of phenolics, flavonoid and tannins, as well as expression of the genes involved in synthesis of these substances, significantly increased compared with other treatments before and after infection. Lignin content and expression of the genes related to its synthesis were also induced by blue light before infection. Melon irradiated with RB31 light showed the best growth parameters. Compared with white light, red light and RB71, RB31 showed higher accumulation of lignin and lower incidence of powdery mildew. We conclude that blue light increases melon resistance to powdery mildew, which is dependent on the induction of secondary metabolism that may be related to H2O2 accumulation before infection. Induction of tolerance of melon seeds to powdery mildew by RB31 is due to higher levels of sucrose metabolism and accumulation of lignin.
Collapse
Affiliation(s)
- Xin Jing
- College of Horticulture Science and Engineering, Shandong Agricultural University, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, China
| | - Hui Wang
- Qilu University of Technology, China
| | - Biao Gong
- College of Horticulture Science and Engineering, Shandong Agricultural University, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, China
| | - Shiqi Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, China
| | - Min Wei
- College of Horticulture Science and Engineering, Shandong Agricultural University, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, China
| | - Xizhen Ai
- College of Horticulture Science and Engineering, Shandong Agricultural University, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, China
| | - Yan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, China
| | - Qinghua Shi
- College of Horticulture Science and Engineering, Shandong Agricultural University, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, China.
| |
Collapse
|
162
|
Xu ZR, Cai SW, Huang WX, Liu RX, Xiong ZT. Differential expression of vacuolar and defective cell wall invertase genes in roots and seeds of metalliferous and non-metalliferous populations of Rumex dentatus under copper stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:17-25. [PMID: 28822946 DOI: 10.1016/j.ecoenv.2017.08.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
Acid invertase activities in roots and young seeds of a metalliferous population (MP) of Rumex dentatus were previously observed to be significantly higher than those of a non-metalliferous population (NMP) under Cu stress. To date, no acid invertase gene has been cloned from R. dentatus. Here, we isolated four full-length cDNAs from the two populations of R. dentatus, presumably encoding cell wall (RdnCIN1 and RdmCIN1 from the NMP and MP, respectively) and vacuolar invertases (RdnVIN1 and RdmVIN1 from the NMP and MP, respectively). Unexpectedly, RdnCIN1 and RdmCIN1 most likely encode special defective invertases with highly attenuated sucrose-hydrolyzing capacity. The transcript levels of RdmCIN1 were significantly higher than those of RdnCIN1 in roots and young seeds under Cu stress, whereas under control conditions, the former was initially lower than the latter. Unexpected high correlations were observed between the transcript levels of RdnCIN1 and RdmCIN1 and the activity of cell wall invertase, even though RdnCIN1 and RdmCIN1 do not encode catalytically active invertases. Similarly, the transcript levels of RdmVIN1 in roots and young seeds were increased under Cu stress, whereas those of RdnVIN1 were decreased. The high correlations between the transcript levels of RdnVIN1 and RdmVIN1 and the activity of vacuolar invertase indicate that RdnVIN1 and RdmVIN1 might control distinct vacuolar invertase activities in the two populations. Moreover, a possible indirect role for acid invertases in Cu tolerance, mediated by generating a range of sugars used as nutrients and signaling molecules, is discussed.
Collapse
Affiliation(s)
- Zhong-Rui Xu
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Shen-Wen Cai
- College of Resources and Environment, Zunyi Normal College, Zunyi, Guizhou, People's Republic of China
| | - Wu-Xing Huang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Rong-Xiang Liu
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhi-Ting Xiong
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
163
|
Duvane JA, Jorge TF, Maquia I, Ribeiro N, Ribeiro-Barros AIF, António C. Characterization of the Primary Metabolome of Brachystegia boehmii and Colophospermum mopane under Different Fire Regimes in Miombo and Mopane African Woodlands. FRONTIERS IN PLANT SCIENCE 2017; 8:2130. [PMID: 29312388 PMCID: PMC5735074 DOI: 10.3389/fpls.2017.02130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
Miombo and Mopane are ecological and economic important woodlands from Africa, highly affected by a combination of climate change factors, and anthropogenic fires. Although most species of these ecosystems are fire tolerant, the mechanisms that lead to adaptive responses (metabolic reconfiguration) are unknown. In this context, the aim of this study was to characterize the primary metabolite composition of typical legume trees from these ecosystems, namely, Brachystegia boehmii (Miombo) and Colophospermum mopane (Mopane) subjected to different fire regimes. Fresh leaves from each species were collected in management units and landscapes across varied fire frequencies in the Niassa National Reserve (NNR) and Limpopo National Park (LNP) in Mozambique. Primary metabolites were extracted and analyzed with a well-established gas chromatography time-of-flight mass spectrometry metabolomics platform (GC-TOF-MS). In B. boehmii, 39 primary metabolites were identified from which seven amino acids, two organic acids and two sugars increased significantly, whereas in C. mopane, 41 primary metabolites were identified from which eight amino acids, one sugar and two organic acids significantly increased with increasing fire frequency. The observed changes in the pool of metabolites of C. mopane might be related to high glycolytic and tricarboxylic acid (TCA) rate, which provided increased levels of amino acids and energy yield. In B. boehmii, the high levels of amino acids might be due to inhibition of protein biosynthesis. The osmoprotectant and reactive oxygen species (ROS) scavenging properties of accumulated metabolites in parallel with a high-energy yield might support plants survival under fire stress.
Collapse
Affiliation(s)
- Jossias A. Duvane
- Faculty of Sciences, Eduardo Mondlane University, Maputo, Mozambique
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Tiago F. Jorge
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Natasha Ribeiro
- Faculty of Agronomy and Forest Engineering, Eduardo Mondlane University, Maputo, Mozambique
| | - Ana I. F. Ribeiro-Barros
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Plant Stress and Biodiversity Laboratory, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Carla António
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
164
|
Ban Q, Wang X, Pan C, Wang Y, Kong L, Jiang H, Xu Y, Wang W, Pan Y, Li Y, Jiang C. Comparative analysis of the response and gene regulation in cold resistant and susceptible tea plants. PLoS One 2017; 12:e0188514. [PMID: 29211766 PMCID: PMC5718485 DOI: 10.1371/journal.pone.0188514] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/08/2017] [Indexed: 12/04/2022] Open
Abstract
Cold environment is the main constraint for tea plants (Camellia sinensis) distribution and tea farming. We identified two tea cultivars, called var. sinensis cv. Shuchazao (SCZ) with a high cold-tolerance and var. assamica cv. Yinghong9 (YH9) with low cold-tolerance. To better understand the response mechanism of tea plants under cold stress for improving breeding, we compared physiological and biochemical responses, and associated genes expression in response to 7-day and 14-day cold acclimation, followed by 7-day de-acclimation in these two tea cultivars. We found that the low EL50, low Fv/Fm, and high sucrose and raffinose accumulation are responsible for higher cold tolerance in SCZ comparing with YH9. We then measured the expression of 14 key homologous genes, known as involved in these responses in other plants, for each stages of treatment in both cultivars using RT-qPCR. Our results suggested that the increased expression of CsCBF1 and CsDHNs coupling with the accumulation of sucrose play key roles in conferring higher cold resistance in SCZ. Our findings have revealed key genes regulation responsible for cold resistance, which help to understand the cold-resistant mechanisms and guide breeding in tea plants.
Collapse
Affiliation(s)
- Qiuyan Ban
- State Key Laboratory of Tea Plant Biology and Utilization/key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, Hefei City, Anhui Province, PR China
| | - Xuewen Wang
- State Key Laboratory of Tea Plant Biology and Utilization/key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, Hefei City, Anhui Province, PR China.,Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Cheng Pan
- State Key Laboratory of Tea Plant Biology and Utilization/key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, Hefei City, Anhui Province, PR China
| | - Yiwei Wang
- State Key Laboratory of Tea Plant Biology and Utilization/key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, Hefei City, Anhui Province, PR China
| | - Lei Kong
- State Key Laboratory of Tea Plant Biology and Utilization/key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, Hefei City, Anhui Province, PR China
| | - Huiguang Jiang
- State Key Laboratory of Tea Plant Biology and Utilization/key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, Hefei City, Anhui Province, PR China
| | - Yiqun Xu
- State Key Laboratory of Tea Plant Biology and Utilization/key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, Hefei City, Anhui Province, PR China
| | - Wenzhi Wang
- State Key Laboratory of Tea Plant Biology and Utilization/key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, Hefei City, Anhui Province, PR China
| | - Yuting Pan
- State Key Laboratory of Tea Plant Biology and Utilization/key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, Hefei City, Anhui Province, PR China
| | - Yeyun Li
- State Key Laboratory of Tea Plant Biology and Utilization/key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, Hefei City, Anhui Province, PR China
| | - Changjun Jiang
- State Key Laboratory of Tea Plant Biology and Utilization/key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, Hefei City, Anhui Province, PR China.,Henan Provincial Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, Henan Province, PR China
| |
Collapse
|
165
|
The mechanism for cleavage of three typical glucosidic bonds induced by hydroxyl free radical. Carbohydr Polym 2017; 178:34-40. [DOI: 10.1016/j.carbpol.2017.09.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 01/16/2023]
|
166
|
Rais A, Jabeen Z, Shair F, Hafeez FY, Hassan MN. Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. PLoS One 2017; 12:e0187412. [PMID: 29161274 PMCID: PMC5697883 DOI: 10.1371/journal.pone.0187412] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022] Open
Abstract
Plant growth promoting rhizobacteria (PGPR) are found to control the plant diseases by adopting various mechanisms. Induced systemic resistance (ISR) is an important defensive strategy manifested by plants against numerous pathogens especially infecting at aerial parts. Rhizobacteria elicit ISR by inducing different pathways in plants through production of various metabolites. In the present study, potential of Bacillus spp. KFP-5, KFP-7, KFP-17 was assessed to induce antioxidant enzymes against Pyricularia oryzae infection in rice. The antagonistic Bacillus spp. significantly induced antioxidant defense enzymes i-e superoxide dismutase (1.7–1.9-fold), peroxidase (3.5–4.1-fold), polyphenol oxidase (3.0–3.8-fold), phenylalanine ammonia-lyase (3.9–4.4-fold), in rice leaves and roots under hydroponic and soil conditions respectively. Furthermore, the antagonistic Bacillus spp significantly colonized the rice plants (2.0E+00–9.1E+08) and secreted multiple biocontrol determinants like protease (1.1–5.5 U/mg of soil or U/mL of hydroponic solution), glucanase, (1.0–1.3 U/mg of soil or U/mL of hydroponic solution), siderophores (6.5–42.8 μg/mL or mg) in the rhizosphere of different rice varieties. The results showed that treatment with Bacillus spp. enhanced the antioxidant defense activities in infected rice, thus alleviating P. oryzae induced oxidative damage and suppressing blast disease incidence.
