201
|
Sánchez-Cruz N, Schymanski EL. Paths to Cheminformatics: Q&A with Norberto Sánchez-Cruz and Emma Schymanski. J Cheminform 2022; 14:51. [PMID: 35918745 PMCID: PMC9344743 DOI: 10.1186/s13321-022-00628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Norberto Sánchez-Cruz
- Instituto de Química, Unidad Mérida, Universidad Nacional Autónoma de México, Carretera Mérida-Tetiz Km. 4.5, 97357, Ucú, Yucatán, Mexico. .,Chemotargets SL, Baldiri Reixac 4, Parc Cientific de Barcelona, 08028, Barcelona, Catalonia, Spain.
| | - Emma L Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367, Belvaux, Luxembourg.
| |
Collapse
|
202
|
Rietdijk J, Aggarwal T, Georgieva P, Lapins M, Carreras-Puigvert J, Spjuth O. Morphological profiling of environmental chemicals enables efficient and untargeted exploration of combination effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155058. [PMID: 35390365 DOI: 10.1016/j.scitotenv.2022.155058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Environmental chemicals are commonly studied one at a time, and there is a need to advance our understanding of the effect of exposure to their combinations. Here we apply high-content microscopy imaging of cells stained with multiplexed dyes (Cell Painting) to profile the effects of Cetyltrimethylammonium bromide (CTAB), Bisphenol A (BPA), and Dibutyltin dilaurate (DBTDL) exposure on four human cell lines; both individually and in all combinations. We show that morphological features can be used with multivariate data analysis to discern between exposures from individual compounds, concentrations, and combinations. CTAB and DBTDL induced concentration-dependent morphological changes across the four cell lines, and BPA exacerbated morphological effects when combined with CTAB and DBTDL. Combined exposure to CTAB and BPA induced changes in the ER, Golgi apparatus, nucleoli and cytoplasmic RNA in one of the cell lines. Different responses between cell lines indicate that multiple cell types are needed when assessing combination effects. The rapid and relatively low-cost experiments combined with high information content make Cell Painting an attractive methodology for future studies of combination effects. All data in the study is made publicly available on Figshare.
Collapse
Affiliation(s)
- Jonne Rietdijk
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Sweden
| | - Tanya Aggarwal
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Sweden
| | - Polina Georgieva
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Sweden
| | - Maris Lapins
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Sweden
| | - Jordi Carreras-Puigvert
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Sweden.
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Sweden.
| |
Collapse
|
203
|
Yu M, Mapuskar S, Lavonen E, Oskarsson A, McCleaf P, Lundqvist J. Artificial infiltration in drinking water production: Addressing chemical hazards using effect-based methods. WATER RESEARCH 2022; 221:118776. [PMID: 35763929 DOI: 10.1016/j.watres.2022.118776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Artificial infiltration is an established managed aquifer recharge method that is commonly incorporated into drinking water processes. However, groundwater sourced from this type of purification method is prone to contamination with chemical hazards. Such an instance was previously shown at a Swedish DWTP where the river water was contaminated by hazardous chemicals during artificial infiltration. Further, there remains a paucity of research studying the quality of drinking water following this type of treatment from an effect-based bioanalytical perspective. In the current study, an effect-based assessment for chemical hazards was conducted for a Swedish drinking water system comprised of two DWTPs fed artificially-infiltrated river water. In this system, artificial infiltration of the river water takes approximately six to eight months. A sampling event was conducted in the autumn season and the samples were enriched by solid phase extraction. A panel of cell-based reporter gene assays representing several toxicity pathways was selected: oxidative stress response (Nrf2 activity), aryl hydrocarbon receptor (AhR) activation, and hormone receptor-mediated effects (estrogen receptor [ER], androgen receptor [AR]). AhR and ER bioactivities were detected in samples collected from the river intake and in the open-air infiltration basins prior to artificial infiltration. However, the AhR activity decreased and ER activity was effectively removed following artificial infiltration. In the Nrf2 and AR assays, no bioactivities above cut-off levels were detected in any samples collected along the entire treatment process of the drinking water production from source to tap. Using a suite of bioassays, the current study highlighted the effectiveness of artificial infiltration in reducing bioactive compounds in this raw river water. Although artificial infiltration is a common purification method in drinking water production, the limited number of effect-based studies evaluating the effectiveness of this method emphasizes the need for further research to better understand the risks and benefits of this water treatment process.
Collapse
Affiliation(s)
- Maria Yu
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, Uppsala 750 07, Sweden.
| | - Shreya Mapuskar
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, Uppsala 750 07, Sweden
| | - Elin Lavonen
- BioCell Analytica, Ulls väg 29C, Uppsala 756 51, Sweden
| | - Agneta Oskarsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, Uppsala 750 07, Sweden; BioCell Analytica, Ulls väg 29C, Uppsala 756 51, Sweden
| | - Philip McCleaf
- Uppsala Vatten och Avfall AB, Box 1444, Uppsala 751 44, Sweden
| | - Johan Lundqvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, Uppsala 750 07, Sweden; BioCell Analytica, Ulls väg 29C, Uppsala 756 51, Sweden
| |
Collapse
|
204
|
Tallec K, Gabriele M, Paul-Pont I, Alunno-Bruscia M, Huvet A. Tire rubber chemicals reduce juvenile oyster (Crassostrea gigas) filtration and respiration under experimental conditions. MARINE POLLUTION BULLETIN 2022; 181:113936. [PMID: 35850084 DOI: 10.1016/j.marpolbul.2022.113936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Tires can release a large number of chemical compounds that are potentially hazardous for aquatic organisms. An ecophysiological system was used to do high-frequency monitoring of individual clearance, respiration rates, and absorption efficiency of juvenile oysters (8 months old) gradually exposed to four concentrations of tire leachates (equivalent masses: 0, 1, 10, and 100 μg tire mL-1). Leachates significantly reduced clearance (52 %) and respiration (16 %) rates from 1 μg mL-1, while no effect was observed on the absorption efficiency. These results suggest that tire leachates affect oyster gills, which are the organ of respiration and food retention as well as the first barrier against contaminants. Calculations of scope for growth suggested a disruption of the energy balance with a significant reduction of 57 %. Because energy balance directs whole-organism functions (e.g., growth, reproductive outputs), the present study calls for an investigation of the long-term consequences of chemicals released by tires.
Collapse
Affiliation(s)
- Kevin Tallec
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280 Plouzané, France.
| | - Marta Gabriele
- Università di Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Ika Paul-Pont
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | | | - Arnaud Huvet
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| |
Collapse
|
205
|
Harmon O'Driscoll J, Siggins A, Healy MG, McGinley J, Mellander PE, Morrison L, Ryan PC. A risk ranking of pesticides in Irish drinking water considering chronic health effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154532. [PMID: 35302029 DOI: 10.1016/j.scitotenv.2022.154532] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
This paper presents a novel scoring system which facilitates a relative ranking of pesticide risk to human health arising from contaminated drinking water. This method was developed to identify risky pesticides to better inform monitoring programmes and risk assessments. Potential risk was assessed considering pesticide use, chronic human health effects and environmental fate. Site-specific soil conditions, such as soil erodibility, hydrologic group, soil depth, clay, sand, silt, and organic carbon content of soil, were incorporated to demonstrate how pesticide fate can be influenced by the areas in which they are used. The indices of quantity of use, consequence and likelihood of exposure, hazard score and quantity-weighted hazard score were used to describe the level of concern that should be attributed to a pesticide. Metabolite toxicity and persistence were also considered in a separate scoring to highlight the contribution metabolites make to overall pesticide risk. This study presents two sets of results for 63 pesticides in an Irish case study, (1) risk scores calculated for the parent compounds only and (2) a combined pesticide-metabolite risk score. In both cases the results are assessed for two locations with differing soil and hydrological properties. The method developed in this paper can be adapted by pesticide users to assess and compare pesticide risk at site level using pesticide hazard scores. Farm advisors, water quality monitors, and catchment managers can apply this method to screen pesticides for human health risk at a regional or national level.
