201
|
Felgentreff ES, Buchholz S, Straka TM. From science to society to practice? Public reactions to the insect crisis in Germany. PEOPLE AND NATURE 2023. [DOI: 10.1002/pan3.10434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
| | - Sascha Buchholz
- Institute of Landscape Ecology University of Münster Münster Germany
| | | |
Collapse
|
202
|
Sommer L, Klinger YP, Donath TW, Kleinebecker T, Harvolk-Schöning S. Long-term success of floodplain meadow restoration on species-poor grassland. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1061484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Restoration of floodplain meadows remains a challenge, as many degraded sites suffer from seed limitation. The transfer of seed-containing plant material from species-rich donor sites is a widely used method to restore semi-natural grasslands. However, most studies on the success of such restoration projects comprise limited time frames. As factors determining restoration success may only become evident after many years, long-term observations are crucial. We re-investigated 20 restored grassland sites in the floodplain of the Northern Upper Rhine 13–16 years after plant material transfer with different soil preparation treatments. To this end, we carried out vegetation surveys on 254 permanent plots and studied the potential influence of soil preparation, soil nutrients, and hydrology on plant species composition, diversity, and transfer of target species. Since sustainable agricultural use is important to ensure the long-term stability of restored semi-natural grasslands, we further investigated biomass productivity and feeding value. While most target species increased in frequency or remained stable over time, we found no positive long-term effect of soil preparation on vegetation development and target species establishment. Instead, increased biomass yield and flooding frequency led to reduced restoration success, while higher soil C/N ratios had a positive effect. Overall, restoration measures did not affect the agricultural value of the restored grasslands, which had higher dry matter biomass yields compared with the donor sites. Our results indicate that the positive effect of soil preparation on the number and cover of target species, which is regularly reported in short-term studies, diminishes over time, and other factors such as site conditions become increasingly important. Furthermore, additional plant material transfer or manual seeding may be necessary to support target species establishment. Concerning agricultural usability, the integration of restored floodplain meadows in farming systems is possible and can ensure long-term management and thus stability of these ecosystems. Our study shows that long-term monitoring of restoration projects is necessary, as factors determining restoration success may only become evident in the long-term.
Collapse
|
203
|
Caraballo DA, López SL, Botero-Cañola S, Gardner SL. Filling the gap in distribution ranges and conservation status in Ctenomys (Rodentia: Ctenomyidae). J Mammal 2023. [DOI: 10.1093/jmammal/gyac099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Abstract
South American subterranean rodents of the genus Ctenomys (Rodentia, Ctenomyidae, tuco-tuco) are one of the most diverse genera among mammals. Recently described species, new taxonomic revisions, and new distribution range delimitation made the revision of distribution areas and conservation status of these mammals mandatory. Implementing the first part of the DAMA protocol (document, assess, monitor, act), here we compile updated sets of species distribution range maps and use these and the number of collection localities to assess the conservation status of ctenomyids. We integrate potential for conservation in protected areas, and levels of habitat transformation to revise previous conservation status assessments and propose the first assessment for all Data Deficient or not evaluated species of tuco-tucos. Our results indicate that 53 (78%) of these species are threatened and that 47 (69%) have little or no overlap with protected areas, emphasizing the urgent need to conduct conservation efforts. Here, 18 of 22 species previously classified as Data Deficient resulted in them being put in an at-risk category (VU, EN, CR). In addition, nine species that have not been previously evaluated were classified as threatened, with these two groups comprising more than 47% of the known species. These results posit that the Ctenomyidae are the rodent family with the greatest number of species at risk of extinction. Finally, a total of 33 (49%) species have been reported from three or fewer localities; all considered threatened through the approach implemented in this study. These geographically restricted taxa should be given more attention in conservation programs since the richness of this genus relies on the survival of such species.
Collapse
Affiliation(s)
- Diego A Caraballo
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA) , UBA-CONICET, Ciudad Universitaria-Pabellón II, Ciudad Autónoma de Buenos Aires C1428EHA , Argentina
| | - Sabrina Laura López
- Instituto de Cálculo, UBA-CONICET, Ciudad Universitaria - Cero + Infinito , Ciudad Autónoma de Buenos Aires C1428EHA , Argentina
| | - Sebastián Botero-Cañola
- Manter Laboratory of Parasitology, University of Nebraska State Museum, and School of Biological Sciences, University of Nebraska-Lincoln , Lincoln, Nebraska 68588-0514 , USA
- Fundación Laboratorios de Conservación Colombia , Medellín 050034, SB-C , Colombia
| | - Scott Lyell Gardner
- Manter Laboratory of Parasitology, University of Nebraska State Museum, and School of Biological Sciences, University of Nebraska-Lincoln , Lincoln, Nebraska 68588-0514 , USA
| |
Collapse
|
204
|
Li F, Qin S, Wang Z, Zhang Y, Yang Z. Environmental DNA metabarcoding reveals the impact of different land use on multitrophic biodiversity in riverine systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158958. [PMID: 36152857 DOI: 10.1016/j.scitotenv.2022.158958] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/25/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Human-induced changes in land use drive an alarming decline in river biodiversity and related ecosystem services worldwide. However, how different land use shapes aquatic multitrophic communities is still not well understood. Here, we used the biodiversity dataset from bacteria to fish captured by the environmental DNA (eDNA) approach in the four riverine systems with spatially different land use (i.e., Slightly disturbed group, Upstream disturbed group, Downstream disturbed group, and Strongly disturbed group) to reveal the changes in multitrophic biodiversity in relation to human land use. Firstly, our data showed that spatially different land use determined the pollutant loads of the riverine systems, most pollutants (e.g., TN and NH3-N) had significant differences among the four riverine systems. Secondly, taxonomic α diversity across multitrophic levels did not necessarily change significantly, yet the change in community structure can be considered as a more sensitive indicator to reflect different land use, because different land use shaped the unique structure of multitrophic communities, and the dissimilarity of community structure was closely associated with land use gradient (e.g., positive relationships in the Slightly disturbed group, negative relationships in the Strongly disturbed group). Thirdly, different land use induced the shifts of key taxa, resulting in the variation of community structure and the change of co-occurrence network. Overall, these findings suggest that spatially different land use plays a critical role in shaping aquatic multitrophic communities, and an in-depth understanding of the interdependences between biodiversity and land use is a critical prerequisite for formulating river management strategies.
Collapse
Affiliation(s)
- Feilong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Shan Qin
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zongyang Wang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuan Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zhifeng Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
205
|
Li Y, Liu W, Feng Q, Zhu M, Yang L, Zhang J, Yin X. The role of land use change in affecting ecosystem services and the ecological security pattern of the Hexi Regions, Northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158940. [PMID: 36152856 DOI: 10.1016/j.scitotenv.2022.158940] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/18/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
The land use and land cover change (LUCC) associated with climate change and human activities is supposed to exert a significant effect on ecosystem functions in arid inland regions. However, the role of LUCC in shaping the spatio-temporal patterns of ecosystem services and ecological security remain unclear, especially under different future LUCC scenarios. Here, we evaluated dynamic changes of ecosystem services and ecological security pattern (ESP) in the Hexi Regions based on LUCC and other environment variables by integrating morphological spatial pattern analysis (MSPA), entropy weight method and circuit theory. Our result showed that the LUCC was generally stable from 1980 to 2050. Compare to 2020, the land conversion under natural growth (NG), ecological protection (EP) and urban development (UD) scenarios in 2050 has changed by 10.30 %, 10.10 %, and 10.31 %, respectively. The forest, medium-cover grassland and water increased in the EP scenario, and construction land and cropland greatly expanded in the other two scenarios. Ecosystem services grew larger in the EP scenario by 2050 in comparison with the NG and UD scenarios. The ESP in the Hexi Regions has obvious spatial differences during 1980-2050. The larger ecological sources and less resistance corridors were mainly distributed in the central and eastern of the Hexi Regions with high ecosystem services. Conversely, fragmented ecological sources and larger resistance corridors were mostly located in the western regions blocked by sandy land, bare land or mountains. Compared to 2020, the area of ecological sources and pinch points under the EP scenario in 2050 increased by 4.10 × 103 km2 and 0.31 × 103 km2, respectively. The number of ecological corridors reduced while the length and resistance increased apart from the EP scenario. Our results highlighted the importance of ecological protection in shaping the LUCC, which further enhances the integrity of ecosystem and ecological security.
Collapse
Affiliation(s)
- Yongge Li
- Key Laboratory of Ecohydrology of Inland River Basin, Qilian Mountains Eco-Environment Research Center in Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liu
- Key Laboratory of Ecohydrology of Inland River Basin, Qilian Mountains Eco-Environment Research Center in Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Qi Feng
- Key Laboratory of Ecohydrology of Inland River Basin, Qilian Mountains Eco-Environment Research Center in Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Meng Zhu
- Key Laboratory of Ecohydrology of Inland River Basin, Qilian Mountains Eco-Environment Research Center in Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Linshan Yang
- Key Laboratory of Ecohydrology of Inland River Basin, Qilian Mountains Eco-Environment Research Center in Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jutao Zhang
- Key Laboratory of Ecohydrology of Inland River Basin, Qilian Mountains Eco-Environment Research Center in Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xinwei Yin
- Key Laboratory of Ecohydrology of Inland River Basin, Qilian Mountains Eco-Environment Research Center in Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
206
|
King S, Lemieux CJ, Lem M. An Urgent Call to Integrate the Health Sector into the Post-2020 Global Biodiversity Framework. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:861. [PMID: 36613183 PMCID: PMC9819792 DOI: 10.3390/ijerph20010861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
There is a rapidly closing window of opportunity to stop biodiversity loss and secure the resilience of all life on Earth. In December 2022, Parties to the United Nations (UN) Convention on Biological Diversity (CBD) will meet in Montreal, Canada, to finalize the language and terms of the Post-2020 Global Biodiversity Framework (Post-2020 GBF). The Post-2020 GBF aims to address the shortcomings of the previous Strategic Plan on Biodiversity 2011-2020, by introducing a Theory of Change, that states that biodiversity protection will only be successful if unprecedented, transformative changes are implemented effectively by Parties to the CBD. In this policy perspective, we explore the implications of the Theory of Change chosen to underpin the Post-2020 GBF, specifically that broad social transformation is an outcome that requires actors to be specified. We detail how the health sector is uniquely positioned to be an effective actor and ally in support of the implementation of the Post-2020 GBF. Specifically, we highlight how the core competencies and financial and human resources available in the health sector (including unique knowledge, skill sets, experiences, and established trust) provide a compelling, yet mostly untapped opportunity to help create and sustain the enabling conditions necessary to achieve the goals and targets of the framework. While by no means a panacea for the world's biodiversity problems, we posit that explicitly omitting the health sector from the Post-2020 GBF substantially weakens the global, collective effort to catalyze the transformative changes required to safeguard biodiversity.
Collapse
Affiliation(s)
- Simon King
- Park Doctor Pty Ltd., St. Lucia 3936, KwaZulu Natal, South Africa
| | - Christopher J. Lemieux
- Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Melissa Lem
- Department of Family Practice, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
207
|
Slingsby JA, Wilson AM, Maitner B, Moncrieff GR. Regional ecological forecasting across scales: A manifesto for a biodiversity hotspot. Methods Ecol Evol 2023. [DOI: 10.1111/2041-210x.14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jasper A. Slingsby
- Department of Biological Sciences and Centre for Statistics in Ecology, Environment and Conservation University of Cape Town Cape Town South Africa
- Fynbos Node, South African Environmental Observation Network, Centre for Biodiversity Conservation Cape Town South Africa
| | - Adam M. Wilson
- Department of Geography, Department of Environment and Sustainability University at Buffalo Buffalo New York USA
| | - Brian Maitner
- Department of Geography, Department of Environment and Sustainability University at Buffalo Buffalo New York USA
| | - Glenn R. Moncrieff
- Fynbos Node, South African Environmental Observation Network, Centre for Biodiversity Conservation Cape Town South Africa
- Centre for Statistics in Ecology, Environment and Conservation, Department of Statistical Sciences University of Cape Town Cape Town South Africa
| |
Collapse
|
208
|
Lewis SL. Realizing the potential of restoration science. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210174. [PMID: 36373923 PMCID: PMC9661940 DOI: 10.1098/rstb.2021.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Restoration science is growing fast. The restoration of habitats is increasingly part of the discussion over how to tackle the challenges of climate change, biodiversity loss and rural development. With this increasing role and attendant visibility, restoration science has seen increasing controversy. Here I describe six aspects of robust restoration science that should be kept in mind to help realize its potential: do data-driven studies; focus on robust results; improve reproducibility; contextualize the results; give attention to economics; consider the wider goals of restoration. Realizing the potential of restoration science, via robust scientific studies, will provide society with the knowledge and tools to make better choices about which habitats to restore and where. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.