Collapse
Affiliation(s)
- Afroz Rais
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
| | - Zahra Jabeen
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
| | - Faluk Shair
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
| | - Fauzia Yusuf Hafeez
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
| | - Muhammad Nadeem Hassan
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
- * E-mail:
| |
Collapse
|
167
|
He M, Yan Y, Pei F, Wu M, Gebreluel T, Zou S, Wang C. Improvement on lipid production by Scenedesmus obliquus triggered by low dose exposure to nanoparticles. Sci Rep 2017; 7:15526. [PMID: 29138451 PMCID: PMC5686080 DOI: 10.1038/s41598-017-15667-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/26/2017] [Indexed: 11/09/2022] Open
Abstract
Carbon nanotubes (CNTs), α-Fe2O3 nanoparticles (nano Fe2O3) and MgO nanoparticles (nano MgO) were evaluated for the effects on algae growth and lipid production. Nano Fe2O3 promoted cell growth in the range of 0-20 mg·L-1. CNTs, nano Fe2O3 and nano MgO inhibited cell growth of Scenedesmus obliquus at 10, 40 and 0.8 mg·L-1 respectively. Neutral lipid and total lipid content increased with the increasing concentration of all tested nanoparticles. The maximum lipid productivity of cultures exposed to CNTs, nano Fe2O3 and nano MgO was observed at 5 mg·L-1, 5 mg·L-1 and 40 mg·L-1, with the improvement by 8.9%, 39.6% and 18.5%. High dose exposure to nanoparticles limited increase in lipid productivity, possibly due to the repression on cell growth caused by nanoparticles-catalyzed reactive oxygen species (ROS) generation, finally leading to reduction in biomass and lipid production. Reduced accumulation of fatty acids of C18:3n3, C18:3n6 and C20:2 was observed in cells exposed to nanoparticles.
Collapse
Affiliation(s)
- Meilin He
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongquan Yan
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Pei
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingzhu Wu
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Temesgen Gebreluel
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shanmei Zou
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changhai Wang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
168
|
Turetschek R, Desalegn G, Epple T, Kaul HP, Wienkoop S. Key metabolic traits of Pisum sativum maintain cell vitality during Didymella pinodes infection: cultivar resistance and the microsymbionts' influence. J Proteomics 2017; 169:189-201. [PMID: 28268116 DOI: 10.1016/j.jprot.2017.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 12/17/2022]
Abstract
Ascochyta blight causes severe losses in field pea production and the search for resistance traits towards the causal agent Didymella pinodes is of particular importance for farmers. Various microsymbionts have been reported to shape the plants' immune response. However, regardless their contribution to resistance, they are hardly included in experimental designs. We delineate the effect of symbionts (rhizobia, mycorrhiza) on the leaf proteome and metabolome of two field pea cultivars with varying resistance levels against D. pinodes and, furthermore, show cultivar specific symbiont colonisation efficiency. The pathogen infection showed a stronger influence on the interaction with the microsymbionts in the susceptible cultivar, which was reflected in decreased nodule weight and root mycorrhiza colonisation. Vice versa, symbionts induced variation of the host's infection response which, however, was overruled by genotypic resistance associated traits of the tolerant cultivar such as maintenance of photosynthesis and provision of sugars and carbon back bones to fuel secondary metabolism. Moreover, resistance appears to be linked to sulphur metabolism, a functional glutathione-ascorbate hub and fine adjustment of jasmonate and ethylene synthesis to suppress induced cell death. We conclude that these metabolic traits are essential for sustainment of cell vitality and thus, a more efficient infection response. SIGNIFICANCE The infection response of two Pisum sativum cultivars with varying resistance levels towards Didymella pinodes was analysed most comprehensively at proteomic and metabolomic levels. Enhanced tolerance was linked to newly discovered cultivar specific metabolic traits such as hormone synthesis and presumably suppression of cell death.
Collapse
Affiliation(s)
- Reinhard Turetschek
- University of Vienna, Department of Ecogenomics and Systems Biology, Austria
| | - Getinet Desalegn
- University of Natural Resources and Life Sciences, Department of Crop Sciences, Austria
| | - Tamara Epple
- University of Vienna, Department of Ecogenomics and Systems Biology, Austria
| | - Hans-Peter Kaul
- University of Natural Resources and Life Sciences, Department of Crop Sciences, Austria
| | - Stefanie Wienkoop
- University of Vienna, Department of Ecogenomics and Systems Biology, Austria.
| |
Collapse
|
169
|
Liu D, Yang L, Luo M, Wu Q, Liu S, Liu Y. Molecular cloning and characterization of PtrZPT2-1, a ZPT2 family gene encoding a Cys2/His2-type zinc finger protein from trifoliate orange (Poncirus trifoliata (L.) Raf.) that enhances plant tolerance to multiple abiotic stresses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:66-78. [PMID: 28818385 DOI: 10.1016/j.plantsci.2017.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 05/20/2023]
Abstract
In plants, most Cys2/His2 (C2H2) zinc finger proteins with two zinc finger domains (ZPT2) are involved in abiotic stress responses. In this study, a ZPT2 family gene PtrZPT2-1 was cloned from trifoliate orange (Poncirus trifoliata (L.) Raf.). PtrZPT2-1 is composed of 245 amino acids, has a putative molecular weight of 25.99kDa and an isoelectric point of 8.41. PtrZPT2-1 contained two C2H2 zinc finger domains, one nuclear localization signal (B-box), one transcription repression domain (DLN-box), and one protein-protein interaction domain (L-box). PtrZPT2-1 was localized to the nucleus. The PtrZPT2-1 expression was strongly induced by cold, drought, salt and ABA stresses. Overexpression of PtrZPT2-1 increased the survival rates, and the ABA, soluble sugar and proline levels but decreased the ion leakage, the malondialdehyde (MDA) content and reduced the H2O2 accumulation in the transgenic tobacco after cold, drought or salt treatments. Furthermore, the expression levels of 15 abiotic stress-related genes were significantly increased in the transgenic tobacco overexpressing PtrZPT2-1 after cold, drought or salt stress treatments. Our results indicated that overexpression of PtrZPT2-1 in the transgenic tobacco could improve the cold, drought and salt resistance of the plants by increasing the levels of osmotic regulatory solutes and decreasing the accumulation of H2O2.
Collapse
Affiliation(s)
- Dechun Liu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Li Yang
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Man Luo
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qi Wu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shanbei Liu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yong Liu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
170
|
Battaglia ME, Martin MV, Lechner L, Martínez-Noël GMA, Salerno GL. The riddle of mitochondrial alkaline/neutral invertases: A novel Arabidopsis isoform mainly present in reproductive tissues and involved in root ROS production. PLoS One 2017; 12:e0185286. [PMID: 28945799 PMCID: PMC5612693 DOI: 10.1371/journal.pone.0185286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/08/2017] [Indexed: 01/18/2023] Open
Abstract
Alkaline/neutral invertases (A/N-Inv), glucosidases that irreversibly hydrolyze sucrose into glucose and fructose, play significant roles in plant growth, development, and stress adaptation. They occur as multiple isoforms located in the cytosol or organelles. In Arabidopsis thaliana, two mitochondrial A/N-Inv genes (A/N-InvA and A/N-InvC) have already been investigated. In this study, we functionally characterized A/N-InvH, a third Arabidopsis gene coding for a mitochondrial-targeted protein. The phenotypic analysis of knockout mutant plants (invh) showed a severely reduced shoot growth, while root development was not affected. The emergence of the first floral bud and the opening of the first flower were the most affected stages, presenting a significant delay. A/N-InvH transcription is markedly active in reproductive tissues. It is also expressed in the elongation and apical meristem root zones. Our results show that A/N-InvH expression is not evident in photosynthetic tissues, despite being of relevance in developmental processes and mitochondrial functional status. NaCl and mannitol treatments increased A/N-InvH expression twofold in the columella root cap. Moreover, the absence of A/N-InvH prevented ROS formation, not only in invh roots of salt- and ABA-treated seedlings but also in invh control roots. We hypothesize that this isoform may take part in the ROS/sugar (sucrose or its hydrolysis products) signaling pathway network, involved in reproductive tissue development, cell elongation, and abiotic stress responses.
