151
|
Tackling the effects of extracellular vesicles in fibrosis. Eur J Cell Biol 2022; 101:151221. [PMID: 35405464 DOI: 10.1016/j.ejcb.2022.151221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
Fibrosis is a physiological process of tissue repair that turns into pathological when becomes chronic, damaging the functional structure of the tissue. In this review we outline the current status of extracellular vesicles as modulators of the fibrotic process at different levels. In adipose tissue, extracellular vesicles mediate the intercellular communication not only between adipocytes, but also between adipocytes and other cells of the stromal vascular fraction. Thus, they could be altering essential processes for the functionality of adipose tissue, such as adipocyte hypertrophy/hyperplasia, tissue plasticity, adipogenesis and/or inflammation, and ultimately trigger fibrosis. This process is particularly important in obesity, and may eventually, influence the development of obesity-associated alterations. In this regard, obesity is now recognized as an independent risk factor for the development of chronic kidney disease, although the role of extracellular vesicles in this connection has not been explored so far. Nonetheless, the role of extracellular vesicles in the onset and progression of renal fibrosis has been highlighted due to the critical role of fibrosis as a common feature of kidney diseases. In fact, the content of extracellular vesicles disturbs cellular signaling cascades involved in fibrosis in virtually all types of renal cells. What is certain is that the study of extracellular vesicles is complex, as their isolation and manipulation is still difficult to reproduce, which complicates the overview of their physiopathological effects. Nevertheless, new strategies have been developed to exploit the potential of extracellular vesicles and their cargo, both as biomarkers and as therapeutic tools to prevent the progression of fibrosis towards an irreversible event.
Collapse
|
152
|
Akhlaghipour I, Bina AR, Mogharrabi MR, Fanoodi A, Ebrahimian AR, Khojasteh Kaffash S, Babazadeh Baghan A, Khorashadizadeh ME, Taghehchian N, Moghbeli M. Single-nucleotide polymorphisms as important risk factors of diabetes among Middle East population. Hum Genomics 2022; 16:11. [PMID: 35366956 PMCID: PMC8976361 DOI: 10.1186/s40246-022-00383-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/23/2022] [Indexed: 12/16/2022] Open
Abstract
Diabetes is a chronic metabolic disorder that leads to the dysfunction of various tissues and organs, including eyes, kidneys, and cardiovascular system. According to the World Health Organization, diabetes prevalence is 8.8% globally among whom about 90% of cases are type 2 diabetes. There are not any significant clinical manifestations in the primary stages of diabetes. Therefore, screening can be an efficient way to reduce the diabetic complications. Over the recent decades, the prevalence of diabetes has increased alarmingly among the Middle East population, which has imposed exorbitant costs on the health care system in this region. Given that the genetic changes are among the important risk factors associated with predisposing people to diabetes, we examined the role of single-nucleotide polymorphisms (SNPs) in the pathogenesis of diabetes among Middle East population. In the present review, we assessed the molecular pathology of diabetes in the Middle East population that paves the way for introducing an efficient SNP-based diagnostic panel for diabetes screening among the Middle East population. Since, the Middle East has a population of 370 million people; the current review can be a reliable model for the introduction of SNP-based diagnostic panels in other populations and countries around the world.
Collapse
|
153
|
Li CW, Yu K, Shyh-Chang N, Jiang Z, Liu T, Ma S, Luo L, Guang L, Liang K, Ma W, Miao H, Cao W, Liu R, Jiang LJ, Yu SL, Li C, Liu HJ, Xu LY, Liu RJ, Zhang XY, Liu GS. Pathogenesis of sarcopenia and the relationship with fat mass: descriptive review. J Cachexia Sarcopenia Muscle 2022; 13:781-794. [PMID: 35106971 PMCID: PMC8977978 DOI: 10.1002/jcsm.12901] [Citation(s) in RCA: 235] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/26/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
Age-associated obesity and muscle atrophy (sarcopenia) are intimately connected and are reciprocally regulated by adipose tissue and skeletal muscle dysfunction. During ageing, adipose inflammation leads to the redistribution of fat to the intra-abdominal area (visceral fat) and fatty infiltrations in skeletal muscles, resulting in decreased overall strength and functionality. Lipids and their derivatives accumulate both within and between muscle cells, inducing mitochondrial dysfunction, disturbing β-oxidation of fatty acids, and enhancing reactive oxygen species (ROS) production, leading to lipotoxicity and insulin resistance, as well as enhanced secretion of some pro-inflammatory cytokines. In turn, these muscle-secreted cytokines may exacerbate adipose tissue atrophy, support chronic low-grade inflammation, and establish a vicious cycle of local hyperlipidaemia, insulin resistance, and inflammation that spreads systemically, thus promoting the development of sarcopenic obesity (SO). We call this the metabaging cycle. Patients with SO show an increased risk of systemic insulin resistance, systemic inflammation, associated chronic diseases, and the subsequent progression to full-blown sarcopenia and even cachexia. Meanwhile in many cardiometabolic diseases, the ostensibly protective effect of obesity in extremely elderly subjects, also known as the 'obesity paradox', could possibly be explained by our theory that many elderly subjects with normal body mass index might actually harbour SO to various degrees, before it progresses to full-blown severe sarcopenia. Our review outlines current knowledge concerning the possible chain of causation between sarcopenia and obesity, proposes a solution to the obesity paradox, and the role of fat mass in ageing.
Collapse
Affiliation(s)
- Chun-Wei Li
- Department of Clinical Nutrition & Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kang Yu
- Department of Clinical Nutrition & Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ng Shyh-Chang
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zongmin Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Taoyan Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shilin Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lanfang Luo
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lu Guang
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kun Liang
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenwu Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hefan Miao
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenhua Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ruirui Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ling-Juan Jiang
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Song-Lin Yu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Li
- Department of General Surgery, Tianjin Union Medical Center, The Affiliated Hospital of Nankai University, China (Tianjin Union Medical Center, Tianjin, China
| | - Hui-Jun Liu
- Department of nursing & Clinical Nutrition, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Long-Yu Xu
- Department of Sport Physiatry, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rong-Ji Liu
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Yuan Zhang
- Department of stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gao-Shan Liu
- Department of Health Education, Shijingshan Center for Disease Prevention and Control, Beijing, China
| |
Collapse
|
154
|
Stutte S, Ishikawa-Ankerhold H, Lynch L, Eickhoff S, Nasiscionyte S, Guo C, van den Heuvel D, Setzensack D, Colonna M, Maier-Begandt D, Weckbach L, Brocker T, Schulz C, Walzog B, von Andrian U. High-Fat Diet Rapidly Modifies Trafficking, Phenotype, and Function of Plasmacytoid Dendritic Cells in Adipose Tissue. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1445-1455. [PMID: 35181637 PMCID: PMC8919350 DOI: 10.4049/jimmunol.2100022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) display an increased abundance in visceral adipose tissue (VAT) of humans with obesity. In the current study, we set out to decipher the molecular mechanisms of their recruitment to VAT and the functional relevance of this process. We observed increased pDC numbers in murine blood, liver, spleen, and VAT after feeding a high-fat diet (HFD) for 3 wk when compared with a standard diet. pDCs were enriched in fat-associated lymphoid clusters representing highly specific lymphoid regions within VAT. HFD led to an enlargement of fat-associated lymphoid clusters with an increased density and migratory speed of pDCs as shown by intravital multiphoton microscopy. For their recruitment into VAT, pDCs employed P-selectin with E-selectin and L-selectin being only critical in response to HFD, indicating that the molecular cues underlying pDC trafficking were dependent on the nutritional state. Subsequent recruitment steps required α4β1 and α4β7 integrins and engagement of CCR7. Application of fingolimod (FTY720) abrogated egress of pDCs from VAT, indicating the involvement of sphingosine-1-phosphate in this process. Furthermore, HFD altered pDC functions by promoting their activation and type 1 IFN expression. Blocking pDC infiltration into VAT prevented weight gain and improved glucose tolerance during HFD. In summary, a HFD fundamentally alters pDC biology by promoting their trafficking, retention, and activation in VAT, which in turn seems to regulate metabolism.
Collapse
Affiliation(s)
- Susanne Stutte
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany;
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
| | - Hellen Ishikawa-Ankerhold
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Internal Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lydia Lynch
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
- Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Sarah Eickhoff
- Institute of Systems Immunology, University of Würzburg, Würzburg, Germany
| | - Simona Nasiscionyte
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Chenglong Guo
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Internal Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dominic van den Heuvel
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Internal Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniel Setzensack
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Internal Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Colonna
- Washington University, School of Medicine, St. Louis, MO; and
| | - Daniela Maier-Begandt
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ludwig Weckbach
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Internal Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Brocker
- Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Schulz
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Internal Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Barbara Walzog
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ulrich von Andrian
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA
| |
Collapse
|
155
|
Song L, Li H, Liu Y, Zhang X, Wen Y, Zhang K, Zhang M. Postnatal deletion of β-catenin in preosteoblasts regulates global energy metabolism through increasing bone resorption and adipose tissue fibrosis. Bone 2022; 156:116320. [PMID: 34973494 DOI: 10.1016/j.bone.2021.116320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 12/12/2021] [Accepted: 12/22/2021] [Indexed: 11/02/2022]
Abstract
Many studies revealed bone can regulate global energy metabolism and our previous study also showed that Wnt/β-catenin pathway is involved in this process. To better understand the participation of canonical Wnt pathway in energy metabolism, we examined the β-catenin knock-out (β-cat KO) mice by crossing the osterix-cre transgenic mice with β-cateninflox/flox mice. First, we identified that postnatal deletion of β-catenin in preosteoblasts led to decreased fat mass and increased energy expenditure in mice. Osteoprotegerin administration largely rescued the decreased fat mass and partly normalized the energy expenditure accompanied by the inhibition of bone resorption. Anti-resorption with alendronate or RANKL-antibody could also partly rescued the decreased bone mass, decreased fat mass and increased energy expenditure in β-cat KO mice. We further found that the adipose cells in the inguinal fat tissue were smaller and the extracellular matrix components around adipocytes accumulated more in β-cat KO mice than their controls by histomorphology. Gene analysis by RT-PCR showed that the expression of collagen VI is 4.8 folds in adipose tissue of the β-cat KO mice compared with the control mice. We further detected the expression of cytokines which were related to fibrosis and the data showed that the level of TGF-beta1 was elevated in both of bone marrow serum and adipose tissue derived from the β-cat KO mice. After administration of TGF-beta1 neutralizing antibody, the impaired energy metabolism was partly rescued in β-cat KO mice. Besides, anti-resorption treatment and TGF-beta1 antibody could partly suppress the increased expression of genes related to fat tissue fibrosis. These results indicate that the abnormal global energy metabolism in β-cat KO mice may be attributed to increasing bone resorption and adipose tissue fibrosis.
Collapse
Affiliation(s)
- Lige Song
- Department of Endocrinology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China; Institute of Osteoporosis and Metabolic Bone Diseases, School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Huijuan Li
- Department of Endocrinology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China; Institute of Osteoporosis and Metabolic Bone Diseases, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yichen Liu
- Department of Endocrinology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China; Institute of Osteoporosis and Metabolic Bone Diseases, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xiaoya Zhang
- Department of Endocrinology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China; Institute of Osteoporosis and Metabolic Bone Diseases, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yuhua Wen
- Department of Endocrinology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China; Institute of Osteoporosis and Metabolic Bone Diseases, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Keqin Zhang
- Department of Endocrinology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China; Institute of Osteoporosis and Metabolic Bone Diseases, School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Mingzhu Zhang
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 1 Dongjiao Minxiang, West Area, Beijing, 100730, China.
| |
Collapse
|
156
|
The Shades of Grey in Adipose Tissue Reprogramming. Biosci Rep 2022; 42:230844. [PMID: 35211733 PMCID: PMC8905306 DOI: 10.1042/bsr20212358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022] Open
Abstract
The adipose tissue (AT) has a major role in contributing to obesity-related pathologies through regulating systemic immunometabolism. The pathogenicity of the AT is underpinned by its remarkable plasticity to be reprogrammed during obesity, in the perspectives of tissue morphology, extracellular matrix (ECM) composition, angiogenesis, immunometabolic homoeostasis and circadian rhythmicity. Dysregulation in these features escalates the pathogenesis conferred by this endometabolic organ. Intriguingly, the potential to be reprogrammed appears to be an Achilles’ heel of the obese AT that can be targeted for the management of obesity and its associated comorbidities. Here, we provide an overview of the reprogramming processes of white AT (WAT), with a focus on their dynamics and pleiotropic actions over local and systemic homoeostases, followed by a discussion of potential strategies favouring therapeutic reprogramming. The potential involvement of AT remodelling in the pathogenesis of COVID-19 is also discussed.
