201
|
Kong Y, Sharma RB, Ly S, Stamateris RE, Jesdale WM, Alonso LC. CDKN2A/B T2D Genome-Wide Association Study Risk SNPs Impact Locus Gene Expression and Proliferation in Human Islets. Diabetes 2018; 67:872-884. [PMID: 29432124 PMCID: PMC5910004 DOI: 10.2337/db17-1055] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/29/2018] [Indexed: 12/18/2022]
Abstract
Genome-wide association studies link the CDKN2A/B locus with type 2 diabetes (T2D) risk, but mechanisms increasing risk remain unknown. The CDKN2A/B locus encodes cell cycle inhibitors p14, p15, and p16; MTAP; and ANRIL, a long noncoding RNA. The goal of this study was to determine whether CDKN2A/B T2D risk SNPs impact locus gene expression, insulin secretion, or β-cell proliferation in human islets. Islets from donors without diabetes (n = 95) were tested for SNP genotype (rs10811661, rs2383208, rs564398, and rs10757283), gene expression (p14, p15, p16, MTAP, ANRIL, PCNA, KI67, and CCND2), insulin secretion (n = 61), and β-cell proliferation (n = 47). Intriguingly, locus genes were coregulated in islets in two physically overlapping cassettes: p14-p16-ANRIL, which increased with age, and MTAP-p15, which did not. Risk alleles at rs10811661 and rs2383208 were differentially associated with expression of ANRIL, but not p14, p15, p16, or MTAP, in age-dependent fashion, such that younger homozygous risk donors had higher ANRIL expression, equivalent to older donor levels. We identified several risk SNP combinations that may impact locus gene expression, suggesting possible mechanisms by which SNPs impact locus biology. Risk allele carriers at ANRIL coding SNP rs564398 had reduced β-cell proliferation index. In conclusion, CDKN2A/B locus SNPs may impact T2D risk by modulating islet gene expression and β-cell proliferation.
Collapse
Affiliation(s)
- Yahui Kong
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Rohit B Sharma
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Socheata Ly
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Rachel E Stamateris
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - William M Jesdale
- Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA
| | - Laura C Alonso
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
202
|
Association of melatonin &MTNR1B variants with type 2 diabetes in Gujarat population. Biomed Pharmacother 2018; 103:429-434. [PMID: 29674279 DOI: 10.1016/j.biopha.2018.04.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 01/09/2023] Open
Abstract
AIM/HYPOTHESIS Melatonin is a circadian rhythm regulator and any imbalance in its levels can be related to various metabolic disorders. Melatonin and the genetic variants of Melatonin Receptor 1B (MTNR1B) are reported to be associated with Type 2 Diabetes (T2D) susceptibility. The aim of the present study was to investigate i) plasma melatonin levels ii) Single Nucleotide Polymorphisms (SNPs) of MTNR1B and iii) Genotype-phenotype correlation analysis in T2D patients. METHODS Plasma and PBMCs were separated from venous blood of 478 diabetes patients and 502 controls. Genomic DNA was isolated from PBMCs. PCR-RFLP was used for genotyping. Melatonin was estimated from plasma samples by ELISA. RESULTS Our study suggests: i) decreased plasma melatonin levels in T2D patients and, ii) association of MTNR1B rs10830963 GG genotype with increased Fasting Blood Glucose (FBG). CONCLUSION It can be concluded that reduced titer of melatonin along with altered FBG due to MTNR1B genetic variant could act as a potent risk factor towards T2D in Gujarat population.
Collapse
|
203
|
Jung S. Implications of publicly available genomic data resources in searching for therapeutic targets of obesity and type 2 diabetes. Exp Mol Med 2018; 50:1-13. [PMID: 29674722 PMCID: PMC5938056 DOI: 10.1038/s12276-018-0066-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/28/2018] [Indexed: 12/29/2022] Open
Abstract
Obesity and type 2 diabetes (T2D) are two major conditions that are related to metabolic disorders and affect a large population. Although there have been significant efforts to identify their therapeutic targets, few benefits have come from comprehensive molecular profiling. This limited availability of comprehensive molecular profiling of obesity and T2D may be due to multiple challenges, as these conditions involve multiple organs and collecting tissue samples from subjects is more difficult in obesity and T2D than in other diseases, where surgical treatments are popular choices. While there is no repository of comprehensive molecular profiling data for obesity and T2D, multiple existing data resources can be utilized to cover various aspects of these conditions. This review presents studies with available genomic data resources for obesity and T2D and discusses genome-wide association studies (GWAS), a knockout (KO)-based phenotyping study, and gene expression profiles. These studies, based on their assessed coverage and characteristics, can provide insights into how such data can be utilized to identify therapeutic targets for obesity and T2D.
Collapse
Affiliation(s)
- Sungwon Jung
- Department of Genome Medicine and Science, Gachon University School of Medicine, Incheon, Republic of Korea. .,Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Incheon, Republic of Korea.
| |
Collapse
|
204
|
Spracklen CN, Shi J, Vadlamudi S, Wu Y, Zou M, Raulerson CK, Davis JP, Zeynalzadeh M, Jackson K, Yuan W, Wang H, Shou W, Wang Y, Luo J, Lange LA, Lange EM, Popkin BM, Gordon-Larsen P, Du S, Huang W, Mohlke KL. Identification and functional analysis of glycemic trait loci in the China Health and Nutrition Survey. PLoS Genet 2018; 14:e1007275. [PMID: 29621232 PMCID: PMC5886383 DOI: 10.1371/journal.pgen.1007275] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/23/2018] [Indexed: 12/17/2022] Open
Abstract
To identify genetic contributions to type 2 diabetes (T2D) and related glycemic traits (fasting glucose, fasting insulin, and HbA1c), we conducted genome-wide association analyses (GWAS) in up to 7,178 Chinese subjects from nine provinces in the China Health and Nutrition Survey (CHNS). We examined patterns of population structure within CHNS and found that allele frequencies differed across provinces, consistent with genetic drift and population substructure. We further validated 32 previously described T2D- and glycemic trait-loci, including G6PC2 and SIX3-SIX2 associated with fasting glucose. At G6PC2, we replicated a known fasting glucose-associated variant (rs34177044) and identified a second signal (rs2232326), a low-frequency (4%), probably damaging missense variant (S324P). A variant within the lead fasting glucose-associated signal at SIX3-SIX2 co-localized with pancreatic islet expression quantitative trait loci (eQTL) for SIX3, SIX2, and three noncoding transcripts. To identify variants functionally responsible for the fasting glucose association at SIX3-SIX2, we tested five candidate variants for allelic differences in regulatory function. The rs12712928-C allele, associated with higher fasting glucose and lower transcript expression level, showed lower transcriptional activity in reporter assays and increased binding to GABP compared to the rs12712928-G, suggesting that rs12712928-C contributes to elevated fasting glucose levels by disrupting an islet enhancer, resulting in reduced gene expression. Taken together, these analyses identified multiple loci associated with glycemic traits across China, and suggest a regulatory mechanism at the SIX3-SIX2 fasting glucose GWAS locus.
Collapse
Affiliation(s)
- Cassandra N. Spracklen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jinxiu Shi
- Department of Genetics, Shanghai-MOST Key Laboratory of Heath and Disease Genomics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute, Shanghai, China
| | - Swarooparani Vadlamudi
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ying Wu
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Meng Zou
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Chelsea K. Raulerson
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - James P. Davis
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Monica Zeynalzadeh
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kayla Jackson
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Wentao Yuan
- Department of Genetics, Shanghai-MOST Key Laboratory of Heath and Disease Genomics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute, Shanghai, China
| | - Haifeng Wang
- Department of Genetics, Shanghai-MOST Key Laboratory of Heath and Disease Genomics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute, Shanghai, China
| | - Weihua Shou
- Department of Genetics, Shanghai-MOST Key Laboratory of Heath and Disease Genomics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute, Shanghai, China
| | - Ying Wang
- Department of Genetics, Shanghai-MOST Key Laboratory of Heath and Disease Genomics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute, Shanghai, China
| | - Jingchun Luo
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Leslie A. Lange
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Ethan M. Lange
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Barry M. Popkin
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Penny Gordon-Larsen
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Shufa Du
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Wei Huang
- Department of Genetics, Shanghai-MOST Key Laboratory of Heath and Disease Genomics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute, Shanghai, China
| | - Karen L. Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
205
|
Kycia I, Wolford BN, Huyghe JR, Fuchsberger C, Vadlamudi S, Kursawe R, Welch RP, Albanus RD, Uyar A, Khetan S, Lawlor N, Bolisetty M, Mathur A, Kuusisto J, Laakso M, Ucar D, Mohlke KL, Boehnke M, Collins FS, Parker SCJ, Stitzel ML. A Common Type 2 Diabetes Risk Variant Potentiates Activity of an Evolutionarily Conserved Islet Stretch Enhancer and Increases C2CD4A and C2CD4B Expression. Am J Hum Genet 2018; 102:620-635. [PMID: 29625024 DOI: 10.1016/j.ajhg.2018.02.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 02/22/2018] [Indexed: 01/17/2023] Open
Abstract
Genome-wide association studies (GWASs) and functional genomics approaches implicate enhancer disruption in islet dysfunction and type 2 diabetes (T2D) risk. We applied genetic fine-mapping and functional (epi)genomic approaches to a T2D- and proinsulin-associated 15q22.2 locus to identify a most likely causal variant, determine its direction of effect, and elucidate plausible target genes. Fine-mapping and conditional analyses of proinsulin levels of 8,635 non-diabetic individuals from the METSIM study support a single association signal represented by a cluster of 16 strongly associated (p < 10-17) variants in high linkage disequilibrium (r2 > 0.8) with the GWAS index SNP rs7172432. These variants reside in an evolutionarily and functionally conserved islet and β cell stretch or super enhancer; the most strongly associated variant (rs7163757, p = 3 × 10-19) overlaps a conserved islet open chromatin site. DNA sequence containing the rs7163757 risk allele displayed 2-fold higher enhancer activity than the non-risk allele in reporter assays (p < 0.01) and was differentially bound by β cell nuclear extract proteins. Transcription factor NFAT specifically potentiated risk-allele enhancer activity and altered patterns of nuclear protein binding to the risk allele in vitro, suggesting that it could be a factor mediating risk-allele effects. Finally, the rs7163757 proinsulin-raising and T2D risk allele (C) was associated with increased expression of C2CD4B, and possibly C2CD4A, both of which were induced by inflammatory cytokines, in human islets. Together, these data suggest that rs7163757 contributes to genetic risk of islet dysfunction and T2D by increasing NFAT-mediated islet enhancer activity and modulating C2CD4B, and possibly C2CD4A, expression in (patho)physiologic states.
Collapse
Affiliation(s)
- Ina Kycia
- Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Brooke N Wolford
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Jeroen R Huyghe
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christian Fuchsberger
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Romy Kursawe
- Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Ryan P Welch
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ricardo d'Oliveira Albanus
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Asli Uyar
- Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Shubham Khetan
- Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Nathan Lawlor
- Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Mohan Bolisetty
- Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Anubhuti Mathur
- Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Johanna Kuusisto
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
| | - Duygu Ucar
- Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Institute of Systems Genomics, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Francis S Collins
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael L Stitzel
- Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Institute of Systems Genomics, University of Connecticut Health Center, Farmington, CT 06032, USA.
| |
Collapse
|
206
|
Mahajan A, Wessel J, Willems SM, Zhao W, Robertson NR, Chu AY, Gan W, Kitajima H, Taliun D, Rayner NW, Guo X, Lu Y, Li M, Jensen RA, Hu Y, Huo S, Lohman KK, Zhang W, Cook JP, Prins BP, Flannick J, Grarup N, Trubetskoy VV, Kravic J, Kim YJ, Rybin DV, Yaghootkar H, Müller-Nurasyid M, Meidtner K, Li-Gao R, Varga TV, Marten J, Li J, Smith AV, An P, Ligthart S, Gustafsson S, Malerba G, Demirkan A, Tajes JF, Steinthorsdottir V, Wuttke M, Lecoeur C, Preuss M, Bielak LF, Graff M, Highland HM, Justice AE, Liu DJ, Marouli E, Peloso GM, Warren HR, Afaq S, Afzal S, Ahlqvist E, Almgren P, Amin N, Bang LB, Bertoni AG, Bombieri C, Bork-Jensen J, Brandslund I, Brody JA, Burtt NP, Canouil M, Chen YDI, Cho YS, Christensen C, Eastwood SV, Eckardt KU, Fischer K, Gambaro G, Giedraitis V, Grove ML, de Haan HG, Hackinger S, Hai Y, Han S, Tybjærg-Hansen A, Hivert MF, Isomaa B, Jäger S, Jørgensen ME, Jørgensen T, Käräjämäki A, Kim BJ, Kim SS, Koistinen HA, Kovacs P, Kriebel J, Kronenberg F, Läll K, Lange LA, Lee JJ, Lehne B, Li H, Lin KH, Linneberg A, Liu CT, Liu J, et alMahajan A, Wessel J, Willems SM, Zhao W, Robertson NR, Chu AY, Gan W, Kitajima H, Taliun D, Rayner NW, Guo X, Lu Y, Li M, Jensen RA, Hu Y, Huo S, Lohman KK, Zhang W, Cook JP, Prins BP, Flannick J, Grarup N, Trubetskoy VV, Kravic J, Kim YJ, Rybin DV, Yaghootkar H, Müller-Nurasyid M, Meidtner K, Li-Gao R, Varga TV, Marten J, Li J, Smith AV, An P, Ligthart S, Gustafsson S, Malerba G, Demirkan A, Tajes JF, Steinthorsdottir V, Wuttke M, Lecoeur C, Preuss M, Bielak LF, Graff M, Highland HM, Justice AE, Liu DJ, Marouli E, Peloso GM, Warren HR, Afaq S, Afzal S, Ahlqvist E, Almgren P, Amin N, Bang LB, Bertoni AG, Bombieri C, Bork-Jensen J, Brandslund I, Brody JA, Burtt NP, Canouil M, Chen YDI, Cho YS, Christensen C, Eastwood SV, Eckardt KU, Fischer K, Gambaro G, Giedraitis V, Grove ML, de Haan HG, Hackinger S, Hai Y, Han S, Tybjærg-Hansen A, Hivert MF, Isomaa B, Jäger S, Jørgensen ME, Jørgensen T, Käräjämäki A, Kim BJ, Kim SS, Koistinen HA, Kovacs P, Kriebel J, Kronenberg F, Läll K, Lange LA, Lee JJ, Lehne B, Li H, Lin KH, Linneberg A, Liu CT, Liu J, Loh M, Mägi R, Mamakou V, McKean-Cowdin R, Nadkarni G, Neville M, Nielsen SF, Ntalla I, Peyser PA, Rathmann W, Rice K, Rich SS, Rode L, Rolandsson O, Schönherr S, Selvin E, Small KS, Stančáková A, Surendran P, Taylor KD, Teslovich TM, Thorand B, Thorleifsson G, Tin A, Tönjes A, Varbo A, Witte DR, Wood AR, Yajnik P, Yao J, Yengo L, Young R, Amouyel P, Boeing H, Boerwinkle E, Bottinger EP, Chowdhury R, Collins FS, Dedoussis G, Dehghan A, Deloukas P, Ferrario MM, Ferrières J, Florez JC, Frossard P, Gudnason V, Harris TB, Heckbert SR, Howson JMM, Ingelsson M, Kathiresan S, Kee F, Kuusisto J, Langenberg C, Launer LJ, Lindgren CM, Männistö S, Meitinger T, Melander O, Mohlke KL, Moitry M, Morris AD, Murray AD, de Mutsert R, Orho-Melander M, Owen KR, Perola M, Peters A, Province MA, Rasheed A, Ridker PM, Rivadineira F, Rosendaal FR, Rosengren AH, Salomaa V, Sheu WHH, Sladek R, Smith BH, Strauch K, Uitterlinden AG, Varma R, Willer CJ, Blüher M, Butterworth AS, Chambers JC, Chasman DI, Danesh J, van Duijn C, Dupuis J, Franco OH, Franks PW, Froguel P, Grallert H, Groop L, Han BG, Hansen T, Hattersley AT, Hayward C, Ingelsson E, Kardia SLR, Karpe F, Kooner JS, Köttgen A, Kuulasmaa K, Laakso M, Lin X, Lind L, Liu Y, Loos RJF, Marchini J, Metspalu A, Mook-Kanamori D, Nordestgaard BG, Palmer CNA, Pankow JS, Pedersen O, Psaty BM, Rauramaa R, Sattar N, Schulze MB, Soranzo N, Spector TD, Stefansson K, Stumvoll M, Thorsteinsdottir U, Tuomi T, Tuomilehto J, Wareham NJ, Wilson JG, Zeggini E, Scott RA, Barroso I, Frayling TM, Goodarzi MO, Meigs JB, Boehnke M, Saleheen D, Morris AP, Rotter JI, McCarthy MI. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nat Genet 2018; 50:559-571. [PMID: 29632382 PMCID: PMC5898373 DOI: 10.1038/s41588-018-0084-1] [Show More Authors] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 01/30/2018] [Indexed: 12/22/2022]
Abstract
We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10-7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent 'false leads' with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.