Collapse
Affiliation(s)
- Simon L. Lewis
- Department of Geography, University College London, WC1E 6BT London, UK
- School of Geography, University of Leeds, LS2 9JT Leeds, UK
| |
Collapse
|
209
|
Feio MJ, Hughes RM, Serra SRQ, Nichols SJ, Kefford BJ, Lintermans M, Robinson W, Odume ON, Callisto M, Macedo DR, Harding JS, Yates AG, Monk W, Nakamura K, Mori T, Sueyoshi M, Mercado‐Silva N, Chen K, Baek MJ, Bae YJ, Tachamo‐Shah RD, Shah DN, Campbell I, Moya N, Arimoro FO, Keke UN, Martins RT, Alves CBM, Pompeu PS, Sharma S. Fish and macroinvertebrate assemblages reveal extensive degradation of the world's rivers. GLOBAL CHANGE BIOLOGY 2023; 29:355-374. [PMID: 36131677 PMCID: PMC10091732 DOI: 10.1111/gcb.16439] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/06/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Rivers suffer from multiple stressors acting simultaneously on their biota, but the consequences are poorly quantified at the global scale. We evaluated the biological condition of rivers globally, including the largest proportion of countries from the Global South published to date. We gathered macroinvertebrate- and fish-based assessments from 72,275 and 37,676 sites, respectively, from 64 study regions across six continents and 45 nations. Because assessments were based on differing methods, different systems were consolidated into a 3-class system: Good, Impaired, or Severely Impaired, following common guidelines. The proportion of sites in each class by study area was calculated and each region was assigned a Köppen-Geiger climate type, Human Footprint score (addressing landscape alterations), Human Development Index (HDI) score (addressing social welfare), % rivers with good ambient water quality, % protected freshwater key biodiversity areas; and % of forest area net change rate. We found that 50% of macroinvertebrate sites and 42% of fish sites were in Good condition, whereas 21% and 29% were Severely Impaired, respectively. The poorest biological conditions occurred in Arid and Equatorial climates and the best conditions occurred in Snow climates. Severely Impaired conditions were associated (Pearson correlation coefficient) with higher HDI scores, poorer physico-chemical water quality, and lower proportions of protected freshwater areas. Good biological conditions were associated with good water quality and increased forested areas. It is essential to implement statutory bioassessment programs in Asian, African, and South American countries, and continue them in Oceania, Europe, and North America. There is a need to invest in assessments based on fish, as there is less information globally and fish were strong indicators of degradation. Our study highlights a need to increase the extent and number of protected river catchments, preserve and restore natural forested areas in the catchments, treat wastewater discharges, and improve river connectivity.
Collapse
Affiliation(s)
- Maria João Feio
- Department of Life Sciences, Marine and Environmental Sciences CentreARNET, University of CoimbraCoimbraPortugal
| | - Robert M. Hughes
- Amnis Opes InstituteCorvallisOregonUSA
- Department of Fisheries, Wildlife, and Conservation SciencesOregon State UniversityCorvallisOregonUSA
| | - Sónia R. Q. Serra
- Department of Life Sciences, Marine and Environmental Sciences CentreARNET, University of CoimbraCoimbraPortugal
| | - Susan J. Nichols
- Centre for Applied Water ScienceInstitute for Applied Ecology, University of CanberraCanberraAustralia
| | - Ben J. Kefford
- Centre for Applied Water ScienceInstitute for Applied Ecology, University of CanberraCanberraAustralia
| | - Mark Lintermans
- Centre for Applied Water ScienceInstitute for Applied Ecology, University of CanberraCanberraAustralia
| | | | - Oghenekaro N. Odume
- Unilever Centre for Environmental Water QualityInstitute for Water Research, Rhodes UniversityMakhandaSouth Africa
| | - Marcos Callisto
- Departamento de Genética, Ecologia e EvoluçãoInstituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Diego R. Macedo
- Departamento de GeografiaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Jon S. Harding
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Adam G. Yates
- Department of BiologyUniversity of WaterlooWaterlooOntarioCanada
| | - Wendy Monk
- Environment and Climate Change Canada and Canadian Rivers Institute, Faculty of Forestry and Environmental ManagementUniversity of New BrunswickFrederictonCanada
| | | | - Terutaka Mori
- Aqua Restoration Research CenterPublic Works Research InstituteKakamigaharaGifuJapan
| | - Masanao Sueyoshi
- Aqua Restoration Research CenterPublic Works Research InstituteKakamigaharaGifuJapan
| | - Norman Mercado‐Silva
- Centro de Investigación en Biodiversidad y ConservaciónUniversidad Autónoma del Estado de MorelosCuernavacaMorelosMexico
| | - Kai Chen
- Department of EntomologyNanjing Agricultural UniversityNanjingPeople's Republic of China
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikouPeople's Republic of China
| | - Min Jeong Baek
- National Institute of Biological Resources, Ministry of EnvironmentIncheonRepublic of Korea
| | - Yeon Jae Bae
- Division of Environmental Science and Ecological Engineering, College of Life SciencesKorea UniversitySeoulRepublic of Korea
| | - Ram Devi Tachamo‐Shah
- Department of Life Sciences, School of Science, Aquatic Ecology CentreKathmandu UniversityDhulikhelNepal
| | - Deep Narayan Shah
- Central Department of Environmental ScienceTribhuvan UniversityKathmanduNepal
| | | | - Nabor Moya
- Instituto Experimental de BiologiaUniversidad Mayor Real y Pontificia de San Francisco Xavier de ChuquisacaSucreBolivia
| | - Francis O. Arimoro
- Applied Hydrobiology Unit, Department of Animal BiologyFederal University of TechnologyMinnaNigeria
| | - Unique N. Keke
- Applied Hydrobiology Unit, Department of Animal BiologyFederal University of TechnologyMinnaNigeria
| | - Renato T. Martins
- Coordenação de Biodiversidade, Curso de pós‐graduação em EntomologiaInstituto Nacional de Pesquisas da AmazôniaManausBrazil
| | - Carlos B. M. Alves
- Laboratório Nuvelhas, Projeto ManuelzãoUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Paulo S. Pompeu
- Departamento de Ecologia e ConservaçãoUniversidade Federal de LavrasLavrasBrazil
| | - Subodh Sharma
- Aquatic Ecology Centre, School of ScienceKathmandu UniversityDhulikhelNepal
| |
Collapse
|
210
|
Vardon M, Lucas P, Bass S, Agarwala M, Bassi AM, Coyle D, Dvarskas A, Farrell CA, Greenfield O, King S, Lok M, Obst C, O’Callaghan B, Portela R, Siikamäki J. From COVID-19 to Green Recovery with natural capital accounting. AMBIO 2023; 52:15-29. [PMID: 35882751 PMCID: PMC9325666 DOI: 10.1007/s13280-022-01757-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The COVID-19 pandemic and related social and economic emergencies induced massive public spending and increased global debt. Economic recovery is now an opportunity to rebuild natural capital alongside financial, physical, social and human capital, for long-term societal benefit. Yet, current decision-making is dominated by economic imperatives and information systems that do not consider society's dependence on natural capital and the ecosystem services it provides. New international standards for natural capital accounting (NCA) are now available to integrate environmental information into government decision-making. By revealing the effects of policies that influence natural capital, NCA supports identification, implementation and monitoring of Green Recovery pathways, including where environment and economy are most positively interlinked.
Collapse
Affiliation(s)
- Michael Vardon
- Fenner School of Environment and Society, Australian National University, Canberra, ACT 0200 Australia
| | - Paul Lucas
- PBL Netherlands Environmental Assessment Agency, P.O. Box 30314, 2500 GH Den Hague, The Netherlands
| | - Steve Bass
- IIED, 235 High Holborn, London, WC1V 7DN UK
| | | | - Andrea M. Bassi
- KnowlEdge Srl, via San Giovanni Battista 2, 21057 Olgiate Olona (VA), Italy
| | - Diane Coyle
- 320 Alison Richard Building, 7 West Rd, Cambridge, CB3 9DT UK
| | | | | | | | | | - Martin Lok
- Bezuidenhoutseweg 2, 2594 AV Den Haag, Netherlands
| | - Carl Obst
- 219 Rathmines St, Fairfield, VIC 3078 Australia
| | | | | | - Juha Siikamäki
- IUCN, 1630 Connecticut Avenue NW Suite 300, Washington, DC 20009 USA
| |
Collapse
|
211
|
Pironon S, Cantwell-Jones A, Forest F, Ball J, Diazgranados M, Douglas R, Hawkins J, Howes MJR, Ulian T, Vaitla B, Collar D. Towards an action plan for characterizing food plant diversity. NATURE PLANTS 2023; 9:34-35. [PMID: 36543935 DOI: 10.1038/s41477-022-01300-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Affiliation(s)
- S Pironon
- Royal Botanic Gardens, Kew, Richmond, UK.
- UN Environment Programme World Conservation Monitoring Centre, Cambridge, UK.
| | - A Cantwell-Jones
- Science and Solutions for a Changing Planet DTP, Imperial College London, Ascot, UK
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - F Forest
- Royal Botanic Gardens, Kew, Richmond, UK
| | - J Ball
- Royal Botanic Gardens, Kew, Richmond, UK
| | | | | | - J Hawkins
- School of Biological Sciences, University of Reading, Reading, UK
| | | | - T Ulian
- Royal Botanic Gardens, Kew, Richmond, UK
| | - B Vaitla
- Department of Nutrition, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
| | - D Collar
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, VA, USA
| |
Collapse
|
212
|
|
213
|
Demirel N, Akoglu E, Ulman A, Ertor-Akyazi P, Gül G, Bedikoğlu D, Yıldız T, Yilmaz IN. Uncovering ecological regime shifts in the Sea of Marmara and reconsidering management strategies. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105794. [PMID: 36399938 DOI: 10.1016/j.marenvres.2022.105794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Ecosystem regime shifts can alter ecosystem services, affect human well-being, and trigger policy conflicts due to economic losses and reductions in societal and environmental benefits. Intensive anthropogenic activities make the Sea of Marmara ecosystem suffer from nearly all existing available types of ecosystem pressures such as biological degradation, exposure to hydrological processes, nutrient and organic matter enrichment, plastic pollution, ocean warming, resulting in deterioration of habitats. In this study, using an integrated ecosystem assessment, we investigated for the first time the historical development and ecosystem state of the Sea of Marmara. Multivariate analyses were applied to the most comprehensive and unique long-term data sets of 9 biotic and 15 abiotic variables for ecosystem state and drivers respectively, from 1986 to 2020. Observed changes were confirmed by detecting shifts in the datasets. The Sea of Marmara ecosystem was classified into three regimes: i) an early initial state regime under the top-down control of predatory medium pelagic fish and fisheries exploitation until mid-1990s, ii) a transitional regime between mid-1990s and mid-2010s as from ecosystem restructuring, and iii) an alternate state late regime with prevailing impacts of climate change from mid-2010s until 2020. During the 20 years transitional regime, three different phases were also characterized; i) the 1st phase between mid-1990s and early 2000s with its gradual change in ecosystem state from a decrease in predators and significant shift in physical drivers of the ecosystem, ii) the 2nd phase between 2000 and mid-2000s with a strong shift in ecosystem state, an ongoing increase in climate indices and fishing mortality, and a gradual decrease in water quality; and iii) the 3rd phase between mid-2000s and mid-2010s with the reorganization of the ecosystem dominated by small pelagic fish and ameliorated water quality. During late regime, we observed that most of the biotic variables, mainly fish biomass, and climate variables did not return to their initial state despite the improvement in some abiotic variables such as water quality. We identify these observed changes in the SoM ecosystem as a non-linear regime shift. Finally, we also developed concrete suggestions for improved regional management.
Collapse
Affiliation(s)
- Nazli Demirel
- Institute of Marine Sciences and Management, Istanbul University, Istanbul, 34134, Turkey.
| | - Ekin Akoglu
- Institute of Marine Sciences, Middle East Technical University, Erdemli, 33731, Turkey
| | - Aylin Ulman
- Mersea Marine Consulting, 531 Sokak, Apt 4/1, Fethiye, 48300, Turkey
| | - Pınar Ertor-Akyazi
- Institute of Environmental Sciences, Boğaziçi University, Istanbul, Turkey
| | - Güzin Gül
- Institute of Marine Sciences and Management, Istanbul University, Istanbul, 34134, Turkey
| | - Dalida Bedikoğlu
- Institute of Marine Sciences and Management, Istanbul University, Istanbul, 34134, Turkey
| | - Taner Yıldız
- Faculty of Aquatic Sciences, Istanbul University, Istanbul, 34134, Turkey
| | - I Noyan Yilmaz
- School of Life and Environmental Sciences, Deakin University, VIC, 3125, Australia
| |
Collapse
|
214
|
Miriti MN, Rawson AJ, Mansfield B. The history of natural history and race: Decolonizing human dimensions of ecology. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2748. [PMID: 36130911 PMCID: PMC10078011 DOI: 10.1002/eap.2748] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/18/2022] [Accepted: 07/06/2022] [Indexed: 06/01/2023]
Abstract
Natural history, loosely defined as the observational study of organisms in the habitats where they occur, is recognized at the roots of ecology. Although the centrality of natural history in ecology has shifted over time, natural history is currently in resurgence: many again consider it to be the foundation of ecological and evolutionary inquiry and advocate the value of organism-centered approaches to address contemporary ecological challenges. Educators identify natural history as the foundational entryway into the practice of ecology, for example in the Ecological Society of America's Four-Dimensional Ecology Education (4DEE) framework. A strong natural history foundation can help generate testable hypotheses to refine mechanistic understanding of the drivers regulating species distributions and abundances and to inform restoration and conservation efforts. Given the resurgence of natural history as the foundation for ecological knowledge and practice, it is important to recognize that natural history has a long history of racism that has impacted ecological thought and priorities. This history shapes not only who conducts ecological science but also foundational ecological concepts. For example, natural history's emphasis on pristine nature untouched by humans disregards or appropriates stewardship and knowledge of most of the world's population. Because of the legacy of chattel slavery, this exclusion is particularly strong for people of African descent. This exclusion narrows ecological inquiry, limits the capacity to find solutions to ecological problems, and risks interventions that perpetuate the relation between eugenics, ecological knowledge, and natural systems. If ecology is to become an inclusive, responsive, and resilient discipline, this knowledge gap must be addressed. We here present the colonial and racist underpinnings of natural history and offer strategies to expand inclusion in the study of nature. Natural history was steeped in racism, providing a hierarchy of cultures and a taxonomy of races. Complementing growing interest in traditional and Indigenous ecological knowledge, we focus on Black ecological knowledge, for example in the study of "maroon ecologies." Addressing the racist history of natural history is necessary for removing structural and racist barriers to diverse participation and expanding ecological knowledge bases in service of better and more just science.