Collapse
Affiliation(s)
- J Harmon O'Driscoll
- Discipline of Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Cork, Ireland
| | - A Siggins
- Civil Engineering and Ryan Institute, National University of Ireland Galway, Galway, Ireland; Teagasc Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - M G Healy
- Civil Engineering and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - J McGinley
- Civil Engineering and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - P-E Mellander
- Teagasc Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - L Morrison
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - P C Ryan
- Discipline of Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, T23 XE10, Ireland.
| |
Collapse
|
206
|
Luo SH, Wang WL, Zhou ZF, Xie Y, Ren B, Liu GK, Tian ZQ. Visualization of a Machine Learning Framework toward Highly Sensitive Qualitative Analysis by SERS. Anal Chem 2022; 94:10151-10158. [PMID: 35794045 DOI: 10.1021/acs.analchem.2c01450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS), providing near-single-molecule-level fingerprint information, is a powerful tool for the trace analysis of a target in a complicated matrix and is especially facilitated by the development of modern machine learning algorithms. However, both the high demand of mass data and the low interpretability of the mysterious black-box operation significantly limit the well-trained model to real systems in practical applications. Aiming at these two issues, we constructed a novel machine learning algorithm-based framework (Vis-CAD), integrating visual random forest, characteristic amplifier, and data augmentation. The introduction of data augmentation significantly reduced the requirement of mass data, and the visualization of the random forest clearly presented the captured features, by which one was able to determine the reliability of the algorithm. Taking the trace analysis of individual polycyclic aromatic hydrocarbons in a mixture as an example, a trustworthy accuracy no less than 99% was realized under the optimized condition. The visualization of the algorithm framework distinctly demonstrated that the captured feature was well correlated to the characteristic Raman peaks of each individual. Furthermore, the sensitivity toward the trace individual could be improved by least 1 order of magnitude as compared to that with the naked eye. The proposed algorithm distinguished by the lesser demand of mass data and the visualization of the operation process offers a new way for the indestructible application of machine learning algorithms, which would bring push-to-the-limit sensitivity toward the qualitative and quantitative analysis of trace targets, not only in the field of SERS, but also in the much wider spectroscopy world. It is implemented in the Python programming language and is open-source at https://github.com/3331822w/Vis-CAD.
Collapse
Affiliation(s)
- Si-Heng Luo
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.,State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Wei-Li Wang
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Zhi-Fan Zhou
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yi Xie
- Fujian Key Laboratory of Sensing and Computing for Smart City, School of Information Science and Engineering, Xiamen University, Xiamen, Fujian 361005, China.,Shenzhen Research Institute of Xiamen University, Xiamen University, Shenzhen 518000, China
| | - Bin Ren
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Guo-Kun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Zhong-Qun Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
207
|
Reiter EB, Escher BI, Siebert U, Jahnke A. Activation of the xenobiotic metabolism and oxidative stress response by mixtures of organic pollutants extracted with in-tissue passive sampling from liver, kidney, brain and blubber of marine mammals. ENVIRONMENT INTERNATIONAL 2022; 165:107337. [PMID: 35696845 DOI: 10.1016/j.envint.2022.107337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
We used in-tissue passive equilibrium sampling using the silicone polydimethylsiloxane (PDMS) to transfer chemical mixtures present in organs from marine mammals with lipid contents between 2.3 and 99%into in vitro bioassays. Tissues from five harbor porpoises (Phocoena phocoena), one harbor seal (Phoca vitulina) and one orca (Orcinus orca) from the North and Baltic Seas were sampled until thermodynamic equilibrium was reached. Mixture effects were quantified with cellular reporter gene bioassays targeting the activation of the aryl hydrocarbon receptor (AhR-CALUX), the peroxisome proliferator-activated receptor gamma (PPARγ-bla) and the oxidative stress response (AREc32), with parallel cytotoxicity measurements in all assays. After removing co-extracted lipids and other matrix residues with a non-destructive cleanup method (freeze-out of acetonitrile extract followed by a primary secondary amine sorbent extraction), the activation of the PPARγ and AREc32 were reduced by factors of on average 4.3 ± 0.15 (n = 22) and 2.5 ± 0.23 (n = 18), respectively, whereas the activation of the AhR remained largely unaltered: 1.1 ± 0.075 (n = 6). The liver extracts showed the highest activation, followed by the corresponding kidney and brain extracts, and the blubber extracts of the animals were the least active ones. The activation of the PPARγ by the liver extracts was reduced after cleanup by a factor of 11 ± 0.26 (n = 7) and the AREc32 activity by a factor of 1.9 ± 0.32 (n = 4). The blubber extracts did not activate the AhR up to concentrations where cytotoxicity occurred or up to an acceptable lipid volume fraction of 0.27% as derived from earlier work, whereas all liver extracts that had undergone cleanup activated the AhR. The developed in-tissue passive sampling approach allows a direct comparison of the bioassay responses between different tissues without further normalization and serves as a quantitative method suitable for biomonitoring of environmental biota samples.
Collapse
Affiliation(s)
- Eva B Reiter
- Department Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Beate I Escher
- Department Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, 25761 Büsum, Germany
| | - Annika Jahnke
- Department Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
208
|
Lai A, Clark AM, Escher BI, Fernandez M, McEwen LR, Tian Z, Wang Z, Schymanski EL. The Next Frontier of Environmental Unknowns: Substances of Unknown or Variable Composition, Complex Reaction Products, or Biological Materials (UVCBs). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7448-7466. [PMID: 35533312 PMCID: PMC9228065 DOI: 10.1021/acs.est.2c00321] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs) are over 70 000 "complex" chemical mixtures produced and used at significant levels worldwide. Due to their unknown or variable composition, applying chemical assessments originally developed for individual compounds to UVCBs is challenging, which impedes sound management of these substances. Across the analytical sciences, toxicology, cheminformatics, and regulatory practice, new approaches addressing specific aspects of UVCB assessment are being developed, albeit in a fragmented manner. This review attempts to convey the "big picture" of the state of the art in dealing with UVCBs by holistically examining UVCB characterization and chemical identity representation, as well as hazard, exposure, and risk assessment. Overall, information gaps on chemical identities underpin the fundamental challenges concerning UVCBs, and better reporting and substance characterization efforts are needed to support subsequent chemical assessments. To this end, an information level scheme for improved UVCB data collection and management within databases is proposed. The development of UVCB testing shows early progress, in line with three main methods: whole substance, known constituents, and fraction profiling. For toxicity assessment, one option is a whole-mixture testing approach. If the identities of (many) constituents are known, grouping, read across, and mixture toxicity modeling represent complementary approaches to overcome data gaps in toxicity assessment. This review highlights continued needs for concerted efforts from all stakeholders to ensure proper assessment and sound management of UVCBs.