Collapse
Affiliation(s)
- Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Jennifer Wessel
- Departments of Epidemiology and Medicine, Diabetes Translational Research Center, Indiana University, Indianapolis, IN, USA
| | - Sara M Willems
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Wei Zhao
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Neil R Robertson
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Audrey Y Chu
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Wei Gan
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Hidetoshi Kitajima
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel Taliun
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - N William Rayner
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Xiuqing Guo
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yingchang Lu
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Man Li
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Richard A Jensen
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, USA
| | - Yao Hu
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Shaofeng Huo
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Kurt K Lohman
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, Middlesex, UK
| | - James P Cook
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Bram Peter Prins
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Jason Flannick
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Jasmina Kravic
- Department of Clinical Sciences, Diabetes, and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
| | - Young Jin Kim
- Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Denis V Rybin
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Medicine I, University Hospital Großhadern, Ludwig-Maximilians-Universität, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Karina Meidtner
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tibor V Varga
- Department of Clinical Sciences, Lund University Diabetes Centre, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, Sweden
| | - Jonathan Marten
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Jin Li
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Albert Vernon Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Ping An
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Symen Ligthart
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Stefan Gustafsson
- Department of Medical Sciences, Molecular Epidemiology, and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Giovanni Malerba
- Section of Biology and Genetics, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Ayse Demirkan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Juan Fernandez Tajes
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Matthias Wuttke
- Institute of Genetic Epidemiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cécile Lecoeur
- CNRS, UMR 8199, Lille University, Lille Pasteur Institute, Lille, France
| | - Michael Preuss
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Marielisa Graff
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Heather M Highland
- Human Genetics Center, University of Texas Graduate School of Biomedical Sciences at Houston, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anne E Justice
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Dajiang J Liu
- Department of Public Health Sciences, Institute of Personalized Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Eirini Marouli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gina Marie Peloso
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research, Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Saima Afaq
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Shoaib Afzal
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emma Ahlqvist
- Department of Clinical Sciences, Diabetes, and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
| | - Peter Almgren
- Department of Clinical Sciences, Hypertension, and Cardiovascular Disease, Lund University, Malmö, Sweden
| | - Najaf Amin
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lia B Bang
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Alain G Bertoni
- Department of Epidemiology and Prevention, Public Health Sciences, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Cristina Bombieri
- Section of Biology and Genetics, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivan Brandslund
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Biochemistry, Vejle Hospital, Vejle, Denmark
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, USA
| | - Noël P Burtt
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Mickaël Canouil
- CNRS, UMR 8199, Lille University, Lille Pasteur Institute, Lille, France
| | - Yii-Der Ida Chen
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yoon Shin Cho
- Department of Biomedical Science, Hallym University, Chuncheon, Republic of Korea
| | | | - Sophie V Eastwood
- Institute of Cardiovascular Science, University College London, London, UK
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité, University Medicine Berlin, Berlin, Germany
| | - Krista Fischer
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Giovanni Gambaro
- Institute of Internal and Geriatric Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Megan L Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hugoline G de Haan
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sophie Hackinger
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Yang Hai
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Sohee Han
- Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Anne Tybjærg-Hansen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marie-France Hivert
- Diabetes Research Center (Diabetes Unit), Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Bo Isomaa
- Malmska Municipal Health Care Center and Hospital, Jakobstad, Finland
- Folkhälsan Research Centre, Helsinki, Finland
| | - Susanne Jäger
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Marit E Jørgensen
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- National Institute of Public Health, Southern Denmark University, Copenhagen, Denmark
| | - Torben Jørgensen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Research Centre for Prevention and Health, Capital Region of Denmark, Glostrup, Denmark
- Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Annemari Käräjämäki
- Department of Primary Health Care, Vaasa Central Hospital, Vaasa, Finland
- Diabetes Center, Vaasa Health Care Center, Vaasa, Finland
| | - Bong-Jo Kim
- Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Sung Soo Kim
- Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Heikki A Koistinen
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
- Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Peter Kovacs
- Integrated Research and Treatment (IFB) Center Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Jennifer Kriebel
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kristi Läll
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Institute of Mathematical Statistics, University of Tartu, Tartu, Estonia
| | - Leslie A Lange
- Department of Medicine, Division of Bioinformatics and Personalized Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Jung-Jin Lee
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin Lehne
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Huaixing Li
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Keng-Hung Lin
- Department of Ophthalmology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Allan Linneberg
- Research Centre for Prevention and Health, Capital Region of Denmark, Glostrup, Denmark
- Department of Clinical Experimental Research, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jun Liu
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marie Loh
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Institute of Health Sciences, University of Oulu, Oulu, Finland
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Vasiliki Mamakou
- Dromokaiteio Psychiatric Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Roberta McKean-Cowdin
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Girish Nadkarni
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matt Neville
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Sune F Nielsen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ioanna Ntalla
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Line Rode
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Olov Rolandsson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Sebastian Schönherr
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elizabeth Selvin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kerrin S Small
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
| | - Alena Stančáková
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Praveen Surendran
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Kent D Taylor
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Tanya M Teslovich
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Barbara Thorand
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Adrienne Tin
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Anke Tönjes
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Anette Varbo
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Danish Diabetes Academy, Odense, Denmark
| | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Pranav Yajnik
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jie Yao
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Loïc Yengo
- CNRS, UMR 8199, Lille University, Lille Pasteur Institute, Lille, France
| | - Robin Young
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
| | - Philippe Amouyel
- Institut Pasteur de Lille, INSERM U1167, Université Lille Nord de France, Lille, France
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Erwin P Bottinger
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rajiv Chowdhury
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Francis S Collins
- Genome Technology Branch, National Human Genome Research Institute, US National Institutes of Health, Bethesda, MD, USA
| | - George Dedoussis
- Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marco M Ferrario
- Research Centre on Epidemiology and Preventive Medicine (EPIMED), Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Jean Ferrières
- INSERM, UMR 1027, Toulouse, France
- Department of Cardiology, Toulouse University School of Medicine, Rangueil Hospital, Toulouse, France
| | - Jose C Florez
- Diabetes Research Center (Diabetes Unit), Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, US National Institutes of Health, Bethesda, MD, USA
| | - Susan R Heckbert
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, USA
| | - Joanna M M Howson
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Sekar Kathiresan
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Frank Kee
- UKCRC Centre of Excellence for Public Health (NI), Queens University of Belfast, Belfast, UK
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, US National Institutes of Health, Bethesda, MD, USA
| | - Cecilia M Lindgren
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Big Data Institute, Li Ka Shing Centre For Health Information and Discovery, University of Oxford, Oxford, UK
| | - Satu Männistö
- National Institute for Health and Welfare, Helsinki, Finland
| | - Thomas Meitinger
- Institute of Human Genetics, Technische Universität München, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Olle Melander
- Department of Clinical Sciences, Hypertension, and Cardiovascular Disease, Lund University, Malmö, Sweden
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Marie Moitry
- Department of Epidemiology and Public Health, University of Strasbourg, Strasbourg, France
- Department of Public Health, University Hospital of Strasbourg, Strasbourg, France
| | - Andrew D Morris
- Clinical Research Centre, Centre for Molecular Medicine, Ninewells Hospital and Medical School, Dundee, UK
- Usher Institute to the Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Alison D Murray
- Aberdeen Biomedical Imaging Centre, School of Medicine, Medical Sciences, and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marju Orho-Melander
- Department of Clinical Sciences, Diabetes, and Cardiovascular Disease, Genetic Epidemiology, Lund University, Malmö, Sweden
| | - Katharine R Owen
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Markus Perola
- National Institute for Health and Welfare, Helsinki, Finland
- Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Annette Peters
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael A Province
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Asif Rasheed
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | - Paul M Ridker
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Fernando Rivadineira
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anders H Rosengren
- Department of Clinical Sciences, Diabetes, and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Wayne H-H Sheu
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- National Yang-Ming University, School of Medicine, Taipei, Taiwan
- National Defense Medical Center, School of Medicine, Taipei, Taiwan
| | - Rob Sladek
- McGill University and Génome Québec Innovation Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Blair H Smith
- Division of Population Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Informatics, Biometry, and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - André G Uitterlinden
- Department of Medical Sciences, Molecular Epidemiology, and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rohit Varma
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Blüher
- Integrated Research and Treatment (IFB) Center Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Adam S Butterworth
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - John Campbell Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, Middlesex, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
| | - Daniel I Chasman
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - John Danesh
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
- British Heart Foundation, Cambridge Centre of Excellence, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Cornelia van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Josée Dupuis
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Paul W Franks
- Department of Clinical Sciences, Lund University Diabetes Centre, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, Sweden
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| | - Philippe Froguel
- CNRS, UMR 8199, Lille University, Lille Pasteur Institute, Lille, France
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, London, UK
| | - Harald Grallert
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Ludwig-Maximillians University Munich, Munich, Germany
- Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München, Technical University of Munich, Munich, Germany
| | - Leif Groop
- Department of Clinical Sciences, Diabetes, and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
- Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Bok-Ghee Han
- Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | | | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Erik Ingelsson
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medical Sciences, Molecular Epidemiology, and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Jaspal Singh Kooner
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, Middlesex, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
- National Heart and Lung Institute, Cardiovascular Sciences, Hammersmith Campus, Imperial College London, London, UK
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kari Kuulasmaa
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Xu Lin
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Public Health Sciences, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Ruth J F Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan Marchini
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Statistics, University of Oxford, Oxford, UK
| | | | - Dennis Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Colin N A Palmer
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - James S Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Rainer Rauramaa
- Foundation for Research in Health, Exercise, and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Nicole Soranzo
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Hematology, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Timothy D Spector
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
| | - Kari Stefansson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
| | - Michael Stumvoll
- Divisions of Endocrinology and Nephrology, University Hospital Leipzig, Leipzig, Germany
| | - Unnur Thorsteinsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
| | - Tiinamaija Tuomi
- Folkhälsan Research Centre, Helsinki, Finland
- Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
- Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Jaakko Tuomilehto
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
- Dasman Diabetes Institute, Dasman, Kuwait
- Department of Neuroscience and Preventive Medicine, Danube University Krems, Krems, Austria
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Eleftheria Zeggini
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Robert A Scott
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Inês Barroso
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - James B Meigs
- General Medicine Division, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Danish Saleheen
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | - Andrew P Morris
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Biostatistics, University of Liverpool, Liverpool, UK
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Jerome I Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA.
- Department of Medicine, Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA.
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK.
| |
Collapse
|
207
|
Abstract
BACKGROUND Obesity and related factors have been implicated as possible aetiological factors for the development of glioma in epidemiological observation studies. We used genetic markers in a Mendelian randomisation framework to examine whether obesity-related traits influence glioma risk. This methodology reduces bias from confounding and is not affected by reverse causation. METHODS Genetic instruments were identified for 10 key obesity-related risk factors, and their association with glioma risk was evaluated using data from a genome-wide association study of 12,488 glioma patients and 18,169 controls. The estimated odds ratio of glioma associated with each of the genetically defined obesity-related traits was used to infer evidence for a causal relationship. RESULTS No convincing association with glioma risk was seen for genetic instruments for body mass index, waist-to-hip ratio, lipids, type-2 diabetes, hyperglycaemia or insulin resistance. Similarly, we found no evidence to support a relationship between obesity-related traits with subtypes of glioma-glioblastoma (GBM) or non-GBM tumours. CONCLUSIONS This study provides no evidence to implicate obesity-related factors as causes of glioma.
Collapse
|
208
|
Cibrián Uhalte E, Wilkinson JM, Southam L, Zeggini E. Pathways to understanding the genomic aetiology of osteoarthritis. Hum Mol Genet 2018; 26:R193-R201. [PMID: 28977450 PMCID: PMC5886472 DOI: 10.1093/hmg/ddx302] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis is a common, complex disease with no curative therapy. In this review, we summarize current knowledge on disease aetiopathogenesis and outline genetics and genomics approaches that are helping catalyse a much-needed improved understanding of the biological underpinning of disease development and progression.
Collapse
Affiliation(s)
- Elena Cibrián Uhalte
- Human Genetics and Cellular Genetics, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Jeremy Mark Wilkinson
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
| | - Lorraine Southam
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.,Human Genetics, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | | |
Collapse
|
209
|
Fex M, Nicholas LM, Vishnu N, Medina A, Sharoyko VV, Nicholls DG, Spégel P, Mulder H. The pathogenetic role of β-cell mitochondria in type 2 diabetes. J Endocrinol 2018; 236:R145-R159. [PMID: 29431147 DOI: 10.1530/joe-17-0367] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/15/2018] [Indexed: 12/17/2022]
Abstract
Mitochondrial metabolism is a major determinant of insulin secretion from pancreatic β-cells. Type 2 diabetes evolves when β-cells fail to release appropriate amounts of insulin in response to glucose. This results in hyperglycemia and metabolic dysregulation. Evidence has recently been mounting that mitochondrial dysfunction plays an important role in these processes. Monogenic dysfunction of mitochondria is a rare condition but causes a type 2 diabetes-like syndrome owing to β-cell failure. Here, we describe novel advances in research on mitochondrial dysfunction in the β-cell in type 2 diabetes, with a focus on human studies. Relevant studies in animal and cell models of the disease are described. Transcriptional and translational regulation in mitochondria are particularly emphasized. The role of metabolic enzymes and pathways and their impact on β-cell function in type 2 diabetes pathophysiology are discussed. The role of genetic variation in mitochondrial function leading to type 2 diabetes is highlighted. We argue that alterations in mitochondria may be a culprit in the pathogenetic processes culminating in type 2 diabetes.
Collapse
Affiliation(s)
- Malin Fex
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Lisa M Nicholas
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Neelanjan Vishnu
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Anya Medina
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Vladimir V Sharoyko
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - David G Nicholls
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Peter Spégel
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
- Department of ChemistryCenter for Analysis and Synthesis, Lund University, Sweden
| | - Hindrik Mulder
- Department of Clinical Sciences in MalmöUnit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
210
|
van der Kemp J, van der Schouw YT, Asselbergs FW, Onland-Moret NC. Women-specific risk factors for heart failure: A genetic approach. Maturitas 2018; 109:104-111. [DOI: 10.1016/j.maturitas.2017.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/22/2017] [Accepted: 12/29/2017] [Indexed: 02/07/2023]
|
211
|
Tansey KE, Cameron D, Hill MJ. Genetic risk for Alzheimer's disease is concentrated in specific macrophage and microglial transcriptional networks. Genome Med 2018; 10:14. [PMID: 29482603 PMCID: PMC5828245 DOI: 10.1186/s13073-018-0523-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/14/2018] [Indexed: 12/13/2022] Open
Abstract
Background Genome-wide association studies of Alzheimer’s disease (AD) have identified a number of significant risk loci, the majority of which lie in non-coding regions of the genome. The lack of causal alleles and considerable polygenicity remains a significant barrier to translation into mechanistic understanding. This includes identifying causal variants and the cell/tissue types in which they operate. A fuller understanding of the cell types and transcriptional networks involved in AD genetic risk mechanisms will provide important insights into pathogenesis. Methods We assessed the significance of the overlap between genome-wide significant AD risk variants and sites of open chromatin from data sets representing diverse tissue types. We then focussed on macrophages and microglia to investigate the role of open chromatin sites containing motifs for specific transcription factors. Partitioned heritability using LDscore regression was used to investigate the contribution of specific macrophage and microglia transcription factor motif-containing open chromatin sites to the heritability of AD. Results AD risk single nucleotide polymorphisms (SNPs) are preferentially located at sites of open chromatin in immune cells, particularly monocytes (z score = 4.43; corrected P = 5.88 × 10− 3). Similar enrichments are observed for macrophages (z score = 4.10; corrected P < 2.40 × 10− 3) and microglia (z score = 4.34, corrected P = 0.011). In both macrophages and microglia, AD risk variants are enriched at a subset of open chromatin sites that contain DNA binding motifs for specific transcription factors, e.g. SPI1 and MEF2. Genetic variation at many of these motif-containing sites also mediate a substantial proportion of AD heritability, with SPI1-containing sites capturing the majority of the common variant SNP-chip heritability (microglia enrichment = 16.28, corrected enrichment P = 0.0044). Conclusions AD risk alleles plausibly operate in immune cells, including microglia, and are concentrated in specific transcriptional networks. Combined with primary genetic association results, the SPI1 and MEF2 transcriptional networks appear central to AD risk mechanisms. Investigation of transcription factors targeting AD risk SNP associated regulatory elements could provide powerful insights into the molecular processes affected by AD polygenic risk. More broadly, our findings support a model of polygenic disease risk that arises from variants located in specific transcriptional networks. Electronic supplementary material The online version of this article (10.1186/s13073-018-0523-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katherine E Tansey
- Core Bioinformatics and Statistics Team, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Darren Cameron
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Matthew J Hill
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK. .,UK Dementia Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
212
|
Zhou D, Zhang D, Sun X, Li Z, Ni Y, Shan Z, Li H, Liu C, Zhang S, Liu Y, Zheng R, Pan F, Zhu Y, Shi Y, Lai M. A novel variant associated with HDL-C levels by modifying DAGLB expression levels: An annotation-based genome-wide association study. Eur J Hum Genet 2018; 26:838-847. [PMID: 29476167 DOI: 10.1038/s41431-018-0108-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 12/10/2017] [Accepted: 01/23/2018] [Indexed: 11/09/2022] Open
Abstract
Although numbers of genome-wide association studies (GWAS) have been performed for serum lipid levels, limited heritability has been explained. Studies showed that combining data from GWAS and expression quantitative trait loci (eQTLs) signals can both enhance the discovery of trait-associated SNPs and gain a better understanding of the mechanism. We performed an annotation-based, multistage genome-wide screening for serum-lipid-level-associated loci in totally 6863 Han Chinese. A serum high-density lipoprotein cholesterol (HDL-C) associated variant rs1880118 (hg19 chr7:g. 6435220G>C) was replicated (Pcombined = 1.4E-10). rs1880118 was associated with DAGLB (diacylglycerol lipase, beta) expression levels in subcutaneous adipose tissue (P = 5.9E-42) and explained 47.7% of the expression variance. After the replication, an active segment covering variants tagged by rs1880118 near 5' of DAGLB was annotated using histone modification and transcription factor binding signals. The luciferase report assay revealed that the segment containing the minor alleles showed increased transcriptional activity compared with segment contains the major alleles, which was consistent with the eQTL analyses. The expression-trait association tests indicated the association between the DAGLB and serum HDL-C levels using gene-based approaches called "TWAS" (P = 3.0E-8), "SMR" (P = 1.1E-4), and "Sherlock" (P = 1.6E-6). To summarize, we identified a novel HDL-C-associated variant which explained nearly half of the expression variance of DAGLB. Integrated analyses established a genotype-gene-phenotype three-way association and expanded our knowledge of DAGLB in lipid metabolism.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Epidemiology & Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang, 310058, China.,Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Dandan Zhang
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Xiaohui Sun
- Department of Epidemiology & Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang, 310058, China
| | - Zhiqiang Li
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, 266000, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yaqin Ni
- Department of Epidemiology & Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang, 310058, China
| | - Zhongyan Shan
- The Endocrine Institute and Liaoning Provincial Key Laboratory of Endocrine Diseases, Department of Endocrinology and Metabolism, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Hong Li
- Department of Endocrinology, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, China
| | - Chengguo Liu
- Putuo District People's Hospital, Zhoushan, Zhejiang, 316100, China
| | - Shuai Zhang
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Yi Liu
- Department of Epidemiology & Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang, 310058, China
| | - Ruizhi Zheng
- Department of Epidemiology & Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang, 310058, China
| | - Feixia Pan
- Department of Epidemiology & Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang, 310058, China
| | - Yimin Zhu
- Department of Epidemiology & Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang, 310058, China.