Collapse
|
157
|
Sarsenbayeva A, Pereira MJ, Nandi Jui B, Ahmed F, Dipta P, Fanni G, Almby K, Kristófi R, Hetty S, Eriksson JW. Excess glucocorticoid exposure contributes to adipose tissue fibrosis which involves macrophage interaction with adipose precursor cells. Biochem Pharmacol 2022; 198:114976. [PMID: 35202577 DOI: 10.1016/j.bcp.2022.114976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
Chronic exposure to elevated glucocorticoid levels, as seen in patients with Cushing's syndrome, can induce adipose tissue fibrosis. Macrophages play a pivotal role in adipose tissue remodelling. We used the synthetic glucocorticoid analogue dexamethasone to address glucocorticoid effects on adipose tissue fibrosis, in particular involving macrophage to preadipocyte communication. We analysed the direct effects of dexamethasone at a supra-physiological level, 0.3 µM, on gene expression of pro-fibrotic markers in human subcutaneous adipose tissue. The effects of dexamethasone on the differentiation of human SGBS preadipocytes were assessed in the presence or absence of THP1-macrophages or macrophage-conditioned medium. We measured the expression of different pro-fibrotic factors, including α-smooth muscle actin gene (ACTA2) and protein (α-SMA). Dexamethasone increased the expression of pro-fibrotic genes, e.g. CTGF, COL6A3, FN1, in adipose tissue. Macrophages abolished preadipocyte differentiation and increased the expression of the ACTA2 gene and α-SMA protein in preadipocytes after differentiation. Exposure to dexamethasone during differentiation reduced adipogenesis in preadipocytes, and elevated the expression of pro-fibrotic genes. Moreover, dexamethasone added together with macrophages further increased ACTA2 and α-SMA expression in preadipocytes, making them more myofibroblast-like. Cells differentiated in the presence of conditioned media from macrophages pretreated with or without dexamethasone had a higher expression of profibrotic genes compared to control cells. Our data suggest that macrophages promote adipose tissue fibrosis by directly interfering with preadipocyte differentiation and stimulating gene expression of pro-fibrotic factors. Excess glucocorticoid exposure also has pro-fibrotic effect on adipose tissue, but this requires the presence of macrophages.
Collapse
Affiliation(s)
- Assel Sarsenbayeva
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Bipasha Nandi Jui
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Fozia Ahmed
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Priya Dipta
- Department of Pharmacology, Faculty of Medicine, Hadassah Medical Centre, Jerusalem, Israel
| | - Giovanni Fanni
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Kristina Almby
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Robin Kristófi
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Susanne Hetty
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
158
|
Sakers A, De Siqueira MK, Seale P, Villanueva CJ. Adipose-tissue plasticity in health and disease. Cell 2022; 185:419-446. [PMID: 35120662 PMCID: PMC11152570 DOI: 10.1016/j.cell.2021.12.016] [Citation(s) in RCA: 363] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
Abstract
Adipose tissue, colloquially known as "fat," is an extraordinarily flexible and heterogeneous organ. While historically viewed as a passive site for energy storage, we now appreciate that adipose tissue regulates many aspects of whole-body physiology, including food intake, maintenance of energy levels, insulin sensitivity, body temperature, and immune responses. A crucial property of adipose tissue is its high degree of plasticity. Physiologic stimuli induce dramatic alterations in adipose-tissue metabolism, structure, and phenotype to meet the needs of the organism. Limitations to this plasticity cause diminished or aberrant responses to physiologic cues and drive the progression of cardiometabolic disease along with other pathological consequences of obesity.
Collapse
Affiliation(s)
- Alexander Sakers
- Institute for Diabetes, Obesity & Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Mirian Krystel De Siqueira
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA.
| | - Claudio J Villanueva
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA.
| |
Collapse
|
159
|
Chen KY, De Angulo A, Guo X, More A, Ochsner SA, Lopez E, Saul D, Pang W, Sun Y, McKenna NJ, Tong Q. Adipocyte-Specific Ablation of PU.1 Promotes Energy Expenditure and Ameliorates Metabolic Syndrome in Aging Mice. FRONTIERS IN AGING 2022; 2:803482. [PMID: 35822007 PMCID: PMC9261351 DOI: 10.3389/fragi.2021.803482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/13/2021] [Indexed: 12/03/2022]
Abstract
Objective: Although PU.1/Spi1 is known as a master regulator for macrophage development and function, we have reported previously that it is also expressed in adipocytes and is transcriptionally induced in obesity. Here, we investigated the role of adipocyte PU.1 in the development of the age-associated metabolic syndrome. Methods: We generated mice with adipocyte-specific PU.1 knockout, assessed metabolic changes in young and older adult PU.1fl/fl (control) and AdipoqCre PU.1fl/fl (aPU.1KO) mice, including body weight, body composition, energy expenditure, and glucose homeostasis. We also performed transcriptional analyses using RNA-Sequencing of adipocytes from these mice. Results: aPU.1KO mice have elevated energy expenditure at a young age and decreased adiposity and increased insulin sensitivity in later life. Corroborating these observations, transcriptional network analysis indicated the existence of validated, adipocyte PU.1-modulated regulatory hubs that direct inflammatory and thermogenic gene expression programs. Conclusion: Our data provide evidence for a previously uncharacterized role of PU.1 in the development of age-associated obesity and insulin resistance.
Collapse
Affiliation(s)
- Ke Yun Chen
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - Alejandra De Angulo
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - Xin Guo
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Aditya More
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - Scott A. Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Eduardo Lopez
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - David Saul
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - Weijun Pang
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
- Northwestern University of Agriculture and Forestry, Yangling, China
| | - Yuxiang Sun
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Neil J. McKenna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Neil J. McKenna, ; Qiang Tong,
| | - Qiang Tong
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Huffington Center on Aging, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Huffington Center on Aging, Houston, TX, United States
- *Correspondence: Neil J. McKenna, ; Qiang Tong,
| |
Collapse
|
160
|
The adipokine orosomucoid alleviates adipose tissue fibrosis via the AMPK pathway. Acta Pharmacol Sin 2022; 43:367-375. [PMID: 33875797 PMCID: PMC8792011 DOI: 10.1038/s41401-021-00666-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/22/2021] [Indexed: 02/03/2023] Open
Abstract
The excess deposition of underlying extracellular matrix (ECM) in adipose tissue is defined as adipose tissue fibrosis that is a major contributor to metabolic disorder such as obesity and type 2 diabetes. Anti-fibrosis therapy has received much attention in the treatment of metabolic disorders. Orosomucoid (ORM) is an acute-phase protein mainly produced by liver, which is also an adipokine. In this study, we investigated the effects of ORM on adipose tissue fibrosis and the potential mechanisms. We showed that ORM1-deficient mice exhibited an obese phenotype, manifested by excessive collagen deposition in adipose tissues and elevated expression of ECM regulators such as metalloproteinases (MMP-2, MMP-13, MMP-14) and tissue inhibitors of metalloproteinases (TIMP-1, TIMP-2, TIMP-3). Administration of exogenous ORM (50 mg· kg-1· d-1, ip) for 7 consecutive days in high-fat diet (HFD)-fed mice and leptin receptor (LepR)-deficient db/db mice attenuated these abnormal expressions. Meanwhile, ORM administration stimulated AMP-activated protein kinase (AMPK) phosphorylation and decreased transforming growth factor-β1 (TGF-β1) level in adipose tissues of the mice. In TGF-β1-treated 3T3-L1 fibroblasts, ORM (10 μg/mL) improved the impaired expression profiles of fibrosis-related genes, whereas a selective AMPK inhibitor dorsomorphin (1 μmol/mL) abolished these effects. Together, our results suggest that ORM exerts a direct anti-fibrosis effect in adipose tissue via AMPK activation. ORM is expected to become a novel target for the treatment of adipose tissue fibrosis.
Collapse
|
161
|
Matrisome alterations in obesity – Adipose tissue transcriptome study on monozygotic weight-discordant twins. Matrix Biol 2022; 108:1-19. [DOI: 10.1016/j.matbio.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
|
162
|
Yu XT, Wang F, Ding JT, Cai B, Xing JJ, Guo GH, Guo F. Tandem mass tag-based serum proteomic profiling revealed diabetic foot ulcer pathogenesis and potential therapeutic targets. Bioengineered 2022; 13:3171-3182. [PMID: 35068329 PMCID: PMC8974021 DOI: 10.1080/21655979.2022.2027173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Diabetic foot ulcer (DFU), one of the most serious complications of diabetes mellitus, is associated with a high amputation rate and decreased life quality. The impact of blood serum proteins on the occurrence and development of DFU has attracted a lot of interest. In this study, we aimed to define and compare the serum proteome of patients with DFU and healthy control (HC) to provide new insights into DFU pathogenesis. DFU patients and age- and sex-matched HCs were enrolled in this study (n = 54). We screened alterations in blood serum proteins from DFU patients and HC using a tandem mass tag (TMT) method based on liquid chromatography-mass spectrometry (LC-MS/MS) quantitative proteomics, and the differentially expressed proteins (DEPs) were further validated by parallel reaction monitoring (PRM) and enzyme-linked immunosorbent assay (ELISA). A total of 173 DEPs (100 up-regulated and 73 down-regulated) were identified between the DFU and HC groups (P < 0.05). Proteomic and bioinformatics analyses indicated that the proteins in the DFU group were mainly related to extracellular matrix (ECM)-receptor interaction and complement and coagulation cascades. The up-regulated DEPs were further verified by PRM and ELISA. LRG1, CD5L, CRP, IGHA1, and LBP were proved upregulated in DFU and these proteins are mainly related to immune response and complement activation. Our findings help to provide a more comprehensive understanding of the pathogenesis of DFU and new insight into potential therapeutic targets.
Collapse
Affiliation(s)
- Xiao-Ting Yu
- Burns Institute, the First Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
| | - Feng Wang
- Ningbo Institute for Medicine & Biomedical Engineering Combined Innovation, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Jia-Tong Ding
- Burns Institute, the First Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
| | - Bo Cai
- Burns Institute, the First Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
| | - Juan-Juan Xing
- Burns Institute, the First Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
| | - Guang-Hua Guo
- Burns Institute, the First Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
| | - Fei Guo
- Burns Institute, the First Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
- Ningbo Institute for Medicine & Biomedical Engineering Combined Innovation, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
163
|
Guerreiro VA, Carvalho D, Freitas P. Obesity, Adipose Tissue, and Inflammation Answered in Questions. J Obes 2022; 2022:2252516. [PMID: 35321537 PMCID: PMC8938152 DOI: 10.1155/2022/2252516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/19/2021] [Accepted: 01/03/2022] [Indexed: 12/27/2022] Open
Abstract
Background. Obesity is a global health problem of epidemic proportions, which is characterized by increased adipose tissue (AT) mass and significant repercussions in different body apparati and systems. AT is a special connective tissue, which contains several types of cells, in addition to adipocytes, and is a highly active endocrine and immune organ, which directly modulates many processes, including energy balance, metabolism, and inflammation. Summary. In this paper, the authors list and attempt to answer in a brief and simple way several questions regarding the complex relationships between obesity, adipose tissue, and inflammation, with the objective to provide an easy way to understand the main changes that occur in this pathological state. The questions are the following: Is adipose tissue only made up of adipocytes? Are adipocytes just a reservoir of free fatty acids? Do different types of fatty tissue exist? If so, which types? Can we further subcategorize the types of adipose tissue? Is it possible to form new adipocytes during adulthood? What is the role of inflammation? What is the role of macrophages? Are macrophages central mediators of obesity-induced adipose tissue inflammation and insulin resistance? What causes macrophage infiltration into adipose tissue? What is the role of hypoxia in AT alterations? Is there cross talk between adipocytes and immune cells? What other changes occur in AT in obesity? Does metabolically healthy obesity really exist? Is this a benign condition? Key messages. Obesity is a complex disease with numerous metabolic consequences, which are mainly the result of dysfunction that occurs in the adipose tissue of patients with this pathology. Understanding the pathophysiology of AT and the changes that occur in obesity would contribute to a better approach to patients with obesity, with the inherent medical implications that could result from this.