Collapse
Affiliation(s)
- Adelene Lai
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6 avenue du Swing, 4367 Belvaux, Luxembourg
- Institute
for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Lessing Strasse 8, 07743 Jena, Germany
| | - Alex M. Clark
- Collaborative
Drug Discovery Inc., 1633 Bayshore Highway, Suite 342, Burlingame, California 94010, United States
| | - Beate I. Escher
- Helmholtz
Centre for Environmental Research GmbH—UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Environmental
Toxicology, Center for Applied Geosciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Marc Fernandez
- Environment
and Climate Change Canada, 401 Burrard Street, Vancouver, British Columbia V6C 3R2, Canada
| | - Leah R. McEwen
- Cornell
University, Ithaca, New York 14850, United States
- International
Union of Pure and Applied Chemistry, Research Triangle Park, North Carolina 27709, United States
| | - Zhenyu Tian
- Department
of Chemistry and Chemical Biology, Department of Marine and Environmental
Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zhanyun Wang
- Empa—Swiss
Federal Laboratories for Materials Science and Technology, Technology
and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
- Chair
of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Emma L. Schymanski
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6 avenue du Swing, 4367 Belvaux, Luxembourg
| |
Collapse
|
209
|
Lambert FN, Raimondo S, Barron MG. Assessment of a New Approach Method for Grouped Chemical Hazard Estimation: The Toxicity-Normalized Species Sensitivity Distribution (SSDn). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8278-8289. [PMID: 35533293 PMCID: PMC11441989 DOI: 10.1021/acs.est.1c05632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
New approach methods are being developed to address the challenges of reducing animal testing and assessing risks to the diversity of species in aquatic environments for the multitude of chemicals with minimal toxicity data. The toxicity-normalized species sensitivity distribution (SSDn) approach is a novel method for developing compound-specific hazard concentrations using data for toxicologically similar chemicals. This approach first develops an SSDn composed of acute toxicity values for multiple related chemicals that have been normalized by the sensitivity of a common species tested with each compound. A toxicity-normalized hazard concentration (HC5n) is then computed from the fifth percentile of the SSDn. Chemical-specific HC5 values are determined by back-calculating the HC5n using the chemical-specific sensitivity of the normalization species. A comparison of the SSDn approach with the single-chemical SSD method was conducted by using data for nine transition metals to generate and compare HC5 values between the two methods. We identified several guiding principles for this method that, when applied, resulted in accurate HC5 values based on comparisons with results from single-metal SSDs. The SSDn approach shows promise for developing statistically robust hazard concentrations when adequate taxonomic representation is not available for a single chemical.
Collapse
Affiliation(s)
- Faith N Lambert
- Office of Research and Development, U.S. Environmental Protection Agency, Gulf Breeze, Florida 32561, United States
| | - Sandy Raimondo
- Office of Research and Development, U.S. Environmental Protection Agency, Gulf Breeze, Florida 32561, United States
| | - Mace G Barron
- Office of Research and Development, U.S. Environmental Protection Agency, Gulf Breeze, Florida 32561, United States
| |
Collapse
|
210
|
Li S, Lv X, Yang Q, Zhang S, Su J, Cheng SB, Lai Y, Chen J, Zhan J. Dynamic SPME-SERS Induced by Electric Field: Toward In Situ Monitoring of Pharmaceuticals and Personal Care Products. Anal Chem 2022; 94:9270-9277. [PMID: 35729729 DOI: 10.1021/acs.analchem.2c00523] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The core of the surface-enhanced Raman spectroscopy (SERS)-based techniques for dynamic monitoring is to realize rapid and reversible adsorption. Herein, the integration technology of electro-enhanced adsorption, solid-phase microextraction, and surface-enhanced Raman spectroscopy (EE-SPME-SERS) was developed to obtain sensitive, ultrafast, and reversible SERS response toward in situ monitoring of pharmaceuticals and personal care products (PPCPs). In the EE-SPME-SERS method, a roughened Ag fiber with Au modification (r-Ag/Au fiber) was used as the SERS substrate, SPME sorbent, and working electrode. The r-Ag/Au fiber displayed good SERS sensitivity, ultrahigh photostability, and adsorption properties. The adsorption efficiency of benzidine was 76 times accelerated in EE-SPME-SERS compared to that in static adsorption. The whole process of "sampling and detection" in EE-SPME-SERS can be finished within 1 s. Reversible adsorption and desorption can be achieved in situ by switching the direction of electric field, and the regeneration process takes only a few minutes. Simulated release of benzidine from household wastewater was in situ and dynamically monitored using this strategy. EE-SPME-SERS was proved universal for ionized PPCPs and can detect multicomponents simultaneously. In addition, EE-SPME-SERS showed very good analytical properties. Great potential of EE-SPME-SERS can be expected in environmental monitoring.
Collapse
Affiliation(s)
- Shu Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaochen Lv
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Qing Yang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shaoying Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jie Su
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yongchao Lai
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Jing Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
211
|
Luo YS, Chen Z, Hsieh NH, Lin TE. Chemical and biological assessments of environmental mixtures: A review of current trends, advances, and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128658. [PMID: 35290896 DOI: 10.1016/j.jhazmat.2022.128658] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 05/28/2023]
Abstract
Considering the chemical complexity and toxicity data gaps of environmental mixtures, most studies evaluate the chemical risk individually. However, humans are usually exposed to a cocktail of chemicals in real life. Mixture health assessment remains to be a research area having significant knowledge gaps. Characterization of chemical composition and bioactivity/toxicity are the two critical aspects of mixture health assessments. This review seeks to introduce the recent progress and tools for the chemical and biological characterization of environmental mixtures. The state-of-the-art techniques include the sampling, extraction, rapid detection methods, and the in vitro, in vivo, and in silico approaches to generate the toxicity data of an environmental mixture. Application of these novel methods, or new approach methodologies (NAMs), has increased the throughput of generating chemical and toxicity data for mixtures and thus refined the mixture health assessment. Combined with computational methods, the chemical and biological information would shed light on identifying the bioactive/toxic components in an environmental mixture.
Collapse
Affiliation(s)
- Yu-Syuan Luo
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei City, Taiwan.
| | - Zunwei Chen
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nan-Hung Hsieh
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Tzu-En Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
212
|
Contribution of Illicit Drug Use to Pharmaceutical Load in the Environment: A Focus on Sub-Saharan Africa. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2022; 2022:9056476. [PMID: 35719855 PMCID: PMC9200571 DOI: 10.1155/2022/9056476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/25/2021] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
Illicit drug abuse and addiction are universal issues requiring international cooperation and interdisciplinary and multisectoral solutions. These addictive substances are utilized for recreational purposes worldwide, including in sub-Saharan Africa. On the other hand, conventional wastewater treatment facilities such as waste stabilization ponds lack the design to remove the most recent classes of pollutants such as illicit drug abuse. As a result, effluents from these treatment schemes contaminate the entire ecosystem. Public health officials are concerned about detecting these pollutants at alarming levels in some countries, with potential undesirable effects on aquatic species and increased health hazards through exposure to contaminated waters or recycling treated or untreated effluents in agriculture. Contaminants including illicit substances enter the environment by human excreta following illegal intake, spills, or through direct dumping, such as from clandestine laboratories, when their manufacturer does not follow accepted production processes. These substances, like other pharmaceuticals, have biological activity and range from pseudopersistent to highly persistent compounds; hence, they persist in the environment while causing harm to the ecosystem. The presence of powerful pharmacological agents such as cocaine, morphine, and amphetamine in water as complex combinations can impair aquatic organisms and human health. These compounds can harm human beings and ecosystem health apart from their low environmental levels. Therefore, this article examines the presence and levels of illicit substances in ecological compartments such as wastewater, surface and ground waters in sub-Saharan Africa, and their latent impact on the ecosystem. The information on the occurrences of illicit drugs and their metabolic products in the sub-Saharan Africa environment and their contribution to pharmaceutical load is missing. In this case, it is important to research further the presence, levels, distribution, and environmental risks of exposure to human beings and the entire ecosystem.