| | - Yongyong Shi
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, 266000, China. .,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China. .,Department of Psychiatry, The First Teaching Hospital of Xinjiang Medical University, Urumqi, 830000, China.
| | - Maode Lai
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China. .,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
213
|
Xia Q, Lu S, Ostrovsky J, McCormack SE, Falk MJ, Grant SFA. PARP-1 Inhibition Rescues Short Lifespan in Hyperglycemic C. Elegans And Improves GLP-1 Secretion in Human Cells. Aging Dis 2018; 9:17-30. [PMID: 29392078 PMCID: PMC5772855 DOI: 10.14336/ad.2017.0230] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/02/2017] [Indexed: 01/12/2023] Open
Abstract
TCF7L2 is located at one of the most strongly associated type 2 diabetes loci reported to date. We previously reported that the most abundant member of a specific protein complex to bind across the presumed causal variant at this locus, rs7903146, was poly [ADP-ribose] polymerase type 1 (PARP-1). We analyzed the impact of PARP-1 inhibition on C. elegans health in the setting of hyperglycemia and on glucose-stimulated GLP-1 secretion in human intestinal cells. Given that high glucose concentrations progressively shorten the lifespan of C. elegans, in part by impacting key well-conserved insulin-modulated signaling pathways, we investigated the effect of PARP-1 inhibition with Olaparib on the lifespan of C. elegans nematodes under varying hyperglycemic conditions. Subsequently, we investigated whether Olaparib treatment had any effect on glucose-stimulated GLP-1 secretion in the human NCI-H716 intestinal cell line, a model system for the investigation of enteroendocrine function. Treatment with 100uM Olaparib in nematodes exposed to high concentrations of glucose led to significant lifespan rescue. The beneficial lifespan effect of Olaparib appeared to require both PARP-1 and TCF7L2, since treatment had no effect in hyperglycemic conditions in knock-out worm strains for either of these homologs. Further investigation using the NCI-H716 cells revealed that Olaparib significantly enhanced secretion of the incretin, GLP-1, plus the gene expression of TCF7L2, GCG and PC1. These data from studies in both C. elegans and a human cell line suggest that PARP-1 inhibition offers a novel therapeutic avenue to treat type 2 diabetes.
Collapse
Affiliation(s)
- Qianghua Xia
- 1Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sumei Lu
- 1Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Julian Ostrovsky
- 1Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shana E McCormack
- 2Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,3Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,4Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marni J Falk
- 1Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,3Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Struan F A Grant
- 1Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,2Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,3Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,4Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
214
|
Re-analysis of public genetic data reveals a rare X-chromosomal variant associated with type 2 diabetes. Nat Commun 2018; 9:321. [PMID: 29358691 PMCID: PMC5778074 DOI: 10.1038/s41467-017-02380-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/24/2017] [Indexed: 12/20/2022] Open
Abstract
The reanalysis of existing GWAS data represents a powerful and cost-effective opportunity to gain insights into the genetics of complex diseases. By reanalyzing publicly available type 2 diabetes (T2D) genome-wide association studies (GWAS) data for 70,127 subjects, we identify seven novel associated regions, five driven by common variants (LYPLAL1, NEUROG3, CAMKK2, ABO, and GIP genes), one by a low-frequency (EHMT2), and one driven by a rare variant in chromosome Xq23, rs146662075, associated with a twofold increased risk for T2D in males. rs146662075 is located within an active enhancer associated with the expression of Angiotensin II Receptor type 2 gene (AGTR2), a modulator of insulin sensitivity, and exhibits allelic specific activity in muscle cells. Beyond providing insights into the genetics and pathophysiology of T2D, these results also underscore the value of reanalyzing publicly available data using novel genetic resources and analytical approaches. Genome-wide association studies have uncovered several loci associated with diabetes risk. Here, the authors reanalyse public type 2 diabetes GWAS data to fine map 50 known loci and identify seven new ones, including one near ATGR2 on the X-chromosome that doubles the risk of diabetes in men.
Collapse
|
215
|
Mägi R, Horikoshi M, Sofer T, Mahajan A, Kitajima H, Franceschini N, McCarthy MI, Morris AP. Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. Hum Mol Genet 2018; 26:3639-3650. [PMID: 28911207 PMCID: PMC5755684 DOI: 10.1093/hmg/ddx280] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/13/2017] [Indexed: 01/08/2023] Open
Abstract
Trans-ethnic meta-analysis of genome-wide association studies (GWAS) across diverse populations can increase power to detect complex trait loci when the underlying causal variants are shared between ancestry groups. However, heterogeneity in allelic effects between GWAS at these loci can occur that is correlated with ancestry. Here, a novel approach is presented to detect SNP association and quantify the extent of heterogeneity in allelic effects that is correlated with ancestry. We employ trans-ethnic meta-regression to model allelic effects as a function of axes of genetic variation, derived from a matrix of mean pairwise allele frequency differences between GWAS, and implemented in the MR-MEGA software. Through detailed simulations, we demonstrate increased power to detect association for MR-MEGA over fixed- and random-effects meta-analysis across a range of scenarios of heterogeneity in allelic effects between ethnic groups. We also demonstrate improved fine-mapping resolution, in loci containing a single causal variant, compared to these meta-analysis approaches and PAINTOR, and equivalent performance to MANTRA at reduced computational cost. Application of MR-MEGA to trans-ethnic GWAS of kidney function in 71,461 individuals indicates stronger signals of association than fixed-effects meta-analysis when heterogeneity in allelic effects is correlated with ancestry. Application of MR-MEGA to fine-mapping four type 2 diabetes susceptibility loci in 22,086 cases and 42,539 controls highlights: (i) strong evidence for heterogeneity in allelic effects that is correlated with ancestry only at the index SNP for the association signal at the CDKAL1 locus; and (ii) 99% credible sets with six or fewer variants for five distinct association signals.
Collapse
Affiliation(s)
- Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Momoko Horikoshi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.,Laboratory for Endocrinology, Metabolism and Kidney Diseases, RIKEN, Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tamar Sofer
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Hidetoshi Kitajima
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | | | - Andrew P Morris
- Estonian Genome Center, University of Tartu, Tartu, Estonia.,Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.,Department of Biostatistics.,Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| |
Collapse
|
216
|
Li L, Pan Z, Yang S, Shan W, Yang Y. Identification of key gene pathways and coexpression networks of islets in human type 2 diabetes. Diabetes Metab Syndr Obes 2018; 11:553-563. [PMID: 30319280 PMCID: PMC6167975 DOI: 10.2147/dmso.s178894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PURPOSE The number of people with type 2 diabetes (T2D) is growing rapidly worldwide. Islet β-cell dysfunction and failure are the main causes of T2D pathological processes. The aim of this study was to elucidate the underlying pathways and coexpression networks in T2D islets. MATERIALS AND METHODS We analyzed the differentially expressed genes (DEGs) in the data set GSE41762, which contained 57 nondiabetic and 20 diabetic samples, and developed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Protein-protein interaction (PPI) network, the modules from the PPI network, and the gene annotation enrichment of modules were analyzed as well. Moreover, a weighted correlation network analysis (WGCNA) was applied to screen critical gene modules and coexpression networks and explore the biological significance. RESULTS We filtered 957 DEGs in T2D islets. Then GO and KEGG analyses identified that key pathways like inflammatory response, type B pancreatic cell differentiation, and calcium ion-dependent exocytosis were involved in human T2D. Three significant modules were filtered from the PPI network. Ribosome biogenesis, extrinsic apoptotic signaling pathway, and membrane depolarization during action potential were associated with the modules, respectively. Furthermore, coexpression network analysis by WGCNA identified 13 distinct gene modules of T2D islets and revealed four modules, which were strongly correlated with T2D and T2D biomarker hemoglobin A1c (HbA1c). Functional annotation showed that these modules mainly enriched KEGG pathways such as NF-kappa B signaling pathway, tumor necrosis factor signaling pathway, cyclic adenosine monophosphate signaling pathway, and peroxisome proliferators-activated receptor signaling pathway. CONCLUSION The results provide potential gene pathways and underlying molecular mechanisms for the prevention, diagnosis, and treatment of T2D.
Collapse
Affiliation(s)
- Lu Li
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China,
| | - Zongfu Pan
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Si Yang
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China,
| | - Wenya Shan
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China,
| | - Yanyan Yang
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China,
| |
Collapse
|
217
|
Thurner M, van de Bunt M, Torres JM, Mahajan A, Nylander V, Bennett AJ, Gaulton KJ, Barrett A, Burrows C, Bell CG, Lowe R, Beck S, Rakyan VK, Gloyn AL, McCarthy MI. Integration of human pancreatic islet genomic data refines regulatory mechanisms at Type 2 Diabetes susceptibility loci. eLife 2018; 7:31977. [PMID: 29412141 PMCID: PMC5828664 DOI: 10.7554/elife.31977] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/06/2018] [Indexed: 12/30/2022] Open
Abstract
Human genetic studies have emphasised the dominant contribution of pancreatic islet dysfunction to development of Type 2 Diabetes (T2D). However, limited annotation of the islet epigenome has constrained efforts to define the molecular mechanisms mediating the, largely regulatory, signals revealed by Genome-Wide Association Studies (GWAS). We characterised patterns of chromatin accessibility (ATAC-seq, n = 17) and DNA methylation (whole-genome bisulphite sequencing, n = 10) in human islets, generating high-resolution chromatin state maps through integration with established ChIP-seq marks. We found enrichment of GWAS signals for T2D and fasting glucose was concentrated in subsets of islet enhancers characterised by open chromatin and hypomethylation, with the former annotation predominant. At several loci (including CDC123, ADCY5, KLHDC5) the combination of fine-mapping genetic data and chromatin state enrichment maps, supplemented by allelic imbalance in chromatin accessibility pinpointed likely causal variants. The combination of increasingly-precise genetic and islet epigenomic information accelerates definition of causal mechanisms implicated in T2D pathogenesis.
Collapse
Affiliation(s)
- Matthias Thurner
- The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom,Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
| | - Martijn van de Bunt
- The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom,Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
| | - Jason M Torres
- The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
| | - Anubha Mahajan
- The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
| | - Vibe Nylander
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
| | - Amanda J Bennett
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
| | - Kyle J Gaulton
- Department of PediatricsUniversity of California, San DiegoSan DiegoUnited States
| | - Amy Barrett
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
| | - Carla Burrows
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
| | - Christopher G Bell
- Department of Twin Research and Genetic EpidemiologyKings College LondonLondonUnited Kingdom,MRC Lifecourse Epidemiology UnitUniversity of SouthamptonSouthamptonUnited Kingdom
| | - Robert Lowe
- Centre for Genomics and Child Health, Blizard InstituteBarts and The London School of Medicine and DentistryLondonUnited Kingdom
| | - Stephan Beck
- Department of Cancer Biology, UCL Cancer InstituteUniversity College LondonLondonUnited Kingdom
| | - Vardhman K Rakyan
- Centre for Genomics and Child Health, Blizard InstituteBarts and The London School of Medicine and DentistryLondonUnited Kingdom
| | - Anna L Gloyn
- The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom,Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom,Oxford NIHR Biomedical Research CentreChurchill HospitalOxfordUnited Kingdom
| | - Mark I McCarthy
- The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom,Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom,Oxford NIHR Biomedical Research CentreChurchill HospitalOxfordUnited Kingdom
| |
Collapse
|
218
|
Perelis M, Ramsey KM, Marcheva B, Bass J. Circadian Transcription from Beta Cell Function to Diabetes Pathophysiology. J Biol Rhythms 2017; 31:323-36. [PMID: 27440914 DOI: 10.1177/0748730416656949] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mammalian circadian clock plays a central role in the temporal coordination of physiology across the 24-h light-dark cycle. A major function of the clock is to maintain energy constancy in anticipation of alternating periods of fasting and feeding that correspond with sleep and wakefulness. While it has long been recognized that humans exhibit robust variation in glucose tolerance and insulin sensitivity across the sleep-wake cycle, experimental genetic analysis has now revealed that the clock transcription cycle plays an essential role in insulin secretion and metabolic function within pancreatic beta cells. This review addresses how studies of the beta cell clock may elucidate the etiology of subtypes of diabetes associated with circadian and sleep cycle disruption, in addition to more general forms of the disease.
Collapse
Affiliation(s)
- Mark Perelis
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kathryn Moynihan Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Biliana Marcheva
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
219
|
Two novel susceptibility loci for type 2 diabetes mellitus identified by longitudinal exome-wide association studies in a Japanese population. Genomics 2017; 111:34-42. [PMID: 29273463 DOI: 10.1016/j.ygeno.2017.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/13/2017] [Accepted: 12/17/2017] [Indexed: 12/14/2022]
Abstract
Recent genome-wide association studies identified genetic variants that confer susceptibility to type 2 diabetes mellitus (T2DM). However, few longitudinal genome-wide association studies of this metabolic disorder have been reported to date. Therefore, we performed a longitudinal exome-wide association study of T2DM, using 24,579 single nucleotide polymorphisms (SNPs) and repeated measurements from 6022 Japanese individuals. The generalized estimating equation model was applied to test relations of SNPs to three T2DM-related parameters: prevalence of T2DM, fasting plasma glucose level, and blood glycosylated hemoglobin content. Three SNPs that passed quality control were significantly (P<2.26×10-7) associated with two of the three T2DM-related parameters in additive and recessive models. Of the three SNPs, rs6414624 in EVC and rs78338345 in GGA3 were novel susceptibility loci for T2DM. In the present study, the SNP of GGA3 was predicted to be a genetic variant whose minor allele frequency has recently increased in East Asia.
Collapse
|
220
|
Mercader JM, Florez JC. The Genetic Basis of Type 2 Diabetes in Hispanics and Latin Americans: Challenges and Opportunities. Front Public Health 2017; 5:329. [PMID: 29376044 PMCID: PMC5763127 DOI: 10.3389/fpubh.2017.00329] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/22/2017] [Indexed: 12/29/2022] Open
Abstract
Type 2 diabetes (T2D) affects 415 million people worldwide, and has a much higher prevalence in Hispanics (16.9%), compared to non-Hispanic whites (10.2%). Genome-wide association studies and whole-genome and whole-exome sequencing studies have discovered more than 100 genetic regions associated with modified risk for T2D. However, the identified genetic factors explain a very small fraction of the estimated heritability. Until recently, little attention has been put in studying other non European populations that suffer from a higher burden of T2D, such as Hispanics/Latinos. In the past few years, genetic studies in Hispanic populations have started to provide new insights into the genetic architecture of T2D in this ancestry group. Of note, several genetic variants that are absent or very rare in non-Hispanic populations but more common in Hispanics have shown from moderate to strong association with T2D and have provided new insights into the biology of T2D, which may be ultimately useful for developing novel therapeutic strategies applicable to all populations. Studying diverse populations can also improve the ability to find the causal variants in known T2D loci by a multi-ancestry fine-mapping approach, which leverages the different patterns of linkage disequilibrium between the causal and the ascertained genetic variants. In this mini-review, we summarize the main genetic findings discovered in Hispanics and discuss the limitations and challenges of performing genetic studies in these populations. Finally, we present possible next steps to make studies in Latino populations more valuable in providing a deeper understanding of T2D and anticipate their future application to the development of predictive and preventive medicine and personalized therapies.
