201
|
Rostami N, Choupani E, Hernandez Y, Arab SS, Jazayeri SM, Gomari MM. SARS-CoV-2 spike evolutionary behaviors; simulation of N501Y mutation outcomes in terms of immunogenicity and structural characteristic. J Cell Biochem 2021; 123:417-430. [PMID: 34783057 PMCID: PMC8657535 DOI: 10.1002/jcb.30181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/20/2022]
Abstract
Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), a large number of mutations in its genome have been reported. Some of the mutations occur in noncoding regions without affecting the pathobiology of the virus, while mutations in coding regions are significant. One of the regions where a mutation can occur, affecting the function of the virus is at the receptor‐binding domain (RBD) of the spike protein. RBD interacts with angiotensin‐converting enzyme 2 (ACE2) and facilitates the entry of the virus into the host cells. There is a lot of focus on RBD mutations, especially the displacement of N501Y which is observed in the UK/Kent, South Africa, and Brazilian lineages of SARS‐CoV‐2. Our group utilizes computational biology approaches such as immunoinformatics, protein–protein interaction analysis, molecular dynamics, free energy computation, and tertiary structure analysis to disclose the consequences of N501Y mutation at the molecular level. Surprisingly, we discovered that this mutation reduces the immunogenicity of the spike protein; also, displacement of Asn with Tyr reduces protein compactness and significantly increases the stability of the spike protein and its affinity to ACE2. Moreover, following the N501Y mutation secondary structure and folding of the spike protein changed dramatically.
Collapse
Affiliation(s)
- Neda Rostami
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran
| | - Edris Choupani
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yaeren Hernandez
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Seyed S Arab
- Department of Biophysics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed M Jazayeri
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad M Gomari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
202
|
Sabir DK. Analysis of SARS-COV2 spike protein variants among Iraqi isolates. GENE REPORTS 2021; 26:101420. [PMID: 34754982 PMCID: PMC8568320 DOI: 10.1016/j.genrep.2021.101420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022]
Abstract
The ongoing pandemic of COVID-19 caused by the SARS-COV2 virus has triggered millions of deaths around the globe. Emerging several variants of the virus with increased transmissibility, the severity of disease, and the ability of the virus to escape from the immune system has a cause for concerns. Here, we compared the spike protein sequence of 91 human SARS CoV2 strains of Iraq to the first reported sequence of SARS-CoV2 isolate from Wuhan Hu-1/China. The strains were isolated between June 2020 and March 2021. Twenty-two distinct mutations were identified within the spike protein regions which were: L5F, L18F, T19R, S151T, G181A, A222V, A348S, L452 (Q or M), T478K, N501Y, A520S, A522V, A570D, S605A, D614G, Q675H, N679K, P681H, T716I, S982A, A1020S, D1118H. The most frequently mutations occurred at the D614G (87/91), followed by S982A (50/91), and A570D (48/91), respectively. In addition, a distinct shift was observed in the type of SARS-COV2 variants present in 2020 compared to 2021 isolates. In 2020, B.1.428.1 lineage was appeared to be a dominant variant (85%). However, the diversity of the variants increased in 2021, and the majority (73%) of the isolated were appeared to belong to B.1.1.7 lineage (VOC/alpha variants). To our knowledge, this is the first major genome analysis of SARS-CoV2 in Iraq. The data from this research could provide insights into SARS-CoV2 evolution, and can be potentially used to recognize the effective vaccine against the disease.
Collapse
Key Words
- ACE2, Angiotensin-Converting Enzyme 2
- CP, Cytoplasmic Peptide
- Covid-19
- FP, Fusion peptide
- GISAID, Global Initiative on Sharing All Influenza Data
- HR1, Heptad Repeat 1
- HR2, Heptad Repeat 2
- Iraq
- Mutation
- NTD, N-terminal domain
- PDB, Protein Data Bank
- RBD, Receptor-Binding Domain
- Receptor binding domain
- SARS-COV2
- SARS-CoV2, Severe acute respiratory syndrome coronavirus 2
- SP, Signal Peptide
- Spike protein
- TM, Transmembrane Domain
- VOC, Virus of Concern
Collapse
Affiliation(s)
- Dana Khdr Sabir
- Department of Medical Laboratory Sciences, College of Medical and Applied Sciences, Charmo University, 46023 Chamchamal, Kurdistan Region, Iraq
| |
Collapse
|
203
|
Deb P, Molla MMA, Saif-Ur-Rahman KM, Das MC, Das D. A review of epidemiology, clinical features and disease course, transmission dynamics, and neutralization efficacy of SARS-CoV-2 variants. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2021. [PMCID: PMC8571979 DOI: 10.1186/s43168-021-00090-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background After the first detection in November 2019, SARS-CoV-2 has spread rapidly over the continents and started the pandemic of the millennium. In addition to several novels and repurposed monoclonal antibodies (mAbs) as a therapeutic option against COVID-19, scientists from across the world have developed several candidate vaccines, developed mainly targeting the Wuhan strain, with very promising results to combat this pandemic. Unfortunately like any RNA viruses, SARS CoV-2 has also gone through the accumulation of hundreds and thousands of mutations in their genome lead to the development of several variants of concerns (VOC) and variants of interests (VOI), resulting in increased transmissibility and virulence of the virus, along with their capacity to escape cross-protection. Seemingly, the main hindrance of containing this pandemic right now is the effectiveness of currently available vaccines and mAbs against newly emerging variants. Therefore, it is important to monitor variants epidemiology, transmission dynamics, clinical characteristics, as well as their immune evasion capacity to implement appropriate vaccine strategy and other containment measures. Body In this review, we tried to focus on variants characteristics and to what extent they can escape immunity, provided by both available vaccinated sera and convalescent sera. A stringent literature review was performed using various databases, mentioned in the methodology portion. The current geographical distribution of these variants of SARS CoV-2 has been presented using a heat map. Findings from published articles comparing these variants, in terms of genome epidemiology, transmissibility, viral load dynamics, and association with different waves have been described briefly. Due strength was given while describing variants neutralization potency against current vaccines, mAbs, and also against convalescent sera. Data from both clinical trials and in vitro/ex-vivo studies have been discussed here. Comparative findings from several articles were brought into one concise paper. After careful reviewing of all the available data, it was clear that, without hesitation, we should strengthen our vaccination strategy, because the severity of COVID 19 is reasonably lower, irrespective of variants and vaccine used. Conclusion We hope that many falsified myths and beliefs regarding vaccine immunity and emerging variants will be clarified in light of this available evidence, which we summarized in our paper.
Collapse
|
204
|
Tatsi EB, Filippatos F, Michos A. SARS-CoV-2 variants and effectiveness of vaccines: a review of current evidence. Epidemiol Infect 2021; 149:e237. [PMID: 34732275 PMCID: PMC8632374 DOI: 10.1017/s0950268821002430] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 12/23/2022] Open
Abstract
The SARS-CoV-2 virus is rapidly evolving via mutagenesis, lengthening the pandemic, and threatening the public health. Until August 2021, 12 variants of SARS-CoV-2 named as variants of concern (VOC; Alpha to Delta) or variants of interest (VOI; Epsilon to Mu), with significant impact on transmissibility, morbidity, possible reinfection and mortality, have been identified. The VOC Delta (B.1.617.2) of Indian origin is now the dominant and the most contagious variant worldwide as it provokes a strong binding to the human ACE2 receptor, increases transmissibility and manifests considerable immune escape strategies after natural infection or vaccination. Although the development and administration of SARS-CoV-2 vaccines, based on different technologies (mRNA, adenovirus carrier, recombinant protein, etc.), are very promising for the control of the pandemic, their effectiveness and neutralizing activity against VOCs varies significantly. In this review, we describe the most significant circulating variants of SARS-CoV-2, and the known effectiveness of currently available vaccines against them.
Collapse
Affiliation(s)
- Elizabeth-Barbara Tatsi
- First Department of Pediatrics, Infectious Diseases and Chemotherapy Research Laboratory, Medical School, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527Athens, Greece
| | - Filippos Filippatos
- First Department of Pediatrics, Infectious Diseases and Chemotherapy Research Laboratory, Medical School, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527Athens, Greece
| | - Athanasios Michos
- First Department of Pediatrics, Infectious Diseases and Chemotherapy Research Laboratory, Medical School, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527Athens, Greece
| |
Collapse
|
205
|
Sethumadhavan DV, Jabeena CA, Govindaraju G, Soman A, Rajavelu A. The severity of SARS-CoV-2 infection is dictated by host factors? Epigenetic perspectives. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100079. [PMID: 34725650 PMCID: PMC8550886 DOI: 10.1016/j.crmicr.2021.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/02/2021] [Accepted: 10/24/2021] [Indexed: 12/15/2022] Open
Abstract
The emergence of COVID-19, caused by SARS-CoV-2 poses a significant threat to humans as it is highly contagious with increasing mortality. There exists a high degree of heterogeneity in the mortality rates of COVID-19 across the globe. There are multiple speculations on the varying degree of mortality. Still, all the clinical reports have indicated that preexisting chronic diseases like hypertension, diabetes, chronic obstructive pulmonary disease (COPD), kidney disorders, and cardiovascular diseases are associated with the increased risk for high mortality in SARS-CoV-2 infected patients. It is worth noting that host factors, mainly epigenetic factors could play a significant role in deciding the outcome of COVID-19 diseases. Over the recent years, it is evident that chronic diseases are developed due to altered epigenome that includes a selective loss/gain of DNA and histone methylation on the chromatin of the cells. Since, there is a high positive correlation between chronic diseases and elevated mortality due to SARS-CoV-2, in this review; we discuss the overall picture of the aberrant epigenome map in varying chronic ailments and its implications in COVID-19 disease severity and high mortality.
Collapse
Affiliation(s)
- Devadathan Valiyamangalath Sethumadhavan
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud PO, Thiruvananthapuram 695014, Kerala, India.,Manipal Academy of Higher Education (MAHE), Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576104, India
| | - C A Jabeena
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud PO, Thiruvananthapuram 695014, Kerala, India.,Manipal Academy of Higher Education (MAHE), Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576104, India
| | - Gayathri Govindaraju
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud PO, Thiruvananthapuram 695014, Kerala, India.,Manipal Academy of Higher Education (MAHE), Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576104, India
| | - Aparna Soman
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud PO, Thiruvananthapuram 695014, Kerala, India
| | - Arumugam Rajavelu
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud PO, Thiruvananthapuram 695014, Kerala, India.,Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600 036, India
| |
Collapse
|
206
|
Rosenke K, Feldmann F, Okumura A, Hansen F, Tang-Huau TL, Meade-White K, Kaza B, Callison J, Lewis MC, Smith BJ, Hanley PW, Lovaglio J, Jarvis MA, Shaia C, Feldmann H. UK B.1.1.7 (Alpha) variant exhibits increased respiratory replication and shedding in nonhuman primates. Emerg Microbes Infect 2021; 10:2173-2182. [PMID: 34724885 PMCID: PMC8635622 DOI: 10.1080/22221751.2021.1997074] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The continuing emergence of SARS-CoV-2 variants calls for regular assessment to identify differences in viral replication, shedding and associated disease. In this study, we compared African green monkeys infected intranasally with either the UK B.1.1.7 (Alpha) variant or its contemporary D614G progenitor. Both variants caused mild respiratory disease with no significant differences in clinical presentation. Significantly higher levels of viral RNA and infectious virus were found in upper and lower respiratory tract samples and tissues from B.1.1.7 infected animals. Interestingly, D614G infected animals showed significantly higher levels of viral RNA and infectious virus in rectal swabs and gastrointestinal tissues. Our results indicate that B.1.1.7 infection in African green monkeys is associated with increased respiratory replication and shedding but no disease enhancement similar to human B.1.1.7 cases.
Collapse
Affiliation(s)
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | | | | | | | | | | | | | | | - Brian J Smith
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Patrick W Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Michael A Jarvis
- Laboratory of Virology, Hamilton, MT, USA.,University of Plymouth, Plymouth, UK.,The Vaccine Group Ltd, Plymouth, UK
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | | |
Collapse
|
207
|
Gunadi, Hakim MS, Wibawa H, Marcellus, Trisnawati I, Supriyati E, Afiahayati, Khair RE, Iskandar K, Siswanto, Irene, Anggorowati N, Daniwijaya EW, Nugrahaningsih DAA, Puspadewi Y, Simanjaya S, Puspitarani DA, Hanifin HF, Setiawan AA, Tania I, Amalia CS, Artayasa IPA, Rachman H, Mulyawan H, Ananda NR, Arguni E, Nuryastuti T, Wibawa T. Association between prognostic factors and the outcomes of patients infected with SARS-CoV-2 harboring multiple spike protein mutations. Sci Rep 2021; 11:21352. [PMID: 34725366 PMCID: PMC8560824 DOI: 10.1038/s41598-021-00459-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/05/2021] [Indexed: 12/16/2022] Open
Abstract
The outcome of SARS-CoV-2 infection is determined by multiple factors, including the viral, host genetics, age, and comorbidities. This study investigated the association between prognostic factors and disease outcomes of patients infected by SARS-CoV-2 with multiple S protein mutations. Fifty-one COVID-19 patients were recruited in this study. Whole-genome sequencing of 170 full-genomes of SARS-CoV-2 was conducted with the Illumina MiSeq sequencer. Most patients (47%) had mild symptoms of COVID-19 followed by moderate (19.6%), no symptoms (13.7%), severe (4%), and critical (2%). Mortality was found in 13.7% of the COVID-19 patients. There was a significant difference between the age of hospitalized patients (53.4 ± 18 years) and the age of non-hospitalized patients (34.6 ± 19) (p = 0.001). The patients' hospitalization was strongly associated with hypertension, diabetes, and anticoagulant and were strongly significant with the OR of 17 (95% CI 2-144; p = 0.001), 4.47 (95% CI 1.07-18.58; p = 0.039), and 27.97 (95% CI 1.54-507.13; p = 0.02), respectively; while the patients' mortality was significantly correlated with patients' age, anticoagulant, steroid, and diabetes, with OR of 8.44 (95% CI 1.5-47.49; p = 0.016), 46.8 (95% CI 4.63-472.77; p = 0.001), 15.75 (95% CI 2-123.86; p = 0.009), and 8.5 (95% CI 1.43-50.66; p = 0.019), respectively. This study found the clade: L (2%), GH (84.3%), GR (11.7%), and O (2%). Besides the D614G mutation, we found L5F (18.8%), V213A (18.8%), and S689R (8.3%). No significant association between multiple S protein mutations and the patients' hospitalization or mortality. Multivariate analysis revealed that hypertension and anticoagulant were the significant factors influencing the hospitalization and mortality of patients with COVID-19 with an OR of 17.06 (95% CI 2.02-144.36; p = 0.009) and 46.8 (95% CI 4.63-472.77; p = 0.001), respectively. Moreover, the multiple S protein mutations almost reached a strong association with patients' hospitalization (p = 0.07). We concluded that hypertension and anticoagulant therapy have a significant impact on COVID-19 outcomes. This study also suggests that multiple S protein mutations may impact the COVID-19 outcomes. This further emphasized the significance of monitoring SARS-CoV-2 variants through genomic surveillance, particularly those that may impact the COVID-19 outcomes.