Collapse
|
213
|
Hu S, Liu G, Zhang J, Yan J, Zhou H, Yan X. Linking electron ionization mass spectra of organic chemicals to toxicity endpoints through machine learning and experimentation. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128558. [PMID: 35228074 DOI: 10.1016/j.jhazmat.2022.128558] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Quantitative structure-activity relationship (QSAR) modeling has been widely used to predict the potential harm of chemicals, in which the prediction heavily relies on the accurate annotation of chemical structures. However, it is difficult to determine the accurate structure of an unknown compound in many cases, such as in complex water environments. Here, we solved the above problem by linking electron ionization mass spectra (EI-MS) of organic chemicals to toxicity endpoints through various machine learning methods. The proposed method was verified by predicting 50% growth inhibition of Tetrahymena pyriformis (T. pyriformis) and liver toxicity. The optimal model performance obtained an R2 > 0.7 or balanced accuracy > 0.72 for both the training set and test set. External experimentation further verified the application potential of our proposed method in the toxicity prediction of unknown chemicals. Feature importance analysis allowed us to identify critical spectral features that were responsible for chemical-induced toxicity. Our approach has the potential for toxicity prediction in such fields that it is difficult to determine accurate chemical structures.
Collapse
Affiliation(s)
- Song Hu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Guohong Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jin Zhang
- School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Jiachen Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Hongyu Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiliang Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
214
|
Trinh J, Schymanski EL, Smajic S, Kasten M, Sammler E, Grünewald A. Molecular mechanisms defining penetrance of LRRK2-associated Parkinson's disease. MED GENET-BERLIN 2022; 34:103-116. [PMID: 38835904 PMCID: PMC11006382 DOI: 10.1515/medgen-2022-2127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Mutations in Leucine-rich repeat kinase 2 (LRRK2) are the most frequent cause of dominantly inherited Parkinson's disease (PD). LRRK2 mutations, among which p.G2019S is the most frequent, are inherited with reduced penetrance. Interestingly, the disease risk associated with LRRK2 G2019S can vary dramatically depending on the ethnic background of the carrier. While this would suggest a genetic component in the definition of LRRK2-PD penetrance, only few variants have been shown to modify the age at onset of patients harbouring LRRK2 mutations, and the exact cellular pathways controlling the transition from a healthy to a diseased state currently remain elusive. In light of this knowledge gap, recent studies also explored environmental and lifestyle factors as potential modifiers of LRRK2-PD. In this article, we (i) describe the clinical characteristics of LRRK2 mutation carriers, (ii) review known genes linked to LRRK2-PD onset and (iii) summarize the cellular functions of LRRK2 with particular emphasis on potential penetrance-related molecular mechanisms. This section covers LRRK2's involvement in Rab GTPase and immune signalling as well as in the regulation of mitochondrial homeostasis and dynamics. Additionally, we explored the literature with regard to (iv) lifestyle and (v) environmental factors that may influence the penetrance of LRRK2 mutations, with a view towards further exposomics studies. Finally, based on this comprehensive overview, we propose potential future in vivo, in vitro and in silico studies that could provide a better understanding of the processes triggering PD in individuals with LRRK2 mutations.
Collapse
Affiliation(s)
- Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Emma L. Schymanski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Semra Smajic
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Esther Sammler
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Department of Neurology, School of Medicine, Dundee, Ninewells Hospital, Dundee, UK
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
215
|
Abstract
This paper provides an overview of recent developments in the field of volatile organic compound (VOC) sensors, which are finding uses in healthcare, safety, environmental monitoring, food and agriculture, oil industry, and other fields. It starts by briefly explaining the basics of VOC sensing and reviewing the currently available and quickly progressing VOC sensing approaches. It then discusses the main trends in materials' design with special attention to nanostructuring and nanohybridization. Emerging sensing materials and strategies are highlighted and their involvement in the different types of sensing technologies is discussed, including optical, electrical, and gravimetric sensors. The review also provides detailed discussions about the main limitations of the field and offers potential solutions. The status of the field and suggestions of promising directions for future development are summarized.
Collapse
Affiliation(s)
- Muhammad Khatib
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
216
|
Li Y, She Q, Wang X, Ma W, Yu H, Yu N, Wei S. Classification and identification of polar pollutants on microplastics from freshwater using nontarget screening strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153468. [PMID: 35093354 DOI: 10.1016/j.scitotenv.2022.153468] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/09/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) cause an increased threat to the freshwater environment by adsorbing pollutants on their large surface area. Considering their adsorption characteristics, non-polar pollutants with high distribution coefficients have been studied extensively. However, comprehensive research on the types of polar pollutants adsorbed by MPs is lacking. In this study, a nontarget screening strategy, including classification and identification, was performed to analyze the pollutants adsorbed by MPs in Tai Lake and the Yangtze River. Compared with the pollutants adsorbed or added to raw plastics, more types of polar pollutants were found on MPs from freshwater. The nontarget classification of 4723 features on MPs from freshwater and 680 features from raw plastics were annotated based on the mass spectrometry spectra. Further identification with multiple platforms identified hundreds of pollutants absorbed by MPs in Tai Lake and Yangtze River, including industrial intermediates, medicines, and surfactants, exceeding those adsorbed by raw plastics, showing an enrichment of the pollutants on MPs in freshwater by secondary adsorption. Our study is the first to use nontarget analysis to comprehensively demonstrate MP adsorption and release of pollutants in freshwater environment, providing a significant reference for the research of MPs and the management of the water environment.
Collapse
Affiliation(s)
- Yuqian Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Qian She
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Xuebing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Weiyu Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Nanyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China.
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
217
|
Anifowoshe AT, Oladipo SO, Oyinloye AN, Opute A, Odofin EO, Omotola A, Abdulrahim YM, Akinseye KM, Abdulkareem SI, Iyiola OA. Induction of oxidative stress and DNA damage in two common fish species of rivers and reservoirs in Ilorin, Northcentral, Nigeria. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2074201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- A. T Anifowoshe
- Cell Biology and Genetics Unit, Department of Zoology, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - S. O. Oladipo
- Department of Zoology, Kwara State University, Malete, Nigeria
| | - A. N. Oyinloye
- Cell Biology and Genetics Unit, Department of Zoology, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - A. Opute
- Cell Biology and Genetics Unit, Department of Zoology, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - E. O. Odofin
- Cell Biology and Genetics Unit, Department of Zoology, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - A. Omotola
- Cell Biology and Genetics Unit, Department of Zoology, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | | | - K. M. Akinseye
- Department of Biology, Adeyemi College of Education, Ondo, Ondo State, Nigeria
| | - S. I. Abdulkareem
- Fisheries and Hydrology Unit, Department of Zoology, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - O. A. Iyiola
- Cell Biology and Genetics Unit, Department of Zoology, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
218
|
Li T, Zhou L, Li X, Yuan L, Zhi W. Editorial: Environmental Monitoring and Remediation Using Microbiotechnology. Front Microbiol 2022; 13:927867. [PMID: 35633662 PMCID: PMC9136658 DOI: 10.3389/fmicb.2022.927867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tian Li
- Ministry of Education (MOE) Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, Tianjin, China
- *Correspondence: Tian Li
| | - Lean Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA)/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, China
| | - Li Yuan
- Chinese Academy of Sciences (CAS) Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Wei Zhi
- Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
219
|
Scholz S, Brack W, Escher BI, Hackermüller J, Liess M, von Bergen M, Wick LY, Zenclussen AC, Altenburger R. The EU chemicals strategy for sustainability: an opportunity to develop new approaches for hazard and risk assessment. Arch Toxicol 2022; 96:2381-2386. [PMID: 35543751 PMCID: PMC9217765 DOI: 10.1007/s00204-022-03313-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Stefan Scholz
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany.
