201
|
Bannai D, Reuter M, Hegde R, Hoang D, Adhan I, Gandu S, Pong S, Raymond N, Zeng V, Chung Y, He G, Sun D, van Erp TGM, Addington J, Bearden CE, Cadenhead K, Cornblatt B, Mathalon DH, McGlashan T, Jeffries C, Stone W, Tsuang M, Walker E, Woods SW, Cannon TD, Perkins D, Keshavan M, Lizano P. Linking enlarged choroid plexus with plasma analyte and structural phenotypes in clinical high risk for psychosis: A multisite neuroimaging study. Brain Behav Immun 2024; 117:70-79. [PMID: 38169244 PMCID: PMC10932816 DOI: 10.1016/j.bbi.2023.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Choroid plexus (ChP) enlargement exists in first-episode and chronic psychosis, but whether enlargement occurs before psychosis onset is unknown. This study investigated whether ChP volume is enlarged in individuals with clinical high-risk (CHR) for psychosis and whether these changes are related to clinical, neuroanatomical, and plasma analytes. METHODS Clinical and neuroimaging data from the North American Prodrome Longitudinal Study 2 (NAPLS2) was used for analysis. 509 participants (169 controls, 340 CHR) were recruited. Conversion status was determined after 2-years of follow-up, with 36 psychosis converters. The lateral ventricle ChP was manually segmented from baseline scans. A subsample of 31 controls and 53 CHR had plasma analyte and neuroimaging data. RESULTS Compared to controls, CHR (d = 0.23, p = 0.017) and non-converters (d = 0.22, p = 0.03) demonstrated higher ChP volumes, but not in converters. In CHR, greater ChP volume correlated with lower cortical (r = -0.22, p < 0.001), subcortical gray matter (r = -0.21, p < 0.001), and total white matter volume (r = -0.28,p < 0.001), as well as larger lateral ventricle volume (r = 0.63,p < 0.001). Greater ChP volume correlated with makers functionally associated with the lateral ventricle ChP in CHR [CCL1 (r = -0.30, p = 0.035), ICAM1 (r = 0.33, p = 0.02)], converters [IL1β (r = 0.66, p = 0.004)], and non-converters [BMP6 (r = -0.96, p < 0.001), CALB1 (r = -0.98, p < 0.001), ICAM1 (r = 0.80, p = 0.003), SELE (r = 0.59, p = 0.026), SHBG (r = 0.99, p < 0.001), TNFRSF10C (r = 0.78, p = 0.001)]. CONCLUSIONS CHR and non-converters demonstrated significantly larger ChP volumes compared to controls. Enlarged ChP was associated with neuroanatomical alterations and analyte markers functionally associated with the ChP. These findings suggest that the ChP may be a key an important biomarker in CHR.
Collapse
Affiliation(s)
- Deepthi Bannai
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Martin Reuter
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Rachal Hegde
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Dung Hoang
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Iniya Adhan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Swetha Gandu
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sovannarath Pong
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nick Raymond
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Victor Zeng
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yoonho Chung
- Department of Psychology, Yale University, New Haven, CT, USA
| | - George He
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Daqiang Sun
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, UCLA, Los Angeles, CA, USA
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, UC Irvine, Irvine, CA, USA
| | - Jean Addington
- Hotchkins Brain Institute, Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, UCLA, Los Angeles, CA, USA
| | | | | | | | | | - Clark Jeffries
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC, USA
| | - William Stone
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Ming Tsuang
- Department of Psychiatry, UCSD, San Diego, CA, USA
| | - Elaine Walker
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Scott W Woods
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, CT, USA; Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Diana Perkins
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC, USA; Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
202
|
Kang Y, Shin D, Kim A, You SH, Kim B, Han KM, Ham BJ. The effect of inflammation markers on cortical thinning in major depressive disorder: A possible mediator of depression and cortical changes. J Affect Disord 2024; 348:229-237. [PMID: 38160887 DOI: 10.1016/j.jad.2023.12.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/05/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is a prevalent mental health condition with significant societal impact. Owing to the intricate biological diversity of MDD, treatment efficacy remains limited. Immune biomarkers have emerged as potential predictors of treatment response, underscoring the interaction between the immune system and the brain. This study investigated the relationship between cytokine levels and cortical thickness in patients with MDD, focusing on the corticolimbic circuit, to elucidate the influence of neuroinflammation on structural brain changes and contribute to a deeper understanding of the pathophysiology of MDD. METHOD A total of 114 patients with MDD and 101 healthy controls (HC) matched for age, sex, and body mass index (BMI) were recruited. All participants were assessed for depression severity using the Hamilton Depression Rating Scale (HDRS), and 3.0 T T1 weighted brain MRI data were acquired. Additionally, cytokine levels were measured using a highly sensitive bead-based multiplex immunosorbent assay. RESULTS Patients diagnosed with MDD exhibited notably elevated levels of interleukin-6 (p = 0.005) and interleukin-8 (p = 0.005), alongside significant cortical thinning in the left anterior cingulate gyrus and left superior frontal gyrus, with these findings maintaining significance even after applying Bonferroni correction. Furthermore, increased interleukin-6 and interleukin-8 levels in patients with MDD are associated with alterations in the left frontomarginal gyrus and right anterior cingulate cortex (ACC). CONCLUSIONS This suggests a potential influence of neuroinflammation on right ACC function in MDD patients, warranting longitudinal research to explore interleukin-6 and interleukin-8 mediated neurotoxicity in MDD vulnerability and brain morphology changes.
Collapse
Affiliation(s)
- Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Daun Shin
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sung-Hye You
- Department of Radiology, Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byungjun Kim
- Department of Radiology, Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
203
|
Pérez-Millan A, Borrego-Écija S, Falgàs N, Juncà-Parella J, Bosch B, Tort-Merino A, Antonell A, Bargalló N, Rami L, Balasa M, Lladó A, Sala-Llonch R, Sánchez-Valle R. Cortical thickness modeling and variability in Alzheimer's disease and frontotemporal dementia. J Neurol 2024; 271:1428-1438. [PMID: 38012398 PMCID: PMC10896866 DOI: 10.1007/s00415-023-12087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/29/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND AND OBJECTIVE Alzheimer's disease (AD) and frontotemporal dementia (FTD) show different patterns of cortical thickness (CTh) loss compared with healthy controls (HC), even though there is relevant heterogeneity between individuals suffering from each of these diseases. Thus, we developed CTh models to study individual variability in AD, FTD, and HC. METHODS We used the baseline CTh measures of 379 participants obtained from the structural MRI processed with FreeSurfer. A total of 169 AD patients (63 ± 9 years, 65 men), 88 FTD patients (64 ± 9 years, 43 men), and 122 HC (62 ± 10 years, 47 men) were studied. We fitted region-wise temporal models of CTh using Support Vector Regression. Then, we studied associations of individual deviations from the model with cerebrospinal fluid levels of neurofilament light chain (NfL) and 14-3-3 protein and Mini-Mental State Examination (MMSE). Furthermore, we used real longitudinal data from 144 participants to test model predictivity. RESULTS We defined CTh spatiotemporal models for each group with a reliable fit. Individual deviation correlated with MMSE for AD and with NfL for FTD. AD patients with higher deviations from the trend presented higher MMSE values. In FTD, lower NfL levels were associated with higher deviations from the CTh prediction. For AD and HC, we could predict longitudinal visits with the presented model trained with baseline data. For FTD, the longitudinal visits had more variability. CONCLUSION We highlight the value of CTh models for studying AD and FTD longitudinal changes and variability and their relationships with cognitive features and biomarkers.
Collapse
Affiliation(s)
- Agnès Pérez-Millan
- Alzheimer's Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS, Villarroel, 170, 08036, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Spain
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, 08036, Barcelona, Spain
| | - Sergi Borrego-Écija
- Alzheimer's Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS, Villarroel, 170, 08036, Barcelona, Spain
| | - Neus Falgàs
- Alzheimer's Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS, Villarroel, 170, 08036, Barcelona, Spain
- Atlantic Fellow for Equity in Brain Health, Global Brain Health Institute, University of California San Francisco, San Francisco, 94143, USA
| | - Jordi Juncà-Parella
- Alzheimer's Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS, Villarroel, 170, 08036, Barcelona, Spain
| | - Beatriz Bosch
- Alzheimer's Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS, Villarroel, 170, 08036, Barcelona, Spain
| | - Adrià Tort-Merino
- Alzheimer's Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS, Villarroel, 170, 08036, Barcelona, Spain
| | - Anna Antonell
- Alzheimer's Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS, Villarroel, 170, 08036, Barcelona, Spain
| | - Nuria Bargalló
- Image Diagnostic Centre, CIBER de Salud Mental, Instituto de Salud Carlos III, Magnetic Resonance Image Core Facility, IDIBAPS, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Lorena Rami
- Alzheimer's Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS, Villarroel, 170, 08036, Barcelona, Spain
| | - Mircea Balasa
- Alzheimer's Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS, Villarroel, 170, 08036, Barcelona, Spain
- Atlantic Fellow for Equity in Brain Health, Global Brain Health Institute, University of California San Francisco, San Francisco, 94143, USA
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS, Villarroel, 170, 08036, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Spain
| | - Roser Sala-Llonch
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Spain
- Department of Biomedicine, Faculty of Medicine, University of Barcelona, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08036, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit. Service of Neurology, Hospital Clínic de Barcelona. Fundació Recerca Clínic Barcelona-IDIBAPS, Villarroel, 170, 08036, Barcelona, Spain.
- Institut de Neurociències, University of Barcelona, 08036, Barcelona, Spain.
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain.
| |
Collapse
|
204
|
Toyonaga T, Khattar N, Wu Y, Lu Y, Naganawa M, Gallezot JD, Matuskey D, Mecca AP, Pittman B, Dias M, Nabulsi NB, Finnema SJ, Chen MK, Arnsten A, Radhakrishnan R, Skosnik PD, D'Souza DC, Esterlis I, Huang Y, van Dyck CH, Carson RE. The regional pattern of age-related synaptic loss in the human brain differs from gray matter volume loss: in vivo PET measurement with [ 11C]UCB-J. Eur J Nucl Med Mol Imaging 2024; 51:1012-1022. [PMID: 37955791 DOI: 10.1007/s00259-023-06487-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/21/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE Aging is a major societal concern due to age-related functional losses. Synapses are crucial components of neural circuits, and synaptic density could be a sensitive biomarker to evaluate brain function. [11C]UCB-J is a positron emission tomography (PET) ligand targeting synaptic vesicle glycoprotein 2A (SV2A), which can be used to evaluate brain synaptic density in vivo. METHODS We evaluated age-related changes in gray matter synaptic density, volume, and blood flow using [11C]UCB-J PET and magnetic resonance imaging (MRI) in a wide age range of 80 cognitive normal subjects (21-83 years old). Partial volume correction was applied to the PET data. RESULTS Significant age-related decreases were found in 13, two, and nine brain regions for volume, synaptic density, and blood flow, respectively. The prefrontal cortex showed the largest volume decline (4.9% reduction per decade: RPD), while the synaptic density loss was largest in the caudate (3.6% RPD) and medial occipital cortex (3.4% RPD). The reductions in caudate are consistent with previous SV2A PET studies and likely reflect that caudate is the site of nerve terminals for multiple major tracts that undergo substantial age-related neurodegeneration. There was a non-significant negative relationship between volume and synaptic density reductions in 16 gray matter regions. CONCLUSION MRI and [11]C-UCB-J PET showed age-related decreases of gray matter volume, synaptic density, and blood flow; however, the regional patterns of the reductions in volume and SV2A binding were different. Those patterns suggest that MR-based measures of GM volume may not be directly representative of synaptic density.
Collapse
Affiliation(s)
- Takuya Toyonaga
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Nikkita Khattar
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yanjun Wu
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yihuan Lu
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Mika Naganawa
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jean-Dominique Gallezot
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - David Matuskey
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Adam P Mecca
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA
| | - Brian Pittman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Mark Dias
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Nabeel B Nabulsi
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Sjoerd J Finnema
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Ming-Kai Chen
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Amy Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University School of Medicine, New Haven, CT, USA
| | - Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Patrick D Skosnik
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Bouvé College of Health Sciences, Northeastern University Schools of Nursing & Pharmacy/Pharmaceutical Sciences, Boston, MA, USA
| | - Deepak Cyril D'Souza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Irina Esterlis
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Christopher H van Dyck
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Richard E Carson
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
205
|
Eisma JJ, McKnight CD, Hett K, Elenberger J, Han CJ, Song AK, Considine C, Claassen DO, Donahue MJ. Deep learning segmentation of the choroid plexus from structural magnetic resonance imaging (MRI): validation and normative ranges across the adult lifespan. Fluids Barriers CNS 2024; 21:21. [PMID: 38424598 PMCID: PMC10903155 DOI: 10.1186/s12987-024-00525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND The choroid plexus functions as the blood-cerebrospinal fluid (CSF) barrier, plays an important role in CSF production and circulation, and has gained increased attention in light of the recent elucidation of CSF circulation dysfunction in neurodegenerative conditions. However, methods for routinely quantifying choroid plexus volume are suboptimal and require technical improvements and validation. Here, we propose three deep learning models that can segment the choroid plexus from commonly-acquired anatomical MRI data and report performance metrics and changes across the adult lifespan. METHODS Fully convolutional neural networks were trained from 3D T1-weighted, 3D T2-weighted, and 2D T2-weighted FLAIR MRI using gold-standard manual segmentations in control and neurodegenerative participants across the lifespan (n = 50; age = 21-85 years). Dice coefficients, 95% Hausdorff distances, and area-under-curve (AUCs) were calculated for each model and compared to segmentations from FreeSurfer using two-tailed Wilcoxon tests (significance criteria: p < 0.05 after false discovery rate multiple comparisons correction). Metrics were regressed against lateral ventricular volume using generalized linear models to assess model performance for varying levels of atrophy. Finally, models were applied to an expanded cohort of adult controls (n = 98; age = 21-89 years) to provide an exemplar of choroid plexus volumetry values across the lifespan. RESULTS Deep learning results yielded Dice coefficient = 0.72, Hausdorff distance = 1.97 mm, AUC = 0.87 for T1-weighted MRI, Dice coefficient = 0.72, Hausdorff distance = 2.22 mm, AUC = 0.87 for T2-weighted MRI, and Dice coefficient = 0.74, Hausdorff distance = 1.69 mm, AUC = 0.87 for T2-weighted FLAIR MRI; values did not differ significantly between MRI sequences and were statistically improved compared to current commercially-available algorithms (p < 0.001). The intraclass coefficients were 0.95, 0.95, and 0.96 between T1-weighted and T2-weighted FLAIR, T1-weighted and T2-weighted, and T2-weighted and T2-weighted FLAIR models, respectively. Mean lateral ventricle choroid plexus volume across all participants was 3.20 ± 1.4 cm3; a significant, positive relationship (R2 = 0.54-0.60) was observed between participant age and choroid plexus volume for all MRI sequences (p < 0.001). CONCLUSIONS Findings support comparable performance in choroid plexus delineation between standard, clinically available, non-contrasted anatomical MRI sequences. The software embedding the evaluated models is freely available online and should provide a useful tool for the growing number of studies that desire to quantitatively evaluate choroid plexus structure and function ( https://github.com/hettk/chp_seg ).