Collapse
Affiliation(s)
- Gunadi
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jl. Kesehatan No. 1, Yogyakarta, 55281, Indonesia.
| | - Mohamad Saifudin Hakim
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hendra Wibawa
- Disease Investigation Center, Wates, Yogyakarta, Indonesia
| | - Marcellus
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ika Trisnawati
- Pulmonology Division, Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Endah Supriyati
- Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Afiahayati
- Department of Computer Science and Electronics Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Riat El Khair
- Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, 55281, Indonesia
| | - Kristy Iskandar
- Department of Child Health/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/UGM Academic Hospital, Yogyakarta, Indonesia
| | - Siswanto
- Department of Physiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/UGM Academic Hospital, Yogyakarta, Indonesia
| | - Irene
- Balai Besar Teknik Kesehatan Lingkungan Dan Pengendalian Penyakit, Yogyakarta, Yogyakarta, Indonesia
| | - Nungki Anggorowati
- Department of Anatomical Pathology/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Edwin Widyanto Daniwijaya
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/UGM Academic Hospital, Yogyakarta, Indonesia
| | - Dwi Aris Agung Nugrahaningsih
- Department of Pharmacology and Therapy/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yunika Puspadewi
- Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, 55281, Indonesia
| | - Susan Simanjaya
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dyah Ayu Puspitarani
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hana Fauzyyah Hanifin
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Alvina Alexandra Setiawan
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Irene Tania
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Cita Shafira Amalia
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - I Putu Aditio Artayasa
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Haries Rachman
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Nur Rahmi Ananda
- Pulmonology Division, Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Eggi Arguni
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Titik Nuryastuti
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Tri Wibawa
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
208
|
Bager P, Wohlfahrt J, Fonager J, Rasmussen M, Albertsen M, Michaelsen TY, Møller CH, Ethelberg S, Legarth R, Button MSF, Gubbels S, Voldstedlund M, Mølbak K, Skov RL, Fomsgaard A, Krause TG. Risk of hospitalisation associated with infection with SARS-CoV-2 lineage B.1.1.7 in Denmark: an observational cohort study. THE LANCET. INFECTIOUS DISEASES 2021; 21:1507-1517. [PMID: 34171231 PMCID: PMC8219488 DOI: 10.1016/s1473-3099(21)00290-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The more infectious SARS-CoV-2 lineage B.1.1.7 rapidly spread in Europe after December, 2020, and a concern that B.1.1.7 could cause more severe disease has been raised. Taking advantage of Denmark's high RT-PCR testing and whole genome sequencing capacities, we used national health register data to assess the risk of COVID-19 hospitalisation in individuals infected with B.1.1.7 compared with those with other SARS-CoV-2 lineages. METHODS We did an observational cohort study of all SARS-CoV-2-positive cases confirmed by RT-PCR in Denmark, sampled between Jan 1 and March 24, 2021, with 14 days of follow-up for COVID-19 hospitalisation. Cases were identified in the national COVID-19 surveillance system database, which includes data from the Danish Microbiology Database (RT-PCR test results), the Danish COVID-19 Genome Consortium, the National Patient Registry, the Civil Registration System, as well as other nationwide registers. Among all cases, COVID-19 hospitalisation was defined as first admission lasting longer than 12 h within 14 days of a sample with a positive RT-PCR result. The study population and main analysis were restricted to the proportion of cases with viral genome data. We calculated the risk ratio (RR) of admission according to infection with B.1.1.7 versus other co-existing lineages with a Poisson regression model with robust SEs, adjusted a priori for sex, age, calendar time, region, and comorbidities. The contribution of each covariate to confounding of the crude RR was evaluated afterwards by a stepwise forward inclusion. FINDINGS Between Jan 1 and March 24, 2021, 50 958 individuals with a positive SARS-CoV-2 test and at least 14 days of follow-up for hospitalisation were identified; 30 572 (60·0%) had genome data, of whom 10 544 (34·5%) were infected with B.1.1.7. 1944 (6·4%) individuals had a COVID-19 hospitalisation and of these, 571 (29·4%) had a B.1.1.7 infection and 1373 (70·6%) had an infection with other SARS-CoV-2 lineages. Although the overall number of hospitalisations decreased during the study period, the proportion of individuals infected with B.1.1.7 increased from 3·5% to 92·1% per week. B.1.1.7 was associated with a crude RR of hospital admission of 0·79 (95% CI 0·72-0·87; p<0·0001) and an adjusted RR of 1·42 (95% CI 1·25-1·60; p<0·0001). The adjusted RR was increased in all strata of age and calendar period-the two covariates with the largest contribution to confounding of the crude RR. INTERPRETATION Infection with SARS-CoV-2 lineage B.1.1.7 was associated with an increased risk of hospitalisation compared with that of other lineages in an analysis adjusted for covariates. The overall effect on hospitalisations in Denmark was lessened due to a strict lockdown, but our findings could support hospital preparedness and modelling of the projected impact of the epidemic in countries with uncontrolled spread of B.1.1.7. FUNDING None.
Collapse
Affiliation(s)
- Peter Bager
- Division of Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark; Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.
| | - Jan Wohlfahrt
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Jannik Fonager
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Morten Rasmussen
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Mads Albertsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Camilla Holten Møller
- Division of Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Steen Ethelberg
- Infectious Disease Epidemiology & Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Rebecca Legarth
- Infectious Disease Epidemiology & Prevention, Statens Serum Institut, Copenhagen, Denmark
| | | | - Sophie Gubbels
- Division of Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Marianne Voldstedlund
- Division of Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Kåre Mølbak
- Division of Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Robert Leo Skov
- Division of Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Anders Fomsgaard
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Tyra Grove Krause
- Division of Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
209
|
Hoang VT, Colson P, Levasseur A, Delerce J, Lagier JC, Parola P, Million M, Fournier PE, Raoult D, Gautret P. Clinical outcomes in patients infected with different SARS-CoV-2 variants at one hospital during three phases of the COVID-19 epidemic in Marseille, France. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 95:105092. [PMID: 34571275 PMCID: PMC8462069 DOI: 10.1016/j.meegid.2021.105092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To compare the demographics, clinical characteristics and severity of patients infected with nine different SARS-CoV-2 variants, during three phases of the COVID-19 epidemic in Marseille. METHODS A single centre retrospective cohort study was conducted in 1760 patients infected with SARS-CoV-2 of Nextstrain clades 20A, 20B, and 20C (first phase, February-May 2020), Pangolin lineages B.1.177 (we named Marseille-2) and B.1.160 (Marseille-4) variants (second phase, June-December 2020), and B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma) and A.27 (Marseille-501) variants (third phase, January 2021-today). Outcomes were the occurrence of clinical failures, including hospitalisation, transfer to the intensive-care unit, and death. RESULTS During each phase, no major differences were observed with regards to age and gender distribution, the prevalence of chronic diseases, and clinical symptoms between variants circulating in a given phase. The B.1.177 and B.1.160 variants were associated with more severe outcomes. Infections occurring during the second phase were associated with a higher rate of death as compared to infections during the first and third phases. Patients in the second phase were more likely to be hospitalised than those in the third phase. Patients infected during the third phase were more frequently obese than others. CONCLUSION A large cohort study is recommended to evaluate the transmissibility and to better characterise the clinical severity of emerging variants.
Collapse
Affiliation(s)
- Van-Thuan Hoang
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France; Thai Binh University of Medicine and Pharmacy, Thai Binh, Viet Nam
| | - Philippe Colson
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Anthony Levasseur
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | | | - Jean-Christophe Lagier
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Matthieu Million
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Pierre-Edouard Fournier
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Philippe Gautret
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
210
|
Monel B, Planas D, Grzelak L, Smith N, Robillard N, Staropoli I, Goncalves P, Porrot F, Guivel-Benhassine F, Guinet ND, Rodary J, Puech J, Euzen V, Bélec L, Orvoen G, Nunes L, Moulin V, Fourgeaud J, Wack M, Imbeaud S, Campagne P, Duffy D, Santo JPD, Bruel T, Péré H, Veyer D, Schwartz O. Release of infectious virus and cytokines in nasopharyngeal swabs from individuals infected with non-alpha or alpha SARS-CoV-2 variants: an observational retrospective study. EBioMedicine 2021; 73:103637. [PMID: 34678613 PMCID: PMC8526063 DOI: 10.1016/j.ebiom.2021.103637] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The dynamics of SARS-CoV-2 alpha variant shedding and immune responses at the nasal mucosa remain poorly characterised. METHODS We measured infectious viral release, antibodies and cytokines in 426 PCR+ nasopharyngeal swabs from individuals harboring non-alpha or alpha variants. FINDINGS With both lineages, viral titers were variable, ranging from 0 to >106 infectious units. Rapid antigenic diagnostic tests were positive in 94% of samples with infectious virus. 68 % of individuals carried infectious virus within two days after onset of symptoms. This proportion decreased overtime. Viable virus was detected up to 14 days. Samples containing anti-spike IgG or IgA did not generally harbor infectious virus. Ct values were slightly but not significantly lower with alpha. This variant was characterized by a fast decrease of infectivity overtime and a marked release of 13 cytokines (including IFN-b, IP-10 and IL-10). INTERPRETATION The alpha variant displays modified viral decay and cytokine profiles at the nasopharyngeal mucosae during symptomatic infection. FUNDING This retrospective study has been funded by Institut Pasteur, ANRS, Vaccine Research Institute, Labex IBEID, ANR/FRM and IDISCOVR, Fondation pour la Recherche Médicale.
Collapse
Affiliation(s)
- Blandine Monel
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France; CNRS UMR 3569, Paris, France
| | - Delphine Planas
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France; CNRS UMR 3569, Paris, France; Vaccine Research Institute, Creteil, France
| | - Ludivine Grzelak
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France; CNRS UMR 3569, Paris, France; Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Nikaïa Smith
- Translational Immunology Lab, Department of Immunology, Inserm U1223, Institut Pasteur, Paris
| | - Nicolas Robillard
- Hôpital Européen Georges Pompidou, Laboratoire de Virologie, Service de Microbiologie, Paris, France
| | - Isabelle Staropoli
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France; CNRS UMR 3569, Paris, France
| | - Pedro Goncalves
- Innate Immunity Unit, Department of Immunology, Department of Immunology, Inserm U1223, Institut Pasteur, Paris; Inserm U1223, Paris, France
| | - Françoise Porrot
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France; CNRS UMR 3569, Paris, France
| | - Florence Guivel-Benhassine
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France; CNRS UMR 3569, Paris, France
| | | | - Julien Rodary
- Hôpital Européen Georges Pompidou, Laboratoire de Virologie, Service de Microbiologie, Paris, France
| | - Julien Puech
- Hôpital Européen Georges Pompidou, Laboratoire de Virologie, Service de Microbiologie, Paris, France
| | - Victor Euzen
- Hôpital Européen Georges Pompidou, Laboratoire de Virologie, Service de Microbiologie, Paris, France
| | - Laurent Bélec
- Hôpital Européen Georges Pompidou, Laboratoire de Virologie, Service de Microbiologie, Paris, France; Hôpital européen Georges Pompidou INSERM U970, PARCC, Faculté de Médecine, Université de Paris, Paris, France
| | - Galdric Orvoen
- Hôpital Vaugirard, Service de gériatrie, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Léa Nunes
- Hôpital Corentin Celton, Service de gériatrie, Assistance Publique-Hôpitaux de Paris, Issy-les-Moulineaux, France
| | - Véronique Moulin
- Hôpital Corentin Celton, Service de gériatrie, Assistance Publique-Hôpitaux de Paris, Issy-les-Moulineaux, France
| | - Jacques Fourgeaud
- Université de Paris, EHU 7328 PACT, Institut Imagine, Paris, France; Virology Department, AP-HP, Necker Enfants Malades Hospital, Paris, France
| | - Maxime Wack
- Hôpital Européen Georges Pompidou, Département d'Informatique Médicale, Biostatistiques et Santé Publique
| | - Sandrine Imbeaud
- INSERM, Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, Université de Paris and Sorbonne Université, Paris, France
| | | | - Darragh Duffy
- Translational Immunology Lab, Department of Immunology, Inserm U1223, Institut Pasteur, Paris
| | - James P Di Santo
- Innate Immunity Unit, Department of Immunology, Department of Immunology, Inserm U1223, Institut Pasteur, Paris; Inserm U1223, Paris, France
| | - Timothée Bruel
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France; CNRS UMR 3569, Paris, France; Vaccine Research Institute, Creteil, France
| | - Hélène Péré
- INSERM, Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, Université de Paris and Sorbonne Université, Paris, France
| | - David Veyer
- Hôpital Européen Georges Pompidou, Laboratoire de Virologie, Service de Microbiologie, Paris, France; INSERM, Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, Université de Paris and Sorbonne Université, Paris, France
| | - Olivier Schwartz
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France; CNRS UMR 3569, Paris, France; Vaccine Research Institute, Creteil, France.
| |
Collapse
|
211
|
Cedro-Tanda A, Gómez-Romero L, Alcaraz N, de Anda-Jauregui G, Peñaloza F, Moreno B, Escobar-Arrazola MA, Ramirez-Vega OA, Munguia-Garza P, Garcia-Cardenas F, Cisneros-Villanueva M, Moreno-Camacho JL, Rodriguez-Gallegos J, Luna-Ruiz Esparza MA, Fernández Rojas MA, Mendoza-Vargas A, Reyes-Grajeda JP, Campos-Romero A, Angulo O, Ruiz R, Sheinbaum-Pardo C, Sifuentes-Osornio J, Kershenobich D, Hidalgo-Miranda A, Herrera LA. The Evolutionary Landscape of SARS-CoV-2 Variant B.1.1.519 and Its Clinical Impact in Mexico City. Viruses 2021; 13:2182. [PMID: 34834987 PMCID: PMC8617872 DOI: 10.3390/v13112182] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 pandemic is one of the most concerning health problems around the globe. We reported the emergence of SARS-CoV-2 variant B.1.1.519 in Mexico City. We reported the effective reproduction number (Rt) of B.1.1.519 and presented evidence of its geographical origin based on phylogenetic analysis. We also studied its evolution via haplotype analysis and identified the most recurrent haplotypes. Finally, we studied the clinical impact of B.1.1.519. The B.1.1.519 variant was predominant between November 2020 and May 2021, reaching 90% of all cases sequenced in February 2021. It is characterized by three amino acid changes in the spike protein: T478K, P681H, and T732A. Its Rt varies between 0.5 and 2.9. Its geographical origin remain to be investigated. Patients infected with variant B.1.1.519 showed a highly significant adjusted odds ratio (aOR) increase of 1.85 over non-B.1.1.519 patients for developing a severe/critical outcome (p = 0.000296, 1.33-2.6 95% CI) and a 2.35-fold increase for hospitalization (p = 0.005, 1.32-4.34 95% CI). The continuous monitoring of this and other variants will be required to control the ongoing pandemic as it evolves.
Collapse
Affiliation(s)
- Alberto Cedro-Tanda
- Instituto Nacional de Medicina Genómica, INMEGEN, Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (A.C.-T.); (L.G.-R.); (N.A.); (G.d.A.-J.); (F.P.); (B.M.); (F.G.-C.); (M.C.-V.); (A.M.-V.); (J.P.R.-G.)
| | - Laura Gómez-Romero
- Instituto Nacional de Medicina Genómica, INMEGEN, Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (A.C.-T.); (L.G.-R.); (N.A.); (G.d.A.-J.); (F.P.); (B.M.); (F.G.-C.); (M.C.-V.); (A.M.-V.); (J.P.R.-G.)
| | - Nicolás Alcaraz
- Instituto Nacional de Medicina Genómica, INMEGEN, Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (A.C.-T.); (L.G.-R.); (N.A.); (G.d.A.-J.); (F.P.); (B.M.); (F.G.-C.); (M.C.-V.); (A.M.-V.); (J.P.R.-G.)
| | - Guillermo de Anda-Jauregui
- Instituto Nacional de Medicina Genómica, INMEGEN, Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (A.C.-T.); (L.G.-R.); (N.A.); (G.d.A.-J.); (F.P.); (B.M.); (F.G.-C.); (M.C.-V.); (A.M.-V.); (J.P.R.-G.)
- Cátedras CONACYT para Jóvenes Investigadores, CONACYT, Av. de los Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, Mexico City 03940, Mexico
| | - Fernando Peñaloza
- Instituto Nacional de Medicina Genómica, INMEGEN, Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (A.C.-T.); (L.G.-R.); (N.A.); (G.d.A.-J.); (F.P.); (B.M.); (F.G.-C.); (M.C.-V.); (A.M.-V.); (J.P.R.-G.)
| | - Bernardo Moreno
- Instituto Nacional de Medicina Genómica, INMEGEN, Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (A.C.-T.); (L.G.-R.); (N.A.); (G.d.A.-J.); (F.P.); (B.M.); (F.G.-C.); (M.C.-V.); (A.M.-V.); (J.P.R.-G.)
| | - Marco A. Escobar-Arrazola
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (M.A.E.-A.); (O.A.R.-V.); (P.M.-G.)
| | - Oscar A. Ramirez-Vega
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (M.A.E.-A.); (O.A.R.-V.); (P.M.-G.)
| | - Paulina Munguia-Garza
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (M.A.E.-A.); (O.A.R.-V.); (P.M.-G.)
| | - Francisco Garcia-Cardenas
- Instituto Nacional de Medicina Genómica, INMEGEN, Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (A.C.-T.); (L.G.-R.); (N.A.); (G.d.A.-J.); (F.P.); (B.M.); (F.G.-C.); (M.C.-V.); (A.M.-V.); (J.P.R.-G.)
| | - Mireya Cisneros-Villanueva
- Instituto Nacional de Medicina Genómica, INMEGEN, Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (A.C.-T.); (L.G.-R.); (N.A.); (G.d.A.-J.); (F.P.); (B.M.); (F.G.-C.); (M.C.-V.); (A.M.-V.); (J.P.R.-G.)
| | - Jose L. Moreno-Camacho
- Clinical Laboratory Division, Salud Digna, Culiacan, Sinaloa 80000, Mexico; (J.L.M.-C.); (J.R.-G.)
| | - Jorge Rodriguez-Gallegos
- Clinical Laboratory Division, Salud Digna, Culiacan, Sinaloa 80000, Mexico; (J.L.M.-C.); (J.R.-G.)