Collapse
Affiliation(s)
- Marina E. Battaglia
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina
| | - María Victoria Martin
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina
| | - Leandra Lechner
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina
| | - Giselle M. A. Martínez-Noël
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina
| | - Graciela L. Salerno
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina
| |
Collapse
|
171
|
Rozentsvet O, Kosobryukhov A, Zakhozhiy I, Tabalenkova G, Nesterov V, Bogdanova E. Photosynthetic parameters and redox homeostasis of Artemisia santonica L. under conditions of Elton region. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:385-393. [PMID: 28710946 DOI: 10.1016/j.plaphy.2017.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Structural and functional parameters and redox homeostasis in leaves of Artemisia santonica L. under environment conditions of Elton lake (the southeast region of the European part of Russia) were measured. The highest photosynthetic apparatus (PA) activity in A. santonica leaves on CO2 gas exchange as well as the highest content of green pigments was observed in the morning. Maximum share of violaxanthin cycle key pigments - zeaxanthin (Zx) and antheraxanthin (Ax) was observed in the afternoon and decreased in the evening. Lipids/chlorophyll (Chl) ratio increased in the evening due to the decrease in Chl concentration, and content of linolenic acid (С18:3n3) was decreased in the middle of the day. The content of TBA-reacting products increased 1.4-fold in the middle of the day, and decreased approximately 2-fold in the evening. The decrease of the activity was observed in diurnal dynamics of superoxide dismutase (SOD) and polyphenol oxidase (PPO). Increased accumulation of phenols and flavonoids, as well as free amino acids (FAA) in A. santonica leaves was observed in the middle of the day. Thus, the ability of A. santonica plants to resist the soil salinization, high levels of solar illumination and temperature consists of a number of protectively-adaptive reactions of metabolic and photosynthetic control.
Collapse
Affiliation(s)
- Olga Rozentsvet
- Institute of Ecology of the Volga River Basin, Russian Academy of Sciences, 10 Komzina St., 445003 Togliatti, Russia.
| | - Anatoly Kosobryukhov
- Institute of Basic Biological Problems, Russian Academy of Sciences, 2 Institutskaya St., 142290 Pushchino, Moscow region, Russia
| | - Ilya Zakhozhiy
- Institute of Biology of the Komi Science Centre of the Ural Division, Russian Academy of Sciences, 8 Kommunisticheskaya St., 167982 Syktyvkar, Komi Republic, Russia
| | - Galina Tabalenkova
- Institute of Biology of the Komi Science Centre of the Ural Division, Russian Academy of Sciences, 8 Kommunisticheskaya St., 167982 Syktyvkar, Komi Republic, Russia
| | - Viktor Nesterov
- Institute of Ecology of the Volga River Basin, Russian Academy of Sciences, 10 Komzina St., 445003 Togliatti, Russia
| | - Elena Bogdanova
- Institute of Ecology of the Volga River Basin, Russian Academy of Sciences, 10 Komzina St., 445003 Togliatti, Russia
| |
Collapse
|
172
|
Chardin C, Schenk ST, Hirt H, Colcombet J, Krapp A. Review: Mitogen-Activated Protein Kinases in nutritional signaling in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 260:101-108. [PMID: 28554467 DOI: 10.1016/j.plantsci.2017.04.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/31/2017] [Accepted: 04/10/2017] [Indexed: 05/18/2023]
Abstract
Mitogen-Activated Protein Kinase (MAPK) cascades are functional modules widespread among eukaryotic organisms. In plants, these modules are encoded by large multigenic families and are involved in many biological processes ranging from stress responses to cellular differentiation and organ development. Furthermore, MAPK pathways are involved in the perception of environmental and physiological modifications. Interestingly, some MAPKs play a role in several signaling networks and could have an integrative function for the response of plants to their environment. In this review, we describe the classification of MAPKs and highlight some of their biochemical actions. We performed an in silico analysis of MAPK gene expression in response to nutrients supporting their involvement in nutritional signaling. While several MAPKs have been identified as players in sugar, nitrogen, phosphate, iron and potassium-related signaling pathways, their biochemical functions are yet mainly unknown. The integration of these regulatory cascades in the current understanding of nutrient signaling is discussed and potential new avenues for approaches toward plants with higher nutrient use efficiencies are evoked.
Collapse
Affiliation(s)
- Camille Chardin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Sebastian T Schenk
- Institute of Plant Sciences Paris-Saclay, INRA/CNRS/Université Paris Sud/Université Paris Diderot/Université d'Evry Val d'Essonne, Orsay, France.
| | - Heribert Hirt
- Institute of Plant Sciences Paris-Saclay, INRA/CNRS/Université Paris Sud/Université Paris Diderot/Université d'Evry Val d'Essonne, Orsay, France; Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Jean Colcombet
- Institute of Plant Sciences Paris-Saclay, INRA/CNRS/Université Paris Sud/Université Paris Diderot/Université d'Evry Val d'Essonne, Orsay, France.
| | - Anne Krapp
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| |
Collapse
|
173
|
Ahanger MA, Agarwal RM. Potassium up-regulates antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L). PROTOPLASMA 2017; 254:1471-1486. [PMID: 27783181 DOI: 10.1007/s00709-016-1037-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/19/2016] [Indexed: 05/22/2023]
Abstract
Pot experiments were conducted to find out the effectivity of K on Triticum aestivum L cultivars. Polyethylene glycol 6000 (PEG 6000) was used as an osmoticum to induce osmotic stress under sand culture setting up the water potential of external solution at -3 and -5 bars. In pots, plants were raised under restricted and normal irrigation and K was applied in varying doses (0, 20, 40, 60 kg ha-1) and estimation of different physiological and biochemical parameters was done at two developmental stages, i.e., preflowering and flowering. Supplementation of K resulted in obvious increase in growth and activity of antioxidant enzymes in both normal and stressed plants. Added potassium increased total phenols and tannins thereby strengthening the components of both the enzymatic as well as non-enzymatic antioxidant system. Under both normal and stressed conditions, K-fed plants experienced significant increase in the synthesis of osmolytes like free proline, amino acids, and sugars which assumes special significance in growth under water stress conditions. Wheat plants accumulating greater K were able to counteract the water stress-induced changes by maintaining lower Na/K ratio.
Collapse
Affiliation(s)
| | - R M Agarwal
- School of Studies in Botany, Jiwaji University, Gwalior, 474011, India
| |
Collapse
|
174
|
Ahanger MA, Agarwal RM. Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by potassium supplementation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:449-460. [PMID: 28478373 DOI: 10.1016/j.plaphy.2017.04.017] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 05/21/2023]
Abstract
Experiments were conducted on two wheat (Triticum aestivum L) cultivars exposed to NaCl stress with and without potassium (K) supplementation. Salt stress induced using NaCl caused oxidative stress resulting into enhancement in lipid peroxidation and altered growth as well as yield. Added potassium led to significant improvement in growth having positive effects on the attributes including nitrogen and antioxidant metabolism. NaCl-induced stress triggered the antioxidant defence system nevertheless, the activity of antioxidant enzymes and the content of non-enzymatic antioxidants increased in K fed plants. Enhancement in the accumulation of osmolytes comprising free proline, sugars and amino acids was observed at both the developmental stages with K supplementation associated with improvement of the relative water content and ultimately yield. Potassium significantly increased uptake and assimilation of nitrogen with concomitant reduction in the Na ions and consequently Na/K ratio. Optimal K can be used as a potential tool for alleviating NaCl stress in wheat to some extent.
Collapse
Affiliation(s)
| | - R M Agarwal
- School of Studies in Botany, Jiwaji University Gwalior, MP, India
| |
Collapse
|
175
|
Kuang Y, Xu Y, Zhang L, Hou E, Shen W. Dominant Trees in a Subtropical Forest Respond to Drought Mainly via Adjusting Tissue Soluble Sugar and Proline Content. FRONTIERS IN PLANT SCIENCE 2017; 8:802. [PMID: 28555153 PMCID: PMC5430076 DOI: 10.3389/fpls.2017.00802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/28/2017] [Indexed: 05/23/2023]
Abstract
It is well-known that drought has considerable effects on plant traits from leaf to ecosystem scales; however, little is known about the relative contributions of various traits within or between tree species in determining the plant's sensitivity or the tolerance to drought under field conditions. We conducted a field throughfall exclusion experiment to simulate short-term drought (∼67% throughfall exclusion during the dry season from October to March) and prolonged drought (∼67% throughfall exclusion prolonging the dry season from October to May) and to understand the effects of drought on two dominant tree species (Michelia macclurei and Schima superba) in subtropical forests of southern China. The morphological, physiological, and nutritional responses of the two species to the two types of drought were determined. There were significantly different morphological (leaf max length, max width, leaf mass per area), physiological (leaf proline) and nutritional (P, S, N, K, Ca, Mg) responses by M. macclurei and S. superba to prolonged drought. Comparison between the drought treatments for each species indicated that the trees responded species-specifically to the short-term and prolonged drought, with S. superba exhibiting larger plasticity and higher adaption than M. macclurei. M. macclurei responded more sensitively to prolonged drought in terms of morphology, proline content, and nutritional traits and to short-term drought with regard to soluble sugars content. The differential species-specific responses to drought will allow us to estimate the changes in dominant trees in subtropical forests of China that have experienced a decade's worth of annual seasonal drought.
Collapse
Affiliation(s)
- Yuanwen Kuang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Yimin Xu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Lingling Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Enqing Hou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Weijun Shen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| |
Collapse
|
176
|
Alexova R, Nelson CJ, Millar AH. Temporal development of the barley leaf metabolic response to P i limitation. PLANT, CELL & ENVIRONMENT 2017; 40:645-657. [PMID: 27995647 DOI: 10.1111/pce.12882] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 11/27/2016] [Accepted: 11/29/2016] [Indexed: 05/20/2023]
Abstract
The response of plants to Pi limitation involves interplay between root uptake of Pi , adjustment of resource allocation to different plant organs and increased metabolic Pi use efficiency. To identify potentially novel, early-responding, metabolic hallmarks of Pi limitation in crop plants, we studied the metabolic response of barley leaves over the first 7 d of Pi stress, and the relationship of primary metabolites with leaf Pi levels and leaf biomass. The abundance of leaf Pi , Tyr and shikimate were significantly different between low Pi and control plants 1 h after transfer of the plants to low Pi . Combining these data with 15 N metabolic labelling, we show that over the first 48 h of Pi limitation, metabolic flux through the N assimilation and aromatic amino acid pathways is increased. We propose that together with a shift in amino acid metabolism in the chloroplast a transient restoration of the energetic and redox state of the leaf is achieved. Correlation analysis of metabolite abundances revealed a central role for major amino acids in Pi stress, appearing to modulate partitioning of soluble sugars between amino acid and carboxylate synthesis, thereby limiting leaf biomass accumulation when external Pi is low.