Collapse
Affiliation(s)
- Josep M Mercader
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, United States.,Diabetes Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Jose C Florez
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, United States.,Diabetes Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
221
|
Ning Z, Lee Y, Joshi PK, Wilson JF, Pawitan Y, Shen X. A Selection Operator for Summary Association Statistics Reveals Allelic Heterogeneity of Complex Traits. Am J Hum Genet 2017; 101:903-912. [PMID: 29198721 PMCID: PMC5812891 DOI: 10.1016/j.ajhg.2017.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/28/2017] [Indexed: 02/04/2023] Open
Abstract
In recent years, as a secondary analysis in genome-wide association studies (GWASs), conditional and joint multiple-SNP analysis (GCTA-COJO) has been successful in allowing the discovery of additional association signals within detected loci. This suggests that many loci mapped in GWASs harbor more than a single causal variant. In order to interpret the underlying mechanism regulating a complex trait of interest in each discovered locus, researchers must assess the magnitude of allelic heterogeneity within the locus. We developed a penalized selection operator for jointly analyzing multiple variants (SOJO) within each mapped locus on the basis of LASSO (least absolute shrinkage and selection operator) regression derived from summary association statistics. We found that, compared to stepwise conditional multiple-SNP analysis, SOJO provided better sensitivity and specificity in predicting the number of alleles associated with complex traits in each locus. SOJO suggested causal variants potentially missed by GCTA-COJO. Compared to using top variants from genome-wide significant loci in GWAS, using SOJO increased the proportion of variance prediction for height by 65% without additional discovery samples or additional loci in the genome. Our empirical results indicate that human height is not only a highly polygenic trait, but also has high allelic heterogeneity within its established hundreds of loci.
Collapse
|
222
|
Liu DJ, Peloso GM, Yu H, Butterworth AS, Wang X, Mahajan A, Saleheen D, Emdin C, Alam D, Alves AC, Amouyel P, di Angelantonio E, Arveiler D, Assimes TL, Auer PL, Baber U, Ballantyne CM, Bang LE, Benn M, Bis JC, Boehnke M, Boerwinkle E, Bork-Jensen J, Bottinger EP, Brandslund I, Brown M, Busonero F, Caulfield MJ, Chambers JC, Chasman DI, Chen YE, Chen YDI, Chowdhury R, Christensen C, Chu AY, Connell JM, Cucca F, Cupples LA, Damrauer SM, Davies G, Deary IJ, Dedoussis G, Denny JC, Dominiczak A, Dubé MP, Ebeling T, Eiriksdottir G, Esko T, Farmaki AE, Feitosa MF, Ferrario M, Ferrieres J, Ford I, Fornage M, Franks PW, Frayling TM, Frikke-Schmidt R, Fritsche L, Frossard P, Fuster V, Ganesh SK, Gao W, Garcia ME, Gieger C, Giulianini F, Goodarzi MO, Grallert H, Grarup N, Groop L, Grove ML, Gudnason V, Hansen T, Harris TB, Hayward C, Hirschhorn JN, Holmen OL, Huffman J, Huo Y, Hveem K, Jabeen S, Jackson AU, Jakobsdottir J, Jarvelin MR, Jensen GB, Jørgensen ME, Jukema JW, Justesen JM, Kamstrup PR, Kanoni S, Karpe F, Kee F, Khera AV, Klarin D, Koistinen HA, Kooner JS, Kooperberg C, Kuulasmaa K, Kuusisto J, Laakso M, Lakka T, et alLiu DJ, Peloso GM, Yu H, Butterworth AS, Wang X, Mahajan A, Saleheen D, Emdin C, Alam D, Alves AC, Amouyel P, di Angelantonio E, Arveiler D, Assimes TL, Auer PL, Baber U, Ballantyne CM, Bang LE, Benn M, Bis JC, Boehnke M, Boerwinkle E, Bork-Jensen J, Bottinger EP, Brandslund I, Brown M, Busonero F, Caulfield MJ, Chambers JC, Chasman DI, Chen YE, Chen YDI, Chowdhury R, Christensen C, Chu AY, Connell JM, Cucca F, Cupples LA, Damrauer SM, Davies G, Deary IJ, Dedoussis G, Denny JC, Dominiczak A, Dubé MP, Ebeling T, Eiriksdottir G, Esko T, Farmaki AE, Feitosa MF, Ferrario M, Ferrieres J, Ford I, Fornage M, Franks PW, Frayling TM, Frikke-Schmidt R, Fritsche L, Frossard P, Fuster V, Ganesh SK, Gao W, Garcia ME, Gieger C, Giulianini F, Goodarzi MO, Grallert H, Grarup N, Groop L, Grove ML, Gudnason V, Hansen T, Harris TB, Hayward C, Hirschhorn JN, Holmen OL, Huffman J, Huo Y, Hveem K, Jabeen S, Jackson AU, Jakobsdottir J, Jarvelin MR, Jensen GB, Jørgensen ME, Jukema JW, Justesen JM, Kamstrup PR, Kanoni S, Karpe F, Kee F, Khera AV, Klarin D, Koistinen HA, Kooner JS, Kooperberg C, Kuulasmaa K, Kuusisto J, Laakso M, Lakka T, Langenberg C, Langsted A, Launer LJ, Lauritzen T, Liewald DCM, Lin LA, Linneberg A, Loos RJ, Lu Y, Lu X, Mägi R, Malarstig A, Manichaikul A, Manning AK, Mäntyselkä P, Marouli E, Masca NGD, Maschio A, Meigs JB, Melander O, Metspalu A, Morris AP, Morrison AC, Mulas A, Müller-Nurasyid M, Munroe PB, Neville MJ, Nielsen JB, Nielsen SF, Nordestgaard BG, Ordovas JM, Mehran R, O’Donnell CJ, Orho-Melander M, Molony CM, Muntendam P, Padmanabhan S, Palmer CNA, Pasko D, Patel AP, Pedersen O, Perola M, Peters A, Pisinger C, Pistis G, Polasek O, Poulter N, Psaty BM, Rader DJ, Rasheed A, Rauramaa R, Reilly D, Reiner AP, Renström F, Rich SS, Ridker PM, Rioux JD, Robertson NR, Roden DM, Rotter JI, Rudan I, Salomaa V, Samani NJ, Sanna S, Sattar N, Schmidt EM, Scott RA, Sever P, Sevilla RS, Shaffer CM, Sim X, Sivapalaratnam S, Small KS, Smith AV, Smith BH, Somayajula S, Southam L, Spector TD, Speliotes EK, Starr JM, Stirrups KE, Stitziel N, Strauch K, Stringham HM, Surendran P, Tada H, Tall AR, Tang H, Tardif JC, Taylor KD, Trompet S, Tsao PS, Tuomilehto J, Tybjaerg-Hansen A, van Zuydam NR, Varbo A, Varga TV, Virtamo J, Waldenberger M, Wang N, Wareham NJ, Warren HR, Weeke PE, Weinstock J, Wessel J, Wilson JG, Wilson PWF, Xu M, Yaghootkar H, Young R, Zeggini E, Zhang H, Zheng NS, Zhang W, Zhang Y, Zhou W, Zhou Y, Zoledziewska M, Charge Diabetes Working Group, The EPIC-InterAct consortium, EPIC-CVD Consortium, GOLD Consortium, VA Million Veteran Program, Howson JMM, Danesh J, McCarthy MI, Cowan C, Abecasis G, Deloukas P, Musunuru K, Willer CJ, Kathiresan S. Exome-wide association study of plasma lipids in >300,000 individuals. Nat Genet 2017; 49:1758-1766. [PMID: 29083408 PMCID: PMC5709146 DOI: 10.1038/ng.3977] [Show More Authors] [Citation(s) in RCA: 432] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 09/26/2017] [Indexed: 02/02/2023]
Abstract
We screened variants on an exome-focused genotyping array in >300,000 participants (replication in >280,000 participants) and identified 444 independent variants in 250 loci significantly associated with total cholesterol (TC), high-density-lipoprotein cholesterol (HDL-C), low-density-lipoprotein cholesterol (LDL-C), and/or triglycerides (TG). At two loci (JAK2 and A1CF), experimental analysis in mice showed lipid changes consistent with the human data. We also found that: (i) beta-thalassemia trait carriers displayed lower TC and were protected from coronary artery disease (CAD); (ii) excluding the CETP locus, there was not a predictable relationship between plasma HDL-C and risk for age-related macular degeneration; (iii) only some mechanisms of lowering LDL-C appeared to increase risk for type 2 diabetes (T2D); and (iv) TG-lowering alleles involved in hepatic production of TG-rich lipoproteins (TM6SF2 and PNPLA3) tracked with higher liver fat, higher risk for T2D, and lower risk for CAD, whereas TG-lowering alleles involved in peripheral lipolysis (LPL and ANGPTL4) had no effect on liver fat but decreased risks for both T2D and CAD.
Collapse
Affiliation(s)
- Dajiang J. Liu
- Department of Public Health Sciences, Institute of Personalized Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Gina M. Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Haojie Yu
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Adam S. Butterworth
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
| | - Xiao Wang
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Danish Saleheen
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, USA
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | - Connor Emdin
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | - Philippe Amouyel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Lille, France
| | - Emanuele di Angelantonio
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
| | - Dominique Arveiler
- Department of Epidemiology and Public Health, EA 3430, University of Strasbourg, Strasbourg, France
| | - Themistocles L. Assimes
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Paul L. Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Usman Baber
- Cardiovascular Institute, Mount Sinai Medical Center, Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | | | - Lia E. Bang
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marianne Benn
- Department of Clinical Biochemistry and The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark
- Faculty of Health and Medical Sciences, University of Denmark, Denmark
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Michael Boehnke
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jette Bork-Jensen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erwin P. Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Ichan School of Medicine at Mount Sinai, New York, New York, USA
| | - Ivan Brandslund
- Department of Clinical Biochemistry, Lillebaelt Hospital, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Morris Brown
- Clinical Pharmacology Unit, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | - Fabio Busonero
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - Mark J Caulfield
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London, Queen Mary University of London, Charterhouse Square, London, UK
- The Barts Heart Centre, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - John C Chambers
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London, UK
- Department of Cardiology, Ealing Hospital NHS Trust, Uxbridge Road, Southall, Middlesex, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Daniel I. Chasman
- Division of Preventive Medicine, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Y. Eugene Chen
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Departments of Pediatrics and Medicine, Los Angeles, California, USA
| | - Rajiv Chowdhury
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Audrey Y. Chu
- Division of Preventive Medicine, Boston, Massachusetts, USA
- NHLBI Framingham Heart Study, Framingham, Massachusetts, USA
| | - John M Connell
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
- Dipartimento di Scienze Biomediche, Universita’ degli Studi di Sassari, Sassari, Italy
| | - L. Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- NHLBI Framingham Heart Study, Framingham, Massachusetts, USA
| | - Scott M. Damrauer
- Corporal Michael Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gail Davies
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Joshua C. Denny
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anna Dominiczak
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Marie-Pierre Dubé
- Montreal Heart Institute, Montreal, Quebec, Canada
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Montreal, Quebec, Canada
- Université de Montréal, Montreal, Quebec, Canada
| | - Tapani Ebeling
- Department of Medicine, Oulu University Hospital and University of Oulu, Oulu, Finland
| | | | - Tõnu Esko
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Marco Ferrario
- Research Centre in Epidemiology and Preventive Medicine – EPIMED, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Jean Ferrieres
- Department of Epidemiology, UMR 1027- INSERM, Toulouse University-CHU Toulouse, Toulouse, France
| | - Ian Ford
- University of Glasgow, Glasgow, UK
| | - Myriam Fornage
- Institute of Molecular Medicine, the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Paul W. Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, Sweden
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, Sweden
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Timothy M. Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Fritsche
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | | | - Valentin Fuster
- Cardiovascular Institute, Mount Sinai Medical Center, Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Santhi K. Ganesh
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Wei Gao
- Department of Cardiology, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, China
| | | | - Christian Gieger
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Mark O. Goodarzi
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Harald Grallert
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Clinical Research Centre, Lund University, Malmö, Sweden
| | - Megan L. Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Vilmundur Gudnason
- The Icelandic Heart Association, Kopavogur, Iceland
- The University of Iceland, Reykjavik, Iceland
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Tamara B. Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, Maryland, USA
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Joel N. Hirschhorn
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children’s Hospital, Boston, MA, USA
| | - Oddgeir L. Holmen
- Department of Public Health and General Practice, HUNT Research Centre, Norwegian University of Science and Technology, Levanger, Norway
- St Olav Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| | - Jennifer Huffman
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Kristian Hveem
- K. G. Jebsen Center for Genetic Epidemiology, Dept of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Anne U Jackson
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Johanna Jakobsdottir
- The Icelandic Heart Association, Kopavogur, Iceland
- The University of Iceland, Reykjavik, Iceland
| | | | - Gorm B Jensen
- The Copenhagen City Heart Study, Frederiksberg Hospital, Denmark
| | - Marit E. Jørgensen
- Steno Diabetes Center, Gentofte, Denmark
- National Institute of Public Health, Southern Denmark University, Denmark
| | - J. Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- The Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
| | - Johanne M. Justesen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pia R. Kamstrup
- Department of Clinical Biochemistry and The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Frank Kee
- Director, UKCRC Centre of Excellence for Public Health, Queens University, Belfast, Northern Ireland
| | - Amit V. Khera
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Derek Klarin
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Heikki A. Koistinen
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
- University of Helsinki; and Department of Medicine, and Abdominal Center: Endocrinology, Helsinki University Central Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital NHS Trust, Uxbridge Road, Southall, Middlesex, UK
- Imperial College Healthcare NHS Trust, London, UK
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Kari Kuulasmaa
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Timo Lakka
- Department of Physiology, Institute of Biomedicine, University of Eastern Finland, Kuopio Campus, Kuopio, Finland
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Anne Langsted
- Department of Clinical Biochemistry and The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark
- Faculty of Health and Medical Sciences, University of Denmark, Denmark
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, Maryland, USA
| | - Torsten Lauritzen
- Department of Public Health, Section of General Practice, University of Aarhus, Aarhus, Denmark
| | - David CM Liewald
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Li An Lin
- Institute of Molecular Medicine, the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Allan Linneberg
- Department of Clinical Experimental Research, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Research Center for Prevention and Health, Capital Region of Denmark, Copenhagen, Denmark
| | - Ruth J.F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Ichan School of Medicine at Mount Sinai, New York, New York, USA
- The Mindich Child Health and Development Institute, Ichan School of Medicine at Mount Sinai, New York, New York, USA
| | - Yingchang Lu
- The Charles Bronfman Institute for Personalized Medicine, Ichan School of Medicine at Mount Sinai, New York, New York, USA
| | - Xiangfeng Lu
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Anders Malarstig
- Cardiovascular Genetics and Genomics Group, Cardiovascular Medicine Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Pharmatherapeutics Clinical Research, Pfizer Worldwide R&D, Sollentuna, Sweden
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Alisa K. Manning
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Pekka Mäntyselkä
- Unit of Primary Health Care, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Eirini Marouli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nicholas GD Masca
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester UK
| | - Andrea Maschio
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - James B. Meigs
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Olle Melander
- Department of Clinical Sciences, University Hospital Malmo Clinical Research Center, Lund University, Malmo, Sweden
| | | | - Andrew P Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Antonella Mulas
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - Martina Müller-Nurasyid
- Department of Medicine I, Ludwig-Maximilians-University, Munich, Germany
- DZHK German Centre for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Germany
| | - Patricia B. Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London, Queen Mary University of London, Charterhouse Square, London, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Matt J Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jonas B. Nielsen
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sune F Nielsen
- Department of Clinical Biochemistry and The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark
- Faculty of Health and Medical Sciences, University of Denmark, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry and The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark
- Faculty of Health and Medical Sciences, University of Denmark, Denmark
| | - Jose M. Ordovas
- Department of Cardiovascular Epidemiology and Population Genetics, National Center for Cardiovascular Investigation, Madrid, Spain
- IMDEA-Alimentacion, Madrid, Spain
- Nutrition and Genomics Laboratory, Jean Mayer-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | - Roxana Mehran
- Cardiovascular Institute, Mount Sinai Medical Center, Icahn School of Medicine, Mount Sinai, New York, New York, USA
| | - Christoper J. O’Donnell
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Marju Orho-Melander
- Department of Clinical Sciences, University Hospital Malmo Clinical Research Center, Lund University, Malmo, Sweden
| | - Cliona M. Molony
- Genetics, Merck Sharp & Dohme Corp., Kenilworth, New Jersey, USA
| | | | - Sandosh Padmanabhan
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Colin NA Palmer
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Dorota Pasko
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Aniruddh P. Patel
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Markus Perola
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
- Institute of Molecular Medicine FIMM, University of Helsinki, Finland
| | - Annette Peters
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- DZHK German Centre for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany
| | - Charlotta Pisinger
- Research Center for Prevention and Health, Capital Region of Denmark, Copenhagen, Denmark
| | - Giorgio Pistis
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Split, Croatia
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Neil Poulter
- International Centre for Circulatory Health, Imperial College London, UK
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
- Departments of Epidemiology and Health Services, University of Washington, Seattle, Washington, USA
| | - Daniel J. Rader
- Departments of Genetics, Medicine, and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Asif Rasheed
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | - Rainer Rauramaa
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Dermot Reilly
- Genetics, Merck Sharp & Dohme Corp., Kenilworth, New Jersey, USA
| | - Alex P. Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Frida Renström
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, Sweden
- Department of Biobank Research, Umeå University, Umeå, Sweden
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Boston, Massachusetts, USA
| | | | - Neil R Robertson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Dan M. Roden
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Departments of Pediatrics and Medicine, Los Angeles, California, USA
| | - Igor Rudan
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Veikko Salomaa
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester UK
| | - Serena Sanna
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - Naveed Sattar
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ellen M. Schmidt
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert A. Scott
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Peter Sever
- International Centre for Circulatory Health, Imperial College London, UK
| | | | - Christian M. Shaffer
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xueling Sim
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549, Singapore
| | - Suthesh Sivapalaratnam
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, NL
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Albert V. Smith
- The Icelandic Heart Association, Kopavogur, Iceland
- The University of Iceland, Reykjavik, Iceland
| | - Blair H Smith
- Division of Population Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland
- Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
| | | | - Lorraine Southam
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Elizabeth K. Speliotes
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan, USA
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
| | - Kathleen E Stirrups
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Nathan Stitziel
- Cardiovascular Division, Departments of Medicine and Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Heather M Stringham
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Praveen Surendran
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Hayato Tada
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Alan R. Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, New York, USA
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Jean-Claude Tardif
- Montreal Heart Institute, Montreal, Quebec, Canada
- Université de Montréal, Montreal, Quebec, Canada
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Departments of Pediatrics and Medicine, Los Angeles, California, USA
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Philip S. Tsao
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Jaakko Tuomilehto
- Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
- Dasman Diabetes Institute, Dasman, Kuwait
- Centre for Vascular Prevention, Danube-University Krems, Krems, Austria
- Saudi Diabetes Research Group, King Abdulaziz University, Fahd Medical Research Center, Jeddah, Saudi Arabia
| | - Anne Tybjaerg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Natalie R van Zuydam
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Anette Varbo
- Department of Clinical Biochemistry and The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark
- Faculty of Health and Medical Sciences, University of Denmark, Denmark
| | - Tibor V Varga
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, Sweden
| | - Jarmo Virtamo
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Melanie Waldenberger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nan Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, New York, USA
| | - Nick J. Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Helen R Warren
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London, Queen Mary University of London, Charterhouse Square, London, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Peter E. Weeke
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- The Heart Centre, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Joshua Weinstock
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Jennifer Wessel
- Department of Epidemiology, Indiana University Fairbanks School of Public Health, Indianapolis, Indiana, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Peter W. F. Wilson
- Atlanta VA Medical Center, Decatur, Georgia, USA
- Emory Clinical Cardiovascular Research Institute, Atlanta, Georgia, USA
| | - Ming Xu
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Robin Young
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - He Zhang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Weihua Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London, UK
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Yanhua Zhou
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Magdalena Zoledziewska
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | | | - Joanna MM Howson
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - John Danesh
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Chad Cowan
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Goncalo Abecasis
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kiran Musunuru
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cristen J. Willer
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Sekar Kathiresan
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
223
|
Zhang Q, Wu KH, He JY, Zeng Y, Greenbaum J, Xia X, Liu HM, Lv WQ, Lin X, Zhang WD, Xi YL, Shi XZ, Sun CQ, Deng HW. Novel Common Variants Associated with Obesity and Type 2 Diabetes Detected Using a cFDR Method. Sci Rep 2017; 7:16397. [PMID: 29180724 PMCID: PMC5703959 DOI: 10.1038/s41598-017-16722-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022] Open
Abstract
Genome-wide association studies (GWASs) have been performed extensively in diverse populations to identify single nucleotide polymorphisms (SNPs) associated with complex diseases or traits. However, to date, the SNPs identified fail to explain a large proportion of the variance of the traits/diseases. GWASs on type 2 diabetes (T2D) and obesity are generally focused on individual traits independently, and genetic intercommunity (common genetic contributions or the product of over correlated phenotypic world) between them are largely unknown, despite extensive data showing that these two phenotypes share both genetic and environmental risk factors. Here, we applied a recently developed genetic pleiotropic conditional false discovery rate (cFDR) approach to discover novel loci associated with BMI and T2D by incorporating the summary statistics from existing GWASs of these two traits. Conditional Q-Q and fold enrichment plots were used to visually demonstrate the strength of pleiotropic enrichment. Adopting a cFDR nominal significance level of 0.05, 287 loci were identified for BMI and 75 loci for T2D, 23 of which for both traits. By incorporating related traits into a conditional analysis framework, we observed significant pleiotropic enrichment between obesity and T2D. These findings may provide novel insights into the etiology of obesity and T2D, individually and jointly.