Collapse
Affiliation(s)
- Jarrod J Eisma
- Department of Neurology, Behavioral and Cognitive Neurology, Vanderbilt University Medical Center, 1500 21 stAve South, Village at Vanderbilt, Suite 2600, Nashville, TN, 37212, USA
| | - Colin D McKnight
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kilian Hett
- Department of Neurology, Behavioral and Cognitive Neurology, Vanderbilt University Medical Center, 1500 21 stAve South, Village at Vanderbilt, Suite 2600, Nashville, TN, 37212, USA
| | - Jason Elenberger
- Department of Neurology, Behavioral and Cognitive Neurology, Vanderbilt University Medical Center, 1500 21 stAve South, Village at Vanderbilt, Suite 2600, Nashville, TN, 37212, USA
| | - Caleb J Han
- Department of Neurology, Behavioral and Cognitive Neurology, Vanderbilt University Medical Center, 1500 21 stAve South, Village at Vanderbilt, Suite 2600, Nashville, TN, 37212, USA
| | - Alexander K Song
- Department of Neurology, Behavioral and Cognitive Neurology, Vanderbilt University Medical Center, 1500 21 stAve South, Village at Vanderbilt, Suite 2600, Nashville, TN, 37212, USA
| | - Ciaran Considine
- Department of Neurology, Behavioral and Cognitive Neurology, Vanderbilt University Medical Center, 1500 21 stAve South, Village at Vanderbilt, Suite 2600, Nashville, TN, 37212, USA
| | - Daniel O Claassen
- Department of Neurology, Behavioral and Cognitive Neurology, Vanderbilt University Medical Center, 1500 21 stAve South, Village at Vanderbilt, Suite 2600, Nashville, TN, 37212, USA
| | - Manus J Donahue
- Department of Neurology, Behavioral and Cognitive Neurology, Vanderbilt University Medical Center, 1500 21 stAve South, Village at Vanderbilt, Suite 2600, Nashville, TN, 37212, USA.
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
206
|
Lock C, Tan NSM, Long IJ, Keong NC. Neuroimaging data repositories and AI-driven healthcare-Global aspirations vs. ethical considerations in machine learning models of neurological disease. Front Artif Intell 2024; 6:1286266. [PMID: 38440234 PMCID: PMC10910099 DOI: 10.3389/frai.2023.1286266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/27/2023] [Indexed: 03/06/2024] Open
Abstract
Neuroimaging data repositories are data-rich resources comprising brain imaging with clinical and biomarker data. The potential for such repositories to transform healthcare is tremendous, especially in their capacity to support machine learning (ML) and artificial intelligence (AI) tools. Current discussions about the generalizability of such tools in healthcare provoke concerns of risk of bias-ML models underperform in women and ethnic and racial minorities. The use of ML may exacerbate existing healthcare disparities or cause post-deployment harms. Do neuroimaging data repositories and their capacity to support ML/AI-driven clinical discoveries, have both the potential to accelerate innovative medicine and harden the gaps of social inequities in neuroscience-related healthcare? In this paper, we examined the ethical concerns of ML-driven modeling of global community neuroscience needs arising from the use of data amassed within neuroimaging data repositories. We explored this in two parts; firstly, in a theoretical experiment, we argued for a South East Asian-based repository to redress global imbalances. Within this context, we then considered the ethical framework toward the inclusion vs. exclusion of the migrant worker population, a group subject to healthcare inequities. Secondly, we created a model simulating the impact of global variations in the presentation of anosmia risks in COVID-19 toward altering brain structural findings; we then performed a mini AI ethics experiment. In this experiment, we interrogated an actual pilot dataset (n = 17; 8 non-anosmic (47%) vs. 9 anosmic (53%) using an ML clustering model. To create the COVID-19 simulation model, we bootstrapped to resample and amplify the dataset. This resulted in three hypothetical datasets: (i) matched (n = 68; 47% anosmic), (ii) predominant non-anosmic (n = 66; 73% disproportionate), and (iii) predominant anosmic (n = 66; 76% disproportionate). We found that the differing proportions of the same cohorts represented in each hypothetical dataset altered not only the relative importance of key features distinguishing between them but even the presence or absence of such features. The main objective of our mini experiment was to understand if ML/AI methodologies could be utilized toward modelling disproportionate datasets, in a manner we term "AI ethics." Further work is required to expand the approach proposed here into a reproducible strategy.
Collapse
Affiliation(s)
- Christine Lock
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - Nicole Si Min Tan
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - Ian James Long
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - Nicole C. Keong
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
207
|
Hu Q, Shi M, Li Y, Zhao X. Elevated plasma neurofilament light was associated with multi-modal neuroimaging features in Alzheimer's Disease signature regions and predicted future tau deposition. RESEARCH SQUARE 2024:rs.3.rs-3946421. [PMID: 38464117 PMCID: PMC10925409 DOI: 10.21203/rs.3.rs-3946421/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Neurofilament Light (NfL) is a biomarker for early neurodegeneration in Alzheimer's disease (AD). This study aims to examine the association between plasma NfL and multi-modal neuroimaging features across the AD spectrum and whether NfL predicts future tau deposition. Methods The present study recruited 517 participants comprising Aβ negative cognitively normal (CN-) participants (n = 135), CN + participants (n = 64), individuals with mild cognitive impairment (MCI) (n = 212), and those diagnosed with AD dementia (n = 106). All the participants underwent multi-modal neuroimaging examinations. Cross-sectional and longitudinal associations between plasma NfL and multi-modal neuro-imaging features were evaluated using partial correlation analysis and linear mixed effects models. We also used linear regression analysis to investigate the association of baseline plasma NfL with future PET tau load. Mediation analysis was used to explore whether the effect of NfL on cognition was mediated by these MRI markers. Results The results showed that baseline NfL levels and the rate of change were associated with Aβ deposition, brain atrophy, brain connectome, glucose metabolism, and brain perfusion in AD signature regions. In both Aβ positive CN and MCI participants, baseline NfL showed a significant predictive value of elevating tau burden in the left medial orbitofrontal cortex and para-hippocampus. Lastly, the multi-modal neuroimaging features mediated the association between plasma NfL and cognitive performance. Conclusions The study supports the association between plasma NfL and multi-modal neuroimaging features in AD-vulnerable regions and its predictive value for future tau deposition.
Collapse
Affiliation(s)
- Qili Hu
- The Fifth People's Hospital of Shanghai, Fudan University
| | - Mengqiu Shi
- The Fifth People's Hospital of Shanghai, Fudan University
| | - Yunfei Li
- The Fifth People's Hospital of Shanghai, Fudan University
| | - Xiaohu Zhao
- The Fifth People's Hospital of Shanghai, Fudan University
| |
Collapse
|
208
|
Kim CM, Diez I, Bueichekú E, Ahn S, Montal V, Sepulcre J. Spatiotemporal Correlation between Amyloid and Tau Accumulations Underlies Cognitive Changes in Aging. J Neurosci 2024; 44:e0488232023. [PMID: 38123362 PMCID: PMC10869152 DOI: 10.1523/jneurosci.0488-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/03/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
It is poorly known how Aβ and tau accumulations associate at the spatiotemporal level in the in vivo human brain to impact cognitive changes in older adults prior to AD symptoms onset. In this study, we used a graph theory-based spatiotemporal analysis to characterize the cortical patterns of Aβ and tau deposits and their relationship with cognitive changes in the Harvard Aging Brain Study (HABS) cohort. We found that the temporal accumulations of interlinked Aβ and tau pathology display distinctive spatiotemporal correlations associated with early cognitive decline. Notably, we observed that baseline Aβ deposits-Thal amyloid phase Ⅱ-related to future increase of tau deposits, Braak stages Ⅰ-Ⅳ, both displaying linkage to the decline in multi-domain cognitive scores. We also found unimodal tau-to-tau and cognitive impairment associations in broad areas of Braak stages Ⅰ-Ⅳ. The unimodal Aβ-to-Aβ progressions were not associated with cognitive changes. Our results revealed a multifaceted correlation of the spatiotemporal Aβ and tau associations with cognitive decline over time, in which tau-to-tau and tau-Aβ interactions, and not Aβ independently, might be critical contributors to clinical trajectories toward AD in older adults.
Collapse
Affiliation(s)
- Chan-Mi Kim
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston 02114, Massachusetts
| | - Ibai Diez
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston 02114, Massachusetts
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown 02129, Massachusetts
| | - Elisenda Bueichekú
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston 02114, Massachusetts
| | - Sung Ahn
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston 02114, Massachusetts
| | - Victor Montal
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston 02114, Massachusetts
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autonoma de Barcelona, Barcelona 08041, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid 28029, Spain
| | - Jorge Sepulcre
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston 02114, Massachusetts
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown 02129, Massachusetts
| |
Collapse
|
209
|
Lankinen K, Ahveninen J, Jas M, Raij T, Ahlfors SP. Neuronal modeling of magnetoencephalography responses in auditory cortex to auditory and visual stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.16.545371. [PMID: 37398025 PMCID: PMC10312796 DOI: 10.1101/2023.06.16.545371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Previous studies have demonstrated that auditory cortex activity can be influenced by crosssensory visual inputs. Intracortical recordings in non-human primates (NHP) have suggested a bottom-up feedforward (FF) type laminar profile for auditory evoked but top-down feedback (FB) type for cross-sensory visual evoked activity in the auditory cortex. To test whether this principle applies also to humans, we analyzed magnetoencephalography (MEG) responses from eight human subjects (six females) evoked by simple auditory or visual stimuli. In the estimated MEG source waveforms for auditory cortex region of interest, auditory evoked responses showed peaks at 37 and 90 ms and cross-sensory visual responses at 125 ms. The inputs to the auditory cortex were then modeled through FF and FB type connections targeting different cortical layers using the Human Neocortical Neurosolver (HNN), which consists of a neocortical circuit model linking the cellular- and circuit-level mechanisms to MEG. The HNN models suggested that the measured auditory response could be explained by an FF input followed by an FB input, and the crosssensory visual response by an FB input. Thus, the combined MEG and HNN results support the hypothesis that cross-sensory visual input in the auditory cortex is of FB type. The results also illustrate how the dynamic patterns of the estimated MEG/EEG source activity can provide information about the characteristics of the input into a cortical area in terms of the hierarchical organization among areas.
Collapse
Affiliation(s)
- Kaisu Lankinen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
- Department of Radiology, Harvard Medical School, Boston, MA 02115
| | - Jyrki Ahveninen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
- Department of Radiology, Harvard Medical School, Boston, MA 02115
| | - Mainak Jas
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
- Department of Radiology, Harvard Medical School, Boston, MA 02115
| | - Tommi Raij
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
- Department of Radiology, Harvard Medical School, Boston, MA 02115
| | - Seppo P. Ahlfors
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
- Department of Radiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
210
|
Siqueiros-Sanchez M, Rai B, Chowdhury S, Reiss AL, Green T. Syndrome-Specific Neuroanatomical Phenotypes in Girls With Turner and Noonan Syndromes. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:146-155. [PMID: 36084900 PMCID: PMC10305746 DOI: 10.1016/j.bpsc.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/20/2022] [Accepted: 08/25/2022] [Indexed: 06/03/2023]
Abstract
BACKGROUND Turner syndrome (TS) and Noonan syndrome (NS) are distinct genetic conditions with highly similar physical and neurodevelopmental phenotypes. TS is caused by X chromosome absence, whereas NS results from genetic mutations activating the Ras-mitogen-activated protein kinase signaling pathway. Previous neuroimaging studies in individuals with TS and NS have shown neuroanatomical variations relative to typically developing individuals, a standard comparison group when initially examining a clinical group of interest. However, none of these studies included a second clinical comparison group, limiting their ability to identify syndrome-specific neuroanatomical phenotypes. METHODS In this study, we compared the behavioral and brain phenotypes of 37 girls with TS, 26 girls with NS, and 37 typically developing girls, all ages 5 to 12 years, using univariate and multivariate data-driven analyses. RESULTS We found divergent neuroanatomical phenotypes between groups, despite high behavioral similarities. Relative to the typically developing group, TS was associated with smaller whole-brain cortical surface area (p ≤ .0001), whereas NS was associated with smaller whole-brain cortical thickness (p = .013). TS was associated with larger subcortical volumes (left amygdala, p = .002; right hippocampus, p = .002), whereas NS was associated with smaller subcortical volumes (bilateral caudate, p ≤ .003; putamen, p < .001; pallidum, p < .001; right hippocampus, p = .015). Multivariate analyses also showed diverging brain phenotypes in terms of surface area and cortical thickness, with surface area outperforming cortical thickness at group separation. CONCLUSIONS TS and NS have syndrome-specific brain phenotypes, despite their behavioral similarities. Our observations suggest that neuroanatomical phenotypes better reflect the different genetic etiologies of TS and NS and may be superior biomarkers relative to behavioral phenotypes.
Collapse
Affiliation(s)
- Monica Siqueiros-Sanchez
- Brain Imaging, Development and Genetics Lab, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Bhavana Rai
- Brain Imaging, Development and Genetics Lab, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Samir Chowdhury
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Brain Dynamics Lab, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Allan L Reiss
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Department of Radiology, Stanford University School of Medicine, Stanford University, Stanford, California; Department Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Tamar Green
- Brain Imaging, Development and Genetics Lab, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
211
|
Dönmezler S, Sönmez D, Yılbaş B, Öztürk Hİ, İskender G, Kurt İ. Thalamic nuclei volume differences in schizophrenia patients and healthy controls using probabilistic mapping: A comparative analysis. Schizophr Res 2024; 264:266-271. [PMID: 38198878 DOI: 10.1016/j.schres.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/13/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
AIM We aimed to investigate potential discrepancies in the volume of thalamic nuclei between individuals with schizophrenia and healthy controls. METHODS The imaging data for this study were obtained from the MCICShare data repository within SchizConnect. We employed probabilistic mapping technique developed by Iglesias et al. (2018). The analytical component entailed volumetric segmentation of the thalamus using the FreeSurfer image analysis suite. Our analysis focused on evaluating the differences in the volumes of various thalamic nuclei groups within the thalami, specifically the anterior, intralaminar, medial, posterior, lateral, and ventral groups in both the right and left thalami, between schizophrenia patients and healthy controls. We employed MANCOVA to analyse these dependent variables (volumes of 12 distinct thalamic nuclei groups), with diagnosis (SCZ vs. HCs) as the main explanatory variable, while controlling for covariates such as eTIV and age. RESULTS The assumptions of MANCOVA, including the homogeneity of covariance matrices, were met. Specific univariate tests for the right thalamus revealed significant differences in the medial (F[1, 200] = 26.360, p < 0.001), and the ventral groups (F[1, 200] = 4.793, p = 0.030). For the left thalamus, the medial (F[1, 200] = 22.527, p < 0.001); posterior (F[1, 200] = 8.227, p = 0.005), lateral (F[1, 200] = 7.004, p = 0.009), and ventral groups (F[1, 200] = 9.309, p = 0.003) showed significant differences. CONCLUSION These findings suggest that particular thalamic nuclei groups in both the right and left thalami may be most affected in schizophrenia, with more pronounced differences observed in the left thalamic nuclei. FUNDINGS The authors received no financial support for the research.
Collapse
Affiliation(s)
- Süleyman Dönmezler
- Sanko University, School of Medicine, Department of Psychiatry, Gaziantep, Turkey.
| | - Doğuş Sönmez
- Bakirkoy Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Department of Psychiatry, Istanbul, Turkey
| | - Barış Yılbaş
- Sanko University, School of Medicine, Department of Psychiatry, Gaziantep, Turkey
| | - Halil İbrahim Öztürk
- Sanko University, School of Medicine, Department of Psychiatry, Gaziantep, Turkey
| | - Gizem İskender
- Istanbul Prof. Dr. Cemil Tascioglu City Hospital, Department of Psychiatry, Istanbul, Turkey
| | - İmren Kurt
- Başakşehir Çam and Sakura City Hospital, Department of Psychiatry, Istanbul, Turkey
| |
Collapse
|
212
|
Vieites V, Ralph Y, Reeb-Sutherland B, Dick AS, Mattfeld AT, Pruden SM. Neurite density of the hippocampus is associated with trace eyeblink conditioning latency in 4- to 6-year-olds. Eur J Neurosci 2024; 59:358-369. [PMID: 38092417 PMCID: PMC10872972 DOI: 10.1111/ejn.16217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 02/06/2024]
Abstract
Limited options exist to evaluate the development of hippocampal function in young children. Research has established that trace eyeblink conditioning (EBC) relies on a functional hippocampus. Hence, we set out to investigate whether trace EBC is linked to hippocampal structure, potentially serving as a valuable indicator of hippocampal development. Our study explored potential associations between individual differences in hippocampal volume and neurite density with trace EBC performance in young children. We used onset latency of conditioned responses (CR) and percentage of conditioned responses (% CR) as measures of hippocampal-dependent associative learning. Using a sample of typically developing children aged 4 to 6 years (N = 30; 14 girls; M = 5.70 years), participants underwent T1- and diffusion-weighted MRI scans and completed a 15-min trace eyeblink conditioning task conducted outside the MRI. % CR and CR onset latency were calculated based on all trials involving tone-puff presentations and tone-alone trials. Findings revealed a connection between greater left hippocampal neurite density and delayed CR onset latency. Children with higher neurite density in the left hippocampus tended to blink closer to the onset of the unconditioned stimulus, indicating that structural variations in the hippocampus were associated with more precise timing of conditioned responses. No other relationships were observed between hippocampal volume, cerebellum volume or neurite density, hippocampal white matter connectivity and any EBC measures. Preliminary results suggest that trace EBC may serve as a straightforward yet innovative approach for studying hippocampal development in young children and populations with atypical development.