Collapse
Affiliation(s)
- Ralitza Alexova
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, WA6009, Australia
- Centre for Comparative Analysis of Biomolecular Networks, University of Western Australia, Perth, WA6009, Australia
| | - Clark J Nelson
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, WA6009, Australia
- Centre for Comparative Analysis of Biomolecular Networks, University of Western Australia, Perth, WA6009, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, WA6009, Australia
- Centre for Comparative Analysis of Biomolecular Networks, University of Western Australia, Perth, WA6009, Australia
| |
Collapse
|
177
|
Kabbage M, Kessens R, Bartholomay LC, Williams B. The Life and Death of a Plant Cell. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:375-404. [PMID: 28125285 DOI: 10.1146/annurev-arplant-043015-111655] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Like all eukaryotic organisms, plants possess an innate program for controlled cellular demise termed programmed cell death (PCD). Despite the functional conservation of PCD across broad evolutionary distances, an understanding of the molecular machinery underpinning this fundamental program in plants remains largely elusive. As in mammalian PCD, the regulation of plant PCD is critical to development, homeostasis, and proper responses to stress. Evidence is emerging that autophagy is key to the regulation of PCD in plants and that it can dictate the outcomes of PCD execution under various scenarios. Here, we provide a broad and comparative overview of PCD processes in plants, with an emphasis on stress-induced PCD. We also discuss the implications of the paradox that is functional conservation of apoptotic hallmarks in plants in the absence of core mammalian apoptosis regulators, what that means, and whether an equivalent form of death occurs in plants.
Collapse
Affiliation(s)
- Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53706;
| | - Ryan Kessens
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53706;
| | - Lyric C Bartholomay
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland 4001, Australia;
| |
Collapse
|
178
|
Methane protects against polyethylene glycol-induced osmotic stress in maize by improving sugar and ascorbic acid metabolism. Sci Rep 2017; 7:46185. [PMID: 28387312 PMCID: PMC5384014 DOI: 10.1038/srep46185] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/10/2017] [Indexed: 01/04/2023] Open
Abstract
Although aerobic methane (CH4) release from plants leads to an intense scientific and public controversy in the recent years, the potential functions of endogenous CH4 production in plants are still largely unknown. Here, we reported that polyethylene glycol (PEG)-induced osmotic stress significantly increased CH4 production and soluble sugar contents in maize (Zea mays L.) root tissues. These enhancements were more pronounced in the drought stress-tolerant cultivar Zhengdan 958 (ZD958) than in the drought stress-sensitive cultivar Zhongjiangyu No.1 (ZJY1). Exogenously applied 0.65 mM CH4 not only increased endogenous CH4 production, but also decreased the contents of thiobarbituric acid reactive substances. PEG-induced water deficit symptoms, such as decreased biomass and relative water contents in both root and shoot tissues, were also alleviated. These beneficial responses paralleled the increases in the contents of soluble sugar and the reduced ascorbic acid (AsA), and the ratio of AsA/dehydroascorbate (DHA). Further comparison of transcript profiles of some key enzymes in sugar and AsA metabolism suggested that CH4 might participate in sugar signaling, which in turn increased AsA production and recycling. Together, these results suggested that CH4 might function as a gaseous molecule that enhances osmotic stress tolerance in maize by modulating sugar and AsA metabolism.
Collapse
|
179
|
Zhang Q, Song X, Bartels D. Enzymes and Metabolites in Carbohydrate Metabolism of Desiccation Tolerant Plants. Proteomes 2016; 4:E40. [PMID: 28248249 PMCID: PMC5260972 DOI: 10.3390/proteomes4040040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 01/31/2023] Open
Abstract
Resurrection plants can tolerate extreme water loss. Substantial sugar accumulation is a phenomenon in resurrection plants during dehydration. Sugars have been identified as one important factor contributing to desiccation tolerance. Phylogenetic diversity of resurrection plants reflects the diversity of sugar metabolism in response to dehydration. Sugars, which accumulate during dehydration, have been shown to protect macromolecules and membranes and to scavenge reactive oxygen species. This review focuses on the performance of enzymes participating in sugar metabolism during dehydration stress. The relation between sugar metabolism and other biochemical activities is discussed and open questions as well as potential experimental approaches are proposed.
Collapse
Affiliation(s)
- Qingwei Zhang
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany.
| | - Xiaomin Song
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany.
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany.
| |
Collapse
|
180
|
Differential fructan accumulation and expression of fructan biosynthesis, invertase and defense genes is induced in Agave tequilana plantlets by sucrose or stress-related elicitors. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.aggene.2016.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
181
|
Huang XC, Inoue-Aono Y, Moriyasu Y, Hsieh PY, Tu WM, Hsiao SC, Jane WN, Hsu HY. Plant Cell Wall-Penetrable, Redox-Responsive Silica Nanoprobe for the Imaging of Starvation-Induced Vesicle Trafficking. Anal Chem 2016; 88:10231-10236. [PMID: 27673337 DOI: 10.1021/acs.analchem.6b02920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Autophagy is a self-protection process against reactive oxygen species (ROS). The intracellular level of ROS increased when cells were cultured under nutrient starvation. Antioxidants such as glutathione and ascorbic acid play an important role in ROS removal. However, the cellular redox state in the autophagic pathway is still unclear. Herein, we developed a new redox-sensitive probe with a disulfide-linked silica scaffold to enable the sensing of the reduction environment in cell organelles. This redox-responsive silica nanoprobe (ReSiN) could penetrate the plant cell wall and release fluorescent molecules in response to redox states. By applying the ReSiN to tobacco BY-2 cells and tracing the distribution of fluorescence, we found a higher reducing potential in the central vacuole than in the autolysosomes. Upon cysteine protease inhibitor (E64-c) treatment in sucrose-free medium, the disulfide-silica structures of the ReSiNs were broken down in the vacuoles but were not degraded and were accumulated in the autolysosomes. These results reveal the feasibility of our nanoprobe for monitoring the endocytic and macroautophagic pathways. These pathways merge upstream of the central vacuole, which is the final destination of both pathways. In addition, different redox potentials were observed in the autophagic pathway. Finally, the expression of the autophagy-related protein (Atg8) fused with green fluorescence protein confirmed that the ReSiN treatment itself did not induce the autophagic pathway under normal physiological conditions, indicating the versatility of this nanoprobe in studying stimuli-triggered autophagy-related trafficking.
Collapse
Affiliation(s)
- Xin-Chun Huang
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao-Tung University , No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Yuko Inoue-Aono
- Graduate School of Science and Engineering, Saitama University , Shimo-Ohkubo 255, Sakura-Ku, Saitama 338-8570, Japan
| | - Yuji Moriyasu
- Graduate School of Science and Engineering, Saitama University , Shimo-Ohkubo 255, Sakura-Ku, Saitama 338-8570, Japan
| | - Pei-Ying Hsieh
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao-Tung University , No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Wei-Ming Tu
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao-Tung University , No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Shae-Chien Hsiao
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao-Tung University , No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Wan-Neng Jane
- Institute of Plant and Microbial Biology, Academia Sinica , Taipei 11529, Taiwan
| | - Hsin-Yun Hsu
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao-Tung University , No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| |
Collapse
|
182
|
Li MJ, Xiong ZT, Liu H, Kuo YM, Tong L. Copper-induced alteration in sucrose partitioning and its relationship to the root growth of two Elsholtzia haichowensis Sun populations. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:966-976. [PMID: 27153457 DOI: 10.1080/15226514.2016.1183564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hydroponic culture was used to comparatively investigate the copper (Cu)-induced alteration to sucrose metabolism and biomass allocation in two Elsholtzia haichowensis Sun populations with one from a Cu-contaminated site (CS) and the other from a non-contaminated site (NCS). Experimental results revealed that biomass allocation preferred roots over shoots in CS population, and shoots over roots in NCS population under Cu exposure. The difference in biomass allocation was correlated with the difference in sucrose partitioning between the two populations. Cu treatment (45 μM) significantly decreased leaf sucrose content and increased root sucrose content in CS population as a result of the increased activities of leaf sucrose synthesis enzymes (sucrose phosphate synthetase and sucrose synthase) and root sucrose cleavage enzyme (vacuolar invertase), which led to increased sucrose transport from leaves to roots. In contrast, higher Cu treatment increased sucrose content in leaves and decreased sucrose content in roots in NCS population as a result of the decreased activities of root sucrose cleavage enzymes (vacuolar and cell wall invertases) that led to less sucrose transport from leaves to roots. These results provide important insights into carbon resource partitioning and biomass allocation strategies in metallophytes and are beneficial for the implementation of phytoremediation techniques.