Collapse
Affiliation(s)
- Vanessa A. Guerreiro
- Department of Endocrinology Diabetes and Metabolism, Centro Hospitalar e Universitário de São João, Porto 4200-319, Portugal
- Faculty of Medicine, Universidade do Porto, Porto 4200-319, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
| | - Davide Carvalho
- Department of Endocrinology Diabetes and Metabolism, Centro Hospitalar e Universitário de São João, Porto 4200-319, Portugal
- Faculty of Medicine, Universidade do Porto, Porto 4200-319, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
| | - Paula Freitas
- Department of Endocrinology Diabetes and Metabolism, Centro Hospitalar e Universitário de São João, Porto 4200-319, Portugal
- Faculty of Medicine, Universidade do Porto, Porto 4200-319, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
| |
Collapse
|
164
|
Abstract
The accumulation of an excessive amount of body fat can cause type 2 diabetes, and the risk of type 2 diabetes increases linearly with an increase in body mass index. Accordingly, the worldwide increase in the prevalence of obesity has led to a concomitant increase in the prevalence of type 2 diabetes. The cellular and physiological mechanisms responsible for the link between obesity and type 2 diabetes are complex and involve adiposity-induced alterations in β cell function, adipose tissue biology, and multi-organ insulin resistance, which are often ameliorated and can even be normalized with adequate weight loss.
Collapse
Affiliation(s)
- Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, USA; Sansum Diabetes Research Institute, Santa Barbara, CA 93105, USA.
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council-CNR, Pisa 56100, Italy
| | - Hannele Yki-Järvinen
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland; Department of Medicine, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; Department of Cell Biology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| |
Collapse
|
165
|
Healthy Subcutaneous and Omental Adipose Tissue Is Associated with High Expression of Extracellular Matrix Components. Int J Mol Sci 2022; 23:ijms23010520. [PMID: 35008946 PMCID: PMC8745535 DOI: 10.3390/ijms23010520] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Obesity is associated with extensive expansion and remodeling of the adipose tissue architecture, including its microenvironment and extracellular matrix (ECM). Although obesity has been reported to induce adipose tissue fibrosis, the composition of the ECM under healthy physiological conditions has remained underexplored and debated. Here, we used a combination of three established techniques (picrosirius red staining, a colorimetric hydroxyproline assay, and sensitive gene expression measurements) to evaluate the status of the ECM in metabolically healthy lean (MHL) and metabolically unhealthy obese (MUO) subjects. We investigated ECM deposition in the two major human adipose tissues, namely the omental and subcutaneous depots. Biopsies were obtained from the same anatomic region of respective individuals. We found robust ECM deposition in MHL subjects, which correlated with high expression of collagens and enzymes involved in ECM remodeling. In contrast, MUO individuals showed lower expression of ECM components but elevated levels of ECM cross-linking and adhesion proteins, e.g., lysyl oxidase and thrombospondin. Our data suggests that subcutaneous fat is more prone to express proteins involved in ECM remodeling than omental adipose tissues. We conclude that a more dynamic ability to deposit and remodel ECM may be a key signature of healthy adipose tissue, and that subcutaneous fat may adapt more readily to changing metabolic conditions than omental fat.
Collapse
|
166
|
Liu X, Liu L, Zhao J, Wang H, Li Y. Mechanotransduction regulates inflammation responses of epicardial adipocytes in cardiovascular diseases. Front Endocrinol (Lausanne) 2022; 13:1080383. [PMID: 36589802 PMCID: PMC9800500 DOI: 10.3389/fendo.2022.1080383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Adipose tissue is a crucial regulator in maintaining cardiovascular homeostasis by secreting various bioactive products to mediate the physiological function of the cardiovascular system. Accumulating evidence shows that adipose tissue disorders contribute to several kinds of cardiovascular disease (CVD). Furthermore, the adipose tissue would present various biological effects depending on its tissue localization and metabolic statuses, deciding the individual cardiometabolic risk. Crosstalk between adipose and myocardial tissue is involved in the pathophysiological process of arrhythmogenic right ventricular cardiomyopathy (ARVC), cardiac fibrosis, heart failure, and myocardial infarction/atherosclerosis. The abnormal distribution of adipose tissue in the heart might yield direct and/or indirect effects on cardiac function. Moreover, mechanical transduction is critical for adipocytes in differentiation, proliferation, functional maturity, and homeostasis maintenance. Therefore, understanding the features of mechanotransduction pathways in the cellular ontogeny of adipose tissue is vital for underlining the development of adipocytes involved in cardiovascular disorders, which would preliminarily contribute positive implications on a novel therapeutic invention for cardiovascular diseases. In this review, we aim to clarify the role of mechanical stress in cardiac adipocyte homeostasis and its interplay with maintaining cardiac function.
Collapse
Affiliation(s)
- Xiaoliang Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lei Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junfei Zhao
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- *Correspondence: Yifei Li, ; Junfei Zhao, ; Hua Wang,
| | - Hua Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yifei Li, ; Junfei Zhao, ; Hua Wang,
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yifei Li, ; Junfei Zhao, ; Hua Wang,
| |
Collapse
|
167
|
Abstract
PURPOSE OF REVIEW The obesity epidemic is on the rise, and while it is well known that obesity is associated with an increase in cardiovascular risk factors such as type 2 diabetes mellitus, hypertension, and obstructive sleep apnea, recent data has highlighted that the degree and type of fat distribution may play a bigger role in the pathogenesis of cardiovascular disease (CVD) than body mass index (BMI) alone. We aim to review updated data on adipose tissue inflammation and distribution and CVD. RECENT FINDINGS We review the pathophysiology of inflammation secondary to adipose tissue, the association of obesity-related adipokines and CVD, and the differences and significance of brown versus white adipose tissue. We delve into the clinical manifestations of obesity-related inflammation in CVD. We discuss the available data on heterogeneity of adipose tissue-related inflammation with a focus on subcutaneous versus visceral adipose tissue, the differential pathophysiology, and clinical CVD manifestations of adipose tissue across sex, race, and ethnicity. Finally, we present the available data on lifestyle modification, medical, and surgical therapeutics on reduction of obesity-related inflammation. Obesity leads to a state of chronic inflammation which significantly increases the risk for CVD. More research is needed to develop non-invasive VAT quantification indices such as risk calculators which include variables such as sex, age, race, ethnicity, and VAT concentration, along with other well-known CVD risk factors in order to comprehensively determine risk of CVD in obese patients. Finally, pre-clinical biomarkers such as pro-inflammatory adipokines should be validated to estimate risk of CVD in obese patients.
Collapse
Affiliation(s)
- Mariam N Rana
- Department of Medicine, University Hospitals, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Ian J Neeland
- Department of Medicine, University Hospitals, 11100 Euclid Ave, Cleveland, OH, 44106, USA.
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Harrington Heart and Vascular Institute, University Hospitals, 11100 Euclid Ave, Cleveland, OH, 44106, USA.
| |
Collapse
|
168
|
Zhu L, Liu L. New Insights Into the Interplay Among Autophagy, the NLRP3 Inflammasome and Inflammation in Adipose Tissue. Front Endocrinol (Lausanne) 2022; 13:739882. [PMID: 35432210 PMCID: PMC9008752 DOI: 10.3389/fendo.2022.739882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity is a feature of metabolic syndrome with chronic inflammation in obese subjects, characterized by adipose tissue (AT) expansion, proinflammatory factor overexpression, and macrophage infiltration. Autophagy modulates inflammation in the enlargement of AT as an essential step for maintaining the balance in energy metabolism and waste elimination. Signaling originating from dysfunctional AT, such as AT containing hypertrophic adipocytes and surrounding macrophages, activates NOD-like receptor family 3 (NLRP3) inflammasome. There are interactions about altered autophagy and NLRP3 inflammasome activation during the progress in obesity. We summarize the current studies and potential mechanisms associated with autophagy and NLRP3 inflammasome in AT inflammation and aim to provide further evidence for research on obesity and obesity-related complications.
Collapse
Affiliation(s)
- Liyuan Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, China
- Cardiovascular Disease Research Center of Hunan Province, Changsha, China
| | - Ling Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, China
- Cardiovascular Disease Research Center of Hunan Province, Changsha, China
- *Correspondence: Ling Liu,
| |
Collapse
|
169
|
Lin Z, Chi J, Cohen P. A Clearing Method for Three-Dimensional Imaging of Adipose Tissue. Methods Mol Biol 2022; 2448:73-82. [PMID: 35167090 DOI: 10.1007/978-1-0716-2087-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adipose tissue is not simply a collection of lipid storing fat cells, but is now recognized to be a complex tissue with a central role in whole body energy homeostasis. In order to understand how adipocytes and associated cell types interact in normal physiology and in pathological states like obesity, it is critical to obtain a holistic view of cells and structures in three dimensions. To that end, we have adapted the iDISCO/iDISCO+ tissue clearing protocol to facilitate the delipidation of fat tissues, while still maintaining their architecture. We describe here this method, that we refer to as Adipo-Clear, highlighting key steps in the protocol as well as important technical considerations. This versatile approach can provide entirely new insights into adipose tissue biology in health and disease.
Collapse
Affiliation(s)
- Zeran Lin
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Jingyi Chi
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
170
|
Han H, Park Y, Choi Y, Yong U, Kang B, Shin W, Min S, Kim HJ, Jang J. A Bioprinted Tubular Intestine Model Using a Colon-Specific Extracellular Matrix Bioink. Adv Healthc Mater 2022; 11:e2101768. [PMID: 34747158 DOI: 10.1002/adhm.202101768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/16/2021] [Indexed: 12/11/2022]
Abstract
Tremendous advances have been made toward accurate recapitulation of the human intestinal system in vitro to understand its developmental process, and disease progression. However, current in vitro models are often confined to 2D or 2.5D microarchitectures, which is difficult to mimic the systemic level of complexity of the native tissue. To overcome this problem, physiologically relevant intestinal models are developed with a 3D hollow tubular structure using 3D bioprinting strategy. A tissue-specific biomaterial, colon-derived decellularized extracellular matrix (Colon dECM) is developed and it provides significant maturation-guiding potential to human intestinal cells. To fabricate a perfusable tubular model, a simultaneous printing process of multiple materials through concentrically assembled nozzles is developed and a light-activated Colon dECM bioink is employed by supplementing with ruthenium/sodium persulfate as a photoinitiator. The bioprinted intestinal tissue models show spontaneous 3D morphogenesis of the human intestinal epithelium without any external stimuli. In consequence, the printed cells form multicellular aggregates and cysts and then differentiate into several types of enterocytes, building junctional networks. This system can serve as a platform to evaluate the effects of potential drug-induced toxicity on the human intestinal tissue and create a coculture model with commensal microbes and immune cells for future therapeutics.
