151
|
Zhang T, Zhao M, Lu D, Wang S, Yu F, Guo L, Wen S, Wu B. REV-ERB α Regulates CYP7A1 Through Repression of Liver Receptor Homolog-1. Drug Metab Dispos 2017; 46:248-258. [PMID: 29237721 DOI: 10.1124/dmd.117.078105] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/06/2017] [Indexed: 01/06/2023] Open
Abstract
Nuclear heme receptor reverse erythroblastosis virus (REV-ERB) α (a transcriptional repressor) is known to regulate cholesterol 7α-hydroxylase (CYP7A1) and bile acid synthesis. However, the mechanism for REV-ERBα regulation of CYP7A1 remains elusive. Here, we investigate the role of LRH-1 in REV-ERBα regulation of CYP7A1 and cholesterol metabolism. We first characterized the tertiary amine N-(4-chloro-2-methylbenzyl)-N-(4-chlorobenzyl)-1-(5-nitrothiophen-2-yl)methanamine (GSK2945) as a highly specific Rev-erbα/REV-ERBα antagonist using cell-based assays and confirmed expression of Rev-erbα in mouse liver. GSK2945 treatment increased hepatic mouse cholesterol 7α-hydroxylase (Cyp7a1) level and lowered plasma cholesterol in wild-type mice. Likewise, the compound increased the expression and microsomal activity of Cyp7a1 in hypercholesterolemic mice. This coincided with reduced plasma and liver cholesterol and enhanced production of bile acids. Increased levels of Cyp7a1/CYP7A1 were also found in mouse and human primary hepatocytes after GSK2945 treatment. In these experiments, we observed parallel increases in Lrh-1/LRH-1 (a known hepatic activator of Cyp7a1/CYP7A1) mRNA and protein. Luciferase reporter, mobility shift, and chromatin immunoprecipitation assays revealed that Lrh-1/LRH-1 was a direct Rev-erbα/REV-ERBα target gene. Furthermore, conditional deletion of Lrh-1 in the liver abrogated the regulatory effects of Rev-erbα on Cyp7a1 and cholesterol metabolism in mice. In conclusion, Rev-erbα regulates Cyp7a1 and cholesterol metabolism through its repression of the Lrh-1 receptor. Targeting the REV-ERBα/LRH-1 axis may represent a novel approach for management of cholesterol-related diseases.
Collapse
Affiliation(s)
- Tianpeng Zhang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy (T.Z., M.Z., D.L., S.W., F.Y., L.G., B.W.), and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research (T.Z., B.W.), Jinan University, Guangzhou, China; and School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (S.W.)
| | - Mengjing Zhao
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy (T.Z., M.Z., D.L., S.W., F.Y., L.G., B.W.), and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research (T.Z., B.W.), Jinan University, Guangzhou, China; and School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (S.W.)
| | - Danyi Lu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy (T.Z., M.Z., D.L., S.W., F.Y., L.G., B.W.), and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research (T.Z., B.W.), Jinan University, Guangzhou, China; and School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (S.W.)
| | - Shuai Wang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy (T.Z., M.Z., D.L., S.W., F.Y., L.G., B.W.), and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research (T.Z., B.W.), Jinan University, Guangzhou, China; and School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (S.W.)
| | - Fangjun Yu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy (T.Z., M.Z., D.L., S.W., F.Y., L.G., B.W.), and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research (T.Z., B.W.), Jinan University, Guangzhou, China; and School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (S.W.)
| | - Lianxia Guo
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy (T.Z., M.Z., D.L., S.W., F.Y., L.G., B.W.), and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research (T.Z., B.W.), Jinan University, Guangzhou, China; and School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (S.W.)
| | - Shijun Wen
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy (T.Z., M.Z., D.L., S.W., F.Y., L.G., B.W.), and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research (T.Z., B.W.), Jinan University, Guangzhou, China; and School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (S.W.)
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy (T.Z., M.Z., D.L., S.W., F.Y., L.G., B.W.), and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research (T.Z., B.W.), Jinan University, Guangzhou, China; and School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (S.W.)
| |
Collapse
|
152
|
Báez-Ruiz A, Guerrero-Vargas NN, Cázarez-Márquez F, Sabath E, Basualdo MDC, Salgado-Delgado R, Escobar C, Buijs RM. Food in synchrony with melatonin and corticosterone relieves constant light disturbed metabolism. J Endocrinol 2017; 235:167-178. [PMID: 28851750 DOI: 10.1530/joe-17-0370] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 08/29/2017] [Indexed: 12/22/2022]
Abstract
Circadian disruption is associated with metabolic disturbances such as hepatic steatosis (HS), obesity and type 2 diabetes. We hypothesized that HS, resulting from constant light (LL) exposure is due to an inconsistency between signals related to food intake and endocrine-driven suprachiasmatic nucleus (SCN) outputs. Indeed, exposing rats to LL induced locomotor, food intake and hormone arrhythmicity together with the development of HS. We investigated whether providing temporal signals such as 12-h food availability or driving a corticosterone plus melatonin rhythm could restore rhythmicity and prevent the metabolic disturbances under LL conditions in male rats. Discrete metabolic improvements under these separate treatments stimulated us to investigate whether the combination of hormone treatment together with mealtime restriction (12-h food during four weeks) could prevent the metabolic alterations. LL exposed arrhythmic rats, received daily administration of corticosterone (2.5 µg/kg) and melatonin (2.5 mg/kg) in synchrony or out of synchrony with their 12-h meal. HS and other metabolic alterations were importantly ameliorated in LL-exposed rats receiving hormonal treatment in synchrony with 12-h restricted mealtime, while treatment out of phase with meal time did not. Interestingly, liver bile acids, a major indication for HS, were only normalized when animals received hormones in synchrony with food indicating that disrupted bile acid metabolism might be an important mechanism for the HS induction under LL conditions. We conclude that food-elicited signals, as well as hormonal signals, are necessary for liver synchronization and that HS arises when there is conflict between food intake and the normal pattern of melatonin and corticosterone.
Collapse
Affiliation(s)
- Adrián Báez-Ruiz
- Department of Physiology and Cellular BiologyBiomedical Research Institute, UNAM, DF, México
- Department of Cellular PhysiologyFaculty of Science, UASLP, San Luis Potosí, México
| | - Natalí N Guerrero-Vargas
- Department of Physiology and Cellular BiologyBiomedical Research Institute, UNAM, DF, México
- Department of AnatomyFaculty of Medicine, UNAM, DF, México
| | | | - Elizabeth Sabath
- Department of Physiology and Cellular BiologyBiomedical Research Institute, UNAM, DF, México
| | | | | | | | - Ruud M Buijs
- Department of Physiology and Cellular BiologyBiomedical Research Institute, UNAM, DF, México
| |
Collapse
|
153
|
Abstract
Cellular lipid metabolism and homeostasis are controlled by sterol regulatory-element binding proteins (SREBPs). In addition to performing canonical functions in the transcriptional regulation of genes involved in the biosynthesis and uptake of lipids, genome-wide system analyses have revealed that these versatile transcription factors act as important nodes of convergence and divergence within biological signalling networks. Thus, they are involved in myriad physiological and pathophysiological processes, highlighting the importance of lipid metabolism in biology. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signalling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. In addition, SREBPs are implicated in numerous pathogenic processes such as endoplasmic reticulum stress, inflammation, autophagy and apoptosis, and in this way, they contribute to obesity, dyslipidaemia, diabetes mellitus, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, chronic kidney disease, neurodegenerative diseases and cancers. This Review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ and organism levels.
Collapse
Affiliation(s)
- Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Ryuichiro Sato
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
154
|
Manoogian ENC, Panda S. Circadian rhythms, time-restricted feeding, and healthy aging. Ageing Res Rev 2017; 39:59-67. [PMID: 28017879 PMCID: PMC5814245 DOI: 10.1016/j.arr.2016.12.006] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 12/16/2016] [Accepted: 12/18/2016] [Indexed: 12/29/2022]
Abstract
Circadian rhythms optimize physiology and health by temporally coordinating cellular function, tissue function, and behavior. These endogenous rhythms dampen with age and thus compromise temporal coordination. Feeding-fasting patterns are an external cue that profoundly influence the robustness of daily biological rhythms. Erratic eating patterns can disrupt the temporal coordination of metabolism and physiology leading to chronic diseases that are also characteristic of aging. However, sustaining a robust feeding-fasting cycle, even without altering nutrition quality or quantity, can prevent or reverse these chronic diseases in experimental models. In humans, epidemiological studies have shown erratic eating patterns increase the risk of disease, whereas sustained feeding-fasting cycles, or prolonged overnight fasting, is correlated with protection from breast cancer. Therefore, optimizing the timing of external cues with defined eating patterns can sustain a robust circadian clock, which may prevent disease and improve prognosis.
Collapse
Affiliation(s)
- Emily N C Manoogian
- Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - Satchidananda Panda
- Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA 92037, USA; University of California Center for Circadian Biology, 9500, Gilman Drive, La Jolla, 92093, USA.
| |
Collapse
|
155
|
Paschos GK, FitzGerald GA. Circadian Clocks and Metabolism: Implications for Microbiome and Aging. Trends Genet 2017; 33:760-769. [PMID: 28844699 PMCID: PMC5610101 DOI: 10.1016/j.tig.2017.07.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/17/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022]
Abstract
The circadian clock directs many aspects of metabolism, to separate in time opposing metabolic pathways and optimize metabolic efficiency. The master circadian clock of the suprachiasmatic nucleus synchronizes to light, while environmental cues such as temperature and feeding, out of phase with the light schedule, may synchronize peripheral clocks. This misalignment of central and peripheral clocks may be involved in the development of disease and the acceleration of aging, possibly in a gender-specific manner. Here we discuss the interplay between the circadian clock and metabolism, the importance of the microbiome, and how they relate to aging.
Collapse
Affiliation(s)
- Georgios K Paschos
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Smilow - 10th Floor, Room 122, Building 421, Philadelphia, PA 19104, USA
| | - Garret A FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Smilow - 10th Floor, Room 122, Building 421, Philadelphia, PA 19104, USA.
| |
Collapse
|
156
|
Hernández-Pérez J, Míguez JM, Naderi F, Soengas JL, López-Patiño MA. Influence of light and food on the circadian clock in liver of rainbow trout, Oncorhynchus mykiss. Chronobiol Int 2017; 34:1259-1272. [DOI: 10.1080/07420528.2017.1361435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Juan Hernández-Pérez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - Jesús M. Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - Fatemeh Naderi
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - Marcos A. López-Patiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
157
|
Borck PC, Batista TM, Vettorazzi JF, Camargo RL, Boschero AC, Vieira E, Carneiro EM. Protein malnutrition after weaning disrupts peripheral clock and daily insulin secretion in mice. J Nutr Biochem 2017; 50:54-65. [PMID: 29032081 DOI: 10.1016/j.jnutbio.2017.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 07/13/2017] [Accepted: 08/28/2017] [Indexed: 12/22/2022]
Abstract
Changes in nutritional state may alter circadian rhythms through alterations in expression of clock genes. Protein deficiency has a profound effect on body metabolism, but the effect of this nutrient restriction after weaning on biological clock has not been explored. Thus, this study aims to investigate whether the protein restriction affects the daily oscillation in the behavior and metabolic rhythms, as well as expression of clock genes in peripheral tissues. Male C57BL/6 J mice, after weaning, were fed a normal-protein (NP) diet or a low-protein (LP) diet for 8 weeks. Mice fed an LP diet did not show difference in locomotor activity and energy expenditure, but the food intake was increased, with parallel increased expression of the orexigenic neuropeptide Npy and disruption of the anorexigenic Pomc oscillatory pattern in the hypothalamus. LP mice showed disruption in the daily rhythmic patterns of plasma glucose, triglycerides and insulin. Also, the rhythmic expression of clock genes in peripheral tissues and pancreatic islets was altered in LP mice. In pancreatic islets, the disruption of clock genes was followed by impairment of daily glucose-stimulated insulin secretion and the expression of genes involved in exocytosis. Pharmacological activation of REV-ERBα could not restore the insulin secretion in LP mice. The present study demonstrates that protein restriction, leading to development of malnutrition, alters the peripheral clock and metabolic outputs, suggesting that this nutrient provides important entraining cues to regulate the daily fluctuation of biological clock.