Collapse
Affiliation(s)
- Min-Jing Li
- a School of Environmental Studies, China University of Geosciences , Wuhan , China
- b School of Resource and Environmental Science, Wuhan University , Wuhan , China
| | - Zhi-Ting Xiong
- b School of Resource and Environmental Science, Wuhan University , Wuhan , China
- c Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory (Wuhan University) , Wuhan , China
| | - Hui Liu
- a School of Environmental Studies, China University of Geosciences , Wuhan , China
| | - Yi-Ming Kuo
- a School of Environmental Studies, China University of Geosciences , Wuhan , China
| | - Lei Tong
- a School of Environmental Studies, China University of Geosciences , Wuhan , China
| |
Collapse
|
183
|
Podazza G, Arias M, Prado FE. Early interconnectivity between metabolic and defense events against oxidative stress induced by cadmium in roots of four citrus rootstocks. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:973-985. [PMID: 32480520 DOI: 10.1071/fp16153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 06/01/2016] [Indexed: 06/11/2023]
Abstract
The effect of cadmium on roots of four citrus rootstocks was studied to assess the relationships between oxidative stress, carbohydrates, phenolics and antioxidant responses. Swingle citrumelo (SC), Rangpur lime (RL), Troyer citrange (TC) and Volkamer lemon (VL) genotypes were exposed to 0, 5 and 10µM Cd over 7 days, after which Cd accumulation was markedly higher in roots compared with stems and leaves. Malondialdehyde (MDA) and lipoxygenase (LOX) activity increased in Cd-treated SC and RL roots, suggesting that a lipid peroxidation is the main driver of plasma membrane damage. In contrast, in TC and VL genotypes, LOX-mediated lipid peroxidation does not appear to play a key role in Cd-induced lipid peroxidation, but H2O2 accumulation seems to be responsible of less plasma membrane damage. Catalase (CAT), superoxide dismutase (SOD) and guaiacol and syringaldazine peroxidases (G-POD and S-POD respectively) were differentially affected by Cd. Lipid profile and ATPase-dependant proton extrusion indicated higher disfunctionalities of root plasma membrane in SC and RL genotypes than in TC and VL genotypes. Differences in carbohydrates and phenolic compounds were also observed. Histochemical analysis of G-POD activity and lignin and suberin deposition revealed differences among genotypes. A model to explain the relationships among carbohydrates, soluble phenolics, lipid peroxidation and H2O2 accumulation in Cd-exposed roots was proposed.
Collapse
Affiliation(s)
- Griselda Podazza
- Instituto de Ecología, Fundación Miguel Lillo, Miguel Lillo 251, CP 4000, Tucumán, Argentina
| | - Marta Arias
- Cátedra de Anatomía Vegetal, Facultad de Ciencias Naturales e IML, Miguel Lillo 205, CP 4000, Tucumán, Argentina
| | - Fernando E Prado
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Naturales e IML, Miguel Lillo 205, CP 4000, Tucumán, Argentina
| |
Collapse
|
184
|
Gupta K, Sengupta A, Chakraborty M, Gupta B. Hydrogen Peroxide and Polyamines Act as Double Edged Swords in Plant Abiotic Stress Responses. FRONTIERS IN PLANT SCIENCE 2016; 7:1343. [PMID: 27672389 PMCID: PMC5018498 DOI: 10.3389/fpls.2016.01343] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 08/22/2016] [Indexed: 05/02/2023]
Abstract
The specific genetic changes through which plants adapt to the multitude of environmental stresses are possible because of the molecular regulations in the system. These intricate regulatory mechanisms once unveiled will surely raise interesting questions. Polyamines and hydrogen peroxide have been suggested to be important signaling molecules during biotic and abiotic stresses. Hydrogen peroxide plays a versatile role from orchestrating physiological processes to stress response. It helps to achieve acclimatization and tolerance to stress by coordinating intra-cellular and systemic signaling systems. Polyamines, on the other hand, are low molecular weight polycationic aliphatic amines, which have been implicated in various stress responses. It is quite interesting to note that both hydrogen peroxide and polyamines have a fine line of inter-relation between them since the catabolic pathways of the latter releases hydrogen peroxide. In this review we have tried to illustrate the roles and their multifaceted functions of these two important signaling molecules based on current literature. This review also highlights the fact that over accumulation of hydrogen peroxide and polyamines can be detrimental for plant cells leading to toxicity and pre-mature cell death.
Collapse
Affiliation(s)
- Kamala Gupta
- Department of Biological Sciences, Presidency UniversityKolkata, India
- Department of Botany, Government General Degree College, Affiliated to University of BurdwanSingur, India
| | - Atreyee Sengupta
- Department of Biological Sciences, Presidency UniversityKolkata, India
| | | | - Bhaskar Gupta
- Department of Biological Sciences, Presidency UniversityKolkata, India
- Department of Zoology, Government General Degree College, Affiliated to University of BurdwanSingur, India
| |
Collapse
|
185
|
Morkunas I, Woźniak A, Formela M, Mai VC, Marczak Ł, Narożna D, Borowiak-Sobkowiak B, Kühn C, Grimm B. Pea aphid infestation induces changes in flavonoids, antioxidative defence, soluble sugars and sugar transporter expression in leaves of pea seedlings. PROTOPLASMA 2016; 253:1063-79. [PMID: 26239447 DOI: 10.1007/s00709-015-0865-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/23/2015] [Indexed: 05/25/2023]
Abstract
The perception of aphid infestation induces highly coordinated and sequential defensive reactions in plants at the cellular and molecular levels. The aim of the study was to explore kinetics of induced antioxidative defence responses in leaf cells of Pisum sativum L.cv. Cysterski upon infestation of the pea aphid Acyrthosiphon pisum at varying population sizes, including accumulation of flavonoids, changes of carbon metabolism, and expression of nuclear genes involved in sugar transport. Within the first 96 h, after A. pisum infestation, flavonoid accumulation and increased peroxidase activity were observed in leaves. The level of pisatin increased after 48 h of infestation and reached a maximum at 96 h. At this time point, a higher concentration of flavonols was observed in the infested tissue than in the control. Additionally, strong post-infestation accumulation of chalcone synthase (CHS) and isoflavone synthase (IFS) transcription products was also found. The levels of sucrose and fructose in 24-h leaves infested by 10, 20, and 30 aphids were significantly lower than in the control. Moreover, in leaves infested by 30 aphids, the reduced sucrose level observed up to 48 h was accompanied by a considerable increase in the expression level of the PsSUT1 gene encoding the sucrose transporter. In conclusion, A. pisum infestation on pea leads to stimulation of metabolic pathways associated with defence.
Collapse
Affiliation(s)
- Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland.
| | - Agnieszka Woźniak
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland
| | - Magda Formela
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland
| | - Van Chung Mai
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland
- Department of Plant Physiology, Vinh University, Le Duan 182, Vinh city, Vietnam
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Dorota Narożna
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland
| | - Beata Borowiak-Sobkowiak
- Department of Entomology and Environment Protection, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594, Poznań, Poland
| | - Christina Kühn
- Department of Plant Physiology, Institute of Biology, Humboldt University of Berlin, Philippstrasse 13, 10115, Berlin, Germany
| | - Bernhard Grimm
- Department of Plant Physiology, Institute of Biology, Humboldt University of Berlin, Philippstrasse 13, 10115, Berlin, Germany
| |
Collapse
|
186
|
Varela MC, Arslan I, Reginato MA, Cenzano AM, Luna MV. Phenolic compounds as indicators of drought resistance in shrubs from Patagonian shrublands (Argentina). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 104:81-91. [PMID: 27017434 DOI: 10.1016/j.plaphy.2016.03.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 05/18/2023]
Abstract
UNLABELLED Plants exposed to drought stress, as usually occurs in Patagonian shrublands, have developed different strategies to avoid or tolerate the lack of water during their development. Production of phenolic compounds (or polyphenols) is one of the strategies used by some native species of adverse environments to avoid the oxidative damage caused by drought. In the present study the relationship between phenolic compounds content, water availability and oxidative damage were evaluated in two native shrubs: Larrea divaricata (evergreen) and Lycium chilense (deciduous) of Patagonian shrublands by their means and/or by multivariate analysis. Samples of both species were collected during the 4 seasons for the term of 1 year. Soil water content, relative water content, total phenols, flavonoids, flavonols, tartaric acid esters, flavan-3-ols, proanthocyanidins, antioxidant capacity and lipid peroxidation were measured. According to statistical univariate analysis, L. divaricata showed high production of polyphenols along the year, with a phenolic compound synthesis enhanced during autumn (season of greatest drought), while L. chilense has lower production of these compounds without variation between seasons. The variation in total phenols along the seasons is proportional to the antioxidant capacity and inversely proportional to lipid peroxidation. Multivariate analysis showed that, regardless their mechanism to face drought (avoidance or tolerance), both shrubs are well adapted to semi-arid regions and the phenolic compounds production is a strategy used by these species living in extreme environments. The identification of polyphenol compounds showed that L. divaricata produces different types of flavonoids, particularly bond with sugars, while L. chilense produces high amount of non-flavonoids compounds. SYNTHESIS These results suggest that flavonoid production and accumulation could be a useful indicator of drought tolerance in native species.
Collapse
Affiliation(s)
- M Celeste Varela
- Laboratorio de Fisiología Vegetal, Fac. de Cs. Exactas, Físico Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina.
| | - Idris Arslan
- Pamukkale University, Faculty of Technology, Biomedical Eng., 20200, Denizli, Turkey.
| | - Mariana A Reginato
- Laboratorio de Fisiología Vegetal, Fac. de Cs. Exactas, Físico Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina.
| | - Ana M Cenzano
- Laboratorio de Ecofisiología y Bioquímica Vegetal, Instituto para el Estudio de los Ecosistemas Continentales Patagónicos-Centro Nacional Patagónico-Consejo Nacional de Investigaciones Científicas y Técnicas, Boulevard Brown 2915, 9120, Puerto Madryn, Chubut, Argentina.
| | - M Virginia Luna
- Laboratorio de Fisiología Vegetal, Fac. de Cs. Exactas, Físico Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina.
| |
Collapse
|
187
|
Zhu XG, Lynch JP, LeBauer DS, Millar AJ, Stitt M, Long SP. Plants in silico: why, why now and what?--an integrative platform for plant systems biology research. PLANT, CELL & ENVIRONMENT 2016; 39:1049-57. [PMID: 26523481 DOI: 10.1111/pce.12673] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 10/17/2015] [Indexed: 05/21/2023]
Abstract
A paradigm shift is needed and timely in moving plant modelling from largely isolated efforts to a connected community endeavour that can take full advantage of advances in computer science and in mechanistic understanding of plant processes. Plants in silico (Psi) envisions a digital representation of layered dynamic modules, linking from gene networks and metabolic pathways through to cellular organization, tissue, organ and whole plant development, together with resource capture and use efficiency in dynamic competitive environments, ultimately allowing a mechanistically rich simulation of the plant or of a community of plants in silico. The concept is to integrate models or modules from different layers of organization spanning from genome to phenome to ecosystem in a modular framework allowing the use of modules of varying mechanistic detail representing the same biological process. Developments in high-performance computing, functional knowledge of plants, the internet and open-source version controlled software make achieving the concept realistic. Open source will enhance collaboration and move towards testing and consensus on quantitative theoretical frameworks. Importantly, Psi provides a quantitative knowledge framework where the implications of a discovery at one level, for example, single gene function or developmental response, can be examined at the whole plant or even crop and natural ecosystem levels.