- Molecular Biology Laboratory, National Reference Center, Salud Digna, Tlalnepantla de Baz, Estado de Mexico 54075, Mexico
| | - Marco A. Luna-Ruiz Esparza
- Innovation and Research Department, Salud Digna, Culiacan, Sinaloa 80000, Mexico; (M.A.L.-R.E.); (M.A.F.R.); (A.C.-R.)
| | - Miguel A. Fernández Rojas
- Innovation and Research Department, Salud Digna, Culiacan, Sinaloa 80000, Mexico; (M.A.L.-R.E.); (M.A.F.R.); (A.C.-R.)
| | - Alfredo Mendoza-Vargas
- Instituto Nacional de Medicina Genómica, INMEGEN, Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (A.C.-T.); (L.G.-R.); (N.A.); (G.d.A.-J.); (F.P.); (B.M.); (F.G.-C.); (M.C.-V.); (A.M.-V.); (J.P.R.-G.)
| | - Juan Pablo Reyes-Grajeda
- Instituto Nacional de Medicina Genómica, INMEGEN, Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (A.C.-T.); (L.G.-R.); (N.A.); (G.d.A.-J.); (F.P.); (B.M.); (F.G.-C.); (M.C.-V.); (A.M.-V.); (J.P.R.-G.)
| | - Abraham Campos-Romero
- Innovation and Research Department, Salud Digna, Culiacan, Sinaloa 80000, Mexico; (M.A.L.-R.E.); (M.A.F.R.); (A.C.-R.)
| | - Ofelia Angulo
- Secretaría de Educación, Ciencia, Tecnología e Innovacion, Av Chapultepec 49, Colonia Centro, Cuauhtémoc, Mexico City 06010, Mexico; (O.A.); (R.R.)
| | - Rosaura Ruiz
- Secretaría de Educación, Ciencia, Tecnología e Innovacion, Av Chapultepec 49, Colonia Centro, Cuauhtémoc, Mexico City 06010, Mexico; (O.A.); (R.R.)
| | - Claudia Sheinbaum-Pardo
- Gobierno de la Ciudad de México, Antiguo Palacio del Ayuntamiento, Avenida Plaza de la Constitución 2, Colonia Centro, Mexico City 06010, Mexico;
| | - José Sifuentes-Osornio
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (J.S.-O.); (D.K.)
| | - David Kershenobich
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (J.S.-O.); (D.K.)
| | - Alfredo Hidalgo-Miranda
- Instituto Nacional de Medicina Genómica, INMEGEN, Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (A.C.-T.); (L.G.-R.); (N.A.); (G.d.A.-J.); (F.P.); (B.M.); (F.G.-C.); (M.C.-V.); (A.M.-V.); (J.P.R.-G.)
| | - Luis A. Herrera
- Instituto Nacional de Medicina Genómica, INMEGEN, Periferico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; (A.C.-T.); (L.G.-R.); (N.A.); (G.d.A.-J.); (F.P.); (B.M.); (F.G.-C.); (M.C.-V.); (A.M.-V.); (J.P.R.-G.)
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (M.A.E.-A.); (O.A.R.-V.); (P.M.-G.)
| |
Collapse
|
212
|
Van Goethem N, Serrien B, Vandromme M, Wyndham-Thomas C, Catteau L, Brondeel R, Klamer S, Meurisse M, Cuypers L, André E, Blot K, Van Oyen H. Conceptual causal framework to assess the effect of SARS-CoV-2 variants on COVID-19 disease severity among hospitalized patients. Arch Public Health 2021; 79:185. [PMID: 34696806 PMCID: PMC8543112 DOI: 10.1186/s13690-021-00709-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/02/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND SARS-CoV-2 strains evolve continuously and accumulate mutations in their genomes over the course of the pandemic. The severity of a SARS-CoV-2 infection could partly depend on these viral genetic characteristics. Here, we present a general conceptual framework that allows to study the effect of SARS-CoV-2 variants on COVID-19 disease severity among hospitalized patients. METHODS A causal model is defined and visualized using a Directed Acyclic Graph (DAG), in which assumptions on the relationship between (confounding) variables are made explicit. Various DAGs are presented to explore specific study design options and the risk for selection bias. Next, the data infrastructure specific to the COVID-19 surveillance in Belgium is described, along with its strengths and weaknesses for the study of clinical impact of variants. DISCUSSION A well-established framework that provides a complete view on COVID-19 disease severity among hospitalized patients by combining information from different sources on host factors, viral factors, and healthcare-related factors, will enable to assess the clinical impact of emerging SARS-CoV-2 variants and answer questions that will be raised in the future. The framework shows the complexity related to causal research, the corresponding data requirements, and it underlines important limitations, such as unmeasured confounders or selection bias, inherent to repurposing existing routine COVID-19 data registries. TRIAL REGISTRATION Each individual research project within the current conceptual framework will be prospectively registered in Open Science Framework (OSF identifier: https://doi.org/10.17605/OSF.IO/UEF29 ). OSF project created on 18 May 2021.
Collapse
Affiliation(s)
- Nina Van Goethem
- Scientific Directorate of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium.
- Department of Epidemiology and Biostatistics, Institut de recherche expérimentale et clinique, Faculty of Public Health, Université catholique de Louvain, Clos Chapelle-aux-champs 30, 1200, Woluwe-Saint-Lambert, Belgium.
| | - Ben Serrien
- Scientific Directorate of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Mathil Vandromme
- Scientific Directorate of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Chloé Wyndham-Thomas
- Scientific Directorate of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Lucy Catteau
- Scientific Directorate of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Ruben Brondeel
- Scientific Directorate of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Sofieke Klamer
- Scientific Directorate of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Marjan Meurisse
- Scientific Directorate of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Lize Cuypers
- Department of Laboratory Medicine, National Reference Centre for Respiratory Pathogens, University Hospitals Leuven, Herestraat 49, BE-3000, Leuven, Belgium
| | - Emmanuel André
- Department of Laboratory Medicine, National Reference Centre for Respiratory Pathogens, University Hospitals Leuven, Herestraat 49, BE-3000, Leuven, Belgium
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory Clinical Bacteriology and Mycology, Herestraat 49, box 1040, BE-3000, Leuven, Belgium
| | - Koen Blot
- Scientific Directorate of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Herman Van Oyen
- Scientific Directorate of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050, Brussels, Belgium
| |
Collapse
|
213
|
Munster VJ, Flagg M, Singh M, Yinda CK, Williamson BN, Feldmann F, Pérez-Pérez L, Schulz J, Brumbaugh B, Holbrook MG, Adney DR, Okumura A, Hanley PW, Smith BJ, Lovaglio J, Anzick SL, Martens C, van Doremalen N, Saturday G, de Wit E. Subtle differences in the pathogenicity of SARS-CoV-2 variants of concern B.1.1.7 and B.1.351 in rhesus macaques. SCIENCE ADVANCES 2021; 7:eabj3627. [PMID: 34678071 PMCID: PMC8535829 DOI: 10.1126/sciadv.abj3627] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/01/2021] [Indexed: 05/27/2023]
Abstract
The emergence of several SARS-CoV-2 variants has caused global concerns about increased transmissibility, increased pathogenicity, and decreased efficacy of medical countermeasures. Animal models can be used to assess phenotypical changes in the absence of confounding factors. Here, we compared variants of concern (VOC) B.1.1.7 and B.1.351 to a recent B.1 SARS-CoV-2 isolate containing the D614G spike substitution in the rhesus macaque model. B.1.1.7 behaved similarly to D614G with respect to clinical disease and replication in the respiratory tract. Inoculation with B.1.351 resulted in lower clinical scores, lower lung virus titers, and less severe lung lesions. In bronchoalveolar lavages, cytokines and chemokines were up-regulated on day 4 in animals inoculated with D614G and B.1.1.7 but not with B.1.351. In nasal samples, cytokines and chemokines were up-regulated only in the B.1.1.7-inoculated animals. Together, our study suggests that circulation under diverse evolutionary pressures favors transmissibility and immune evasion rather than increased pathogenicity.
Collapse
Affiliation(s)
- Vincent J. Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Meaghan Flagg
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Manmeet Singh
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Claude Kwe Yinda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Brandi N. Williamson
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lizzette Pérez-Pérez
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jonathan Schulz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Beniah Brumbaugh
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Myndi G. Holbrook
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Danielle R. Adney
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Atsushi Okumura
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Patrick W. Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Brian J. Smith
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Sarah L. Anzick
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Craig Martens
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
214
|
Ramesh S, Govindarajulu M, Parise RS, Neel L, Shankar T, Patel S, Lowery P, Smith F, Dhanasekaran M, Moore T. Emerging SARS-CoV-2 Variants: A Review of Its Mutations, Its Implications and Vaccine Efficacy. Vaccines (Basel) 2021; 9:1195. [PMID: 34696303 PMCID: PMC8537675 DOI: 10.3390/vaccines9101195] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/26/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022] Open
Abstract
The widespread increase in multiple severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants is causing a significant health concern in the United States and worldwide. These variants exhibit increased transmissibility, cause more severe disease, exhibit evasive immune properties, impair neutralization by antibodies from vaccinated individuals or convalescence sera, and reinfection. The Centers for Disease Control and Prevention (CDC) has classified SARS-CoV-2 variants into variants of interest, variants of concern, and variants of high consequence. Currently, four variants of concern (B.1.1.7, B.1.351, P.1, and B.1.617.2) and several variants of interests (B.1.526, B.1.525, and P.2) are characterized and are essential for close monitoring. In this review, we discuss the different SARS-CoV-2 variants, emphasizing variants of concern circulating the world and highlight the various mutations and how these mutations affect the characteristics of the virus. In addition, we discuss the most common vaccines and the various studies concerning the efficacy of these vaccines against different variants of concern.
Collapse
Affiliation(s)
- Sindhu Ramesh
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| | - Manoj Govindarajulu
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| | - Rachel S. Parise
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| | - Logan Neel
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| | - Tharanath Shankar
- Department of Internal Medicine, Ramaiah Medical College and Hospital, Bengaluru 560054, Karnataka, India;
| | - Shriya Patel
- Department of Neuroscience, Middlebury College, Middlebury, VT 05753, USA;
| | - Payton Lowery
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| | - Forrest Smith
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| | - Timothy Moore
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| |
Collapse
|
215
|
Sahajpal NS, Mondal AK, Njau A, Petty Z, Chen J, Ananth S, Ahluwalia P, Williams C, Ross TM, Chaubey A, DeSantis G, Schroth GP, Bahl J, Kolhe R. High-Throughput Next-Generation Sequencing Respiratory Viral Panel: A Diagnostic and Epidemiologic Tool for SARS-CoV-2 and Other Viruses. Viruses 2021; 13:v13102063. [PMID: 34696495 PMCID: PMC8540770 DOI: 10.3390/v13102063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022] Open
Abstract
Two serious public health challenges have emerged in the current COVID-19 pandemic namely, deficits in SARS-CoV-2 variant monitoring and neglect of other co-circulating respiratory viruses. Additionally, accurate assessment of the evolution, extent, and dynamics of the outbreak is required to understand the transmission of the virus. To address these challenges, we evaluated 533 samples using a high-throughput next-generation sequencing (NGS) respiratory viral panel (RVP) that includes 40 viral pathogens. The performance metrics revealed a PPA, NPA, and accuracy of 95.98%, 85.96%, and 94.4%, respectively. The clade for pangolin lineage B that contains certain distant variants, including P4715L in ORF1ab, Q57H in ORF3a, and S84L in ORF8 covarying with the D614G spike protein mutation, were the most prevalent early in the pandemic in Georgia, USA. The isolates from the same county formed paraphyletic groups, indicating virus transmission between counties. The study demonstrates the clinical and public health utility of the NGS-RVP to identify novel variants that can provide actionable information to prevent or mitigate emerging viral threats and models that provide insights into viral transmission patterns and predict transmission/resurgence of regional outbreaks as well as providing critical information on co-circulating respiratory viruses that might be independent factors contributing to the global disease burden.
Collapse
Affiliation(s)
- Nikhil S. Sahajpal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.S.); (A.K.M.); (S.A.); (P.A.); (C.W.); (A.C.)
| | - Ashis K. Mondal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.S.); (A.K.M.); (S.A.); (P.A.); (C.W.); (A.C.)
| | - Allan Njau
- Department of Pathology, Aga Khan University Hospital, Nairobi 30270-00100, Kenya;
| | - Zachary Petty
- Center for Ecology of Infectious Diseases, Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA; (Z.P.); (J.C.); (J.B.)
| | - Jiani Chen
- Center for Ecology of Infectious Diseases, Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA; (Z.P.); (J.C.); (J.B.)
| | - Sudha Ananth
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.S.); (A.K.M.); (S.A.); (P.A.); (C.W.); (A.C.)
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.S.); (A.K.M.); (S.A.); (P.A.); (C.W.); (A.C.)
| | - Colin Williams
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.S.); (A.K.M.); (S.A.); (P.A.); (C.W.); (A.C.)
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA;
| | - Alka Chaubey
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.S.); (A.K.M.); (S.A.); (P.A.); (C.W.); (A.C.)
- Bioano Genomics Inc., San Diego, CA 92121, USA
| | - Grace DeSantis
- Research and Development, Illumina Inc., San Diego, CA 92122, USA; (G.D.); (G.P.S.)
| | - Gary P. Schroth
- Research and Development, Illumina Inc., San Diego, CA 92122, USA; (G.D.); (G.P.S.)
| | - Justin Bahl
- Center for Ecology of Infectious Diseases, Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA; (Z.P.); (J.C.); (J.B.)
- Department of Infectious Disease, University of Georgia, Athens, GA 30602, USA
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA 30602, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.S.); (A.K.M.); (S.A.); (P.A.); (C.W.); (A.C.)
- Correspondence: ; Tel.: +1-(706)-721-2771; Fax: +1-(706)-434-6053
| |
Collapse
|
216
|
Veneti L, Seppälä E, Larsdatter Storm M, Valcarcel Salamanca B, Alnes Buanes E, Aasand N, Naseer U, Bragstad K, Hungnes O, Bøås H, Kvåle R, Golestani K, Feruglio S, Vold L, Nygård K, Whittaker R. Increased risk of hospitalisation and intensive care admission associated with reported cases of SARS-CoV-2 variants B.1.1.7 and B.1.351 in Norway, December 2020 -May 2021. PLoS One 2021; 16:e0258513. [PMID: 34634066 PMCID: PMC8504717 DOI: 10.1371/journal.pone.0258513] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Since their emergence, SARS-CoV-2 variants of concern (VOC) B.1.1.7 and B.1.351 have spread worldwide. We estimated the risk of hospitalisation and admission to an intensive care unit (ICU) for infections with B.1.1.7 and B.1.351 in Norway, compared to infections with non-VOC. MATERIALS AND METHODS Using linked individual-level data from national registries, we conducted a cohort study on laboratory-confirmed cases of SARS-CoV-2 in Norway diagnosed between 28 December 2020 and 2 May 2021. Variants were identified based on whole genome sequencing, partial sequencing by Sanger sequencing or PCR screening for selected targets. The outcome was hospitalisation or ICU admission. We calculated adjusted risk ratios (aRR) with 95% confidence intervals (CIs) using multivariable binomial regression to examine the association between SARS-CoV-2 variants B.1.1.7 and B.1.351 with i) hospital admission and ii) ICU admission compared to non-VOC. RESULTS We included 23,169 cases of B.1.1.7, 548 B.1.351 and 4,584 non-VOC. Overall, 1,017 cases were hospitalised (3.6%) and 206 admitted to ICU (0.7%). B.1.1.7 was associated with a 1.9-fold increased risk of hospitalisation (aRR 95%CI 1.6-2.3) and a 1.8-fold increased risk of ICU admission (aRR 95%CI 1.2-2.8) compared to non-VOC. Among hospitalised cases, no difference was found in the risk of ICU admission between B.1.1.7 and non-VOC. B.1.351 was associated with a 2.4-fold increased risk of hospitalisation (aRR 95%CI 1.7-3.3) and a 2.7-fold increased risk of ICU admission (aRR 95%CI 1.2-6.5) compared to non-VOC. DISCUSSION Our findings add to the growing evidence of a higher risk of severe disease among persons infected with B.1.1.7 or B.1.351. This highlights the importance of prevention and control measures to reduce transmission of these VOC in society, particularly ongoing vaccination programmes, and preparedness plans for hospital surge capacity.
Collapse
Affiliation(s)
- Lamprini Veneti
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Elina Seppälä
- Department of Infection Control and Vaccines, Norwegian Institute of Public Health, Oslo, Norway
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | | | | | - Eirik Alnes Buanes
- Department of Anaesthesia and Intensive Care, Haukeland University Hospital, Bergen, Norway
- Norwegian Intensive Care and Pandemic Registry, Haukeland University Hospital, Bergen, Norway
| | - Nina Aasand
- Department of Infectious Disease Registries, Norwegian Institute of Public Health, Oslo, Norway
| | - Umaer Naseer
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Karoline Bragstad
- Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Olav Hungnes
- Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Håkon Bøås
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Reidar Kvåle
- Department of Anaesthesia and Intensive Care, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Karan Golestani
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Siri Feruglio
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Line Vold
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Karin Nygård
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Robert Whittaker
- Department of Infection Control and Vaccines, Norwegian Institute of Public Health, Oslo, Norway
- * E-mail:
| |
Collapse
|
217
|
Hamelin DJ, Fournelle D, Grenier JC, Schockaert J, Kovalchik KA, Kubiniok P, Mostefai F, Duquette JD, Saab F, Sirois I, Smith MA, Pattijn S, Soudeyns H, Decaluwe H, Hussin J, Caron E. The mutational landscape of SARS-CoV-2 variants diversifies T cell targets in an HLA-supertype-dependent manner. Cell Syst 2021; 13:143-157.e3. [PMID: 34637888 PMCID: PMC8492600 DOI: 10.1016/j.cels.2021.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/03/2021] [Accepted: 09/23/2021] [Indexed: 02/09/2023]
Abstract
The rapid, global dispersion of SARS-CoV-2 has led to the emergence of a diverse range of variants. Here, we describe how the mutational landscape of SARS-CoV-2 has shaped HLA-restricted T cell immunity at the population level during the first year of the pandemic. We analyzed a total of 330,246 high-quality SARS-CoV-2 genome assemblies, sampled across 143 countries and all major continents from December 2019 to December 2020 before mass vaccination or the rise of the Delta variant. We observed that proline residues are preferentially removed from the proteome of prevalent mutants, leading to a predicted global loss of SARS-CoV-2 T cell epitopes in individuals expressing HLA-B alleles of the B7 supertype family; this is largely driven by a dominant C-to-U mutation type at the RNA level. These results indicate that B7-supertype-associated epitopes, including the most immunodominant ones, were more likely to escape CD8+ T cell immunosurveillance during the first year of the pandemic.