| | - Werner Brack
- Faculty Biological Sciences, Goethe University Frankfurt, Max-von-der-Laue-Straße 13, 60438, Frankfurt, Germany
- Department of effect directed analysis, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Jörg Hackermüller
- Department Computational Biology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany
- Faculty of Mathematics and Informatics, University of Leipzig, 04109, Leipzig, Germany
| | - Matthias Liess
- Department Systems Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany
- RWTH Aachen University, Institute for Environmental Research (Biology V), Aachen, Germany
| | - Martin von Bergen
- Department Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Brüderstraße 34, 04103, Leipzig, Germany
| | - Lukas Y Wick
- Department Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Ana C Zenclussen
- Department Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany
- Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, Leipzig University, Philipp-Rosenthal-Str. 55, 04103, Leipzig, Germany
| | - Rolf Altenburger
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany
- RWTH Aachen University, Institute for Environmental Research (Biology V), Aachen, Germany
| |
Collapse
|
220
|
Liberatori G, Mazzoli C, Ferraro F, Sturba L, Vannuccini ML, Baroni D, Behnisch PA, Puccini M, Vitolo S, Corsi I. Aryl hydrocarbon reporter gene bioassay for screening polyhalogenated dibenzo-p-dioxins/furans and dioxin-like polychlorinated biphenyls in hydrochar and sewage sludge. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128256. [PMID: 35038666 DOI: 10.1016/j.jhazmat.2022.128256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
The suitability of the AhR reporter gene bioassays to screen the presence of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) in sewage sludge (SL) and related hydrochar (HC) was here investigated. Samples of SL obtained from six WWTPs were processed by hydrothermal carbonization to obtain the resultant HCs and both tested with DR-CALUX® bioassay. Levels of PCDD/Fs and dl-PCBs were also determined analytically in the same samples by GC-MS/MS. Bioanalytical Toxicity Equivalent values (BEQ) resulted in one order of magnitude higher in HC compared to SL samples and those obtained from the dl-PCBs fraction higher than those from PCDD/Fs. BEQ and TEQWHO values, the latter obtained by GC-MS/MS analysis on the same matrices, were highly correlated showing also a similar trend in the six WWTPs (RS= 0.8252, p < 0.001; Pearson's R RP =0.8029, p < 0.01). The suitability of AhR bioassays and in particular of the DR-CALUX® to screen the presence and biological activity of legacy organohalogen compounds in both SL and HC matrices was demonstrated for the first time which support their usage for the assessment of potential risks associated with their further environmental applications.
Collapse
Affiliation(s)
- Giulia Liberatori
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy.
| | - Carola Mazzoli
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Fabrizio Ferraro
- pH TÜV Italia srl, Loc. Sambuca Tavarnelle Val di Pesa, Florence, Italy
| | - Lucrezia Sturba
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Maria Luisa Vannuccini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Davide Baroni
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | | | - Monica Puccini
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | - Sandra Vitolo
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| |
Collapse
|
221
|
Nikolopoulou V, Aalizadeh R, Nika MC, Thomaidis NS. TrendProbe: Time profile analysis of emerging contaminants by LC-HRMS non-target screening and deep learning convolutional neural network. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128194. [PMID: 35033918 DOI: 10.1016/j.jhazmat.2021.128194] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/08/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Peak prioritization is one of the key steps in non-target screening of environmental samples to direct the identification efforts to relevant and important features. Occurrence of chemicals is sometimes a function of time and their presence in consecutive days (trend) reveals important aspects such as discharges from agricultural, industrial or domestic activities. This study presents a validated computational framework based on deep learning conventional neural network to classify trends of chemicals over 30 consecutive days of sampling in two sampling sites (upstream and downstream of a river). From trend analysis and factor analysis, the chemicals could be classified into periodic, spill, increasing, decreasing and false trend. The developed method was validated with list of 42 reference standards (target screening) and applied to samples. 25 compounds were selected by the deep learning and identified via non-target screening. Three classes of surfactants were identified for the first time in river water and two of them were never reported in the literature. Overall, 21 new homologous series of the newly identified surfactants were tentatively identified. The aquatic toxicity of the identified compounds was estimated by in silico tools and a few compounds along with their homologous series showed potential risk to aquatic environment.
Collapse
Affiliation(s)
- Varvara Nikolopoulou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Maria-Christina Nika
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
222
|
Wang C, Song F, Wang XL, Wang YZ. A cellulose nanocrystal templating approach to synthesize size-controlled gold nanoparticles with high catalytic activity. Int J Biol Macromol 2022; 209:464-471. [PMID: 35413315 DOI: 10.1016/j.ijbiomac.2022.04.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/01/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022]
Abstract
Advanced templating methods have shown precise regulation of the micro/nanostructures of inorganic catalysts. Here, on the basis of controlled self-assembly and micro-structures of cellulose nanocrystals (CNCs), a new bio-mass-mediated templating approach is proposed to control the growth of gold nanoparticles (Au NPs). The catalytic performance of the as-prepared Au NPs was evaluated using p-nitrophenol as a model pollutant. TEM, POM, zeta-potential, and rheological measurements were conducted to investigate the structure and catalytic activity of the nano-materials. By regulating the chiral nematic liquid crystal texture formed by the self-assembly of CNCs, the size of Au NPs could be adjusted at the nanoscale dimension, from 1.38 ± 0.38 nm to 4.25 ± 1.24 nm. Depending on the Au size, a high catalytic effect, namely, 98.0% conversion rate, was obtained within 30 min. The conversion rate was maintained at 97.0% even after 3-run cyclic application. Such findings demonstrate the potential of using CNCs as a bio-template to control the growth of nanomaterials.
Collapse
Affiliation(s)
- Chen Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, s, Sichuan University, Chengdu 610064, China
| | - Fei Song
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, s, Sichuan University, Chengdu 610064, China.
| | - Xiu-Li Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, s, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, s, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
223
|
Recent Advances in Sampling and Sample Preparation for Effect-Directed Environmental Analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
224
|
Lotfi S, Fischer K, Schulze A, Schäfer AI. Photocatalytic degradation of steroid hormone micropollutants by TiO 2-coated polyethersulfone membranes in a continuous flow-through process. NATURE NANOTECHNOLOGY 2022; 17:417-423. [PMID: 35361923 DOI: 10.1038/s41565-022-01074-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Micropollutants in the aquatic environment pose a high risk to both environmental and human health. The photocatalytic degradation of steroid hormones in a flow-through photocatalytic membrane reactor under UV light (365 nm) at environmentally relevant concentrations (50 ng l-1 to 1 mg l-1) was examined using a polyethersulfone-titanium dioxide (PES-TiO2) membrane. The TiO2 nanoparticles (10-30 nm) were immobilized both on the surface and in the nanopores (220 nm) of the membrane. Water quality and operational parameters were evaluated to elucidate the limiting factors in the degradation of steroid hormones. Flow through the photocatalytic membrane increased contact between the micropollutants and ·OH in the pores. Notably, 80% of both oestradiol and oestrone was removed from a 200 ng l-1 feed (at 25 mW cm-2 and 300 l m-2 h-1). Progesterone and testosterone removal was lower at 44% and 33%, respectively. Increasing the oestradiol concentration to 1 mg l-1 resulted in 20% removal, whereas with a 100 ng l-1 solution, a maximum removal of 94% was achieved at 44 mW cm-2 and 60 l m-2 h-1. The effectiveness of the relatively well-known PES-TiO2 membrane for micropollutant removal has been demonstrated; this effectiveness is due to the nanoscale size of the membrane, which provides a high surface area and facilitates close contact of the radicals with the very small (0.8 nm) micropollutant at an extremely low, environmentally relevant concentration (100 ng l-1).