Collapse
Affiliation(s)
- Maria N. Miriti
- Department of Evolution, Ecology and Organismal BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Ariel J. Rawson
- Department of GeographyThe Ohio State UniversityColumbusOhioUSA
| | - Becky Mansfield
- Department of GeographyThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
215
|
Gray R, Fusco N, Miller JM, Tapia W, Mariani C, Caccone A, Jensen EL. Temporal Monitoring of the Floreana Island Galapagos Giant Tortoise Captive Breeding Program. Integr Comp Biol 2022; 62:1864-1871. [PMID: 35906184 DOI: 10.1093/icb/icac129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 01/05/2023] Open
Abstract
Captive breeding programs benefit from genetic analyses that identify relatedness between individuals, assign parentage to offspring, and track levels of genetic diversity. Monitoring these parameters across breeding cycles is critical to the success of a captive breeding program as it allows conservation managers to iteratively evaluate and adjust program structure. However, in practice, genetic tracking of breeding outcomes is rarely conducted. Here, we examined the first three offspring cohorts (2017-2020) of the genetically informed captive breeding program for the Floreana Island Galapagos giant tortoise, Chelonoidis niger. This captive breeding program is unique as the Floreana tortoise has been extinct since the 1800s, but its genome persists, in part, in the form of living hybrids with the extant Volcano Wolf tortoise, C. becki. Breeding over the study period took place at the Galapagos National Park Directorate breeding facility in four corrals, each containing three females and two males. Using 17 microsatellite markers, we were able to assign parentage to 94 of the 98 offspring produced over the study period. We observe that despite the addition of more founders since the pilot breeding program, the effective population size remains low, and changes to the arrangements of breeding corrals may be necessary to encourage more equal reproductive output from the males. This study demonstrates the value of hybrids for species restoration and the importance of continually reassessing the outcomes of captive breeding.
Collapse
Affiliation(s)
- Rachel Gray
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Nicole Fusco
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Joshua M Miller
- Department of Biological Sciences, MacEwan University, Edmonton, AB T5J 4S2, Canada
| | - Washington Tapia
- Galapagos Conservancy, Fairfax, VA 22030, USA.,University of Málaga, Campus Teatinos, Apdo. 59. 29080 Málaga, Spain
| | - Carol Mariani
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Evelyn L Jensen
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
216
|
Mahato S, Ghosh T, Sinha SK, Yardi K, Bharucha E. Jungle cat ( Felis chaus) in farmlands: potential benefits of coexistence and human-wildlife conflicts in West Bengal, India. ETHOL ECOL EVOL 2022. [DOI: 10.1080/03949370.2022.2152102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Santanu Mahato
- Bharati Vidyapeeth Institute of Environment Education and Research (BVIEER), Bharati Vidyapeeth (Deemed to be University), Pune, India
- Biopsychology Laboratory and Institution of Excellence, University of Mysore, Mysuru, India
| | - Tanmoy Ghosh
- Belun Biodiversity Research Centre, Katwa, Purba Bardhaman, India
| | - Shuvra K. Sinha
- Department of Zoology, Sreegopal Banerjee College, Hooghly, India
| | - Kranti Yardi
- Bharati Vidyapeeth Institute of Environment Education and Research (BVIEER), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Erach Bharucha
- Bharati Vidyapeeth Institute of Environment Education and Research (BVIEER), Bharati Vidyapeeth (Deemed to be University), Pune, India
| |
Collapse
|
217
|
Bane MS, Cooke R, Boyd RJ, Brown A, Burns F, Henly L, Vanderpump J, Isaac NJB. An evidence‐base for developing ambitious yet realistic national biodiversity targets. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Miranda S. Bane
- UK Centre for Ecology & Hydrology Wallingford UK
- School of Biological Sciences University of Bristol Bristol UK
| | - Rob Cooke
- UK Centre for Ecology & Hydrology Wallingford UK
| | | | | | - Fiona Burns
- RSPB Centre for Conservation Science Cambridge UK
| | - Lauren Henly
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Hatherly Laboratories Exeter UK
| | | | | |
Collapse
|
218
|
Seppelt R, Klotz S, Peiter E, Volk M. Agriculture and food security under a changing climate: An underestimated challenge. iScience 2022; 25:105551. [PMID: 36458255 PMCID: PMC9706706 DOI: 10.1016/j.isci.2022.105551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Pathways to eradicate global hunger while bending the curve of biodiversity loss unanimously suggest changing to less energy-rich diets, closing yield gaps through agroecological principles, adopting modern breeding technologies to foster stress resilience and yields, as well as minimizing harvest losses and food waste. Against the background of a brief history of global agriculture, we review the available evidence on how the global food system might look given a global temperature increase by 3°. We show that a moderate gain in the area suitable for agriculture is confronted with substantial yield losses through strains on crop physiology, multitrophic interactions, and more frequent extreme events. Self-amplifying feedback are unresolved and might lead to further losses. In light of these uncertainties, we see that complexity is underestimated and more systemic research is needed. Efficiency gains in agriculture, albeit indispensable, will not be enough to achieve food security under severe climate change.
Collapse
Affiliation(s)
- Ralf Seppelt
- Helmholtz Centre for Environmental Research (UFZ), Department Computational Landscape Ecology, Leipzig, Germany
- Martin Luther University Halle-Wittenberg, Institute for Geosciences and Geography, Halle (Saale), Germany
- iDiv – German Centre for Integrative Biodiversity Research, Leipzig, Germany
| | - Stefan Klotz
- iDiv – German Centre for Integrative Biodiversity Research, Leipzig, Germany
- Helmholtz Centre for Environmental Research, Department Community Ecology, Halle (Saale), Germany
| | - Edgar Peiter
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Halle (Saale), Germany
| | - Martin Volk
- Helmholtz Centre for Environmental Research (UFZ), Department Computational Landscape Ecology, Leipzig, Germany
- Martin Luther University Halle-Wittenberg, Institute for Geosciences and Geography, Halle (Saale), Germany
| |
Collapse
|
219
|
Burrows S, Olive R, O'Brien S, Galloway T. Connection is key when there's no planet B: The need to innovate environmental science communication with transdisciplinary approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158435. [PMID: 36057311 DOI: 10.1016/j.scitotenv.2022.158435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/04/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
As anthropogenic damage to the environment continues worldwide, effective science communication has never been more important. Despite this there are numerous barriers between traditional science communication (e.g. journal articles to news media) and the goal of encouraging more sustainable behaviours. Connections between public groups, science communicators and the environment, are all key to overcome barriers in intergroup communication. It is vital science communication adapts with transdisciplinary approaches to become more effective in its purpose. As such training of environmental science communicators must change. This endeavour will be supported by the enrichment of academic institutions through becoming more active in expediting cooperation between STEM (science, technology, engineering and maths) and HASS (humanities, arts and social science) disciplines. Modern dissemination of misinformation must be tackled with holistic approaches to bridge outgroups and enable the formation of trust.
Collapse
Affiliation(s)
- Stephen Burrows
- College of Life and Environmental Sciences, University of Exeter, UK; Queensland Alliance for Environmental Health Sciences, The University of Queensland, Australia.
| | - Rebecca Olive
- School of Global, Urban and Social Studies, RMIT University, Australia
| | - Stacey O'Brien
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Australia
| | - Tamara Galloway
- College of Life and Environmental Sciences, University of Exeter, UK
| |
Collapse
|
220
|
Strona G, Bradshaw CJ. Coextinctions dominate future vertebrate losses from climate and land use change. SCIENCE ADVANCES 2022; 8:eabn4345. [PMID: 36525487 PMCID: PMC9757742 DOI: 10.1126/sciadv.abn4345] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 11/09/2022] [Indexed: 05/19/2023]
Abstract
Although theory identifies coextinctions as a main driver of biodiversity loss, their role at the planetary scale has yet to be estimated. We subjected a global model of interconnected terrestrial vertebrate food webs to future (2020-2100) climate and land-use changes. We predict a 17.6% (± 0.16% SE) average reduction of local vertebrate diversity globally by 2100, with coextinctions increasing the effect of primary extinctions by 184.2% (± 10.9% SE) on average under an intermediate emissions scenario. Communities will lose up to a half of ecological interactions, thus reducing trophic complexity, network connectance, and community resilience. The model reveals that the extreme toll of global change for vertebrate diversity might be of secondary importance compared to the damages to ecological network structure.
Collapse
Affiliation(s)
- Giovanni Strona
- European Commission, Joint Research Centre (JRC), Ispra, Italy
- Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, Biocentre 3, 00790 Helsinki, Finland
- Corresponding author.
| | - Corey J. A. Bradshaw
- Global Ecology, College of Science and Engineering and ARC Centre of Excellence for Australian Biodiversity and Heritage, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| |
Collapse
|
221
|
Status and Trends in the Rate of Introduction of Marine Non-Indigenous Species in European Seas. DIVERSITY 2022. [DOI: 10.3390/d14121077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Invasive alien species are a major worldwide driver of biodiversity change. The current study lists verified records of non-indigenous species (NIS) in European marine waters until 2020, with the purpose of establishing a baseline, assessing trends, and discussing appropriate threshold values for good environmental status (GES) according to the relevant European legislation. All NIS records were verified by national experts and trends are presented in six-year assessment periods from 1970 to 2020 according to the European Union Marine Strategy Framework Directive. Altogether, 874 NIS have been introduced to European marine waters until 2020 with the Mediterranean Sea and North-East Atlantic Ocean hosting most of the introductions. Overall, the number of new introductions has steadily increased since 2000. The annual rate of new introductions reached 21 new NIS in European seas within the last six-year assessment period (2012–2017). This increase is likely due to increased human activities and research efforts that have intensified during the early 21st century within European Seas. As Europe seas are not environmentally, nor geographically homogenous, the setting of threshold values for assessing GES requires regional expertise. Further, once management measures are operational, pathway-specific threshold values would enable assessing the effectiveness of such measures.
Collapse
|
222
|
Ralimanana H, Perrigo AL, Smith RJ, Borrell JS, Faurby S, Rajaonah MT, Randriamboavonjy T, Vorontsova MS, Cooke RSC, Phelps LN, Sayol F, Andela N, Andermann T, Andriamanohera AM, Andriambololonera S, Bachman SP, Bacon CD, Baker WJ, Belluardo F, Birkinshaw C, Cable S, Canales NA, Carrillo JD, Clegg R, Clubbe C, Crottini A, Damasco G, Dhanda S, Edler D, Farooq H, de Lima Ferreira P, Fisher BL, Forest F, Gardiner LM, Goodman SM, Grace OM, Guedes TB, Hackel J, Henniges MC, Hill R, Lehmann CER, Lowry PP, Marline L, Matos-Maraví P, Moat J, Neves B, Nogueira MGC, Onstein RE, Papadopulos AST, Perez-Escobar OA, Phillipson PB, Pironon S, Przelomska NAS, Rabarimanarivo M, Rabehevitra D, Raharimampionona J, Rajaonary F, Rajaovelona LR, Rakotoarinivo M, Rakotoarisoa AA, Rakotoarisoa SE, Rakotomalala HN, Rakotonasolo F, Ralaiveloarisoa BA, Ramirez-Herranz M, Randriamamonjy JEN, Randrianasolo V, Rasolohery A, Ratsifandrihamanana AN, Ravololomanana N, Razafiniary V, Razanajatovo H, Razanatsoa E, Rivers M, Silvestro D, Testo W, Torres Jiménez MF, Walker K, Walker BE, Wilkin P, Williams J, Ziegler T, Zizka A, Antonelli A. Madagascar’s extraordinary biodiversity: Threats and opportunities. Science 2022; 378:eadf1466. [DOI: 10.1126/science.adf1466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Madagascar’s unique biota is heavily affected by human activity and is under intense threat. Here, we review the current state of knowledge on the conservation status of Madagascar’s terrestrial and freshwater biodiversity by presenting data and analyses on documented and predicted species-level conservation statuses, the most prevalent and relevant threats, ex situ collections and programs, and the coverage and comprehensiveness of protected areas. The existing terrestrial protected area network in Madagascar covers 10.4% of its land area and includes at least part of the range of the majority of described native species of vertebrates with known distributions (97.1% of freshwater fishes, amphibians, reptiles, birds, and mammals combined) and plants (67.7%). The overall figures are higher for threatened species (97.7% of threatened vertebrates and 79.6% of threatened plants occurring within at least one protected area). International Union for Conservation of Nature (IUCN) Red List assessments and Bayesian neural network analyses for plants identify overexploitation of biological resources and unsustainable agriculture as the most prominent threats to biodiversity. We highlight five opportunities for action at multiple levels to ensure that conservation and ecological restoration objectives, programs, and activities take account of complex underlying and interacting factors and produce tangible benefits for the biodiversity and people of Madagascar.