Collapse
Affiliation(s)
- Hohyeon Han
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology (POSTECH) Pohang Kyungbuk 37673 Korea
| | - Yejin Park
- Department of Convergence IT Engineering POSTECH Pohang Kyungbuk 37673 Korea
| | - Yoo‐mi Choi
- Department of Convergence IT Engineering POSTECH Pohang Kyungbuk 37673 Korea
| | - Uijung Yong
- Department of Convergence IT Engineering POSTECH Pohang Kyungbuk 37673 Korea
| | - Byeongmin Kang
- Department of Convergence IT Engineering POSTECH Pohang Kyungbuk 37673 Korea
| | - Woojung Shin
- Department of Biomedical Engineering The University of Texas at Austin Austin TX 78712 USA
- Department of Oncology Dell Medical School The University of Texas at Austin Austin TX 78712 USA
| | - Soyoun Min
- Department of Biomedical Engineering The University of Texas at Austin Austin TX 78712 USA
- Department of Oncology Dell Medical School The University of Texas at Austin Austin TX 78712 USA
| | - Hyun Jung Kim
- Department of Biomedical Engineering The University of Texas at Austin Austin TX 78712 USA
- Department of Oncology Dell Medical School The University of Texas at Austin Austin TX 78712 USA
| | - Jinah Jang
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology (POSTECH) Pohang Kyungbuk 37673 Korea
- Department of Convergence IT Engineering POSTECH Pohang Kyungbuk 37673 Korea
- Department of Mechanical Engineering POSTECH Pohang Kyungbuk 37673 Korea
- Institute of Convergence Science Yonsei University Seoul 03722 Korea
| |
Collapse
|
171
|
Corrales P, Vidal-Puig A, Medina-Gómez G. Obesity and pregnancy, the perfect metabolic storm. Eur J Clin Nutr 2021; 75:1723-1734. [PMID: 33911209 DOI: 10.1038/s41430-021-00914-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/15/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
Pregnancy is a physiological stress that requires dynamic, regulated changes affecting maternal and fetal adiposity. Excessive accumulation of dysfunctional adipose tissue defined by metabolic and molecular alterations cause severe health consequences for mother and fetus. When subjected to sustained overnutrition, the cellular and lipid composition of the adipose tissue changes predisposing to insulin resistance, diabetes, and other metabolic disorders compromising the outcome of the pregnancy. Moreover, excessive maternal weight gain, usually in the context of obesity, predisposes to an increased flux of nutrients from mother to fetus throughout the placenta. The fetus of an obese mother will accumulate more adiposity and may increase the risk of future metabolic disorder later in life. Thus, further understanding of the interaction between maternal metabolism, epigenetic regulation of the adipose tissue, and their transgenerational transfer are required to mitigate the adverse health outcomes for the mother and the fetus associated with maternal obesity.
Collapse
Affiliation(s)
- Patricia Corrales
- Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- Wellcome Trust Sanger Institute, Hinxton, UK
- Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, PR China
| | - Gema Medina-Gómez
- Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.
| |
Collapse
|
172
|
Marcelin G, Clément K. The multifaceted progenitor fates in healthy or unhealthy adipose tissue during obesity. Rev Endocr Metab Disord 2021; 22:1111-1119. [PMID: 34105090 DOI: 10.1007/s11154-021-09662-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
While obesity is defined as an excessive fat accumulation conferring a risk to metabolic health, increased adipose mass by itself does not fully explain obesity's propensity to promote metabolic alterations. Adipose tissue regulates multiple processes critical for energy homeostasis and its dysfunction favors the development and perpetuation of metabolic diseases. Obesity drives inflammatory leucocyte infiltration in adipose tissue and fibrotic transformation of the fat depots. Both features associate with metabolic alterations such as impaired glucose control and resistance to fat mass loss. In this context, adipose progenitors, an heterogenous resident population of mesenchymal stromal cells, display functions important to shape healthy or unhealthy adipose tissue expansion. We, here, outline the current understanding of adipose progenitor biology in the context of obesity-induced adipose tissue remodeling.
Collapse
Affiliation(s)
- Geneviève Marcelin
- Nutrition and Obesities : Systemic Approaches (NutriOmics, UMRS U1269), Sorbonne Universités, INSERM, Paris, France
| | - Karine Clément
- Nutrition and Obesities : Systemic Approaches (NutriOmics, UMRS U1269), Sorbonne Universités, INSERM, Paris, France.
- Nutrition Department, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, CRNH Ile de France, 75013, Paris, France.
| |
Collapse
|
173
|
Garritson JD, Boudina S. The Effects of Exercise on White and Brown Adipose Tissue Cellularity, Metabolic Activity and Remodeling. Front Physiol 2021; 12:772894. [PMID: 34795599 PMCID: PMC8593176 DOI: 10.3389/fphys.2021.772894] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence suggests a significant functional role of adipose tissue in maintaining whole-body metabolic health. It is well established that obesity leads to compositional and morphological changes in adipose tissue that can contribute to the development of cardiometabolic disorders. Thus, the function and size of adipocytes as well as perfusion and inflammation can significantly impact health outcomes independent of body mass index. Lifestyle interventions such as exercise can improve metabolic homeostasis and reduce the risk for developing cardiometabolic disorders. Adipose tissue displays remarkable plasticity in response to external stimuli such as dietary intervention and exercise. Here we review systemic and local effects of exercise that modulate white and brown adipose tissue cellularity, metabolic function and remodeling in humans and animals.
Collapse
Affiliation(s)
- Jacob D Garritson
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, United States
| | - Sihem Boudina
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
174
|
Innate-Immunity Genes in Obesity. J Pers Med 2021; 11:jpm11111201. [PMID: 34834553 PMCID: PMC8623883 DOI: 10.3390/jpm11111201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/07/2023] Open
Abstract
The main functions of adipose tissue are thought to be storage and mobilization of the body’s energy reserves, active and passive thermoregulation, participation in the spatial organization of internal organs, protection of the body from lipotoxicity, and ectopic lipid deposition. After the discovery of adipokines, the endocrine function was added to the above list, and after the identification of crosstalk between adipocytes and immune cells, an immune function was suggested. Nonetheless, it turned out that the mechanisms underlying mutual regulatory relations of adipocytes, preadipocytes, immune cells, and their microenvironment are complex and redundant at many levels. One possible way to elucidate the picture of adipose-tissue regulation is to determine genetic variants correlating with obesity. In this review, we examine various aspects of adipose-tissue involvement in innate immune responses as well as variants of immune-response genes associated with obesity.
Collapse
|
175
|
Abstract
Obesity is a chronic and progressive process affecting whole-body energy balance and is associated with comorbidities development. In addition to increased fat mass, obesity induces white adipose tissue (WAT) inflammation and fibrosis, leading to local and systemic metabolic dysfunctions, such as insulin resistance (IR). Accordingly, limiting inflammation or fibrosis deposition may improve IR and glucose homeostasis. Although no targeted therapy yet exists to slow or reverse adipose tissue fibrosis, a number of findings have clarified the underlying cellular and molecular mechanisms. In this review, we highlight adipose tissue remodeling events shown to be associated with fibrosis deposition, with a focus on adipose progenitors involved in obesity-induced healthy as well as unhealthy WAT expansion. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Geneviève Marcelin
- INSERM, Nutrition and Obesities: Systemic Approach (NutriOmics) Research Unit, UMRS U1269, Sorbonne Université, Paris, France; ,
| | | | - Karine Clément
- INSERM, Nutrition and Obesities: Systemic Approach (NutriOmics) Research Unit, UMRS U1269, Sorbonne Université, Paris, France; , .,Nutrition Department, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
176
|
Huang X, Maguire OA, Walker JM, Jiang CS, Carroll TS, Luo JD, Tonorezos E, Friedman DN, Cohen P. Therapeutic radiation exposure of the abdomen during childhood induces chronic adipose tissue dysfunction. JCI Insight 2021; 6:153586. [PMID: 34554929 PMCID: PMC8663557 DOI: 10.1172/jci.insight.153586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/22/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUNDChildhood cancer survivors who received abdominal radiotherapy (RT) or total body irradiation (TBI) are at increased risk for cardiometabolic disease, but the underlying mechanisms are unknown. We hypothesize that RT-induced adipose tissue dysfunction contributes to the development of cardiometabolic disease in the expanding population of childhood cancer survivors.METHODSWe performed clinical metabolic profiling of adult childhood cancer survivors previously exposed to TBI, abdominal RT, or chemotherapy alone, alongside a group of healthy controls. Study participants underwent abdominal s.c. adipose biopsies to obtain tissue for bulk RNA sequencing. Transcriptional signatures were analyzed using pathway and network analyses and cellular deconvolution.RESULTSIrradiated adipose tissue is characterized by a gene expression signature indicative of a complex macrophage expansion. This signature includes activation of the TREM2-TYROBP network, a pathway described in diseases of chronic tissue injury. Radiation exposure of adipose is further associated with dysregulated adipokine secretion, specifically a decrease in insulin-sensitizing adiponectin and an increase in insulin resistance-promoting plasminogen activator inhibitor-1. Accordingly, survivors exhibiting these changes have early signs of clinical metabolic derangement, such as increased fasting glucose and hemoglobin A1c.CONCLUSIONChildhood cancer survivors exposed to abdominal RT or TBI during treatment exhibit signs of chronic s.c. adipose tissue dysfunction, manifested as dysregulated adipokine secretion that may negatively impact their systemic metabolic health.FUNDINGThis study was supported by Rockefeller University Hospital; National Institute of General Medical Sciences (T32GM007739); National Center for Advancing Translational Sciences (UL1 TR001866); National Cancer Institute (P30CA008748); American Cancer Society (133831-CSDG-19-117-01-CPHPS); American Diabetes Association (1-17-ACE-17); and an anonymous donor (MSKCC).
Collapse
Affiliation(s)
- Xiaojing Huang
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA.,Laboratory of Molecular Metabolism, The Rockefeller University, New York, New York, USA
| | - Olivia A Maguire
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, New York, USA.,Weill Cornell/Rockefeller/Sloan Kettering Tri-institutional MD-PhD Program, New York, New York, USA
| | | | | | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, New York, USA
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller University, New York, New York, USA
| | - Emily Tonorezos
- Office of Cancer Survivorship, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, Maryland, USA
| | | | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, New York, USA
| |
Collapse
|
177
|
Nieuwenhuis TO, Rosenberg AZ, McCall MN, Halushka MK. Tissue, age, sex, and disease patterns of matrisome expression in GTEx transcriptome data. Sci Rep 2021; 11:21549. [PMID: 34732773 PMCID: PMC8566510 DOI: 10.1038/s41598-021-00943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/20/2021] [Indexed: 11/08/2022] Open
Abstract
The extracellular matrix (ECM) has historically been explored through proteomic methods. Whether or not global transcriptomics can yield meaningful information on the human matrisome is unknown. Gene expression data from 17,382 samples across 52 tissues, were obtained from the Genotype-Tissue Expression (GTEx) project. Additional datasets were obtained from The Cancer Genome Atlas (TCGA) program and the Gene Expression Omnibus for comparisons. Gene expression levels generally matched proteome-derived matrisome expression patterns. Further, matrisome gene expression properly clustered tissue types, with some matrisome genes including SERPIN family members having tissue-restricted expression patterns. Deeper analyses revealed 382 gene transcripts varied by age and 315 varied by sex in at least one tissue, with expression correlating with digitally imaged histologic tissue features. A comparison of TCGA tumor, TCGA adjacent normal and GTEx normal tissues demonstrated robustness of the GTEx samples as a generalized matrix control, while also determining a common primary tumor matrisome. Additionally, GTEx tissues served as a useful non-diseased control in a separate study of idiopathic pulmonary fibrosis (IPF) matrix changes, while identifying 22 matrix genes upregulated in IPF. Altogether, these findings indicate that the transcriptome, in general, and GTEx in particular, has value in understanding the state of organ ECM.