Collapse
Affiliation(s)
- Shabnam Lotfi
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Kristina Fischer
- Leibniz Institute of Surface Engineering (IOM), Leipzig, Germany
| | - Agnes Schulze
- Leibniz Institute of Surface Engineering (IOM), Leipzig, Germany
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
225
|
Anifowoshe AT, Roy D, Dutta S, Nongthomba U. Evaluation of cytogenotoxic potential and embryotoxicity of KRS-Cauvery River water in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113320. [PMID: 35183813 DOI: 10.1016/j.ecoenv.2022.113320] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/25/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
In the Cauvery River (CR), indiscriminate discharge of waste causes unexplained skeletal deformity in some fish species present in the water. To investigate this phenomenon, we analyzed the biological, physical, and chemical parameters present in the water and then evaluated the toxicity effects on the zebrafish (Danio rerio) model. The zebrafish were treated with KRS-CR water samples collected from three stations (fast-flowing water [X], slow-flowing [Y], and stagnant [Z] water), before and after filtration. Firstly, we detected microscopic organisms (MO) such as Cyclops, Daphnia, Spirogyra, Spirochaeta, and total coliform (Escherichia coli), which are bioindicators of water pollution present in the samples. All physicochemical parameters analyzed, including heavy metals before and after filtration of the water with Millipore filter paper (0.45 µm), were within the acceptable limits set by standard organizations, except for decreased dissolved oxygen (DO), and increased biochemical oxygen demand (BOD), and chemical oxygen demand (COD), which are indicators of hypoxic water conditions, as well as the presence of microplastics (polybutene (< 15 µm), polyisobutene (≤ 20 µm), and polymethylpentene (≤3 mm)) and cyclohexyl in CR water samples. Zebrafish embryos treated with the water samples, both before and after filtration exerts the same cytogenotoxic effects by inducing increased reactive oxygen species (ROS) production, which triggers subcellular organelle dysfunctions, DNA damage, apoptosis, pericardial edema, skeletal deformities, and increased mortality. As a result, we observed that both water samples and zebrafish larvae had significantly less oxygen using SEM and EDS. Our findings show that KRS-CR water can induce cytogenotoxic and embryotoxic defects in zebrafish due to hypoxic water conditions triggered by the microplastics influx. The present study would provide valuable insights for health hazards evaluation and future river water treatment strategies.
Collapse
Affiliation(s)
- Abass Toba Anifowoshe
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India; Cell Biology and Genetics Unit, Department of Zoology, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria.
| | - Debasish Roy
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India; Journal of Visualized Experiments (JoVE), 1 Alewife Center Suite 200, Cambridge, MA 02140, USA
| | - Somit Dutta
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
226
|
Du B, Yu W, Yang L, Fan G, Yang S, Jiang H, Bi S, Yu C. Migration and abiotic transformation of estrone (E1) and estrone-3-sulfate (E1-3S) during soil column transport. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:911-924. [PMID: 34117975 DOI: 10.1007/s10653-021-00968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Steroid estrogens have received worldwide attention and given rise to great challenges of aquatic ecosystems security, posing potential adverse effects on aquatic organisms and human health even at low levels (ng/L). The present study focused on understanding the mobility and abiotic transformation of estrone (E1) and estrone-3-sulfate (E1-3S) over spatial and time scales during soil transport. Column transport experiments showed that the migration capacity of E1-3S was far stronger than E1 in soil. The calculated groundwater ubiquity score and leachability index values also indicated the high leaching mobility of E1-3S. The hydrolysis of E1-3S and abiotic transformation into estradiol and estriol was observed in the sterilized soil. Furthermore, possible transformation products (e.g., SE239, E2378, E1 dimer538, E1-E2 dimer541) of E1 and E1-3S in soil were analyzed and identified after the column transport experiments. The estrogenic activity was estimated by 17β-estradiol equivalency values during the transport process in aqueous and soil phases. Additionally, the potential leaching transport to groundwater of E1-3S requires further critical concern.
Collapse
Affiliation(s)
- Banghao Du
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China.
| | - Lun Yang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Gongduan Fan
- College of Civil Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
| | - Shuo Yang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Hui Jiang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Shenglan Bi
- Chongqing Comprehensive Management Center of Urban Pipeline, Chongqing, 400014, China
| | - Cheng Yu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| |
Collapse
|
227
|
Lebedev AT, Richardson SD. Planet Contamination with Chemical Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051621. [PMID: 35268722 PMCID: PMC8911829 DOI: 10.3390/molecules27051621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Albert T. Lebedev
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
- Correspondence:
| | - Susan D. Richardson
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, SC 29208, USA;
| |
Collapse
|
228
|
Zhao JH, Hu LX, Wang YQ, Han Y, Liu YS, Zhao JL, Ying GG. Screening of organic chemicals in surface water of the North River by high resolution mass spectrometry. CHEMOSPHERE 2022; 290:133174. [PMID: 34871619 DOI: 10.1016/j.chemosphere.2021.133174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Wide use of various chemicals has resulted in water pollution, which has become a global environmental concern. So far limited information is available on what chemicals in our water. Here we investigated the occurrence and profiles of organic chemicals in the North River, South China by applying non-target screening analysis with high resolution mass spectrometry. A total of 402 organic chemicals belonging to eleven categories were identified in the North River, with notable presence of industrial chemicals, pharmaceuticals and pesticides. Among these detected chemicals, over half of the tentatively identified compounds were rarely reported in the surface water, with a few compounds, e.g., sisomicin, simeton, 2-methyl-4,6-dinitrophenol, xanthurenic acid and indole-3-carboxylic acid that have never been documented in the North River before, while the metabolites like 4-acetamidoantipyrine were also observed. The maximum concentration of the identified chemicals in the North River was above 300 ng/L (Sulfamonomethoxine). Principle component analysis results of the obtained dataset showed significant seasonal distribution, which could be linked to variations in wastewater discharge, river dilution and anthropogenic activities such as pesticide spray. Agricultural activities in the upper reaches led to detection of various pesticides in the river basin, especially in the wet season. The findings from this study demonstrated the widespread presence of chemicals in our waterway, and further retrospective analysis would reveal more information about chemicals of emerging concern.
Collapse
Affiliation(s)
- Jia-Hui Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Yu-Qing Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Yu Han
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| |
Collapse
|
229
|
Barouki R, Audouze K, Becker C, Blaha L, Coumoul X, Karakitsios S, Klanova J, Miller GW, Price EJ, Sarigiannis D. The Exposome and Toxicology: A Win-Win Collaboration. Toxicol Sci 2022; 186:1-11. [PMID: 34878125 PMCID: PMC9019839 DOI: 10.1093/toxsci/kfab149] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The development of the exposome concept has been one of the hallmarks of environmental and health research for the last decade. The exposome encompasses the life course environmental exposures including lifestyle factors from the prenatal period onwards. It has inspired many research programs and is expected to influence environmental and health research, practices, and policies. Yet, the links bridging toxicology and the exposome concept have not been well developed. In this review, we describe how the exposome framework can interface with and influence the field of toxicology, as well as how the field of toxicology can help advance the exposome field by providing the needed mechanistic understanding of the exposome impacts on health. Indeed, exposome-informed toxicology is expected to emphasize several orientations including (1) developing approaches integrating multiple stressors, in particular chemical mixtures, as well as the interaction of chemicals with other stressors, (2) using mechanistic frameworks such as the adverse outcome pathways to link the different stressors with toxicity outcomes, (3) characterizing the mechanistic basis of long-term effects by distinguishing different patterns of exposures and further exploring the environment-DNA interface through genetic and epigenetic studies, and (4) improving the links between environmental and human health, in particular through a stronger connection between alterations in our ecosystems and human toxicology. The exposome concept provides the linkage between the complex environment and contemporary mechanistic toxicology. What toxicology can bring to exposome characterization is a needed framework for mechanistic understanding and regulatory outcomes in risk assessment.