Collapse
Affiliation(s)
- Qiang Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China
| | - Ke-Hao Wu
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Jing-Yang He
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China
| | - Yong Zeng
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
- College of Sciences, Beijing Jiao Tong University, Beijing, China
| | - Jonathan Greenbaum
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Xin Xia
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China
| | - Hui-Min Liu
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China
| | - Wan-Qiang Lv
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China
| | - Xu Lin
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Southern Medical University, Guang Zhou, P.R. China
| | - Wei-Dong Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China
| | - Yuan-Lin Xi
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China
| | - Xue-Zhong Shi
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China
| | - Chang-Qing Sun
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China.
| | - Hong-Wen Deng
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China.
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
224
|
Torkamandi S, Bastami M, Ghaedi H, Tarighi S, Shokri F, Javadi A, Mirfakhraie R, Omrani MD. Association of CpG-SNP and 3'UTR-SNP of WFS1 with the Risk of Type 2 Diabetes Mellitus in an Iranian Population. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2017; 6:197-203. [PMID: 29988211 PMCID: PMC6004294 DOI: 10.22088/bums.6.4.197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/17/2017] [Indexed: 01/04/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most common multifactorial disorders in Iran. Recent genome wide association studies (GWASs) and functional studies have suggested that WFS1 may predispose individuals to T2DM. However, to date, the possible association of such variants with T2DM in Iranians remained unknown. Here, we investigated the association of the two polymorphisms of WFS1 (rs1801214 a CpG-SNP, and rs1046320 a 3’UTR-SNP) with T2DM in an Iranian population. The study population comprised 432 unrelated Iranian individuals including 220 patients with T2DM, and 211 unrelated healthy control subjects. Genotyping was performed using PCR-RFLP, and confirmed with sequencing. In a logistic regression analysis, the rs1801214-T allele was associated with a significantly lower risk of T2DM assuming the log-additive model (OR: 0.68, 95% CI: 0.52-0.91, P= 0.007539). Moreover, the G allele of rs1046320 was associated with a lower risk of T2DM assuming the log-additive model (OR: 0.68, 95% CI: 0.50- 0.91, P= 0.008313). Haplotype analysis revealed that haplotypes that carry at least one protective allele are associated with a lower risk of T2DM. This is a first evidence for the association of WFS1 rs1801214, and rs1046320 with T2DM in an Iranian population.
Collapse
Affiliation(s)
- Shahram Torkamandi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Ghaedi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahriar Tarighi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fazlollah Shokri
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Javadi
- Department of Pathology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
225
|
Larach DB, Engoren MC, Schmidt EM, Heung M. Genetic variants and acute kidney injury: A review of the literature. J Crit Care 2017; 44:203-211. [PMID: 29161666 DOI: 10.1016/j.jcrc.2017.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 11/11/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE Limited data exists on potential genetic contributors to acute kidney injury. This review examines current knowledge of AKI genomics. MATERIALS AND METHODS 32 studies were selected from PubMed and GWAS Catalog queries for original data studies of human AKI genetics. Hand search of references identified 3 additional manuscripts. RESULTS 33 of 35 studies were hypothesis-driven investigations of candidate polymorphisms that either did not consistently replicate statistically significant findings, or obtained significant results only in few small-scale studies. Vote-counting meta-analysis of 9 variants examined in >1 candidate gene study showed ≥50% non-significant studies, with larger studies generally finding non-significant results. The remaining 2 studies were large-scale unbiased investigations: One examining 2,100 genes linked with cardiovascular, metabolic, and inflammatory syndromes identified BCL2, SERPINA4, and SIK3 variants, while a genome-wide association study (GWAS) identified variants in BBS9 and the GRM7|LMCD1-AS1 intergenic region. All studies had relatively small sample sizes (<2300 subjects). Study heterogeneity precluded candidate gene and GWA meta-analysis. CONCLUSIONS Most studies of AKI genetics involve hypothesis-driven (rather than hypothesis-generating) candidate gene investigations that have failed to identify contributory variants consistently. A limited number of unbiased, larger-scale studies have been carried out, but there remains a pressing need for additional GWA studies.
Collapse
Affiliation(s)
- Daniel B Larach
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Milo C Engoren
- Departments of Anesthesiology, Division of Critical Care Medicine, and Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ellen M Schmidt
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael Heung
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
226
|
Abstract
PURPOSE OF REVIEW The purpose of this review was to summarize and reflect on advances over the past decade in human genetic and metabolomic discovery with particular focus on their contributions to type 2 diabetes (T2D) risk prediction. RECENT FINDINGS In the past 10 years, a combination of advances in genotyping efficiency, metabolomic profiling, bioinformatics approaches, and international collaboration have moved T2D genetics and metabolomics from a state of frustration to an abundance of new knowledge. Efforts to control and prevent T2D have failed to stop this global epidemic. New approaches are needed, and although neither genetic nor metabolomic profiling yet have a clear clinical role, the rapid pace of accumulating knowledge offers the possibility for "multi-omic" prediction to improve health.
Collapse
Affiliation(s)
- Jordi Merino
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02115, USA
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02141, USA
| | - Miriam S Udler
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02115, USA.
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02141, USA.
| | - Aaron Leong
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02115, USA
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02141, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - James B Meigs
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02141, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| |
Collapse
|
227
|
Abstract
PURPOSE OF REVIEW In this paper, we review the progress made thus far in research related to the genetics of peripheral arterial disease (PAD) by detailing efforts to date in heritability, linkage analyses, and candidate gene studies. We further summarize more contemporary genome-wide association studies (GWAS) and epigenetic studies of PAD. Finally, we review current challenges and future avenues of advanced research in PAD genetics including whole genome sequencing studies. RECENT FINDINGS Studies have estimated the heritability of PAD to be moderate, though the contribution to this heritability that is independent of traditional cardiovascular risk factors remains unclear. Recent efforts have identified SNPs associated with PAD in GWAS analyses, but these have yet to be replicated in independent studies. Much remains to be discovered in the field of PAD genetics. An improved understanding of the genetic foundation for PAD will allow for earlier diagnosis of disease and a more complete pathophysiological understanding of the mechanisms of the disease leading to novel therapeutic interventions. Future avenues for success will likely arise from very large-scale GWAS, whole genome sequencing, and epigenetic studies involving very well-characterized cohorts.
Collapse
Affiliation(s)
- Nathan Belkin
- Division of Vascular and Endovascular Surgery, Hospital of the University of Pennsylvania, 3400 Spruce Street, 4 Maloney, Philadelphia, PA, 19104, USA
| | - Scott M Damrauer
- Division of Vascular and Endovascular Surgery, Hospital of the University of Pennsylvania, 3400 Spruce Street, 4 Maloney, Philadelphia, PA, 19104, USA. .,Department of Surgery, Corporal Michael Crescenz VA Medical Center, 3900 Woodland Ave., Philadelphia, PA, 19104, USA.
| |
Collapse
|
228
|
Scott RA, Scott LJ, Mägi R, Marullo L, Gaulton KJ, Kaakinen M, Pervjakova N, Pers TH, Johnson AD, Eicher JD, Jackson AU, Ferreira T, Lee Y, Ma C, Steinthorsdottir V, Thorleifsson G, Qi L, Van Zuydam NR, Mahajan A, Chen H, Almgren P, Voight BF, Grallert H, Müller-Nurasyid M, Ried JS, Rayner NW, Robertson N, Karssen LC, van Leeuwen EM, Willems SM, Fuchsberger C, Kwan P, Teslovich TM, Chanda P, Li M, Lu Y, Dina C, Thuillier D, Yengo L, Jiang L, Sparso T, Kestler HA, Chheda H, Eisele L, Gustafsson S, Frånberg M, Strawbridge RJ, Benediktsson R, Hreidarsson AB, Kong A, Sigurðsson G, Kerrison ND, Luan J, Liang L, Meitinger T, Roden M, Thorand B, Esko T, Mihailov E, Fox C, Liu CT, Rybin D, Isomaa B, Lyssenko V, Tuomi T, Couper DJ, Pankow JS, Grarup N, Have CT, Jørgensen ME, Jørgensen T, Linneberg A, Cornelis MC, van Dam RM, Hunter DJ, Kraft P, Sun Q, Edkins S, Owen KR, Perry JRB, Wood AR, Zeggini E, Tajes-Fernandes J, Abecasis GR, Bonnycastle LL, Chines PS, Stringham HM, Koistinen HA, Kinnunen L, Sennblad B, Mühleisen TW, Nöthen MM, Pechlivanis S, Baldassarre D, Gertow K, Humphries SE, Tremoli E, Klopp N, Meyer J, Steinbach G, et alScott RA, Scott LJ, Mägi R, Marullo L, Gaulton KJ, Kaakinen M, Pervjakova N, Pers TH, Johnson AD, Eicher JD, Jackson AU, Ferreira T, Lee Y, Ma C, Steinthorsdottir V, Thorleifsson G, Qi L, Van Zuydam NR, Mahajan A, Chen H, Almgren P, Voight BF, Grallert H, Müller-Nurasyid M, Ried JS, Rayner NW, Robertson N, Karssen LC, van Leeuwen EM, Willems SM, Fuchsberger C, Kwan P, Teslovich TM, Chanda P, Li M, Lu Y, Dina C, Thuillier D, Yengo L, Jiang L, Sparso T, Kestler HA, Chheda H, Eisele L, Gustafsson S, Frånberg M, Strawbridge RJ, Benediktsson R, Hreidarsson AB, Kong A, Sigurðsson G, Kerrison ND, Luan J, Liang L, Meitinger T, Roden M, Thorand B, Esko T, Mihailov E, Fox C, Liu CT, Rybin D, Isomaa B, Lyssenko V, Tuomi T, Couper DJ, Pankow JS, Grarup N, Have CT, Jørgensen ME, Jørgensen T, Linneberg A, Cornelis MC, van Dam RM, Hunter DJ, Kraft P, Sun Q, Edkins S, Owen KR, Perry JRB, Wood AR, Zeggini E, Tajes-Fernandes J, Abecasis GR, Bonnycastle LL, Chines PS, Stringham HM, Koistinen HA, Kinnunen L, Sennblad B, Mühleisen TW, Nöthen MM, Pechlivanis S, Baldassarre D, Gertow K, Humphries SE, Tremoli E, Klopp N, Meyer J, Steinbach G, Wennauer R, Eriksson JG, Mӓnnistö S, Peltonen L, Tikkanen E, Charpentier G, Eury E, Lobbens S, Gigante B, Leander K, McLeod O, Bottinger EP, Gottesman O, Ruderfer D, Blüher M, Kovacs P, Tonjes A, Maruthur NM, Scapoli C, Erbel R, Jöckel KH, Moebus S, de Faire U, Hamsten A, Stumvoll M, Deloukas P, Donnelly PJ, Frayling TM, Hattersley AT, Ripatti S, Salomaa V, Pedersen NL, Boehm BO, Bergman RN, Collins FS, Mohlke KL, Tuomilehto J, Hansen T, Pedersen O, Barroso I, Lannfelt L, Ingelsson E, Lind L, Lindgren CM, Cauchi S, Froguel P, Loos RJF, Balkau B, Boeing H, Franks PW, Barricarte Gurrea A, Palli D, van der Schouw YT, Altshuler D, Groop LC, Langenberg C, Wareham NJ, Sijbrands E, van Duijn CM, Florez JC, Meigs JB, Boerwinkle E, Gieger C, Strauch K, Metspalu A, Morris AD, Palmer CNA, Hu FB, Thorsteinsdottir U, Stefansson K, Dupuis J, Morris AP, Boehnke M, McCarthy MI, Prokopenko I. An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans. Diabetes 2017; 66:2888-2902. [PMID: 28566273 PMCID: PMC5652602 DOI: 10.2337/db16-1253] [Show More Authors] [Citation(s) in RCA: 510] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 05/21/2017] [Indexed: 12/12/2022]
Abstract
To characterize type 2 diabetes (T2D)-associated variation across the allele frequency spectrum, we conducted a meta-analysis of genome-wide association data from 26,676 T2D case and 132,532 control subjects of European ancestry after imputation using the 1000 Genomes multiethnic reference panel. Promising association signals were followed up in additional data sets (of 14,545 or 7,397 T2D case and 38,994 or 71,604 control subjects). We identified 13 novel T2D-associated loci (P < 5 × 10-8), including variants near the GLP2R, GIP, and HLA-DQA1 genes. Our analysis brought the total number of independent T2D associations to 128 distinct signals at 113 loci. Despite substantially increased sample size and more complete coverage of low-frequency variation, all novel associations were driven by common single nucleotide variants. Credible sets of potentially causal variants were generally larger than those based on imputation with earlier reference panels, consistent with resolution of causal signals to common risk haplotypes. Stratification of T2D-associated loci based on T2D-related quantitative trait associations revealed tissue-specific enrichment of regulatory annotations in pancreatic islet enhancers for loci influencing insulin secretion and in adipocytes, monocytes, and hepatocytes for insulin action-associated loci. These findings highlight the predominant role played by common variants of modest effect and the diversity of biological mechanisms influencing T2D pathophysiology.