Collapse
MESH Headings
- Adipose Tissue, White/metabolism
- Animals
- Biological Clocks
- CLOCK Proteins/genetics
- CLOCK Proteins/metabolism
- Diet, Protein-Restricted/adverse effects
- Gene Expression Regulation, Developmental/drug effects
- Glycine/analogs & derivatives
- Glycine/pharmacology
- Hypothalamus/metabolism
- Insulin/genetics
- Insulin/metabolism
- Insulin Secretion
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Isoquinolines/pharmacology
- Liver/metabolism
- Male
- Mice, Inbred C57BL
- Muscle, Skeletal/metabolism
- Neurons/metabolism
- Neuropeptide Y/genetics
- Neuropeptide Y/metabolism
- Nuclear Receptor Subfamily 1, Group D, Member 1/agonists
- Nuclear Receptor Subfamily 1, Group D, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Organ Specificity
- Pro-Opiomelanocortin/genetics
- Pro-Opiomelanocortin/metabolism
- Protein Deficiency/etiology
- Protein Deficiency/physiopathology
- Random Allocation
- Thiophenes/pharmacology
- Weaning
Collapse
Affiliation(s)
- Patricia Cristine Borck
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Thiago Martins Batista
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Jean Franciesco Vettorazzi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Rafael Ludemann Camargo
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Antonio Carlos Boschero
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Elaine Vieira
- Postgraduate Program on Physical Education, Universidade Católica de Brasília-UCB, Brasília, DF, Brazil.
| | - Everardo Magalhães Carneiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
158
|
Seidel RA, Claudel T, Schleser FA, Ojha NK, Westerhausen M, Nietzsche S, Sponholz C, Cuperus F, Coldewey SM, Heinemann SH, Pohnert G, Trauner M, Bauer M. Impact of higher-order heme degradation products on hepatic function and hemodynamics. J Hepatol 2017; 67:272-281. [PMID: 28412296 DOI: 10.1016/j.jhep.2017.03.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 03/13/2017] [Accepted: 03/20/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND & AIMS Biliverdin and bilirubin were previously considered end products of heme catabolism; now, however, there is evidence for further degradation to diverse bioactive products. Z-BOX A and Z-BOX B arise upon oxidation with unknown implications for hepatocellular function and integrity. We studied the impact of Z-BOX A and B on hepatic functions and explored their alterations in health and cholestatic conditions. METHODS Functional implications and mechanisms were investigated in rats, hepatocytic HepG2 and HepaRG cells, human immortalized hepatocytes, and isolated perfused livers. Z-BOX A and B were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in acute and acute-on-chronic liver failure and hereditary unconjugated hyperbilirubinemia. RESULTS Z-BOX A and B are found in similar amounts in humans and rodents under physiological conditions. Serum concentrations increased ∼20-fold during cholestatic liver failure in humans (p<0.001) and in hereditary deficiency of bilirubin glucuronidation in rats (p<0.001). Pharmacokinetic studies revealed shorter serum half-life of Z-BOX A compared to its regio-isomer Z-BOX B (p=0.035). While both compounds were taken up by hepatocytes, Z-BOX A was enriched ∼100-fold and excreted in bile. Despite their reported vasoconstrictive properties in the brain vasculature, BOXes did not affect portal hemodynamics. Both Z-BOX A and B showed dose-dependent cytotoxicity, affected the glutathione redox state, and differentially modulated activity of Rev-erbα and Rev-erbβ. Moreover, BOXes-triggered remodeling of the hepatocellular cytoskeleton. CONCLUSIONS Our data provide evidence that higher-order heme degradation products, namely Z-BOX A and B, impair hepatocellular integrity and might mediate intra- and extrahepatic cytotoxic effects previously attributed to hyperbilirubinemia. LAY SUMMARY Degradation of the blood pigment heme yields the bile pigment bilirubin and the oxidation products Z-BOX A and Z-BOX B. Serum concentrations of these bioactive molecules increase in jaundice and can impair liver function and integrity. Amounts of Z-BOX A and Z-BOX B that are observed during liver failure in humans have profound effects on hepatic function when added to cultured liver cells or infused into healthy rats.
Collapse
Affiliation(s)
- Raphael A Seidel
- Department of Anesthesiology and Intensive Care Medicine/Center for Sepsis Control and Care, Jena University Hospital, Germany; Institute of Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University Jena, Germany
| | - Thierry Claudel
- HansPopper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria
| | - Franziska A Schleser
- Department of Anesthesiology and Intensive Care Medicine/Center for Sepsis Control and Care, Jena University Hospital, Germany
| | - Navin K Ojha
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena & Jena University Hospital, Germany
| | - Matthias Westerhausen
- Institute of Inorganic and Analytical Chemistry, Inorganic Chemistry I, Friedrich Schiller University Jena, Germany
| | | | - Christoph Sponholz
- Department of Anesthesiology and Intensive Care Medicine/Center for Sepsis Control and Care, Jena University Hospital, Germany
| | - Frans Cuperus
- HansPopper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria; Pediatric Gastroenterology and Hepatology, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, The Netherlands
| | - Sina M Coldewey
- Department of Anesthesiology and Intensive Care Medicine/Center for Sepsis Control and Care, Jena University Hospital, Germany
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena & Jena University Hospital, Germany
| | - Georg Pohnert
- Institute of Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University Jena, Germany
| | - Michael Trauner
- HansPopper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine/Center for Sepsis Control and Care, Jena University Hospital, Germany.
| |
Collapse
|
159
|
Zhang Y, Papazyan R, Damle M, Fang B, Jager J, Feng D, Peed LC, Guan D, Sun Z, Lazar MA. The hepatic circadian clock fine-tunes the lipogenic response to feeding through RORα/γ. Genes Dev 2017; 31:1202-1211. [PMID: 28747429 PMCID: PMC5558923 DOI: 10.1101/gad.302323.117] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 06/29/2017] [Indexed: 11/24/2022]
Abstract
In this study, Zhang et al. investigated the mechanisms by which liver lipid metabolism is controlled by the timing of both the circadian clock and feeding. Their results show that liver-specific depletion of nuclear receptors RORα and RORγ, key components of the molecular circadian clock, up-regulate expression of lipogenic genes only under fed conditions, but not under fasting conditions, and establish ROR/Insig2/SREBP as a molecular pathway by which circadian clock components anticipatorily regulate lipogenic responses to feeding. Liver lipid metabolism is under intricate temporal control by both the circadian clock and feeding. The interplay between these two mechanisms is not clear. Here we show that liver-specific depletion of nuclear receptors RORα and RORγ, key components of the molecular circadian clock, up-regulate expression of lipogenic genes only under fed conditions at Zeitgeber time 22 (ZT22) but not under fasting conditions at ZT22 or ad libitum conditions at ZT10. RORα/γ controls circadian expression of Insig2, which keeps feeding-induced SREBP1c activation under check. Loss of RORα/γ causes overactivation of the SREBP-dependent lipogenic response to feeding, exacerbating diet-induced hepatic steatosis. These findings thus establish ROR/INSIG2/SREBP as a molecular pathway by which circadian clock components anticipatorily regulate lipogenic responses to feeding. This highlights the importance of time of day as a consideration in the treatment of liver metabolic disorders.
Collapse
Affiliation(s)
- Yuxiang Zhang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Pharmacology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Romeo Papazyan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Manashree Damle
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Bin Fang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jennifer Jager
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Dan Feng
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Lindsey C Peed
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Dongyin Guan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zheng Sun
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Molecular and Cellular Biology, Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
160
|
Gonzalez-Sanchez E, Firrincieli D, Housset C, Chignard N. Expression patterns of nuclear receptors in parenchymal and non-parenchymal mouse liver cells and their modulation in cholestasis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1699-1708. [PMID: 28390947 DOI: 10.1016/j.bbadis.2017.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/02/2017] [Accepted: 04/04/2017] [Indexed: 12/19/2022]
Abstract
Nuclear receptors (NR), the largest family of transcription factors, control many physiological and pathological processes. To gain insight into hepatic NR and their potential as therapeutic targets in cholestatis, we determined their expression in individual cell types of the mouse liver in normal and cholestatic conditions. Hepatocytes, cholangiocytes, hepatic stellate cells (HSC), sinusoidal endothelial cells (SEC) and Kupffer cells (KC) were isolated from the liver of mice with acute or chronic cholestasis (i.e. bile duct-ligated or Abcb4-/- mice, respectively) and healthy controls. The expression of 43 out of the 49 NR was evidenced by RT-qPCR in one or several liver cell types. Expression of four NR was restricted to non-parenchymal liver cells. In normal conditions, NR were expressed at higher levels in individual cell types when compared to total liver. Half of the NR expressed in the liver had maximal expression in non-parenchymal cells. After bile duct ligation, NR mRNA changes occurred mostly in non-parenchymal cells and mainly consisted in down-regulations. In Abcb4-/- mice, NR mRNA changes were equally frequent in hepatocytes and non-parenchymal cells. Essentially down-regulations were found in hepatocytes, HSC and cholangiocytes, as opposed to up-regulations in SEC and KC. While undetectable in total liver, Vdr expression was up-regulated in all non-parenchymal cells in Abcb4-/- mice. In conclusion, non-parenchymal liver cells are a major site of NR expression. During cholestasis, NR expression is markedly altered mainly by down-regulations, suggesting major changes in metabolic activity. Thus, non-parenchymal cells are important new targets to consider in NR-directed therapies.
Collapse
Affiliation(s)
- Ester Gonzalez-Sanchez
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), F-75012 Paris, France.
| | - Delphine Firrincieli
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), F-75012 Paris, France.
| | - Chantal Housset
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), F-75012 Paris, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Centre de Référence Maladies Rares des Maladies Inflammatoires des Voies Biliaires & Service d'Hépatologie, F-75012 Paris, France.
| | - Nicolas Chignard
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), F-75012 Paris, France; Inovarion, F-75013 Paris, France.
| |
Collapse
|
161
|
Abstract
The molecular clockwork drives rhythmic oscillations of signaling pathways managing intermediate metabolism; the circadian timing system synchronizes behavioral cycles and anabolic/catabolic processes with environmental cues, mainly represented by light/darkness alternation. Metabolic pathways, bile acid synthesis, and autophagic and immune/inflammatory processes are driven by the biological clock. Proper timing of hormone secretion, metabolism, bile acid turnover, autophagy, and inflammation with behavioral cycles is necessary to avoid dysmetabolism. Disruption of the biological clock and mistiming of body rhythmicity with respect to environmental cues provoke loss of internal synchronization and metabolic derangements, causing liver steatosis, obesity, metabolic syndrome, and diabetes mellitus.
Collapse
Affiliation(s)
- Roberto Tarquini
- Department of Clinical and Experimental Medicine, School of Medicine, University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy; Inter-institutional Department for Continuity of Care of Empoli, School of Medicine, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Gianluigi Mazzoccoli
- Chronobiology Unit, Division of Internal Medicine, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", Cappuccini Avenue, San Giovanni Rotondo, Foggia 71013, Italy.
| |
Collapse
|
162
|
Li WK, Li H, Lu YF, Li YY, Fu ZD, Liu J. Atorvastatin alters the expression of genes related to bile acid metabolism and circadian clock in livers of mice. PeerJ 2017; 5:e3348. [PMID: 28533986 PMCID: PMC5438592 DOI: 10.7717/peerj.3348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/23/2017] [Indexed: 02/06/2023] Open
Abstract
Aim Atorvastatin is a HMG-CoA reductase inhibitor used for hyperlipidemia. Atorvastatin is generally safe but may induce cholestasis. The present study aimed to examine the effects of atorvastatin on hepatic gene expression related to bile acid metabolism and homeostasis, as well as the expression of circadian clock genes in livers of mice. Methods Adult male mice were given atorvastatin (10, 30, and 100 mg/kg, po) daily for 30 days, and blood biochemistry, histopathology, and gene expression were examined. Results Repeated administration of atorvastatin did not affect animal body weight gain or liver weights. Serum enzyme activities were in the normal range. Histologically, the high dose of atorvastatin produced scattered swollen hepatocytes, foci of feathery-like degeneration, together with increased expression of Egr-1 and metallothionein-1. Atorvastatin increased the expression of Cyp7a1 in the liver, along with FXR and SHP. In contract, atorvastatin decreased the expression of bile acid transporters Ntcp, Bsep, Ostα, and Ostβ. The most dramatic change was the 30-fold induction of Cyp7a1. Because Cyp7a1 is a circadian clock-controlled gene, we further examined the effect of atorvastatin on clock gene expression. Atorvastatin increased the expression of clock core master genes Bmal1 and Npas2, decreased the expression of clock feedback genes Per2, Per3, and the clock targeted genes Dbp and Tef, whereas it had no effect on Cry1 and Nr1d1 expression. Conclusion Repeated administration of atorvastatin affects bile acid metabolism and markedly increases the expression of the bile acid synthesis rate-limiting enzyme gene Cyp7a1, together with alterations in the expression of circadian clock genes.