Collapse
Affiliation(s)
- Tim O Nieuwenhuis
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Matthew N McCall
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
178
|
Xu H, Thomas MJ, Kaul S, Kallinger R, Ouweneel AB, Maruko E, Oussaada SM, Jongejan A, Cense HA, Nieuwdorp M, Serlie MJ, Goldberg IJ, Civelek M, Parks BW, Lusis AJ, Knaack D, Schill RL, May SC, Reho JJ, Grobe JL, Gantner B, Sahoo D, Sorci-Thomas MG. Pcpe2, a Novel Extracellular Matrix Protein, Regulates Adipocyte SR-BI-Mediated High-Density Lipoprotein Uptake. Arterioscler Thromb Vasc Biol 2021; 41:2708-2725. [PMID: 34551590 PMCID: PMC8551036 DOI: 10.1161/atvbaha.121.316615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/24/2021] [Indexed: 01/22/2023]
Abstract
Objective To investigate the role of adipocyte Pcpe2 (procollagen C-endopeptidase enhancer 2) in SR-BI (scavenger receptor class BI)-mediated HDL-C (high-density lipoprotein cholesterol) uptake and contributions to adipose lipid storage. Approach and Results Pcpe2, a glycoprotein devoid of intrinsic proteolytic activity, is believed to participate in extracellular protein-protein interactions, supporting SR-BI- mediated HDL-C uptake. In published studies, Pcpe2 deficiency increased the development of atherosclerosis by reducing SR-BI-mediated HDL-C catabolism, but the biological impact of this deficiency on adipocyte SR-BI-mediated HDL-C uptake is unknown. Differentiated cells from Ldlr-/-/Pcpe2-/- (Pcpe2-/-) mouse adipose tissue showed elevated SR-BI protein levels, but significantly reduced HDL-C uptake compared to Ldlr-/- (control) adipose tissue. SR-BI-mediated HDL-C uptake was restored by preincubation of cells with exogenous Pcpe2. In diet-fed mice lacking Pcpe2, significant reductions in visceral, subcutaneous, and brown adipose tissue mass were observed, despite elevations in plasma triglyceride and cholesterol concentrations. Significant positive correlations exist between adipose mass and Pcpe2 expression in both mice and humans. Conclusions Overall, these findings reveal a novel and unexpected function for Pcpe2 in modulating SR-BI expression and function as it relates to adipose tissue expansion and cholesterol balance in both mice and humans.
Collapse
Affiliation(s)
- Hao Xu
- Department of Medicine, Division of Endocrinology and Molecular Medicine
| | - Michael J. Thomas
- Pharmacology & Toxicology and
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sushma Kaul
- Department of Medicine, Division of Endocrinology and Molecular Medicine
| | | | - Amber B. Ouweneel
- Department of Medicine, Division of Endocrinology and Molecular Medicine
| | - Elisa Maruko
- Department of Medicine, Division of Endocrinology and Molecular Medicine
| | - Sabrina M. Oussaada
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Department of Bioinformatics, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
| | - Huib A. Cense
- Department of Surgery, Rode Kruis Ziekenhuis, Beverwijk, the Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
| | - Mireille J. Serlie
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
| | - Ira J. Goldberg
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University Langone School of Medicine, New York, NY
| | - Mete Civelek
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Brian W. Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Aldons J. Lusis
- Department of Medicine, Human Genetics, Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, California
| | - Darcy Knaack
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Rebecca L. Schill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sarah C. May
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - John J. Reho
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Comprehensive Rodent Metabolic Phenotyping Core
| | - Justin L. Grobe
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Comprehensive Rodent Metabolic Phenotyping Core
- Department of Biomedical Engineering
| | - Benjamin Gantner
- Department of Medicine, Division of Endocrinology and Molecular Medicine
| | - Daisy Sahoo
- Department of Medicine, Division of Endocrinology and Molecular Medicine
- Pharmacology & Toxicology and
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mary G. Sorci-Thomas
- Department of Medicine, Division of Endocrinology and Molecular Medicine
- Pharmacology & Toxicology and
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
179
|
Yudasaka M, Okamatsu-Ogura Y, Tanaka T, Saeki K, Kataura H. Cold-induced Conversion of Connective Tissue Skeleton in Brown Adipose Tissues. Acta Histochem Cytochem 2021; 54:131-141. [PMID: 34764522 PMCID: PMC8569133 DOI: 10.1267/ahc.21-00030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/28/2021] [Indexed: 01/21/2023] Open
Abstract
Thermogenesis via fatty acid-induced uncoupled mitochondrial respiration is the primary function of brown adipose tissue (BAT). In response to changes in ambient temperatures, the weight and specific gravity of BAT change, depending on the quantity of lipid droplets stored in brown adipocytes (BA). Such conditions should result in the reconstruction of connective tissue skeletons, especially of collagen fiber networks, although the mechanisms have not been clarified. This study showed that, within 4 hr of exposing mice to a cold environment, collagen fibers in the extracellular matrix (ECM) of BAT became discontinuous, twisted, emancipated, and curtailed. Surprisingly, the structure of collagen fibers returned to normal after the mice were kept at room temperature for 19 hr, indicating that the alterations in collagen fiber structures are physiological processes association with adaptation to cold environments. These dynamic changes in connective tissue skeletons were not observed in white adipose tissues, suggesting that they are unique to BAT. Interestingly, the vascular permeability of BAT was also augmented by exposure to cold. Collectively, these findings indicate that dynamic changes in ECM collagen fibers provide high flexibility to BAT, enabling the adjustment of tissue structures and the regulation of vascular permeability, resulting in adaptation to changes in ambient temperatures.
Collapse
Affiliation(s)
- Masako Yudasaka
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University
| | - Takeshi Tanaka
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology
| | - Kumiko Saeki
- Department of Laboratory Molecular Genetics of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Hiromichi Kataura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology
| |
Collapse
|
180
|
The cyclin dependent kinase inhibitor Roscovitine prevents diet-induced metabolic disruption in obese mice. Sci Rep 2021; 11:20365. [PMID: 34645915 PMCID: PMC8514475 DOI: 10.1038/s41598-021-99871-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Most strategies to treat obesity-related disorders have involved prevention of diet-induced weight gain in lean mice. Treatment of obese individuals will require therapies that reverse the detrimental effects of excess body weight. Cyclin-dependent kinases have been shown to contribute to obesity and its adverse complications. Here, we show that roscovitine; a an orally available cyclin-dependent kinase inhibitor; given to male mice during the last six weeks of a 19-week high fat diet, reduced weight gain and prevented accompanying insulin resistance, hepatic steatosis, visceral adipose tissue (eWAT) inflammation/fibrosis as well as restored insulin secretion and enhanced whole body energy expenditure. Proteomics and phosphoproteomics analysis of eWAT demonstrated that roscovitine suppressed expression of peptides and phosphopeptides linked to inflammation and extracellular matrix proteins. It also identified 17 putative protein kinases perturbed by roscovitine, including CMGC kinases, AGC kinases and CAMK kinases. Pathway enrichment analysis showed that lipid metabolism, TCA cycle, fatty acid beta oxidation and creatine biosynthesis are enriched following roscovitine treatment. For brown adipose tissue (BAT), analysis of upstream kinases controlling the phosphoproteome revealed two major kinase groups, AGC and CMGC kinases. Among the top enriched pathways were insulin signaling, regulation of lipolysis in adipocytes, thyroid hormone signaling, thermogenesis and cAMP-PKG signaling. We conclude that roscovitine is effective at preventing prolonged diet-induced metabolic disruption and restoring mitochondrial activity in BAT and eWAT.
Collapse
|
181
|
Zhang B, Yuan H, Hu L, Saad M. Obesity is a risk factor for epidural lipomatosis: a meta-analysis. J Orthop Surg (Hong Kong) 2021; 29:23094990211027391. [PMID: 34323151 DOI: 10.1177/23094990211027391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The purpose of this meta-analysis was to summarize the evidence of associations between obesity factors and spinal epidural lipomatosis (SEL) and to evaluate the strength and validity of these associations. METHODS Electronic databases such as Wiley Online Library, PubMed, Embase, Cochrane Library were searched and manual retrieval of references, the time limit was from the establishment of the database to May 2020. Methodological quality evaluations of the included studies were assessed using the bias risk assessment tool recommended by the Cochrane Guidelines. The RevMan 5.3 software was used for meta-analysis. RESULTS Finally, seven studies were included for meta-analysis, all of which were observational studies with mixed bias risk. These studies involved 807 patients, with an average age of 64 to 73.6 years, and 59.4 percent of the participants were male. The sample sizes for the included studies ranged from 28 to 288. The results of meta-analysis showed that high body mass index (BMI) was one of the factors affecting SEL (P < 0.01, MD 1.37, 95% CI [0.81, 1.92]). All reviews had a high risk of bias, and the most common source of bias was that there was no strict unified case diagnosis standard between researches, and some studies (four items) did not clearly describe the confounders that they controlled. CONCLUSIONS We suggest that physicians should consider high BMI as a factor leading to SEL, and to control body weight actively should be considered as the preferred treatment strategy before surgical intervention is conducted.
Collapse
Affiliation(s)
- Bi Zhang
- Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.,Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, People's Republic of China
| | - Haifeng Yuan
- Department of Spine Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Lihong Hu
- Department of Spine Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Muhammad Saad
- Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| |
Collapse
|
182
|
Koh HCE, van Vliet S, Pietka TA, Meyer GA, Razani B, Laforest R, Gropler RJ, Mittendorfer B. Subcutaneous Adipose Tissue Metabolic Function and Insulin Sensitivity in People With Obesity. Diabetes 2021; 70:2225-2236. [PMID: 34266892 PMCID: PMC8576507 DOI: 10.2337/db21-0160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022]
Abstract
We used stable isotope-labeled glucose and palmitate tracer infusions, a hyperinsulinemic-euglycemic clamp, positron emission tomography of muscles and adipose tissue after [18F]fluorodeoxyglucose and [15O]water injections, and subcutaneous adipose tissue (SAT) biopsy to test the hypotheses that 1) increased glucose uptake in SAT is responsible for high insulin-stimulated whole-body glucose uptake in people with obesity who are insulin sensitive and 2) putative SAT factors thought to cause insulin resistance are present in people with obesity who are insulin resistant but not in those who are insulin sensitive. We found that high insulin-stimulated whole-body glucose uptake in insulin-sensitive participants with obesity was not due to channeling of glucose into SAT but, rather, was due to high insulin-stimulated muscle glucose uptake. Furthermore, insulin-stimulated muscle glucose uptake was not different between insulin-sensitive obese and lean participants even though adipocytes were larger, SAT perfusion and oxygenation were lower, and markers of SAT inflammation, fatty acid appearance in plasma in relation to fat-free mass, and plasma fatty acid concentration were higher in the insulin-sensitive obese than in lean participants. In addition, we observed only marginal or no differences in adipocyte size, SAT perfusion and oxygenation, and markers of SAT inflammation between insulin-resistant and insulin-sensitive obese participants. Plasma fatty acid concentration was also not different between insulin-sensitive and insulin-resistant obese participants, even though SAT was resistant to the inhibitory effect of insulin on lipolysis in the insulin-resistant obese group. These data suggest that several putative SAT factors commonly implicated in causing insulin resistance are normal consequences of SAT expansion unrelated to insulin resistance.
Collapse
Affiliation(s)
- Han-Chow E Koh
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO
| | - Stephan van Vliet
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO
| | - Terri A Pietka
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO
| | - Gretchen A Meyer
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO
| | - Babak Razani
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Richard Laforest
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Robert J Gropler
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Bettina Mittendorfer
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
183
|
Evaluation of the circulating serum endotrophin in women with and without gestational diabetes mellitus during second trimester. Int J Diabetes Dev Ctries 2021. [DOI: 10.1007/s13410-021-01005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
184
|
Bilal M, Nawaz A, Kado T, Aslam MR, Igarashi Y, Nishimura A, Watanabe Y, Kuwano T, Liu J, Miwa H, Era T, Ikuta K, Imura J, Yagi K, Nakagawa T, Fujisaka S, Tobe K. Fate of adipocyte progenitors during adipogenesis in mice fed a high-fat diet. Mol Metab 2021; 54:101328. [PMID: 34562641 PMCID: PMC8495176 DOI: 10.1016/j.molmet.2021.101328] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 11/15/2022] Open
Abstract
Objective Expansion of adipose tissue during obesity through the recruitment of newly generated adipocytes (hyperplasia) is metabolically healthy, whereas that through the enlargement of pre-existing adipocytes (hypertrophy) leads to metabolic complications. Accumulating evidence from genetic fate mapping studies suggests that in animal models receiving a high-fat diet (HFD), only adipocyte progenitors (APs) in gonadal white adipose tissue (gWAT) have proliferative potential. However, the proliferative potential and differentiating capacity of APs in the inguinal WAT (iWAT) of male mice remains controversial. The objective of this study was to investigate the proliferative and adipogenic potential of APs in the iWAT of HFD-fed male mice. Methods We generated PDGFRα-GFP-Cre-ERT2/tdTomato (KI/td) mice and traced PDGFRα-positive APs in male mice fed HFD for 8 weeks. We performed a comprehensive phenotypic analysis, including the histology, immunohistochemistry, flow cytometry, and gene expression analysis, of KI/td mice fed HFD. Results Contrary to the findings of others, we found an increased number of newly generated tdTomato+ adipocytes in the iWAT of male mice, which was smaller than that observed in the gWAT. We found that in male mice, the iWAT has more proliferating tdTomato+ APs than the gWAT. We also found that tdTomato+ APs showed a higher expression of Dpp4 and Pi16 than tdTomato− APs, and the expression of these genes was significantly higher in the iWAT than in the gWAT of mice fed HFD for 8 weeks. Collectively, our results reveal that HFD feeding induces the proliferation of tdTomato+ APs in the iWAT of male mice. Conclusion In male mice, compared with gWAT, iWAT undergoes hyperplasia in response to 8 weeks of HFD feeding through the recruitment of newly generated adipocytes due to an abundance of APs with a high potential for proliferation and differentiation. High-fat diet (HFD) increases proliferative APs in iWAT of male mice. HFD promotes the recruitment of smaller adipocytes in the iWAT of male mice. iWAT expands by recruiting newly-generated adipocytes (hyperplasia) in male mice. gWAT expands by enlargement of pre-existing adipocytes (hypertrophy) in male mice.