Collapse
Affiliation(s)
- Vanessa Vieites
- Department of Psychology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Yvonne Ralph
- Department of Psychology, University of Texas at Tyler, Tyler, Texas, USA
| | | | - Anthony Steven Dick
- Department of Psychology, Florida International University, Miami, Florida, USA
| | - Aaron T Mattfeld
- Department of Psychology, Florida International University, Miami, Florida, USA
| | - Shannon M Pruden
- Department of Psychology, Florida International University, Miami, Florida, USA
| |
Collapse
|
213
|
Vanderlinden G, Michiels L, Koole M, Lemmens R, Liessens D, Van Walleghem J, Depreitere B, Vandenbulcke M, Van Laere K. Tau Imaging in Late Traumatic Brain Injury: A [ 18F]MK-6240 Positron Emission Tomography Study. J Neurotrauma 2024; 41:420-429. [PMID: 38038357 DOI: 10.1089/neu.2023.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Epidemiological studies have identified prior traumatic brain injury (TBI) as a risk factor for developing Alzheimer's disease (AD). Neurofibrillary tangles (NFTs) are common to AD and chronic traumatic encephalopathy following repetitive mild TBI. However, it is unclear if a single TBI is sufficient to cause accumulation of NFTs. We performed a [18F]MK-6240 positron emission tomography (PET) imaging study to assess NFTs in patients who had sustained a single TBI at least 2 years prior to study inclusion. Fourteen TBI patients (49 ± 20 years; 5 M/9 F; 8 moderate-severe, 1 mild-probable, 5 symptomatic-possible TBI) and 40 demographically similar controls (57 ± 19 years; 19 M/21 F) underwent simultaneous [18F]MK-6240 PET and magnetic resonance imaging (MRI) as well as neuropsychological assessment including the Cambridge Neuropsychological Test Automated Battery (CANTAB). A region-based voxelwise partial volume correction was applied, using parcels obtained by FreeSurfer v6.0, and standardized uptake value ratios (SUVR) were calculated relative to the cerebellar gray matter. Group differences were assessed on both a voxel- and a volume-of-interest-based level and correlations of [18F]MK-6240 SUVR with time since injury as well as with clinical outcomes were calculated. Visual assessment of TBI images did not show global or focal increases in tracer uptake in any subject. On a group level, [18F]MK-6240 SUVR was not significantly different in patients versus controls or between subgroups of moderate-severe TBI versus less severe TBI. Within the TBI group, One Touch Stockings problem solving and spatial working memory (executive function), reaction time (attention), and Mini-Mental State Examination (MMSE) (global cognition) were associated with [18F]MK-6240 SUVR. We found no group-based increase of [18F]MK-6240 brain uptake in patients scanned at least 2 years after a single TBI compared with healthy volunteers, which suggests that no NFTs are building up in the first years after a single TBI. Nonetheless, correlations with cognitive outcomes were found that warrant further investigation.
Collapse
Affiliation(s)
- Greet Vanderlinden
- Nuclear Medicine and Molecular Imaging, Imaging and Pathology, and Departments of Research Group Psychiatry, KU Leuven, Leuven, Belgium
| | - Laura Michiels
- Leuven Brain Institute, Leuven, Belgium
- Department of Neurology, University Hospitals UZ Leuven, Leuven, Belgium
- VIB, Center for Brain and Disease Research, Laboratory of Neurobiology, Belgium
- Neurosciences, and Research Group Psychiatry, KU Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Imaging and Pathology, and Departments of Research Group Psychiatry, KU Leuven, Leuven, Belgium
| | - Robin Lemmens
- Leuven Brain Institute, Leuven, Belgium
- Department of Neurology, University Hospitals UZ Leuven, Leuven, Belgium
- VIB, Center for Brain and Disease Research, Laboratory of Neurobiology, Belgium
- Neurosciences, and Research Group Psychiatry, KU Leuven, Leuven, Belgium
| | - Dirk Liessens
- Department of Geriatric Psychiatry, University Hospitals UZ Leuven, Leuven, Belgium
| | | | - Bart Depreitere
- Department of Neurosurgery, and University Hospitals UZ Leuven, Leuven, Belgium
| | - Mathieu Vandenbulcke
- Leuven Brain Institute, Leuven, Belgium
- Department of Geriatric Psychiatry, University Hospitals UZ Leuven, Leuven, Belgium
- Neuropsychiatry, Research Group Psychiatry, KU Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Imaging and Pathology, and Departments of Research Group Psychiatry, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
- Department of Nuclear Medicine, University Hospitals UZ Leuven, Leuven, Belgium
| |
Collapse
|
214
|
Ross D, Wagshul ME, Izzetoglu M, Holtzer R. Cortical thickness moderates intraindividual variability in prefrontal cortex activation patterns of older adults during walking. J Int Neuropsychol Soc 2024; 30:117-127. [PMID: 37366047 PMCID: PMC10751394 DOI: 10.1017/s1355617723000371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
OBJECTIVE Increased intraindividual variability (IIV) in behavioral and cognitive performance is a risk factor for adverse outcomes but research concerning hemodynamic signal IIV is limited. Cortical thinning occurs during aging and is associated with cognitive decline. Dual-task walking (DTW) performance in older adults has been related to cognition and neural integrity. We examined the hypothesis that reduced cortical thickness would be associated with greater increases in IIV in prefrontal cortex oxygenated hemoglobin (HbO2) from single tasks to DTW in healthy older adults while adjusting for behavioral performance. METHOD Participants were 55 healthy community-dwelling older adults (mean age = 74.84, standard deviation (SD) = 4.97). Structural MRI was used to quantify cortical thickness. Functional near-infrared spectroscopy (fNIRS) was used to assess changes in prefrontal cortex HbO2 during walking. HbO2 IIV was operationalized as the SD of HbO2 observations assessed during the first 30 seconds of each task. Linear mixed models were used to examine the moderation effect of cortical thickness throughout the cortex on HbO2 IIV across task conditions. RESULTS Analyses revealed that thinner cortex in several regions was associated with greater increases in HbO2 IIV from the single tasks to DTW (ps < .02). CONCLUSIONS Consistent with neural inefficiency, reduced cortical thickness in the PFC and throughout the cerebral cortex was associated with increases in HbO2 IIV from the single tasks to DTW without behavioral benefit. Reduced cortical thickness and greater IIV of prefrontal cortex HbO2 during DTW may be further investigated as risk factors for developing mobility impairments in aging.
Collapse
Affiliation(s)
- Daliah Ross
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
| | - Mark E. Wagshul
- Department of Radiology, Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Meltem Izzetoglu
- Department of Electrical and Computer Engineering, Villanova University, Villanova, PA, USA
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
215
|
Rundfeldt HC, Lee CM, Lee H, Jung KH, Chang H, Kim HJ. Cerebral perfusion simulation using realistically generated synthetic trees for healthy and stroke patients. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107956. [PMID: 38061114 DOI: 10.1016/j.cmpb.2023.107956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND AND OBJECTIVE Cerebral vascular diseases are among the most burdensome diseases faced by society. However, investigating the pathophysiology of diseases as well as developing future treatments still relies heavily on expensive in-vivo and in-vitro studies. The generation of realistic, patient-specific models of the cerebrovascular system capable of simulating hemodynamics and perfusion promises the ability to simulate diseased states, therefore accelerating development cycles using in silico studies and opening opportunities for the individual assessment of diseased states, treatment planning, and the prediction of outcomes. By providing a patient-specific, anatomically detailed and validated model of the human cerebral vascular system, we aim to provide the basis for future in silico investigations of the cerebral physiology and pathology. METHODS In this retrospective study, a processing pipeline for patient-specific quantification of cerebral perfusion was developed and applied to healthy individuals and a stroke patient. Major arteries are segmented from 3T MR angiography data. A synthetic tree generation algorithm titled tissue-growth based optimization (GBO)1 is used to extend vascular trees beyond the imaging resolution. To investigate the anatomical accuracy of the generated trees, morphological parameters are compared against those of 7 T MRI, 9.4 T MRI, and dissection data. Using the generated vessel model, hemodynamics and perfusion are simulated by solving one-dimensional blood flow equations combined with Darcy flow equations. RESULTS Morphological data of three healthy individuals (mean age 47 years ± 15.9 [SD], 2 female) was analyzed. Bifurcation and physiological characteristics of the synthetically generated vessels are comparable to those of dissection data. The inability of MRI based segmentation to resolve small branches and the small volume investigated cause a mismatch in the comparison to MRI data. Cerebral perfusion was estimated for healthy individuals and a stroke patient. The simulated perfusion is compared against Arterial-Spin-Labeling MRI perfusion data. Good qualitative agreement is found between simulated and measured cerebral blood flow (CBF)2. Ischemic regions are predicted well, however ischemia severity is overestimated. CONCLUSIONS GBO successfully generates detailed cerebral vascular models with realistic morphological parameters. Simulations based on the resulting networks predict perfusion territories and ischemic regions successfully.
Collapse
Affiliation(s)
- Hans Christian Rundfeldt
- Korea Advanced Institute of Science and Technology, Mechanical Engineering, Republic of Korea; Karlsruhe Institute of Technology, Mechanical Engineering, Germany
| | - Chang Min Lee
- Korea Advanced Institute of Science and Technology, Mechanical Engineering, Republic of Korea
| | - Hanyoung Lee
- Chung-ang University, College of Pharmacy, Republic of Korea
| | - Keun-Hwa Jung
- Seoul National University Hospital, Department of Neurology, Republic of Korea
| | - Hyeyeon Chang
- Konyang University Hospital, Department of Neurology, Republic of Korea
| | - Hyun Jin Kim
- Korea Advanced Institute of Science and Technology, Mechanical Engineering, Republic of Korea.
| |
Collapse
|
216
|
Doll A, Wegrzyn M, Woermann FG, Labudda K, Bien CG, Kissler J. MRI evidence for material-specific encoding deficits and mesial-temporal alterations in presurgical frontal lobe epilepsy patients. Epilepsia Open 2024; 9:355-367. [PMID: 38093701 PMCID: PMC10839294 DOI: 10.1002/epi4.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE Neuroimaging studies reveal frontal lobe (FL) contributions to memory encoding. Accordingly, memory impairments are documented in frontal lobe epilepsy (FLE). Still, little is known about the structural or functional correlates of such impairments. Particularly, material specificity of functional changes in cerebral activity during memory encoding in FLE is unclear. METHODS We compared 24 FLE patients (15 right-sided) undergoing presurgical evaluation with 30 healthy controls on a memory fMRI-paradigm of learning scenes, faces, and words followed by an out-of-scanner recognition task as well as regarding their mesial temporal lobe (mTL) volumes. We also addressed effects of FLE lateralization and performance level (normal vs. low). RESULTS FLE patients had poorer memory performance and larger left hippocampal volumes than controls. Volume increase seemed, however, irrelevant or even dysfunctional for memory performance. Further, functional changes in FLE patients were right-sided for scenes and faces and bilateral for words. In detail, during face encoding, FLE patients had, regardless of their performance level, decreased mTL activation, while during scene and word encoding only low performing FLE patients had decreased mTL along with decreased FL activation. Intact verbal memory performance was associated with higher right frontal activation in FLE patients but not in controls. SIGNIFICANCE Pharmacoresistant FLE has a distinct functional and structural impact on the mTL. Effects vary with the encoded material and patients' performance levels. Thus, in addition to the direct effect of the FL, memory impairment in FLE is presumably to a large part due to functional mTL changes triggered by disrupted FL networks. PLAIN LANGUAGE SUMMARY Frontal lobe epilepsy (FLE) patients may suffer from memory impairment. Therefore, we asked patients to perform a memory task while their brain was scanned by MRI in order to investigate possible changes in brain activation during learning. FLE patients showed changes in brain activation during learning and also structural changes in the mesial temporal lobe, which is a brain region especially relevant for learning but not the origin of the seizures in FLE. We conclude that FLE leads to widespread changes that contribute to FLE patients' memory impairment.
Collapse
Affiliation(s)
- Anna Doll
- Department of Epileptology (Krankenhaus Mara)Medical School, Bielefeld UniversityBielefeldGermany
- Department of PsychologyBielefeld UniversityBielefeldGermany
| | - Martin Wegrzyn
- Department of PsychologyBielefeld UniversityBielefeldGermany
| | - Friedrich G. Woermann
- Department of Epileptology (Krankenhaus Mara)Medical School, Bielefeld UniversityBielefeldGermany
| | - Kirsten Labudda
- Department of Epileptology (Krankenhaus Mara)Medical School, Bielefeld UniversityBielefeldGermany
- Department of PsychologyBielefeld UniversityBielefeldGermany
| | - Christian G. Bien
- Department of Epileptology (Krankenhaus Mara)Medical School, Bielefeld UniversityBielefeldGermany
| | - Johanna Kissler
- Department of PsychologyBielefeld UniversityBielefeldGermany
- Center for Cognitive Interaction Technology (CITEC)Bielefeld UniversityBielefeldGermany
| |
Collapse
|
217
|
Mori F, Sugino M, Kabashima K, Nara T, Jimbo Y, Kotani K. Limiting parameter range for cortical-spherical mapping improves activated domain estimation for attention modulated auditory response. J Neurosci Methods 2024; 402:110032. [PMID: 38043853 DOI: 10.1016/j.jneumeth.2023.110032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Attention is one of the factors involved in selecting input information for the brain. We applied a method for estimating domains with clear boundaries using magnetoencephalography (the domain estimation method) for auditory-evoked responses (N100m) to evaluate the effects of attention in milliseconds. However, because the surface around the auditory cortex is folded in a complicated manner, it is unknown whether the activity in the auditory cortex can be estimated. NEW METHOD The parameter range to express current sources was set to include the auditory cortex. Their search region was expressed as a direct product of the parameter ranges used in the adaptive diagonal curves. RESULTS Without a limitation of the range, activity was estimated in regions other than the auditory cortex in all cases. However, with the limitation of the range, the activity was estimated in the primary or higher auditory cortex. Further analysis of the limitation of the range showed that the domains activated during attention included the regions activated during no attention for the participants whose amplitudes of N100m were higher during attention. COMPARISON WITH EXISTING METHOD We proposed a method for effectively limiting the search region to evaluate the extent of the activated domain in regions with complex folded structures. CONCLUSION To evaluate the extent of activated domains in regions with complex folded structures, it is necessary to limit the parameter search range. The area of the activated domains in the auditory cortex may increase by attention on the millisecond timescale.