Collapse
Affiliation(s)
- Wen-Kai Li
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical College, Zunyi, China.,Department of Pharmacology, Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Huan Li
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical College, Zunyi, China
| | - Yuan-Fu Lu
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical College, Zunyi, China
| | - Ying-Ying Li
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical College, Zunyi, China
| | - Zidong Donna Fu
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States of America
| | - Jie Liu
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical College, Zunyi, China
| |
Collapse
|
163
|
Gachon F, Loizides-Mangold U, Petrenko V, Dibner C. Glucose Homeostasis: Regulation by Peripheral Circadian Clocks in Rodents and Humans. Endocrinology 2017; 158:1074-1084. [PMID: 28324069 DOI: 10.1210/en.2017-00218] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/10/2017] [Indexed: 12/15/2022]
Abstract
Most organisms, including humans, have developed an intrinsic system of circadian oscillators, allowing the anticipation of events related to the rotation of Earth around its own axis. The mammalian circadian timing system orchestrates nearly all aspects of physiology and behavior. Together with systemic signals, emanating from the central clock that resides in the hypothalamus, peripheral oscillators orchestrate tissue-specific fluctuations in gene expression, protein synthesis, and posttranslational modifications, driving overt rhythms in physiology and behavior. There is increasing evidence on the essential roles of the peripheral oscillators, operative in metabolically active organs in the regulation of body glucose homeostasis. Here, we review some recent findings on the molecular and cellular makeup of the circadian timing system and its implications in the temporal coordination of metabolism in health and disease.
Collapse
Affiliation(s)
- Frédéric Gachon
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ursula Loizides-Mangold
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Diabetes Center, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Volodymyr Petrenko
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Diabetes Center, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Charna Dibner
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Diabetes Center, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
164
|
McAlpine CS, Swirski FK. Circadian Influence on Metabolism and Inflammation in Atherosclerosis. Circ Res 2017; 119:131-41. [PMID: 27340272 DOI: 10.1161/circresaha.116.308034] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/11/2016] [Indexed: 11/16/2022]
Abstract
Many aspects of human health and disease display daily rhythmicity. The brain's suprachiasmic nucleus, which interprets recurring external stimuli, and autonomous molecular networks in peripheral cells together, set our biological circadian clock. Disrupted or misaligned circadian rhythms promote multiple pathologies including chronic inflammatory and metabolic diseases such as atherosclerosis. Here, we discuss studies suggesting that circadian fluctuations in the vessel wall and in the circulation contribute to atherogenesis. Data from humans and mice indicate that an impaired molecular clock, disturbed sleep, and shifting light-dark patterns influence leukocyte and lipid supply in the circulation and alter cellular behavior in atherosclerotic lesions. We propose that a better understanding of both local and systemic circadian rhythms in atherosclerosis will enhance clinical management, treatment, and public health policy.
Collapse
Affiliation(s)
- Cameron S McAlpine
- From the Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston.
| | - Filip K Swirski
- From the Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
165
|
Becnel LB, Ochsner SA, Darlington YF, McOwiti A, Kankanamge WH, Dehart M, Naumov A, McKenna NJ. Discovering relationships between nuclear receptor signaling pathways, genes, and tissues in Transcriptomine. Sci Signal 2017; 10:10/476/eaah6275. [DOI: 10.1126/scisignal.aah6275] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
166
|
Labaronne E, Pinteur C, Vega N, Pesenti S, Julien B, Meugnier-Fouilloux E, Vidal H, Naville D, Le Magueresse-Battistoni B. Low-dose pollutant mixture triggers metabolic disturbances in female mice leading to common and specific features as compared to a high-fat diet. J Nutr Biochem 2017; 45:83-93. [PMID: 28433925 DOI: 10.1016/j.jnutbio.2017.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/02/2017] [Accepted: 04/06/2017] [Indexed: 02/06/2023]
Abstract
Environmental pollutants are potential etiologic factors of obesity and diabetes that reach epidemic proportions worldwide. However, it is important to determine if pollutants could exert metabolic defects without directly inducing obesity. The metabolic disturbances triggered in nonobese mice lifelong exposed to a mixture of low-dose pollutants (2,3,7,8-tetrachlorodibenzo-p-dioxine, polychlorinated biphenyl 153, diethylhexyl-phthalate, and bisphenol A) were compared with changes provoked by a high-fat high-sucrose (HFHS) diet not containing the pollutant mixture. Interestingly, females exposed to pollutants exhibited modifications in lipid homeostasis including a significant increase of hepatic triglycerides but also distinct features from those observed in diet-induced obese mice. For example, they did not gain weight nor was glucose tolerance impacted. To get more insight, a transcriptomic analysis was performed in liver for comparison. We observed that in addition to the xenobiotic/drug metabolism pathway, analysis of the hepatic signature illustrated that the steroid/cholesterol, fatty acid/lipid and circadian clock metabolic pathways were targeted in response to pollutants as observed in the diet-induced obese mice. However, the specific sets of dysregulated annotated genes (>1300) did not overlap more than 40% between both challenges with some genes specifically altered only in response to pollutant exposure. Collectively, results show that pollutants and HFHS affect common metabolic pathways, but by different, albeit overlapping, mechanisms. This is highly relevant for understanding the synergistic effects between pollutants and the obesogenic diet reported in the literature.
Collapse
Affiliation(s)
- Emmanuel Labaronne
- Univ-Lyon, CarMeN laboratory, INSERM U1060, INRA U1397, Université Claude Bernard Lyon1, INSA Lyon, Charles Mérieux Medical School, F-69600 Oullins, France
| | - Claudie Pinteur
- Univ-Lyon, CarMeN laboratory, INSERM U1060, INRA U1397, Université Claude Bernard Lyon1, INSA Lyon, Charles Mérieux Medical School, F-69600 Oullins, France
| | - Nathalie Vega
- Univ-Lyon, CarMeN laboratory, INSERM U1060, INRA U1397, Université Claude Bernard Lyon1, INSA Lyon, Charles Mérieux Medical School, F-69600 Oullins, France
| | - Sandra Pesenti
- Univ-Lyon, CarMeN laboratory, INSERM U1060, INRA U1397, Université Claude Bernard Lyon1, INSA Lyon, Charles Mérieux Medical School, F-69600 Oullins, France
| | - Benoit Julien
- Univ-Lyon, CarMeN laboratory, INSERM U1060, INRA U1397, Université Claude Bernard Lyon1, INSA Lyon, Charles Mérieux Medical School, F-69600 Oullins, France
| | - Emmanuelle Meugnier-Fouilloux
- Univ-Lyon, CarMeN laboratory, INSERM U1060, INRA U1397, Université Claude Bernard Lyon1, INSA Lyon, Charles Mérieux Medical School, F-69600 Oullins, France
| | - Hubert Vidal
- Univ-Lyon, CarMeN laboratory, INSERM U1060, INRA U1397, Université Claude Bernard Lyon1, INSA Lyon, Charles Mérieux Medical School, F-69600 Oullins, France
| | - Danielle Naville
- Univ-Lyon, CarMeN laboratory, INSERM U1060, INRA U1397, Université Claude Bernard Lyon1, INSA Lyon, Charles Mérieux Medical School, F-69600 Oullins, France
| | - Brigitte Le Magueresse-Battistoni
- Univ-Lyon, CarMeN laboratory, INSERM U1060, INRA U1397, Université Claude Bernard Lyon1, INSA Lyon, Charles Mérieux Medical School, F-69600 Oullins, France.
| |
Collapse
|
167
|
Sobel JA, Krier I, Andersin T, Raghav S, Canella D, Gilardi F, Kalantzi AS, Rey G, Weger B, Gachon F, Dal Peraro M, Hernandez N, Schibler U, Deplancke B, Naef F. Transcriptional regulatory logic of the diurnal cycle in the mouse liver. PLoS Biol 2017; 15:e2001069. [PMID: 28414715 PMCID: PMC5393560 DOI: 10.1371/journal.pbio.2001069] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/10/2017] [Indexed: 12/11/2022] Open
Abstract
Many organisms exhibit temporal rhythms in gene expression that propel diurnal cycles in physiology. In the liver of mammals, these rhythms are controlled by transcription-translation feedback loops of the core circadian clock and by feeding-fasting cycles. To better understand the regulatory interplay between the circadian clock and feeding rhythms, we mapped DNase I hypersensitive sites (DHSs) in the mouse liver during a diurnal cycle. The intensity of DNase I cleavages cycled at a substantial fraction of all DHSs, suggesting that DHSs harbor regulatory elements that control rhythmic transcription. Using chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq), we found that hypersensitivity cycled in phase with RNA polymerase II (Pol II) loading and H3K27ac histone marks. We then combined the DHSs with temporal Pol II profiles in wild-type (WT) and Bmal1-/- livers to computationally identify transcription factors through which the core clock and feeding-fasting cycles control diurnal rhythms in transcription. While a similar number of mRNAs accumulated rhythmically in Bmal1-/- compared to WT livers, the amplitudes in Bmal1-/- were generally lower. The residual rhythms in Bmal1-/- reflected transcriptional regulators mediating feeding-fasting responses as well as responses to rhythmic systemic signals. Finally, the analysis of DNase I cuts at nucleotide resolution showed dynamically changing footprints consistent with dynamic binding of CLOCK:BMAL1 complexes. Structural modeling suggested that these footprints are driven by a transient heterotetramer binding configuration at peak activity. Together, our temporal DNase I mappings allowed us to decipher the global regulation of diurnal transcription rhythms in the mouse liver.
Collapse
Affiliation(s)
- Jonathan Aryeh Sobel
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Irina Krier
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Teemu Andersin
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Sunil Raghav
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Donatella Canella
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Federica Gilardi
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Alexandra Styliani Kalantzi
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Guillaume Rey
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Benjamin Weger
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Frédéric Gachon
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Matteo Dal Peraro
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Ueli Schibler
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Bart Deplancke
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Felix Naef
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
168
|
Papacleovoulou G, Nikolova V, Oduwole O, Chambers J, Vazquez-Lopez M, Jansen E, Nicolaides K, Parker M, Williamson C. Gestational disruptions in metabolic rhythmicity of the liver, muscle, and placenta affect fetal size. FASEB J 2017; 31:1698-1708. [PMID: 28082353 PMCID: PMC5566176 DOI: 10.1096/fj.201601032r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/03/2017] [Indexed: 11/12/2022]
Abstract
Maternal metabolic adaptations are essential for successful pregnancy outcomes. We investigated how metabolic gestational processes are coordinated, whether there is a functional link with internal clocks, and whether disruptions are related to metabolic abnormalities in pregnancy, by studying day/night metabolic pathways in murine models and samples from pregnant women with normally grown and large-for-gestational age infants. In early mouse pregnancy, expression of hepatic lipogenic genes was up-regulated and uncoupled from the hepatic clock. In late mouse pregnancy, rhythmicity of energy metabolism-related genes in the muscle followed the patterns of internal clock genes in this tissue, and coincided with enhanced lipid transporter expression in the fetoplacental unit. Diurnal triglyceride patterns were disrupted in human placentas from pregnancies with large-for-gestational age infants and this overlapped with an increase in BMAL1 expression. Metabolic adaptations in early pregnancy are uncoupled from the circadian clock, whereas in late pregnancy, energy availability is mediated by coordinated muscle-placenta metabolic adjustments linked to internal clocks. Placental triglyceride oscillations in the third trimester of human pregnancy are lost in large-for-gestational age infants and may be regulated by BMAL1. In summary, disruptions in metabolic and circadian rhythmicity are associated with increased fetal size, with implications for the pathogenesis of macrosomia.-Papacleovoulou, G., Nikolova, V., Oduwole, O., Chambers, J., Vazquez-Lopez, M., Jansen, E., Nicolaides, K., Parker, M., Williamson, C. Gestational disruptions in metabolic rhythmicity of the liver, muscle, and placenta affect fetal size.