Collapse
Affiliation(s)
- Robert A Scott
- MRC Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Laura J Scott
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Letizia Marullo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Kyle J Gaulton
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Department of Genetics, Stanford University, Stanford, CA
| | - Marika Kaakinen
- Department of Genomics of Common Disease, Imperial College London, London, U.K
| | | | - Tune H Pers
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Andrew D Johnson
- Framingham Heart Study, Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Framingham, MA
| | - John D Eicher
- Framingham Heart Study, Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Framingham, MA
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI
| | - Teresa Ferreira
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
| | - Yeji Lee
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI
| | - Clement Ma
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI
| | | | | | - Lu Qi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Natalie R Van Zuydam
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics and Biomedical Research Institute, Ninewells Hospital, University of Dundee, Dundee, U.K
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
| | - Han Chen
- Human Genetics Center and Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
- Center for Precision Health, School Biomedical Informatics, and School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Peter Almgren
- Lund University Diabetes Centre and Department of Clinical Sciences Malmö, University Hospital Scania, Lund University, Malmö, Sweden
| | - Ben F Voight
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universität, Munich, Germany
- Genetic Epidemiology, Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
- Munich Heart Alliance, German Centre for Cardiovascular Disease, Munich, Germany
| | - Janina S Ried
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nigel W Rayner
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K
- Wellcome Trust Sanger Institute, Hinxton, U.K
| | - Neil Robertson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K
| | - Lennart C Karssen
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- PolyOmica, 's-Hertogenbosch, the Netherlands
| | | | - Sara M Willems
- MRC Epidemiology Unit, University of Cambridge, Cambridge, U.K
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Christian Fuchsberger
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI
| | - Phoenix Kwan
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI
| | - Tanya M Teslovich
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI
| | - Pritam Chanda
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Man Li
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Yingchang Lu
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Christian Dina
- l'institut du thorax, INSERM, CNRS, Centre Hospitalier Universitaire de Nantes, Université de Nantes, Nantes, France
| | - Dorothee Thuillier
- Lille Institute of Biology, European Genomics Institute of Diabetes, Lille, France
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, France
| | - Loic Yengo
- Lille Institute of Biology, European Genomics Institute of Diabetes, Lille, France
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, France
| | - Longda Jiang
- Department of Genomics of Common Disease, Imperial College London, London, U.K
| | - Thomas Sparso
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans A Kestler
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Himanshu Chheda
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Lewin Eisele
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, Germany
| | - Stefan Gustafsson
- Molecular Epidemiology, Department of Medical Sciences, and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mattias Frånberg
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
- Department for Numerical Analysis and Computer Science, Stockholm University, Stockholm, Sweden
| | - Rona J Strawbridge
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Rafn Benediktsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Landspítali University Hospital, Reykjavik, Iceland
| | | | | | - Gunnar Sigurðsson
- Landspítali University Hospital, Reykjavik, Iceland
- Icelandic Heart Association, Kópavogur, Iceland
| | | | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Thomas Meitinger
- Munich Heart Alliance, German Centre for Cardiovascular Disease, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Michael Roden
- German Center for Diabetes Research, Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Barbara Thorand
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Tõnu Esko
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Division of Genetics and Endocrinology, Boston Children's Hospital, Boston, MA
| | | | - Caroline Fox
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Denis Rybin
- Data Coordinating Center, Boston University School of Public Health, Boston, MA
| | - Bo Isomaa
- Folkhälsan Research Center, Helsinki, Finland
- Department of Social Services and Health Care, Jakobstad, Finland
| | - Valeriya Lyssenko
- Lund University Diabetes Centre and Department of Clinical Sciences Malmö, University Hospital Scania, Lund University, Malmö, Sweden
| | - Tiinamaija Tuomi
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medicine, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - David J Couper
- Collaborative Studies Coordinating Center, Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - James S Pankow
- Division of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian T Have
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Torben Jørgensen
- Research Centre for Prevention and Health, Capital Region of Denmark, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Allan Linneberg
- Research Centre for Prevention and Health, Capital Region of Denmark, Copenhagen, Denmark
- Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Rob M van Dam
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - David J Hunter
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | | | - Katharine R Owen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K
- National Institute for Health Research Oxford Biomedical Research Centre, Churchill Hospital, Oxford, U.K
| | - John R B Perry
- MRC Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, U.K
| | | | | | - Goncalo R Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI
| | - Lori L Bonnycastle
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Peter S Chines
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Heather M Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI
| | - Heikki A Koistinen
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
- Endocrinology, Department of Medicine and Abdominal Center, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Helsinki, Finland
| | - Leena Kinnunen
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
- Endocrinology, Department of Medicine and Abdominal Center, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Helsinki, Finland
| | - Bengt Sennblad
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Thomas W Mühleisen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Sonali Pechlivanis
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, Germany
| | - Damiano Baldassarre
- Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, Milan, Italy
| | - Karl Gertow
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Steve E Humphries
- Cardiovascular Genetics, BHF Laboratories, Institute Cardiovascular Sciences, University College London, London, U.K
| | - Elena Tremoli
- Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, Milan, Italy
| | - Norman Klopp
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Julia Meyer
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Gerald Steinbach
- Department of Clinical Chemistry and Central Laboratory, University of Ulm, Ulm, Germany
| | - Roman Wennauer
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Johan G Eriksson
- Folkhälsan Research Center, Helsinki, Finland
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
- Unit of General Practice, Helsinki University Central Hospital, Helsinki, Finland
| | - Satu Mӓnnistö
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Leena Peltonen
- Wellcome Trust Sanger Institute, Hinxton, U.K
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Emmi Tikkanen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki, Finland
| | | | - Elodie Eury
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, France
| | - Stéphane Lobbens
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, France
| | - Bruna Gigante
- Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Leander
- Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Olga McLeod
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Omri Gottesman
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Douglas Ruderfer
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Matthias Blüher
- IFB AdiposityDiseases, University of Leipzig, Leipzig, Germany
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Peter Kovacs
- IFB AdiposityDiseases, University of Leipzig, Leipzig, Germany
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Anke Tonjes
- IFB AdiposityDiseases, University of Leipzig, Leipzig, Germany
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Nisa M Maruthur
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins Bloomberg School of Medicine, Baltimore, MD
- The Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, Baltimore, MD
| | - Chiara Scapoli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Raimund Erbel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, Germany
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, Germany
| | - Susanne Moebus
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, Germany
| | - Ulf de Faire
- Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anders Hamsten
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Michael Stumvoll
- IFB AdiposityDiseases, University of Leipzig, Leipzig, Germany
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Panagiotis Deloukas
- Wellcome Trust Sanger Institute, Hinxton, U.K
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, U.K
| | - Peter J Donnelly
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Department of Statistics, University of Oxford, Oxford, U.K
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, U.K
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Samuli Ripatti
- Wellcome Trust Sanger Institute, Hinxton, U.K
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki, Finland
- Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Veikko Salomaa
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Bernhard O Boehm
- Division of Endocrinology and Diabetes, Department of Internal Medicine, University Medical Centre Ulm, Ulm, Germany
- Lee Kong Chian School of Medicine, Imperial College London and Nanyang Technological University, Singapore, Singapore
| | - Richard N Bergman
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Francis S Collins
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC
| | - Jaakko Tuomilehto
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
- Dasman Diabetes Institute, Dasman, Kuwait
- Centre for Vascular Prevention, Danube University Krems, Krems, Austria
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Inês Barroso
- Wellcome Trust Sanger Institute, Hinxton, U.K
- University of Cambridge Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital Cambridge, Cambridge, U.K
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Erik Ingelsson
- Molecular Epidemiology, Department of Medical Sciences, and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Lars Lind
- Cardiovascular Epidemiology, Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden
| | - Cecilia M Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Stephane Cauchi
- Lille Institute of Biology, European Genomics Institute of Diabetes, Lille, France
| | - Philippe Froguel
- Department of Genomics of Common Disease, Imperial College London, London, U.K
- Lille Institute of Biology, European Genomics Institute of Diabetes, Lille, France
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, France
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Beverley Balkau
- INSERM, CESP, UMR 1018, Villejuif, France
- University of Paris-Sud, UMR 1018, Villejuif, France
| | - Heiner Boeing
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Paul W Franks
- Lund University, Malmö, Sweden
- Umeå University, Umeå, Sweden
| | - Aurelio Barricarte Gurrea
- Navarra Public Health Institute, Pamplona, Spain
- Navarra Institute for Health Research, Pamplona, Spain
- CIBER Epidemiology and Public Health, Madrid, Spain
| | - Domenico Palli
- Cancer Research and Prevention Institute, Florence, Italy
| | | | - David Altshuler
- Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Department of Genetics, Harvard Medical School, Boston, MA
- Department of Molecular Biology, Harvard Medical School, Boston, MA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA
| | - Leif C Groop
- Lund University Diabetes Centre and Department of Clinical Sciences Malmö, University Hospital Scania, Lund University, Malmö, Sweden
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | | | | | - Eric Sijbrands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Netherlands Genomics Initiative, Netherlands Consortium for Healthy Ageing and Center for Medical Systems Biology, Rotterdam, the Netherlands
| | - Jose C Florez
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Diabetes Unit and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
| | - James B Meigs
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- General Medicine Division, Massachusetts General Hospital, Boston, MA
| | - Eric Boerwinkle
- Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Genetic Epidemiology, Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Andrew D Morris
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, U.K
| | - Colin N A Palmer
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics and Biomedical Research Institute, Ninewells Hospital, University of Dundee, Dundee, U.K
- Cardiovascular and Diabetes Medicine, Biomedical Research Institute, Ninewells Hospital, University of Dundee, Dundee, U.K
| | - Frank B Hu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Unnur Thorsteinsdottir
- deCODE genetics, Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics, Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Josée Dupuis
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Andrew P Morris
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Department of Biostatistics, University of Liverpool, Liverpool, U.K
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, U.K
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K.
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K
- National Institute for Health Research Oxford Biomedical Research Centre, Churchill Hospital, Oxford, U.K
| | - Inga Prokopenko
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K.
- Department of Genomics of Common Disease, Imperial College London, London, U.K
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K
| | | |
Collapse
|
229
|
Li Z, Chen J, Yu H, He L, Xu Y, Zhang D, Yi Q, Li C, Li X, Shen J, Song Z, Ji W, Wang M, Zhou J, Chen B, Liu Y, Wang J, Wang P, Yang P, Wang Q, Feng G, Liu B, Sun W, Li B, He G, Li W, Wan C, Xu Q, Li W, Wen Z, Liu K, Huang F, Ji J, Ripke S, Yue W, Sullivan PF, O'Donovan MC, Shi Y. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nat Genet 2017; 49:1576-1583. [PMID: 28991256 DOI: 10.1038/ng.3973] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023]
Abstract
We conducted a genome-wide association study (GWAS) with replication in 36,180 Chinese individuals and performed further transancestry meta-analyses with data from the Psychiatry Genomics Consortium (PGC2). Approximately 95% of the genome-wide significant (GWS) index alleles (or their proxies) from the PGC2 study were overrepresented in Chinese schizophrenia cases, including ∼50% that achieved nominal significance and ∼75% that continued to be GWS in the transancestry analysis. The Chinese-only analysis identified seven GWS loci; three of these also were GWS in the transancestry analyses, which identified 109 GWS loci, thus yielding a total of 113 GWS loci (30 novel) in at least one of these analyses. We observed improvements in the fine-mapping resolution at many susceptibility loci. Our results provide several lines of evidence supporting candidate genes at many loci and highlight some pathways for further research. Together, our findings provide novel insight into the genetic architecture and biological etiology of schizophrenia.
Collapse
Affiliation(s)
- Zhiqiang Li
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
- Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
- Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Yu
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Institute of Mental Health, Sixth Hospital, Peking University, Beijing, China
- Department of Psychiatry, Jining Medical University, Jining, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
- Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yifeng Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dai Zhang
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Institute of Mental Health, Sixth Hospital, Peking University, Beijing, China
- Peking-Tsinghua Joint Center for Life Sciences/PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Qizhong Yi
- Department of Psychiatry, First Teaching Hospital of Xinjiang Medical University, Urumqi, China
| | - Changgui Li
- Shandong Provincial Key Laboratory of Metabolic Disease and Metabolic Disease Institute of Qingdao University, Qingdao, China
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawei Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Weidong Ji
- Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China
- Changning Mental Health Center, Shanghai, China
| | - Meng Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Boyu Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yahui Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Jiqiang Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Wang
- Wuhu Fourth People's Hospital, Wuhu, China
| | - Ping Yang
- Wuhu Fourth People's Hospital, Wuhu, China
| | - Qingzhong Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Guoyin Feng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Benxiu Liu
- Longquan Mountain Hospital of Guangxi Province, Liuzhou, China
| | - Wensheng Sun
- Longquan Mountain Hospital of Guangxi Province, Liuzhou, China
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Xu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenjin Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zujia Wen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Huang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Jue Ji
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Stephan Ripke
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin, Berlin, Germany
| | - Weihua Yue
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Institute of Mental Health, Sixth Hospital, Peking University, Beijing, China
| | - Patrick F Sullivan
- Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Yongyong Shi
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
- Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
- Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Psychiatry, First Teaching Hospital of Xinjiang Medical University, Urumqi, China
- Changning Mental Health Center, Shanghai, China
| |
Collapse
|
230
|
Rich SS. The Promise and Practice of Genetics on Diabetes Care: The Fog Rises to Reveal a Field of Genetic Complexity in HNF1B. Diabetes Care 2017; 40:1433-1435. [PMID: 29061586 PMCID: PMC5652592 DOI: 10.2337/dci17-0014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| |
Collapse
|
231
|
Pulit SL, Laber S, Glastonbury CA, Lindgren CM. The genetic underpinnings of body fat distribution. Expert Rev Endocrinol Metab 2017; 12:417-427. [PMID: 30063432 DOI: 10.1080/17446651.2017.1390427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Obesity, defined as a body mass index (BMI) ≥ 30 kg/m2, has reached epidemic proportions; people who are overweight (BMI > 25 kg/m2) or obese now comprise more than 25% of the world's population. Obese individuals have a higher risk of comorbidity development including type 2 diabetes, cardiovascular disease, cancer, and fertility complications. Areas covered: The study of monogenic and syndromic forms of obesity have revealed a small number of genes key to metabolic perturbations. Further, obesity and body shape in the general population are highly heritable phenotypes. Study of obesity at the population level, through genome-wide association studies of BMI and waist-to-hip ratio (WHR), have revealed > 150 genomic loci that associate with these traits, and highlight the role of adipose tissue and the central nervous system in obesity-related traits. Studies in animal models and cell lines have helped further elucidate the potential biological mechanisms underlying obesity. In particular, these studies implicate adipogenesis and expansion of adipose tissue as key biological pathways in obesity and weight gain. Expert commentary: Further work, including a focus on integrating genetic and additional genomic data types, as well as modeling obesity-like features in vitro, will be crucial in translating genome-wide association signals to the causal mechanisms driving disease.
Collapse
Affiliation(s)
- Sara L Pulit
- a Big Data Institute , Li Ka Shing Centre for Health Information and Discovery, University of Oxford , Oxford , UK
- b Department of Genetics , University Medical Center Utrecht , Utrecht , The Netherlands
- f Program in Medical and Population Genetics , Broad Institute , Cambridge , Massachusetts , USA
| | - Samantha Laber
- a Big Data Institute , Li Ka Shing Centre for Health Information and Discovery, University of Oxford , Oxford , UK
- c MRC Harwell Institute , Mammalian Genetics Unit , Harwell , Oxford , UK
- d Department of Physiology , Anatomy and Genetics, University of Oxford , Oxford , U.K
| | - Craig A Glastonbury
- a Big Data Institute , Li Ka Shing Centre for Health Information and Discovery, University of Oxford , Oxford , UK
- e Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| | - Cecilia M Lindgren
- a Big Data Institute , Li Ka Shing Centre for Health Information and Discovery, University of Oxford , Oxford , UK
- e Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine , University of Oxford , Oxford , UK
- f Program in Medical and Population Genetics , Broad Institute , Cambridge , Massachusetts , USA
| |
Collapse
|
232
|
Phenome-wide association study using research participants' self-reported data provides insight into the Th17 and IL-17 pathway. PLoS One 2017; 12:e0186405. [PMID: 29091937 PMCID: PMC5665418 DOI: 10.1371/journal.pone.0186405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 09/29/2017] [Indexed: 12/31/2022] Open
Abstract
A phenome-wide association study of variants in genes in the Th17 and IL-17 pathway was performed using self-reported phenotypes and genetic data from 521,000 research participants of 23andMe. Results replicated known associations with similar effect sizes for autoimmune traits illustrating self-reported traits can be a surrogate for clinically assessed conditions. Novel associations controlling for a false discovery rate of 5% included the association of the variant encoding p.Ile684Ser in TYK2 with increased risk of tonsillectomy, strep throat occurrences and teen acne, the variant encoding p.Arg381Gln in IL23R with a decrease in dandruff frequency, the variant encoding p.Asp10Asn in TRAF3IP2 with risk of male-pattern balding, and the RORC regulatory variant (rs4845604) with protection from allergies. This approach enabled rapid assessment of association with a wide variety of traits and investigation of traits with limited reported associations to overlay meaningful phenotypic context on the range of conditions being considered for drugs targeting this pathway.
Collapse
|
233
|
Nongmaithem SS, Joglekar CV, Krishnaveni GV, Sahariah SA, Ahmad M, Ramachandran S, Gandhi M, Chopra H, Pandit A, Potdar RD, H D Fall C, Yajnik CS, Chandak GR. GWAS identifies population-specific new regulatory variants in FUT6 associated with plasma B12 concentrations in Indians. Hum Mol Genet 2017; 26:2551-2564. [PMID: 28334792 PMCID: PMC5886186 DOI: 10.1093/hmg/ddx071] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/20/2017] [Indexed: 01/26/2023] Open
Abstract
Vitamin B12 is an important cofactor in one-carbon metabolism whose dysregulation is associated with various clinical conditions. Indians have a high prevalence of B12 deficiency but little is known about the genetic determinants of circulating B12 concentrations in Indians. We performed a genome-wide association study in 1001 healthy participants in the Pune Maternal Nutrition Study (PMNS), replication studies in 3418 individuals from other Indian cohorts and by meta-analysis identified new variants, rs3760775 (P = 1.2 × 10−23) and rs78060698 (P = 8.3 × 10−17) in FUT6 to be associated with circulating B12 concentrations. Although in-silico analysis replicated both variants in Europeans, differences in the effect allele frequency, effect size and the linkage disequilibrium structure of credible set variants with the reported variants suggest population-specific characteristics in this region. We replicated previously reported variants rs602662, rs601338 in FUT2, rs3760776, rs708686 in FUT6, rs34324219 in TCN1 (all P < 5 × 10−8), rs1131603 in TCN2 (P = 3.4 × 10−5), rs12780845 in CUBN (P = 3.0 × 10−3) and rs2270655 in MMAA (P = 2.0 × 10−3). Circulating B12 concentrations in the PMNS and Parthenon study showed a significant decline with increasing age (P < 0.001), however, the genetic contribution to B12 concentrations remained constant. Luciferase reporter and electrophoretic-mobility shift assay for the FUT6 variant rs78060698 using HepG2 cell line demonstrated strong allele-specific promoter and enhancer activity and differential binding of HNF4α, a key regulator of expression of various fucosyltransferases. Hence, the rs78060698 variant, through regulation of fucosylation may control intestinal host-microbial interaction which could influence B12 concentrations. Our results suggest that in addition to established genetic variants, population-specific variants are important in determining plasma B12 concentrations.