Collapse
Affiliation(s)
- Xin-Guang Zhu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jonathan P Lynch
- Department of Plant Science, Penn State University, University Park, PA, 16802, USA
| | - David S LeBauer
- Institute for Genomic Biology and National Center for Supercomputer Applications, University of Illinois, 1206 W Gregory Drive, Urbana, IL, 61801, USA
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Midlothian, Scotland, UK
| | - Mark Stitt
- Max Planck Institute for Molecular Plant Physiology, D-14476, Potsdam Gölm, Germany
| | - Stephen P Long
- Departments of Crop Sciences and Plant Biology, Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA
| |
Collapse
|
188
|
Bolouri Moghaddam MR, Vilcinskas A, Rahnamaeian M. Cooperative interaction of antimicrobial peptides with the interrelated immune pathways in plants. MOLECULAR PLANT PATHOLOGY 2016; 17. [PMID: 26220619 PMCID: PMC6638509 DOI: 10.1111/mpp.12299] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plants express a diverse repertoire of functionally and structurally distinct antimicrobial peptides (AMPs) which provide innate immunity by acting directly against a wide range of pathogens. AMPs are expressed in nearly all plant organs, either constitutively or in response to microbial infections. In addition to their direct activity, they also contribute to plant immunity by modulating defence responses resulting from pathogen-associated molecular pattern/effector-triggered immunity, and also interact with other AMPs and pathways involving mitogen-activated protein kinases, reactive oxygen species, hormonal cross-talk and sugar signalling. Such links among AMPs and defence signalling pathways are poorly understood and there is no clear model for their interactions. This article provides a critical review of the empirical data to shed light on the wider role of AMPs in the robust and resource-effective defence responses of plants.
Collapse
Affiliation(s)
- Mohammad Reza Bolouri Moghaddam
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, Giessen, D-35394, Germany
- Institute of Phytopathology and Applied Zoology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, Giessen, D-35392, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, Giessen, D-35394, Germany
- Institute of Phytopathology and Applied Zoology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, Giessen, D-35392, Germany
| | - Mohammad Rahnamaeian
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, Giessen, D-35394, Germany
| |
Collapse
|
189
|
Dahro B, Wang F, Peng T, Liu JH. PtrA/NINV, an alkaline/neutral invertase gene of Poncirus trifoliata, confers enhanced tolerance to multiple abiotic stresses by modulating ROS levels and maintaining photosynthetic efficiency. BMC PLANT BIOLOGY 2016. [PMID: 27025596 DOI: 10.1016/j.envexpbot.2018.12.009] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND Alkaline/neutral invertase (A/N-INV), an enzyme that hydrolyzes sucrose irreversibly into glucose and fructose, is essential for normal plant growth,development, and stress tolerance. However, the physiological and/or molecular mechanism underpinning the role of A/N-INV in abiotic stress tolerance is poorly understood. RESULTS In this report, an A/N-INV gene (PtrA/NINV) was isolated from Poncirus trifoliata, a cold-hardy relative of citrus, and functionally characterized. PtrA/NINV expression levels were induced by cold, salt, dehydration, sucrose, and ABA, but decreased by glucose. PtrA/NINV was found to localize in both chloroplasts and mitochondria. Overexpression of PtrA/NINV conferred enhanced tolerance to multiple stresses, including cold, high salinity, and drought, as supported by lower levels of reactive oxygen species (ROS), reduced oxidative damages, decreased water loss rate, and increased photosynthesis efficiency, relative to wild-type (WT). The transgenic plants exhibited higher A/N-INV activity and greater reducing sugar content under normal and stress conditions. CONCLUSIONS PtrA/NINV is an important gene implicated in sucrose decomposition, and plays a positive role in abiotic stress tolerance by promoting osmotic adjustment, ROS detoxification and photosynthesis efficiency. Thus, PtrA/NINV has great potential to be used in transgenic breeding for improvement of stress tolerance.
Collapse
Affiliation(s)
- Bachar Dahro
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Horticulture, Faculty of Agriculture, Tishreen University, Lattakia, Syria
| | - Fei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting Peng
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
190
|
Dahro B, Wang F, Peng T, Liu JH. PtrA/NINV, an alkaline/neutral invertase gene of Poncirus trifoliata, confers enhanced tolerance to multiple abiotic stresses by modulating ROS levels and maintaining photosynthetic efficiency. BMC PLANT BIOLOGY 2016; 16:76. [PMID: 27025596 PMCID: PMC4812658 DOI: 10.1186/s12870-016-0761-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/15/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND Alkaline/neutral invertase (A/N-INV), an enzyme that hydrolyzes sucrose irreversibly into glucose and fructose, is essential for normal plant growth,development, and stress tolerance. However, the physiological and/or molecular mechanism underpinning the role of A/N-INV in abiotic stress tolerance is poorly understood. RESULTS In this report, an A/N-INV gene (PtrA/NINV) was isolated from Poncirus trifoliata, a cold-hardy relative of citrus, and functionally characterized. PtrA/NINV expression levels were induced by cold, salt, dehydration, sucrose, and ABA, but decreased by glucose. PtrA/NINV was found to localize in both chloroplasts and mitochondria. Overexpression of PtrA/NINV conferred enhanced tolerance to multiple stresses, including cold, high salinity, and drought, as supported by lower levels of reactive oxygen species (ROS), reduced oxidative damages, decreased water loss rate, and increased photosynthesis efficiency, relative to wild-type (WT). The transgenic plants exhibited higher A/N-INV activity and greater reducing sugar content under normal and stress conditions. CONCLUSIONS PtrA/NINV is an important gene implicated in sucrose decomposition, and plays a positive role in abiotic stress tolerance by promoting osmotic adjustment, ROS detoxification and photosynthesis efficiency. Thus, PtrA/NINV has great potential to be used in transgenic breeding for improvement of stress tolerance.
Collapse
Affiliation(s)
- Bachar Dahro
- />Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
- />Department of Horticulture, Faculty of Agriculture, Tishreen University, Lattakia, Syria
| | - Fei Wang
- />Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Ting Peng
- />Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Ji-Hong Liu
- />Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
191
|
Lira BS, Rosado D, Almeida J, de Souza AP, Buckeridge MS, Purgatto E, Guyer L, Hörtensteiner S, Freschi L, Rossi M. Pheophytinase Knockdown Impacts Carbon Metabolism and Nutraceutical Content Under Normal Growth Conditions in Tomato. PLANT & CELL PHYSIOLOGY 2016; 57:642-653. [PMID: 26880818 DOI: 10.1093/pcp/pcw021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
Although chlorophyll (Chl) degradation is an essential biochemical pathway for plant physiology, our knowledge regarding this process still has unfilled gaps. Pheophytinase (PPH) was shown to be essential for Chl breakdown in dark-induced senescent leaves. However, the catalyzing enzymes involved in pigment turnover and fruit ripening-associated degreening are still controversial. Chl metabolism is closely linked to the biosynthesis of other isoprenoid-derived compounds, such as carotenoids and tocopherols, which are also components of the photosynthetic machinery. Chls, carotenoids and tocopherols share a common precursor, geranylgeranyl diphosphate, produced by the plastidial methylerythritol 4-phosphate (MEP) pathway. Additionally, the Chl degradation-derived phytol can be incorporated into tocopherol biosynthesis. In this context, tomato turns out to be an interesting model to address isoprenoid-metabolic cross-talk since fruit ripening combines degreening and an intensely active MEP leading to carotenoid accumulation. Here, we investigate the impact of PPH deficiency beyond senescence by the comprehensive phenotyping of SlPPH-knockdown tomato plants. In leaves, photosynthetic parameters indicate altered energy usage of excited Chl. As a mitigatory effect, photosynthesis-associated carotenoids increased while tocopherol content remained constant. Additionally, starch and soluble sugar profiles revealed a distinct pattern of carbon allocation in leaves that suggests enhanced sucrose exportation. The higher levels of carbohydrates in sink organs down-regulated carotenoid biosynthesis. Additionally, the reduction in Chl-derived phytol recycling resulted in decreased tocopherol content in transgenic ripe fruits. Summing up, tocopherol and carotenoid metabolism, together with the antioxidant capacity of the hydrophilic and hydrophobic fractions, were differentially affected in leaves and fruits of the transgenic plants. Thus, in tomato, PPH plays a role beyond senescence-associated Chl degradation that, when compromised, affects isoprenoid and carbon metabolism which ultimately alters the fruit's nutraceutical content.