Collapse
Affiliation(s)
- Muhammad Bilal
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Allah Nawaz
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan; Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Tomonobu Kado
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Muhammad Rahil Aslam
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yoshiko Igarashi
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ayumi Nishimura
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yoshiyuki Watanabe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Takahide Kuwano
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Jianhui Liu
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Hiroyuki Miwa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Takumi Era
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Koichi Ikuta
- Department of Virus Research, Laboratory of Immune Regulation, Institute of Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Johji Imura
- Department of Diagnostic Pathology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kunimasa Yagi
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shiho Fujisaka
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
185
|
Krishnan A, Chilton E, Raman J, Saxena P, McFarlane C, Trollope AF, Kinobe R, Chilton L. Are Interactions between Epicardial Adipose Tissue, Cardiac Fibroblasts and Cardiac Myocytes Instrumental in Atrial Fibrosis and Atrial Fibrillation? Cells 2021; 10:2501. [PMID: 34572150 PMCID: PMC8467050 DOI: 10.3390/cells10092501] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Atrial fibrillation is very common among the elderly and/or obese. While myocardial fibrosis is associated with atrial fibrillation, the exact mechanisms within atrial myocytes and surrounding non-myocytes are not fully understood. This review considers the potential roles of myocardial fibroblasts and myofibroblasts in fibrosis and modulating myocyte electrophysiology through electrotonic interactions. Coupling with (myo)fibroblasts in vitro and in silico prolonged myocyte action potential duration and caused resting depolarization; an optogenetic study has verified in vivo that fibroblasts depolarized when coupled myocytes produced action potentials. This review also introduces another non-myocyte which may modulate both myocardial (myo)fibroblasts and myocytes: epicardial adipose tissue. Epicardial adipocytes are in intimate contact with myocytes and (myo)fibroblasts and may infiltrate the myocardium. Adipocytes secrete numerous adipokines which modulate (myo)fibroblast and myocyte physiology. These adipokines are protective in healthy hearts, preventing inflammation and fibrosis. However, adipokines secreted from adipocytes may switch to pro-inflammatory and pro-fibrotic, associated with reactive oxygen species generation. Pro-fibrotic adipokines stimulate myofibroblast differentiation, causing pronounced fibrosis in the epicardial adipose tissue and the myocardium. Adipose tissue also influences myocyte electrophysiology, via the adipokines and/or through electrotonic interactions. Deeper understanding of the interactions between myocytes and non-myocytes is important to understand and manage atrial fibrillation.
Collapse
Affiliation(s)
- Anirudh Krishnan
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia;
| | - Emily Chilton
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Jaishankar Raman
- Austin & St Vincent’s Hospitals, Melbourne University, Melbourne, VIC 3010, Australia;
- Applied Artificial Intelligence Institute, Deakin University, Melbourne, VIC 3217, Australia
- Department of Surgery, Oregon Health and Science University, Portland, OR 97239, USA
- School of Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Pankaj Saxena
- Department of Cardiothoracic Surgery, Townsville University Hospital, Townsville, QLD 4814, Australia;
| | - Craig McFarlane
- Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| | - Alexandra F. Trollope
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia;
| | - Robert Kinobe
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| | - Lisa Chilton
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| |
Collapse
|
186
|
Mintoff D, Benhadou F, Pace NP, Frew JW. Metabolic syndrome and hidradenitis suppurativa: epidemiological, molecular, and therapeutic aspects. Int J Dermatol 2021; 61:1175-1186. [PMID: 34530487 DOI: 10.1111/ijd.15910] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022]
Abstract
Hidradenitis suppurativa (HS) is a chronic, suppurative condition of the pilosebaceous unit. Patients suffering from HS demonstrate a molecular profile in keeping with a state of systemic inflammation and are often found to fit the criteria for a diagnosis of metabolic syndrome (MetS). In this paper, we review the literature with regards to established data on the prevalence of MetS in HS patients and revise the odds ratio of comorbid disease. Furthermore, we attempt to draw parallels between inflammatory pathways in HS and MetS and evaluate how convergences may explain the risk of comorbid disease, necessitating the need for multidisciplinary care.
Collapse
Affiliation(s)
- Dillon Mintoff
- Department of Dermatology, Mater Dei Hospital, Msida, Malta.,European Hidradenitis Suppurativa Foundation e.V, Dessau, Germany.,Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Farida Benhadou
- European Hidradenitis Suppurativa Foundation e.V, Dessau, Germany.,Department of Dermatology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Nikolai P Pace
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - John W Frew
- Department of Dermatology, Liverpool Hospital, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
187
|
Bermúdez V, Durán P, Rojas E, Díaz MP, Rivas J, Nava M, Chacín M, Cabrera de Bravo M, Carrasquero R, Ponce CC, Górriz JL, D´Marco L. The Sick Adipose Tissue: New Insights Into Defective Signaling and Crosstalk With the Myocardium. Front Endocrinol (Lausanne) 2021; 12:735070. [PMID: 34603210 PMCID: PMC8479191 DOI: 10.3389/fendo.2021.735070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue (AT) biology is linked to cardiovascular health since obesity is associated with cardiovascular disease (CVD) and positively correlated with excessive visceral fat accumulation. AT signaling to myocardial cells through soluble factors known as adipokines, cardiokines, branched-chain amino acids and small molecules like microRNAs, undoubtedly influence myocardial cells and AT function via the endocrine-paracrine mechanisms of action. Unfortunately, abnormal total and visceral adiposity can alter this harmonious signaling network, resulting in tissue hypoxia and monocyte/macrophage adipose infiltration occurring alongside expanded intra-abdominal and epicardial fat depots seen in the human obese phenotype. These processes promote an abnormal adipocyte proteomic reprogramming, whereby these cells become a source of abnormal signals, affecting vascular and myocardial tissues, leading to meta-inflammation, atrial fibrillation, coronary artery disease, heart hypertrophy, heart failure and myocardial infarction. This review first discusses the pathophysiology and consequences of adipose tissue expansion, particularly their association with meta-inflammation and microbiota dysbiosis. We also explore the precise mechanisms involved in metabolic reprogramming in AT that represent plausible causative factors for CVD. Finally, we clarify how lifestyle changes could promote improvement in myocardiocyte function in the context of changes in AT proteomics and a better gut microbiome profile to develop effective, non-pharmacologic approaches to CVD.
Collapse
Affiliation(s)
- Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Pablo Durán
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Edward Rojas
- Cardiovascular Division, University Hospital, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - María P. Díaz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - José Rivas
- Department of Medicine, Cardiology Division, University of Florida-College of Medicine, Jacksonville, FL, United States
| | - Manuel Nava
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla, Colombia
| | | | - Rubén Carrasquero
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Clímaco Cano Ponce
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - José Luis Górriz
- Servicio de Nefrología, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, Valencia, Spain
| | - Luis D´Marco
- Servicio de Nefrología, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
188
|
Age and Sex: Impact on adipose tissue metabolism and inflammation. Mech Ageing Dev 2021; 199:111563. [PMID: 34474078 DOI: 10.1016/j.mad.2021.111563] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Age associated chronic inflammation is a major contributor to diseases with advancing age. Adipose tissue function is at the nexus of processes contributing to age-related metabolic disease and mediating longevity. Hormonal fluctuations in aging potentially regulate age-associated visceral adiposity and metabolic dysfunction. Visceral adiposity in aging is linked to aberrant adipogenesis, insulin resistance, lipotoxicity and altered adipokine secretion. Age-related inflammatory phenomena depict sex differences in macrophage polarization, changes in T and B cell numbers, and types of dendritic cells. Sex differences are also observed in adipose tissue remodeling and cellular senescence suggesting a role for sex steroid hormones in the regulation of the adipose tissue microenvironment. It is crucial to investigate sex differences in aging clinical outcomes to identify and better understand physiology in at-risk individuals. Early interventions aimed at targets involved in adipose tissue adipogenesis, remodeling and inflammation in aging could facilitate a profound impact on health span and overcome age-related functional decline.
Collapse
|
189
|
Beals JW, Smith GI, Shankaran M, Fuchs A, Schweitzer GG, Yoshino J, Field T, Matthews M, Nyangau E, Morozov D, Mittendorfer B, Hellerstein MK, Klein S. Increased Adipose Tissue Fibrogenesis, Not Impaired Expandability, Is Associated With Nonalcoholic Fatty Liver Disease. Hepatology 2021; 74:1287-1299. [PMID: 33743554 PMCID: PMC8559258 DOI: 10.1002/hep.31822] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/07/2021] [Accepted: 03/14/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS It is proposed that impaired expansion of subcutaneous adipose tissue (SAT) and an increase in adipose tissue (AT) fibrosis causes ectopic lipid accumulation, insulin resistance (IR), and metabolically unhealthy obesity. We therefore evaluated whether a decrease in SAT expandability, assessed by measuring SAT lipogenesis (triglyceride [TG] production), and an increase in SAT fibrogenesis (collagen production) are associated with NAFLD and IR in persons with obesity. APPROACH AND RESULTS In vivo abdominal SAT lipogenesis and fibrogenesis, expression of SAT genes involved in extracellular matrix (ECM) formation, and insulin sensitivity were assessed in three groups of participants stratified by adiposity and intrahepatic TG (IHTG) content: (1) healthy lean with normal IHTG content (Lean-NL; n = 12); (2) obese with normal IHTG content and normal glucose tolerance (Ob-NL; n = 25); and (3) obese with NAFLD and abnormal glucose metabolism (Ob-NAFLD; n = 25). Abdominal SAT TG synthesis rates were greater (P < 0.05) in both the Ob-NL (65.9 ± 4.6 g/wk) and Ob-NAFLD groups (71.1 ± 6.7 g/wk) than the Lean-NL group (16.2 ± 2.8 g/wk) without a difference between the Ob-NL and Ob-NAFLD groups. Abdominal SAT collagen synthesis rate and the composite expression of genes encoding collagens progressively increased from the Lean-NL to the Ob-NL to the Ob-NAFLD groups and were greater in the Ob-NAFLD than the Ob-NL group (P < 0.05). Composite expression of collagen genes was inversely correlated with both hepatic and whole-body insulin sensitivity (P < 0.001). CONCLUSIONS AT expandability is not impaired in persons with obesity and NAFLD. However, SAT fibrogenesis is greater in persons with obesity and NAFLD than in those with obesity and normal IHTG content, and is inversely correlated with both hepatic and whole-body insulin sensitivity.