Collapse
Affiliation(s)
- Suraj S Nongmaithem
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500 007, India
| | - Charudatta V Joglekar
- Diabetes Unit, King Edward Memorial Hospital and Research Centre, Rasta Peth, Pune, Maharashtra 411 011, India
| | - Ghattu V Krishnaveni
- Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysore, Karnataka 570 021, India
| | - Sirazul A Sahariah
- Research Department, Centre for the Study of Social Change, Mumbai, Maharashtra 400 051, India
| | - Meraj Ahmad
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500 007, India
| | - Swetha Ramachandran
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500 007, India
| | - Meera Gandhi
- Research Department, Centre for the Study of Social Change, Mumbai, Maharashtra 400 051, India
| | - Harsha Chopra
- Research Department, Centre for the Study of Social Change, Mumbai, Maharashtra 400 051, India
| | - Anand Pandit
- Department of Pediatrics, King Edward Memorial Hospital and Research Centre, Rasta Peth, Pune, Maharashtra 411 011, India
| | - Ramesh D Potdar
- Research Department, Centre for the Study of Social Change, Mumbai, Maharashtra 400 051, India
| | - Caroline H D Fall
- Research Department, Centre for the Study of Social Change, Mumbai, Maharashtra 400 051, India.,MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Chittaranjan S Yajnik
- Diabetes Unit, King Edward Memorial Hospital and Research Centre, Rasta Peth, Pune, Maharashtra 411 011, India
| | - Giriraj R Chandak
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500 007, India.,Human Genetics Unit, Genome Institute of Singapore, Biopolis, 138 672, Singapore
| |
Collapse
|
234
|
Bonnefond A, Froguel P. Disentangling the Role of Melatonin and its Receptor MTNR1B in Type 2 Diabetes: Still a Long Way to Go? Curr Diab Rep 2017; 17:122. [PMID: 29063374 DOI: 10.1007/s11892-017-0957-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Type 2 diabetes (T2D) is a complex genetic metabolic disorder. T2D heritability has been estimated around 40-70%. In the last decade, exponential progress has been made in identifying T2D genetic determinants, through genome-wide association studies (GWAS). Among single-nucleotide polymorphisms mostly associated with T2D risk, rs10830963 is located in the MTNR1B gene, encoding one of the two receptors of melatonin, a neurohormone involved in circadian rhythms. Subsequent studies aiming to disentangle the role of MTNR1B in T2D pathophysiology led to controversies. In this review, we will tackle them and will try to give some directions to get a better view of MTNR1B contribution to T2D pathophysiology. RECENT FINDINGS Recent studies either based on genetic/genomic analyses, clinical/epidemiology data, functional analyses at rs10830963 locus, insulin secretion assays in response to melatonin (involving or not MTNR1B) or animal model analyses have led to strong controversies at each level of interpretation. We discuss possible caveats in these studies and present ways to go beyond these issues, towards a better understanding of T2D molecular mechanisms, keeping in mind that melatonin is a versatile hormone and regulates many functions via its primary role in the body clock.
Collapse
Affiliation(s)
- Amélie Bonnefond
- CNRS UMR 8199. European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Pôle Recherche-1er - 1er étage Aile Ouest, 1 place de Verdun, 59045, Lille Cedex, France.
| | - Philippe Froguel
- CNRS UMR 8199. European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Pôle Recherche-1er - 1er étage Aile Ouest, 1 place de Verdun, 59045, Lille Cedex, France
- Genomics of Common Disease, Imperial College London, London, W12 0NN, UK
| |
Collapse
|
235
|
The road less traveled: from genotype to phenotype in flies and humans. Mamm Genome 2017; 29:5-23. [DOI: 10.1007/s00335-017-9722-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022]
|
236
|
Labriet A, De Mattia E, Cecchin E, Lévesque É, Jonker D, Couture F, Buonadonna A, D'Andrea M, Villeneuve L, Toffoli G, Guillemette C. Improved Progression-Free Survival in Irinotecan-Treated Metastatic Colorectal Cancer Patients Carrying the HNF1A Coding Variant p.I27L. Front Pharmacol 2017; 8:712. [PMID: 29066969 PMCID: PMC5641335 DOI: 10.3389/fphar.2017.00712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/22/2017] [Indexed: 01/15/2023] Open
Abstract
Hepatocyte nuclear factor 1-alpha (HNF1A) is a liver-enriched transcription factor that plays a key role in many aspects of hepatic functions including detoxification processes. We examined whether HNF1A polymorphisms are associated with clinical outcomes in two independent cohorts combining 417 European ancestry patients with metastatic colorectal cancer (mCRC) treated with irinotecan-based chemotherapy. The intronic rs2244608A>G marker was predictive of an improved progression-free survival with a trend in the Canadian cohort and reaching significance in the Italian cohort, with hazard ratios (HR) of 0.74 and 0.72, P = 0.076 and 0.038, respectively. A strong association between rs2244608A>G and improved PFS was found in the combined analysis of both cohorts (HR = 0.72; P = 0.002). Consistent with an altered HNF1A function, mCRC carriers of the rs2244608G minor allele displayed enhanced drug exposure by 45% (P = 0.032) compared to non-carriers. In Caucasians, rs2244608A>G is in strong linkage with the coding variant rs1169288c.79A>C (HNF1A p.I27L). In healthy donors, we observed an altered hepatic (ABCC1, P = 0.009, ABCC2, P = 0.048 and CYP3A5, P = 0.001; n = 89) and intestinal (TOP1, P = 0.004; n = 75) gene expression associated with the rs1169288C allele. In addition, the rs1169288C polymorphism could significantly increase the ABCC1 promoter activity by 27% (P = 0.008) and 15% (P = 0.041) in the human kidney HEK293 and the human liver HepG2 cell lines, respectively. Our findings suggest that the HNF1A rs2244608, or the tightly linked functional coding variant p.I27L, might be a potential prognostic marker with irinotecan-based regimens.
Collapse
Affiliation(s)
- Adrien Labriet
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - Elena De Mattia
- Clinical and Experimental Pharmacology, IRCCS National Cancer Institute 'Centro di Riferimento Oncologico', Aviano, Italy
| | - Erika Cecchin
- Clinical and Experimental Pharmacology, IRCCS National Cancer Institute 'Centro di Riferimento Oncologico', Aviano, Italy
| | - Éric Lévesque
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Derek Jonker
- Division of Medical Oncology, Department of Medicine, Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Félix Couture
- Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Angela Buonadonna
- Medical Oncology Unit, IRCCS National Cancer Institute 'Centro di Riferimento Oncologico', Aviano, Italy
| | - Mario D'Andrea
- Medical Oncology Unit, San Filippo Neri Hospital, Rome, Italy
| | - Lyne Villeneuve
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - Giuseppe Toffoli
- Clinical and Experimental Pharmacology, IRCCS National Cancer Institute 'Centro di Riferimento Oncologico', Aviano, Italy
| | - Chantal Guillemette
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| |
Collapse
|
237
|
Millette K, Georgia S. Gene Editing and Human Pluripotent Stem Cells: Tools for Advancing Diabetes Disease Modeling and Beta-Cell Development. Curr Diab Rep 2017; 17:116. [PMID: 28980194 DOI: 10.1007/s11892-017-0947-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW This review will focus on the multiple approaches to gene editing and address the potential use of genetically modified human pluripotent stem cell-derived beta cells (SC-β) as a tool to study human beta-cell development and model their function in diabetes. We will explore how new variations of CRISPR/Cas9 gene editing may accelerate our understanding of beta-cell developmental biology, elucidate novel mechanisms that establish and regulate beta-cell function, and assist in pioneering new therapeutic modalities for treating diabetes. RECENT FINDINGS Improvements in CRISPR/Cas9 target specificity and homology-directed recombination continue to advance its use in engineering stem cells to model and potentially treat disease. We will review how CRISPR/Cas9 gene editing is informing our understanding of beta-cell development and expanding the therapeutic possibilities for treating diabetes and other diseases. Here we focus on the emerging use of gene editing technology, specifically CRISPR/Cas9, as a means of manipulating human gene expression to gain novel insights into the roles of key factors in beta-cell development and function. Taken together, the combined use of SC-β cells and CRISPR/Cas9 gene editing will shed new light on human beta-cell development and function and accelerate our progress towards developing new therapies for patients with diabetes.
Collapse
Affiliation(s)
- Katelyn Millette
- Center for Endocrinology, Diabetes and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Senta Georgia
- Center for Endocrinology, Diabetes and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- Departments of Pediatrics and Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
238
|
Raleigh D, Zhang X, Hastoy B, Clark A. The β-cell assassin: IAPP cytotoxicity. J Mol Endocrinol 2017; 59:R121-R140. [PMID: 28811318 DOI: 10.1530/jme-17-0105] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/15/2017] [Indexed: 12/28/2022]
Abstract
Islet amyloid polypeptide (IAPP) forms cytotoxic oligomers and amyloid fibrils in islets in type 2 diabetes (T2DM). The causal factors for amyloid formation are largely unknown. Mechanisms of molecular folding and assembly of human IAPP (hIAPP) into β-sheets, oligomers and fibrils have been assessed by detailed biophysical studies of hIAPP and non-fibrillogenic, rodent IAPP (rIAPP); cytotoxicity is associated with the early phases (oligomers/multimers) of fibrillogenesis. Interaction with synthetic membranes promotes β-sheet assembly possibly via a transient α-helical molecular conformation. Cellular hIAPP cytotoxicity can be activated from intracellular or extracellular sites. In transgenic rodents overexpressing hIAPP, intracellular pro-apoptotic signals can be generated at different points in β-cell protein synthesis. Increased cellular trafficking of proIAPP, failure of the unfolded protein response (UPR) or excess trafficking of misfolded peptide via the degradation pathways can induce apoptosis; these data indicate that defects in intracellular handling of hIAPP can induce cytotoxicity. However, there is no evidence for IAPP overexpression in T2DM. Extracellular amyloidosis is directly related to the degree of β-cell apoptosis in islets in T2DM. IAPP fragments, fibrils and multimers interact with membranes causing disruption in vivo and in vitro These findings support a role for extracellular IAPP in β-sheet conformation in cytotoxicity. Inhibitors of fibrillogenesis are useful tools to determine the aberrant mechanisms that result in hIAPP molecular refolding and islet amyloidosis. However, currently, their role as therapeutic agents remains uncertain.
Collapse
Affiliation(s)
- Daniel Raleigh
- Department of ChemistryStony Brook University, Stony Brook, New York, USA
- Research Department of Structural and Molecule BiologyUniversity College London, London, UK
| | - Xiaoxue Zhang
- Department of ChemistryStony Brook University, Stony Brook, New York, USA
| | - Benoît Hastoy
- Oxford Centre for Diabetes Endocrinology and MetabolismUniversity of Oxford, Oxford, UK
| | - Anne Clark
- Oxford Centre for Diabetes Endocrinology and MetabolismUniversity of Oxford, Oxford, UK
| |
Collapse
|
239
|
Ng B, White CC, Klein H, Sieberts SK, McCabe C, Patrick E, Xu J, Yu L, Gaiteri C, Bennett DA, Mostafavi S, De Jager PL. An xQTL map integrates the genetic architecture of the human brain's transcriptome and epigenome. Nat Neurosci 2017; 20:1418-1426. [PMID: 28869584 PMCID: PMC5785926 DOI: 10.1038/nn.4632] [Citation(s) in RCA: 310] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 08/02/2017] [Indexed: 12/15/2022]
Abstract
We report a multi-omic resource generated by applying quantitative trait locus (xQTL) analyses to RNA sequence, DNA methylation and histone acetylation data from the dorsolateral prefrontal cortex of 411 older adults who have all three data types. We identify SNPs significantly associated with gene expression, DNA methylation and histone modification levels. Many of these SNPs influence multiple molecular features, and we demonstrate that SNP effects on RNA expression are fully mediated by epigenetic features in 9% of these loci. Further, we illustrate the utility of our new resource, xQTL Serve, by using it to prioritize the cell type(s) most affected by an xQTL. We also reanalyze published genome wide association studies using an xQTL-weighted analysis approach and identify 18 new schizophrenia and 2 new bipolar susceptibility variants, which is more than double the number of loci that can be discovered with a larger blood-based expression eQTL resource.
Collapse
Affiliation(s)
- B Ng
- Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - CC White
- Broad Institute, Cambridge, Massachusetts, USA
| | - H Klein
- Broad Institute, Cambridge, Massachusetts, USA
- Center for Translational & Systems Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | | | - C McCabe
- Broad Institute, Cambridge, Massachusetts, USA
| | - E Patrick
- Broad Institute, Cambridge, Massachusetts, USA
| | - J Xu
- Broad Institute, Cambridge, Massachusetts, USA
| | - L Yu
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - C Gaiteri
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - DA Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - S Mostafavi
- Department of Statistics and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
- Canadian Institute for Advanced Research, CIFAR program in Child and Brain Development, Toronto, Canada
| | - PL De Jager
- Broad Institute, Cambridge, Massachusetts, USA
- Center for Translational & Systems Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
240
|
DNA methylation in blood from neonatal screening cards and the association with BMI and insulin sensitivity in early childhood. Int J Obes (Lond) 2017; 42:28-35. [PMID: 29064478 DOI: 10.1038/ijo.2017.228] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/13/2017] [Accepted: 08/27/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND/OBJECTIVES There is increasing evidence that metabolic diseases originate in early life, and epigenetic changes have been implicated as key drivers of this early life programming. This led to the hypothesis that epigenetic marks present at birth may predict an individual's future risk of obesity and type 2 diabetes. In this study, we assessed whether epigenetic marks in blood of newborn children were associated with body mass index (BMI) and insulin sensitivity later in childhood. SUBJECTS/METHODS DNA methylation was measured in neonatal blood spot samples of 438 children using the Illumina Infinium 450 k BeadChip. Associations were assessed between DNA methylation at birth and BMI z-scores, body fat mass, fasting plasma glucose, insulin and homeostatic model assessment of insulin resistance (HOMA-IR) at age 5 years, as well as birth weight, maternal BMI and smoking status. RESULTS No individual methylation sites at birth were associated with obesity or insulin sensitivity measures at 5 years. DNA methylation in 69 genomic regions at birth was associated with BMI z-scores at age 5 years, and in 63 regions with HOMA-IR. The methylation changes were generally small (<5%), except for a region near the non-coding RNA nc886 (VTRNA2-1) where a clear link between methylation status at birth and BMI in childhood was observed (P=0.001). Associations were also found between DNA methylation, maternal smoking and birth weight. CONCLUSIONS We identified a number of DNA methylation regions at birth that were associated with obesity or insulin sensitivity measurements in childhood. These findings support the mounting evidence on the role of epigenetics in programming of metabolic health. Whether many of these small changes in DNA methylation are causally related to the health outcomes, and of clinical relevance, remains to be determined, but the nc886 region represents a promising obesity risk marker that warrants further investigation.
Collapse
|
241
|
Lawlor N, Youn A, Kursawe R, Ucar D, Stitzel ML. Alpha TC1 and Beta-TC-6 genomic profiling uncovers both shared and distinct transcriptional regulatory features with their primary islet counterparts. Sci Rep 2017; 7:11959. [PMID: 28931935 PMCID: PMC5607285 DOI: 10.1038/s41598-017-12335-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/06/2017] [Indexed: 01/09/2023] Open
Abstract
Alpha TC1 (αTC1) and Beta-TC-6 (βTC6) mouse islet cell lines are cellular models of islet (dys)function and type 2 diabetes (T2D). However, genomic characteristics of these cells, and their similarities to primary islet alpha and beta cells, are undefined. Here, we report the epigenomic (ATAC-seq) and transcriptomic (RNA-seq) landscapes of αTC1 and βTC6 cells. Each cell type exhibits hallmarks of its primary islet cell counterpart including cell-specific expression of beta (e.g., Pdx1) and alpha (e.g., Arx) cell transcription factors (TFs), and enrichment of binding motifs for these TFs in αTC1/βTC6 cis-regulatory elements. αTC1/βTC6 transcriptomes overlap significantly with the transcriptomes of primary mouse/human alpha and beta cells. Our data further indicate that ATAC-seq detects cell-specific regulatory elements for cell types comprising ≥ 20% of a mixed cell population. We identified αTC1/βTC6 cis-regulatory elements orthologous to those containing type 2 diabetes (T2D)-associated SNPs in human islets for 33 loci, suggesting these cells’ utility to dissect T2D molecular genetics in these regions. Together, these maps provide important insights into the conserved regulatory architecture between αTC1/βTC6 and primary islet cells that can be leveraged in functional (epi)genomic approaches to dissect the genetic and molecular factors controlling islet cell identity and function.