Collapse
Affiliation(s)
| | - Dominique Fournelle
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Jean-Christophe Grenier
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Jana Schockaert
- ImmunXperts, a Nexelis Group Company, 6041 Gosselies, Belgium
| | | | - Peter Kubiniok
- CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Fatima Mostefai
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | | | - Frederic Saab
- CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | | | - Martin A Smith
- CHU Sainte-Justine Research Center, Montréal, QC, Canada; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Sofie Pattijn
- ImmunXperts, a Nexelis Group Company, 6041 Gosselies, Belgium
| | - Hugo Soudeyns
- CHU Sainte-Justine Research Center, Montréal, QC, Canada; Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada; Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Hélène Decaluwe
- CHU Sainte-Justine Research Center, Montréal, QC, Canada; Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Julie Hussin
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Montréal, QC, Canada; Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
218
|
Rajah MM, Hubert M, Bishop E, Saunders N, Robinot R, Grzelak L, Planas D, Dufloo J, Gellenoncourt S, Bongers A, Zivaljic M, Planchais C, Guivel-Benhassine F, Porrot F, Mouquet H, Chakrabarti LA, Buchrieser J, Schwartz O. SARS-CoV-2 Alpha, Beta, and Delta variants display enhanced Spike-mediated syncytia formation. EMBO J 2021; 40:e108944. [PMID: 34601723 PMCID: PMC8646911 DOI: 10.15252/embj.2021108944] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/23/2022] Open
Abstract
Severe COVID‐19 is characterized by lung abnormalities, including the presence of syncytial pneumocytes. Syncytia form when SARS‐CoV‐2 spike protein expressed on the surface of infected cells interacts with the ACE2 receptor on neighboring cells. The syncytia forming potential of spike variant proteins remain poorly characterized. Here, we first assessed Alpha (B.1.1.7) and Beta (B.1.351) spread and fusion in cell cultures, compared with the ancestral D614G strain. Alpha and Beta replicated similarly to D614G strain in Vero, Caco‐2, Calu‐3, and primary airway cells. However, Alpha and Beta formed larger and more numerous syncytia. Variant spike proteins displayed higher ACE2 affinity compared with D614G. Alpha, Beta, and D614G fusion was similarly inhibited by interferon‐induced transmembrane proteins (IFITMs). Individual mutations present in Alpha and Beta spikes modified fusogenicity, binding to ACE2 or recognition by monoclonal antibodies. We further show that Delta spike also triggers faster fusion relative to D614G. Thus, SARS‐CoV‐2 emerging variants display enhanced syncytia formation.
Collapse
Affiliation(s)
- Maaran Michael Rajah
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Mathieu Hubert
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France.,Vaccine Research Institute, Creteil, France
| | - Elodie Bishop
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France.,Sorbonne Université, Paris, France
| | - Nell Saunders
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
| | - Remy Robinot
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
| | - Ludivine Grzelak
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Delphine Planas
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France.,Vaccine Research Institute, Creteil, France
| | - Jérémy Dufloo
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Stacy Gellenoncourt
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Alice Bongers
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Marija Zivaljic
- Integrative Neurobiology of Cholinergic Systems, Department of Neuroscience, Institut Pasteur, CNRS UMR 3571, Paris, France.,Sorbonne Université, ED3C "Brain, Cognition, Behavior", Paris, France
| | - Cyril Planchais
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, INSERM U1222, Paris, France
| | | | - Françoise Porrot
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
| | - Hugo Mouquet
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, INSERM U1222, Paris, France
| | - Lisa A Chakrabarti
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
| | - Julian Buchrieser
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
| | - Olivier Schwartz
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
219
|
Li Y, Wang X, Campbell H, Nair H. The association of community mobility with the time-varying reproduction number (R) of SARS-CoV-2: a modelling study across 330 local UK authorities. Lancet Digit Health 2021; 3:e676-e683. [PMID: 34479825 PMCID: PMC8452268 DOI: 10.1016/s2589-7500(21)00144-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Community mobility data have been used to assess adherence to non-pharmaceutical interventions and its impact on SARS-CoV-2 transmission. We assessed the association between location-specific community mobility and the reproduction number (R) of SARS-CoV-2 across UK local authorities. METHODS In this modelling study, we linked data on community mobility from Google with data on R from 330 UK local authorities, for the period June 1, 2020, to Feb 13, 2021. Six mobility metrics are available in the Google community mobility dataset: visits to retail and recreation places, visits to grocery and pharmacy stores, visits to transit stations, visits to parks, visits to workplaces, and length of stay in residential places. For each local authority, we modelled the weekly change in R (the R ratio) per a rescaled weekly percentage change in each location-specific mobility metric relative to a pre-pandemic baseline period (Jan 3-Feb 6, 2020), with results synthesised across local authorities using a random-effects meta-analysis. FINDINGS On a weekly basis, increased visits to retail and recreation places were associated with a substantial increase in R (R ratio 1·053 [99·2% CI 1·041-1·065] per 15% weekly increase compared with baseline visits) as were increased visits to workplaces (R ratio 1·060 [1·046-1·074] per 10% increase compared with baseline visits). By comparison, increased visits to grocery and pharmacy stores were associated with a small but still statistically significant increase in R (R ratio 1·011 [1·005-1·017] per 5% weekly increase compared with baseline visits). Increased visits to parks were associated with a decreased R (R ratio 0·972 [0·965-0·980]), as were longer stays at residential areas (R ratio 0·952 [0·928-0·976]). Increased visits to transit stations were not associated with R nationally, but were associated with a substantial increase in R in cities. An increasing trend was observed for the first 6 weeks of 2021 in the effect of visits to retail and recreation places and workplaces on R. INTERPRETATION Increased visits to retail and recreation places, workplaces, and transit stations in cities are important drivers of increased SARS-CoV-2 transmission; the increasing trend in the effects of these drivers in the first 6 weeks of 2021 was possibly associated with the emerging alpha (B.1.1.7) variant. These findings provide important evidence for the management of current and future mobility restrictions. FUNDING Wellcome Trust and Data-Driven Innovation initiative.
Collapse
Affiliation(s)
- You Li
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK; School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xin Wang
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK; School of Public Health, Nanjing Medical University, Nanjing, China
| | - Harry Campbell
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Harish Nair
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
220
|
Whittaker R, Kristofferson AB, Seppälä E, Valcarcel Salamanca B, Veneti L, Storm ML, Bøås H, Aasand N, Naseer U, Bragstad K, Kvåle R, Golestani K, Feruglio S, Vold L, Nygård K, Buanes EA. Trajectories of hospitalisation for patients infected with SARS-CoV-2 variant B.1.1.7 in Norway, December 2020 - April 2021. J Infect 2021; 83:e14-e17. [PMID: 34329674 PMCID: PMC8316639 DOI: 10.1016/j.jinf.2021.07.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Robert Whittaker
- Norwegian Institute of Public Health: Folkehelseinstituttet NORWAY.
| | | | - Elina Seppälä
- Norwegian Institute of Public Health: Folkehelseinstituttet NORWAY
| | | | - Lamprini Veneti
- Norwegian Institute of Public Health: Folkehelseinstituttet NORWAY
| | | | - Håkon Bøås
- Norwegian Institute of Public Health: Folkehelseinstituttet NORWAY
| | - Nina Aasand
- Norwegian Institute of Public Health: Folkehelseinstituttet NORWAY
| | - Umaer Naseer
- Norwegian Institute of Public Health: Folkehelseinstituttet NORWAY
| | | | - Reidar Kvåle
- Haukeland University Hospital: Haukeland universitetssjukehus NORWAY
| | - Karan Golestani
- Norwegian Institute of Public Health: Folkehelseinstituttet NORWAY
| | - Siri Feruglio
- Norwegian Institute of Public Health: Folkehelseinstituttet NORWAY
| | - Line Vold
- Norwegian Institute of Public Health: Folkehelseinstituttet NORWAY
| | - Karin Nygård
- Norwegian Institute of Public Health: Folkehelseinstituttet NORWAY
| | | |
Collapse
|
221
|
Khatib AN, McGuinness S, Wilder-Smith A. COVID-19 transmission and the safety of air travel during the pandemic: a scoping review. Curr Opin Infect Dis 2021; 34:415-422. [PMID: 34524196 DOI: 10.1097/qco.0000000000000771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW To examine the literature assessing safety of air travel relating to coronavirus disease 2019 (COVID-19) transmission from January 2020 to May 2021. The COVID-19 pandemic has had an unprecedented impact on air travel and global mobility, and various efforts are being implemented to determine a safe way forward. As the pandemic evolves, so do the challenges that force various stakeholders, including the aviation industry, health authorities, and governments, to reassess and adapt their practices to ensure the safety of travellers. RECENT FINDINGS The literature was reviewed for multiple aspects of air travel safety during the COVID-19 pandemic. Recurring themes that surfaced included the pivotal role of commercial air travel in the geographic spread of COVID-19, the efficacy of travel restrictions and quarantines, inflight transmission risk and the role of preventive measures, the utility of pre and post flight testing, the development of effective vaccines and subsequent challenges of vaccine passports, and the ongoing threat of novel highly transmissible variants. SUMMARY Much uncertainty lies ahead within the domains of these findings, and ongoing research, discourse and review will be necessary to navigate and determine the future direction and safety of air travel. Recovery will be slow, necessitating innovative, multipronged and collaborative solutions.
Collapse
Affiliation(s)
- Aisha N Khatib
- Department of Family & Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sarah McGuinness
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Alfred Health, Melbourne, Victoria, Australia
| | - Annelies Wilder-Smith
- Institute of Preventive and Social Medicine, University of Bern, Switzerland
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
222
|
Olsen RJ, Christensen PA, Long SW, Subedi S, Hodjat P, Olson R, Nguyen M, Davis JJ, Yerramilli P, Saavedra MO, Pruitt L, Reppond K, Shyer MN, Cambric J, Gadd R, Thakur RM, Batajoo A, Finkelstein IJ, Gollihar J, Musser JM. Trajectory of Growth of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variants in Houston, Texas, January through May 2021, Based on 12,476 Genome Sequences. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1754-1773. [PMID: 34303698 PMCID: PMC8299152 DOI: 10.1016/j.ajpath.2021.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022]
Abstract
Certain genetic variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of substantial concern because they may be more transmissible or detrimentally alter the pandemic course and disease features in individual patients. SARS-CoV-2 genome sequences from 12,476 patients in the Houston Methodist health care system diagnosed from January 1 through May 31, 2021 are reported here. Prevalence of the B.1.1.7 (Alpha) variant increased rapidly and caused 63% to 90% of new cases in the latter half of May. Eleven B.1.1.7 genomes had an E484K replacement in spike protein, a change also identified in other SARS-CoV-2 lineages. Compared with non-B.1.1.7-infected patients, individuals with B.1.1.7 had a significantly lower cycle threshold (a proxy for higher virus load) and significantly higher hospitalization rate. Other variants [eg, B.1.429 and B.1.427 (Epsilon), P.1 (Gamma), P.2 (Zeta), and R.1] also increased rapidly, although the magnitude was less than that in B.1.1.7. Twenty-two patients infected with B.1.617.1 (Kappa) or B.1.617.2 (Delta) variants had a high rate of hospitalization. Breakthrough cases (n = 207) in fully vaccinated patients were caused by a heterogeneous array of virus genotypes, including many not currently designated variants of interest or concern. In the aggregate, this study delineates the trajectory of SARS-CoV-2 variants circulating in a major metropolitan area, documents B.1.1.7 as the major cause of new cases in Houston, TX, and heralds the arrival of B.1.617 variants in the metroplex.
Collapse
Affiliation(s)
- Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas; Departments of Pathology and Laboratory Medicine, and Microbiology and Immunology, Weill Cornell Medical College, New York, New York
| | - Paul A Christensen
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - S Wesley Long
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas; Departments of Pathology and Laboratory Medicine, and Microbiology and Immunology, Weill Cornell Medical College, New York, New York
| | - Sishir Subedi
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Parsa Hodjat
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Robert Olson
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois; Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, Illinois
| | - Marcus Nguyen
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois; Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, Illinois
| | - James J Davis
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois; Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, Illinois
| | - Prasanti Yerramilli
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Matthew O Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Layne Pruitt
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Kristina Reppond
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Madison N Shyer
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Jessica Cambric
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Ryan Gadd
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Rashi M Thakur
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Akanksha Batajoo
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas
| | - Ilya J Finkelstein
- Department of Molecular Biosciences and Institute of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Jimmy Gollihar
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas; Combat Capabilities Development Command (CCDC) Army Research Laboratory-South, University of Texas, Austin, Texas
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas; Departments of Pathology and Laboratory Medicine, and Microbiology and Immunology, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
223
|
Dao TL, Hoang VT, Nguyen NN, Delerce J, Chaudet H, Levasseur A, Lagier JC, Raoult D, Colson P, Gautret P. Clinical outcomes in COVID-19 patients infected with different SARS-CoV-2 variants in Marseille, France. Clin Microbiol Infect 2021; 27:1516.e1-1516.e6. [PMID: 34044152 PMCID: PMC8142822 DOI: 10.1016/j.cmi.2021.05.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVES To compare the clinical and epidemiological aspects associated with different predominant lineages circulating in Marseille from March 2020 to January 2021. METHODS In this single-centre retrospective cohort study, characteristics of patients infected with four different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants were documented from medical files. The outcome was the occurrence of clinical failure, defined as hospitalization (for outpatients), transfer to the intensive care unit (inpatients) and death (all). RESULTS A total of 254 patients were infected with clade 20A (20AS), 85 with Marseille-1 (M1V), 190 with Marseille-4 (M4V) and 211 with N501Y (N501YV) variants. 20AS presented a bell-shaped epidemiological curve and nearly disappeared around May 2020. M1V reached a very weak peak, then disappeared after six weeks. M4V appeared in July presented an atypical wave form for 7 months. N501YV has only recently appeared. Compared with 20AS, patients infected with M1V were less likely to report dyspnoea (adjusted odds ratio (OR) 0.50, p 0.04), rhinitis (aOR 0.57, p 0.04) and to be hospitalized (aOR 0.22, p 0.002). Patients infected with M4V were more likely to report fever than those with 20AS and M1V (aOR 2.49, p < 0.0001 and aOR 2.30, p 0.007, respectively) and to be hospitalized than those with M1V (aOR 4.81, p 0.003). Patients infected with N501YV reported lower rate of rhinitis (aOR 0.50, p 0.001) and anosmia (aOR 0.57, p 0.02), compared with those infected with 20AS. A lower rate of hospitalization was associated with N501YV infection compared with 20AS and M4V (aOR 0.33, p < 0.0001 and aOR 0.27, p < 0.0001, respectively). CONCLUSIONS The four lineages have presentations that differ from one another, epidemiologically and clinically. This supports SARS-CoV-2 genomic surveillance through next-generation sequencing.
Collapse
Affiliation(s)
- Thi Loi Dao
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; Institut Hospitalo-Universitaire-Méditerranée Infection, Marseille, France; Thai Binh University of Medicine and Pharmacy, Thai Binh, Viet nam
| | - Van Thuan Hoang
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; Institut Hospitalo-Universitaire-Méditerranée Infection, Marseille, France; Thai Binh University of Medicine and Pharmacy, Thai Binh, Viet nam
| | - Nhu Ngoc Nguyen
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; Institut Hospitalo-Universitaire-Méditerranée Infection, Marseille, France
| | - Jérémy Delerce
- Institut Hospitalo-Universitaire-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Hervé Chaudet
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; Institut Hospitalo-Universitaire-Méditerranée Infection, Marseille, France
| | - Anthony Levasseur
- Institut Hospitalo-Universitaire-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Jean Christophe Lagier
- Institut Hospitalo-Universitaire-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Didier Raoult
- Institut Hospitalo-Universitaire-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Philippe Colson
- Institut Hospitalo-Universitaire-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Philippe Gautret
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; Institut Hospitalo-Universitaire-Méditerranée Infection, Marseille, France.
| |
Collapse
|
224
|
Altered demographic profile of hospitalizations during the second COVID-19 wave in Amazonas, Brazil. LANCET REGIONAL HEALTH. AMERICAS 2021; 2:100064. [PMID: 34522912 PMCID: PMC8431963 DOI: 10.1016/j.lana.2021.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 11/21/2022]
|
225
|
Wang Y, Chen R, Hu F, Lan Y, Yang Z, Zhan C, Shi J, Deng X, Jiang M, Zhong S, Liao B, Deng K, Tang J, Guo L, Jiang M, Fan Q, Li M, Liu J, Shi Y, Deng X, Xiao X, Kang M, Li Y, Guan W, Li Y, Li S, Li F, Zhong N, Tang X. Transmission, viral kinetics and clinical characteristics of the emergent SARS-CoV-2 Delta VOC in Guangzhou, China. EClinicalMedicine 2021; 40:101129. [PMID: 34541481 PMCID: PMC8435265 DOI: 10.1016/j.eclinm.2021.101129] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND A novel variant of SARS-CoV-2, the Delta variant of concern (VOC, also known as lineage B.1.617.2), is fast becoming the dominant strain globally. We reported the epidemiological, viral, and clinical characteristics of hospitalized patients infected with the Delta VOC during the local outbreak in Guangzhou, China. METHODS We extracted the epidemiological and clinical information pertaining to the 159 cases infected with the Delta VOC across seven transmission generations between May 21 and June 18, 2021. The whole chain of the Delta VOC transmission was described. Kinetics of viral load and clinical characteristics were compared with a cohort of wild-type infection in 2020 admitted to the Guangzhou Eighth People's Hospital. FINDINGS There were four transmission generations within the first ten days. The Delta VOC yielded a significantly shorter incubation period (4.0 vs. 6.0 days), higher viral load (20.6 vs. 34.0, cycle threshold of the ORF1a/b gene), and a longer duration of viral shedding in pharyngeal swab samples (14.0 vs. 8.0 days) compared with the wild-type strain. In cases with critical illness, the proportion of patients over the age of 60 was higher in the Delta VOC group than in the wild-type strain (100.0% vs. 69.2%, p = 0.03). The Delta VOC had a higher risk than wild-type infection in deterioration to critical status (hazards ratio 2.98 [95%CI 1.29-6.86]; p = 0.01). INTERPRETATION Infection with the Delta VOC is characterized by markedly increased transmissibility, viral loads and risk of disease progression compared with the wild-type strain, calling for more intensive prevention and control measures to contain future outbreaks. FUNDING National Grand Program, National Natural Science Foundation of China, Guangdong Provincial Department of Science and Technology, Guangzhou Laboratory.