Collapse
Affiliation(s)
- Hélène Ralimanana
- Royal Botanic Gardens, Kew, Kew Madagascar Conservation Centre, Antananarivo, Madagascar
| | - Allison L. Perrigo
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
| | - Rhian J. Smith
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | | | - Søren Faurby
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
| | - Mamy Tiana Rajaonah
- Royal Botanic Gardens, Kew, Kew Madagascar Conservation Centre, Antananarivo, Madagascar
| | | | | | - Robert S. C. Cooke
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
- UK Centre for Ecology and Hydrology, Wallingford, UK
| | - Leanne N. Phelps
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| | - Ferran Sayol
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Niels Andela
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, Wales, UK
| | - Tobias Andermann
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
- Department of Organismal Biology, SciLifeLab, Uppsala University, Uppsala, Sweden
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | | | | | - Christine D. Bacon
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
| | | | - Francesco Belluardo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Chris Birkinshaw
- Missouri Botanical Garden, Madagascar Program, Antananarivo, Madagascar
- Missouri Botanical Garden, St. Louis, MO, USA
| | - Stuart Cable
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Nataly A. Canales
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Juan D. Carrillo
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- CR2P, Muséum National d’Histoire Naturelle, Paris, France
- Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Rosie Clegg
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- Department of Geography, University of Exeter, Exeter, Devon, UK
| | - Colin Clubbe
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Angelica Crottini
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Gabriel Damasco
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Sonia Dhanda
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Daniel Edler
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
- Integrated Science Lab, Department of Physics, Umeå University, Umeå, Sweden
| | - Harith Farooq
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
- Faculty of Natural Sciences, Lúrio University, Pemba, Cabo Delgado Province, Mozambique
| | - Paola de Lima Ferreira
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czech Republic
| | | | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Lauren M. Gardiner
- Cambridge University Herbarium, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Steven M. Goodman
- Association Vahatra, Antananarivo, Madagascar
- Field Museum of Natural History, Chicago, IL, USA
| | | | - Thaís B. Guedes
- Instituto de Biologia, Universidade Estadual de Campinas, Unicamp, Campinas, São Paulo, Brazil
| | - Jan Hackel
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Marie C. Henniges
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Rowena Hill
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Caroline E. R. Lehmann
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| | - Porter P. Lowry
- Missouri Botanical Garden, St. Louis, MO, USA
- Institut de Systématique, Évolution, et Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, Paris, France
| | - Lovanomenjanahary Marline
- Royal Botanic Gardens, Kew, Kew Madagascar Conservation Centre, Antananarivo, Madagascar
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
- Association Vahatra, Antananarivo, Madagascar
| | - Pável Matos-Maraví
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czech Republic
| | - Justin Moat
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Beatriz Neves
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
- Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus G. C. Nogueira
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
- Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renske E. Onstein
- Naturalis Biodiversity Center, Leiden, Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | | | | | - Peter B. Phillipson
- Missouri Botanical Garden, St. Louis, MO, USA
- Institut de Systématique, Évolution, et Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, Paris, France
| | - Samuel Pironon
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, UK
| | - Natalia A. S. Przelomska
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- Department of Anthropology, Smithsonian National Museum of Natural History, Washington, DC, USA
| | | | - David Rabehevitra
- Royal Botanic Gardens, Kew, Kew Madagascar Conservation Centre, Antananarivo, Madagascar
| | | | - Fano Rajaonary
- Missouri Botanical Garden, Madagascar Program, Antananarivo, Madagascar
| | - Landy R. Rajaovelona
- Royal Botanic Gardens, Kew, Kew Madagascar Conservation Centre, Antananarivo, Madagascar
| | - Mijoro Rakotoarinivo
- Department of Plant Biology and Ecology, University of Antananarivo, Antananarivo, Madagascar
| | - Amédée A. Rakotoarisoa
- Royal Botanic Gardens, Kew, Kew Madagascar Conservation Centre, Antananarivo, Madagascar
| | - Solofo E. Rakotoarisoa
- Royal Botanic Gardens, Kew, Kew Madagascar Conservation Centre, Antananarivo, Madagascar
| | - Herizo N. Rakotomalala
- Royal Botanic Gardens, Kew, Kew Madagascar Conservation Centre, Antananarivo, Madagascar
| | - Franck Rakotonasolo
- Royal Botanic Gardens, Kew, Kew Madagascar Conservation Centre, Antananarivo, Madagascar
| | | | - Myriam Ramirez-Herranz
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
- Instituto de Ecología y Biodiversidad, University of La Serena, La Serena, Chile
- Programa de Doctorado en Biología y Ecología Aplicada, Universidad Católica del Norte, Universidad de La Serena, La Serena, Chile
| | | | - Vonona Randrianasolo
- Royal Botanic Gardens, Kew, Kew Madagascar Conservation Centre, Antananarivo, Madagascar
| | | | | | | | - Velosoa Razafiniary
- Royal Botanic Gardens, Kew, Kew Madagascar Conservation Centre, Antananarivo, Madagascar
| | - Henintsoa Razanajatovo
- Royal Botanic Gardens, Kew, Kew Madagascar Conservation Centre, Antananarivo, Madagascar
| | - Estelle Razanatsoa
- Plant Conservation Unit, Department of Biological Sciences, University of Cape Town, South Africa
| | - Malin Rivers
- Botanic Gardens Conservation International, Kew, Richmond, Surrey, UK
| | - Daniele Silvestro
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Weston Testo
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
- Field Museum of Natural History, Chicago, IL, USA
| | - Maria F. Torres Jiménez
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Kim Walker
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- Royal Holloway, University of London, Egham, Surrey, UK
| | | | - Paul Wilkin
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | | | - Thomas Ziegler
- Cologne Zoo, Cologne, Germany
- Institute of Zoology, University of Cologne, Cologne, Germany
| | - Alexander Zizka
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- Department of Biology, University of Oxford, Oxford, UK
| |
Collapse
|
223
|
Combined threats of climate change and land use to boreal protected areas with red-listed forest species in Finland. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
224
|
Besson M, Alison J, Bjerge K, Gorochowski TE, Høye TT, Jucker T, Mann HMR, Clements CF. Towards the fully automated monitoring of ecological communities. Ecol Lett 2022; 25:2753-2775. [PMID: 36264848 PMCID: PMC9828790 DOI: 10.1111/ele.14123] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/09/2022] [Accepted: 09/06/2022] [Indexed: 01/12/2023]
Abstract
High-resolution monitoring is fundamental to understand ecosystems dynamics in an era of global change and biodiversity declines. While real-time and automated monitoring of abiotic components has been possible for some time, monitoring biotic components-for example, individual behaviours and traits, and species abundance and distribution-is far more challenging. Recent technological advancements offer potential solutions to achieve this through: (i) increasingly affordable high-throughput recording hardware, which can collect rich multidimensional data, and (ii) increasingly accessible artificial intelligence approaches, which can extract ecological knowledge from large datasets. However, automating the monitoring of facets of ecological communities via such technologies has primarily been achieved at low spatiotemporal resolutions within limited steps of the monitoring workflow. Here, we review existing technologies for data recording and processing that enable automated monitoring of ecological communities. We then present novel frameworks that combine such technologies, forming fully automated pipelines to detect, track, classify and count multiple species, and record behavioural and morphological traits, at resolutions which have previously been impossible to achieve. Based on these rapidly developing technologies, we illustrate a solution to one of the greatest challenges in ecology: the ability to rapidly generate high-resolution, multidimensional and standardised data across complex ecologies.
Collapse
Affiliation(s)
- Marc Besson
- School of Biological SciencesUniversity of BristolBristolUK,Sorbonne Université CNRS UMR Biologie des Organismes Marins, BIOMBanyuls‐sur‐MerFrance
| | - Jamie Alison
- Department of EcoscienceAarhus UniversityAarhusDenmark,UK Centre for Ecology & HydrologyBangorUK
| | - Kim Bjerge
- Department of Electrical and Computer EngineeringAarhus UniversityAarhusDenmark
| | - Thomas E. Gorochowski
- School of Biological SciencesUniversity of BristolBristolUK,BrisEngBio, School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Toke T. Høye
- Department of EcoscienceAarhus UniversityAarhusDenmark,Arctic Research CentreAarhus UniversityAarhusDenmark
| | - Tommaso Jucker
- School of Biological SciencesUniversity of BristolBristolUK
| | - Hjalte M. R. Mann
- Department of EcoscienceAarhus UniversityAarhusDenmark,Arctic Research CentreAarhus UniversityAarhusDenmark
| | | |
Collapse
|
225
|
Jolly H, Satterfield T, Kandlikar M, Tr S. Indigenous insights on human-wildlife coexistence in southern India. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13981. [PMID: 36000317 DOI: 10.1111/cobi.13981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
As human-wildlife conflicts escalate worldwide, concepts such as tolerance and acceptance of wildlife are becoming increasingly important. Yet, contemporary conservation studies indicate a limited understanding of positive human-wildlife interactions, leading to potentially inaccurate representations of human-animal encounters. Failure to address these limitations contributes to the design and implementation of poor wildlife and landscape management plans and the dismissal of Indigenous ecological knowledge. We examined Indigenous perspectives on human-wildlife coexistence in India by drawing ethnographic evidence from Kattunayakans, a forest-dwelling Adivasi community living in the Wayanad Wildlife Sanctuary in Kerala. Through qualitative field study that involved interviews and transect walks inside the forests, we found that Kattunayakans displayed tolerance and acceptance of wild animals characterized as forms of deep coexistence that involves three central ideas: wild animals as rational conversing beings; wild animals as gods, teachers, and equals; and wild animals as relatives with shared origins practicing dharmam. We argue that understanding these adequately will support efforts to bring Kattunayakan perspectives into the management of India's forests and contribute to the resolution of the human-wildlife conflict more broadly.
Collapse
Affiliation(s)
- Helina Jolly
- Institute for Resources Environment and Sustainability, University of British Columbia, Vancouver, British Columbia, Canada
| | - Terre Satterfield
- Institute for Resources Environment and Sustainability, University of British Columbia, Vancouver, British Columbia, Canada
| | - Milind Kandlikar
- Institute for Resources Environment and Sustainability, University of British Columbia, Vancouver, British Columbia, Canada
| | - Suma Tr
- Hume Centre for Ecology and Wildlife Biology, Kalpetta, India
| |
Collapse
|
226
|
Meek MH, Beever EA, Barbosa S, Fitzpatrick SW, Fletcher NK, Mittan-Moreau CS, Reid BN, Campbell-Staton SC, Green NF, Hellmann JJ. Understanding Local Adaptation to Prepare Populations for Climate Change. Bioscience 2022. [DOI: 10.1093/biosci/biac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Abstract
Adaptation within species to local environments is widespread in nature. Better understanding this local adaptation is critical to conserving biodiversity. However, conservation practices can rely on species’ trait averages or can broadly assume homogeneity across the range to inform management. Recent methodological advances for studying local adaptation provide the opportunity to fine-tune efforts for managing and conserving species. The implementation of these advances will allow us to better identify populations at greatest risk of decline because of climate change, as well as highlighting possible strategies for improving the likelihood of population persistence amid climate change. In the present article, we review recent advances in the study of local adaptation and highlight ways these tools can be applied in conservation efforts. Cutting-edge tools are available to help better identify and characterize local adaptation. Indeed, increased incorporation of local adaptation in management decisions may help meet the imminent demands of managing species amid a rapidly changing world.