Collapse
Affiliation(s)
- Fumina Mori
- School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Masato Sugino
- School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kenta Kabashima
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Takaaki Nara
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yasuhiko Jimbo
- School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Kotani
- The Graduate School of Frontier Science, The University of Tokyo, Chiba, Japan
| |
Collapse
|
218
|
Durazzo TC, Stephens LH, Kraybill EP, May AC, Meyerhoff DJ. Regional cortical brain volumes at treatment entry relates to post treatment WHO risk drinking levels in those with alcohol use disorder. Drug Alcohol Depend 2024; 255:111082. [PMID: 38219355 PMCID: PMC10895709 DOI: 10.1016/j.drugalcdep.2024.111082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/08/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Abstinence following treatment for alcohol use disorder (AUD) is associated with significant improvements in psychiatric and physical health, however, recent studies suggest resumption of low risk levels of alcohol use can also be beneficial. The present study assessed whether post-treatment levels of alcohol use were associated with cortical brain volumedifferences at treatment entry. METHODS Individuals seeking treatment for AUD (n=75) and light/non-drinking controls (LN, n=51) underwent 1.5T magnetic resonance imaging. The volumes of 34 bilateral cortical regions of interest (ROIs) were quantitated via FreeSurfer. Individuals with AUD were classified according to post-treatment alcohol consumption using the WHO risk drinking levels (abstainers: AB; low risk: RL; or higher risk: RH). Regional volumes for AB, RL and RH, at treatment entry, were compared to LN. RESULTS Relative to LN, AB demonstrated smaller volumes in 18/68 (26%), RL in 24/68 (35%) and RH in 34/68 (50%) ROIs with the largest magnitude volume differences observed between RH and LN. RH and RL reported a higher frequency of depressive disorders than AB. Among RH and RL, level of depressive and anxiety symptomatology were associated with daily number of drinks consumed after treatment. CONCLUSIONS Volumetric differences, at treatment entry, in brain regions implicated in executive function and salience networks corresponded with post-treatment alcohol consumption levels suggesting that pre-existing differences in neural integrity may contribute to treatment outcomes. Depressive and anxiety symptomatology was also associated with brain morphometrics and alcohol use patterns, highlighting the importance of effectively targeting these conditions during AUD treatment.
Collapse
Affiliation(s)
- Timothy C Durazzo
- Sierra-Pacific Mental Illness Research and Education Clinical Centers, VA Palo Alto Health Care System, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, USA.
| | - Lauren H Stephens
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, USA
| | - Eric P Kraybill
- Sierra-Pacific Mental Illness Research and Education Clinical Centers, VA Palo Alto Health Care System, USA
| | - April C May
- Sierra-Pacific Mental Illness Research and Education Clinical Centers, VA Palo Alto Health Care System, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, USA
| | - Dieter J Meyerhoff
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
219
|
Lee J, Park S. Multi-modal Representation of the Size of Space in the Human Brain. J Cogn Neurosci 2024; 36:340-361. [PMID: 38010320 DOI: 10.1162/jocn_a_02092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
To estimate the size of an indoor space, we must analyze the visual boundaries that limit the spatial extent and acoustic cues from reflected interior surfaces. We used fMRI to examine how the brain processes the geometric size of indoor scenes when various types of sensory cues are presented individually or together. Specifically, we asked whether the size of space is represented in a modality-specific way or in an integrative way that combines multimodal cues. In a block-design study, images or sounds that depict small- and large-sized indoor spaces were presented. Visual stimuli were real-world pictures of empty spaces that were small or large. Auditory stimuli were sounds convolved with different reverberations. By using a multivoxel pattern classifier, we asked whether the two sizes of space can be classified in visual, auditory, and visual-auditory combined conditions. We identified both sensory-specific and multimodal representations of the size of space. To further investigate the nature of the multimodal region, we specifically examined whether it contained multimodal information in a coexistent or integrated form. We found that angular gyrus and the right medial frontal gyrus had modality-integrated representation, displaying sensitivity to the match in the spatial size information conveyed through image and sound. Background functional connectivity analysis further demonstrated that the connection between sensory-specific regions and modality-integrated regions increases in the multimodal condition compared with single modality conditions. Our results suggest that spatial size perception relies on both sensory-specific and multimodal representations, as well as their interplay during multimodal perception.
Collapse
|
220
|
Schweitzer N, Li J, Thurston RC, Lopresti B, Klunk WE, Snitz B, Tudorascu D, Cohen A, Kamboh MI, Halligan‐Eddy E, Iordanova B, Villemagne VL, Aizenstein H, Wu M. Sex-dependent alterations in hippocampal connectivity are linked to cerebrovascular and amyloid pathologies in normal aging. Alzheimers Dement 2024; 20:914-924. [PMID: 37817668 PMCID: PMC10916980 DOI: 10.1002/alz.13503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/29/2023] [Accepted: 09/19/2023] [Indexed: 10/12/2023]
Abstract
INTRODUCTION Compared to males, females have an accelerated trajectory of cognitive decline in Alzheimer's disease (AD). The neurobiological factors underlying the more rapid cognitive decline in AD in females remain unclear. This study explored how sex-dependent alterations in hippocampal connectivity over 2 years are associated with cerebrovascular and amyloid pathologies in normal aging. METHODS Thirty-three females and 21 males 65 to 93 years of age with no cognitive impairment performed a face-name associative memory functional magnetic resonance imaging (fMRI) task with a 2-year follow-up. We acquired baseline carbon 11-labeled Pittsburgh compound B ([11 C]PiB) positron emission tomography (PET) and T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) MRI to quantify amyloid β (Aβ) burden and white matter hyperintensity (WMH) volume, respectively. RESULTS Males had increased hippocampal-prefrontal connectivity over 2 years, associated with greater Aβ burden. Females had increased bilateral hippocampal functional connectivity, associated with greater WMH volume. DISCUSSION These findings suggest sex-dependent compensatory mechanisms in the memory network in the presence of cerebrovascular and AD pathologies and may explain the accelerated trajectory of cognitive decline in females.
Collapse
Affiliation(s)
- Noah Schweitzer
- Department of BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Jinghang Li
- Department of BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Rebecca C. Thurston
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Brian Lopresti
- Department of RadiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - William E. Klunk
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Beth Snitz
- Department of NeurologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Dana Tudorascu
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Ann Cohen
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - M. Ilyas Kamboh
- Department of Human GeneticsSchool of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Edythe Halligan‐Eddy
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Bistra Iordanova
- Department of BioengineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Victor L. Villemagne
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Howard Aizenstein
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Minjie Wu
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
221
|
Liang X, Sun L, Liao X, Lei T, Xia M, Duan D, Zeng Z, Li Q, Xu Z, Men W, Wang Y, Tan S, Gao JH, Qin S, Tao S, Dong Q, Zhao T, He Y. Structural connectome architecture shapes the maturation of cortical morphology from childhood to adolescence. Nat Commun 2024; 15:784. [PMID: 38278807 PMCID: PMC10817914 DOI: 10.1038/s41467-024-44863-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024] Open
Abstract
Cortical thinning is an important hallmark of the maturation of brain morphology during childhood and adolescence. However, the connectome-based wiring mechanism that underlies cortical maturation remains unclear. Here, we show cortical thinning patterns primarily located in the lateral frontal and parietal heteromodal nodes during childhood and adolescence, which are structurally constrained by white matter network architecture and are particularly represented using a network-based diffusion model. Furthermore, connectome-based constraints are regionally heterogeneous, with the largest constraints residing in frontoparietal nodes, and are associated with gene expression signatures of microstructural neurodevelopmental events. These results are highly reproducible in another independent dataset. These findings advance our understanding of network-level mechanisms and the associated genetic basis that underlies the maturational process of cortical morphology during childhood and adolescence.
Collapse
Affiliation(s)
- Xinyuan Liang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Lianglong Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Xuhong Liao
- School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Tianyuan Lei
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Dingna Duan
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Zilong Zeng
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Qiongling Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Zhilei Xu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Beijing City Key Laboratory for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Yanpei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Shuping Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, 100096, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Beijing City Key Laboratory for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Tengda Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
222
|
Putcha D, Eustace A, Carvalho N, Wong B, Quimby M, Dickerson BC. Auditory naming is impaired in posterior cortical atrophy and early-onset Alzheimer's disease. Front Neurosci 2024; 18:1342928. [PMID: 38327846 PMCID: PMC10847232 DOI: 10.3389/fnins.2024.1342928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024] Open
Abstract
Introduction Visual naming ability reflects semantic memory retrieval and is a hallmark deficit of Alzheimer's disease (AD). Naming impairment is most prominently observed in the late-onset amnestic and logopenic variant Primary Progressive Aphasia (lvPPA) syndromes. However, little is known about how other patients across the atypical AD syndromic spectrum perform on tests of auditory naming, particularly those with primary visuospatial deficits (Posterior Cortical Atrophy; PCA) and early onset (EOAD) syndromes. Auditory naming tests may be of particular relevance to more accurately measuring anomia in PCA syndrome and in others with visual perceptual deficits. Methods Forty-six patients with biomarker-confirmed AD (16 PCA, 12 lvPPA, 18 multi-domain EOAD), at the stage of mild cognitive impairment or mild dementia, were administered the Auditory Naming Test (ANT). Performance differences between groups were evaluated using one-way ANOVA and post-hoc t-tests. Correlation analyses were used to examine ANT performance in relation to measures of working memory and word retrieval to elucidate cognitive mechanisms underlying word retrieval deficits. Whole-cortex general linear models were generated to determine the relationship between ANT performance and cortical atrophy. Results Based on published cutoffs, out of a total possible score of 50 on the ANT, 56% of PCA patients (mean score = 45.3), 83% of EOAD patients (mean = 39.2), and 83% of lvPPA patients (mean = 29.8) were impaired. Total uncued ANT performance differed across groups, with lvPPA performing most poorly, followed by EOAD, and then PCA. ANT performance was still impaired in lvPPA and EOAD after cuing, while performance in PCA patients improved to the normal range with phonemic cues. ANT performance was also directly correlated with measures of verbal fluency and working memory, and was associated with cortical atrophy in a circumscribed semantic language network. Discussion Auditory confrontation naming is impaired across the syndromic spectrum of AD including in PCA and EOAD, and is likely related to auditory-verbal working memory and verbal fluency which represent the nexus of language and executive functions. The left-lateralized semantic language network was implicated in ANT performance. Auditory naming, in the absence of a visual perceptual demand, may be particularly sensitive to measuring naming deficits in PCA.
Collapse
Affiliation(s)
- Deepti Putcha
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Ana Eustace
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Nicole Carvalho
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Bonnie Wong
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Megan Quimby
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Bradford C. Dickerson
- Frontotemporal Disorders Unit and Alzheimer’s Disease Research Center, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
223
|
Jin B, Xu J, Wang C, Wang S, Li H, Chen C, Ye L, He C, Cheng H, Zhang L, Wang S, Wang J, Aung T. Functional profile of perilesional gray matter in focal cortical dysplasia: an fMRI study. Front Neurosci 2024; 18:1286302. [PMID: 38318464 PMCID: PMC10838983 DOI: 10.3389/fnins.2024.1286302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Objectives We aim to investigate the functional profiles of perilesional gray matter (GM) in epileptic patients with focal cortical dysplasia (FCD) and to correlate these profiles with FCD II subtypes, surgical outcomes, and different antiseizure medications (ASMs) treatment response patterns. Methods Nine patients with drug-responsive epilepsy and 30 patients with drug-resistant epilepsy (11 were histologically confirmed FCD type IIa, 19 were FCD type IIb) were included. Individual-specific perilesional GM and contralateral homotopic GM layer masks were generated. These masks underwent a two-voxel (2 mm) dilation from the FCD lesion and contralateral homotopic region, resulting in 10 GM layers (20 mm). Layer 1, the innermost, progressed to Layer 10, the outermost. Amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) analyses were conducted to assess the functional characteristics of ipsilateral perilesional GM and contralateral homotopic GM. Results Compared to the contralateral homotopic GM, a significant reduction of ALFF was detected at ipsilateral perilesional GM layer 1 to 6 in FCD type IIa (after Bonferroni correction p < 0.005, paired t-test), whereas a significant decrease was observed at ipsilateral perilesional GM layer 1 to 2 in FCD type IIb (after Bonferroni correction p < 0.005, paired t-test). Additionally, a significant decrease of the ReHo was detected at ipsilateral perilesional GM layer 1 compared to the CHRs in FCD type IIb. Notably, complete resection of functional perilesional GM alterations did not correlate with surgical outcomes. Compared to the contralateral homotopic GM, a decreased ALFF in the ipsilateral perilesional GM layer was detected in drug-responsive patients, whereas decreased ALFF in the ipsilateral perilesional GM layer 1-6 and decreased ReHo at ipsilateral perilesional GM layer 1 were observed in drug-resistant patients (after Bonferroni correction p < 0.005, paired t-test). Conclusion Our findings indicate distinct functional profiles of perilesional GM based on FCD histological subtypes and ASMs' response patterns. Importantly, our study illustrates that the identified functional alterations in perilesional GM may not provide sufficient evidence to determine the epileptogenic boundary required for surgical resection.
Collapse
Affiliation(s)
- Bo Jin
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiahui Xu
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Wang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shan Wang
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Li
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cong Chen
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Linqi Ye
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chenmin He
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Cheng
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lisan Zhang
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuang Wang
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jin Wang
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Thandar Aung
- Department of Neurology, Epilepsy Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
224
|
Bayat M, Hernandez M, Curzon M, Garic D, Graziano P, Dick AS. Reduced recruitment of inhibitory control regions in very young children with ADHD during a modified Kiddie Continuous Performance Task: a fMRI study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576033. [PMID: 38293209 PMCID: PMC10827162 DOI: 10.1101/2024.01.17.576033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) symptom profiles are known to undergo changes throughout development, rendering the neurobiological assessment of ADHD challenging across different developmental stages. Particularly in young children (ages 4 to 7 years), measuring inhibitory control network activity in the brain has been a formidable task due to the lack of child-friendly functional Magnetic Resonance Imaging (fMRI) paradigms. This study aims to address these difficulties by focusing on measuring inhibitory control in very young children within the MRI environment. A total of 56 children diagnosed with ADHD and 78 typically developing (TD) 4-7-year-old children were examined using a modified version of the Kiddie-Continuous Performance Test (K-CPT) during BOLD fMRI to assess inhibitory control. We concurrently evaluated their performance on the established and standardized K-CPT outside the MRI scanner. Our findings suggest that the modified K-CPT effectively elicited robust and expected brain activity related to inhibitory control in both groups. Comparisons between the two groups revealed subtle differences in brain activity, primarily observed in regions associated with inhibitory control, such as the inferior frontal gyrus, anterior insula, dorsal striatum, medial pre-supplementary motor area (pre-SMA), and cingulate cortex. Notably, increased activity in the right anterior insula was associated with improved response time (RT) and reduced RT variability on the K-CPT administered outside the MRI environment, although this did not survive statistical correction for multiple comparisons. In conclusion, our study successfully overcame the challenges of measuring inhibitory control in very young children within the MRI environment by utilizing a modified K-CPT during BOLD fMRI. These findings shed light on the neurobiological correlates of inhibitory control in ADHD and TD children, provide valuable insights for understanding ADHD across development, and potentially inform ADHD diagnosis and intervention strategies. The research also highlights remaining challenges with task fMRI in very young clinical samples.