Collapse
Affiliation(s)
| | - Vanya Nikolova
- Division of Women's Health, Guy's Campus, King's College London, London, United Kingdom
| | - Olayiwola Oduwole
- Institute of Reproductive and Developmental Biology, Surgery and Cancer, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Jenny Chambers
- Women's Health Research Centre, Surgery and Cancer, Faculty of Medicine, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Marta Vazquez-Lopez
- Women's Health Research Centre, Surgery and Cancer, Faculty of Medicine, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Eugene Jansen
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands; and
| | - Kypros Nicolaides
- Harris Birthright Centre for Fetal Medicine, King's College London, London, United Kingdom
| | - Malcolm Parker
- Institute of Reproductive and Developmental Biology, Surgery and Cancer, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Catherine Williamson
- Division of Women's Health, Guy's Campus, King's College London, London, United Kingdom;
- Institute of Reproductive and Developmental Biology, Surgery and Cancer, Hammersmith Hospital, Imperial College London, London, United Kingdom
| |
Collapse
|
169
|
Kiehn JT, Tsang AH, Heyde I, Leinweber B, Kolbe I, Leliavski A, Oster H. Circadian Rhythms in Adipose Tissue Physiology. Compr Physiol 2017; 7:383-427. [PMID: 28333377 DOI: 10.1002/cphy.c160017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The different types of adipose tissues fulfill a wide range of biological functions-from energy storage to hormone secretion and thermogenesis-many of which show pronounced variations over the course of the day. Such 24-h rhythms in physiology and behavior are coordinated by endogenous circadian clocks found in all tissues and cells, including adipocytes. At the molecular level, these clocks are based on interlocked transcriptional-translational feedback loops comprised of a set of clock genes/proteins. Tissue-specific clock-controlled transcriptional programs translate time-of-day information into physiologically relevant signals. In adipose tissues, clock gene control has been documented for adipocyte proliferation and differentiation, lipid metabolism as well as endocrine function and other adipose oscillations are under control of systemic signals tied to endocrine, neuronal, or behavioral rhythms. Circadian rhythm disruption, for example, by night shift work or through genetic alterations, is associated with changes in adipocyte metabolism and hormone secretion. At the same time, adipose metabolic state feeds back to central and peripheral clocks, adjusting behavioral and physiological rhythms. In this overview article, we summarize our current knowledge about the crosstalk between circadian clocks and energy metabolism with a focus on adipose physiology. © 2017 American Physiological Society. Compr Physiol 7:383-427, 2017.
Collapse
Affiliation(s)
- Jana-Thabea Kiehn
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Anthony H Tsang
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Isabel Heyde
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Brinja Leinweber
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Isa Kolbe
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Alexei Leliavski
- Institute of Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| |
Collapse
|
170
|
Gnocchi D, Bruscalupi G. Circadian Rhythms and Hormonal Homeostasis: Pathophysiological Implications. BIOLOGY 2017; 6:biology6010010. [PMID: 28165421 PMCID: PMC5372003 DOI: 10.3390/biology6010010] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/10/2017] [Accepted: 01/23/2017] [Indexed: 02/07/2023]
Abstract
Over recent years, a deeper comprehension of the molecular mechanisms that control biological clocks and circadian rhythms has been achieved. In fact, many studies have contributed to unravelling the importance of the molecular clock for the regulation of our physiology, including hormonal and metabolic homeostasis. Here we will review the structure, organisation and molecular machinery that make our circadian clock work, and its relevance for the proper functioning of physiological processes. We will also describe the interconnections between circadian rhythms and endocrine homeostasis, as well as the underlying consequences that circadian dysregulations might have in the development of several pathologic affections. Finally, we will discuss how a better knowledge of such relationships might prove helpful in designing new therapeutic approaches for endocrine and metabolic diseases.
Collapse
Affiliation(s)
- Davide Gnocchi
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm 14186, Sweden.
| | - Giovannella Bruscalupi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome 00185, Italy.
| |
Collapse
|
171
|
Jaeger C, Xu C, Sun M, Krager S, Tischkau SA. Aryl hydrocarbon receptor-deficient mice are protected from high fat diet-induced changes in metabolic rhythms. Chronobiol Int 2017; 34:318-336. [PMID: 28102700 DOI: 10.1080/07420528.2016.1256298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
High fat diet (HFD) consumption alters the synchronized circadian timing system resulting in harmful loss, gain or shift of transcriptional oscillations. The aryl hydrocarbon receptor (AhR) shares structural homology to clock genes, containing both PAS domains and basic helix-loop helix structural motifs, allowing for interaction with components of the primary circadian feedback loop. Activation of AhR alters circadian rhythmicity, primarily through inhibition of Clock/Bmal1-mediated regulation of Per1. AhR-deficient mice are protected from diet-induced metabolic dysfunction, exhibiting enhanced insulin sensitivity and glucose tolerance. This study examined whether AhR haploinsufficiency can also protect against diet-induced alterations in rhythm. After feeding AhR+/+ and AhR+/- mice an HFD (60% fat) for 15 weeks, samples were collected every 4 hours over a 24-hour period. HFD altered the rhythm of serum glucose and the metabolic transcriptome, including hepatic nuclear receptors Rev-erbα and PPARγ in wild-type c57bl6/j mice. AhR reduction provided protection against diet-induced transcriptional oscillation changes; serum glucose and metabolic gene rhythms were protected from the disruption caused by HFD feeding. These data highlight the critical role of AhR signaling in the regulation of metabolism and provide a potential therapeutic target for diseases characterized by rhythmic desynchrony.
Collapse
Affiliation(s)
- Cassie Jaeger
- a Department of Pharmacology , Southern Illinois University School of Medicine , Springfield , IL , USA
| | - Canxin Xu
- a Department of Pharmacology , Southern Illinois University School of Medicine , Springfield , IL , USA
| | - Mingwei Sun
- a Department of Pharmacology , Southern Illinois University School of Medicine , Springfield , IL , USA
| | - Stacey Krager
- a Department of Pharmacology , Southern Illinois University School of Medicine , Springfield , IL , USA
| | - Shelley A Tischkau
- a Department of Pharmacology , Southern Illinois University School of Medicine , Springfield , IL , USA
| |
Collapse
|
172
|
Disrupting Hepatocyte Cyp51 from Cholesterol Synthesis Leads to Progressive Liver Injury in the Developing Mouse and Decreases RORC Signalling. Sci Rep 2017; 7:40775. [PMID: 28098217 PMCID: PMC5241696 DOI: 10.1038/srep40775] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/12/2016] [Indexed: 11/16/2022] Open
Abstract
Development of mice with hepatocyte knockout of lanosterol 14α-demethylase (HCyp51−/−) from cholesterol synthesis is characterized by the progressive onset of liver injury with ductular reaction and fibrosis. These changes begin during puberty and are generally more aggravated in the knockout females. However, a subgroup of (pre)pubertal knockout mice (runts) exhibits a pronounced male prevalent liver dysfunction characterized by downregulated amino acid metabolism and elevated Casp12. RORC transcriptional activity is diminished in livers of all runt mice, in correlation with the depletion of potential RORC ligands subsequent to CYP51 disruption. Further evidence for this comes from the global analysis that identified a crucial overlap between hepatic Cyp51−/− and Rorc−/− expression profiles. Additionally, the reduction in RORA and RORC transcriptional activity was greater in adult HCyp51−/− females than males, which correlates well with their downregulated amino and fatty acid metabolism. Overall, we identify a global and sex-dependent transcriptional de-regulation due to the block in cholesterol synthesis during development of the Cyp51 knockout mice and provide in vivo evidence that sterol intermediates downstream of lanosterol may regulate the hepatic RORC activity.
Collapse
|
173
|
Masri S, Papagiannakopoulos T, Kinouchi K, Liu Y, Cervantes M, Baldi P, Jacks T, Sassone-Corsi P. Lung Adenocarcinoma Distally Rewires Hepatic Circadian Homeostasis. Cell 2017; 165:896-909. [PMID: 27153497 DOI: 10.1016/j.cell.2016.04.039] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/02/2016] [Accepted: 04/12/2016] [Indexed: 01/06/2023]
Abstract
The circadian clock controls metabolic and physiological processes through finely tuned molecular mechanisms. The clock is remarkably plastic and adapts to exogenous "zeitgebers," such as light and nutrition. How a pathological condition in a given tissue influences systemic circadian homeostasis in other tissues remains an unanswered question of conceptual and biomedical importance. Here, we show that lung adenocarcinoma operates as an endogenous reorganizer of circadian metabolism. High-throughput transcriptomics and metabolomics revealed unique signatures of transcripts and metabolites cycling exclusively in livers of tumor-bearing mice. Remarkably, lung cancer has no effect on the core clock but rather reprograms hepatic metabolism through altered pro-inflammatory response via the STAT3-Socs3 pathway. This results in disruption of AKT, AMPK, and SREBP signaling, leading to altered insulin, glucose, and lipid metabolism. Thus, lung adenocarcinoma functions as a potent endogenous circadian organizer (ECO), which rewires the pathophysiological dimension of a distal tissue such as the liver. PAPERCLIP.
Collapse
Affiliation(s)
- Selma Masri
- Center for Epigenetics and Metabolism, INSERM Unit 904, Department of Biological Chemistry, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | | | - Kenichiro Kinouchi
- Center for Epigenetics and Metabolism, INSERM Unit 904, Department of Biological Chemistry, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Yu Liu
- Institute for Genomics and Bioinformatics, Department of Computer Science, UCI, Irvine, CA 92697, USA
| | - Marlene Cervantes
- Center for Epigenetics and Metabolism, INSERM Unit 904, Department of Biological Chemistry, University of California, Irvine (UCI), Irvine, CA 92697, USA
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, Department of Computer Science, UCI, Irvine, CA 92697, USA
| | - Tyler Jacks
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, INSERM Unit 904, Department of Biological Chemistry, University of California, Irvine (UCI), Irvine, CA 92697, USA.
| |
Collapse
|
174
|
Tsang AH, Astiz M, Leinweber B, Oster H. Rodent Models for the Analysis of Tissue Clock Function in Metabolic Rhythms Research. Front Endocrinol (Lausanne) 2017; 8:27. [PMID: 28243224 PMCID: PMC5304405 DOI: 10.3389/fendo.2017.00027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/30/2017] [Indexed: 11/30/2022] Open
Abstract
The circadian timing system consists on a distributed network of cellular clocks that together coordinate 24-h rhythms of physiology and behavior. Clock function and metabolism are tightly coupled, from the cellular to the organismal level. Genetic and non-genetic approaches in rodents have been employed to study circadian clock function in the living organism. Due to the ubiquitous expression of clock genes and the intricate interaction between the circadian system and energy metabolism, genetic approaches targeting specific tissue clocks have been used to assess their contribution in systemic metabolic processes. However, special requirements regarding specificity and efficiency have to be met to allow for valid conclusions from such studies. In this review, we provide a brief summary of different approaches developed for dissecting tissue clock function in the metabolic context in rodents, compare their strengths and weaknesses, and suggest new strategies in assessing tissue clock output and the consequences of circadian clock disruption in vivo.
Collapse
Affiliation(s)
- Anthony H. Tsang
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
- Department of Clinical Biochemistry, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Mariana Astiz
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Brinja Leinweber
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
- *Correspondence: Henrik Oster,
| |
Collapse
|
175
|
Atger F, Mauvoisin D, Weger B, Gobet C, Gachon F. Regulation of Mammalian Physiology by Interconnected Circadian and Feeding Rhythms. Front Endocrinol (Lausanne) 2017; 8:42. [PMID: 28337174 PMCID: PMC5340782 DOI: 10.3389/fendo.2017.00042] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/17/2017] [Indexed: 12/29/2022] Open
Abstract
Circadian clocks are endogenous timekeeping systems that adapt in an anticipatory fashion the physiology and behavior of most living organisms. In mammals, the master pacemaker resides in the suprachiasmatic nucleus and entrains peripheral clocks using a wide range of signals that differentially schedule physiology and gene expression in a tissue-specific manner. The peripheral clocks, such as those found in the liver, are particularly sensitive to rhythmic external cues like feeding behavior, which modulate the phase and amplitude of rhythmic gene expression. Consequently, the liver clock temporally tunes the expression of many genes involved in metabolism and physiology. However, the circadian modulation of cellular functions also relies on multiple layers of posttranscriptional and posttranslational regulation. Strikingly, these additional regulatory events may happen independently of any transcriptional oscillations, showing that complex regulatory networks ultimately drive circadian output functions. These rhythmic events also integrate feeding-related cues and adapt various metabolic processes to food availability schedules. The importance of such temporal regulation of metabolism is illustrated by metabolic dysfunctions and diseases resulting from circadian clock disruption or inappropriate feeding patterns. Therefore, the study of circadian clocks and rhythmic feeding behavior should be of interest to further advance our understanding of the prevention and therapy of metabolic diseases.