Collapse
Affiliation(s)
- Bruno Silvestre Lira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Daniele Rosado
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Juliana Almeida
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Amanda Pereira de Souza
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Eduardo Purgatto
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Luzia Guyer
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | | | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
192
|
Srivastava S, Bist V, Srivastava S, Singh PC, Trivedi PK, Asif MH, Chauhan PS, Nautiyal CS. Unraveling Aspects of Bacillus amyloliquefaciens Mediated Enhanced Production of Rice under Biotic Stress of Rhizoctonia solani. FRONTIERS IN PLANT SCIENCE 2016; 7:587. [PMID: 27200058 PMCID: PMC4858605 DOI: 10.3389/fpls.2016.00587] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/18/2016] [Indexed: 05/18/2023]
Abstract
Rhizoctonia solani is a necrotrophic fungi causing sheath blight in rice leading to substantial loss in yield. Excessive and persistent use of preventive chemicals raises human health and environment safety concerns. As an alternative, use of biocontrol agents is highly recommended. In the present study, an abiotic stress tolerant, plant growth promoting rhizobacteria Bacillus amyloliquefaciens (SN13) is demonstrated to act as a biocontrol agent and enhance immune response against R. solani in rice by modulating various physiological, metabolic, and molecular functions. A sustained tolerance by SN13 primed plant over a longer period of time, post R. solani infection may be attributed to several unconventional aspects of the plants' physiological status. The prolonged stress tolerance observed in presence of SN13 is characterized by (a) involvement of bacterial mycolytic enzymes, (b) sustained maintenance of elicitors to keep the immune system induced involving non-metabolizable sugars such as turanose besides the known elicitors, (c) a delicate balance of ROS and ROS scavengers through production of proline, mannitol, and arabitol and rare sugars like fructopyranose, β-D-glucopyranose and myoinositol and expression of ferric reductases and hypoxia induced proteins, (d) production of metabolites like quinazoline and expression of terpene synthase, and (e) hormonal cross talk. As the novel aspect of biological control this study highlights the role of rare sugars, maintenance of hypoxic conditions, and sucrose and starch metabolism in B. amyloliquefaciens (SN13) mediated sustained biotic stress tolerance in rice.
Collapse
Affiliation(s)
- Suchi Srivastava
- Division of Plant Microbe Interactions, Council of Scientific and Industrial Research (CSIR)-National Botanical Research InstituteLucknow, India
| | - Vidisha Bist
- Division of Plant Microbe Interactions, Council of Scientific and Industrial Research (CSIR)-National Botanical Research InstituteLucknow, India
| | - Sonal Srivastava
- Division of Plant Microbe Interactions, Council of Scientific and Industrial Research (CSIR)-National Botanical Research InstituteLucknow, India
| | - Poonam C. Singh
- Division of Plant Microbe Interactions, Council of Scientific and Industrial Research (CSIR)-National Botanical Research InstituteLucknow, India
| | - Prabodh K. Trivedi
- Gene Expression Lab, Council of Scientific and Industrial Research (CSIR)-National Botanical Research InstituteLucknow, India
| | - Mehar H. Asif
- Gene Expression Lab, Council of Scientific and Industrial Research (CSIR)-National Botanical Research InstituteLucknow, India
| | - Puneet S. Chauhan
- Division of Plant Microbe Interactions, Council of Scientific and Industrial Research (CSIR)-National Botanical Research InstituteLucknow, India
| | - Chandra S. Nautiyal
- Division of Plant Microbe Interactions, Council of Scientific and Industrial Research (CSIR)-National Botanical Research InstituteLucknow, India
- *Correspondence: Chandra S. Nautiyal,
| |
Collapse
|
193
|
Veillet F, Gaillard C, Coutos-Thévenot P, La Camera S. Targeting the AtCWIN1 Gene to Explore the Role of Invertases in Sucrose Transport in Roots and during Botrytis cinerea Infection. FRONTIERS IN PLANT SCIENCE 2016; 7:1899. [PMID: 28066461 PMCID: PMC5167757 DOI: 10.3389/fpls.2016.01899] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/30/2016] [Indexed: 05/15/2023]
Abstract
Cell wall invertases (CWIN) cleave sucrose into glucose and fructose in the apoplast. CWINs are key regulators of carbon partitioning and source/sink relationships during growth, development and under biotic stresses. In this report, we monitored the expression/activity of Arabidopsis cell wall invertases in organs behaving as source, sink, or subjected to a source/sink transition after infection with the necrotrophic fungus Botrytis cinerea. We showed that organs with different source/sink status displayed differential CWIN activities, depending on carbohydrate needs or availabilities in the surrounding environment, through a transcriptional and posttranslational regulation. Loss-of-function mutation of the Arabidopsis cell wall invertase 1 gene, AtCWIN1, showed that the corresponding protein was the main contributor to the apoplastic sucrose cleaving activity in both leaves and roots. The CWIN-deficient mutant cwin1-1 exhibited a reduced capacity to actively take up external sucrose in roots, indicating that this process is mainly dependent on the sucrolytic activity of AtCWIN1. Using T-DNA and CRISPR/Cas9 mutants impaired in hexose transport, we demonstrated that external sucrose is actively absorbed in the form of hexoses by a sugar/H+ symport system involving the coordinated activity of AtCWIN1 with several Sugar Transporter Proteins (STP) of the plasma membrane, i.e., STP1 and STP13. Part of external sucrose was imported without apoplastic cleavage into cwin1-1 seedling roots, highlighting an alternative AtCWIN1-independent pathway for the assimilation of external sucrose. Accordingly, we showed that several genes encoding sucrose transporters of the plasma membrane were expressed. We also detected transcript accumulation of vacuolar invertase (VIN)-encoding genes and high VIN activities. Upon infection, AtCWIN1 was responsible for all the Botrytis-induced apoplastic invertase activity. We detected a transcriptional activation of several AtSUC and AtVIN genes accompanied with an enhanced vacuolar invertase activity, suggesting that the AtCWIN1-independent pathway is efficient upon infection. In absence of AtCWIN1, we postulate that intracellular sucrose hydrolysis is sufficient to provide intracellular hexoses to maintain sugar homeostasis in host cells and to fuel plant defenses. Finally, we demonstrated that Botrytis cinerea possesses its own functional sucrolytic machinery and hexose uptake system, and does not rely on the host apoplastic invertases.
Collapse
|
194
|
Arizmendi-Cotero D, Gómez-Espinosa RM, Dublán García O, Gómez-Vidales V, Dominguez-Lopez A. Electron paramagnetic resonance study of hydrogen peroxide/ascorbic acid ratio as initiator redox pair in the inulin-gallic acid molecular grafting reaction. Carbohydr Polym 2016; 136:350-7. [DOI: 10.1016/j.carbpol.2015.09.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/11/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
|
195
|
Zinta G, Khan A, AbdElgawad H, Verma V, Srivastava AK. Unveiling the Redox Control of Plant Reproductive Development during Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:700. [PMID: 27379102 PMCID: PMC4909749 DOI: 10.3389/fpls.2016.00700] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/06/2016] [Indexed: 05/19/2023]
Abstract
Plants being sessile in nature are often challenged to various abiotic stresses including temperature fluctuations, water supply, salinity, and nutrient availability. Exposure of plants to such environmental perturbations result in the formation of reactive oxygen species (ROS) in cells. To scavenge ROS, enzymatic and molecular antioxidants are produced at a cellular level. ROS act as a signaling entity at lower concentrations maintaining normal growth and development, but if their levels increase beyond certain threshold, they produce toxic effects in plants. Some developmental stages, such as development of reproductive organs are more sensitive to abiotic stress than other stages of growth. As success of plant reproductive development is directly correlated with grain yield, stresses coinciding with reproductive phase results in the higher yield losses. In this article, we summarize the redox control of plant reproductive development, and elaborate how redox homeostasis is compromised during abiotic stress exposure. We highlight why more emphasis should be given to understand redox control of plant reproductive organ development during abiotic stress exposure96to engineer crops with better crop yield. We specifically discuss the role of ROS as a signaling molecule and its cross-talk with other signaling molecules such as hormones and sugars.
Collapse
Affiliation(s)
- Gaurav Zinta
- Centre of Excellence Plant and Vegetation Ecology, Department of Biology, University of AntwerpAntwerp, Belgium
- Integrated Molecular Plant Physiology Research, Department of Biology, University of AntwerpAntwerp, Belgium
- *Correspondence: Gaurav Zinta
| | - Asif Khan
- Research Group Germline Biology, Centre for Organismal Studies Heidelberg, University of HeidelbergHeidelberg, Germany
- Asif Khan
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of AntwerpAntwerp, Belgium
- Department of Botany, Faculty of Science, University of Beni-SuefBeni-Suef, Egypt
| | - Vipasha Verma
- Department of Biotechnology, Dr Y S Parmar University of Horticulture and ForestrySolan, India
| | | |
Collapse
|
196
|
Pentatricopeptide-repeat family protein RF6 functions with hexokinase 6 to rescue rice cytoplasmic male sterility. Proc Natl Acad Sci U S A 2015; 112:14984-9. [PMID: 26578814 DOI: 10.1073/pnas.1511748112] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytoplasmic male sterility (CMS) has been extensively used for hybrid seed production in many major crops. Honglian CMS (HL-CMS) is one of the three major types of CMS in rice and has contributed greatly to food security worldwide. The HL-CMS trait is associated with an aberrant chimeric mitochondrial transcript, atp6-orfH79, which causes pollen sterility and can be rescued by two nonallelic restorer-of-fertility (Rf) genes, Rf5 or Rf6. Here, we report the identification of Rf6, which encodes a novel pentatricopeptide repeat (PPR) family protein with a characteristic duplication of PPR motifs 3-5. RF6 is targeted to mitochondria, where it physically associates with hexokinase 6 (OsHXK6) and promotes the processing of the aberrant CMS-associated transcript atp6-orfH79 at nucleotide 1238, which ensures normal pollen development and restores fertility. The duplicated motif 3 of RF6 is essential for RF6-OsHXK6 interactions, processing of the aberrant transcript, and restoration of fertility. Furthermore, reductions in the level of OsHXK6 result in atp6-orfH79 transcript accumulation and male sterility. Together these results reveal a novel mechanism for CMS restoration by which RF6 functions with OsHXK6 to restore HL-CMS fertility. The present study also provides insight into the function of hexokinase 6 in regulating mitochondrial RNA metabolism and may facilitate further exploitation of heterosis in rice.