Collapse
|
225
|
Lenge M, Balestrini S, Napolitano A, Mei D, Conti V, Baldassarri G, Trivisano M, Pellacani S, Macconi L, Longo D, Rossi Espagnet MC, Cappelletti S, D'Incerti L, Barba C, Specchio N, Guerrini R. Morphometric network-based abnormalities correlate with psychiatric comorbidities and gene expression in PCDH19-related developmental and epileptic encephalopathy. Transl Psychiatry 2024; 14:35. [PMID: 38238304 PMCID: PMC10796344 DOI: 10.1038/s41398-024-02753-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Protocadherin-19 (PCDH19) developmental and epileptic encephalopathy causes an early-onset epilepsy syndrome with limbic seizures, typically occurring in clusters and variably associated with intellectual disability and a range of psychiatric disorders including hyperactive, obsessive-compulsive and autistic features. Previous quantitative neuroimaging studies revealed abnormal cortical areas in the limbic formation (parahippocampal and fusiform gyri) and underlying white-matter fibers. In this study, we adopted morphometric, network-based and multivariate statistical methods to examine the cortex and substructure of the hippocampus and amygdala in a cohort of 20 PCDH19-mutated patients and evaluated the relation between structural patterns and clinical variables at individual level. We also correlated morphometric alterations with known patterns of PCDH19 expression levels. We found patients to exhibit high-significant reductions of cortical surface area at a whole-brain level (left/right pvalue = 0.045/0.084), and particularly in the regions of the limbic network (left/right parahippocampal gyri pvalue = 0.230/0.016; left/right entorhinal gyri pvalue = 0.002/0.327), and bilateral atrophy of several subunits of the amygdala and hippocampus, particularly in the CA regions (head of the left CA3 pvalue = 0.002; body of the right CA3 pvalue = 0.004), and differences in the shape of hippocampal structures. More severe psychiatric comorbidities correlated with more significant altered patterns, with the entorhinal gyrus (pvalue = 0.013) and body of hippocampus (pvalue = 0.048) being more severely affected. Morphometric alterations correlated significantly with the known expression patterns of PCDH19 (rvalue = -0.26, pspin = 0.092). PCDH19 encephalopathy represents a model of genetically determined neural network based neuropsychiatric disease in which quantitative MRI-based findings correlate with the severity of clinical manifestations and had have a potential predictive value if analyzed early.
Collapse
Affiliation(s)
- Matteo Lenge
- Child Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| | - Simona Balestrini
- Child Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, 00100, Rome, Italy
| | - Davide Mei
- Child Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| | - Valerio Conti
- Child Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| | - Giulia Baldassarri
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, 00100, Rome, Italy
| | - Marina Trivisano
- Neurology, Epilepsy and Movement Disorders, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165, Rome, Italy
| | - Simona Pellacani
- Child Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| | - Letizia Macconi
- Pediatric Radiology Unit, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| | - Daniela Longo
- Functional and Interventional Neuroimaging Unit, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | | | - Simona Cappelletti
- Neurology, Epilepsy and Movement Disorders, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165, Rome, Italy
| | - Ludovico D'Incerti
- Pediatric Radiology Unit, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| | - Carmen Barba
- Child Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital IRCCS, 50139, Florence, Italy
| | - Nicola Specchio
- Neurology, Epilepsy and Movement Disorders, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165, Rome, Italy
| | - Renzo Guerrini
- Child Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital IRCCS, 50139, Florence, Italy.
| |
Collapse
|
226
|
Metzen D, Stammen C, Fraenz C, Schlüter C, Johnson W, Güntürkün O, DeYoung CG, Genç E. Investigating robust associations between functional connectivity based on graph theory and general intelligence. Sci Rep 2024; 14:1368. [PMID: 38228689 DOI: 10.1038/s41598-024-51333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024] Open
Abstract
Previous research investigating relations between general intelligence and graph-theoretical properties of the brain's intrinsic functional network has yielded contradictory results. A promising approach to tackle such mixed findings is multi-center analysis. For this study, we analyzed data from four independent data sets (total N > 2000) to identify robust associations amongst samples between g factor scores and global as well as node-specific graph metrics. On the global level, g showed no significant associations with global efficiency or small-world propensity in any sample, but significant positive associations with global clustering coefficient in two samples. On the node-specific level, elastic-net regressions for nodal efficiency and local clustering yielded no brain areas that exhibited consistent associations amongst data sets. Using the areas identified via elastic-net regression in one sample to predict g in other samples was not successful for local clustering and only led to one significant, one-way prediction across data sets for nodal efficiency. Thus, using conventional graph theoretical measures based on resting-state imaging did not result in replicable associations between functional connectivity and general intelligence.
Collapse
Affiliation(s)
- Dorothea Metzen
- Biopsychology, Institute for Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, 44801, Bochum, Germany.
- Institute of Psychology, Department of Educational Sciences and Psychology, TU Dortmund University, 44227, Dortmund, Germany.
| | - Christina Stammen
- Department of Psychology and Neuroscience, Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139, Dortmund, Germany
| | - Christoph Fraenz
- Department of Psychology and Neuroscience, Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139, Dortmund, Germany
| | - Caroline Schlüter
- Biopsychology, Institute for Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Wendy Johnson
- Department of Psychology, University of Edinburgh, EH8 9JZ, Edinburgh, UK
| | - Onur Güntürkün
- Biopsychology, Institute for Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Colin G DeYoung
- Department of Psychology, University of Minnesota, 55455, Minneapolis, MN, USA
| | - Erhan Genç
- Department of Psychology and Neuroscience, Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139, Dortmund, Germany
| |
Collapse
|
227
|
Nichols ES, Grace M, Correa S, de Vrijer B, Eagleson R, McKenzie CA, de Ribaupierre S, Duerden EG. Sex- and age-based differences in fetal and early childhood hippocampus maturation: a cross-sectional and longitudinal analysis. Cereb Cortex 2024; 34:bhad421. [PMID: 37950876 PMCID: PMC10793584 DOI: 10.1093/cercor/bhad421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 11/13/2023] Open
Abstract
The hippocampus, essential for cognitive and affective processes, develops exponentially with differential trajectories seen in girls and boys, yet less is known about its development during early fetal life until early childhood. In a cross-sectional and longitudinal study, we examined the sex-, age-, and laterality-related developmental trajectories of hippocampal volumes in fetuses, infants, and toddlers associated with age. Third trimester fetuses (27-38 weeks' gestational age), newborns (0-4 weeks' postnatal age), infants (5-50 weeks' postnatal age), and toddlers (2-3 years postnatal age) were scanned with magnetic resonance imaging. A total of 133 datasets (62 female, postmenstrual age [weeks] M = 69.38, SD = 51.39, range = 27.6-195.3) were processed using semiautomatic segmentation methods. Hippocampal volumes increased exponentially during the third trimester and the first year of life, beginning to slow at approximately 2 years. Overall, boys had larger hippocampal volumes than girls. Lateralization differences were evident, with left hippocampal growth beginning to plateau sooner than the right. This period of rapid growth from the third trimester, continuing through the first year of life, may support the development of cognitive and affective function during this period.
Collapse
Affiliation(s)
- Emily S Nichols
- Department of Applied Psychology, Faculty of Education, Western University, 1137 Western Road, London, Ontario, Canada
- Western Institute for Neuroscience, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Michael Grace
- Department of Physiology and Pharmacology, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Susana Correa
- Western Institute for Neuroscience, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Barbra de Vrijer
- Department of Obstetrics & Gynaecology, Schulich School of Medicine & Dentistry, Western University, London Health Sciences Centre-Victoria Hospital, B2-401, London, Ontario N6H 5W9, Canada
- Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute, 800 Commissioners Road East, London, Ontario N6C 2V5, Canada
| | - Roy Eagleson
- Western Institute for Neuroscience, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
- Department of Biomedical Engineering, Western University, Canada
- Department of Electrical and Computer Engineering, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Charles A McKenzie
- Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute, 800 Commissioners Road East, London, Ontario N6C 2V5, Canada
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, Canada
| | - Sandrine de Ribaupierre
- Western Institute for Neuroscience, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
- Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute, 800 Commissioners Road East, London, Ontario N6C 2V5, Canada
- Department of Biomedical Engineering, Western University, Canada
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Western University, Canada
| | - Emma G Duerden
- Department of Applied Psychology, Faculty of Education, Western University, 1137 Western Road, London, Ontario, Canada
- Western Institute for Neuroscience, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
- Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute, 800 Commissioners Road East, London, Ontario N6C 2V5, Canada
| |
Collapse
|
228
|
Ezzyat Y, Kragel JE, Solomon EA, Lega BC, Aronson JP, Jobst BC, Gross RE, Sperling MR, Worrell GA, Sheth SA, Wanda PA, Rizzuto DS, Kahana MJ. Functional and anatomical connectivity predict brain stimulation's mnemonic effects. Cereb Cortex 2024; 34:bhad427. [PMID: 38041253 PMCID: PMC10793570 DOI: 10.1093/cercor/bhad427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 12/03/2023] Open
Abstract
Closed-loop direct brain stimulation is a promising tool for modulating neural activity and behavior. However, it remains unclear how to optimally target stimulation to modulate brain activity in particular brain networks that underlie particular cognitive functions. Here, we test the hypothesis that stimulation's behavioral and physiological effects depend on the stimulation target's anatomical and functional network properties. We delivered closed-loop stimulation as 47 neurosurgical patients studied and recalled word lists. Multivariate classifiers, trained to predict momentary lapses in memory function, triggered the stimulation of the lateral temporal cortex (LTC) during the study phase of the task. We found that LTC stimulation specifically improved memory when delivered to targets near white matter pathways. Memory improvement was largest for targets near white matter that also showed high functional connectivity to the brain's memory network. These targets also reduced low-frequency activity in this network, an established marker of successful memory encoding. These data reveal how anatomical and functional networks mediate stimulation's behavioral and physiological effects, provide further evidence that closed-loop LTC stimulation can improve episodic memory, and suggest a method for optimizing neuromodulation through improved stimulation targeting.
Collapse
Affiliation(s)
- Youssef Ezzyat
- Dept. of Psychology, Wesleyan University, Middletown, CT 06459, USA
| | - James E Kragel
- Dept. of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Ethan A Solomon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley C Lega
- Dept. of Neurosurgery, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Joshua P Aronson
- Dept. of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Barbara C Jobst
- Dept. of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Robert E Gross
- Dept. of Neurosurgery, Emory University Hospital, Atlanta, GA 30322, USA
| | - Michael R Sperling
- Dept. of Neurology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - Sameer A Sheth
- Dept. of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul A Wanda
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel S Rizzuto
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Kahana
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
229
|
Mohanta S, Cleveland DM, Afrasiabi M, Rhone AE, Górska U, Cooper Borkenhagen M, Sanders RD, Boly M, Nourski KV, Saalmann YB. Traveling waves shape neural population dynamics enabling predictions and internal model updating. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574848. [PMID: 38260606 PMCID: PMC10802392 DOI: 10.1101/2024.01.09.574848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The brain generates predictions based on statistical regularities in our environment. However, it is unclear how predictions are optimized through iterative interactions with the environment. Because traveling waves (TWs) propagate across the cortex shaping neural excitability, they can carry information to serve predictive processing. Using human intracranial recordings, we show that anterior-to-posterior alpha TWs correlated with prediction strength. Learning about priors altered neural state space trajectories, and how much it altered correlated with trial-by-trial prediction strength. Learning involved mismatches between predictions and sensory evidence triggering alpha-phase resets in lateral temporal cortex, accompanied by stronger alpha phase-high gamma amplitude coupling and high-gamma power. The mismatch initiated posterior-to-anterior alpha TWs and change in the subsequent trial's state space trajectory, facilitating model updating. Our findings suggest a vital role of alpha TWs carrying both predictions to sensory cortex and mismatch signals to frontal cortex for trial-by-trial fine-tuning of predictive models.
Collapse
Affiliation(s)
- S Mohanta
- Department of Psychology, University of Wisconsin-Madison, WI, USA
| | - D M Cleveland
- Department of Psychology, University of Wisconsin-Madison, WI, USA
| | - M Afrasiabi
- Department of Psychology, University of Wisconsin-Madison, WI, USA
| | - A E Rhone
- Department of Neurosurgery, University of Iowa, IA, USA
| | - U Górska
- Department of Psychiatry, University of Wisconsin-Madison, WI, USA
| | | | - R D Sanders
- Specialty of Anaesthesia, University of Sydney, Camperdown, NSW, Australia and Department of Anaesthetics and Institute of Academic Surgery, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - M Boly
- Department of Psychiatry, University of Wisconsin-Madison, WI, USA
- Department of Neurology, University of Wisconsin-Madison, WI, USA
| | - K V Nourski
- Department of Neurosurgery, University of Iowa, IA, USA
- Iowa Neuroscience Institute, University of Iowa, IA, USA
| | - Y B Saalmann
- Department of Psychology, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
230
|
Svobodová V, Profant O, Škoch A, Tintěra J, Tóthová D, Chovanec M, Čapková D, Syka J. The effect of aging, hearing loss, and tinnitus on white matter in the human auditory system revealed with fixel-based analysis. Front Aging Neurosci 2024; 15:1283660. [PMID: 38264549 PMCID: PMC10803717 DOI: 10.3389/fnagi.2023.1283660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Aging negatively influences the structure of the human brain including the white matter. The objective of our study was to identify, using fixel-based morphometry, the age induced changes in the pathways connecting several regions of the central auditory system (inferior colliculus, Heschl's gyrus, planum temporale) and the pathways connecting these structures with parts of the limbic system (anterior insula, hippocampus and amygdala). In addition, we were interested in the extent to which the integrity of these pathways is influenced by hearing loss and tinnitus. Methods Tractographic data were acquired using a 3 T MRI in 79 volunteers. The participants were categorized into multiple groups in accordance with their age, auditory thresholds and tinnitus status. Fixel-based analysis was utilized to identify alterations in the subsequent three parameters: logarithm of fiber cross-section, fiber density, fiber density and cross-section. Two modes of analysis were used: whole brain analysis and targeted analysis using fixel mask, corresponding to the pathways connecting the aforementioned structures. Results A significantly negative effect of aging was present for all fixel-based metrics, namely the logarithm of the fiber cross-section, (7 % fixels in whole-brain, 14% fixels in fixel mask), fiber density (5 % fixels in whole-brain, 15% fixels in fixel mask), fiber density and cross section (7 % fixels in whole-brain, 19% fixels in fixel mask). Expressed age-related losses, exceeding 30% fixels, were particularly present in pathways connecting the auditory structures with limbic structures. The effect of hearing loss and/or tinnitus did not reach significance. Conclusions Our results show that although an age-related reduction of fibers is present in pathways connecting several auditory regions, the connections of these structures with limbic structures are even more reduced. To what extent this fact influences the symptoms of presbycusis, such as decreased speech comprehension, especially in noise conditions, remains to be elucidated.
Collapse
Affiliation(s)
- Veronika Svobodová
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague, Czechia
| | - Oliver Profant
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Otorhinolaryngology, 3rd Faculty of Medicine, Charles University in Prague, University Hospital Královské Vinohrady, Prague, Czechia
| | - Antonín Škoch
- Department of Radiodiagnostic and Interventional Radiology, Institute of Clinical and Experimental Medicine, Prague, Czechia
| | - Jaroslav Tintěra
- Department of Radiodiagnostic and Interventional Radiology, Institute of Clinical and Experimental Medicine, Prague, Czechia
| | - Diana Tóthová
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University in Prague, University Hospital Motol, Prague, Czechia
| | - Martin Chovanec
- Department of Otorhinolaryngology, 3rd Faculty of Medicine, Charles University in Prague, University Hospital Královské Vinohrady, Prague, Czechia
| | - Dora Čapková
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Otorhinolaryngology, 3rd Faculty of Medicine, Charles University in Prague, University Hospital Královské Vinohrady, Prague, Czechia
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
231
|
Rasser PE, Ehlkes T, Schall U. Fronto-temporal cortical grey matter thickness and surface area in the at-risk mental state and recent-onset schizophrenia: a magnetic resonance imaging study. BMC Psychiatry 2024; 24:33. [PMID: 38191320 PMCID: PMC10775434 DOI: 10.1186/s12888-024-05494-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Studies to date examining cortical thickness and surface area in young individuals At Risk Mental State (ARMS) of developing psychosis have revealed inconsistent findings, either reporting increased, decreased or no differences compared to mentally healthy individuals. The inconsistencies may be attributed to small sample sizes, varying age ranges, different ARMS identification criteria, lack of control for recreational substance use and antipsychotic pharmacotherapy, as well as different methods for deriving morphological brain measures. METHODS A surfaced-based approach was employed to calculate fronto-temporal cortical grey matter thickness and surface area derived from magnetic resonance imaging (MRI) data collected from 44 young antipsychotic-naïve ARMS individuals, 19 young people with recent onset schizophrenia, and 36 age-matched healthy volunteers. We conducted group comparisons of the morphological measures and explored their association with symptom severity, global and socio-occupational function levels, and the degree of alcohol and cannabis use in the ARMS group. RESULTS Grey matter thickness and surface areas in ARMS individuals did not significantly differ from their age-matched healthy counterparts. However, reduced left-frontal grey matter thickness was correlated with greater symptom severity and lower function levels; the latter being also correlated with smaller left-frontal surface areas. ARMS individuals with more severe symptoms showed greater similarities to the recent onset schizophrenia group. The morphological measures in ARMS did not correlate with the lifetime level of alcohol or cannabis use. CONCLUSIONS Our findings suggest that a decline in function levels and worsening mental state are associated with morphological changes in the left frontal cortex in ARMS but to a lesser extent than those seen in recent onset schizophrenia. Alcohol and cannabis use did not confound these findings. However, the cross-sectional nature of our study limits our ability to draw conclusions about the potential progressive nature of these morphological changes in ARMS.