Collapse
Affiliation(s)
- Florian Atger
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Daniel Mauvoisin
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
- School of Life Sciences, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Benjamin Weger
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Cédric Gobet
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
- School of Life Sciences, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Frédéric Gachon
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- *Correspondence: Frédéric Gachon,
| |
Collapse
|
176
|
Abstract
The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronizes these with daily cycles, feeding patterns also regulates circadian clocks. The clock genes and adipocytokines show circadian rhythmicity. Dysfunction of these genes are involved in the alteration of these adipokines during the development of obesity. Food availability promotes the stimuli associated with food intake which is a circadian oscillator outside of the suprachiasmatic nucleus (SCN). Its circadian rhythm is arranged with the predictable daily mealtimes. Food anticipatory activity is mediated by a self-sustained circadian timing and its principal component is food entrained oscillator. However, the hypothalamus has a crucial role in the regulation of energy balance rather than food intake. Fatty acids or their metabolites can modulate neuronal activity by brain nutrient-sensing neurons involved in the regulation of energy and glucose homeostasis. The timing of three-meal schedules indicates close association with the plasma levels of insulin and preceding food availability. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition can lead to uncoupling of peripheral clocks from the central pacemaker and to the development of metabolic disorders. Metabolic dysfunction is associated with circadian disturbances at both central and peripheral levels and, eventual disruption of circadian clock functioning can lead to obesity. While CLOCK expression levels are increased with high fat diet-induced obesity, peroxisome proliferator-activated receptor (PPAR) alpha increases the transcriptional level of brain and muscle ARNT-like 1 (BMAL1) in obese subjects. Consequently, disruption of clock genes results in dyslipidemia, insulin resistance and obesity. Modifying the time of feeding alone can greatly affect body weight. Changes in the circadian clock are associated with temporal alterations in feeding behavior and increased weight gain. Thus, shift work is associated with increased risk for obesity, diabetes and cardio-vascular diseases as a result of unusual eating time and disruption of circadian rhythm.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- , Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
177
|
Zhou X, Wan D, Zhang Y, Zhang Y, Long C, Chen S, He L, Tan B, Wu X, Yin Y. Diurnal variations in polyunsaturated fatty acid contents and expression of genes involved in their de novo synthesis in pigs. Biochem Biophys Res Commun 2016; 483:430-434. [PMID: 28013051 DOI: 10.1016/j.bbrc.2016.12.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 12/19/2016] [Indexed: 01/07/2023]
Abstract
The daily variations in circulating fatty acid (FA) contents and lipid metabolism have been well documented. However, whether long chain polyunsaturated FA (PUFA) contents and expression of genes involved in their de novo synthesis exhibit daily rhythms are yet unknown. We conducted the present study to investigate the daily variations in PUFA contents in plasma and liver of pigs. Moreover, diurnal expression of genes encode fatty acid desaturases and elongases, which are key enzymes catalyzed de novo synthesis of long chain PUFA, were also explored. The results showed that long chain PUFA contents in plasma and liver both exhibited diurnal rhythms. Diurnal variations were also observed in mRNA expression of FASD1 (Delta 5-desaturase), FASD2 (Delta 6-desaturase), ELOVL5 (fatty acid elongase 5) and ELOVL2 in liver, with an unexpectedly high level at night. Moreover, our results showed a similarity between the diurnal patterns of FASD1, FASD2, ELOVL2, ELOVL5 and Period 2. These results indicated a high activity of the desaturase-elongase pathway at night in pigs. These findings have important physiological and pathophysiological implications, since long chain PUFA are essential for cell function and closely involved in the development of metabolic syndrome.
Collapse
Affiliation(s)
- Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, China
| | - Dan Wan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, China.
| | - Yumei Zhang
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, College of Animal Science and Technology, Hunan Agricultural University, Nongda Road 1, Changsha 410128, China
| | - Yiming Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, China
| | - Cimin Long
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, China
| | - Shuai Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, China
| | - Liuqin He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, China
| | - Bie Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, China
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, China.
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, China.
| |
Collapse
|
178
|
Anti-obesity effects of resveratrol: comparison between animal models and humans. J Physiol Biochem 2016; 73:417-429. [PMID: 27981508 DOI: 10.1007/s13105-016-0544-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 12/06/2016] [Indexed: 10/20/2022]
Abstract
The prevalence of obesity has increased rapidly during recent years and has reached epidemic proportions. As a result, the scientific community is interested in active biomolecules which are naturally present in plants and foodstuffs and may be useful in body weight management. In recent years, polyphenols have made up one of the most frequently studied groups among these molecules. Numerous studies have been carried out on animals to analyse the potential anti-obesity effects of resveratrol, a non-flavonoid polyphenol, and a general consensus concerning the body-fat-lowering effect of this compound exists. By contrast, studies in humans have been few so far. Moreover, in these studies, the effectiveness of resveratrol is low. The aims of the present review are to summarize the results reported so far on this topic and to justify the differences observed between animals and humans. It seems that the reduced response to resveratrol in humans cannot be attributed to the use of lower doses in humans because the doses that induce body-fat-lowering effects in rodents are in the same range as those used in human studies. With regard to the experimental period length, treatments were longer in animal studies than in human studies. This can be one of the reasons contributing to the reduced responses observed in humans. Moreover, animals used in the reported studies are young while volunteers participating in human studies are adults, suggesting that resveratrol may be more efficient in young individuals. In addition to differences in the experimental designs, metabolic differences between animals and human cannot be discarded.
Collapse
|
179
|
Govindarajan K, MacSharry J, Casey PG, Shanahan F, Joyce SA, Gahan CGM. Unconjugated Bile Acids Influence Expression of Circadian Genes: A Potential Mechanism for Microbe-Host Crosstalk. PLoS One 2016; 11:e0167319. [PMID: 27907092 PMCID: PMC5132238 DOI: 10.1371/journal.pone.0167319] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/13/2016] [Indexed: 02/07/2023] Open
Abstract
Disruptions to circadian rhythm in mice and humans have been associated with an increased risk of obesity and metabolic syndrome. The gut microbiota is known to be essential for the maintenance of circadian rhythm in the host suggesting a role for microbe-host interactions in the regulation of the peripheral circadian clock. Previous work suggested a role for gut bacterial bile salt hydrolase (BSH) activity in the regulation of host circadian gene expression. Here we demonstrate that unconjugated bile acids, known to be generated through the BSH activity of the gut microbiota, are potentially chronobiological regulators of host circadian gene expression. We utilised a synchronised Caco-2 epithelial colorectal cell model and demonstrated that unconjugated bile acids, but not the equivalent tauro-conjugated bile salts, enhance the expression levels of genes involved in circadian rhythm. In addition oral administration of mice with unconjugated bile acids significantly altered expression levels of circadian clock genes in the ileum and colon as well as the liver with significant changes to expression of hepatic regulators of circadian rhythm (including Dbp) and associated genes (Per2, Per3 and Cry2). The data demonstrate a potential mechanism for microbe-host crosstalk that significantly impacts upon host circadian gene expression.
Collapse
Affiliation(s)
| | - John MacSharry
- APC Microbiome Institute, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Medicine, University College Cork, Cork, Ireland
| | - Patrick G. Casey
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Fergus Shanahan
- APC Microbiome Institute, University College Cork, Cork, Ireland
- School of Medicine, University College Cork, Cork, Ireland
| | - Susan A. Joyce
- APC Microbiome Institute, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- * E-mail: (CGMG); (SAJ)
| | - Cormac G. M. Gahan
- APC Microbiome Institute, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
- * E-mail: (CGMG); (SAJ)
| |
Collapse
|
180
|
Gorski JP, Price JL. Bone muscle crosstalk targets muscle regeneration pathway regulated by core circadian transcriptional repressors DEC1 and DEC2. BONEKEY REPORTS 2016; 5:850. [PMID: 27867498 DOI: 10.1038/bonekey.2016.80] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/09/2016] [Accepted: 09/26/2016] [Indexed: 12/30/2022]
Abstract
Deletion of proprotein convertase Mbtps1 in bone osteocytes leads to a significant postnatal increase in skeletal muscle size and contractile function, while causing only a 25% increase in stiffness in long bones. Concerns about leakiness in skeletal muscle were discounted since Cre recombinase expression does not account for our findings, and, Mbtps1 protein and mRNA is not deleted. Interestingly, the response of normal skeletal muscle to exercise and the regenerative response of skeletal muscle to the deletion of Mbtps1 in bone share some key regulatory features including a preference for slow twitch muscle fibers. In addition, transcriptional regulators PPAR, PGC-1α, LXR, and repressors DEC1 and DEC2 all occupy central positions within these two pathways. We hypothesize that the age-dependent muscle phenotype in Dmp1-Cre Mbtps1 cKO mice is due to bone→muscle crosstalk. Many of the myogenic genes altered in this larger and functionally improved muscle are regulated by circadian core transcriptional repressors DEC1 and DEC2, and furthermore, display a temporal coordination with Dec1 and Dec2 expression consistent with a regulatory co-dependency. These considerations lead us to propose that Dmp1-Cre Mbtps1 cKO osteocytes activate myogenesis by increased release of an activator of muscle PPAR-gamma, for example, PGE2 or sphingosine-1-P, or, by diminished release of an inhibitor of LXR, for example, long-chain polyunsaturated fatty acids. We hope that further investigation of these interacting pathways in the Dmp1-Cre Mbtps1 cKO model will lead to clinically translatable findings applicable to age-related sarcopenia and other muscle wasting syndromes.
Collapse
Affiliation(s)
- Jeffrey P Gorski
- Department of Oral and Craniofacial Sciences, School of Dentistry , Kansas City, MO, USA
| | - Jeffrey L Price
- School of Biological Sciences University of Missouri-Kansas City , Kansas City, MO, USA
| |
Collapse
|
181
|
Okabe T, Chavan R, Fonseca Costa SS, Brenna A, Ripperger JA, Albrecht U. REV-ERBα influences the stability and nuclear localization of the glucocorticoid receptor. J Cell Sci 2016; 129:4143-4154. [PMID: 27686098 PMCID: PMC5117207 DOI: 10.1242/jcs.190959] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/17/2016] [Indexed: 12/22/2022] Open
Abstract
REV-ERBα (encoded by Nr1d1) is a nuclear receptor that is part of the circadian clock mechanism and regulates metabolism and inflammatory processes. The glucocorticoid receptor (GR, encoded by Nr3c1) influences similar processes, but is not part of the circadian clock, although glucocorticoid signaling affects resetting of the circadian clock in peripheral tissues. Because of their similar impact on physiological processes, we studied the interplay between these two nuclear receptors. We found that REV-ERBα binds to the C-terminal portion and GR to the N-terminal portion of HSP90α and HSP90β, a chaperone responsible for the activation of proteins to ensure survival of a cell. The presence of REV-ERBα influences the stability and nuclear localization of GR by an unknown mechanism, thereby affecting expression of GR target genes, such as IκBα (Nfkbia) and alcohol dehydrogenase 1 (Adh1). Our findings highlight an important interplay between two nuclear receptors that influence the transcriptional potential of each other. This indicates that the transcriptional landscape is strongly dependent on dynamic processes at the protein level.