Collapse
Affiliation(s)
- Robert Barouki
- Inserm UMR S-1124, Université de Paris, T3S, Paris F-75006, France
- Service de Biochimie métabolomique et protéomique, Hôpital Necker enfants malades, AP-HP, Paris, France
| | - Karine Audouze
- Inserm UMR S-1124, Université de Paris, T3S, Paris F-75006, France
| | - Christel Becker
- Inserm UMR S-1124, Université de Paris, T3S, Paris F-75006, France
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Brno 60200, Czech Republic
| | - Xavier Coumoul
- Inserm UMR S-1124, Université de Paris, T3S, Paris F-75006, France
| | - Spyros Karakitsios
- Center for Interdisciplinary Research and Innovation, HERACLES Research Center on the Exposome and Health, Aristotle University of Thessaloniki, Thessaloniki 57001, Greece
- Enve.X, Thessaloniki 55133, Greece
| | - Jana Klanova
- RECETOX, Faculty of Science, Masaryk University, Brno 60200, Czech Republic
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Elliott J Price
- RECETOX, Faculty of Science, Masaryk University, Brno 60200, Czech Republic
- Faculty of Sports Studies, Masaryk University, Brno 62500, Czech Republic
| | - Denis Sarigiannis
- Center for Interdisciplinary Research and Innovation, HERACLES Research Center on the Exposome and Health, Aristotle University of Thessaloniki, Thessaloniki 57001, Greece
- Enve.X, Thessaloniki 55133, Greece
| |
Collapse
|
230
|
Sun Q, Cheng H, Nie W, Lu X, Zhao H. A Comprehensive Understanding of Interlayer Engineering in Layered Manganese and Vanadium Cathodes for Aqueous Zn-ion Batteries. Chem Asian J 2022; 17:e202200067. [PMID: 35188329 DOI: 10.1002/asia.202200067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/20/2022] [Indexed: 11/11/2022]
Abstract
Rechargeable aqueous zinc-ion batteries (AZIBs) hold a budding technology for large-scale stationary energy storage devices due to their inherent safety, cost-effectiveness, eco-friendly, and acceptable electrochemical performance. However, developing a cathode material with fast kinetics and durable structural stability for Zn 2+ intercalation is still an arduous challenge. Compared with other cathode materials, layered manganese/vanadium (Mn/V) oxides that feature merits of adjustable interlayer spacing and considerable specific capacity have attracted much interest in AZIBs. However, the intrinsic sluggish reaction kinetics, inferior electrical conductivity, and notorious dissolution of active materials still obstruct the realization of their full potentials. Interlayer engineering of pre-intercalation is regarded as an effective solution to overcome these problems. In this review, we start from the crystal structure and reaction mechanism of layered Mn/V oxide cathodes to critical issues and recent progress in interlayer engineering. Finally, some future perspectives are outlined for the development of high-performance AZIBs.
Collapse
Affiliation(s)
- Qiangchao Sun
- Shanghai University, State Key Laboratory of Advanced Special Steel & School of Materials Science and Engineering, CHINA
| | - Hongwei Cheng
- Shanghai University, School of Materials Science and Engineering, Room A526, Building 13, No. 333 Nanchen Road, 200444, Shanghai, CHINA
| | - Wei Nie
- Shanghai University, State Key Laboratory of Advanced Special Steel & School of Materials Science and Engineering, CHINA
| | - Xionggang Lu
- Shanghai University, State Key Laboratory of Advanced Special Steel & School of Materials Science and Engineering, CHINA
| | - Hongbin Zhao
- Shanghai University, College of Sciences & Institute for Sustainable Energy, CHINA
| |
Collapse
|
231
|
Nováková Z, Novák J, Bittner M, Čupr P, Přibylová P, Kukučka P, Smutná M, Escher BI, Demirtepe H, Miralles-Marco A, Hilscherová K. Toxicity to bronchial cells and endocrine disruptive potentials of indoor air and dust extracts and their association with multiple chemical classes. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127306. [PMID: 34879546 DOI: 10.1016/j.jhazmat.2021.127306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/07/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Pollution of indoor environment, where people spend much of their time, comprises complex mixtures of compounds with vastly understudied hazard potential. This study examined several important specific toxic effects and pollutant levels (177 compounds) of indoor samples (air gas phase, PM10 and dust) from different microenvironments after two extractions with focus on their gas/particle/dust distribution and polarity. The endocrine disruptive (ED) potential was assessed by human cell-based in vitro bioassays addressing anti-/estrogenicity, anti-/androgenicity, aryl hydrocarbon, thyroid and peroxisome proliferator-activated receptor-mediated activities. Potential toxicity to respiratory tract tissue was assessed using human bronchial cell line. The toxicological analyses pointed out the relevance of both inhalation and ingestion exposure, with significant effects detected after exposure to extracts from all three studied matrices with distinct gas/particle distribution patterns. Chemical analyses document the high complexity of indoor pollutant mixtures with greatest levels of phthalates, their emerging alternatives, and PAHs in dust. Despite the detection of up to 108 chemicals, effects were explained only to low extent. This emphasizes data gaps regarding ED potencies of many detected abundant indoor contaminants, but also potential presence of other unidentified ED compounds. The omnipresent ED potentials in indoor environment rise concern regarding associated human health risk.
Collapse
Affiliation(s)
- Zuzana Nováková
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Jiří Novák
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Michal Bittner
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Pavel Čupr
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Petra Přibylová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Petr Kukučka
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Marie Smutná
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Beate I Escher
- UFZ - Helmholtz Centre for Environmental Research - UFZ, Cell Toxicology, 04318 Leipzig, Germany
| | - Hale Demirtepe
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Ana Miralles-Marco
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Klára Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic.
| |
Collapse
|
232
|
Liu Y, Guo Y, Zhang X, Gao G, Shi C, Huang G, Li P, Kang Q, Huang X, Wu G. Self-cleaning of superhydrophobic nanostructured surfaces at low humidity enhanced by vertical electric field. NANO RESEARCH 2022; 15:4732-4738. [PMID: 35574261 PMCID: PMC9079215 DOI: 10.1007/s12274-022-4093-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 06/15/2023]
Abstract
UNLABELLED Self-cleaning is the key factor that makes superhydrophobic nanostructured materials have wide applications. The self-cleaning effect, however, strongly depends on formations and movement of water droplets on superhydrophobic nanostructured surfaces, which is greatly restricted at low humidity (< 7.6 g·kg-1). Therefore, we propose a self-cleaning method at low humidity in which the pollution is electro-aggregated and driven in the electric field to achieve the aggregation and cleaning large areas. The cleaning efficiency of this method is much higher than that of water droplet roll-off, and will not produce "pollution bands". A simplified numerical model describing pollution movements is presented. Simulation results are consistent with experimental results. The proposed method realizes the self-cleaning of superhydrophobic nanostructured surfaces above dew point curve for the first time, which extends applications of superhydrophobic nanostructured materials in low humidity, and is expected to solve self-cleaning problems of outdoor objects in low humidity areas (< 5.0 g·kg-1). ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (experimental procedures, computational details, modeling process, supplementary figures, tables, and videos) is available in the online version of this article at 10.1007/s12274-022-4093-0.