Collapse
Affiliation(s)
- Paul E Rasser
- Centre for Brain & Mental Health Research, The University of Newcastle, Waratah, NSW, 2298, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Tim Ehlkes
- Centre for Brain & Mental Health Research, The University of Newcastle, Waratah, NSW, 2298, Australia
| | - Ulrich Schall
- Centre for Brain & Mental Health Research, The University of Newcastle, Waratah, NSW, 2298, Australia.
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.
- Centre for Brain & Mental Health Research, McAuley Centre, Mater Hospital, Waratah, NSW, 2298, Australia.
| |
Collapse
|
232
|
Zhang Y, Moore M, Jennings JS, Clark JD, Bayley PJ, Ashford JW, Furst AJ. The role of the brainstem in sleep disturbances and chronic pain of Gulf War and Iraq/Afghanistan veterans. Front Mol Neurosci 2024; 16:1266408. [PMID: 38260809 PMCID: PMC10800562 DOI: 10.3389/fnmol.2023.1266408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Gulf War Illness is a type of chronic multisymptom illness, that affects about 30% of veterans deployed to the 1990-91 Persian Gulf War. Veterans deployed to Iraq/Afghanistan after 2000 are reported to have a similar prevalence of chronic multisymptom illness. More than 30 years after the Persian Gulf War, Gulf War Illness still has an unexplained symptom complex, unknown etiology and lacks definitive diagnostic criteria and effective treatments. Our recent studies have found that substantially smaller brainstem volumes and lower fiber integrity are associated with increased sleep difficulty and pain intensity in 1990-91 Persian Gulf War veterans. This study was conducted to investigate whether veterans deployed to Iraq/Afghanistan present similar brainstem damage, and whether such brainstem structural differences are associated with major symptoms as in Gulf War Illness. Methods Here, we used structural magnetic resonance imaging and diffusion tensor imaging to measure the volumes of subcortices, brainstem subregions and white matter integrity of brainstem fiber tracts in 188 veterans including 98 Persian Gulf War veterans and 90 Iraq/Afghanistan veterans. Results We found that compared to healthy controls, veterans of both campaigns presented with substantially smaller volumes in brainstem subregions, accompanied by greater periaqueductal gray matter volumes. We also found that all veterans had reduced integrity in the brainstem-spinal cord tracts and the brainstem-subcortical tracts. In veterans deployed during the 1990-91 Persian Gulf War, we found that brainstem structural deficits significantly correlated with increased sleep difficulties and pain intensities, but in veterans deployed to Iraq/Afghanistan, no such effect was observed. Discussion These structural differences in the brainstem neurons and tracts may reflect autonomic dysregulation corresponding to the symptom constellation, which is characteristic of Gulf War Illness. Understanding these neuroimaging and neuropathological relationships in Gulf War and Iraq/Afghanistan veterans may improve clinical management and treatment strategies for modern war related chronic multisymptom illness.
Collapse
Affiliation(s)
- Yu Zhang
- War Related Illness and Injury Study Center, VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - Matthew Moore
- War Related Illness and Injury Study Center, VA Palo Alto Health Care System, Palo Alto, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Jennifer S. Jennings
- War Related Illness and Injury Study Center, VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - J. David Clark
- Anesthesiology Service, VA Palo Alto Health Care System, Palo Alto, CA, United States
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Peter J. Bayley
- War Related Illness and Injury Study Center, VA Palo Alto Health Care System, Palo Alto, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - J. Wesson Ashford
- War Related Illness and Injury Study Center, VA Palo Alto Health Care System, Palo Alto, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Ansgar J. Furst
- War Related Illness and Injury Study Center, VA Palo Alto Health Care System, Palo Alto, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
233
|
Granovetter MC, Maallo AMS, Patterson C, Glen D, Behrmann M. Morphometrics of the preserved post-surgical hemisphere in pediatric drug-resistant epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.24.559189. [PMID: 37808659 PMCID: PMC10557613 DOI: 10.1101/2023.09.24.559189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Importance Structural integrity of cortex following cortical resection for epilepsy management has been previously characterized, but only in adult patients. Objective This study sought to determine whether morphometrics of the preserved hemisphere in pediatric cortical resection patients differ from non-neurological controls. Design This was a case-control study, from 2013-2022. Setting This was a single-site study. Participants 32 patients with childhood epilepsy surgery and 51 age- and gender-matched controls participated. Main Measures We quantified morphometrics of the preserved hemisphere at the level of gross anatomy (lateral ventricle size, volume of gray and white matter). Additionally, cortical thickness, volume, and surface area were measured for 34 cortical regions segmented with the Desikan-Killiany atlas, and, last, volumes of nine subcortical regions were also quantified. Results 13 patients with left hemisphere (LH) surgery and a preserved right hemisphere (RH) (median age/median absolute deviation of age: 15.7/1.7 yr; 6 females, 7 males) and 19 patients with RH surgery and a preserved LH (15.4/3.7 yr; 11 females, 8 males) were compared to 51 controls (14.8/4.9 yr; 24 females, 27 males). Patient groups had larger ventricles and reduced total white matter volume relative to controls, and only patients with a preserved RH, but not patients with a preserved LH, had reduced total gray matter volume relative to controls. Furthermore, patients with a preserved RH had lower cortical thickness and volume and greater surface area of several cortical regions, relative to controls. Patients with a preserved LH had no differences in thickness, volume, or area, of any of the 34 cortical regions, relative to controls. Moreover, both LH and RH patients showed reduced volumes in select subcortical structures, relative to controls. Conclusions and Relevance That left-sided, but not right-sided, resection is associated with more pronounced reduction in cortical thickness and volume and increased cortical surface area relative to typically developing, age-matched controls suggests that the preserved RH undergoes structural plasticity to an extent not observed in cases of right-sided pediatric resection. Future work probing the association of the current findings with neuropsychological outcomes will be necessary to understand the implications of these structural findings for clinical practice.
Collapse
Affiliation(s)
- Michael C. Granovetter
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA 15213
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA 15213
| | - Anne Margarette S. Maallo
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA 15213
| | - Christina Patterson
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA 15213
| | - Daniel Glen
- Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, MD, USA 20892
| | - Marlene Behrmann
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA 15213
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA 15213
| |
Collapse
|
234
|
Nkrumah RO, von Schröder C, Demirakca T, Schmahl C, Ende G. Cortical volume alteration in the superior parietal region mediates the relationship between childhood abuse and PTSD avoidance symptoms: A complementary multimodal neuroimaging study. Neurobiol Stress 2024; 28:100586. [PMID: 38045556 PMCID: PMC10689271 DOI: 10.1016/j.ynstr.2023.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
Background Adverse childhood experiences (ACE), which can be separated into abuse and neglect, contribute to the development of post-traumatic stress symptoms (PTSS). However, which brain structures are mainly affected by ACE as well as the mediating role these brain structures play in ACE and PTSS relationship are still being investigated. The current study tested the effect of ACE on brain structure and investigated the latter's mediating role in ACE-PTSS relationship. Methods A total of 78 adults with self-reported ACE were included in this study. Participants completed the childhood trauma questionnaire (CTQ) and a Posttraumatic Stress Disorder Checklist for DSM-5 (PCL-5) to ascertain ACE history and PTSS, respectively. T1w images and diffusion MRI scans were then acquired to assess cortical morphometry and white matter (WM) integrity in fibre tracts connecting key areas where ACE-related cortical volume alterations were observed. Results The combined effect of ACE was negatively associated with total grey matter volume and local cortical area in the right superior parietal region (rSP). Childhood abuse was negatively related to right superior parietal volume after controlling for neglect and overall psychological burden. The right superior parietal volume significantly mediated the relationship between childhood abuse and avoidance-related PTSS. Post-hoc analyses showed that the indirect relation was subsequently moderated by dissociative symptoms. Lastly, a complementary examination of the WM tracts connected to abuse-associated cortical GM regions shows that abuse was negatively related to the normalised fibre density of WM tracts connected to the right superior parietal region. Conclusion We provide multimodal structural evidence that ACE in the first years of life is related to alterations in the right superior brain region, which plays a crucial role in spatial processing and attentional functioning. Additionally, we highlight that the cortical volume alteration in this region may play a role in explaining the relationship between childhood abuse and avoidance symptoms.
Collapse
Affiliation(s)
- Richard Okyere Nkrumah
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Claudius von Schröder
- Department of Psychosomatic Medicine & Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Traute Demirakca
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Christian Schmahl
- Department of Psychosomatic Medicine & Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Gabriele Ende
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| |
Collapse
|
235
|
Hojjati SH, Chiang GC, Butler TA, de Leon M, Gupta A, Li Y, Sabuncu MR, Feiz F, Nayak S, Shteingart J, Ozoria S, Gholipour Picha S, Stern Y, Luchsinger JA, Devanand DP, Razlighi QR. Remote Associations Between Tau and Cortical Amyloid-β Are Stage-Dependent. J Alzheimers Dis 2024; 98:1467-1482. [PMID: 38552116 PMCID: PMC11091581 DOI: 10.3233/jad-231362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 04/20/2024]
Abstract
Background Histopathologic studies of Alzheimer's disease (AD) suggest that extracellular amyloid-β (Aβ) plaques promote the spread of neurofibrillary tau tangles. However, these two proteinopathies initiate in spatially distinct brain regions, so how they interact during AD progression is unclear. Objective In this study, we utilized Aβ and tau positron emission tomography (PET) scans from 572 older subjects (476 healthy controls (HC), 14 with mild cognitive impairment (MCI), 82 with mild AD), at varying stages of the disease, to investigate to what degree tau is associated with cortical Aβ deposition. Methods Using multiple linear regression models and a pseudo-longitudinal ordering technique, we investigated remote tau-Aβ associations in four pathologic phases of AD progression based on tau spread: 1) no-tau, 2) pre-acceleration, 3) acceleration, and 4) post-acceleration. Results No significant tau-Aβ association was detected in the no-tau phase. In the pre-acceleration phase, the earliest stage of tau deposition, associations emerged between regional tau in medial temporal lobe (MTL) (i.e., entorhinal cortex, parahippocampal gyrus) and cortical Aβ in lateral temporal lobe regions. The strongest tau-Aβ associations were found in the acceleration phase, in which tau in MTL regions was strongly associated with cortical Aβ (i.e., temporal and frontal lobes regions). Strikingly, in the post-acceleration phase, including 96% of symptomatic subjects, tau-Aβ associations were no longer significant. Conclusions The results indicate that associations between tau and Aβ are stage-dependent, which could have important implications for understanding the interplay between these two proteinopathies during the progressive stages of AD.
Collapse
Affiliation(s)
- Seyed Hani Hojjati
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Gloria C. Chiang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Tracy A. Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Mony de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Yi Li
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Mert R. Sabuncu
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
| | - Farnia Feiz
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Siddharth Nayak
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jacob Shteingart
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sindy Ozoria
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Saman Gholipour Picha
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Yaakov Stern
- Departments of Neurology, Psychiatry, GH Sergievsky Center, The Taub Institute for the Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - José A. Luchsinger
- Departments of Medicine and Epidemiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Davangere P. Devanand
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neurology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY, USA
| | - Qolamreza R. Razlighi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
236
|
Heyn SA, Herringa RJ, Ersig AL. Differential Cortical Volume and Surface Morphometry in Youth With Chronic Health Conditions. Biol Res Nurs 2024; 26:115-124. [PMID: 37579190 PMCID: PMC10850874 DOI: 10.1177/10998004231195294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Up to 1 in 3 youth in the United States have a childhood-onset chronic health condition (CHC), which can lead to neurodevelopmental disruptions in cognitive functioning and brain structure. However, the nature and extent of structural neurobiomarkers that may be consistent across a broad spectrum of CHCs are unknown. Thus, the purpose of this study was to identify potential differences in brain structure in youth with and without chronic physical health conditions (e.g., diabetes, hemophilia). Here, 49 T1 structural magnetic resonance imaging (MRI) images were obtained from youth with (n = 26) and without (n = 23) CHCs. Images were preprocessed using voxel-based morphometry (VBM) to generate whole-brain voxel-wise gray matter volume maps and whole-brain extracted estimates of cortical surface area and cortical thickness. Multi-scanner harmonization was implemented on surface-based estimates and linear models were used to estimate significant main effects of the group. We detected widespread decreases in brain structure in youth with CHCs as compared to controls in regions of the prefrontal, cingulate, and visual association areas. The insula exhibited the opposite effect, with cases having increased surface area as compared to controls. To our knowledge, these findings identify a novel structural biomarker of childhood-onset CHCs, with consistent alterations identified in gray matter of regions in the prefrontal cortex and insula involved in emotion regulation and executive function. These findings, while exploratory, may reflect an impact of chronic health stress in the adolescent brain, and suggest that more comprehensive assessment of stress and neurodevelopment in youth with CHCs may be appropriate.
Collapse
Affiliation(s)
- Sara A. Heyn
- Department of Psychiatry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Ryan J. Herringa
- Department of Psychiatry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Anne L. Ersig
- School of Nursing, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
237
|
Simon SS, Varangis E, Lee S, Gu Y, Gazes Y, Razlighi QR, Habeck C, Stern Y. In vivo tau is associated with change in memory and processing speed, but not reasoning, in cognitively unimpaired older adults. Neurobiol Aging 2024; 133:28-38. [PMID: 38376885 PMCID: PMC10879688 DOI: 10.1016/j.neurobiolaging.2023.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/30/2023] [Accepted: 10/01/2023] [Indexed: 02/21/2024]
Abstract
The relationship between tau deposition and cognitive decline in cognitively healthy older adults is still unclear. The tau PET tracer 18F-MK-6240 has shown favorable imaging characteristics to identify early tau deposition in aging. We evaluated the relationship between in vivo tau levels (18F-MK-6240) and retrospective cognitive change over 5 years in episodic memory, processing speed, and reasoning. For tau quantification, a set of regions of interest (ROIs) was selected a priori based on previous literature: (1) total-ROI comprising selected areas, (2) medial temporal lobe-ROI, and (3) lateral temporal lobe-ROI and cingulate/parietal lobe-ROI. Higher tau burden in most ROIs was associated with a steeper decline in memory and speed. There were no associations between tau and reasoning change. The novelty of this finding is that tau burden may affect not only episodic memory, a well-established finding but also processing speed. Our finding reinforces the notion that early tau deposition in areas related to Alzheimer's disease is associated with cognitive decline in cognitively unimpaired individuals, even in a sample with low amyloid-β pathology.