Collapse
Affiliation(s)
- Takashi Okabe
- Dept. of Biology, Biochemistry, University of Fribourg, Fribourg 1700, Switzerland
| | - Rohit Chavan
- Dept. of Biology, Biochemistry, University of Fribourg, Fribourg 1700, Switzerland
| | - Sara S Fonseca Costa
- Dept. of Biology, Biochemistry, University of Fribourg, Fribourg 1700, Switzerland
| | - Andrea Brenna
- Dept. of Biology, Biochemistry, University of Fribourg, Fribourg 1700, Switzerland
| | - Jürgen A Ripperger
- Dept. of Biology, Biochemistry, University of Fribourg, Fribourg 1700, Switzerland
| | - Urs Albrecht
- Dept. of Biology, Biochemistry, University of Fribourg, Fribourg 1700, Switzerland
| |
Collapse
|
182
|
Chi-Castañeda D, Ortega A. Clock Genes in Glia Cells: A Rhythmic History. ASN Neuro 2016; 8:8/5/1759091416670766. [PMID: 27666286 PMCID: PMC5037500 DOI: 10.1177/1759091416670766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/22/2016] [Indexed: 11/17/2022] Open
Abstract
Circadian rhythms are periodic patterns in biological processes that allow the organisms to anticipate changes in the environment. These rhythms are driven by the suprachiasmatic nucleus (SCN), the master circadian clock in vertebrates. At a molecular level, circadian rhythms are regulated by the so-called clock genes, which oscillate in a periodic manner. The protein products of clock genes are transcription factors that control their own and other genes’ transcription, collectively known as “clock-controlled genes.” Several brain regions other than the SCN express circadian rhythms of clock genes, including the amygdala, the olfactory bulb, the retina, and the cerebellum. Glia cells in these structures are expected to participate in rhythmicity. However, only certain types of glia cells may be called “glial clocks,” since they express PER-based circadian oscillators, which depend of the SCN for their synchronization. This contribution summarizes the current information about clock genes in glia cells, their plausible role as oscillators and their medical implications.
Collapse
Affiliation(s)
- Donají Chi-Castañeda
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México Soluciones para un México Verde, S.A de C.V., Santa Fé Ciudad de México, México
| | - Arturo Ortega
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
183
|
Su Y, Foppen E, Fliers E, Kalsbeek A. Effects of Intracerebroventricular Administration of Neuropeptide Y on Metabolic Gene Expression and Energy Metabolism in Male Rats. Endocrinology 2016; 157:3070-85. [PMID: 27267712 DOI: 10.1210/en.2016-1083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neuropeptide Y (NPY) is an important neurotransmitter in the control of energy metabolism. Several studies have shown that obesity is associated with increased levels of NPY in the hypothalamus. We hypothesized that the central release of NPY has coordinated and integrated effects on energy metabolism in different tissues, resulting in increased energy storage and decreased energy expenditure (EE). We first investigated the acute effects of an intracerebroventricular (ICV) infusion of NPY on gene expression in liver, brown adipose tissue, soleus muscle, and sc and epididymal white adipose tissue (WAT). We found increased expression of genes involved in gluconeogenesis and triglyceride secretion in the liver already 2-hour after the start of the NPY administration. In brown adipose tissue, the expression of thermogenic genes was decreased. In sc WAT, the expression of genes involved in lipogenesis was increased, whereas in soleus muscle, the expression of lipolytic genes was decreased after ICV NPY. These findings indicate that the ICV infusion of NPY acutely and simultaneously increases lipogenesis and decreases lipolysis in different tissues. Subsequently, we investigated the acute effects of ICV NPY on locomotor activity, respiratory exchange ratio, EE, and body temperature. The ICV infusion of NPY increased locomotor activity, body temperature, and EE as well as respiratory exchange ratio. Together, these results show that an acutely increased central availability of NPY results in a shift of metabolism towards lipid storage and an increased use of carbohydrates, while at the same time increasing activity, EE, and body temperature.
Collapse
Affiliation(s)
- Yan Su
- Hypothalamic Integration Mechanisms (Y.S., A.K.), Netherlands Institute for Neuroscience, 1105 BA Amsterdam, The Netherlands; and Department of Endocrinology and Metabolism (E.Fo.,E.Fl., A.K.), Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ewout Foppen
- Hypothalamic Integration Mechanisms (Y.S., A.K.), Netherlands Institute for Neuroscience, 1105 BA Amsterdam, The Netherlands; and Department of Endocrinology and Metabolism (E.Fo.,E.Fl., A.K.), Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Eric Fliers
- Hypothalamic Integration Mechanisms (Y.S., A.K.), Netherlands Institute for Neuroscience, 1105 BA Amsterdam, The Netherlands; and Department of Endocrinology and Metabolism (E.Fo.,E.Fl., A.K.), Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Andries Kalsbeek
- Hypothalamic Integration Mechanisms (Y.S., A.K.), Netherlands Institute for Neuroscience, 1105 BA Amsterdam, The Netherlands; and Department of Endocrinology and Metabolism (E.Fo.,E.Fl., A.K.), Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
184
|
Eichenfield DZ, Troutman TD, Link VM, Lam MT, Cho H, Gosselin D, Spann NJ, Lesch HP, Tao J, Muto J, Gallo RL, Evans RM, Glass CK. Tissue damage drives co-localization of NF-κB, Smad3, and Nrf2 to direct Rev-erb sensitive wound repair in mouse macrophages. eLife 2016; 5. [PMID: 27462873 PMCID: PMC4963201 DOI: 10.7554/elife.13024] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 06/30/2016] [Indexed: 12/24/2022] Open
Abstract
Although macrophages can be polarized to distinct phenotypes in vitro with individual ligands, in vivo they encounter multiple signals that control their varied functions in homeostasis, immunity, and disease. Here, we identify roles of Rev-erb nuclear receptors in regulating responses of mouse macrophages to complex tissue damage signals and wound repair. Rather than reinforcing a specific program of macrophage polarization, Rev-erbs repress subsets of genes that are activated by TLR ligands, IL4, TGFβ, and damage-associated molecular patterns (DAMPS). Unexpectedly, a complex damage signal promotes co-localization of NF-κB, Smad3, and Nrf2 at Rev-erb-sensitive enhancers and drives expression of genes characteristic of multiple polarization states in the same cells. Rev-erb-sensitive enhancers thereby integrate multiple damage-activated signaling pathways to promote a wound repair phenotype. DOI:http://dx.doi.org/10.7554/eLife.13024.001
Collapse
Affiliation(s)
- Dawn Z Eichenfield
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States.,Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, United States
| | - Ty Dale Troutman
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Verena M Link
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States.,Department II, Faculty of Biology, Ludwig-Maximilian Universität München, Planegg-Martinsried, Germany
| | - Michael T Lam
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States.,Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, United States.,Department of Medicine, University of California, San Diego, San Diego, United States
| | - Han Cho
- Salk Institute for Biological Sciences, La Jolla, United States
| | - David Gosselin
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Nathanael J Spann
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Hanna P Lesch
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Jenhan Tao
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Jun Muto
- Department of Dermatology, University of California, San Diego, San Diego, United States
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, San Diego, United States
| | - Ronald M Evans
- Salk Institute for Biological Sciences, La Jolla, United States
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States.,Department of Medicine, University of California, San Diego, San Diego, United States
| |
Collapse
|
185
|
Adhikary N, Shrestha SL, Sun JZ. Metabolic disturbances: role of the circadian timing system and sleep. Diabetol Int 2016; 8:14-22. [PMID: 30603302 DOI: 10.1007/s13340-016-0279-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/28/2016] [Indexed: 12/21/2022]
Abstract
The incidence of metabolic disorders such as obesity and diabetes is on the rise, and food quality is not alone to blame. Sleep disturbances, altered feeding time and circadian disruption are linked to metabolic disturbances in many clinical research studies and cross-sectional analyses. This review tried to summarize the role of the circadian timing system and sleep on energy and metabolic homeostasis. We also tried to explain the molecular and endocrine mechanisms behind circadian misalignment and sleep disorders that lead to metabolic disorders.
Collapse
Affiliation(s)
- Navin Adhikary
- 1Department of Endocrinology, Zhongnan Hospital, Wuhan University, Wuhan, 430071 China
| | - Santosh Lal Shrestha
- 2Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, 430060 China
| | - Jia Zhong Sun
- 1Department of Endocrinology, Zhongnan Hospital, Wuhan University, Wuhan, 430071 China
| |
Collapse
|
186
|
Delezie J, Dumont S, Sandu C, Reibel S, Pevet P, Challet E. Rev-erbα in the brain is essential for circadian food entrainment. Sci Rep 2016; 6:29386. [PMID: 27380954 PMCID: PMC4933951 DOI: 10.1038/srep29386] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 06/20/2016] [Indexed: 01/07/2023] Open
Abstract
Foraging is costly in terms of time and energy. An endogenous food-entrainable system allows anticipation of predictable changes of food resources in nature. Yet the molecular mechanism that controls food anticipation in mammals remains elusive. Here we report that deletion of the clock component Rev-erbα impairs food entrainment in mice. Rev-erbα global knockout (GKO) mice subjected to restricted feeding showed reduced elevations of locomotor activity and body temperature prior to mealtime, regardless of the lighting conditions. The failure to properly anticipate food arrival was accompanied by a lack of phase-adjustment to mealtime of the clock protein PERIOD2 in the cerebellum, and by diminished expression of phosphorylated ERK 1/2 (p-ERK) during mealtime in the mediobasal hypothalamus and cerebellum. Furthermore, brain-specific knockout (BKO) mice for Rev-erbα display a defective suprachiasmatic clock, as evidenced by blunted daily activity under a light-dark cycle, altered free-running rhythm in constant darkness and impaired clock gene expression. Notably, brain deletion of Rev-erbα totally prevented food-anticipatory behaviour and thermogenesis. In response to restricted feeding, brain deletion of Rev-erbα impaired changes in clock gene expression in the hippocampus and cerebellum, but not in the liver. Our findings indicate that Rev-erbα is required for neural network-based prediction of food availability.
Collapse
Affiliation(s)
- Julien Delezie
- Regulation of circadian clocks team, Institute of Cellular and Integrative Neurosciences, UPR3212, Centre National de la Recherche Scientifique, University of Strasbourg, France
| | - Stéphanie Dumont
- Regulation of circadian clocks team, Institute of Cellular and Integrative Neurosciences, UPR3212, Centre National de la Recherche Scientifique, University of Strasbourg, France
| | - Cristina Sandu
- Regulation of circadian clocks team, Institute of Cellular and Integrative Neurosciences, UPR3212, Centre National de la Recherche Scientifique, University of Strasbourg, France
| | - Sophie Reibel
- Chronobiotron, UMS3415, CNRS, University of Strasbourg, France
| | - Paul Pevet
- Regulation of circadian clocks team, Institute of Cellular and Integrative Neurosciences, UPR3212, Centre National de la Recherche Scientifique, University of Strasbourg, France
| | - Etienne Challet
- Regulation of circadian clocks team, Institute of Cellular and Integrative Neurosciences, UPR3212, Centre National de la Recherche Scientifique, University of Strasbourg, France
| |
Collapse
|
187
|
Zhao X, Hirota T, Han X, Cho H, Chong LW, Lamia K, Liu S, Atkins AR, Banayo E, Liddle C, Yu RT, Yates JR, Kay SA, Downes M, Evans RM. Circadian Amplitude Regulation via FBXW7-Targeted REV-ERBα Degradation. Cell 2016; 165:1644-1657. [PMID: 27238018 PMCID: PMC4912445 DOI: 10.1016/j.cell.2016.05.012] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 03/07/2016] [Accepted: 04/25/2016] [Indexed: 12/20/2022]
Abstract
Defects in circadian rhythm influence physiology and behavior with implications for the treatment of sleep disorders, metabolic disease, and cancer. Although core regulatory components of clock rhythmicity have been defined, insight into the mechanisms underpinning amplitude is limited. Here, we show that REV-ERBα, a core inhibitory component of clock transcription, is targeted for ubiquitination and subsequent degradation by the F-box protein FBXW7. By relieving REV-ERBα-dependent repression, FBXW7 provides an unrecognized mechanism for enhancing the amplitude of clock gene transcription. Cyclin-dependent kinase 1 (CDK1)-mediated phosphorylation of REV-ERBα is necessary for FBXW7 recognition. Moreover, targeted hepatic disruption of FBXW7 alters circadian expression of core clock genes and perturbs whole-body lipid and glucose levels. This CDK1-FBXW7 pathway controlling REV-ERBα repression defines an unexpected molecular mechanism for re-engaging the positive transcriptional arm of the clock, as well as a potential route to manipulate clock amplitude via small molecule CDK1 inhibition.