Collapse
Affiliation(s)
- Joseph W. Beals
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St Louis, MO
| | - Gordon I. Smith
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St Louis, MO
| | | | - Anja Fuchs
- Department of Surgery, Washington University School of Medicine, St Louis, MO
| | - George G. Schweitzer
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St Louis, MO
| | - Jun Yoshino
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St Louis, MO
| | - Tyler Field
- University of California Berkeley, Berkeley, CA
| | | | | | - Darya Morozov
- Department of Radiology, Washington University School of Medicine, St Louis, MO
| | - Bettina Mittendorfer
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St Louis, MO
| | | | - Samuel Klein
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine, St Louis, MO
| |
Collapse
|
190
|
Neumann S, Campbell K, Woodall MJ, Evans M, Clarkson AN, Young SL. Obesity Has a Systemic Effect on Immune Cells in Naïve and Cancer-Bearing Mice. Int J Mol Sci 2021; 22:ijms22168803. [PMID: 34445503 PMCID: PMC8395769 DOI: 10.3390/ijms22168803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 12/20/2022] Open
Abstract
Obesity is a major risk factor for developing cancer, with obesity-induced immune changes and inflammation in breast (BC) and colorectal cancer (CRC) providing a potential link between the two. This study investigates systemic effects of obesity on adaptive and innate immune cells in healthy and tumour-bearing mice. Immune cells from lean and obese mice were phenotyped prior to implantation of either BC (C57mg and EO771.LMB) or CRC (MC38) cells as tumour models. Tumour growth rate, tumour-infiltrating lymphocytes (TIL) and peripheral blood immune cell populations were compared between obese and lean mice. In vitro studies showed that naïve obese mice had higher levels of myeloid cells in the bone marrow and bone marrow-derived dendritic cells expressed lower levels of activation markers compared to cells from their lean counterparts. In the tumour setting, BC tumours grew faster in obese mice than in lean mice and lower numbers of TILs as well as higher frequency of exhausted T cells were observed. Data from peripheral blood showed lower levels of myeloid cells in tumour-bearing obese mice. This study highlights that systemic changes to the immune system are relevant for tumour burden and provides a potential mechanism behind the effects of obesity on cancer development and progression in patients.
Collapse
Affiliation(s)
- Silke Neumann
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.N.); (K.C.); (M.J.W.); (M.E.)
| | - Katrin Campbell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.N.); (K.C.); (M.J.W.); (M.E.)
| | - Matthew J. Woodall
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.N.); (K.C.); (M.J.W.); (M.E.)
| | - Meghan Evans
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.N.); (K.C.); (M.J.W.); (M.E.)
| | - Andrew N. Clarkson
- Brain Health Research Centre and Brain Research New Zealand, Department of Anatomy, University of Otago, Dunedin 9016, New Zealand;
| | - Sarah L. Young
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
- Correspondence:
| |
Collapse
|
191
|
Guo F, Seldin M, Péterfy M, Charugundla S, Zhou Z, Lee SD, Mouton A, Rajbhandari P, Zhang W, Pellegrini M, Tontonoz P, Lusis AJ, Shih DM. NOTUM promotes thermogenic capacity and protects against diet-induced obesity in male mice. Sci Rep 2021; 11:16409. [PMID: 34385484 PMCID: PMC8361163 DOI: 10.1038/s41598-021-95720-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022] Open
Abstract
We recently showed that NOTUM, a liver-secreted Wnt inhibitor, can acutely promote browning of white adipose. We now report studies of chronic overexpression of NOTUM in liver indicating that it protects against diet-induced obesity and improves glucose homeostasis in mice. Adeno-associated virus (AAV) vectors were used to overexpress GFP or mouse Notum in the livers of male C57BL/6J mice and the mice were fed an obesifying diet. After 14 weeks of high fat, high sucrose diet feeding, the AAV-Notum mice exhibited decreased obesity and improved glucose tolerance compared to the AAV-GFP mice. Gene expression and immunoblotting analysis of the inguinal fat and brown fat revealed increased expression of beige/brown adipocyte markers in the AAV-Notum group, suggesting enhanced thermogenic capacity by NOTUM. A β3 adrenergic receptor agonist-stimulated lipolysis test suggested increased lipolysis capacity by NOTUM. The levels of collagen and C–C motif chemokine ligand 2 (CCL2) in the epididymal white adipose tissue of the AAV-Notum mice were significantly reduced, suggesting decreased fibrosis and inflammation, respectively. RNA sequencing analysis of inguinal white adipose of 4-week chow diet-fed mice revealed a highly significant enrichment of extracellular matrix (ECM) functional cluster among the down-regulated genes in the AAV-Notum group, suggesting a potential mechanism contributing to improved glucose homeostasis. Our in vitro studies demonstrated that recombinant human NOTUM protein blocked the inhibitory effects of WNT3A on brown adipocyte differentiation. Furthermore, NOTUM attenuated WNT3A’s effects on upregulation of TGF-β signaling and its downstream targets. Overall, our data suggest that NOTUM modulates adipose tissue function by promoting thermogenic capacity and inhibiting fibrosis through inhibition of Wnt signaling.
Collapse
Affiliation(s)
- Fangfei Guo
- Department of Microbiology, Immunology, and Molecular Genetics, Division of Cardiology, Department of Medicine, Department of Human Genetics, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA
| | - Marcus Seldin
- Department of Biological Chemistry and Center for Epigenetics and Metabolism, University of California, Irvine, CA, 92697, USA
| | - Miklós Péterfy
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Sarada Charugundla
- Department of Microbiology, Immunology, and Molecular Genetics, Division of Cardiology, Department of Medicine, Department of Human Genetics, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA
| | - Zhiqiang Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, Division of Cardiology, Department of Medicine, Department of Human Genetics, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA
| | - Stephen D Lee
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Alice Mouton
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
| | - Prashant Rajbhandari
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine Mount Sinai, New York, NY, 10029, USA
| | - Wenchao Zhang
- Department of Microbiology, Immunology, and Molecular Genetics, Division of Cardiology, Department of Medicine, Department of Human Genetics, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Matteo Pellegrini
- Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Aldons J Lusis
- Department of Microbiology, Immunology, and Molecular Genetics, Division of Cardiology, Department of Medicine, Department of Human Genetics, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA
| | - Diana M Shih
- Department of Microbiology, Immunology, and Molecular Genetics, Division of Cardiology, Department of Medicine, Department of Human Genetics, University of California, 10833 Le Conte Avenue, A2-237 CHS, Los Angeles, CA, 90095-1679, USA.
| |
Collapse
|
192
|
Reyes-Farias M, Fos-Domenech J, Serra D, Herrero L, Sánchez-Infantes D. White adipose tissue dysfunction in obesity and aging. Biochem Pharmacol 2021; 192:114723. [PMID: 34364887 DOI: 10.1016/j.bcp.2021.114723] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
Both obesity and aging are associated with the development of metabolic diseases such as type 2 diabetes and cardiovascular disease. Chronic low-grade inflammation of adipose tissue is one of the mechanisms implicated in the progression of these diseases. Obesity and aging trigger adipose tissue alterations that ultimately lead to a pro-inflammatory phenotype of the adipose tissue-resident immune cells. Obesity and aging also share other features such as a higher visceral vs. subcutaneous adipose tissue ratio and a decreased lifespan. Here, we review the common characteristics of obesity and aging and the alterations in white adipose tissue and resident immune cells. We focus on the adipose tissue metabolic derangements in obesity and aging such as inflammation and adipose tissue remodeling.
Collapse
Affiliation(s)
- Marjorie Reyes-Farias
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute, Barcelona, Spain; Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Julia Fos-Domenech
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain.
| | - David Sánchez-Infantes
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute, Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain; Department of Health Sciences, Campus Alcorcón, University Rey Juan Carlos (URJC), E-28922 Madrid, Spain.
| |
Collapse
|
193
|
Goddi A, Carmona A, Schroedl L, White JM, Piron MJ, De Leon A, Casimiro I, Hoffman A, Gonzalez Porras MA, Brey EM, Brady MJ, Cohen RN. Laminin-α4 Is Upregulated in Both Human and Murine Models of Obesity. Front Endocrinol (Lausanne) 2021; 12:698621. [PMID: 34394003 PMCID: PMC8355986 DOI: 10.3389/fendo.2021.698621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Obesity affects nearly one billion globally and can lead to life-threatening sequelae. Consequently, there is an urgent need for novel therapeutics. We have previously shown that laminin, alpha 4 (Lama4) knockout in mice leads to resistance to adipose tissue accumulation; however, the relationship between LAMA4 and obesity in humans has not been established. In this study we measured laminin-α chain and collagen mRNA expression in the subcutaneous white adipose tissue (sWAT) of mice placed on chow (RCD) or 45% high fat diet (HFD) for 8 weeks, and also in HFD mice then placed on a "weight loss" regimen (8 weeks HFD followed by 6 weeks RCD). To assess extracellular matrix (ECM) components in humans with obesity, laminin subunit alpha mRNA and protein expression was measured in sWAT biopsies of female control subjects (BMI<30) or subjects with obesity undergoing bariatric surgery at the University of Chicago Medical Center (BMI>35) both before and three months after surgery. Lama4 was significantly higher in sWAT of HFD compared to RCD mice at both the RNA and protein level (p<0.001, p<0.05 respectively). sWAT from human subjects with obesity also showed significantly higher LAMA4 mRNA (p<0.01) and LAMA4 protein expression (p<0.05) than controls. Interestingly, even though LAMA4 expression was increased in both humans and murine models of obesity, no significant difference in Lama4 or LAMA4 expression was detected following short-term weight loss in either mouse or human samples, respectively. From these results we propose a significant association between obesity and elevated LAMA4 expression in humans, as well as in mouse models of obesity. Further studies should clarify the mechanisms underlying this association to target LAMA4 effectively as a potential therapy for obesity.
Collapse
Affiliation(s)
- Anna Goddi
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, United States
| | - Alanis Carmona
- Section of Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, IL, United States
| | - Liesl Schroedl
- Pritzker School of Medicine, The University of Chicago, Chicago, IL, United States
| | - Jeremy M. White
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, United States
| | - Matthew J. Piron
- Section of Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, IL, United States
| | - Avelino De Leon
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, United States
| | - Isabel Casimiro
- Section of Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, IL, United States
| | - Alexandria Hoffman
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, United States
| | - Maria A. Gonzalez Porras
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Eric M. Brey
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Matthew J. Brady
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, United States
- Section of Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, IL, United States
| | - Ronald N. Cohen
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, United States
- Section of Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
194
|
Gottwald J, Röcken C. The amyloid proteome: a systematic review and proposal of a protein classification system. Crit Rev Biochem Mol Biol 2021; 56:526-542. [PMID: 34311636 DOI: 10.1080/10409238.2021.1937926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyloidosis is a disease caused by pathological fibril aggregation and deposition of proteins in different tissues and organs. Thirty-six fibril-forming proteins have been identified. So far, proteomic evaluation of amyloid focused on the detection and characterization of fibril proteins mainly for diagnostic purposes or to find novel fibril-forming proteins. However, amyloid deposits are a complex mixture of constituents that show organ-, tissue-, and amyloid-type specific patterns, that is the amyloid proteome. We carried out a comprehensive literature review on publications investigating amyloid via liquid chromatography coupled to tandem mass spectrometry, including but not limited to sample preparation by laser microdissection. Our review confirms the complexity and dynamics of the amyloid proteome, which can be divided into four functional categories: amyloid proteome-category 1 (APC1) includes exclusively fibrillary proteins found in the patient; APC2 includes potential fibril-forming proteins found in other types of amyloid; and APC3 and APC4 summarizes non-fibril proteins-some being amyloid signature proteins. Our categorization may help to systemically explore the nature and role of the amyloid proteome in the manifestation, progression, and clearance of disease. Further exploration of the amyloid proteome may form the basis for the development of novel diagnostic tools, thereby enabling the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Juliane Gottwald
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
195
|
Ferrari Silva B, Barletta F, Pedro RE, Batista ML, Hernandes L, Franzói de Moraes SM, Barnabé Peres S. Concurrent training remodels the subcutaneous adipose tissue extracellular matrix of people living with HIV: a non-randomized clinical trial. Appl Physiol Nutr Metab 2021; 46:1476-1486. [PMID: 34293264 DOI: 10.1139/apnm-2021-0284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Evaluate the effect of 12wks of concurrent training (CT) in extracellular matrix (ECM) of subcutaneous adipose tissue (SAT) in people living with HIV/aids (PLWHA). To the non-randomized clinical trial 19 participants, 11 healthy (HIV-) and 18 PLWHA under the use of highly active antiretroviral therapy (HAART) for at least 1 year (HIV+). All participants engaged in a moderate-intensity CT program for 12 weeks, three times a week. Before and after CT, aerobic and strength performance were assessed, as well as anthropometry and biochemical blood profile. Also, SAT biopsies were carried out for histologic and morphometric analysis. The statistical analysis was carried out with R Studio, using descriptive and inferential analysis, ANOVA test and mixed-effect model were utilized (P<0.05). HIV+ showed higher levels of VLDL, TGL, and lower levels of HDL in baseline than HIV- (P<0.05). All groups improved aerobic and strength performance (P<0.05). Both groups presented reduced adipocyte sizes after CT (P<0,05). Lastly, HIV+ presented smaller adipocytes and higher elastic fiber deposition in baseline and decreased after training only in HIV+, matching similarly to HIV- group. Thus, CT in PLWHA promoted a decrease in size heterogeneity of adipocytes and elastic fiber deposition, remodeling ECM and improving SAT fibrosis profile. Brazilian Clinical Trials Registry (UTN: U1111-1214-3022) Novelty • Adipose tissue fibrosis is improved by training in people living with HIV. • Concurrent training remodels adipose tissue extracellular matrix.