Collapse
Affiliation(s)
- Sharon Sanz Simon
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Eleanna Varangis
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA; Concussion Center, University of Michigan, Ann Arbor, MI, USA
| | - Seonjoo Lee
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Yian Gu
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Yunglin Gazes
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | | | - Christian Habeck
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Yaakov Stern
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
238
|
Gogola A, Cohen AD, Snitz B, Minhas D, Tudorascu D, Ikonomovic MD, Shaaban CE, Doré V, Matan C, Bourgeat P, Mason NS, Leuzy A, Aizenstein H, Mathis CA, Lopez OL, Lopresti BJ, Villemagne VL. Implementation and Assessment of Tau Thresholds in Non-Demented Individuals as Predictors of Cognitive Decline in Tau Imaging Studies. J Alzheimers Dis 2024; 100:S75-S92. [PMID: 39121123 PMCID: PMC11776372 DOI: 10.3233/jad-240543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Background Tau accumulation in Alzheimer's disease is associated with short term clinical progression and faster rates of cognitive decline in individuals with high amyloid-β deposition. Defining an optimal threshold of tau accumulation predictive of cognitive decline remains a challenge. Objective We tested the ability of regional tau PET sensitivity and specificity thresholds to predict longitudinal cognitive decline. We also tested the predictive performance of thresholds in the proposed new NIA-AA biological staging for Alzheimer's disease where multiple levels of tau positivity are used to stage participants. Methods 18F-flortaucipir scans from 301 non-demented participants were processed and sampled. Four cognitive measures were assessed longitudinally. Regional standardized uptake value ratios were split into infra- and suprathreshold groups at baseline using previously derived thresholds. Survival analysis, log rank testing, and Generalized Estimation Equations assessed the relationship between the application of regional sensitivity/specificity thresholds and change in cognitive measures as well as tau threshold performance in predicting cognitive decline within the new NIA-AA biological staging. Results The meta temporal region was best for predicting risk of short-term cognitive decline in suprathreshold, as compared to infrathreshold participants. When applying multiple levels of tau positivity, each subsequent level of tau identified cognitive decline at earlier timepoints. Conclusions When using 18F-flortaucipir, meta temporal suprathreshold classification was associated with increased risk of cognitive decline, suggesting that abnormal tau deposition in the cortex predicts decline. Likewise, the application of multiple levels of tau clearly predicts the distinctive cognitive trajectories in the new NIA-AA biological staging framework.
Collapse
Affiliation(s)
- Alexandra Gogola
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ann D. Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Alzheimer’s Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beth Snitz
- Alzheimer’s Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Davneet Minhas
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dana Tudorascu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Alzheimer’s Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Milos D. Ikonomovic
- Alzheimer’s Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - C. Elizabeth Shaaban
- Alzheimer’s Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vincent Doré
- Department of Molecular Imaging & Therapy, Austin Health, Melbourne, VIC, Australia
- Commonwealth Scientific and Industrial Research Organisation Health & Biosecurity, Melbourne, VIC, Australia
| | - Cristy Matan
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pierrick Bourgeat
- Commonwealth Scientific and Industrial Research Organisation Health & Biosecurity, Melbourne, VIC, Australia
| | - N. Scott Mason
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Antoine Leuzy
- Critical Path for Alzheimer’s Disease (CPAD) Consortium, Critical Path Institute, Tucson, AZ, USA
| | - Howard Aizenstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Alzheimer’s Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chester A. Mathis
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oscar L. Lopez
- Alzheimer’s Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian J. Lopresti
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Victor L. Villemagne
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Alzheimer’s Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Molecular Imaging & Therapy, Austin Health, Melbourne, VIC, Australia
| | | |
Collapse
|
239
|
Amaral DG, Andrews DS, Nordahl CW. Structural Brain Imaging Biomarkers of Autism Spectrum Disorder. ADVANCES IN NEUROBIOLOGY 2024; 40:491-509. [PMID: 39562455 DOI: 10.1007/978-3-031-69491-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Since the early 1990s, there have literally been thousands of reports related to magnetic resonance imaging of the autistic brain. The goals of these studies have ranged from identifying the earliest biological predictors of an autistic diagnosis to determining brain systems most altered in autistic individuals. Some of the later works attempt to use distinct patterns of brain alterations to help define more homogenous subtypes of autism. Far less work has been done to identify brain changes that are associated with therapeutic interventions. In this chapter, we will touch on all of these efforts as they relate to the general topic of the usefulness of brain imaging as a biomarker of autism.
Collapse
Affiliation(s)
- David G Amaral
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and the Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA, USA.
| | - Derek Sayre Andrews
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and the Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Christine Wu Nordahl
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and the Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
240
|
Connaughton M, O’Hanlon E, Silk TJ, Paterson J, O’Neill A, Anderson V, Whelan R, McGrath J. The Limbic System in Children and Adolescents With Attention-Deficit/Hyperactivity Disorder: A Longitudinal Structural Magnetic Resonance Imaging Analysis. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:385-393. [PMID: 38298776 PMCID: PMC10829648 DOI: 10.1016/j.bpsgos.2023.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 02/02/2024] Open
Abstract
Background During childhood and adolescence, attention-deficit/hyperactivity disorder (ADHD) is associated with changes in symptoms and brain structures, but the link between brain structure and function remains unclear. The limbic system, often termed the "emotional network," plays an important role in a number of neurodevelopmental disorders, yet this brain network remains largely unexplored in ADHD. Investigating the developmental trajectories of key limbic system structures during childhood and adolescence will provide novel insights into the neurobiological underpinnings of ADHD. Methods Structural magnetic resonance imaging data (380 scans), emotional regulation (Affective Reactivity Index), and ADHD symptom severity (Conners 3 ADHD Index) were measured at up to 3 time points between 9 and 14 years of age in a sample of children and adolescents with ADHD (n = 57) and control children (n = 109). Results Compared with the control group, the ADHD group had lower volume of the amygdala (left: β standardized [β_std] = -0.38; right: β_std = -0.34), hippocampus (left: β_std = -0.44; right: β_std = -0.34), cingulate gyrus (left: β_std = -0.42; right: β_std = -0.32), and orbitofrontal cortex (right: β_std = -0.33) across development (9-14 years). There were no significant group-by-age interactions in any of the limbic system structures. Exploratory analysis found a significant Conners 3 ADHD Index-by-age interaction effect on the volume of the left mammillary body (β_std = 0.17) in the ADHD group across the 3 study time points. Conclusions Children and adolescents with ADHD displayed lower volume and atypical development in limbic system structures. Furthermore, atypical limbic system development was associated with increased symptom severity, highlighting a potential neurobiological correlate of ADHD severity.
Collapse
Affiliation(s)
- Michael Connaughton
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Erik O’Hanlon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Timothy J. Silk
- Department of Developmental Neuroimaging, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Julia Paterson
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Aisling O’Neill
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Vicki Anderson
- Department of Developmental Neuroimaging, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Psychology, Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - Robert Whelan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Jane McGrath
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
241
|
Duff K, Hammers DB, Koppelmans V, King JB, Hoffman JM. Short-Term Practice Effects on Cognitive Tests Across the Late Life Cognitive Spectrum and How They Compare to Biomarkers of Alzheimer's Disease. J Alzheimers Dis 2024; 99:321-332. [PMID: 38669544 PMCID: PMC11465692 DOI: 10.3233/jad-231392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Background Practice effects on cognitive testing in mild cognitive impairment (MCI) and Alzheimer's disease (AD) remain understudied, especially with how they compare to biomarkers of AD. Objective The current study sought to add to this growing literature. Methods Cognitively intact older adults (n = 68), those with amnestic MCI (n = 52), and those with mild AD (n = 45) completed a brief battery of cognitive tests at baseline and again after one week, and they also completed a baseline amyloid PET scan, a baseline MRI, and a baseline blood draw to obtain APOE ɛ4 status. Results The intact participants showed significantly larger baseline cognitive scores and practice effects than the other two groups on overall composite measures. Those with MCI showed significantly larger baseline scores and practice effects than AD participants on the composite. For amyloid deposition, the intact participants had significantly less tracer uptake, whereas MCI and AD participants were comparable. For total hippocampal volumes, all three groups were significantly different in the expected direction (intact > MCI > AD). For APOE ɛ4, the intact had significantly fewer copies of ɛ4 than MCI and AD. The effect sizes of the baseline cognitive scores and practice effects were comparable, and they were significantly larger than effect sizes of biomarkers in 7 of the 9 comparisons. Conclusion Baseline cognition and short-term practice effects appear to be sensitive markers in late life cognitive disorders, as they separated groups better than commonly-used biomarkers in AD. Further development of baseline cognition and short-term practice effects as tools for clinical diagnosis, prognostic indication, and enrichment of clinical trials seems warranted.
Collapse
Affiliation(s)
- Kevin Duff
- Department of Neurology, Layton Aging and Alzheimer’s Disease Center, Oregon Health & Science University, Portland, OR, USA
- Department of Neurology, Center for Alzheimer’s Care, Imaging and Research, University of Utah, Salt Lake City, UT, USA
| | - Dustin B. Hammers
- Department of Neurology, Indiana University School of Medicine, Indiana, USA
| | | | - Jace B. King
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - John M. Hoffman
- Department of Neurology, Center for Alzheimer’s Care, Imaging and Research, University of Utah, Salt Lake City, UT, USA
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
- University of Utah Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, Salt Lake City, UT, USA
| |
Collapse
|
242
|
Conner CR, Forseth KJ, Lozano AM, Ritter R, Fenoy AJ. Thalamo-cortical evoked potentials during stimulation of the dentato-rubro-thalamic tract demonstrate synaptic filtering. Neurotherapeutics 2024; 21:e00295. [PMID: 38237402 PMCID: PMC10903089 DOI: 10.1016/j.neurot.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 02/16/2024] Open
Abstract
Essential tremor DBS targeting the ventral intermediate nucleus (Vim) of the thalamus and its input, the dentato-rubro-thalamic tract (DRTt), has proven to be an effective treatment strategy. We examined thalamo-cortical evoked potentials (TCEPs) and cortical dynamics during stimulation of the DRTt. We recorded TCEPs in primary motor cortex during clinical and supra-clinical stimulation of the DRTt in ten essential tremor patients. Stimulation was varied over pulse amplitude (2-10 mA) and pulse width (30-250 μs) to allow for strength-duration testing. Testing at clinical levels (3 mA, 60 μs) for stimulation frequencies of 1-160 Hz was performed and phase amplitude coupling (PAC) of beta phase and gamma power was calculated. Primary motor cortex TCEPs displayed two responses: early and all-or-none (<20 ms) or delayed and charge-dependent (>50 ms). Strength-duration curve approximation indicates that the chronaxie of the neural elements related to the TCEPs is <200 μs. At the range of clinical stimulation (amplitude 2-5 mA, pulse width 30-60 μs), TCEPs were not noted over primary motor cortex. Decreased pathophysiological phase-amplitude coupling was seen above 70 Hz stimulation without changes in power spectra and below the threshold of TCEPs. Our findings demonstrate that DRTt stimulation within normal clinical bounds does not excite fibers directly connected with primary motor cortex but that supra-clinical stimulation can excite a direct axonal tract. Both clinical efficacy and phase-amplitude coupling were frequency-dependent, favoring a synaptic filtering model as a possible mechanism of action.
Collapse
Affiliation(s)
- Christopher R Conner
- Division of Neurosurgery, Department of Surgery, University of Connecticut, Hartford, CT, USA.
| | - Kiefer J Forseth
- Division of Neurosurgery, University of California San Diego, San Diego, CA, USA
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Robert Ritter
- Department of Neurosurgery, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Albert J Fenoy
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
243
|
Choi YY, Lee JJ, Te Nijenhuis J, Choi KY, Park J, Ok J, Choo IH, Kim H, Song MK, Choi SM, Cho SH, Choe Y, Kim BC, Lee KH. Multi-Ethnic Norms for Volumes of Subcortical and Lobar Brain Structures Measured by Neuro I: Ethnicity May Improve the Diagnosis of Alzheimer's Disease1. J Alzheimers Dis 2024; 99:223-240. [PMID: 38640153 DOI: 10.3233/jad-231182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Background We previously demonstrated the validity of a regression model that included ethnicity as a novel predictor for predicting normative brain volumes in old age. The model was optimized using brain volumes measured with a standard tool FreeSurfer. Objective Here we further verified the prediction model using newly estimated brain volumes from Neuro I, a quantitative brain analysis system developed for Korean populations. Methods Lobar and subcortical volumes were estimated from MRI images of 1,629 normal Korean and 786 Caucasian subjects (age range 59-89) and were predicted in linear regression from ethnicity, age, sex, intracranial volume, magnetic field strength, and scanner manufacturers. Results In the regression model predicting the new volumes, ethnicity was again a substantial predictor in most regions. Additionally, the model-based z-scores of regions were calculated for 428 AD patients and the matched controls, and then employed for diagnostic classification. When the AD classifier adopted the z-scores adjusted for ethnicity, the diagnostic accuracy has noticeably improved (AUC = 0.85, ΔAUC = + 0.04, D = 4.10, p < 0.001). Conclusions Our results suggest that the prediction model remains robust across different measurement tool, and ethnicity significantly contributes to the establishment of norms for brain volumes and the development of a diagnostic system for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu Yong Choi
- Gwangju Alzheimer's & Related Dementia Cohort Research Center, Chosun University, Gwangju, Republic of Korea
- Department of Neurology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Jang Jae Lee
- Gwangju Alzheimer's & Related Dementia Cohort Research Center, Chosun University, Gwangju, Republic of Korea
| | - Jan Te Nijenhuis
- Gwangju Alzheimer's & Related Dementia Cohort Research Center, Chosun University, Gwangju, Republic of Korea
| | - Kyu Yeong Choi
- Gwangju Alzheimer's & Related Dementia Cohort Research Center, Chosun University, Gwangju, Republic of Korea
| | | | | | - Il Han Choo
- Department of Neuropsychiatry, Chosun University School of Medicine and Hospital, Gwangju, Republic of Korea
| | - Hoowon Kim
- Gwangju Alzheimer's & Related Dementia Cohort Research Center, Chosun University, Gwangju, Republic of Korea
- Department of Neurology, Chosun University School of Medicine and Hospital, Gwangju, Republic of Korea
| | - Min-Kyung Song
- Department of Neurology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Seong-Min Choi
- Department of Neurology, Chonnam National University Hospital, Gwangju, Republic of Korea
- Department of Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Soo Hyun Cho
- Department of Neurology, Chonnam National University Hospital, Gwangju, Republic of Korea
- Department of Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Youngshik Choe
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Hospital, Gwangju, Republic of Korea
- Department of Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Kun Ho Lee
- Gwangju Alzheimer's & Related Dementia Cohort Research Center, Chosun University, Gwangju, Republic of Korea
- Neurozen Inc., Seoul, Republic of Korea
- Korea Brain Research Institute, Daegu, Republic of Korea
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
244
|
El Haffaf LM, Ronat L, Cannizzaro A, Hanganu A. Associations Between Hyperactive Neuropsychiatric Symptoms and Brain Morphology in Mild Cognitive Impairment and Alzheimer's Disease. J Alzheimers Dis 2024; 97:841-853. [PMID: 38143342 DOI: 10.3233/jad-220857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Hyperactive neuropsychiatric symptoms (NPS) (i.e., agitation, disinhibition, and irritability) are among the most challenging symptoms to manage in Alzheimer's disease (AD). However, their underlying brain correlates have been poorly studied. OBJECTIVE We aimed to investigate the associations between the total score of hyperactive NPS and brain structures in participants with AD, mild cognitive impairment (MCI), and cognitively normal older adults (CN). METHODS Neuropsychiatric and 3T MRI data from 216 AD, 564 MCI, and 660 CN participants were extracted from the Alzheimer's Disease Neuroimaging Initiative database. To define NPS and brain structures' associations, we fitted a general linear model (GLM) in two ways: 1) an overall GLM including all three groups (AD, MCI, CN) and 2) three pair-wise GLMs (AD versus MCI, MCI versus CN, AD versus CN). The cortical changes as a function of NPS total score were investigated using multiple regression analyses. RESULTS Results from the overall GLM include associations between 1) agitation and the right parietal supramarginal surface area in the MCI-CN contrast, 2) disinhibition and the cortical thickness of the right frontal pars opercularis and temporal inferior in the AD-MCI contrast, and 3) irritability and the right frontal pars opercularis, frontal superior, and temporal superior volumes in the MCI-CN contrast. CONCLUSIONS Our study shows that each hyperactive NPS is associated with distinct brain regions in AD, MCI, and CN (groups with different levels of cognitive performance). This suggests that each NPS is associated with a unique signature of brain morphology, including variations in volume, thickness, or area.