Collapse
Affiliation(s)
- Mariah H Meek
- Department of Integrative Biology, AgBio Research, and the Ecology, Evolution, and Behavior Program Michigan State University , East Lansing, Michigan, United States
| | - Erik A Beever
- Department of Ecology, Montana State University , Bozeman, Montana, United States
| | - Soraia Barbosa
- Department of Fish and Wildlife Sciences, University of Idaho , Moscow, Idaho, United States
| | - Sarah W Fitzpatrick
- Department of Integrative Biology, Michigan State University , Hickory Corners, Michigan, United States
| | - Nicholas K Fletcher
- Department of Ecology and Evolutionary Biology, Cornell University , Ithaca, New York, United States
- Department of Biology, University of Maryland , College Park, Maryland, United States
| | - Cinnamon S Mittan-Moreau
- Department of Integrative Biology, Michigan State University , Hickory Corners, Michigan, United States
- Department of Ecology and Evolutionary Biology, Cornell University , Ithaca, New York, United States
| | - Brendan N Reid
- Department of Integrative Biology, Michigan State University , Hickory Corners, Michigan, United States
- Department of Ecology, Evolution, and Natural Resources, Rutgers University , New Brunswick, New Jersey, United States
| | - Shane C Campbell-Staton
- Department of Ecology and Evolutionary Biology, Princeton University , Princeton, New Jersey, United States
| | - Nancy F Green
- US Fish and Wildlife Service, Falls Church , Virginia, United States
| | - Jessica J Hellmann
- Institute of the Environment and Department of Ecology, Evolution, and Behavior, University of Minnesota , Saint Paul, Minnesota, United States
| |
Collapse
|
227
|
Tang T, Zhang N, Bongers FJ, Staab M, Schuldt A, Fornoff F, Lin H, Cavender-Bares J, Hipp AL, Li S, Liang Y, Han B, Klein AM, Bruelheide H, Durka W, Schmid B, Ma K, Liu X. Tree species and genetic diversity increase productivity via functional diversity and trophic feedbacks. eLife 2022; 11:e78703. [PMID: 36444645 PMCID: PMC9754634 DOI: 10.7554/elife.78703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
Addressing global biodiversity loss requires an expanded focus on multiple dimensions of biodiversity. While most studies have focused on the consequences of plant interspecific diversity, our mechanistic understanding of how genetic diversity within plant species affects plant productivity remains limited. Here, we use a tree species × genetic diversity experiment to disentangle the effects of species diversity and genetic diversity on tree productivity, and how they are related to tree functional diversity and trophic feedbacks. We found that tree species diversity increased tree productivity via increased tree functional diversity, reduced soil fungal diversity, and marginally reduced herbivory. The effects of tree genetic diversity on productivity via functional diversity and soil fungal diversity were negative in monocultures but positive in the mixture of the four tree species tested. Given the complexity of interactions between species and genetic diversity, tree functional diversity and trophic feedbacks on productivity, we suggest that both tree species and genetic diversity should be considered in afforestation.
Collapse
Affiliation(s)
- Ting Tang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijingChina
- College of Life Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Naili Zhang
- College of Forestry, Beijing Forestry UniversityBeijingChina
| | - Franca J Bongers
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijingChina
| | - Michael Staab
- Ecological Networks, Technical University DarmstadtDarmstadtGermany
| | - Andreas Schuldt
- Forest Nature Conservation, Georg-August-University GöttingenGöttingenGermany
| | - Felix Fornoff
- Nature Conservation and Landscape Ecology, University of FreiburgFreiburgGermany
| | - Hong Lin
- Institute of Applied Ecology, School of Food Science, Nanjing Xiaozhuang UniversityNanjingChina
| | - Jeannine Cavender-Bares
- Department of Ecology, Evolution, and Behavior, University of MinnesotaSt. PaulUnited States
| | | | - Shan Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijingChina
| | - Yu Liang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijingChina
| | - Baocai Han
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijingChina
| | - Alexandra-Maria Klein
- Chair of Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, University of FreiburgFreiburgGermany
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-WittenbergHalleGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzigGermany
| | - Walter Durka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzigGermany
- Department of Community Ecology, Helmholtz Centre for Environmental Research–UFZHalleGermany
| | - Bernhard Schmid
- Department of Geography, University of ZurichZurichSwitzerland
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijingChina
- College of Life Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Xiaojuan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
228
|
Pimiento C, Antonelli A. Integrating deep-time palaeontology in conservation prioritisation. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.959364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Halting biodiversity loss under growing anthropogenic pressure is arguably the greatest environmental challenge we face. Given that not all species are equally threatened and that resources are always limited, establishing robust prioritisation schemes is critical for implementing effective conservation actions. To this end, the International Union for Conservation of Nature (IUCN) Red List of Threatened Species has become a widely used source of information on species’ extinction risk. Various metrics have been proposed that combine IUCN status with different aspects of biodiversity to identify conservation priorities. However, current strategies do not take full advantage of palaeontological data, with conservation palaeobiology often focussing on the near-time fossil record (the last 2 million years). Here, we make a case for the value of the deep-time (over 2 million years ago), as it can offer tangible parallels with today’s biodiversity crisis and inform on the intrinsic traits that make species prone to extinction. As such, palaeontological data holds great predictive power, which could be harnessed to flag species likely to be threatened but that are currently too poorly known to be identified as such. Finally, we identify key IUCN-based prioritisation metrics and outline opportunities for integrating palaeontological data to validate their implementation. Although the human signal of the current extinction crisis makes direct comparisons with the geological past challenging, the deep-time fossil record has more to offer to conservation than is currently recognised.
Collapse
|
229
|
Sousa‐Guedes D, Sillero N, Bessa F, Marco A. Plastic pollution can affect the emergence patterns of the loggerhead turtle hatchlings. Anim Conserv 2022. [DOI: 10.1111/acv.12837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- D. Sousa‐Guedes
- Centro de Investigação em Ciências Geo‐Espaciais (CICGE) Faculdade de Ciências da Universidade do Porto Vila Nova de Gaia Portugal
- Department of Life Sciences University of Coimbra, MARE ‐ Marine and Environmental Sciences Centre/ ARNET – Aquatic Research Network Coimbra Portugal
- Estación Biológica de Doñana, CSIC, C/ Américo Vespucio Sevilla Spain
- BIOS.CV ‐ Conservation of the Environment and Sustainable Development Sal Rei Cabo Verde
| | - N. Sillero
- Centro de Investigação em Ciências Geo‐Espaciais (CICGE) Faculdade de Ciências da Universidade do Porto Vila Nova de Gaia Portugal
| | - F. Bessa
- Department of Life Sciences University of Coimbra, MARE ‐ Marine and Environmental Sciences Centre/ ARNET – Aquatic Research Network Coimbra Portugal
| | - A. Marco
- Estación Biológica de Doñana, CSIC, C/ Américo Vespucio Sevilla Spain
- BIOS.CV ‐ Conservation of the Environment and Sustainable Development Sal Rei Cabo Verde
| |
Collapse
|
230
|
Sonter LJ, Lloyd TJ, Kearney SG, Di Marco M, O'Bryan CJ, Valenta RK, Watson JEM. Conservation implications and opportunities of mining activities for terrestrial mammal habitat. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Laura J. Sonter
- School of Earth and Environmental Sciences The University of Queensland St Lucia Australia
- Centre for Biodiversity & Conservation Science The University of Queensland St Lucia Australia
| | - Thomas J. Lloyd
- School of Earth and Environmental Sciences The University of Queensland St Lucia Australia
- Centre for Biodiversity & Conservation Science The University of Queensland St Lucia Australia
| | - Stephen G. Kearney
- School of Earth and Environmental Sciences The University of Queensland St Lucia Australia
- Centre for Biodiversity & Conservation Science The University of Queensland St Lucia Australia
| | - Moreno Di Marco
- Department of Biology and Biotechnologies Sapienza Università di Roma Rome Italy
| | - Christopher J. O'Bryan
- School of Earth and Environmental Sciences The University of Queensland St Lucia Australia
- Centre for Biodiversity & Conservation Science The University of Queensland St Lucia Australia
| | - Richard K. Valenta
- Sustainable Minerals Institute The University of Queensland St Lucia Australia
| | - James E. M. Watson
- School of Earth and Environmental Sciences The University of Queensland St Lucia Australia
- Centre for Biodiversity & Conservation Science The University of Queensland St Lucia Australia
| |
Collapse
|
231
|
Burton VJ, Contu S, De Palma A, Hill SLL, Albrecht H, Bone JS, Carpenter D, Corstanje R, De Smedt P, Farrell M, Ford HV, Hudson LN, Inward K, Jones DT, Kosewska A, Lo-Man-Hung NF, Magura T, Mulder C, Murvanidze M, Newbold T, Smith J, Suarez AV, Suryometaram S, Tóthmérész B, Uehara-Prado M, Vanbergen AJ, Verheyen K, Wuyts K, Scharlemann JPW, Eggleton P, Purvis A. Land use and soil characteristics affect soil organisms differently from above-ground assemblages. BMC Ecol Evol 2022; 22:135. [PMID: 36397002 PMCID: PMC9673366 DOI: 10.1186/s12862-022-02089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
Background Land-use is a major driver of changes in biodiversity worldwide, but studies have overwhelmingly focused on above-ground taxa: the effects on soil biodiversity are less well known, despite the importance of soil organisms in ecosystem functioning. We modelled data from a global biodiversity database to compare how the abundance of soil-dwelling and above-ground organisms responded to land use and soil properties. Results We found that land use affects overall abundance differently in soil and above-ground assemblages. The abundance of soil organisms was markedly lower in cropland and plantation habitats than in primary vegetation and pasture. Soil properties influenced the abundance of soil biota in ways that differed among land uses, suggesting they shape both abundance and its response to land use. Conclusions Our results caution against assuming models or indicators derived from above-ground data can apply to soil assemblages and highlight the potential value of incorporating soil properties into biodiversity models. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02089-4.
Collapse
|
232
|
Burdon FJ, Reyes M, Schönenberger U, Räsänen K, Tiegs SD, Eggen RIL, Stamm C. Environmental context determines pollution impacts on ecosystem functioning. OIKOS 2022. [DOI: 10.1111/oik.09131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Francis J. Burdon
- Eawag – Swiss Federal Inst. of Aquatic Science and Technology Dübendorf Switzerland
- Te Aka Mātuatua – School of Science, Univ. of Waikato Hamilton New Zealand
| | - Marta Reyes
- Eawag – Swiss Federal Inst. of Aquatic Science and Technology Dübendorf Switzerland
| | - Urs Schönenberger
- Eawag – Swiss Federal Inst. of Aquatic Science and Technology Dübendorf Switzerland
| | - Katja Räsänen
- Eawag – Swiss Federal Inst. of Aquatic Science and Technology Dübendorf Switzerland
- Dept of Biological and Environmental Science, Univ. of Jyväskylä Jyväskylä Finland
| | - Scott D. Tiegs
- Dept of Biological Sciences, Oakland Univ. Rochester MI USA
| | - Rik I. L. Eggen
- Eawag – Swiss Federal Inst. of Aquatic Science and Technology Dübendorf Switzerland
- ETH Zürich, Inst. of Biogeochemistry and Pollutant Dynamics Zürich Switzerland
| | - Christian Stamm
- Eawag – Swiss Federal Inst. of Aquatic Science and Technology Dübendorf Switzerland
| |
Collapse
|
233
|
Jaureguiberry P, Titeux N, Wiemers M, Bowler DE, Coscieme L, Golden AS, Guerra CA, Jacob U, Takahashi Y, Settele J, Díaz S, Molnár Z, Purvis A. The direct drivers of recent global anthropogenic biodiversity loss. SCIENCE ADVANCES 2022; 8:eabm9982. [PMID: 36351024 PMCID: PMC9645725 DOI: 10.1126/sciadv.abm9982] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 09/21/2022] [Indexed: 05/28/2023]
Abstract
Effective policies to halt biodiversity loss require knowing which anthropogenic drivers are the most important direct causes. Whereas previous knowledge has been limited in scope and rigor, here we statistically synthesize empirical comparisons of recent driver impacts found through a wide-ranging review. We show that land/sea use change has been the dominant direct driver of recent biodiversity loss worldwide. Direct exploitation of natural resources ranks second and pollution third; climate change and invasive alien species have been significantly less important than the top two drivers. The oceans, where direct exploitation and climate change dominate, have a different driver hierarchy from land and fresh water. It also varies among types of biodiversity indicators. For example, climate change is a more important driver of community composition change than of changes in species populations. Stopping global biodiversity loss requires policies and actions to tackle all the major drivers and their interactions, not some of them in isolation.