Collapse
Affiliation(s)
- Yaping Wang
- Guangzhou Eighth People's Hospital , Guangzhou Medical University, Guangzhou, 510060, China
| | - Ruchong Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Laboratory, Bio-Island, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
- Department of Allergy and Clinical Immunology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Fengyu Hu
- Guangzhou Eighth People's Hospital , Guangzhou Medical University, Guangzhou, 510060, China
| | - Yun Lan
- Guangzhou Eighth People's Hospital , Guangzhou Medical University, Guangzhou, 510060, China
| | - Zhaowei Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Laboratory, Bio-Island, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
- Department of Allergy and Clinical Immunology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Chen Zhan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Laboratory, Bio-Island, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
- Department of Allergy and Clinical Immunology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jingrong Shi
- Guangzhou Eighth People's Hospital , Guangzhou Medical University, Guangzhou, 510060, China
| | - Xizi Deng
- Guangzhou Eighth People's Hospital , Guangzhou Medical University, Guangzhou, 510060, China
| | - Mei Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Laboratory, Bio-Island, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Shuxin Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Laboratory, Bio-Island, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Baolin Liao
- Guangzhou Eighth People's Hospital , Guangzhou Medical University, Guangzhou, 510060, China
| | - Kai Deng
- Guangzhou Eighth People's Hospital , Guangzhou Medical University, Guangzhou, 510060, China
| | - Jingyan Tang
- Guangzhou Eighth People's Hospital , Guangzhou Medical University, Guangzhou, 510060, China
| | - Liliangzi Guo
- Guangzhou Eighth People's Hospital , Guangzhou Medical University, Guangzhou, 510060, China
| | - Mengling Jiang
- Guangzhou Eighth People's Hospital , Guangzhou Medical University, Guangzhou, 510060, China
| | - Qinghong Fan
- Guangzhou Eighth People's Hospital , Guangzhou Medical University, Guangzhou, 510060, China
| | - Meiyu Li
- Guangzhou Eighth People's Hospital , Guangzhou Medical University, Guangzhou, 510060, China
| | - Jinxin Liu
- Guangzhou Eighth People's Hospital , Guangzhou Medical University, Guangzhou, 510060, China
| | - Yaling Shi
- Guangzhou Eighth People's Hospital , Guangzhou Medical University, Guangzhou, 510060, China
| | - Xilong Deng
- Guangzhou Eighth People's Hospital , Guangzhou Medical University, Guangzhou, 510060, China
| | - Xincai Xiao
- Guangzhou Chest Hospital, Guangzhou Medical University, Guangzhou 510095, China
| | - Min Kang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Yan Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Weijie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Laboratory, Bio-Island, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yimin Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Laboratory, Bio-Island, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Shiyue Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Laboratory, Bio-Island, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Feng Li
- Guangzhou Eighth People's Hospital , Guangzhou Medical University, Guangzhou, 510060, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Laboratory, Bio-Island, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
- Guangzhou Laboratory, Bio-Island, Guangzhou 510320, China
| | - Xiaoping Tang
- Guangzhou Eighth People's Hospital , Guangzhou Medical University, Guangzhou, 510060, China
- Guangzhou Laboratory, Bio-Island, Guangzhou 510320, China
| |
Collapse
|
226
|
Dyson L, Hill EM, Moore S, Curran-Sebastian J, Tildesley MJ, Lythgoe KA, House T, Pellis L, Keeling MJ. Possible future waves of SARS-CoV-2 infection generated by variants of concern with a range of characteristics. Nat Commun 2021; 12:5730. [PMID: 34593807 PMCID: PMC8484271 DOI: 10.1038/s41467-021-25915-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/08/2021] [Indexed: 11/09/2022] Open
Abstract
Viral reproduction of SARS-CoV-2 provides opportunities for the acquisition of advantageous mutations, altering viral transmissibility, disease severity, and/or allowing escape from natural or vaccine-derived immunity. We use three mathematical models: a parsimonious deterministic model with homogeneous mixing; an age-structured model; and a stochastic importation model to investigate the effect of potential variants of concern (VOCs). Calibrating to the situation in England in May 2021, we find epidemiological trajectories for putative VOCs are wide-ranging and dependent on their transmissibility, immune escape capability, and the introduction timing of a postulated VOC-targeted vaccine. We demonstrate that a VOC with a substantial transmission advantage over resident variants, or with immune escape properties, can generate a wave of infections and hospitalisations comparable to the winter 2020-2021 wave. Moreover, a variant that is less transmissible, but shows partial immune-escape could provoke a wave of infection that would not be revealed until control measures are further relaxed.
Collapse
Affiliation(s)
- Louise Dyson
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom.
- Joint Universities Pandemic and Epidemiological Research, .
| | - Edward M Hill
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Joint Universities Pandemic and Epidemiological Research
| | - Sam Moore
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Joint Universities Pandemic and Epidemiological Research
| | - Jacob Curran-Sebastian
- Joint Universities Pandemic and Epidemiological Research
- Department of Mathematics, University of Manchester, Manchester, United Kingdom
| | - Michael J Tildesley
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Joint Universities Pandemic and Epidemiological Research
| | - Katrina A Lythgoe
- Big Data Institute, Old Road Campus, University of Oxford, Oxford, United Kingdom
| | - Thomas House
- Joint Universities Pandemic and Epidemiological Research
- Department of Mathematics, University of Manchester, Manchester, United Kingdom
- IBM Research, Hartree Centre, Daresbury, United Kingdom
- The Alan Turing Institute for Data Science and Artificial Intelligence, London, United Kingdom
| | - Lorenzo Pellis
- Joint Universities Pandemic and Epidemiological Research
- Department of Mathematics, University of Manchester, Manchester, United Kingdom
- The Alan Turing Institute for Data Science and Artificial Intelligence, London, United Kingdom
| | - Matt J Keeling
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Joint Universities Pandemic and Epidemiological Research
| |
Collapse
|
227
|
van Dorp CH, Goldberg EE, Hengartner N, Ke R, Romero-Severson EO. Estimating the strength of selection for new SARS-CoV-2 variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.03.29.21254233. [PMID: 33821289 PMCID: PMC8020992 DOI: 10.1101/2021.03.29.21254233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Controlling the SARS-CoV-2 pandemic becomes increasingly challenging as the virus adapts to human hosts through the continual emergence of more transmissible variants. Simply observing that a variant is increasing in frequency is relatively straightforward, but more sophisticated methodology is needed to determine whether a new variant is a global threat and the magnitude of its selective advantage. We present three methods for quantifying the strength of selection for new and emerging variants of SARS-CoV-2 relative to the background of contemporaneous variants. These methods range from a detailed model of dynamics within one country to a broad analysis across all countries, and they include alternative explanations such as migration and drift. We find evidence for strong selection favoring the D614G spike mutation and B.1.1.7 (Alpha), weaker selection favoring B.1.351 (Beta), and no advantage of R.1 after it spreads beyond Japan. Cutting back data to earlier time horizons reveals large uncertainty very soon after emergence, but that estimates of selection stabilize after several weeks. Our results also show substantial heterogeneity among countries, demonstrating the need for a truly global perspective on the molecular epidemiology of SARS-CoV-2.
Collapse
Affiliation(s)
- Christiaan H. van Dorp
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos NM, USA
| | - Emma E. Goldberg
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos NM, USA
- New Mexico Consortium, Los Alamos NM, USA
| | - Nick Hengartner
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos NM, USA
- New Mexico Consortium, Los Alamos NM, USA
| | - Ruian Ke
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos NM, USA
- New Mexico Consortium, Los Alamos NM, USA
| | - Ethan O. Romero-Severson
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos NM, USA
- New Mexico Consortium, Los Alamos NM, USA
| |
Collapse
|
228
|
Thye AYK, Law JWF, Pusparajah P, Letchumanan V, Chan KG, Lee LH. Emerging SARS-CoV-2 Variants of Concern (VOCs): An Impending Global Crisis. Biomedicines 2021; 9:1303. [PMID: 34680420 PMCID: PMC8533361 DOI: 10.3390/biomedicines9101303] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/18/2021] [Indexed: 12/12/2022] Open
Abstract
The worldwide battle against the SARS-CoV-2 virus rages on, with millions infected and many innocent lives lost. The causative organism, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a beta coronavirus that belongs to the Coronaviridae family. Many clinically significant variants have emerged, as the virus's genome is prone to various mutations, leading to antigenic drift and resulting in evasion of host immune recognition. The current variants of concern (VOCs) include B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617/B.1.617.2 (Delta), and P.1 (Gamma). The emerging variants contain various important mutations on the spike protein, leading to deleterious consequences, such as immune invasion and vaccine escape. These adverse effects result in increased transmissibility, morbidity, and mortality and the evasion of detection by existing or currently available diagnostic tests, potentially delaying diagnosis and treatment. This review discusses the key mutations present in the VOC strains and provides insights into how these mutations allow for greater transmissibility and immune evasion than the progenitor strain. Continuous monitoring and surveillance of VOC strains play a vital role in preventing and controlling the virus's spread.
Collapse
Affiliation(s)
- Angel Yun-Kuan Thye
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Malaysia; (A.Y.-K.T.); (J.W.-F.L.); (P.P.)
| | - Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Malaysia; (A.Y.-K.T.); (J.W.-F.L.); (P.P.)
| | - Priyia Pusparajah
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Malaysia; (A.Y.-K.T.); (J.W.-F.L.); (P.P.)
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Malaysia; (A.Y.-K.T.); (J.W.-F.L.); (P.P.)
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Malaysia; (A.Y.-K.T.); (J.W.-F.L.); (P.P.)
| |
Collapse
|
229
|
Deng H, Yan X, Yuan L. Human genetic basis of coronavirus disease 2019. Signal Transduct Target Ther 2021; 6:344. [PMID: 34545062 PMCID: PMC8450706 DOI: 10.1038/s41392-021-00736-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 02/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in considerable morbidity and mortality worldwide. COVID-19 incidence, severity, and mortality rates differ greatly between populations, genders, ABO blood groups, human leukocyte antigen (HLA) genotypes, ethnic groups, and geographic backgrounds. This highly heterogeneous SARS-CoV-2 infection is multifactorial. Host genetic factors such as variants in the angiotensin-converting enzyme gene (ACE), the angiotensin-converting enzyme 2 gene (ACE2), the transmembrane protease serine 2 gene (TMPRSS2), along with HLA genotype, and ABO blood group help to explain individual susceptibility, severity, and outcomes of COVID-19. This review is focused on COVID-19 clinical and viral characteristics, pathogenesis, and genetic findings, with particular attention on genetic diversity and variants. The human genetic basis could provide scientific bases for disease prediction and targeted therapy to address the COVID-19 scourge.
Collapse
Affiliation(s)
- Hao Deng
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China.
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China.
- Disease Genome Research Center, Central South University, Changsha, China.
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China.
| | - Xue Yan
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Disease Genome Research Center, Central South University, Changsha, China
| | - Lamei Yuan
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Disease Genome Research Center, Central South University, Changsha, China
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
230
|
Neuman BW, Brashear WA, Brun M, Chaki SP, Fischer RSB, Guidry SJ, Hill JE, Hillhouse AE, Johnson CD, Kahl-McDonagh MM, Metz RP, Rice-Ficht AC, Shuford JA, Skaggs TA, Stull MA, Threadgill DW, Akpalu Y, Zuelke K. Case Report: Paucisymptomatic College-Age Population as a Reservoir for Potentially Neutralization-Resistant Severe Acute Respiratory Syndrome Coronavirus 2 Variants. Am J Trop Med Hyg 2021; 105:1227-1229. [PMID: 34544043 PMCID: PMC8592217 DOI: 10.4269/ajtmh.21-0542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/06/2021] [Indexed: 11/10/2022] Open
Abstract
To better understand the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant lineage distribution in a college campus population, we carried out viral genome surveillance over a 7-week period from January to March 2021. Among the sequences were three novel viral variants: BV-1 with a B.1.1.7/20I genetic background and an additional spike mutation Q493R, associated with a mild but longer-than-usual COVID-19 case in a college-age person, BV-2 with a T478K mutation on a 20B genetic background, and BV-3, an apparent recombinant lineage. This work highlights the potential of an undervaccinated younger population as a reservoir for the spread and generation of novel variants. This also demonstrates the value of whole genome sequencing as a routine disease surveillance tool.
Collapse
Affiliation(s)
- Benjamin W Neuman
- Global Health Research Complex, Division of Research, Texas A&M University, College Station, Texas.,College of Science, College Station, Texas
| | - Wesley A Brashear
- Texas A&M Institute for Genome Sciences and Society, College Station, Texas
| | - Marcel Brun
- Texas A&M AgriLife Research, College Station, Texas
| | - Sankar P Chaki
- Global Health Research Complex, Division of Research, Texas A&M University, College Station, Texas
| | | | - Sierra J Guidry
- Global Health Research Complex, Division of Research, Texas A&M University, College Station, Texas
| | | | - Andrew E Hillhouse
- Texas A&M Institute for Genome Sciences and Society, College Station, Texas.,College of Medicine, College Station, Texas
| | | | - Melissa M Kahl-McDonagh
- Global Health Research Complex, Division of Research, Texas A&M University, College Station, Texas
| | | | - Allison C Rice-Ficht
- Global Health Research Complex, Division of Research, Texas A&M University, College Station, Texas.,College of Medicine, College Station, Texas
| | - Jennifer A Shuford
- Texas Department of State Health Services, State Epidemiologist, Austin, Texas
| | - Tiffany A Skaggs
- Student Health Services, Texas A&M University, College Station, Texas
| | | | - David W Threadgill
- Texas A&M Institute for Genome Sciences and Society, College Station, Texas.,College of Medicine, College Station, Texas
| | - Yao Akpalu
- Brazos County Health Department, Epidemiology, College Station, Texas
| | - Kurt Zuelke
- Global Health Research Complex, Division of Research, Texas A&M University, College Station, Texas
| |
Collapse
|
231
|
Corbett KS, Nason MC, Flach B, Gagne M, O’ Connell S, Johnston TS, Shah SN, Edara VV, Floyd K, Lai L, McDanal C, Francica JR, Flynn B, Wu K, Choi A, Koch M, Abiona OM, Werner AP, Moliva JI, Andrew SF, Donaldson MM, Fintzi J, Flebbe DR, Lamb E, Noe AT, Nurmukhambetova ST, Provost SJ, Cook A, Dodson A, Faudree A, Greenhouse J, Kar S, Pessaint L, Porto M, Steingrebe K, Valentin D, Zouantcha S, Bock KW, Minai M, Nagata BM, van de Wetering R, Boyoglu-Barnum S, Leung K, Shi W, Yang ES, Zhang Y, Todd JPM, Wang L, Alvarado GS, Andersen H, Foulds KE, Edwards DK, Mascola JR, Moore IN, Lewis MG, Carfi A, Monterfiori D, Suthar MS, McDermott A, Roederer M, Sullivan NJ, Douek DC, Graham BS, Seder RA. Immune correlates of protection by mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. Science 2021; 373:eabj0299. [PMID: 34529476 PMCID: PMC8449013 DOI: 10.1126/science.abj0299] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immune correlates of protection can be used as surrogate endpoints for vaccine efficacy. Here, nonhuman primates (NHPs) received either no vaccine or doses ranging from 0.3 to 100 μg of the mRNA-1273 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. mRNA-1273 vaccination elicited circulating and mucosal antibody responses in a dose-dependent manner. Viral replication was significantly reduced in bronchoalveolar lavages and nasal swabs after SARS-CoV-2 challenge in vaccinated animals and most strongly correlated with levels of anti–S antibody and neutralizing activity. Lower antibody levels were needed for reduction of viral replication in the lower airway than in the upper airway. Passive transfer of mRNA-1273–induced immunoglobulin G to naïve hamsters was sufficient to mediate protection. Thus, mRNA-1273 vaccine–induced humoral immune responses are a mechanistic correlate of protection against SARS-CoV-2 in NHPs.