Collapse
Affiliation(s)
- Lyna Mariam El Haffaf
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CIUSSS du Centre-Sud-de-l'Ile-de-Montreal, Montréal, QC, Canada
- Département de Psychologie, Faculté des Arts et des Sciences, Université de Montréal, Montréal, QC, Canada
| | - Lucas Ronat
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CIUSSS du Centre-Sud-de-l'Ile-de-Montreal, Montréal, QC, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Adriana Cannizzaro
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CIUSSS du Centre-Sud-de-l'Ile-de-Montreal, Montréal, QC, Canada
- Département de Psychologie, Faculté des Arts et des Sciences, Université de Montréal, Montréal, QC, Canada
| | - Alexandru Hanganu
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CIUSSS du Centre-Sud-de-l'Ile-de-Montreal, Montréal, QC, Canada
- Département de Psychologie, Faculté des Arts et des Sciences, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
245
|
Krismer F, Péran P, Beliveau V, Seppi K, Arribarat G, Pavy-Le Traon A, Meissner WG, Foubert-Samier A, Fabbri M, Schocke MM, Gordon MF, Wenning GK, Poewe W, Rascol O, Scherfler C. Progressive Brain Atrophy in Multiple System Atrophy: A Longitudinal, Multicenter, Magnetic Resonance Imaging Study. Mov Disord 2024; 39:119-129. [PMID: 37933745 DOI: 10.1002/mds.29633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/27/2023] [Accepted: 09/28/2023] [Indexed: 11/08/2023] Open
Abstract
OBJECTIVE To determine the rates of brain atrophy progression in vivo in patients with multiple system atrophy (MSA). BACKGROUND Surrogate biomarkers of disease progression are a major unmet need in MSA. Small-scale longitudinal studies in patients with MSA using magnetic resonance imaging (MRI) to assess progression of brain atrophy have produced inconsistent results. In recent years, novel MRI post-processing methods have been developed enabling reliable quantification of brain atrophy in an automated fashion. METHODS Serial 3D-T1-weighted MRI assessments (baseline and after 1 year of follow-up) of 43 patients with MSA were analyzed and compared to a cohort of early-stage Parkinson's disease (PD) patients and healthy controls (HC). FreeSurfer's longitudinal analysis stream was used to determine the brain atrophy rates in an observer-independent fashion. RESULTS Mean ages at baseline were 64.4 ± 8.3, 60.0 ± 7.5, and 59.8 ± 9.2 years in MSA, PD patients and HC, respectively. A mean disease duration at baseline of 4.1 ± 2.5 years in MSA patients and 2.3 ± 1.4 years in PD patients was observed. Brain regions chiefly affected by MSA pathology showed progressive atrophy with annual rates of atrophy for the cerebellar cortex, cerebellar white matter, pons, and putamen of -4.24 ± 6.8%, -8.22 ± 8.8%, -4.67 ± 4.9%, and - 4.25 ± 4.9%, respectively. Similar to HC, atrophy rates in PD patients were minimal with values of -0.41% ± 1.8%, -1.47% ± 4.1%, -0.04% ± 1.8%, and -1.54% ± 2.2% for cerebellar cortex, cerebellar white matter, pons, and putamen, respectively. CONCLUSIONS Patients with MSA show significant brain volume loss over 12 months, and cerebellar, pontine, and putaminal volumes were the most sensitive to change in mid-stage disease. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Florian Krismer
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
- Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria
| | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Vincent Beliveau
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
- Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
- Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria
| | - Germain Arribarat
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Anne Pavy-Le Traon
- French Reference Center for MSA, Neurology Department, University Hospital of Toulouse and INSERM-Institute of Cardiovascular and Metabolic Diseases (I2MC) UMR1297, Toulouse, France
| | - Wassilios G Meissner
- CHU Bordeaux, Service de Neurologie des Maladies Neurodégénératives, IMNc, CRMR AMS, Bordeaux, France
- University of Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
- Department of Medicine, University of Otago, Christchurch, and New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Alexandra Foubert-Samier
- CHU Bordeaux, Service de Neurologie des Maladies Neurodégénératives, IMNc, CRMR AMS, Bordeaux, France
- University of Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
- INSERM, UMR1219, Bordeaux Population Health Research Center, University of Bordeaux, ISPED, Bordeaux, France
| | - Margherita Fabbri
- French Reference Center for MSA, Clinical Investigation Center CIC1436, Departments of Clinical Pharmacology and Neurosciences, NS-Park/FCRIN Network and NeuroToul Center of Excellence for Neurodegeneration, INSERM, University Hospital of Toulouse and University of Toulouse, Toulouse, France
| | - Michael M Schocke
- Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria
| | | | - Gregor K Wenning
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
- Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria
| | - Olivier Rascol
- French Reference Center for MSA, Clinical Investigation Center CIC1436, Departments of Clinical Pharmacology and Neurosciences, NS-Park/FCRIN Network and NeuroToul Center of Excellence for Neurodegeneration, INSERM, University Hospital of Toulouse and University of Toulouse, Toulouse, France
| | - Christoph Scherfler
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
- Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
246
|
Elliott ML, Nielsen JA, Hanford LC, Hamadeh A, Hilbert T, Kober T, Dickerson BC, Hyman BT, Mair RW, Eldaief MC, Buckner RL. Precision Brain Morphometry Using Cluster Scanning. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.23.23300492. [PMID: 38234845 PMCID: PMC10793507 DOI: 10.1101/2023.12.23.23300492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Measurement error limits the statistical power to detect group differences and longitudinal change in structural MRI morphometric measures (e.g., hippocampal volume, prefrontal thickness). Recent advances in scan acceleration enable extremely fast T1-weighted scans (~1 minute) to achieve morphometric errors that are close to the errors in longer traditional scans. As acceleration allows multiple scans to be acquired in rapid succession, it becomes possible to pool estimates to increase measurement precision, a strategy known as "cluster scanning." Here we explored brain morphometry using cluster scanning in a test-retest study of 40 individuals (12 younger adults, 18 cognitively unimpaired older adults, and 10 adults diagnosed with mild cognitive impairment or Alzheimer's Dementia). Morphometric errors from a single compressed sensing (CS) 1.0mm scan with 6x acceleration (CSx6) were, on average, 12% larger than a traditional scan using the Alzheimer's Disease Neuroimaging Initiative (ADNI) protocol. Pooled estimates from four clustered CSx6 acquisitions led to errors that were 34% smaller than ADNI despite having a shorter total acquisition time. Given a fixed amount of time, a gain in measurement precision can thus be achieved by acquiring multiple rapid scans instead of a single traditional scan. Errors were further reduced when estimates were pooled from eight CSx6 scans (51% smaller than ADNI). Neither pooling across a break nor pooling across multiple scan resolutions boosted this benefit. We discuss the potential of cluster scanning to improve morphometric precision, boost statistical power, and produce more sensitive disease progression biomarkers.
Collapse
Affiliation(s)
- Maxwell L Elliott
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Jared A Nielsen
- Department of Psychology, Neuroscience Center, Brigham Young University, Provo, UT, 84602, USA
| | - Lindsay C Hanford
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Aya Hamadeh
- Baylor College of Medicine, Houston, TX 77030
| | - Tom Hilbert
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit
- Alzheimer's Disease Research Center
- Athinoula A. Martinos Center for Biomedical Imaging
- Department of Neurology, Massachusetts General Hospital & Harvard Medical School
- Department of Psychiatry, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129, USA
| | - Bradley T Hyman
- Alzheimer's Disease Research Center
- Department of Neurology, Massachusetts General Hospital & Harvard Medical School
| | - Ross W Mair
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Athinoula A. Martinos Center for Biomedical Imaging
| | - Mark C Eldaief
- Frontotemporal Disorders Unit
- Alzheimer's Disease Research Center
- Department of Neurology, Massachusetts General Hospital & Harvard Medical School
- Department of Psychiatry, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129, USA
| | - Randy L Buckner
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Alzheimer's Disease Research Center
- Athinoula A. Martinos Center for Biomedical Imaging
- Department of Psychiatry, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
247
|
Gattas S, Larson MS, Mnatsakanyan L, Sen-Gupta I, Vadera S, Swindlehurst AL, Rapp PE, Lin JJ, Yassa MA. Theta mediated dynamics of human hippocampal-neocortical learning systems in memory formation and retrieval. Nat Commun 2023; 14:8505. [PMID: 38129375 PMCID: PMC10739909 DOI: 10.1038/s41467-023-44011-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Episodic memory arises as a function of dynamic interactions between the hippocampus and the neocortex, yet the mechanisms have remained elusive. Here, using human intracranial recordings during a mnemonic discrimination task, we report that 4-5 Hz (theta) power is differentially recruited during discrimination vs. overgeneralization, and its phase supports hippocampal-neocortical when memories are being formed and correctly retrieved. Interactions were largely bidirectional, with small but significant net directional biases; a hippocampus-to-neocortex bias during acquisition of new information that was subsequently correctly discriminated, and a neocortex-to-hippocampus bias during accurate discrimination of new stimuli from similar previously learned stimuli. The 4-5 Hz rhythm may facilitate the initial stages of information acquisition by neocortex during learning and the recall of stored information from cortex during retrieval. Future work should further probe these dynamics across different types of tasks and stimuli and computational models may need to be expanded accordingly to accommodate these findings.
Collapse
Affiliation(s)
- Sandra Gattas
- Department of Electrical Engineering and Computer Science, School of Engineering, University of California, Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA
| | - Myra Sarai Larson
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA, 92697, USA
| | - Lilit Mnatsakanyan
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Indranil Sen-Gupta
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Sumeet Vadera
- Department of Neurological Surgery, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - A Lee Swindlehurst
- Department of Electrical Engineering and Computer Science, School of Engineering, University of California, Irvine, CA, 92617, USA
| | - Paul E Rapp
- Department of Military & Emergency Medicine, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Jack J Lin
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Michael A Yassa
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA.
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA, 92697, USA.
- Department of Neurology, School of Medicine, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
248
|
Snyder WE, Vértes PE, Kyriakopoulou V, Wagstyl K, Williams LZJ, Moraczewski D, Thomas AG, Karolis VR, Seidlitz J, Rivière D, Robinson EC, Mangin JF, Raznahan A, Bullmore ET. A bipolar taxonomy of adult human brain sulcal morphology related to timing of fetal sulcation and trans-sulcal gene expression gradients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572454. [PMID: 38168226 PMCID: PMC10760196 DOI: 10.1101/2023.12.19.572454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
We developed a computational pipeline (now provided as a resource) for measuring morphological similarity between cortical surface sulci to construct a sulcal phenotype network (SPN) from each magnetic resonance imaging (MRI) scan in an adult cohort (N=34,725; 45-82 years). Networks estimated from pairwise similarities of 40 sulci on 5 morphological metrics comprised two clusters of sulci, represented also by the bipolar distribution of sulci on a linear-to-complex dimension. Linear sulci were more heritable and typically located in unimodal cortex; complex sulci were less heritable and typically located in heteromodal cortex. Aligning these results with an independent fetal brain MRI cohort (N=228; 21-36 gestational weeks), we found that linear sulci formed earlier, and the earliest and latest-forming sulci had the least between-adult variation. Using high-resolution maps of cortical gene expression, we found that linear sulcation is mechanistically underpinned by trans-sulcal gene expression gradients enriched for developmental processes.
Collapse
Affiliation(s)
- William E Snyder
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Petra E Vértes
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Vanessa Kyriakopoulou
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - Konrad Wagstyl
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Logan Z J Williams
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - Dustin Moraczewski
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Adam G Thomas
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Vyacheslav R Karolis
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Jakob Seidlitz
- Lifespan Brain Institute, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Denis Rivière
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette, 91191, France
| | - Emma C Robinson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - Jean-Francois Mangin
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette, 91191, France
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
249
|
Shao S, Zou Y, Kennedy KG, Dimick MK, MacIntosh BJ, Goldstein BI. Higher Levels of C-reactive Protein Are Associated With Higher Cortical Surface Area and Lower Cortical Thickness in Youth With Bipolar Disorder. Int J Neuropsychopharmacol 2023; 26:867-878. [PMID: 37947206 PMCID: PMC10726415 DOI: 10.1093/ijnp/pyad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Inflammation is implicated in the neuropathology of bipolar disorder (BD). The association of C-reactive protein (CRP) with brain structure has been examined in relation to BD among adults but not youth. METHODS Participants included 101 youth (BD, n = 55; control group [CG], n = 46; aged 13-20 years). Blood samples were assayed for levels of CRP. T1-weighted brain images were acquired to obtain cortical surface area (SA), volume, and thickness for 3 regions of interest (ROI; whole-brain cortical gray matter, prefrontal cortex, orbitofrontal cortex [OFC]) and for vertex-wise analyses. Analyses included CRP main effects and interaction effects controlling for age, sex, and intracranial volume. RESULTS In ROI analyses, higher CRP was associated with higher whole-brain SA (β = 0.16; P = .03) and lower whole-brain (β = -0.31; P = .03) and OFC cortical thickness (β = -0.29; P = .04) within the BD group and was associated with higher OFC SA (β = 0.17; P = .03) within the CG. In vertex-wise analyses, higher CRP was associated with higher SA and lower cortical thickness in frontal and parietal regions within BD. A significant CRP-by-diagnosis interaction was found in frontal and temporal regions, whereby higher CRP was associated with lower neurostructural metrics in the BD group but higher neurostructural metrics in CG. CONCLUSIONS This study found that higher CRP among youth with BD is associated with higher SA but lower cortical thickness in ROI and vertex-wise analyses. The study identified 2 regions in which the association of CRP with brain structure differs between youth with BD and the CG. Future longitudinal, repeated-measures studies incorporating additional inflammatory markers are warranted.
Collapse
Affiliation(s)
- Suyi Shao
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada (Ms Shao, Drs Zou and Goldstein)
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Yi Zou
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Kody G Kennedy
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Mikaela K Dimick
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Dr Sandra Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Benjamin I Goldstein
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
250
|
Persichetti AS, Shao J, Gotts SJ, Martin A. A functional parcellation of the whole brain in individuals with autism spectrum disorder reveals atypical patterns of network organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571854. [PMID: 38168156 PMCID: PMC10760210 DOI: 10.1101/2023.12.15.571854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
BACKGROUND Researchers studying autism spectrum disorder (ASD) lack a comprehensive map of the functional network topography in the ASD brain. We used high-quality resting state functional MRI (rs-fMRI) connectivity data and a robust parcellation routine to provide a whole-brain map of functional networks in a group of seventy individuals with ASD and a group of seventy typically developing (TD) individuals. METHODS The rs-fMRI data were collected using an imaging sequence optimized to achieve high temporal signal-to-noise ratio (tSNR) across the whole-brain. We identified functional networks using a parcellation routine that intrinsically incorporates stability and replicability of the networks by keeping only network distinctions that agree across halves of the data over multiple random iterations in each group. The groups were tightly matched on tSNR, in-scanner motion, age, and IQ. RESULTS We compared the maps from each group and found that functional networks in the ASD group are atypical in three seemingly related ways: 1) whole-brain connectivity patterns are less stable across voxels within multiple functional networks, 2) the cerebellum, subcortex, and hippocampus show weaker differentiation of functional subnetworks, and 3) subcortical structures and the hippocampus are atypically integrated with the neocortex. CONCLUSIONS These results were statistically robust and suggest that patterns of network connectivity between the neocortex and the cerebellum, subcortical structures, and hippocampus are atypical in ASD individuals.
Collapse
Affiliation(s)
- Andrew S Persichetti
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Jiayu Shao
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Stephen J Gotts
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Alex Martin
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|