Collapse
Affiliation(s)
- Pedro Jaureguiberry
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and FCEFyN, Universidad Nacional de Córdoba, Casilla de Correo 495, 5000 Córdoba, Argentina
| | - Nicolas Titeux
- UFZ – Helmholtz Centre for Environmental Research, Department of Community Ecology and Department of Conservation Biology and Social-Ecological Systems, Theodor-Lieser-Str. 4, 06114 Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation Department, Observatory for Climate, Environment and Biodiversity, Rue du Brill 41, 4422 Belvaux, Luxembourg
| | - Martin Wiemers
- UFZ – Helmholtz Centre for Environmental Research, Department of Community Ecology and Department of Conservation Biology and Social-Ecological Systems, Theodor-Lieser-Str. 4, 06114 Halle, Germany
- Senckenberg Deutsches Entomologisches Institut, Eberswalder Str. 90, 15374 Müncheberg, Germany
| | - Diana E. Bowler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Biodiversity, Dornburger Str. 159, 07743 Jena, Germany
- UFZ – Helmholtz Centre for Environmental Research, Department Ecosystem Services, Permoserstraße 15, 04318 Leipzig, Germany
| | - Luca Coscieme
- Hot or Cool Institute, Quartiersweg 4, 10829 Berlin, Germany
| | - Abigail S. Golden
- Graduate Program in Ecology and Evolution, and Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Carlos A. Guerra
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biology, Martin Luther University Halle Wittenberg, Am Kirchtor 1, 06108 Halle, Germany
| | - Ute Jacob
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Yasuo Takahashi
- Institute for Global Environmental Strategies, 2108-11 Kamiyamaguchi, Hayama, Kanagawa 240-0115, Japan
| | - Josef Settele
- UFZ – Helmholtz Centre for Environmental Research, Department of Community Ecology and Department of Conservation Biology and Social-Ecological Systems, Theodor-Lieser-Str. 4, 06114 Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biological Sciences, University of the Philippines, Los Baños, College, 4031 Laguna, Philippines
| | - Sandra Díaz
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and FCEFyN, Universidad Nacional de Córdoba, Casilla de Correo 495, 5000 Córdoba, Argentina
| | - Zsolt Molnár
- Centre for Ecological Research, Institute of Ecology and Botany, 2163 Vácrátót, Hungary
| | - Andy Purvis
- Natural History Museum, Department of Life Sciences, London SW7 5BD, UK
- Imperial College London, Department of Life Sciences, Silwood Park, Ascot SL5 7PY, UK
| |
Collapse
|
234
|
Racimo F, Valentini E, Rijo De León G, Santos TL, Norberg A, Atmore LM, Murray M, Hakala SM, Olsen FA, Gardner CJ, Halder JB. The biospheric emergency calls for scientists to change tactics. eLife 2022; 11:e83292. [PMID: 36342018 PMCID: PMC9640186 DOI: 10.7554/elife.83292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Our current economic and political structures have an increasingly devastating impact on the Earth's climate and ecosystems: we are facing a biospheric emergency, with catastrophic consequences for both humans and the natural world on which we depend. Life scientists - including biologists, medical scientists, psychologists and public health experts - have had a crucial role in documenting the impacts of this emergency, but they have failed to drive governments to take action in order to prevent the situation from getting worse. Here we, as members of the movement Scientist Rebellion, call on life scientists to re-embrace advocacy and activism - which were once hallmarks of academia - in order to highlight the urgency and necessity of systemic change across our societies. We particularly emphasise the need for scientists to engage in nonviolent civil resistance, a form of public engagement which has proven to be highly effective in social struggles throughout history.
Collapse
Affiliation(s)
- Fernando Racimo
- University of CopenhagenCopenhagenDenmark
- Scientist Rebellion DenmarkCopenhagenDenmark
| | - Elia Valentini
- University of EssexColchesterUnited Kingdom
- Scientist Rebellion ItalyRomeItaly
- Scientist Rebellion UKColchesterUnited Kingdom
| | | | - Teresa L Santos
- Universidade de LisboaLisbonPortugal
- Scientist Rebellion PortugalLisboaPortugal
| | - Anna Norberg
- Norwegian University of Science and TechnologyTrondheimNorway
- Scientist Rebellion NorwayTrondheimNorway
| | - Lane M Atmore
- University of OsloOsloNorway
- Scientist Rebellion Turtle IslandTurtle IslandUnited States
| | - Myranda Murray
- Norwegian University of Science and TechnologyTrondheimNorway
- Scientist Rebellion NorwayTrondheimNorway
| | - Sanja M Hakala
- University of FribourgFribourgSwitzerland
- Scientist Rebellion SwitzerlandFribourgSwitzerland
| | | | - Charlie J Gardner
- University of KentCanterburyUnited Kingdom
- Scientist Rebellion UKCanterburyUnited Kingdom
| | - Julia B Halder
- Imperial CollegeLondonUnited Kingdom
- Scientist Rebellion UKLondonUnited Kingdom
| |
Collapse
|
235
|
Evans MJ, Malcom JW. Recovery units under the Endangered Species Act should be used more widely. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.1018159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Recovering species is the main goal of the Endangered Species Act (ESA). In the face of limited conservation budgets, diverse tools are needed to efficiently recover species. Recovery units may be one such tool - designated portions of a species’ range that must be recovered individually before an entire species can be considered recovered. Recovery units allow for spatial flexibility in developing recovery goals and may be used in regulatory decisions such as ESA section 7 consultation. Despite the advantages, very little information exists on how recovery units have been developed and used. We mined available public data to determine the number and types of species for which recovery units have been designated; evaluated species and geographic characteristics associated with recovery unit designation; and examined how recovery units have been used in implementing the ESA, such as during consultation. We found 49 listed species had designated recovery units through December 2017, and that these species typically had relatively large ranges and were well-studied. We found taxonomic biases in recovery unit designation as well, with fish species being disproportionately likely to have recovery units and plants disproportionately less. These species were also more likely to have their recovery units considered and used in subsequent ESA implementation – a probability that decreased as time since unit designation passed. Improvements in recovery priority numbers among species with recovery units indicate that the theoretical benefits of this tool may have translated to improved status. These data indicate that recovery units could be applied to additional wide-ranging species to improve recovery under the ESA.
Collapse
|
236
|
Wells K, Flynn R. Managing host-parasite interactions in humans and wildlife in times of global change. Parasitol Res 2022; 121:3063-3071. [PMID: 36066742 PMCID: PMC9446624 DOI: 10.1007/s00436-022-07649-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022]
Abstract
Global change in the Anthropocene has modified the environment of almost any species on earth, be it through climate change, habitat modifications, pollution, human intervention in the form of mass drug administration (MDA), or vaccination. This can have far-reaching consequences on all organisational levels of life, including eco-physiological stress at the cell and organism level, individual fitness and behaviour, population viability, species interactions and biodiversity. Host-parasite interactions often require highly adapted strategies by the parasite to survive and reproduce within the host environment and ensure efficient transmission among hosts. Yet, our understanding of the system-level outcomes of the intricate interplay of within host survival and among host parasite spread is in its infancy. We shed light on how global change affects host-parasite interactions at different organisational levels and address challenges and opportunities to work towards better-informed management of parasite control. We argue that global change affects host-parasite interactions in wildlife inhabiting natural environments rather differently than in humans and invasive species that benefit from anthropogenic environments as habitat and more deliberate rather than erratic exposure to therapeutic drugs and other control efforts.
Collapse
Affiliation(s)
- Konstans Wells
- Department of Biosciences, Swansea University, Swansea, SA28PP, UK.
| | - Robin Flynn
- Graduate Studies Office, South East Technological University, Cork Road Campus, Waterford, X91 K0EK, Ireland
| |
Collapse
|
237
|
von Takach B, Ranjard L, Burridge CP, Cameron SF, Cremona T, Eldridge MDB, Fisher DO, Frankenberg S, Hill BM, Hohnen R, Jolly CJ, Kelly E, MacDonald AJ, Moussalli A, Ottewell K, Phillips BL, Radford IJ, Spencer PBS, Trewella GJ, Umbrello LS, Banks SC. Population genomics of a predatory mammal reveals patterns of decline and impacts of exposure to toxic toads. Mol Ecol 2022; 31:5468-5486. [PMID: 36056907 PMCID: PMC9826391 DOI: 10.1111/mec.16680] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 01/11/2023]
Abstract
Mammal declines across northern Australia are one of the major biodiversity loss events occurring globally. There has been no regional assessment of the implications of these species declines for genomic diversity. To address this, we conducted a species-wide assessment of genomic diversity in the northern quoll (Dasyurus hallucatus), an Endangered marsupial carnivore. We used next generation sequencing methods to genotype 10,191 single nucleotide polymorphisms (SNPs) in 352 individuals from across a 3220-km length of the continent, investigating patterns of population genomic structure and diversity, and identifying loci showing signals of putative selection. We found strong heterogeneity in the distribution of genomic diversity across the continent, characterized by (i) biogeographical barriers driving hierarchical population structure through long-term isolation, and (ii) severe reductions in diversity resulting from population declines, exacerbated by the spread of introduced toxic cane toads (Rhinella marina). These results warn of a large ongoing loss of genomic diversity and associated adaptive capacity as mammals decline across northern Australia. Encouragingly, populations of the northern quoll established on toad-free islands by translocations appear to have maintained most of the initial genomic diversity after 16 years. By mapping patterns of genomic diversity within and among populations, and investigating these patterns in the context of population declines, we can provide conservation managers with data critical to informed decision-making. This includes the identification of populations that are candidates for genetic management, the importance of remnant island and insurance/translocated populations for the conservation of genetic diversity, and the characterization of putative evolutionarily significant units.
Collapse
Affiliation(s)
- Brenton von Takach
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia,School of Molecular and Life SciencesCurtin UniversityPerthWestern AustraliaAustralia
| | - Louis Ranjard
- The Research School of Biology, Faculty of ScienceThe Australian National UniversityActonAustralian Capital TerritoryAustralia,PlantTech Research InstituteTaurangaNew Zealand
| | | | - Skye F. Cameron
- Australian Wildlife ConservancyKimberleyWestern AustraliaAustralia,School of Biological SciencesUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Teigan Cremona
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | | | - Diana O. Fisher
- School of Biological SciencesUniversity of QueenslandSt LuciaQueenslandAustralia
| | | | - Brydie M. Hill
- Flora and Fauna Division, Department of Environment, Parks and Water SecurityNorthern Territory GovernmentNorthern TerritoryAustralia
| | - Rosemary Hohnen
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Chris J. Jolly
- Institute of Land, Water and Society, School of Environmental ScienceCharles Sturt UniversityAlburyNew South WalesAustralia,School of Natural SciencesMacquarie UniversityMacquarie ParkNew South WalesAustralia
| | - Ella Kelly
- School of BioSciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Anna J. MacDonald
- The Research School of Biology, Faculty of ScienceThe Australian National UniversityActonAustralian Capital TerritoryAustralia,Australian Antarctic Division, Department of AgricultureWater and the EnvironmentKingstonTasmaniaAustralia
| | - Adnan Moussalli
- School of BioSciencesUniversity of MelbourneParkvilleVictoriaAustralia,Department of ScienceMuseums VictoriaMelbourneVictoriaAustralia
| | - Kym Ottewell
- Department of Biodiversity, Conservation and AttractionsPerthWestern AustraliaAustralia
| | - Ben L. Phillips
- School of BioSciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Ian J. Radford
- Department of Biodiversity, Conservation and AttractionsPerthWestern AustraliaAustralia
| | - Peter B. S. Spencer
- Environmental and Conservation Sciences, Murdoch UniversityPerthWestern AustraliaAustralia
| | - Gavin J. Trewella
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Linette S. Umbrello
- Department of Biodiversity, Conservation and AttractionsPerthWestern AustraliaAustralia,Collections and Research CentreWestern Australian MuseumWelshpoolWestern AustraliaAustralia
| | - Sam C. Banks
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| |
Collapse
|
238
|
Sun H, Tian Y, Li L, Meng Y, Huang X, Zhan W, Zhou X, Cai G. Anthropogenic pollution discharges, hotspot pollutants and targeted strategies for urban and rural areas in the context of population migration: Numerical modeling of the Minjiang River basin. ENVIRONMENT INTERNATIONAL 2022; 169:107508. [PMID: 36108502 DOI: 10.1016/j.envint.2022.107508] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Unprecedented urbanization-induced population migration in China severely affects the scale and geographic distribution of anthropogenic pollutant discharge. Understanding how pollutant discharge patterns respond to population migration can help guide future efforts to maintain water sustainability. Here, based on a new calculation framework with 18 dynamic parameters designed for anthropogenic discharges, we finely tracked and visualized the effects of population migration on the spatial and temporal changes in anthropogenic discharge from 1980 to 2019 in the Minjiang River basin. The results indicate that the increasing effect of population migration on anthropogenic discharges peaked in 2002 and started to contribute to pollutant reduction from 2010 onward. The direct impact of population migration only contributes to the shift of anthropogenic discharges from rural to urban areas, while the migration bonus is the key factor leading to the reduction in anthropogenic discharges. Population migration is highly beneficial for chemical oxygen demand (COD) reduction, which has contributed to a shift from COD to NH4+-N and total phosphorus (TP) as hotspot pollutants in the whole basin (NH4+-N in urban areas and TP in rural areas). Moreover, pollution reduction resulting from the demographic bonus phenomenon has remained limited only to urban areas. Since approximately 2010, the per capita amount and total amount of anthropogenic pollutant discharges in rural areas have exceeded those in urban areas; in particular, the per capita COD and TP discharges in rural areas reached four times those in urban areas. This suggests that future pollution control strategies should give more attention to rural areas and focus on the differentiation and targeting of urban and rural areas.