Collapse
|
197
|
He X, Chen Z, Wang J, Li W, Zhao J, Wu J, Wang Z, Chen X. A sucrose:fructan-6-fructosyltransferase (6-SFT) gene from Psathyrostachys huashanica confers abiotic stress tolerance in tobacco. Gene 2015; 570:239-47. [PMID: 26072162 DOI: 10.1016/j.gene.2015.06.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/06/2015] [Accepted: 06/08/2015] [Indexed: 10/23/2022]
Abstract
Fructans are accessible carbohydrate reserves in various plant species, which possess many physiological functions including anti-oxidation, stabilizing subcellular structures, and osmotic adjustment. In addition, fructans may play important roles in stress tolerance in plant species. In this study, we isolated a Psathyrostachys huashanica (2n=2x=14, NsNs) sucrose:fructan-6-fructosyltransferase (Ph-6-SFT) using homologous cloning and genomic walking. Sequencing and gene structure analysis showed that Ph-6-SFT contains four exons and three introns, with a transcript of 2207 bp. Sequence analysis indicated that the coding sequence of Ph-6-SFT is 1851 bp long and it encodes 616 amino acids, where the structure shares high similarity with 6-SFTs from other plants. Furthermore, Ph-6-SFT was transferred into tobacco (Nicotiana tabacum L.) cv. W38 via Agrobacterium-mediated transformation. Compared with the wild-type plants, the transgenic tobacco plants exhibited a much higher tolerance of drought, cold, and high salinity. In all conditions, physiological studies showed that the tolerance of transgenic plants was associated with the accumulation of carbohydrate and proline, but reductions in malondialdehyde. Our results suggest that the 6-SFT gene from P. huashanica enhanced stress tolerance in tobacco plants and it may be applied as a genetic tool for improving stress tolerance in other crops.
Collapse
Affiliation(s)
- Xiaolan He
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, China
| | - Zhenzhen Chen
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianwei Wang
- College of Environment and Life Science, Kaili University, Kaili 556011, GuiZhou, China
| | - Wenxu Li
- Institute for Wheat Research, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
| | - Jixin Zhao
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jun Wu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhonghua Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinhong Chen
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, China.
| |
Collapse
|
198
|
Folgado R, Panis B, Sergeant K, Renaut J, Swennen R, Hausman JF. Unravelling the effect of sucrose and cold pretreatment on cryopreservation of potato through sugar analysis and proteomics. Cryobiology 2015; 71:432-41. [PMID: 26408853 DOI: 10.1016/j.cryobiol.2015.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 09/03/2015] [Accepted: 09/06/2015] [Indexed: 10/23/2022]
Abstract
Apical shoot tips were dissected from donor plants (cultured in several conditions) and cryopreserved using the droplet-vitrification technique. The effect of two preculture treatments (sucrose pretreatment medium or cold-culturing during two weeks) on donor plants of four potato species (Solanum commersonii, S. juzepcukii, S. ajanhuiri, and Solanum tuberosum) was studied. Post-cryopreservation meristem growth and plant recovery were influenced by the treatments, but the effect on the regeneration was strongly genotype-dependent. The highest post-rewarming plant recovery percentage was obtained using meristems dissected from donor plants of S. commersonii cultured on sucrose pretreatment medium or cold-cultured. Both preculture conditions also enhanced plant recovery in S. juzepcukii compared to control cultures. Cold preculture, however, proved to be undesirable for S. tuberosum whereas sucrose pretreatment had a positive impact on the plant regeneration of this species. The determination of changes in the concentration of soluble sugars revealed sugar accumulation, especially of sucrose and the raffinose family of oligosaccharides (RFOs), which can be linked to tolerance towards the cryopreservation. Additionally, a study of the proteome of the donor plantlets after the pretreatments by 2D-fluorescence difference gel electrophoresis (DIGE) was carried out to identify differentially abundant proteins. Carbon metabolism-related proteins, together with stress-response and oxidative-homeostasis related proteins were the main class of proteins that changed in abundance after the pretreatments. Our results suggest that oxidative homeostasis-related proteins and sugars may be associated with the improved tolerance to cryopreservation and the ability to cold acclimate by S. commersonii in contrast to the other genotypes. The increased accumulation of sucrose and RFOs play a fundamental role in the response to stress in potato and may help to acquire tolerance to cryopreservation.
Collapse
Affiliation(s)
- Raquel Folgado
- Environment Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, GD, Luxembourg; Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Willem de Croylaan 42 bus 2455, B - 3001 Leuven, Belgium; The Huntington Library, Art Collections and Botanical Gardens, 1151 Oxford Road, San Marino, CA 91108, USA.
| | - Bart Panis
- Bioversity International, Willem de Croylaan 42 bus 2455, B - 3001, Leuven, Belgium
| | - Kjell Sergeant
- Environment Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, GD, Luxembourg
| | - Jenny Renaut
- Environment Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, GD, Luxembourg
| | - Rony Swennen
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Willem de Croylaan 42 bus 2455, B - 3001 Leuven, Belgium; Bioversity International, Willem de Croylaan 42 bus 2455, B - 3001, Leuven, Belgium; International Institute of Tropical Agriculture, POB 10, Duluti, Arusha, Tanzania
| | - Jean-Francois Hausman
- Environment Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, GD, Luxembourg
| |
Collapse
|
199
|
Stare T, Ramšak Ž, Blejec A, Stare K, Turnšek N, Weckwerth W, Wienkoop S, Vodnik D, Gruden K. Bimodal dynamics of primary metabolism-related responses in tolerant potato-Potato virus Y interaction. BMC Genomics 2015; 16:716. [PMID: 26386579 PMCID: PMC4575446 DOI: 10.1186/s12864-015-1925-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 09/11/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Potato virus Y (PVY) is a major pathogen that causes substantial economic losses in worldwide potato production. Different potato cultivars differ in resistance to PVY, from severe susceptibility, through tolerance, to complete resistance. The aim of this study was to better define the mechanisms underlying tolerant responses of potato to infection by the particularly aggressive PVY(NTN) strain. We focused on the dynamics of the primary metabolism-related processes during PVY(NTN) infection. RESULTS A comprehensive analysis of the dynamic changes in primary metabolism was performed, which included whole transcriptome analysis, nontargeted proteomics, and photosynthetic activity measurements in potato cv. Désirée and its transgenic counterpart depleted for accumulation of salicylic acid (NahG-Désirée). Faster multiplication of virus occurred in the NahG-Désirée, with these plants developing strong disease symptoms. We show that while the dynamics of responses at the transcriptional level are extensive and bimodal, this is only partially translated to the protein level, and to the final functional outcome. Photosynthesis-related genes are transiently induced before viral multiplication is detected and it is down-regulated later on. This is reflected as a deficiency of the photosynthetic apparatus at the onset of viral multiplication only. Interestingly, specific and constant up-regulation of some RuBisCO transcripts was detected in Désirée plants, which might be important, as these proteins have been shown to interact with viral proteins. In SA-deficient and more sensitive NahG-Désirée plants, consistent down-regulation of photosynthesis-related genes was detected. A constant reduction in the photochemical efficiency from the onset of viral multiplication was identified; in nontransgenic plants this decrease was only transient. The transient reduction in net photosynthetic rate occurred in both genotypes with the same timing, and coincided with changes in stomatal conductivity. CONCLUSIONS Down-regulation of photosynthesis-related gene expression and decreased photosynthetic activity is in line with other studies that have reported the effects of biotic stress on photosynthesis. Here, we additionally detected induction of light-reaction components in the early stages of PVY(NTN) infection of tolerant interaction. As some of these components have already been shown to interact with viral proteins, their overproduction might contribute to the absence of symptoms in cv. Désirée.
Collapse
Affiliation(s)
- Tjaša Stare
- Department of Biotechnology and Systems Biology, National Institute of Biology, Vecna pot 111, Ljubljana, Slovenia.
| | - Živa Ramšak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Vecna pot 111, Ljubljana, Slovenia.
| | - Andrej Blejec
- Department of Biotechnology and Systems Biology, National Institute of Biology, Vecna pot 111, Ljubljana, Slovenia.
| | - Katja Stare
- Department of Biotechnology and Systems Biology, National Institute of Biology, Vecna pot 111, Ljubljana, Slovenia.
| | - Neža Turnšek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Vecna pot 111, Ljubljana, Slovenia.
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
| | - Stefanie Wienkoop
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
| | - Dominik Vodnik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Vecna pot 111, Ljubljana, Slovenia.
| |
Collapse
|
200
|
Pellegrini E, Francini A, Lorenzini G, Nali C. Ecophysiological and antioxidant traits of Salvia officinalis under ozone stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13083-93. [PMID: 25925147 DOI: 10.1007/s11356-015-4569-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/19/2015] [Indexed: 05/27/2023]
Abstract
Ecophysiological and antioxidant traits were evaluated in sage (Salvia officinalis) plants exposed to 120 ppb of ozone for 90 consecutive days (5 h day(-1)). At the end of fumigation, plants showed slight leaf yellowing that could be considered the first visual symptom of leaf senescence. Ozone-stressed leaves showed (1) reduced photosynthetic activity (-70 % at the end of exposure), (2) chlorophyll loss (-59 and -56 % of chlorophyll a and b concentrations, starting from 30 days from the beginning of exposure), and (3) cellular water deficit (-12 % of the relative water content at the end of the fumigation). These phenomena are indicative of oxidative stress in the chloroplasts (as confirmed by the strong degradation of β-carotene) despite the photoprotection conferred by xanthophyll cycle [as demonstrated by the significant rise of de-epoxidation index, reaching the maximum value at the end of the treatment (+69 %)], antioxidant compounds [as confirmed by the increase of phenols (in particular caffeic acid and rosmarinic acid)], and water-soluble carbohydrates (especially monosaccharides). By means of combined ecophysiological and biochemical approaches, this study demonstrates that S. officinalis is able to activate an adaptive survival mechanism allowing the plant to complete its life cycle even under oxidative stressful conditions.
Collapse
Affiliation(s)
- Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | | | | | | |
Collapse
|