Collapse
Affiliation(s)
- Kizzmekia S. Corbett
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Martha C. Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Britta Flach
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Matthew Gagne
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Sarah O’ Connell
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Timothy S. Johnston
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Shruti N. Shah
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Venkata Viswanadh Edara
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, Georgia, 30322, United States of America
| | - Katharine Floyd
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, Georgia, 30322, United States of America
| | - Lilin Lai
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, Georgia, 30322, United States of America
| | - Charlene McDanal
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, 27708; United States of America
| | - Joseph R. Francica
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Barbara Flynn
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Kai Wu
- Moderna Inc., Cambridge, MA, 02139; United States of America
| | - Angela Choi
- Moderna Inc., Cambridge, MA, 02139; United States of America
| | - Matthew Koch
- Moderna Inc., Cambridge, MA, 02139; United States of America
| | - Olubukola M. Abiona
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Anne P. Werner
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Juan I. Moliva
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Shayne F. Andrew
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Mitzi M. Donaldson
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Jonathan Fintzi
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Dillon R. Flebbe
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Evan Lamb
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Amy T. Noe
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Saule T. Nurmukhambetova
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Samantha J. Provost
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Anthony Cook
- Bioqual, Inc.; Rockville, Maryland, 20850; United States of America
| | - Alan Dodson
- Bioqual, Inc.; Rockville, Maryland, 20850; United States of America
| | - Andrew Faudree
- Bioqual, Inc.; Rockville, Maryland, 20850; United States of America
| | - Jack Greenhouse
- Bioqual, Inc.; Rockville, Maryland, 20850; United States of America
| | - Swagata Kar
- Bioqual, Inc.; Rockville, Maryland, 20850; United States of America
| | - Laurent Pessaint
- Bioqual, Inc.; Rockville, Maryland, 20850; United States of America
| | - Maciel Porto
- Bioqual, Inc.; Rockville, Maryland, 20850; United States of America
| | | | - Daniel Valentin
- Bioqual, Inc.; Rockville, Maryland, 20850; United States of America
| | - Serge Zouantcha
- Bioqual, Inc.; Rockville, Maryland, 20850; United States of America
| | - Kevin W. Bock
- Infectious Disease Pathogenesis Section; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Bianca M. Nagata
- Infectious Disease Pathogenesis Section; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Renee van de Wetering
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Kwanyee Leung
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Wei Shi
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Eun Sung Yang
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Yi Zhang
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - John-Paul M. Todd
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Lingshu Wang
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Gabriela S. Alvarado
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Hanne Andersen
- Bioqual, Inc.; Rockville, Maryland, 20850; United States of America
| | - Kathryn E. Foulds
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | | | - John R. Mascola
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Ian N. Moore
- Infectious Disease Pathogenesis Section; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Mark G. Lewis
- Bioqual, Inc.; Rockville, Maryland, 20850; United States of America
| | - Andrea Carfi
- Moderna Inc., Cambridge, MA, 02139; United States of America
| | - David Monterfiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, 27708; United States of America
| | - Mehul S. Suthar
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, Georgia, 30322, United States of America
- Department of Microbiology and Immunology; Atlanta, Georgia, 30329, United States of America
| | - Adrian McDermott
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Mario Roederer
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Nancy J. Sullivan
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Daniel C. Douek
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Barney S. Graham
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| | - Robert A. Seder
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, Maryland, 20892; United States of America
| |
Collapse
|
232
|
A CRISPR/Cas9 genetically engineered organoid biobank reveals essential host factors for coronaviruses. Nat Commun 2021; 12:5498. [PMID: 34535662 PMCID: PMC8448725 DOI: 10.1038/s41467-021-25729-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/27/2021] [Indexed: 01/17/2023] Open
Abstract
Rapid identification of host genes essential for virus replication may expedite the generation of therapeutic interventions. Genetic screens are often performed in transformed cell lines that poorly represent viral target cells in vivo, leading to discoveries that may not be translated to the clinic. Intestinal organoids are increasingly used to model human disease and are amenable to genetic engineering. To discern which host factors are reliable anti-coronavirus therapeutic targets, we generate mutant clonal IOs for 19 host genes previously implicated in coronavirus biology. We verify ACE2 and DPP4 as entry receptors for SARS-CoV/SARS-CoV-2 and MERS-CoV respectively. SARS-CoV-2 replication in IOs does not require the endosomal Cathepsin B/L proteases, but specifically depends on the cell surface protease TMPRSS2. Other TMPRSS family members were not essential. The newly emerging coronavirus variant B.1.1.7, as well as SARS-CoV and MERS-CoV similarly depended on TMPRSS2. These findings underscore the relevance of non-transformed human models for coronavirus research, identify TMPRSS2 as an attractive pan-coronavirus therapeutic target, and demonstrate that an organoid knockout biobank is a valuable tool to investigate the biology of current and future emerging coronaviruses. Rapid identification of host genes essential for virus replication may expedite the generation of therapeutic interventions. Here the authors generate mutant clonal intestinal organoids for 19 host genes previously implicated in coronavirus biology and identify the cell surface protease TMPRSS2 as a potential therapeutic target.
Collapse
|
233
|
Hajj-Hassan H, Hamze K, Abdel Sater F, Kizilbash N, Khachfe HM. Probing the Increased Virulence of Severe Acute Respiratory Syndrome Coronavirus 2 B.1.617 (Indian Variant) From Predicted Spike Protein Structure. Cureus 2021; 13:e16905. [PMID: 34513478 PMCID: PMC8412886 DOI: 10.7759/cureus.16905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 11/24/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to an outbreak of a pandemic worldwide. The spike (S) protein of SARS-CoV-2, which plays a key role in the receptor recognition and cell membrane fusion process, is composed of two subunits, S1 and S2. The S1 subunit contains a receptor-binding domain that recognizes and binds to the host receptor angiotensin-converting enzyme 2 (ACE2), while the S2 subunit mediates viral cell membrane fusion with the cell membrane and subsequent entry into cells. Mutations in the spike protein (S) are of particular interest due to their potential for reduced susceptibility to neutralizing antibodies or increasing the viral transmissibility and infectivity. Recently, many mutations in the spike protein released new variants, including the Delta and Kappa ones (known as the Indian variants). The variants Delta and Kappa are now of most recent concern because of their well-increased infectivity, both a spin-off of the B.1.617 lineage, which was first identified in India in October 2020. This study employed homology modeling to probe the potential structural effects of the mutations. It was found that the mutations, Leu452Arg, Thr478Lys, and Glu484Gln in the spike protein increase the affinity for the hACE2 receptor, which explains the greater infectivity of the SARS-Cov-2 B.1.617 (Indian Variant).
Collapse
Affiliation(s)
- Houssein Hajj-Hassan
- Department of Biological and Chemical Sciences, International University of Beirut, Beirut, LBN
| | - Kassem Hamze
- Laboratory of Molecular Biology and Cancer Immunology (Covid-19 Unit), Lebanese University, Beirut, LBN
| | - Fadi Abdel Sater
- Laboratory of Molecular Biology and Cancer Immunology (Covid-19 Unit), Lebanese University, Beirut, LBN
| | - Nadeem Kizilbash
- Department of Medical Laboratory Technology, Northern Border University, Arar, SAU
| | - Hassan M Khachfe
- Lebanese Institute for Biomedical Research and Applications (LIBRA), Lebanese International University, Beirut, LBN
| |
Collapse
|
234
|
Rana R, Tripathi A, Kumar N, Ganguly NK. A Comprehensive Overview on COVID-19: Future Perspectives. Front Cell Infect Microbiol 2021; 11:744903. [PMID: 34595136 PMCID: PMC8476999 DOI: 10.3389/fcimb.2021.744903] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022] Open
Abstract
The outbreak of COVID-19 has proven to be an unprecedented disaster for the whole world. The virus has inflicted billion of lives across the globe in all aspects-physically, psychologically, as well as socially. Compared to the previous strains of β-CoV genera- MERS and SARS, SARS-CoV-2 has significantly higher transmissibility and worst post-recovery implications. A frequent mutation in the initial SARS-CoV-2 strain has been a major cause of mortalities (approx. 3 million deaths) and uncontrolled virulence (approx. 1 billion positive cases). As far as clinical manifestations are concerned, this particular virus has exhibited deleterious impacts on systems other than the respiratory system (primary target organ), such as the brain, hematological system, liver, kidneys, endocrine system, etc. with no promising curatives to date. Lack of emergency treatments and shortage of life-saving drugs has promoted the repurposing of existing therapeutics along with the emergence of vaccines with the combined efforts of scientists and industrial experts in this short span. This review summarizes every detail on COVID-19 and emphasizes undermining the future approaches to minimize its prevalence to the remaining lives.
Collapse
|
235
|
Migueres M, Lhomme S, Trémeaux P, Dimeglio C, Ranger N, Latour J, Dubois M, Nicot F, Miedouge M, Mansuy JM, Izopet J. Evaluation of two RT-PCR screening assays for identifying SARS-CoV-2 variants. J Clin Virol 2021; 143:104969. [PMID: 34509927 PMCID: PMC8411575 DOI: 10.1016/j.jcv.2021.104969] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/26/2023]
Abstract
Background The recent emergence of new SARS CoV-2 variants (variants of concern, VOC) that spread rapidly and may lead to immune escape has emphasized the urgent need to monitor and control their spread. Methods We analyzed 2018 SARS-CoV-2 positive specimens collected between February 9 and March 22, 2021 using the Thermofisher® TaqPath™ COVID-19 CE-IVD RT-PCR kit (TaqPath) and the ID solutions® ID™ SARS-CoV-2/UK/SA Variant Triplex RT-PCR (ID triplex) assay to screen for VOCs. Results The ID triplex assay identified 62.8% of them as VOCs: 61.8% B.1.1.7 and 0.9% B.1.351/P.1. The agreement between the ID triplex results for B.1.1.7 and the TaqPath S gene target failure (SGTF)/ S gene target late detection (SGTL) profile for this variant agreed very well (k = 0.86). A low virus load was the main cause of discrepancies. Sequencing discordant results with both assays indicated that the TaqPath assay detected the B.1.1.7 lineage slightly better. Both assays suggested that the virus loads of B.1.1.7 variants were significantly higher than those of non-B.1.1.7 strains. Only 10/20 B1.351/P.1 strains detected with the ID triplex assay were confirmed by sequencing. Conclusions We conclude that the SGTF/SGTL profiles identified using the TaqPath assay and ID triplex results are suitable for detecting the B.1.1.7 lineage. The ID triplex assay, which rapidly determines all three current VOCs simultaneously, could be a valuable tool for limiting virus spread by supporting contact-tracing and isolation.
Collapse
Affiliation(s)
- M Migueres
- CHU Toulouse, Hôpital Purpan, Virology Laboratory, 31300, France; Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), INSERM UMR1291 - CNRS UMR5051, Toulouse 31300, France; Université Toulouse III Paul-Sabatier, Toulouse, France.
| | - S Lhomme
- CHU Toulouse, Hôpital Purpan, Virology Laboratory, 31300, France; Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), INSERM UMR1291 - CNRS UMR5051, Toulouse 31300, France; Université Toulouse III Paul-Sabatier, Toulouse, France
| | - P Trémeaux
- CHU Toulouse, Hôpital Purpan, Virology Laboratory, 31300, France
| | - C Dimeglio
- CHU Toulouse, Hôpital Purpan, Virology Laboratory, 31300, France
| | - N Ranger
- CHU Toulouse, Hôpital Purpan, Virology Laboratory, 31300, France
| | - J Latour
- CHU Toulouse, Hôpital Purpan, Virology Laboratory, 31300, France
| | - M Dubois
- CHU Toulouse, Hôpital Purpan, Virology Laboratory, 31300, France
| | - F Nicot
- CHU Toulouse, Hôpital Purpan, Virology Laboratory, 31300, France
| | - M Miedouge
- CHU Toulouse, Hôpital Purpan, Virology Laboratory, 31300, France
| | - J M Mansuy
- CHU Toulouse, Hôpital Purpan, Virology Laboratory, 31300, France
| | - J Izopet
- CHU Toulouse, Hôpital Purpan, Virology Laboratory, 31300, France; Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), INSERM UMR1291 - CNRS UMR5051, Toulouse 31300, France; Université Toulouse III Paul-Sabatier, Toulouse, France
| |
Collapse
|
236
|
Boni C, Cavazzini D, Bolchi A, Rossi M, Vecchi A, Tiezzi C, Barili V, Fisicaro P, Ferrari C, Ottonello S. Degenerate CD8 Epitopes Mapping to Structurally Constrained Regions of the Spike Protein: A T Cell-Based Way-Out From the SARS-CoV-2 Variants Storm. Front Immunol 2021; 12:730051. [PMID: 34566990 PMCID: PMC8455995 DOI: 10.3389/fimmu.2021.730051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/11/2021] [Indexed: 01/01/2023] Open
Abstract
There is an urgent need for new generation anti-SARS-Cov-2 vaccines in order to increase the efficacy of immunization and its broadness of protection against viral variants that are continuously arising and spreading. The effect of variants on protective immunity afforded by vaccination has been mostly analyzed with regard to B cell responses. This analysis revealed variable levels of cross-neutralization capacity for presently available SARS-Cov-2 vaccines. Despite the dampened immune responses documented for some SARS-Cov-2 mutations, available vaccines appear to maintain an overall satisfactory protective activity against most variants of concern (VoC). This may be attributed, at least in part, to cell-mediated immunity. Indeed, the widely multi-specific nature of CD8 T cell responses should allow to avoid VoC-mediated viral escape, because mutational inactivation of a given CD8 T cell epitope is expected to be compensated by the persistent responses directed against unchanged co-existing CD8 epitopes. This is particularly relevant because some immunodominant CD8 T cell epitopes are located within highly conserved SARS-Cov-2 regions that cannot mutate without impairing SARS-Cov-2 functionality. Importantly, some of these conserved epitopes are degenerate, meaning that they are able to associate with different HLA class I molecules and to be simultaneously presented to CD8 T cell populations of different HLA restriction. Based on these concepts, vaccination strategies aimed at potentiating the stimulatory effect on SARS-Cov-2-specific CD8 T cells should greatly enhance the efficacy of immunization against SARS-Cov-2 variants. Our review recollects, discusses and puts into a translational perspective all available experimental data supporting these "hot" concepts, with special emphasis on the structural constraints that limit SARS-CoV-2 S-protein evolution and on potentially invariant and degenerate CD8 epitopes that lend themselves as excellent candidates for the rational development of next-generation, CD8 T-cell response-reinforced, COVID-19 vaccines.
Collapse
Affiliation(s)
- Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Davide Cavazzini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Angelo Bolchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Center Biopharmanet-Tec, University of Parma, Parma, Italy
| | - Marzia Rossi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Camilla Tiezzi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Valeria Barili
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carlo Ferrari
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Simone Ottonello
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Center Biopharmanet-Tec, University of Parma, Parma, Italy
| |
Collapse
|
237
|
Yu S, Chen Y, Xiang Y, Lin H, Wang M, Ye W, Zhang P, Chen H, Lin G, Zhu Y, Chen L, Zhang J. Pseudoephedrine and its derivatives antagonize wild and mutated severe acute respiratory syndrome-CoV-2 viruses through blocking virus invasion and antiinflammatory effect. Phytother Res 2021; 35:5847-5860. [PMID: 34472141 PMCID: PMC8661580 DOI: 10.1002/ptr.7245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 01/19/2023]
Abstract
The coronavirus disease 2019 has infected over 150 million people worldwide and led to over 3 million deaths. Severe acute respiratory syndrome (SARS)‐CoV‐2 lineages B.1.1.7, B.1.617, B.1.351, and P.1 were reported to have higher infection rates than that of wild one. These mutations were noticed to happen in the receptor‐binding domain of spike protein (S‐RBD), especially mutations N501Y, E484Q, E484K, K417N, K417T, and L452R. Currently, there is still no specific medicine against the virus; moreover, cytokine storm is also a dangerous factor for severe infected patients. In this study, potential S‐RBD‐targeted active monomers from traditional Chinese medicine Ephedra sinica Stapf (ephedra) were discovered by virtual screening. NanoBiT assay was performed to confirm blocking activities of the screened compounds against the interaction between SARS‐CoV‐2 S‐RBD and angiotensin‐converting enzyme 2 (ACE2). We further analyzed the blocking effect of the active compounds on the interactions of mutated S‐RBD and ACE2 by computational studies. Moreover, antiinflammatory activities were evaluated using qRT‐PCR, enzyme‐linked immune sorbent assay, and Western blot analysis. As a result, pseudoephedrine (MHJ‐17) and its derivative (MHJ‐11) were found as efficient inhibitors disrupting the interactions between ACE2 and both wild and mutated S‐RBDs. In addition, they also have antiinflammatory activities, which can be potential drug candidates or lead compounds for further study.