Collapse
Affiliation(s)
- Bruno Ferrari Silva
- State University of Maringá Maringá, Department of Physiological Sciences, Paraná, Brazil;
| | - F Barletta
- State University of Maringá Maringá, Department of Biostatistics, Paraná, Brazil;
| | - R E Pedro
- State University of Londrina, 37894, Department of Physical Education, Londrina, Paraná, Brazil;
| | - Miguel L Batista
- University of Mogi das Cruzes, 133647, Department of Integrated Biotechnology, Mogi das Cruzes, Brazil;
| | - L Hernandes
- State University of Maringá Maringá, Department of Morphological Sciences, Paraná, Brazil;
| | | | - Sidney Barnabé Peres
- Universidade Estadual de Maringa, 42487, Physiological Sciences, Maringa, PR, Brazil;
| |
Collapse
|
196
|
Chen H, Wang X, Wang J, Shi X, Li X, Wang J, Li D, Zhu Y, Tan W, Tan Z. In vitroadipogenesis and long-term adipocyte culture in adipose tissue-derived cell banks. Biofabrication 2021; 13. [PMID: 34044385 DOI: 10.1088/1758-5090/ac0610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/27/2021] [Indexed: 11/12/2022]
Abstract
There is a critical need to developin vitroculture systems appropriate for the expansion of adipose tissue, in order to gain new insights into metabolic diseases and to assist in the restoration of tissue defects. Conventional two- or three-dimensional (2D or 3D)in vitromodels of adipocytes require a combination of supplements to induce adipocyte maturation that greatly increases the cost of large-scale industrial production. In the present study, a microporous, perforated bacterial cellulose (BC)-assisted culture system was developed that promoted the adhesion, proliferation, and adipogenic differentiation of preadipocytes. Additionally, the system maintained the cells as mature unilocular adipocytesex vivoin normal cell culture medium in long-term culture. All cells were derived from isolated adipose tissue without the use of expensive enzymes for tissue digestion. In contrast to culture in hard tissue culture plates, preadipocytes in the soft 3D environments formed multidimensional interlaced cell contacts, undergoing significant spontaneous lipid accumulation and could be cultured for up to threemonths in maintenance medium. More importantly, the cultured adipose tissue-derived cell bank created here was able to produce injury repair activators that promoted the proliferation of fibroblasts with little fibrosis and the functional differentiation of myoblasts, displaying the potential for use in adipose reconstruction. Thus, the present study demonstrates the potential of a mechanically flexible BC scaffold to generate volume tunable adipose constructs and provides a low-cost and user-friendly strategy for large-scale industrial production of adipose tissue.
Collapse
Affiliation(s)
- Haoxiang Chen
- College of Biology, Hunan University, Changsha, Hunan 410082, People's Republic of China.,State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Xiaocheng Wang
- College of Biology, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Jian Wang
- College of Biology, Hunan University, Changsha, Hunan 410082, People's Republic of China.,State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Xuelei Shi
- College of Biology, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Xinghuan Li
- College of Biology, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Jianlong Wang
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Dan Li
- College of Biology, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Yonghua Zhu
- College of Biology, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Weihong Tan
- College of Biology, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Zhikai Tan
- College of Biology, Hunan University, Changsha, Hunan 410082, People's Republic of China.,State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, People's Republic of China
| |
Collapse
|
197
|
Kaczmarek I, Suchý T, Prömel S, Schöneberg T, Liebscher I, Thor D. The relevance of adhesion G protein-coupled receptors in metabolic functions. Biol Chem 2021; 403:195-209. [PMID: 34218541 DOI: 10.1515/hsz-2021-0146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/08/2021] [Indexed: 01/06/2023]
Abstract
G protein-coupled receptors (GPCRs) modulate a variety of physiological functions and have been proven to be outstanding drug targets. However, approximately one-third of all non-olfactory GPCRs are still orphans in respect to their signal transduction and physiological functions. Receptors of the class of Adhesion GPCRs (aGPCRs) are among these orphan receptors. They are characterized by unique features in their structure and tissue-specific expression, which yields them interesting candidates for deorphanization and testing as potential therapeutic targets. Capable of G-protein coupling and non-G protein-mediated function, aGPCRs may extend our repertoire of influencing physiological function. Besides their described significance in the immune and central nervous systems, growing evidence indicates a high importance of these receptors in metabolic tissue. RNAseq analyses revealed high expression of several aGPCRs in pancreatic islets, adipose tissue, liver, and intestine but also in neurons governing food intake. In this review, we focus on aGPCRs and their function in regulating metabolic pathways. Based on current knowledge, this receptor class represents high potential for future pharmacological approaches addressing obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Tomáš Suchý
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Simone Prömel
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
- Institute of Cell Biology, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| |
Collapse
|
198
|
Abstract
Adipose is a key tissue regulating energy homeostasis. In states of obesity, caloric intake exceeds energy expenditure, thereby accelerating lipid accumulation with ongoing extracellular matrix (ECM) remodeling. Excess deposition of lipids and expansion of adipocytes potentially decrease ECM flexibility with local hypoxia and inflammation. Hypoxia and chronic low-grade inflammation accelerate the development of adipose tissue fibrosis and related metabolic dysfunctions. Recent research investigated that some cytokines and proteins are functional in regulating energy homeostasis, meanwhile, are potential targets to fight against adipose tissue fibrosis and insulin resistance. In this review, we focused on the regulatory mechanisms and mediators in remodeling of adipose tissue fibrosis, along with their relevance to clinical manifestations.
Collapse
Affiliation(s)
- Siqi Li
- School of Life Science, Changchun Normal University, Changchun, China
- School of Medical Technology, Beihua University, Jilin, China
- Diagnostic Research Center, Jilin Province People's Hospital, Changchun, China
| | - Hongxia Gao
- School of Medical Technology, Beihua University, Jilin, China
| | - Yutaka Hasegawa
- Department of Internal Medicine, Iwate Medical University, Iwate, Japan
| | - Xiaodan Lu
- School of Life Science, Changchun Normal University, Changchun, China
- School of Medical Technology, Beihua University, Jilin, China
- Diagnostic Research Center, Jilin Province People's Hospital, Changchun, China
| |
Collapse
|
199
|
Goddi A, Schroedl L, Brey EM, Cohen RN. Laminins in metabolic tissues. Metabolism 2021; 120:154775. [PMID: 33857525 DOI: 10.1016/j.metabol.2021.154775] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/13/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022]
Abstract
Laminins are extracellular matrix proteins that reside in the basement membrane and provide structural support in addition to promoting cellular adhesion and migration. Through interactions with cell surface receptors, laminins stimulate intracellular signaling cascades which direct specific survival and differentiation outcomes. In metabolic tissues such as the pancreas, adipose, muscle, and liver, laminin isoforms are expressed in discrete temporal and spatial patterns suggesting that certain isoforms may support the development and function of particular metabolic cell types. This review focuses on the research to date detailing the expression of laminin isoforms, their potential function, as well as known pathways involved in laminin signaling in metabolic tissues. We will also discuss the current biomedical therapies involving laminins in these tissues in addition to prospective applications, with the goal being to encourage future investigation of laminins in the context of metabolic disease.
Collapse
Affiliation(s)
- Anna Goddi
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, 900 East 57th St, Chicago, IL 60637, USA
| | - Liesl Schroedl
- Pritzker School of Medicine, The University of Chicago, 924 E 57th St, Chicago, IL 60637, USA
| | - Eric M Brey
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Ronald N Cohen
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, 900 East 57th St, Chicago, IL 60637, USA; Section of Endocrinology, Diabetes, and Metabolism, The University of Chicago, 5841 South Maryland Ave, Chicago, IL 60637, USA.
| |
Collapse
|
200
|
Holm Nielsen S, Edsfeldt A, Tengryd C, Gustafsson H, Shore AC, Natali A, Khan F, Genovese F, Bengtsson E, Karsdal M, Leeming DJ, Nilsson J, Goncalves I. The novel collagen matrikine, endotrophin, is associated with mortality and cardiovascular events in patients with atherosclerosis. J Intern Med 2021; 290:179-189. [PMID: 33951242 PMCID: PMC8359970 DOI: 10.1111/joim.13253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Rupture of atherosclerotic plaques is the major cause of acute cardiovascular events. The biomarker PRO-C6 measuring Endotrophin, a matrikine of collagen type VI, may provide valuable information detecting subjects in need of intensified strategies for secondary prevention. OBJECTIVE In this study, we evaluate endotrophin in human atherosclerotic plaques and circulating levels of PRO-C6 in patients with atherosclerosis, to determine the predictive potential of the biomarker. METHODS Sections from the stenotic human carotid plaques were stained with the PRO-C6 antibody. PRO-C6 was measured in serum of patients enrolled in the Carotid Plaque Imagining Project (CPIP) (discovery cohort, n = 577) and the innovative medicines initiative surrogate markers for micro- and macrovascular hard end-points for innovative diabetes tools (IMI-SUMMIT, validation cohort, n = 1,378). Median follow-up was 43 months. Kaplan-Meier curves and log-rank tests were performed in the discovery cohort. Cox proportional hazard regression analysis (HR with 95% CI) was used in the discovery cohort and binary logistic regression (OR with 95% CI) in the validation cohort. RESULTS PRO-C6 was localized in the core and shoulder of the atherosclerotic plaque. In the discovery cohort, PRO-C6 independently predicted future cardiovascular events (HR 1.089 [95% CI 1.019 -1.164], p = 0.01), cardiovascular death (HR 1.118 [95% CI 1.008 -1.241], p = 0.04) and all-cause death (HR 1.087 [95% CI 1.008 -1.172], p = 0.03). In the validation cohort, PRO-C6 predicted future cardiovascular events (OR 1.063 [95% CI 1.011 -1.117], p = 0.017). CONCLUSION PRO-C6 is present in the atherosclerotic plaque and associated with future cardiovascular events, cardiovascular death and all-cause mortality in two large prospective cohorts.
Collapse
Affiliation(s)
- S Holm Nielsen
- Nordic Bioscience, Herlev, Denmark.,Department of Biomedicine and Biotechnology, Technical University of Denmark, Lyngby, Denmark
| | - A Edsfeldt
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden.,Department of Clinical Sciences, Lund University, Malmö, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Malmö, Sweden
| | - C Tengryd
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - H Gustafsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - A C Shore
- Diabetes and Vascular Medicine, University of Exeter, Medical School, National Institute for Health Research Exeter Clinical Research Facility, Exeter, UK
| | - A Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - F Khan
- Division of Molecular and Clinical medicine, University of Dundee, Dundee, UK
| | | | - E Bengtsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | | | - J Nilsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - I Goncalves
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden.,Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|