Collapse
Affiliation(s)
- Huihang Sun
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Tian
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Lipin Li
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yiming Meng
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaohong Huang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Zhan
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xue Zhou
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guiyuan Cai
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
239
|
Xuereb A, Rougemont Q, Dallaire X, Moore J, Normandeau E, Bougas B, Perreault‐Payette A, Koop BF, Withler R, Beacham T, Bernatchez L. Re-evaluating Coho salmon ( Oncorhynchus kisutch) conservation units in Canada using genomic data. Evol Appl 2022; 15:1925-1944. [PMID: 36426130 PMCID: PMC9679250 DOI: 10.1111/eva.13489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022] Open
Abstract
Conservation units (CUs) are important tools for supporting the implementation of standardized management practices for exploited species. Following the adoption of the Wild Salmon Policy in Canada, CUs were defined for Pacific salmon based on characteristics related to ecotype, life history and genetic variation using microsatellite markers as indirect measures of local adaptation. Genomic data sets have the potential to improve the definition of CUs by reducing variance around estimates of population genetic parameters, thereby increasing the power to detect more subtle patterns of population genetic structure and by providing an opportunity to incorporate adaptive information more directly with the identification of variants putatively under selection. We used one of the largest genomic data sets recently published for a nonmodel species, comprising 5662 individual Coho salmon (Oncorhynchus kisutch) from 149 sampling locations and a total of 24,542 high-quality SNPs obtained using genotyping-by-sequencing and mapped to the Coho salmon reference genome to (1) evaluate the current delineation of CUs for Coho in Canada and (2) compare patterns of population structure observed using neutral and outlier loci from genotype-environment association analyses to determine whether separate CUs that capture adaptive diversity are needed. Our results reflected CU boundaries on the whole, with the majority of sampling locations managed in the same CU clustering together within genetic groups. However, additional groups that are not currently represented by CUs were also uncovered. We observed considerable overlap in the genetic clusters identified using neutral or candidate loci, indicating a general congruence in patterns of genetic variation driven by local adaptation and gene flow in this species. Consequently, we suggest that the current CU boundaries for Coho salmon are largely well-suited for meeting the Canadian Wild Salmon Policy's objective of defining biologically distinct groups, but we highlight specific areas where CU boundaries may be refined.
Collapse
Affiliation(s)
- Amanda Xuereb
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | - Quentin Rougemont
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
- CEFE, Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS, Univ Montpellier, CNRS, EPHE, IRDUniv Paul Valéry MontpellierMontpellierFrance
| | - Xavier Dallaire
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | - Jean‐Sébastien Moore
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | - Eric Normandeau
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | - Bérénice Bougas
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | - Alysse Perreault‐Payette
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | - Ben F. Koop
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Ruth Withler
- Department of Fisheries and OceanPacific Biological StationNanaimoBritish ColumbiaCanada
| | - Terry Beacham
- Department of Fisheries and OceanPacific Biological StationNanaimoBritish ColumbiaCanada
| | - Louis Bernatchez
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| |
Collapse
|
240
|
Tourinho L, Maria de Brito Alves S, Bastos Lobo da Silva F, Verdi M, Roque N, Augusto Conceição A, Aona LY, de Oliveira G, Nasser Caiafa A, Rigueira DM, Jordão Porto T, Dobrovolski R, Vilela B. A participatory approach to map strategic areas for conservation and restoration at a regional scale. Perspect Ecol Conserv 2022. [DOI: 10.1016/j.pecon.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
241
|
Crist E, Ripple WJ, Ehrlich PR, Rees WE, Wolf C. Scientists' warning on population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157166. [PMID: 35803428 DOI: 10.1016/j.scitotenv.2022.157166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Humanity must commit to transformative change on all levels in order to address the climate emergency and biodiversity collapse. In particular, stabilizing and ultimately reducing the human population size is necessary to ensure the long-term wellbeing of our species and other life on Earth. We show how this transition can be accomplished in an equitable framework that promotes human rights. Specifically, we issue a global appeal for women and men to have at most one child and call for policy-makers to implement population policies that improve education for girls and young women and ensure the availability of high-quality family-planning services.
Collapse
Affiliation(s)
- Eileen Crist
- Department of Science and Technology in Society, Virginia Tech, Blacksburg, VA, United States.
| | - William J Ripple
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
| | - Paul R Ehrlich
- Department of Biology, Stanford University, Stanford, CA, United States
| | - William E Rees
- School of Community and Regional Planning, University of British Columbia, Vancouver, BC, Canada
| | - Christopher Wolf
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
242
|
Morrison RE, Hirwa JP, Ndagijimana F, Vecellio V, Eckardt W, Stoinski TS. Cascading effects of social dynamics on the reproduction, survival, and population growth of mountain gorillas. Anim Conserv 2022. [DOI: 10.1111/acv.12830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- R. E. Morrison
- Dian Fossey Gorilla Fund, Ellen DeGeneres Campus of the Dian Fossey Gorilla Fund Kinigi Rwanda
- Centre for Research in Animal Behaviour, Department of Psychology University of Exeter Exeter UK
| | - J. P. Hirwa
- Dian Fossey Gorilla Fund, Ellen DeGeneres Campus of the Dian Fossey Gorilla Fund Kinigi Rwanda
| | - F. Ndagijimana
- Dian Fossey Gorilla Fund, Ellen DeGeneres Campus of the Dian Fossey Gorilla Fund Kinigi Rwanda
| | - V. Vecellio
- Dian Fossey Gorilla Fund, Ellen DeGeneres Campus of the Dian Fossey Gorilla Fund Kinigi Rwanda
| | - W. Eckardt
- Dian Fossey Gorilla Fund, Ellen DeGeneres Campus of the Dian Fossey Gorilla Fund Kinigi Rwanda
| | - T. S. Stoinski
- Dian Fossey Gorilla Fund, Ellen DeGeneres Campus of the Dian Fossey Gorilla Fund Kinigi Rwanda
| |
Collapse
|
243
|
A contemporary baseline of Madagascar's coral assemblages: Reefs with high coral diversity, abundance, and function associated with marine protected areas. PLoS One 2022; 17:e0275017. [PMID: 36264983 PMCID: PMC9584525 DOI: 10.1371/journal.pone.0275017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/08/2022] [Indexed: 11/19/2022] Open
Abstract
Madagascar is a major hotspot of biodiversity in the Western Indian Ocean, but, as in many other regions, coral reefs surrounding the island confront large-scale disturbances and human-induced local stressors. Conservation actions have been implemented with encouraging results for fisheries, though their benefit on coral assemblages has never been rigorously addressed. In this context, we analyzed the multiscale spatial variation of the composition, generic richness, abundance, life history strategies, and cover of coral assemblages among 18 stations placed at three regions around the island. The potential influences of marine protected areas (MPAs), algal cover, substrate rugosity, herbivorous fish biomass, and geographic location were also analyzed. Our results highlight the marked spatial variability, with variation at either or both regional and local scales for all coral descriptors. The northeast coastal region of Masoala was characterized by the high abundance of coral colonies, most notably of the competitive Acropora and Pocillopora genera and stress-tolerant taxa at several stations. The southwest station of Salary Nord was distinguished by lower abundances, with depauperate populations of competitive taxa. On the northwest coast, Nosy-Be was characterized by higher diversity and abundance as well as by high coral cover (~42-70%) recorded at unfished stations. Results clearly underline the positive effects of MPAs on all but one of the coral descriptors, particularly at Nosy-Be where the highest contrast between fished and unfished stations was observed. Biomass of herbivorous fishes, crustose coralline algae cover, and substrate rugosity were also positively related to several coral descriptors. The occurrence of reefs with high diversity, abundance, and cover of corals, including the competitive Acropora, is a major finding of this study. Our results strongly support the implementation of locally managed marine areas with strong involvement by primary users, particularly to assist in management in countries with reduced logistic and human resources such as Madagascar.
Collapse
|
244
|
Jandt U, Bruelheide H, Jansen F, Bonn A, Grescho V, Klenke RA, Sabatini FM, Bernhardt-Römermann M, Blüml V, Dengler J, Diekmann M, Doerfler I, Döring U, Dullinger S, Haider S, Heinken T, Horchler P, Kuhn G, Lindner M, Metze K, Müller N, Naaf T, Peppler-Lisbach C, Poschlod P, Roscher C, Rosenthal G, Rumpf SB, Schmidt W, Schrautzer J, Schwabe A, Schwartze P, Sperle T, Stanik N, Storm C, Voigt W, Wegener U, Wesche K, Wittig B, Wulf M. More losses than gains during one century of plant biodiversity change in Germany. Nature 2022; 611:512-518. [PMID: 36261519 DOI: 10.1038/s41586-022-05320-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/04/2022] [Indexed: 11/09/2022]
Abstract
Long-term analyses of biodiversity data highlight a 'biodiversity conservation paradox': biological communities show substantial species turnover over the past century1,2, but changes in species richness are marginal1,3-5. Most studies, however, have focused only on the incidence of species, and have not considered changes in local abundance. Here we asked whether analysing changes in the cover of plant species could reveal previously unrecognized patterns of biodiversity change and provide insights into the underlying mechanisms. We compiled and analysed a dataset of 7,738 permanent and semi-permanent vegetation plots from Germany that were surveyed between 2 and 54 times from 1927 to 2020, in total comprising 1,794 species of vascular plants. We found that decrements in cover, averaged across all species and plots, occurred more often than increments; that the number of species that decreased in cover was higher than the number of species that increased; and that decrements were more equally distributed among losers than were gains among winners. Null model simulations confirmed that these trends do not emerge by chance, but are the consequence of species-specific negative effects of environmental changes. In the long run, these trends might result in substantial losses of species at both local and regional scales. Summarizing the changes by decade shows that the inequality in the mean change in species cover of losers and winners diverged as early as the 1960s. We conclude that changes in species cover in communities represent an important but understudied dimension of biodiversity change that should more routinely be considered in time-series analyses.
Collapse
Affiliation(s)
- Ute Jandt
- Institute of Biology, Department of Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Helge Bruelheide
- Institute of Biology, Department of Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany. .,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Florian Jansen
- Faculty of Agricultural and Environmental Sciences, Rostock University, Rostock, Germany
| | - Aletta Bonn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Ecosystem Services, Helmhotz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Volker Grescho
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Ecosystem Services, Helmhotz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Reinhard A Klenke
- Institute of Biology, Department of Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Francesco Maria Sabatini
- Institute of Biology, Department of Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,BIOME Lab, Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Markus Bernhardt-Römermann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany
| | | | - Jürgen Dengler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Vegetation Ecology Group, Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland.,Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), Bayreuth, Germany
| | - Martin Diekmann
- Vegetation Ecology and Conservation Biology, Institute of Ecology, University of Bremen, Bremen, Germany
| | - Inken Doerfler
- Vegetation Science and Nature Conservation Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Ute Döring
- Independent researcher, Göttingen, Germany
| | - Stefan Dullinger
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Sylvia Haider
- Institute of Biology, Department of Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Thilo Heinken
- General Botany, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Peter Horchler
- Department of Vegetation Studies and Landscape Management, Federal Institute of Hydrology, Koblenz, Germany
| | - Gisbert Kuhn
- Institut für Agrarökologie und Biologischen Landbau, AG Vegetationsökologie und -monitoring, Bayerische Landesanstalt für Landwirtschaft, Freising, Germany
| | - Martin Lindner
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Katrin Metze
- Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt des Landes Sachsen-Anhalt, Magdeburg, Germany
| | - Norbert Müller
- Department of Landscape Management & Restoration Ecology, Fachhochschule Erfurt, Erfurt, Germany
| | - Tobias Naaf
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Cord Peppler-Lisbach
- Landscape Ecology Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Peter Poschlod
- Ecology and Conservation Biology, Institute of Plant Sciences, Faculty of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Christiane Roscher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Gert Rosenthal
- Department of Landscape and Vegetation Ecology, University of Kassel, Kassel, Germany
| | - Sabine B Rumpf
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Wolfgang Schmidt
- Department of Silviculture and Forest Ecology of the Temperate Zones, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Angelika Schwabe
- Faculty of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Peter Schwartze
- Biologische Station Kreis Steinfurt e.V., Tecklenburg, Germany
| | | | - Nils Stanik
- Department of Landscape and Vegetation Ecology, University of Kassel, Kassel, Germany
| | - Christian Storm
- Fachgebiet Chemische Pflanzenökologie, Fachbereich Biologie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Winfried Voigt
- Institute of Ecology and Evolution, University of Jena, Jena, Germany
| | - Uwe Wegener
- Independent researcher, Halberstadt, Germany
| | - Karsten Wesche
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Botany Department, Senckenberg Museum of Natural History Görlitz, Görlitz, Germany.,International Institute Zittau, Technische Universität Dresden, Zittau, Germany
| | - Burghard Wittig
- Vegetation Ecology and Conservation Biology, Institute of Ecology, University of Bremen, Bremen, Germany.,Lower Saxony Water Management, Coastal Protection and Nature Conservation Agency, Betriebsstelle Lüneburg, Standort Verden, Verden, Germany
| | - Monika Wulf
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
245
|
Jandt U, Bruelheide H, Berg C, Bernhardt-Römermann M, Blüml V, Bode F, Dengler J, Diekmann M, Dierschke H, Doerfler I, Döring U, Dullinger S, Härdtle W, Haider S, Heinken T, Horchler P, Jansen F, Kudernatsch T, Kuhn G, Lindner M, Matesanz S, Metze K, Meyer S, Müller F, Müller N, Naaf T, Peppler-Lisbach C, Poschlod P, Roscher C, Rosenthal G, Rumpf SB, Schmidt W, Schrautzer J, Schwabe A, Schwartze P, Sperle T, Stanik N, Stroh HG, Storm C, Voigt W, von Heßberg A, von Oheimb G, Wagner ER, Wegener U, Wesche K, Wittig B, Wulf M. ReSurveyGermany: Vegetation-plot time-series over the past hundred years in Germany. Sci Data 2022; 9:631. [PMID: 36261458 PMCID: PMC9581966 DOI: 10.1038/s41597-022-01688-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022] Open
Abstract
Vegetation-plot resurvey data are a main source of information on terrestrial biodiversity change, with records reaching back more than one century. Although more and more data from re-sampled plots have been published, there is not yet a comprehensive open-access dataset available for analysis. Here, we compiled and harmonised vegetation-plot resurvey data from Germany covering almost 100 years. We show the distribution of the plot data in space, time and across habitat types of the European Nature Information System (EUNIS). In addition, we include metadata on geographic location, plot size and vegetation structure. The data allow temporal biodiversity change to be assessed at the community scale, reaching back further into the past than most comparable data yet available. They also enable tracking changes in the incidence and distribution of individual species across Germany. In summary, the data come at a level of detail that holds promise for broadening our understanding of the mechanisms and drivers behind plant diversity change over the last century.