Collapse
Affiliation(s)
- Shaopeng Yu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yao Chen
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yusen Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - He Lin
- The Third Research Institute of Ministry of Public Security, Shanghai, China
| | - Mengge Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenbo Ye
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pei Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongzhuan Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guoqiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuying Zhu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
238
|
Somekh I, Stein M, Karakis I, Simões EAF, Somekh E. Characteristics of SARS-CoV-2 Infections in Israeli Children During the Circulation of Different SARS-CoV-2 Variants. JAMA Netw Open 2021; 4:e2124343. [PMID: 34491353 PMCID: PMC8424472 DOI: 10.1001/jamanetworkopen.2021.24343] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This cohort study compares the characteristics of infections from SARS-CoV-2 variants spreading during August to October 2020 vs the variants spreading during December 2020 to February 2021 among children in Israel.
Collapse
Affiliation(s)
- Ido Somekh
- Department of Pediatric Hematology Oncology, Schneider Children’s Medical Center of Israel, Petah Tikva
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Stein
- Infectious Disease and Infection Control Unit, Hillel Yaffe Medical Center, Hadera, Israel
- Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Isabella Karakis
- Epidemiology Division, Environmental Epidemiology Department, Public Health Services, Ministry of Health, Jerusalem, Ben-Gurion University in the Negev, Beer-Sheba, Israel
| | | | - Eli Somekh
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Pediatrics, Mayanei Hayeshuah Medical Center, Bnei Brak, Israel
- European Pediatric Association (EPA-UNEPSA), Union of National European Pediatric Societies and Associations, Berlin, Germany
| |
Collapse
|
239
|
Stirrup O, Boshier F, Venturini C, Guerra-Assunção JA, Alcolea-Medina A, Beckett A, Charalampous T, da Silva Filipe A, Glaysher S, Khan T, Kulasegaran Shylini R, Kele B, Monahan I, Mollett G, Parker M, Pelosi E, Randell P, Roy S, Taylor J, Weller S, Wilson-Davies E, Wade P, Williams R, Copas A, Cutino-Moguel MT, Freemantle N, Hayward AC, Holmes A, Hughes J, Mahungu T, Nebbia G, Partridge D, Pope C, Price J, Robson S, Saeed K, de Silva T, Snell L, Thomson E, Witney AA, Breuer J. SARS-CoV-2 lineage B.1.1.7 is associated with greater disease severity among hospitalised women but not men: multicentre cohort study. BMJ Open Respir Res 2021; 8:e001029. [PMID: 34544733 PMCID: PMC8453594 DOI: 10.1136/bmjresp-2021-001029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/08/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND SARS-CoV-2 lineage B.1.1.7 has been associated with an increased rate of transmission and disease severity among subjects testing positive in the community. Its impact on hospitalised patients is less well documented. METHODS We collected viral sequences and clinical data of patients admitted with SARS-CoV-2 and hospital-onset COVID-19 infections (HOCIs), sampled 16 November 2020 to 10 January 2021, from eight hospitals participating in the COG-UK-HOCI study. Associations between the variant and the outcomes of all-cause mortality and intensive therapy unit (ITU) admission were evaluated using mixed effects Cox models adjusted by age, sex, comorbidities, care home residence, pregnancy and ethnicity. FINDINGS Sequences were obtained from 2341 inpatients (HOCI cases=786) and analysis of clinical outcomes was carried out in 2147 inpatients with all data available. The HR for mortality of B.1.1.7 compared with other lineages was 1.01 (95% CI 0.79 to 1.28, p=0.94) and for ITU admission was 1.01 (95% CI 0.75 to 1.37, p=0.96). Analysis of sex-specific effects of B.1.1.7 identified increased risk of mortality (HR 1.30, 95% CI 0.95 to 1.78, p=0.096) and ITU admission (HR 1.82, 95% CI 1.15 to 2.90, p=0.011) in females infected with the variant but not males (mortality HR 0.82, 95% CI 0.61 to 1.10, p=0.177; ITU HR 0.74, 95% CI 0.52 to 1.04, p=0.086). INTERPRETATION In common with smaller studies of patients hospitalised with SARS-CoV-2, we did not find an overall increase in mortality or ITU admission associated with B.1.1.7 compared with other lineages. However, women with B.1.1.7 may be at an increased risk of admission to intensive care and at modestly increased risk of mortality.
Collapse
Affiliation(s)
- Oliver Stirrup
- Institute for Global Health, University College London, London, UK
| | - Florencia Boshier
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Cristina Venturini
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - José Afonso Guerra-Assunção
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Genetics & Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Adela Alcolea-Medina
- Centre for Clinical Infection and Diagnostics Research, School of Immunology and Microbial Sciences, King's College London, London, UK
- Infection Sciences, Viapath, London, UK
| | - Angela Beckett
- Centre for Enzyme Innovation, University of Portsmouth, Portsmouth, UK
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Themoula Charalampous
- Centre for Clinical Infection and Diagnostics Research, School of Immunology and Microbial Sciences, King's College London, London, UK
| | | | - Sharon Glaysher
- Portsmouth Hospitals University NHS Trust, Queen Alexandra Hospital, Portsmouth, UK
| | - Tabassum Khan
- Division of Infection, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | | | - Beatrix Kele
- Division of Infection, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Irene Monahan
- Institute for Infection and Immunity, St George's University of London, London, UK
| | - Guy Mollett
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Matthew Parker
- Sheffield Bioinformatics Core, The University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
- Sheffield Biomedical Research Centre, The University of Sheffield, Sheffield, UK
| | - Emanuela Pelosi
- Southampton Specialist Virology Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Paul Randell
- Department of Infection and Immunity, North West London Pathology, London, UK
| | - Sunando Roy
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Joshua Taylor
- Department of Microbiology, South West London Pathology, St. George's Hospital, London, UK
| | - Sophie Weller
- Department of Virology, Royal Free London NHS Foundation Trust, London, UK
| | - Eleri Wilson-Davies
- Southampton Specialist Virology Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Phillip Wade
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- The Florey Institute for Host-Pathogen Interactions & Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Rachel Williams
- Department of Genetics & Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Andrew Copas
- Institute for Global Health, University College London, London, UK
| | | | - Nick Freemantle
- Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Andrew C Hayward
- Institute of Epidemiology and Health Care, University College London, London, UK
| | - Alison Holmes
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Tabitha Mahungu
- Department of Virology, Royal Free London NHS Foundation Trust, London, UK
| | - Gaia Nebbia
- Centre for Clinical Infection and Diagnostics Research, School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Infectious Diseases, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - David Partridge
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- The Florey Institute for Host-Pathogen Interactions & Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Cassie Pope
- Institute for Infection and Immunity, St George's University of London, London, UK
- Infection Care Group, St George's University Hospitals NHS Foundation Trust, London, UK
| | - James Price
- Imperial College Healthcare NHS Trust, London, UK
| | - Samuel Robson
- Centre for Enzyme Innovation, University of Portsmouth, Portsmouth, UK
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Kordo Saeed
- Microbiology Innovation and Research Unit (MIRU), Department of Microbiology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine, Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Thushan de Silva
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- The Florey Institute for Host-Pathogen Interactions & Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Luke Snell
- Centre for Clinical Infection and Diagnostics Research, School of Immunology and Microbial Sciences, King's College London, London, UK
- Department of Infectious Diseases, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Emma Thomson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Adam A Witney
- Institute for Infection and Immunity, St George's University of London, London, UK
| | - Judith Breuer
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Microbiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
240
|
Iftekhar EN, Priesemann V, Balling R, Bauer S, Beutels P, Calero Valdez A, Cuschieri S, Czypionka T, Dumpis U, Glaab E, Grill E, Hanson C, Hotulainen P, Klimek P, Kretzschmar M, Krüger T, Krutzinna J, Low N, Machado H, Martins C, McKee M, Mohr SB, Nassehi A, Perc M, Petelos E, Pickersgill M, Prainsack B, Rocklöv J, Schernhammer E, Staines A, Szczurek E, Tsiodras S, Van Gucht S, Willeit P. A look into the future of the COVID-19 pandemic in Europe: an expert consultation. THE LANCET REGIONAL HEALTH. EUROPE 2021; 8:100185. [PMID: 34345876 PMCID: PMC8321710 DOI: 10.1016/j.lanepe.2021.100185] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
How will the coronavirus disease 2019 (COVID-19) pandemic develop in the coming months and years? Based on an expert survey, we examine key aspects that are likely to influence the COVID-19 pandemic in Europe. The challenges and developments will strongly depend on the progress of national and global vaccination programs, the emergence and spread of variants of concern (VOCs), and public responses to non-pharmaceutical interventions (NPIs). In the short term, many people remain unvaccinated, VOCs continue to emerge and spread, and mobility and population mixing are expected to increase. Therefore, lifting restrictions too much and too early risk another damaging wave. This challenge remains despite the reduced opportunities for transmission given vaccination progress and reduced indoor mixing in summer 2021. In autumn 2021, increased indoor activity might accelerate the spread again, whilst a necessary reintroduction of NPIs might be too slow. The incidence may strongly rise again, possibly filling intensive care units, if vaccination levels are not high enough. A moderate, adaptive level of NPIs will thus remain necessary. These epidemiological aspects combined with economic, social, and health-related consequences provide a more holistic perspective on the future of the COVID-19 pandemic.
Collapse
Affiliation(s)
| | - Viola Priesemann
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Rudi Balling
- University of Luxembourg, Luxembourg, Luxembourg
| | - Simon Bauer
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | | | | | | | - Thomas Czypionka
- Institute for Advanced Studies, Vienna, Austria, and London School of Economics, London, UK
| | - Uga Dumpis
- Pauls Stradins Clinical University Hospital, University of Latvia, Riga, Latvia
| | - Enrico Glaab
- University of Luxembourg, Luxembourg, Luxembourg
| | - Eva Grill
- Ludwig-Maximilians-University München, München, Germany
| | - Claudia Hanson
- Karolinska Institute, Stockholm, Sweden, and London School of Hygiene & Tropical Medicine, London, UK
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Peter Klimek
- Medical University of Vienna, Vienna, Austria, and Complexity Science Hub Vienna, Vienna, Austria
| | | | - Tyll Krüger
- Wroclaw University of Science and Technology, Wroclaw, Poland
| | | | | | - Helena Machado
- Institute for Social Sciences, University of Minho, Braga, Portugal
| | - Carlos Martins
- Department of Community Medicine, Health Information and Decision Sciences of the Faculty of Medicine, University of Porto, Porto, Portugal
| | - Martin McKee
- London School of Hygiene & Tropical Medicine, London, UK
| | | | - Armin Nassehi
- Ludwig-Maximilians-University München, München, Germany
| | - Matjaž Perc
- University of Maribor, Maribor, Slovenia, and Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Elena Petelos
- University of Crete, Crete, Greece, and Maastricht University, Maastricht, The Netherlands
| | | | - Barbara Prainsack
- Department of Political Science, University of Vienna, Vienna, Austria
| | - Joacim Rocklöv
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | | | | | | | | | | | - Peter Willeit
- Medical University of Innsbruck, Innsbruck, Austria, and University of Cambridge, Cambridge, UK
| |
Collapse
|
241
|
Oude Munnink BB, Worp N, Nieuwenhuijse DF, Sikkema RS, Haagmans B, Fouchier RAM, Koopmans M. The next phase of SARS-CoV-2 surveillance: real-time molecular epidemiology. Nat Med 2021; 27:1518-1524. [PMID: 34504335 DOI: 10.1038/s41591-021-01472-w] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/20/2021] [Indexed: 02/08/2023]
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic is the first to apply whole-genome sequencing near to real time, with over 2 million severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) whole-genome sequences generated and shared through the GISAID platform. This genomic resource informed public health decision-making throughout the pandemic; it also allowed detection of mutations that might affect virulence, pathogenesis, host range or immune escape as well as the effectiveness of SARS-CoV-2 diagnostics and therapeutics. However, genotype-to-phenotype predictions cannot be performed at the rapid pace of genomic sequencing. To prepare for the next phase of the pandemic, a systematic approach is needed to link global genomic surveillance and timely assessment of the phenotypic characteristics of novel variants, which will support the development and updating of diagnostics, vaccines, therapeutics and nonpharmaceutical interventions. This Review summarizes the current knowledge on key viral mutations and variants and looks to the next phase of surveillance of the evolving pandemic.
Collapse
Affiliation(s)
- Bas B Oude Munnink
- Department of Viroscience, Erasmus MC, WHO Collaborating Centre for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Rotterdam, the Netherlands
| | - Nathalie Worp
- Department of Viroscience, Erasmus MC, WHO Collaborating Centre for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Rotterdam, the Netherlands
| | - David F Nieuwenhuijse
- Department of Viroscience, Erasmus MC, WHO Collaborating Centre for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Rotterdam, the Netherlands
| | - Reina S Sikkema
- Department of Viroscience, Erasmus MC, WHO Collaborating Centre for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Rotterdam, the Netherlands
| | - Bart Haagmans
- Department of Viroscience, Erasmus MC, WHO Collaborating Centre for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Rotterdam, the Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, WHO Collaborating Centre for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Rotterdam, the Netherlands
| | - Marion Koopmans
- Department of Viroscience, Erasmus MC, WHO Collaborating Centre for Arbovirus and Viral Hemorrhagic Fever Reference and Research, Rotterdam, the Netherlands.
| |
Collapse
|
242
|
Affiliation(s)
- Sanjeev Kumar
- ICGEB-Emory Vaccine Center Program, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center Program, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Amit Sharma
- Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- National Institute of Malaria Research, Dwarka, New Delhi, India
| |
Collapse
|
243
|
Kaplonek P, Cizmeci D, Fischinger S, Collier AR, Suscovich T, Linde C, Broge T, Mann C, Amanat F, Dayal D, Rhee J, de St. Aubin M, Nilles EJ, Musk ER, Menon AS, Saphire EO, Krammer F, Lauffenburger DA, Barouch DH, Alter G. Subtle immunological differences in mRNA-1273 and BNT162b2 COVID-19 vaccine induced Fc-functional profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.08.31.458247. [PMID: 34494026 PMCID: PMC8423223 DOI: 10.1101/2021.08.31.458247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The successful development of several COVID-19 vaccines has substantially reduced morbidity and mortality in regions of the world where the vaccines have been deployed. However, in the wake of the emergence of viral variants, able to evade vaccine induced neutralizing antibodies, real world vaccine efficacy has begun to show differences across the mRNA platforms, suggesting that subtle variation in immune responses induced by the BNT162b2 and mRNA1273 vaccines may provide differential protection. Given our emerging appreciation for the importance of additional antibody functions, beyond neutralization, here we profiled the postboost binding and functional capacity of the humoral response induced by the BNT162b2 and mRNA-1273 in a cohort of hospital staff. Both vaccines induced robust humoral immune responses to WT SARS-CoV-2 and VOCs. However, differences emerged across epitopespecific responses, with higher RBD- and NTD-specific IgA, as well as functional antibodies (ADNP and ADNK) in mRNA-1273 vaccine recipients. Additionally, RBD-specific antibody depletion highlighted the different roles of non-RBD-specific antibody effector function induced across the mRNA vaccines, providing novel insights into potential differences in protective immunity generated across these vaccines in the setting of newly emerging VOCs.
Collapse
Affiliation(s)
| | - Deniz Cizmeci
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Ai-ris Collier
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | - Colin Mann
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diana Dayal
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | - Justin Rhee
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | | | | | - Elon R. Musk
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | - Anil S. Menon
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Dan H. Barouch
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| |
Collapse
|
244
|
Impact of the Alpha VOC on disease severity in SARS-CoV-2-positive adults in Sweden. J Infect 2021; 84:e3-e5. [PMID: 34474056 PMCID: PMC8405243 DOI: 10.1016/j.jinf.2021.08.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 08/28/2021] [Indexed: 12/03/2022]
|
245
|
Huffman A, Masci AM, Zheng J, Sanati N, Brunson T, Wu G, He Y. CIDO ontology updates and secondary analysis of host responses to COVID-19 infection based on ImmPort reports and literature. J Biomed Semantics 2021; 12:18. [PMID: 34454610 PMCID: PMC8400831 DOI: 10.1186/s13326-021-00250-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/05/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND With COVID-19 still in its pandemic stage, extensive research has generated increasing amounts of data and knowledge. As many studies are published within a short span of time, we often lose an integrative and comprehensive picture of host-coronavirus interaction (HCI) mechanisms. As of early April 2021, the ImmPort database has stored 7 studies (with 6 having details) that cover topics including molecular immune signatures, epitopes, and sex differences in terms of mortality in COVID-19 patients. The Coronavirus Infectious Disease Ontology (CIDO) represents basic HCI information. We hypothesize that the CIDO can be used as the platform to represent newly recorded information from ImmPort leading the reinforcement of CIDO. METHODS The CIDO was used as the semantic platform for logically modeling and representing newly identified knowledge reported in the 6 ImmPort studies. A recursive eXtensible Ontology Development (XOD) strategy was established to support the CIDO representation and enhancement. Secondary data analysis was also performed to analyze different aspects of the HCI from these ImmPort studies and other related literature reports. RESULTS The topics covered by the 6 ImmPort papers were identified to overlap with existing CIDO representation. SARS-CoV-2 viral S protein related HCI knowledge was emphasized for CIDO modeling, including its binding with ACE2, mutations causing different variants, and epitope homology by comparison with other coronavirus S proteins. Different types of cytokine signatures were also identified and added to CIDO. Our secondary analysis of two cohort COVID-19 studies with cytokine panel detection found that a total of 11 cytokines were up-regulated in female patients after infection and 8 cytokines in male patients. These sex-specific gene responses were newly modeled and represented in CIDO. A new DL query was generated to demonstrate the benefits of such integrative ontology representation. Furthermore, IL-10 signaling pathway was found to be statistically significant for both male patients and female patients. CONCLUSION Using the recursive XOD strategy, six new ImmPort COVID-19 studies were systematically reviewed, the results were modeled and represented in CIDO, leading to the enhancement of CIDO. The enhanced ontology and further seconary analysis supported more comprehensive understanding of the molecular mechanism of host responses to COVID-19 infection.