Collapse
Affiliation(s)
- Nathan Lawlor
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Ahrim Youn
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Romy Kursawe
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA. .,Institute for Systems Genomics, University of Connecticut, Farmington, CT, 06032, USA. .,Department of Genetics & Genome Sciences, University of Connecticut, Farmington, CT, 06032, USA.
| | - Michael L Stitzel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA. .,Institute for Systems Genomics, University of Connecticut, Farmington, CT, 06032, USA. .,Department of Genetics & Genome Sciences, University of Connecticut, Farmington, CT, 06032, USA.
| |
Collapse
|
242
|
Owolabi M, Peprah E, Xu H, Akinyemi R, Tiwari HK, Irvin MR, Wahab KW, Arnett DK, Ovbiagele B. Advancing stroke genomic research in the age of Trans-Omics big data science: Emerging priorities and opportunities. J Neurol Sci 2017; 382:18-28. [PMID: 29111012 DOI: 10.1016/j.jns.2017.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/19/2017] [Accepted: 09/15/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND We systematically reviewed the genetic variants associated with stroke in genome-wide association studies (GWAS) and examined the emerging priorities and opportunities for rapidly advancing stroke research in the era of Trans-Omics science. METHODS Using the PRISMA guideline, we searched PubMed and NHGRI- EBI GWAS catalog for stroke studies from 2007 till May 2017. RESULTS We included 31 studies. The major challenge is that the few validated variants could not account for the full genetic risk of stroke and have not been translated for clinical use. None of the studies included continental Africans. Genomic study of stroke among Africans presents a unique opportunity for the discovery, validation, functional annotation, Trans-Omics study and translation of genomic determinants of stroke with implications for global populations. This is because all humans originated from Africa, a continent with a unique genomic architecture and a distinctive epidemiology of stroke; as well as substantially higher heritability and resolution of fine mapping of stroke genes. CONCLUSION Understanding the genomic determinants of stroke and the corresponding molecular mechanisms will revolutionize the development of a new set of precise biomarkers for stroke prediction, diagnosis and prognostic estimates as well as personalized interventions for reducing the global burden of stroke.
Collapse
Affiliation(s)
- Mayowa Owolabi
- Center for Genomic and Precision Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria; Department of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Emmanuel Peprah
- Center for Translation Research and Implementation Science, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Huichun Xu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rufus Akinyemi
- Center for Genomic and Precision Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria; Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria; Department of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Hemant K Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, USA
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, USA
| | - Kolawole Wasiu Wahab
- Department of Medicine, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Donna K Arnett
- College of Public Health, University of Kentucky at Lexington, USA
| | - Bruce Ovbiagele
- Department of Neurology, Medical University of South Carolina, Charleston, USA
| |
Collapse
|
243
|
Rubinstein M, Low MJ. Molecular and functional genetics of the proopiomelanocortin gene, food intake regulation and obesity. FEBS Lett 2017; 591:2593-2606. [PMID: 28771698 PMCID: PMC9975356 DOI: 10.1002/1873-3468.12776] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/31/2017] [Accepted: 07/31/2017] [Indexed: 12/20/2022]
Abstract
A specter is haunting the world, the specter of obesity. During the last decade, this pandemia has skyrocketed threatening children, adolescents and lower income families worldwide. Although driven by an increase in the consumption of ultraprocessed edibles of poor nutritional value, the obesogenic changes in contemporary human lifestyle affect people differently, revealing that some individuals are more prone to develop increased adiposity. During the last years, we performed a variety of genetic, evolutionary, biochemical and behavioral experiments that allowed us to understand how a group of neurons present in the arcuate nucleus of the hypothalamus regulate the expression of the proopiomelanocortin (Pomc) gene and induce satiety. We disentangled the neuronal transcriptional code of Pomc by identifying the cis-acting regulatory elements and primary transcription factors controlling hypothalamic Pomc expression and determined their functional importance in the regulation of food intake and adiposity. Altogether, our studies reviewed here shed light on the power and limitations of the mammalian central satiety pathways and may contribute to the development of individual and collective strategies to reduce the debilitating effects of the self-induced obesity pandemia.
Collapse
Affiliation(s)
- Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina,Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Malcolm J. Low
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA,Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
244
|
Abstract
PURPOSE OF REVIEW Genome-wide association studies (GWAS) for type 2 diabetes (T2D) risk have identified a large number of genetic loci associated with disease susceptibility. However, progress moving from association signals through causal genes to functional understanding has so far been slow, hindering clinical translation. This review discusses the benefits and limitations of emerging, unbiased approaches for prioritising causal genes at T2D risk loci. RECENT FINDINGS Candidate causal genes can be identified by a number of different strategies that rely on genetic data, genomic annotations, and functional screening of selected genes. To overcome the limitations of each particular method, integration of multiple data sets is proving essential for establishing confidence in the prioritised genes. Previous studies have also highlighted the need to support these efforts through identification of causal variants and disease-relevant tissues. Prioritisation of causal genes at T2D risk loci by integrating complementary lines of evidence promises to accelerate our understanding of disease pathology and promote translation into new therapeutics.
Collapse
Affiliation(s)
- Antje K Grotz
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- National Institute of Health Research Oxford Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Soren K Thomsen
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK.
| |
Collapse
|
245
|
Carreras-Torres R, Johansson M, Gaborieau V, Haycock PC, Wade KH, Relton CL, Martin RM, Davey Smith G, Brennan P. The Role of Obesity, Type 2 Diabetes, and Metabolic Factors in Pancreatic Cancer: A Mendelian Randomization Study. J Natl Cancer Inst 2017; 109:3778207. [PMID: 28954281 PMCID: PMC5721813 DOI: 10.1093/jnci/djx012] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/22/2016] [Accepted: 01/13/2017] [Indexed: 12/16/2022] Open
Abstract
Background Risk factors for pancreatic cancer include a cluster of metabolic conditions such as obesity, hypertension, dyslipidemia, insulin resistance, and type 2 diabetes. Given that these risk factors are correlated, separating out causal from confounded effects is challenging. Mendelian randomization (MR), or the use of genetic instrumental variables, may facilitate the identification of the metabolic drivers of pancreatic cancer. Methods We identified genetic instruments for obesity, body shape, dyslipidemia, insulin resistance, and type 2 diabetes in order to evaluate their causal role in pancreatic cancer etiology. These instruments were analyzed in relation to risk using a likelihood-based MR approach within a series of 7110 pancreatic cancer patients and 7264 control subjects using genome-wide data from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Potential unknown pleiotropic effects were assessed using a weighted median approach and MR-Egger sensitivity analyses. Results Results indicated a robust causal association of increasing body mass index (BMI) with pancreatic cancer risk (odds ratio [OR] = 1.34, 95% confidence interval [CI] = 1.09 to 1.65, for each standard deviation increase in BMI [4.6 kg/m2]). There was also evidence that genetically increased fasting insulin levels were causally associated with an increased risk of pancreatic cancer (OR = 1.66, 95% CI = 1.05 to 2.63, per SD [44.4 pmol/L]). Notably, no evidence of a causal relationship was observed for type 2 diabetes, nor for dyslipidemia. Sensitivity analyses did not indicate that pleiotropy was an important source of bias. Conclusions Our results suggest a causal role of BMI and fasting insulin in pancreatic cancer etiology.
Collapse
Affiliation(s)
- Robert Carreras-Torres
- Affiliations of authors: Section of Genetics, International Agency for Research on Cancer (IARC), Lyon, France (RCT, MJ, VG, PB); MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK (PCH, KHW, CLR, RMM, GDS); National Institute for Health Research Biomedical Research Unit in Nutrition, Diet and Lifestyle at University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK (RMM)
| | - Mattias Johansson
- Affiliations of authors: Section of Genetics, International Agency for Research on Cancer (IARC), Lyon, France (RCT, MJ, VG, PB); MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK (PCH, KHW, CLR, RMM, GDS); National Institute for Health Research Biomedical Research Unit in Nutrition, Diet and Lifestyle at University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK (RMM)
| | - Valerie Gaborieau
- Affiliations of authors: Section of Genetics, International Agency for Research on Cancer (IARC), Lyon, France (RCT, MJ, VG, PB); MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK (PCH, KHW, CLR, RMM, GDS); National Institute for Health Research Biomedical Research Unit in Nutrition, Diet and Lifestyle at University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK (RMM)
| | - Philip C. Haycock
- Affiliations of authors: Section of Genetics, International Agency for Research on Cancer (IARC), Lyon, France (RCT, MJ, VG, PB); MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK (PCH, KHW, CLR, RMM, GDS); National Institute for Health Research Biomedical Research Unit in Nutrition, Diet and Lifestyle at University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK (RMM)
| | - Kaitlin H. Wade
- Affiliations of authors: Section of Genetics, International Agency for Research on Cancer (IARC), Lyon, France (RCT, MJ, VG, PB); MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK (PCH, KHW, CLR, RMM, GDS); National Institute for Health Research Biomedical Research Unit in Nutrition, Diet and Lifestyle at University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK (RMM)
| | - Caroline L. Relton
- Affiliations of authors: Section of Genetics, International Agency for Research on Cancer (IARC), Lyon, France (RCT, MJ, VG, PB); MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK (PCH, KHW, CLR, RMM, GDS); National Institute for Health Research Biomedical Research Unit in Nutrition, Diet and Lifestyle at University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK (RMM)
| | - Richard M. Martin
- Affiliations of authors: Section of Genetics, International Agency for Research on Cancer (IARC), Lyon, France (RCT, MJ, VG, PB); MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK (PCH, KHW, CLR, RMM, GDS); National Institute for Health Research Biomedical Research Unit in Nutrition, Diet and Lifestyle at University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK (RMM)
| | - George Davey Smith
- Affiliations of authors: Section of Genetics, International Agency for Research on Cancer (IARC), Lyon, France (RCT, MJ, VG, PB); MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK (PCH, KHW, CLR, RMM, GDS); National Institute for Health Research Biomedical Research Unit in Nutrition, Diet and Lifestyle at University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK (RMM)
| | - Paul Brennan
- Affiliations of authors: Section of Genetics, International Agency for Research on Cancer (IARC), Lyon, France (RCT, MJ, VG, PB); MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK (PCH, KHW, CLR, RMM, GDS); National Institute for Health Research Biomedical Research Unit in Nutrition, Diet and Lifestyle at University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK (RMM)
| |
Collapse
|
246
|
Abstract
PURPOSE OF REVIEW Deciphering the mechanisms of type 2 diabetes (T2DM) risk loci can greatly inform on disease pathology. This review discusses current knowledge of mechanisms through which genetic variants influence T2DM risk and considerations for future studies. RECENT FINDINGS Over 100 T2DM risk loci to date have been identified. Candidate causal variants at risk loci map predominantly to non-coding sequence. Physiological, epigenomic and gene expression data suggest that variants at many known T2DM risk loci affect pancreatic islet regulation, although variants at other loci also affect protein function and regulatory processes in adipose, pre-adipose, liver, skeletal muscle and brain. The effects of T2DM variants on regulatory activity in these tissues appear largely, but not exclusively, due to altered transcription factor binding. Putative target genes of T2DM variants have been defined at an increasing number of loci and some, such as FTO, may entail several genes and multiple tissues. Gene networks in islets and adipocytes have been implicated in T2DM risk, although the molecular pathways of risk genes remain largely undefined. Efforts to fully define the mechanisms of T2DM risk loci are just beginning. Continued identification of risk mechanisms will benefit from combining genetic fine-mapping with detailed phenotypic association data, high-throughput epigenomics data from diabetes-relevant tissue, functional screening of candidate genes and genome editing of cellular and animal models.
Collapse
Affiliation(s)
- Kyle J Gaulton
- Department of Pediatrics, University of California San Diego, San Diego, CA, 92093, USA.
| |
Collapse
|
247
|
Constraints on eQTL Fine Mapping in the Presence of Multisite Local Regulation of Gene Expression. G3-GENES GENOMES GENETICS 2017; 7:2533-2544. [PMID: 28600440 PMCID: PMC5555460 DOI: 10.1534/g3.117.043752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Expression quantitative trait locus (eQTL) detection has emerged as an important tool for unraveling of the relationship between genetic risk factors and disease or clinical phenotypes. Most studies use single marker linear regression to discover primary signals, followed by sequential conditional modeling to detect secondary genetic variants affecting gene expression. However, this approach assumes that functional variants are sparsely distributed and that close linkage between them has little impact on estimation of their precise location and the magnitude of effects. We describe a series of simulation studies designed to evaluate the impact of linkage disequilibrium (LD) on the fine mapping of causal variants with typical eQTL effect sizes. In the presence of multisite regulation, even though between 80 and 90% of modeled eSNPs associate with normally distributed traits, up to 10% of all secondary signals could be statistical artifacts, and at least 5% but up to one-quarter of credible intervals of SNPs within r2 > 0.8 of the peak may not even include a causal site. The Bayesian methods eCAVIAR and DAP (Deterministic Approximation of Posteriors) provide only modest improvement in resolution. Given the strong empirical evidence that gene expression is commonly regulated by more than one variant, we conclude that the fine mapping of causal variants needs to be adjusted for multisite influences, as conditional estimates can be highly biased by interference among linked sites, but ultimately experimental verification of individual effects is needed. Presumably similar conclusions apply not just to eQTL mapping, but to multisite influences on fine mapping of most types of quantitative trait.
Collapse
|
248
|
Ivarsdottir EV, Steinthorsdottir V, Daneshpour MS, Thorleifsson G, Sulem P, Holm H, Sigurdsson S, Hreidarsson AB, Sigurdsson G, Bjarnason R, Thorsson AV, Benediktsson R, Eyjolfsson G, Sigurdardottir O, Olafsson I, Zeinali S, Azizi F, Thorsteinsdottir U, Gudbjartsson DF, Stefansson K. Effect of sequence variants on variance in glucose levels predicts type 2 diabetes risk and accounts for heritability. Nat Genet 2017; 49:1398-1402. [DOI: 10.1038/ng.3928] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/11/2017] [Indexed: 12/18/2022]
|
249
|
Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J. 10 Years of GWAS Discovery: Biology, Function, and Translation. Am J Hum Genet 2017; 101:5-22. [PMID: 28686856 DOI: 10.1016/j.ajhg.2017.06.005] [Citation(s) in RCA: 2115] [Impact Index Per Article: 264.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Application of the experimental design of genome-wide association studies (GWASs) is now 10 years old (young), and here we review the remarkable range of discoveries it has facilitated in population and complex-trait genetics, the biology of diseases, and translation toward new therapeutics. We predict the likely discoveries in the next 10 years, when GWASs will be based on millions of samples with array data imputed to a large fully sequenced reference panel and on hundreds of thousands of samples with whole-genome sequencing data.
Collapse
|
250
|
Francis S, Chandran SP, Nesheera KK, Jacob J. Fasting Insulin is Better Partitioned according to Family History of Type 2 Diabetes Mellitus than Post Glucose Load Insulin of Oral Glucose Tolerance Test in Young Adults. J Clin Diagn Res 2017; 11:BC13-BC16. [PMID: 28658751 DOI: 10.7860/jcdr/2017/27684.9910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/18/2017] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Hyperinsulinemia is contributed by insulin resistance, hepatic insulin uptake, insulin secretion and rate of insulin degradation. Family history of type 2 diabetes mellitus has been reported to cause hyperinsulinemia. AIM Correlation of fasting insulin with post glucose load Oral Glucose Tolerance Test (OGTT) insulin in young adults and their partitioning according to family history of type 2 diabetes. MATERIALS AND METHODS In this observational cross-sectional study, clinical evaluation and biochemical assays of insulin and diabetes related parameters, and secondary clinical influences on type 2 diabetes in volunteers were done for inclusion as participants (n=90) or their exclusion. Cut off levels of quantitative biochemical variables were fixed such that they included the effects of insulin resistance, but excluded other secondary clinical influences. Distribution was analysed by Shapiro-Wilk test; equality of variances by Levene's test; Log10 transformations for conversion of groups to Gaussian distribution and for equality of variances in the groups compared. When the groups compared had Gaussian distribution and there was equality of variance, parametric methods were used. Otherwise, non parametric methods were used. RESULTS Fasting insulin was correlating significantly with 30, 60 and 120 minute OGTT insulin showing that hyperinsulinemia in the fasting state was related to hyperinsulinemia in the post glucose load states. When fasting and post glucose load OGTT insulin were partitioned into those without and with family history of type 2 diabetes, maximum difference was seen in fasting insulin (p<0.001), followed by 120 (p=0.001) and 60 (p= 0.002) minute OGTT insulin. The 30 minute insulin could not be partitioned (p=0.574). CONCLUSION Fasting, 60 and 120 minute OGTT insulin can be partitioned according to family history of type 2 diabetes, demonstrating stratification and heterogeneity in the insulin sample. Of these, fasting insulin was better partitioned and could be used for baseline reference interval calculations.
Collapse
Affiliation(s)
- Saritha Francis
- Senior Research Fellow, Department of Biochemistry, Amala Cancer Research Centre, Thrissur, Kerala, India
| | | | - K K Nesheera
- Senior Research Fellow, Department of Biochemistry, Amala Cancer Research Centre, Thrissur, Kerala, India
| | - Jose Jacob
- Professor and HOD, Department of Biochemistry, Amala Institute of Medical Sciences, Amala Cancer Research Centre, Thrissur, Kerala, India
| |
Collapse
|