Collapse
Affiliation(s)
- Xuan Zhao
- Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tsuyoshi Hirota
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan; PRESTO, Japan Science and Technology Agency, Nagoya 464-8601, Japan
| | - Xuemei Han
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Han Cho
- Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ling-Wa Chong
- Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Katja Lamia
- Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sihao Liu
- Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Annette R Atkins
- Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ester Banayo
- Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Christopher Liddle
- Storr Liver Centre, Westmead Millennium Institute, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Ruth T Yu
- Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Steve A Kay
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan; Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael Downes
- Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Ronald M Evans
- Gene Expression Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
188
|
Pivovarova O, Gögebakan Ö, Sucher S, Groth J, Murahovschi V, Kessler K, Osterhoff M, Rudovich N, Kramer A, Pfeiffer AFH. Regulation of the clock gene expression in human adipose tissue by weight loss. Int J Obes (Lond) 2016; 40:899-906. [PMID: 26902807 DOI: 10.1038/ijo.2016.34] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/12/2016] [Accepted: 02/02/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND The circadian clock coordinates numerous metabolic processes to adapt physiological responses to light-dark and feeding regimens and is itself regulated by metabolic cues. The implication of the circadian clock in the regulation of energy balance and body weight is widely studied in rodents but not in humans. Here we investigated (1) whether the expression of clock genes in human adipose tissue is changed by weight loss and (2) whether these alterations are associated with metabolic parameters. SUBJECTS/METHODS Subcutaneous adipose tissue (SAT) samples were collected before and after 8 weeks of weight loss on an 800 kcal per day hypocaloric diet (plus 200 g per day vegetables) at the same time of the day. Fifty overweight subjects who lost at least 8% weight after 8 weeks were selected for the study. The expression of 10 clock genes and key metabolic and inflammatory genes in adipose tissue was determined by quantitative real-time PCR. RESULTS The expression of core clock genes PER2 and NR1D1 was increased after the weight loss. Correlations of PERIOD expression with body mass index (BMI) and serum total, high-density lipoprotein and low-density lipoprotein (LDL) cholesterol levels and of NR1D1 expression with total and LDL cholesterol were found that became non-significant after correction for multiple testing. Clock gene expression levels and their weight loss-induced changes tightly correlated with each other and with genes involved in fat metabolism (FASN, CPT1A, LPL, PPARG, PGC1A, ADIPOQ), energy metabolism (SIRT1), autophagy (LC3A, LC3B) and inflammatory response (NFKB1, NFKBIA, NLRP3, EMR1). CONCLUSION Clock gene expression in human SAT is regulated by body weight changes and associated with BMI, serum cholesterol levels and the expression of metabolic and inflammatory genes. Our data confirm the tight crosstalk between molecular clock and metabolic and inflammatory pathways involved in adapting adipose tissue metabolism to changes of the energy intake in humans.
Collapse
Affiliation(s)
- O Pivovarova
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
| | - Ö Gögebakan
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Department for Radiology and Interventional Therapy, Vivantes Klinikum Neukölln, Berlin, Germany
| | - S Sucher
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - J Groth
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - V Murahovschi
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
| | - K Kessler
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
| | - M Osterhoff
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - N Rudovich
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
| | - A Kramer
- Laboratory of Chronobiology, Institute for Medical Immunology, Charité University Medicine, Berlin, Germany
| | - A F H Pfeiffer
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
| |
Collapse
|
189
|
Brown SA. Circadian Metabolism: From Mechanisms to Metabolomics and Medicine. Trends Endocrinol Metab 2016; 27:415-426. [PMID: 27113082 DOI: 10.1016/j.tem.2016.03.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 12/28/2022]
Abstract
The circadian clock directs nearly all aspects of diurnal physiology, including metabolism. Current research identifies several major axes by which it exerts these effects, including systemic signals as well as direct control of cellular processes by local clocks. This redundant network can transmit metabolic and timing information bidirectionally for optimal synchrony of metabolic processes. Recent advances in cellular profiling and metabolomics technologies have yielded unprecedented insights into the mechanisms behind this control. They have also helped to illuminate individual variation in these mechanisms that could prove important in personalized therapy for metabolic disease. Finally, these technologies have provided platforms with which to screen for the first potential drugs affecting clock-modulated metabolic function.
Collapse
Affiliation(s)
- Steven A Brown
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zürich, 190 Winterthurerstrasse, 8057 Zürich, Switzerland.
| |
Collapse
|
190
|
Abstract
The circadian system temporally coordinates daily rhythms in feeding behaviour and energy metabolism. The objective of the present paper is to review the mechanisms that underlie circadian regulation of lipid metabolic pathways. Circadian rhythms in behaviour and physiology are generated by master clock neurons in the suprachiasmatic nucleus (SCN). The SCN and its efferent targets in the hypothalamus integrate light and feeding signals to entrain behavioural rhythms as well as clock cells located in peripheral tissues, including the liver, adipose tissue and muscle. Circadian rhythms in gene expression are regulated at the cellular level by a molecular clock comprising a core set of clock genes/proteins. In peripheral tissues, hundreds of genes involved in lipid biosynthesis and fatty acid oxidation are rhythmically activated and repressed by clock proteins, hence providing a direct mechanism for circadian regulation of lipids. Disruption of clock gene function results in abnormal metabolic phenotypes and impaired lipid absorption, demonstrating that the circadian system is essential for normal energy metabolism. The composition and timing of meals influence diurnal regulation of metabolic pathways, with food intake during the usual rest phase associated with dysregulation of lipid metabolism. Recent studies using metabolomics and lipidomics platforms have shown that hundreds of lipid species are circadian-regulated in human plasma, including but not limited to fatty acids, TAG, glycerophospholipids, sterol lipids and sphingolipids. In future work, these lipid profiling approaches can be used to understand better the interaction between diet, mealtimes and circadian rhythms on lipid metabolism and risk for obesity and metabolic diseases.
Collapse
|
191
|
Jouffe C, Gobet C, Martin E, Métairon S, Morin-Rivron D, Masoodi M, Gachon F. Perturbed rhythmic activation of signaling pathways in mice deficient for Sterol Carrier Protein 2-dependent diurnal lipid transport and metabolism. Sci Rep 2016; 6:24631. [PMID: 27097688 PMCID: PMC4838911 DOI: 10.1038/srep24631] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/29/2016] [Indexed: 01/22/2023] Open
Abstract
Through evolution, most of the living species have acquired a time keeping system to anticipate daily changes caused by the rotation of the Earth. In all of the systems this pacemaker is based on a molecular transcriptional/translational negative feedback loop able to generate rhythmic gene expression with a period close to 24 hours. Recent evidences suggest that post-transcriptional regulations activated mostly by systemic cues play a fundamental role in the process, fine tuning the time keeping system and linking it to animal physiology. Among these signals, we consider the role of lipid transport and metabolism regulated by SCP2. Mice harboring a deletion of the Scp2 locus present a modulated diurnal accumulation of lipids in the liver and a perturbed activation of several signaling pathways including PPARα, SREBP, LRH-1, TORC1 and its upstream regulators. This defect in signaling pathways activation feedbacks upon the clock by lengthening the circadian period of animals through post-translational regulation of core clock regulators, showing that rhythmic lipid transport is a major player in the establishment of rhythmic mRNA and protein expression landscape.
Collapse
Affiliation(s)
- Céline Jouffe
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, CH-1011, Switzerland.,Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Cédric Gobet
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland.,Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Eva Martin
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Sylviane Métairon
- Functional Genomic, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Delphine Morin-Rivron
- Department of Gastro-Intestinal Health &Microbiome, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Mojgan Masoodi
- Department of Gastro-Intestinal Health &Microbiome, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland.,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 3E2, Canada
| | - Frédéric Gachon
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, CH-1011, Switzerland.,Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland.,Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
192
|
Tahara Y, Shibata S. Circadian rhythms of liver physiology and disease: experimental and clinical evidence. Nat Rev Gastroenterol Hepatol 2016; 13:217-26. [PMID: 26907879 DOI: 10.1038/nrgastro.2016.8] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The circadian clock system consists of a central clock located in the suprachiasmatic nucleus in the hypothalamus and peripheral clocks in peripheral tissues. Peripheral clocks in the liver have fundamental roles in maintaining liver homeostasis, including the regulation of energy metabolism and the expression of enzymes controlling the absorption and metabolism of xenobiotics. Over the past two decades, research has investigated the molecular mechanisms linking circadian clock genes with the regulation of hepatic physiological functions, using global clock-gene-knockout mice, or mice with liver-specific knockout of clock genes or clock-controlled genes. Clock dysfunction accelerates the development of liver diseases such as fatty liver diseases, cirrhosis, hepatitis and liver cancer, and these disorders also disrupt clock function. Food is an important regulator of circadian clocks in peripheral tissues. Thus, controlling the timing of food consumption and food composition, a concept known as chrononutrition, is one area of active research to aid recovery from many physiological dysfunctions. In this Review, we focus on the molecular mechanisms of hepatic circadian gene regulation and the relationships between hepatic circadian clock systems and liver physiology and disease. We concentrate on experimental data obtained from cell or mice and rat models and discuss how these findings translate into clinical research, and we highlight the latest developments in chrononutritional studies.
Collapse
Affiliation(s)
- Yu Tahara
- Waseda Institute for Advanced Study, Waseda University, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2-2, Shinjuku-ku, Tokyo, 162-8480, Japan
| |
Collapse
|
193
|
Jager J, Wang F, Fang B, Lim HW, Peed LC, Steger DJ, Won KJ, Kharitonenkov A, Adams AC, Lazar MA. The Nuclear Receptor Rev-erbα Regulates Adipose Tissue-specific FGF21 Signaling. J Biol Chem 2016; 291:10867-75. [PMID: 27002153 DOI: 10.1074/jbc.m116.719120] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Indexed: 01/14/2023] Open
Abstract
FGF21 is an atypical member of the FGF family that functions as a hormone to regulate carbohydrate and lipid metabolism. Here we demonstrate that the actions of FGF21 in mouse adipose tissue, but not in liver, are modulated by the nuclear receptor Rev-erbα, a potent transcriptional repressor. Interrogation of genes induced in the absence of Rev-erbα for Rev-erbα-binding sites identified βKlotho, an essential coreceptor for FGF21, as a direct target gene of Rev-erbα in white adipose tissue but not liver. Rev-erbα ablation led to the robust elevated expression of βKlotho. Consequently, the effects of FGF21 were markedly enhanced in the white adipose tissue of mice lacking Rev-erbα. A major Rev-erbα-controlled enhancer at the Klb locus was also bound by the adipocytic transcription factor peroxisome proliferator-activated receptor (PPAR) γ, which regulates its activity in the opposite direction. These findings establish Rev-erbα as a specific modulator of FGF21 signaling in adipose tissue.
Collapse
Affiliation(s)
- Jennifer Jager
- From the Division of Endocrinology, Diabetes, and Metabolism, Departments of Medicine and Genetics, and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Fenfen Wang
- From the Division of Endocrinology, Diabetes, and Metabolism, Departments of Medicine and Genetics, and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Bin Fang
- From the Division of Endocrinology, Diabetes, and Metabolism, Departments of Medicine and Genetics, and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hee-Woong Lim
- From the Division of Endocrinology, Diabetes, and Metabolism, Departments of Medicine and Genetics, and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Lindsey C Peed
- From the Division of Endocrinology, Diabetes, and Metabolism, Departments of Medicine and Genetics, and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - David J Steger
- From the Division of Endocrinology, Diabetes, and Metabolism, Departments of Medicine and Genetics, and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kyoung-Jae Won
- From the Division of Endocrinology, Diabetes, and Metabolism, Departments of Medicine and Genetics, and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Alexei Kharitonenkov
- the Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, and
| | - Andrew C Adams
- the Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana 46285
| | - Mitchell A Lazar
- From the Division of Endocrinology, Diabetes, and Metabolism, Departments of Medicine and Genetics, and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104,
| |
Collapse
|
194
|
Feillet C, Guérin S, Lonchampt M, Dacquet C, Gustafsson JÅ, Delaunay F, Teboul M. Sexual Dimorphism in Circadian Physiology Is Altered in LXRα Deficient Mice. PLoS One 2016; 11:e0150665. [PMID: 26938655 PMCID: PMC4777295 DOI: 10.1371/journal.pone.0150665] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/16/2016] [Indexed: 11/28/2022] Open
Abstract
The mammalian circadian timing system coordinates key molecular, cellular and physiological processes along the 24-h cycle. Accumulating evidence suggests that many clock-controlled processes display a sexual dimorphism. In mammals this is well exemplified by the difference between the male and female circadian patterns of glucocorticoid hormone secretion and clock gene expression. Here we show that the non-circadian nuclear receptor and metabolic sensor Liver X Receptor alpha (LXRα) which is known to regulate glucocorticoid production in mice modulates the sex specific circadian pattern of plasma corticosterone. Lxrα-/- males display a blunted corticosterone profile while females show higher amplitude as compared to wild type animals. Wild type males are significantly slower than females to resynchronize their locomotor activity rhythm after an 8 h phase advance but this difference is abrogated in Lxrα-/- males which display a female-like phenotype. We also show that circadian expression patterns of liver 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and Phosphoenolpyruvate carboxykinase (Pepck) differ between sexes and are differentially altered in Lxrα-/- animals. These changes are associated with a damped profile of plasma glucose oscillation in males but not in females. Sex specific alteration of the insulin and leptin circadian profiles were observed in Lxα-/- females and could be explained by the change in corticosterone profile. Together this data indicates that LXRα is a determinant of sexually dimorphic circadian patterns of key physiological parameters. The discovery of this unanticipated role for LXRα in circadian physiology underscores the importance of addressing sex differences in chronobiology studies and future LXRα targeted therapies.