Collapse
Affiliation(s)
- Ute Jandt
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany.
| | - Christian Berg
- Karl-Franzens-Universität Graz, Institute for Biology, Holteigasse 6, 8010, Graz, Austria
| | - Markus Bernhardt-Römermann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Str. 159, 07743, Jena, Germany
| | - Volker Blüml
- BMS - Umweltplanung, Freiheitsweg 38A, 49086, Osnabrück, Germany
| | - Frank Bode
- Abteilung Forschungsförderung, Karlsruher Institut für Technologie (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Jürgen Dengler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Vegetation Ecology Group, Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences (ZHAW), Grüentalstr. 14, 8820, Wädenswil, Switzerland
- Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), Universitätsstr. 30, Bayreuth, 95447, Germany
| | - Martin Diekmann
- Vegetation Ecology and Conservation Biology, Institute of Ecology, FB 2, University of Bremen, Bremen, Germany
| | - Hartmut Dierschke
- Vegetation Analysis and Phytodiversity, Albrecht-von- Haller-Institute of Plant Sciences, Georg- August- University of Göttingen, Untere Karspüle 2, D-37073, Göttingen, Germany
| | - Inken Doerfler
- Vegetation Science and Nature Conservation Group, Institute for Biology and Environmental Sciences, University of Oldenburg, 2611, Oldenburg, Germany
| | - Ute Döring
- Auf der Wessel 47, 37085, Göttingen, Germany
| | - Stefan Dullinger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
| | - Werner Härdtle
- Leuphana University of Lüneburg, Institute of Ecology, Universitätsallee 1, 21335, Lüneburg, Germany
| | - Sylvia Haider
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
| | - Thilo Heinken
- General Botany, Institute of Biochemistry and Biology, University of Potsdam, Maulbeerallee 3, 14469, Potsdam, Germany
| | - Peter Horchler
- Federal Institute of Hydrology, Department Vegetation Studies, Landscape Management, Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Florian Jansen
- Faculty of Agricultural and Environmental Sciences, Rostock University, Justus-von-Liebig-Weg 6, 18059, Rostock, Germany
| | - Thomas Kudernatsch
- Bavarian State Institute of Forestry, Hans-Carl-von-Carlowitz-Platz 1, 85354, Freising, Germany
| | - Gisbert Kuhn
- Institut für Agrarökologie und Biologischen Landbau, AG Vegetationsökologie und -monitoring, Bayerische Landesanstalt für Landwirtschaft, Lange Point 12, 85354, Freising, Germany
| | - Martin Lindner
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Institute of Biology/Biology Education, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120, Halle, Germany
| | - Silvia Matesanz
- Universidad Rey Juan Carlos, Area de Biodiversidad y Conservación, Móstoles, Madrid, 28933, Spain
| | - Katrin Metze
- Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt des Landes Sachsen-Anhalt, Leipziger Straße 58, 39112, Magdeburg, Germany
| | - Stefan Meyer
- Plant Ecology and Ecosystems Research, Albrecht von Haller Institute of Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany
| | - Frank Müller
- Institute of Botany, TU Dresden, Mommsenstr. 13, 01062, Dresden, Germany
| | - Norbert Müller
- Dep. Landscape Management & Restoration Ecology, Fachhochschule Erfurt, Leipzigerstr. 77, 99085, Erfurt, Germany
| | - Tobias Naaf
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374, Müncheberg, Germany
| | - Cord Peppler-Lisbach
- Landscape Ecology Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Carl von Ossietzky Str. 9-11, 26129, Oldenburg, Germany
| | - Peter Poschlod
- Ecology and Conservation Biology, Institute of Plant Sciences, Faculty of Biology and Preclinical Medicine, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany
| | - Christiane Roscher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Department of Physiological Diversity, UFZ, Helmholtz Centre for Environmental Research, Puschstr. 4, 04103, Leipzig, Germany
| | - Gert Rosenthal
- Department of Landscape and Vegetation Ecology, University of Kassel, Gottschalkstrasse 26a, 34127, Kassel, Germany
| | - Sabine B Rumpf
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
- University of Basel, Department of Environmental Sciences, Bernoullistrasse 32, 4056, Basel, Switzerland
| | - Wolfgang Schmidt
- Department of Silviculture and Forest Ecology of the Temperate Zones, Georg-August-University Göttingen, Büsgenweg 1, D-37077, Göttingen, Germany
| | - Joachim Schrautzer
- Institute for Ecosystem Research, Kiel University, Olshausenstraße 75, 24118, Kiel, Germany
| | - Angelika Schwabe
- Faculty of Biology, Technical University Darmstadt, Schnittspahnstraße 4, 64287, Darmstadt, Germany
| | - Peter Schwartze
- Biologische Station Kreis Steinfurt e.V., Bahnhofstraße 71, 49545, Tecklenburg, Germany
| | | | - Nils Stanik
- Department of Landscape and Vegetation Ecology, University of Kassel, Gottschalkstrasse 26a, 34127, Kassel, Germany
| | - Hans-Georg Stroh
- büro áchero Vegetation and Environmental Consulting, Friedländer Straße 17a, 37133, Friedland, Germany
| | - Christian Storm
- Fachgebiet Chemische Pflanzenökologie, Fachbereich Biologie, Technische Universität Darmstadt, Schnittspahnstr. 10, D-64287, Darmstadt, Germany
| | - Winfried Voigt
- Institute of Ecology and Evolution, University of Jena, Dornburger Str. 159, 07743, Jena, Germany
| | | | - Goddert von Oheimb
- Technische Universität Dresden, Institute of General Ecology and Environmental Protection, Pienner Straße 7, 01737, Tharandt, Germany
| | | | | | - Karsten Wesche
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Botany Department, Senckenberg Museum of Natural History Görlitz, Am Museum 1, 02826, Görlitz, Germany
- International Institute Zittau, Technische Universität Dresden, Markt 23, 02763, Zittau, Germany
| | - Burghard Wittig
- Vegetation Ecology and Conservation Biology, Institute of Ecology, FB 2, University of Bremen, Bremen, Germany
- Lower Saxony Water Management, Coastal Protection and Nature Conservation Agency, Betriebsstelle Lüneburg, Standort Verden, Bürgermeister Münchmeyer Str. 6, 27283, Verden, Germany
| | - Monika Wulf
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374, Müncheberg, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Maulbeerallee 3, 14469, Potsdam, Germany
| |
Collapse
|
246
|
Pathways for Sustainable Economic Benefits and Green Economies in Light of the State of World Forests 2022. ANTHROPOCENE SCIENCE 2022. [PMCID: PMC9559158 DOI: 10.1007/s44177-022-00041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
247
|
Restoring the orangutan in a Whole- or Half-Earth context. ORYX 2022. [DOI: 10.1017/s003060532200093x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Abstract
Various global-scale proposals exist to reduce the loss of biological diversity. These include the Half-Earth and Whole-Earth visions that respectively seek to set aside half the planet for wildlife conservation or to diversify conservation practices fundamentally and change the economic systems that determine environmental harm. Here we assess these visions in the specific context of Bornean orangutans Pongo pygmaeus and their conservation. Using an expert-led process we explored three scenarios over a 10-year time frame: continuation of Current Conditions, a Half-Earth approach and a Whole-Earth approach. In addition, we examined a 100-year population recovery scenario assuming 0% offtake of Bornean orangutans. Current Conditions were predicted to result in a population c. 73% of its current size by 2032. Half-Earth was judged comparatively easy to achieve and predicted to result in an orangutan population of c. 87% of its current size by 2032. Whole-Earth was anticipated to lead to greater forest loss and ape killing, resulting in a prediction of c. 44% of the current orangutan population for 2032. Finally, under the recovery scenario, populations could be c. 148% of their current size by 2122. Although we acknowledge uncertainties in all of these predictions, we conclude that the Half-Earth and Whole-Earth visions operate along different timelines, with the implementation of Whole-Earth requiring too much time to benefit orangutans. None of the theorized proposals provided a complete solution, so drawing elements from each will be required. We provide recommendations for equitable outcomes.
Collapse
|
248
|
Martin ME, Delheimer MS, Moriarty KM, Early DA, Hamm KA, Pauli JN, Mcdonald TL, Manley PN. Conservation of rare and cryptic species: Challenges of uncertainty and opportunities for progress. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Marie E. Martin
- Oregon State University, Institute for Natural Resources Portland Oregon USA
| | - Matthew S. Delheimer
- USDA Forest Service, Pacific Southwest Research Station Placerville California USA
| | - Katie M. Moriarty
- National Council for Air and Stream Improvement, Inc. Corvallis Oregon USA
| | | | - Keith A. Hamm
- Green Diamond Resource Company Korbel California USA
| | - Jonathan N. Pauli
- Department of Forest and Wildlife Ecology University of Wisconsin‐Madison Madison Wisconsin USA
| | | | - Patricia N. Manley
- USDA Forest Service, Pacific Southwest Research Station Placerville California USA
| |
Collapse
|
249
|
Loveridge AJ, Sousa LL, Cushman S, Kaszta Ż, Macdonald DW. Where have all the lions gone? Establishing realistic baselines to assess decline and recovery of African lions. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Andrew J. Loveridge
- Wildlife Conservation Research Unit, Recanati‐Kaplan Centre, Department of Zoology University of Oxford Oxford UK
| | - Lara L. Sousa
- Wildlife Conservation Research Unit, Recanati‐Kaplan Centre, Department of Zoology University of Oxford Oxford UK
| | - Samuel Cushman
- Wildlife Conservation Research Unit, Recanati‐Kaplan Centre, Department of Zoology University of Oxford Oxford UK
- US Forest Service, Rocky Mountain Research Station Flagstaff Arizona USA
| | - Żaneta Kaszta
- Wildlife Conservation Research Unit, Recanati‐Kaplan Centre, Department of Zoology University of Oxford Oxford UK
| | - David W. Macdonald
- Wildlife Conservation Research Unit, Recanati‐Kaplan Centre, Department of Zoology University of Oxford Oxford UK
| |
Collapse
|
250
|
Zeiss R, Eisenhauer N, Orgiazzi A, Rillig M, Buscot F, Jones A, Lehmann A, Reitz T, Smith L, Guerra CA. Challenges of and opportunities for protecting European soil biodiversity. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13930. [PMID: 35510330 DOI: 10.1111/cobi.13930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Soil biodiversity and related ecosystem functions are neglected in most biodiversity assessments and nature conservation actions. We examined how society, and particularly policy makers, have addressed these factors worldwide with a focus on Europe and explored the role of soils in nature conservation in Germany as an example. We reviewed past and current global and European policies, compared soil ecosystem functioning in- and outside protected areas, and examined the role of soils in nature conservation management via text analyses. Protection and conservation of soil biodiversity and soil ecosystem functioning have been insufficient. Soil-related policies are unenforceable and lack soil biodiversity conservation goals, focusing instead on other environmental objectives. We found no evidence of positive effects of current nature conservation measures in multiple soil ecosystem functions in Europe. In German conservation management, soils are considered only from a limited perspective (e.g., as physicochemical part of the environment and as habitat for aboveground organisms). By exploring policy, evidence, and management as it relates to soil ecosystems, we suggest an integrative perspective to move nature conservation toward targeting soil ecosystems directly (e.g., by setting baselines, monitoring soil threats, and establishing a soil indicator system).
Collapse
Affiliation(s)
- Romy Zeiss
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | | | - Matthias Rillig
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle, Germany
| | - Arwyn Jones
- Joint Research Centre, European Commission, Ispra, Italy
| | - Anika Lehmann
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Thomas Reitz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle, Germany
| | - Linnea Smith
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Carlos A Guerra
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Martin Luther University Halle Wittenberg, Halle, Germany
| |
Collapse
|