Collapse
Affiliation(s)
- Anthony Huffman
- Department of Computational Medicine and Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Anna Maria Masci
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710 USA
- Office of Data Science, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, NC 27560 USA
| | - Jie Zheng
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| | - Nasim Sanati
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR 97239 USA
| | - Timothy Brunson
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR 97239 USA
| | - Guanming Wu
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR 97239 USA
| | - Yongqun He
- Department of Computational Medicine and Biology, University of Michigan, Ann Arbor, MI 48109 USA
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109 USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109 USA
- Center for Computational Medicine and Biology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
246
|
Machado JAT, Rocha-Neves JM, Azevedo F, Andrade JP. Advances in the computational analysis of SARS-COV2 genome. NONLINEAR DYNAMICS 2021; 106:1525-1555. [PMID: 34465942 PMCID: PMC8391012 DOI: 10.1007/s11071-021-06836-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Given a data-set of Ribonucleic acid (RNA) sequences we can infer the phylogenetics of the samples and tackle the information for scientific purposes. Based on current data and knowledge, the SARS-CoV-2 seemingly mutates much more slowly than the influenza virus that causes seasonal flu. However, very recent evolution poses some doubts about such conjecture and shadows the out-coming light of people vaccination. This paper adopts mathematical and computational tools for handling the challenge of analyzing the data-set of different clades of the severe acute respiratory syndrome virus-2 (SARS-CoV-2). On one hand, based on the mathematical paraphernalia of tools, the concept of distance associated with the Kolmogorov complexity and Shannon information theories, as well as with the Hamming scheme, are considered. On the other, advanced data processing computational techniques, such as, data compression, clustering and visualization, are borrowed for tackling the problem. The results of the synergistic approach reveal the complex time dynamics of the evolutionary process and may help to clarify future directions of the SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- J. A. Tenreiro Machado
- Department of Electrical Engineering, Institute of Engineering, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 431, 4249 – 015 Porto, Portugal
| | - J. M. Rocha-Neves
- Department of Biomedicine – Unity of Anatomy, and Department of Physiology and Surgery, Faculty of Medicine of University of Porto, Porto, Portugal
| | - Filipe Azevedo
- Department of Electrical Engineering, Institute of Engineering, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 431, 4249 – 015 Porto, Portugal
| | - J. P. Andrade
- Department of Biomedicine – Unity of Anatomy, Faculty of Medicine of University of Porto and Center for Health Technology and Services Research (CINTESIS), Porto, Portugal
| |
Collapse
|
247
|
Ong SWX, Chiew CJ, Ang LW, Mak TM, Cui L, Toh MPHS, Lim YD, Lee PH, Lee TH, Chia PY, Maurer-Stroh S, Lin RTP, Leo YS, Lee VJ, Lye DC, Young BE. Clinical and Virological Features of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variants of Concern: A Retrospective Cohort Study Comparing B.1.1.7 (Alpha), B.1.351 (Beta), and B.1.617.2 (Delta). Clin Infect Dis 2021; 75:e1128-e1136. [PMID: 34423834 PMCID: PMC8522361 DOI: 10.1093/cid/ciab721] [Citation(s) in RCA: 267] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The impact of SARS-CoV-2 variants of concern (VOCs) on disease severity is unclear. In this retrospective study, we compared the outcomes of patients infected with B.1.1.7, B.1.351, and B.1.617.2 with wild-type strains from early 2020. METHODS National surveillance data from January to May 2021 were obtained and outcomes in relation to VOCs were explored. Detailed patient-level data from all patients with VOC infection admitted to our center between December 2020 and May 2021 were analyzed. Clinical outcomes were compared with a cohort of 846 patients admitted from January to April 2020. RESULTS A total of 829 patients in Singapore in the study period were infected with these 3 VOCs. After adjusting for age and sex, B.1.617.2 was associated with higher odds of oxygen requirement, intensive care unit admission, or death (adjusted odds ratio [aOR], 4.90; 95% confidence interval [CI]: 1.43-30.78). Of these patients, 157 were admitted to our center. After adjusting for age, sex, comorbidities, and vaccination, the aOR for pneumonia with B.1.617.2 was 1.88 (95% CI: .95-3.76) compared with wild-type. These differences were not seen with B.1.1.7 and B.1.351. Vaccination status was associated with decreased severity. B.1.617.2 was associated with significantly lower polymerase chain reaction cycle threshold (Ct) values and longer duration of Ct value ≤30 (median duration 18 days for B.1.617.2, 13 days for wild-type). CONCLUSIONS B.1.617.2 was associated with increased severity of illness, and with lower Ct values and longer viral shedding. These findings provide impetus for the rapid implementation of vaccination programs.
Collapse
Affiliation(s)
- Sean Wei Xiang Ong
- National Centre for Infectious Diseases, Singapore, Singapore,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Calvin J Chiew
- National Centre for Infectious Diseases, Singapore, Singapore,Ministry of Health, Singapore, Singapore
| | - Li Wei Ang
- National Centre for Infectious Diseases, Singapore, Singapore
| | - Tze Minn Mak
- National Centre for Infectious Diseases, Singapore, Singapore
| | - Lin Cui
- National Centre for Infectious Diseases, Singapore, Singapore
| | - Matthias Paul H S Toh
- National Centre for Infectious Diseases, Singapore, Singapore,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | | | - Pei Hua Lee
- National Centre for Infectious Diseases, Singapore, Singapore,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Tau Hong Lee
- National Centre for Infectious Diseases, Singapore, Singapore,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore,Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Po Ying Chia
- National Centre for Infectious Diseases, Singapore, Singapore,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Sebastian Maurer-Stroh
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore,A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore,Department of Biological Sciences, National University of Singapore, Singapore
| | - Raymond T P Lin
- National Centre for Infectious Diseases, Singapore, Singapore,Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yee Sin Leo
- National Centre for Infectious Diseases, Singapore, Singapore,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore,Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vernon J Lee
- Ministry of Health, Singapore, Singapore,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - David Chien Lye
- National Centre for Infectious Diseases, Singapore, Singapore,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore,Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Barnaby Edward Young
- Correspondence: Barnaby Young, National Centre for Infectious Diseases, 16 Jln Tan Tock Seng, Singapore 308442 ()
| |
Collapse
|
248
|
Osterman A, Iglhaut M, Lehner A, Späth P, Stern M, Autenrieth H, Muenchhoff M, Graf A, Krebs S, Blum H, Baiker A, Grzimek-Koschewa N, Protzer U, Kaderali L, Baldauf HM, Keppler OT. Comparison of four commercial, automated antigen tests to detect SARS-CoV-2 variants of concern. Med Microbiol Immunol 2021; 210:263-275. [PMID: 34415422 PMCID: PMC8377707 DOI: 10.1007/s00430-021-00719-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 12/23/2022]
Abstract
A versatile portfolio of diagnostic tests is essential for the containment of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic. Besides nucleic acid-based test systems and point-of-care (POCT) antigen (Ag) tests, quantitative, laboratory-based nucleocapsid Ag tests for SARS-CoV-2 have recently been launched. Here, we evaluated four commercial Ag tests on automated platforms and one POCT to detect SARS-CoV-2. We evaluated PCR-positive (n = 107) and PCR-negative (n = 303) respiratory swabs from asymptomatic and symptomatic patients at the end of the second pandemic wave in Germany (February–March 2021) as well as clinical isolates EU1 (B.1.117), variant of concern (VOC) Alpha (B.1.1.7) or Beta (B.1.351), which had been expanded in a biosafety level 3 laboratory. The specificities of automated SARS-CoV-2 Ag tests ranged between 97.0 and 99.7% (Lumipulse G SARS-CoV-2 Ag (Fujirebio): 97.03%, Elecsys SARS-CoV-2 Ag (Roche Diagnostics): 97.69%; LIAISON® SARS-CoV-2 Ag (Diasorin) and SARS-CoV-2 Ag ELISA (Euroimmun): 99.67%). In this study cohort of hospitalized patients, the clinical sensitivities of tests were low, ranging from 17.76 to 52.34%, and analytical sensitivities ranged from 420,000 to 25,000,000 Geq/ml. In comparison, the detection limit of the Roche Rapid Ag Test (RAT) was 9,300,000 Geq/ml, detecting 23.58% of respiratory samples. Receiver-operating-characteristics (ROCs) and Youden’s index analyses were performed to further characterize the assays’ overall performance and determine optimal assay cutoffs for sensitivity and specificity. VOCs carrying up to four amino acid mutations in nucleocapsid were detected by all five assays with characteristics comparable to non-VOCs. In summary, automated, quantitative SARS-CoV-2 Ag tests show variable performance and are not necessarily superior to a standard POCT. The efficacy of any alternative testing strategies to complement nucleic acid-based assays must be carefully evaluated by independent laboratories prior to widespread implementation.
Collapse
Affiliation(s)
- Andreas Osterman
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Maximilian Iglhaut
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Andreas Lehner
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Patricia Späth
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Marcel Stern
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Hanna Autenrieth
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Maximilian Muenchhoff
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Armin Baiker
- Public Health Microbiology Unit, Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Natascha Grzimek-Koschewa
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Ulrike Protzer
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Hanna-Mari Baldauf
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany.
- Max Von Pettenkofer Institute, Virology, National Reference Center for Retroviruses, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany.
| | - Oliver T Keppler
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany.
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany.
- Max Von Pettenkofer Institute, Virology, National Reference Center for Retroviruses, LMU München, Pettenkoferstr. 9a, 80336, Munich, Germany.
| |
Collapse
|
249
|
Luo CH, Morris CP, Sachithanandham J, Amadi A, Gaston D, Li M, Swanson NJ, Schwartz M, Klein EY, Pekosz A, Mostafa HH. Infection with the SARS-CoV-2 Delta Variant is Associated with Higher Infectious Virus Loads Compared to the Alpha Variant in both Unvaccinated and Vaccinated Individuals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.08.15.21262077. [PMID: 34462756 PMCID: PMC8404894 DOI: 10.1101/2021.08.15.21262077] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND The emerging SARS-CoV-2 variant of concern (VOC) B.1.6.17.2 (Delta) quickly displaced the B.1.1.7 (Alpha) and is associated with increases in COVID-19 cases nationally. The Delta variant has been associated with greater transmissibility and higher viral RNA loads in both unvaccinated and fully vaccinated individuals. Data is lacking regarding the infectious virus load in Delta infected individuals and how that compares to individuals infected with other SARS-CoV-2 lineages. METHODS Whole genome sequencing of 2,785 clinical isolates was used to characterize the prevalence of SARS-CoV-2 lineages circulating in the National Capital Region between January and July 2021. Clinical chart reviews were performed for the Delta, Alpha, and B.1.2 (a control predominant lineage prior to both VOCs) variants to evaluate disease severity and outcome and Cycle threshold values (Cts) were compared. The presence of infectious virus was determined using Vero-TMPRSS2 cells and anti-SARS-CoV-2 IgG levels were determined from upper respiratory specimen. An analysis of infection in unvaccinated and fully vaccinated populations was performed. RESULTS The Delta variant displaced the Alpha variant to constitute 88.2% of the circulating lineages in the National Capital Region by July, 2021. The Delta variant associated with increased breakthrough infections in fully vaccinated individuals that were mostly symptomatic when compared to the Alpha breakthrough infections, though it is important to note there was a significantly longer period of time between vaccination and infection with Delta infections. The recovery of infectious virus on cell culture was significantly higher with the Delta variant compared to Alpha in both vaccinated and unvaccinated groups. The impact of vaccination on reducing the recovery of infectious virus from clinical samples was only observed with Alpha variant infections but was strongly associated with low localized SARS-CoV-2 IgG for both variants. A comparison of Ct values showed a significant decrease in the Delta compared to Alpha with no significant differences between unvaccinated and vaccinated groups. CONCLUSIONS Our data indicate that the Delta variant is associated with increased infectious virus loads when compared to the Alpha variant and decreased upper respiratory antiviral IgG levels. Measures to reduce transmission in addition to increasing vaccinations rates have to be implemented to reduce Delta variant spread. FUNDING NIH/NIAID Center of Excellence in Influenza Research and Surveillance contract HHS N2772201400007C, Johns Hopkins University, Maryland department of health, Centers for Disease Control and Prevention contract 75D30121C11061.
Collapse
Affiliation(s)
- Chun Huai Luo
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology
| | - C Paul Morris
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology
- National Institute of Allergy and Infectious Disease, National Institutes of Health
| | - Jaiprasath Sachithanandham
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Adannaya Amadi
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology
| | - David Gaston
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology
| | - Maggie Li
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Nicholas J Swanson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Matthew Schwartz
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology
| | - Eili Y Klein
- Department of Emergency Medicine, Johns Hopkins School of Medicine
- Center for Disease Dynamics, Economics, and Policy, Washington DC
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Emergency Medicine, Johns Hopkins School of Medicine
| | - Heba H Mostafa
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology
| |
Collapse
|
250
|
Kraemer MUG, Hill V, Ruis C, Dellicour S, Bajaj S, McCrone JT, Baele G, Parag KV, Battle AL, Gutierrez B, Jackson B, Colquhoun R, O'Toole Á, Klein B, Vespignani A, Volz E, Faria NR, Aanensen DM, Loman NJ, du Plessis L, Cauchemez S, Rambaut A, Scarpino SV, Pybus OG. Spatiotemporal invasion dynamics of SARS-CoV-2 lineage B.1.1.7 emergence. Science 2021; 373:889-895. [PMID: 34301854 PMCID: PMC9269003 DOI: 10.1126/science.abj0113] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022]
Abstract
Understanding the causes and consequences of the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern is crucial to pandemic control yet difficult to achieve because they arise in the context of variable human behavior and immunity. We investigated the spatial invasion dynamics of lineage B.1.1.7 by jointly analyzing UK human mobility, virus genomes, and community-based polymerase chain reaction data. We identified a multistage spatial invasion process in which early B.1.1.7 growth rates were associated with mobility and asymmetric lineage export from a dominant source location, enhancing the effects of B.1.1.7's increased intrinsic transmissibility. We further explored how B.1.1.7 spread was shaped by nonpharmaceutical interventions and spatial variation in previous attack rates. Our findings show that careful accounting of the behavioral and epidemiological context within which variants of concern emerge is necessary to interpret correctly their observed relative growth rates.
Collapse
Affiliation(s)
- Moritz U G Kraemer
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil.
- Department of Zoology, University of Oxford, Oxford, UK
| | - Verity Hill
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Christopher Ruis
- Department of Zoology, University of Oxford, Oxford, UK
- Molecular Immunity Unit, Department of Medicine, Cambridge University, Cambridge, UK
| | - Simon Dellicour
- Network Science Institute, Northeastern University, Boston, USA
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Bruxelles, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Sumali Bajaj
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
- Department of Zoology, University of Oxford, Oxford, UK
| | - John T McCrone
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Guy Baele
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, UK
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Kris V Parag
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute for Disease and Emergency Analytics, Imperial College London, London, UK
| | - Anya Lindström Battle
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute for Disease and Emergency Analytics, Imperial College London, London, UK
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Bernardo Gutierrez
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
- Department of Plant Sciences, University of Oxford, Oxford, UK
- Department of Zoology, University of Oxford, Oxford, UK
| | - Ben Jackson
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Rachel Colquhoun
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Áine O'Toole
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Brennan Klein
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Network Science Institute, Northeastern University, Boston, USA
| | - Alessandro Vespignani
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Network Science Institute, Northeastern University, Boston, USA
| | - Erik Volz
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute for Disease and Emergency Analytics, Imperial College London, London, UK
| | - Nuno R Faria
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
- Department of Zoology, University of Oxford, Oxford, UK
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute for Disease and Emergency Analytics, Imperial College London, London, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - David M Aanensen
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Bruxelles, Belgium
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J Loman
- Molecular Immunity Unit, Department of Medicine, Cambridge University, Cambridge, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Louis du Plessis
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
- Department of Zoology, University of Oxford, Oxford, UK
| | - Simon Cauchemez
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Andrew Rambaut
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, Paris, France.
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Samuel V Scarpino
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium.
- Network Science Institute, Northeastern University, Boston, USA
- Vermont Complex Systems Center, University of Vermont, Burlington, USA
- Santa Fe Institute, Santa Fe, USA
| | - Oliver G Pybus
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil.
- Department of Zoology, University of Oxford, Oxford, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College London, London, UK
| |
Collapse
|