Collapse
Affiliation(s)
- Céline Feillet
- University Nice Sophia Antipolis, Institute of Biology Valrose, 06108, Nice, France
- CNRS UMR 7277, 06108, Nice, France
- INSERM UMR 1091, 06108, Nice, France
| | - Sophie Guérin
- University Nice Sophia Antipolis, Institute of Biology Valrose, 06108, Nice, France
- CNRS UMR 7277, 06108, Nice, France
- INSERM UMR 1091, 06108, Nice, France
| | - Michel Lonchampt
- Metabolic Diseases Research, Institut de Recherches Servier, 92284, Suresnes, France
| | - Catherine Dacquet
- Metabolic Diseases Research, Institut de Recherches Servier, 92284, Suresnes, France
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204–5056, United States of America
| | - Franck Delaunay
- University Nice Sophia Antipolis, Institute of Biology Valrose, 06108, Nice, France
- CNRS UMR 7277, 06108, Nice, France
- INSERM UMR 1091, 06108, Nice, France
| | - Michèle Teboul
- University Nice Sophia Antipolis, Institute of Biology Valrose, 06108, Nice, France
- CNRS UMR 7277, 06108, Nice, France
- INSERM UMR 1091, 06108, Nice, France
- * E-mail:
| |
Collapse
|
195
|
Reinke H, Asher G. Circadian Clock Control of Liver Metabolic Functions. Gastroenterology 2016; 150:574-80. [PMID: 26657326 DOI: 10.1053/j.gastro.2015.11.043] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 02/08/2023]
Abstract
The circadian clock is an endogenous biological timekeeping system that synchronizes physiology and behavior to day/night cycles. A wide variety of processes throughout the entire gastrointestinal tract and notably the liver appear to be under circadian control. These include various metabolic functions such as nutrient uptake, processing, and detoxification, which align organ function to cycle with nutrient supply and demand. Remarkably, genetic or environmental disruption of the circadian clock can cause metabolic diseases or exacerbate pathological states. In addition, modern lifestyles force more and more people worldwide into asynchrony between the external time and their circadian clock, resulting in a constant state of social jetlag. Recent evidence indicates that interactions between altered energy metabolism and disruptions in the circadian clock create a downward spiral that can lead to diabetes and other metabolic diseases. In this review, we provide an overview of rhythmic processes in the liver and highlight the functions of circadian clock genes under physiological and pathological conditions; we focus on their roles in regulation of hepatic glucose as well as lipid and bile acid metabolism and detoxification and their potential effects on the development of fatty liver and nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Hans Reinke
- Medical Faculty, Institute of Clinical Chemistry and Laboratory Diagnostics, University of Düsseldorf, Düsseldorf, Germany; IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| | - Gad Asher
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
196
|
Mang GM, La Spada F, Emmenegger Y, Chappuis S, Ripperger JA, Albrecht U, Franken P. Altered Sleep Homeostasis in Rev-erbα Knockout Mice. Sleep 2016; 39:589-601. [PMID: 26564124 PMCID: PMC4763348 DOI: 10.5665/sleep.5534] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/26/2015] [Indexed: 02/06/2023] Open
Abstract
STUDY OBJECTIVES The nuclear receptor REV-ERBα is a potent, constitutive transcriptional repressor critical for the regulation of key circadian and metabolic genes. Recently, REV-ERBα's involvement in learning, neurogenesis, mood, and dopamine turnover was demonstrated suggesting a specific role in central nervous system functioning. We have previously shown that the brain expression of several core clock genes, including Rev-erbα, is modulated by sleep loss. We here test the consequences of a loss of REV-ERBα on the homeostatic regulation of sleep. METHODS EEG/EMG signals were recorded in Rev-erbα knockout (KO) mice and their wild type (WT) littermates during baseline, sleep deprivation, and recovery. Cortical gene expression measurements after sleep deprivation were contrasted to baseline. RESULTS Although baseline sleep/wake duration was remarkably similar, KO mice showed an advance of the sleep/wake distribution relative to the light-dark cycle. After sleep onset in baseline and after sleep deprivation, both EEG delta power (1-4 Hz) and sleep consolidation were reduced in KO mice indicating a slower increase of homeostatic sleep need during wakefulness. This slower increase might relate to the smaller increase in theta and gamma power observed in the waking EEG prior to sleep onset under both conditions. Indeed, the increased theta activity during wakefulness predicted delta power in subsequent NREM sleep. Lack of Rev-erbα increased Bmal1, Npas2, Clock, and Fabp7 expression, confirming the direct regulation of these genes by REV-ERBα also in the brain. CONCLUSIONS Our results add further proof to the notion that clock genes are involved in sleep homeostasis. Because accumulating evidence directly links REV-ERBα to dopamine signaling the altered homeostatic regulation of sleep reported here are discussed in that context.
Collapse
Affiliation(s)
- Géraldine M. Mang
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Francesco La Spada
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Yann Emmenegger
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Sylvie Chappuis
- Faculty of Science, Department of Biology, Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Jürgen A. Ripperger
- Faculty of Science, Department of Biology, Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Urs Albrecht
- Faculty of Science, Department of Biology, Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
197
|
Nutrigenetics and Nutrimiromics of the Circadian System: The Time for Human Health. Int J Mol Sci 2016; 17:299. [PMID: 26927084 PMCID: PMC4813163 DOI: 10.3390/ijms17030299] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/08/2016] [Accepted: 02/16/2016] [Indexed: 12/15/2022] Open
Abstract
Even though the rhythmic oscillations of life have long been known, the precise molecular mechanisms of the biological clock are only recently being explored. Circadian rhythms are found in virtually all organisms and affect our lives. Thus, it is not surprising that the correct running of this clock is essential for cellular functions and health. The circadian system is composed of an intricate network of genes interwined in an intrincated transcriptional/translational feedback loop. The precise oscillation of this clock is controlled by the circadian genes that, in turn, regulate the circadian oscillations of many cellular pathways. Consequently, variations in these genes have been associated with human diseases and metabolic disorders. From a nutrigenetics point of view, some of these variations modify the individual response to the diet and interact with nutrients to modulate such response. This circadian feedback loop is also epigenetically modulated. Among the epigenetic mechanisms that control circadian rhythms, microRNAs are the least studied ones. In this paper, we review the variants of circadian-related genes associated to human disease and nutritional response and discuss the current knowledge about circadian microRNAs. Accumulated evidence on the genetics and epigenetics of the circadian system points to important implications of chronotherapy in the clinical practice, not only in terms of pharmacotherapy, but also for dietary interventions. However, interventional studies (especially nutritional trials) that include chronotherapy are scarce. Given the importance of chronobiology in human health such studies are warranted in the near future.
Collapse
|
198
|
Laermans J, Depoortere I. Chronobesity: role of the circadian system in the obesity epidemic. Obes Rev 2016; 17:108-25. [PMID: 26693661 DOI: 10.1111/obr.12351] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/25/2015] [Accepted: 10/01/2015] [Indexed: 01/17/2023]
Abstract
Although obesity is considered to result from an imbalance between energy uptake and energy expenditure, the strategy of dietary changes and physical exercise has failed to tackle the global obesity epidemic. In search of alternative and more adequate treatment options, research has aimed at further unravelling the mechanisms underlying this excessive weight gain. While numerous studies are focusing on the neuroendocrine alterations that occur after bariatric Roux-en-Y gastric bypass surgery, an increasing amount of chronobiological studies have started to raise awareness concerning the pivotal role of the circadian system in the development and exacerbation of obesity. This internal timekeeping mechanism rhythmically regulates metabolic and physiological processes in order to meet the fluctuating demands in energy use and supply throughout the 24-h day. This review elaborates on the extensive bidirectional interaction between the circadian system and metabolism and explains how disruption of body clocks by means of shift work, frequent time zone travelling or non-stop consumption of calorie-dense foods can evoke detrimental metabolic alterations that contribute to obesity. Altering the body's circadian rhythms by means of time-related dietary approaches (chrononutrition) or pharmacological substances (chronobiotics) may therefore represent a novel and interesting way to prevent or treat obesity and associated comorbidities.
Collapse
Affiliation(s)
- J Laermans
- Gut Peptide Research Lab, Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - I Depoortere
- Gut Peptide Research Lab, Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| |
Collapse
|
199
|
Interdependence of nutrient metabolism and the circadian clock system: Importance for metabolic health. Mol Metab 2016; 5:133-152. [PMID: 26977390 PMCID: PMC4770266 DOI: 10.1016/j.molmet.2015.12.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 12/15/2015] [Accepted: 12/29/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND While additional research is needed, a number of large epidemiological studies show an association between circadian disruption and metabolic disorders. Specifically, obesity, insulin resistance, cardiovascular disease, and other signs of metabolic syndrome all have been linked to circadian disruption in humans. Studies in other species support this association and generally reveal that feeding that is not in phase with the external light/dark cycle, as often occurs with night or rotating shift workers, is disadvantageous in terms of energy balance. As food is a strong driver of circadian rhythms in the periphery, understanding how nutrient metabolism drives clocks across the body is important for dissecting out why circadian misalignment may produce such metabolic effects. A number of circadian clock proteins as well as their accessory proteins (such as nuclear receptors) are highly sensitive to nutrient metabolism. Macronutrients and micronutrients can function as zeitgebers for the clock in a tissue-specific way and can thus impair synchrony between clocks across the body, or potentially restore synchrony in the case of circadian misalignment. Circadian nuclear receptors are particularly sensitive to nutrient metabolism and can alter tissue-specific rhythms in response to changes in the diet. Finally, SNPs in human clock genes appear to be correlated with diet-specific responses and along with chronotype eventually may provide valuable information from a clinical perspective on how to use diet and nutrition to treat metabolic disorders. SCOPE OF REVIEW This article presents a background of the circadian clock components and their interrelated metabolic and transcriptional feedback loops, followed by a review of some recent studies in humans and rodents that address the effects of nutrient metabolism on the circadian clock and vice versa. We focus on studies in which results suggest that nutrients provide an opportunity to restore or, alternatively, can destroy synchrony between peripheral clocks and the central pacemaker in the brain as well as between peripheral clocks themselves. In addition, we review several studies looking at clock gene SNPs in humans and the metabolic phenotypes or tendencies associated with particular clock gene mutations. MAJOR CONCLUSIONS Targeted use of specific nutrients based on chronotype has the potential for immense clinical utility in the future. Macronutrients and micronutrients have the ability to function as zeitgebers for the clock by activating or modulating specific clock proteins or accessory proteins (such as nuclear receptors). Circadian clock control by nutrients can be tissue-specific. With a better understanding of the mechanisms that support nutrient-induced circadian control in specific tissues, human chronotype and SNP information might eventually be used to tailor nutritional regimens for metabolic disease treatment and thus be an important part of personalized medicine's future.
Collapse
|
200
|
Lazar MA. Rev-erbs: Integrating Metabolism Around the Clock. RESEARCH AND PERSPECTIVES IN ENDOCRINE INTERACTIONS 2016. [DOI: 10.1007/978-3-319-27069-2_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|