Collapse
Affiliation(s)
- Yijie Liu
- College of Electrical Engineering, Southwest Jiaotong University, Chengdu, 611756 China
| | - Yujun Guo
- College of Electrical Engineering, Southwest Jiaotong University, Chengdu, 611756 China
| | - Xueqin Zhang
- College of Electrical Engineering, Southwest Jiaotong University, Chengdu, 611756 China
| | - Guoqiang Gao
- College of Electrical Engineering, Southwest Jiaotong University, Chengdu, 611756 China
| | - Chaoqun Shi
- College of Electrical Engineering, Southwest Jiaotong University, Chengdu, 611756 China
| | - Guizao Huang
- College of Electrical Engineering, Southwest Jiaotong University, Chengdu, 611756 China
| | - Pengli Li
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, State Key laboratory of Metal Matrix Composites, Shanghai Jiaotong University, Shanghai, 200240 China
| | - Qi Kang
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, State Key laboratory of Metal Matrix Composites, Shanghai Jiaotong University, Shanghai, 200240 China
| | - Xingyi Huang
- Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, State Key laboratory of Metal Matrix Composites, Shanghai Jiaotong University, Shanghai, 200240 China
| | - Guangning Wu
- College of Electrical Engineering, Southwest Jiaotong University, Chengdu, 611756 China
| |
Collapse
|
233
|
Aaseth J, Javorac D, Djordjevic AB, Bulat Z, Skalny AV, Zaitseva IP, Aschner M, Tinkov AA. The Role of Persistent Organic Pollutants in Obesity: A Review of Laboratory and Epidemiological Studies. TOXICS 2022; 10:65. [PMID: 35202251 PMCID: PMC8877532 DOI: 10.3390/toxics10020065] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 11/17/2022]
Abstract
Persistent organic pollutants (POPs) are considered as potential obesogens that may affect adipose tissue development and functioning, thus promoting obesity. However, various POPs may have different mechanisms of action. The objective of the present review is to discuss the key mechanisms linking exposure to POPs to adipose tissue dysfunction and obesity. Laboratory data clearly demonstrate that the mechanisms associated with the interference of exposure to POPs with obesity include: (a) dysregulation of adipogenesis regulators (PPARγ and C/EBPα); (b) affinity and binding to nuclear receptors; (c) epigenetic effects; and/or (d) proinflammatory activity. Although in vivo data are generally corroborative of the in vitro results, studies in living organisms have shown that the impact of POPs on adipogenesis is affected by biological factors such as sex, age, and period of exposure. Epidemiological data demonstrate a significant association between exposure to POPs and obesity and obesity-associated metabolic disturbances (e.g., type 2 diabetes mellitus and metabolic syndrome), although the existing data are considered insufficient. In conclusion, both laboratory and epidemiological data underline the significant role of POPs as environmental obesogens. However, further studies are required to better characterize both the mechanisms and the dose/concentration-response effects of exposure to POPs in the development of obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Jan Aaseth
- Research Department, Innlandet Hospital Trust, P.O. Box 104, 2381 Brumunddal, Norway
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, P.O. Box 400, 2418 Elverum, Norway
| | - Dragana Javorac
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia; (D.J.); (A.B.D.); (Z.B.)
| | - Aleksandra Buha Djordjevic
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia; (D.J.); (A.B.D.); (Z.B.)
| | - Zorica Bulat
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia; (D.J.); (A.B.D.); (Z.B.)
| | - Anatoly V. Skalny
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia;
- Department of Bioelementology, KG Razumovsky Moscow State University of Technologies and Management, 109004 Moscow, Russia
| | - Irina P. Zaitseva
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia;
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| |
Collapse
|
234
|
Jin X, Zhang J, Li Y, Zhang Z, Cui T, Wang Y, Yao L, Yang X, Qu G, Zheng Y, Jiang G. Exogenous Chemical Exposure Increased Transcription Levels of the Host Virus Receptor Involving Coronavirus Infection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1854-1863. [PMID: 35049283 PMCID: PMC8790821 DOI: 10.1021/acs.est.1c07172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 05/28/2023]
Abstract
Virus receptors are highly involved in mediating the entrance of infectious viruses into host cells. Here, we found that typical chemical exposure caused the upregulation of virus receptor mRNA levels. Chemicals with the same structural characteristics can affect the transcription of angiotensin-converting enzyme 2 (ACE2), a dominant receptor of SARS-CoV-2. Some chemicals can also regulate the transcription of ACE2 by similar regulatory mechanisms, such as multilayer biological responses and the crucial role of TATA-box binding protein associated factor 6. The abovementioned finding suggested that chemical mixtures may have a joint effect on the ACE2 mRNA level in the real scenario, where humans are exposed to numerous chemicals simultaneously in daily life. Chemically regulated virus receptor transcription was in a tissue-dependent manner, with the highest sensitivity in pulmonary epithelial cells. Therefore, in addition to genetic factors, exogenous chemical exposure can be an emerging nongenetic factor that stimulates the transcription of virus receptor abundance and may elevate the protein expression. These alterations could ultimately give rise to the susceptibility to virus infection and disease severity. This finding highlights new requirements for sufficient epidemiological data about exposomes on pathogen receptors in the host.
Collapse
Affiliation(s)
- Xiaoting Jin
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, P. R. China
- Department
of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Jingxu Zhang
- Department
of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Yanting Li
- Department
of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Ze Zhang
- Department
of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Tenglong Cui
- Department
of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Yuanyuan Wang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, P. R. China
| | - Linlin Yao
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, P. R. China
| | - Xiaoxi Yang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, P. R. China
| | - Guangbo Qu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, P. R. China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310000, P. R. China
| | - Yuxin Zheng
- Department
of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Guibin Jiang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, P. R. China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310000, P. R. China
| |
Collapse
|
235
|
Persson L, Carney Almroth BM, Collins CD, Cornell S, de Wit CA, Diamond ML, Fantke P, Hassellöv M, MacLeod M, Ryberg MW, Søgaard Jørgensen P, Villarrubia-Gómez P, Wang Z, Hauschild MZ. Outside the Safe Operating Space of the Planetary Boundary for Novel Entities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1510-1521. [PMID: 35038861 PMCID: PMC8811958 DOI: 10.1021/acs.est.1c04158] [Citation(s) in RCA: 276] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 05/04/2023]
Abstract
We submit that the safe operating space of the planetary boundary of novel entities is exceeded since annual production and releases are increasing at a pace that outstrips the global capacity for assessment and monitoring. The novel entities boundary in the planetary boundaries framework refers to entities that are novel in a geological sense and that could have large-scale impacts that threaten the integrity of Earth system processes. We review the scientific literature relevant to quantifying the boundary for novel entities and highlight plastic pollution as a particular aspect of high concern. An impact pathway from production of novel entities to impacts on Earth system processes is presented. We define and apply three criteria for assessment of the suitability of control variables for the boundary: feasibility, relevance, and comprehensiveness. We propose several complementary control variables to capture the complexity of this boundary, while acknowledging major data limitations. We conclude that humanity is currently operating outside the planetary boundary based on the weight-of-evidence for several of these control variables. The increasing rate of production and releases of larger volumes and higher numbers of novel entities with diverse risk potentials exceed societies' ability to conduct safety related assessments and monitoring. We recommend taking urgent action to reduce the harm associated with exceeding the boundary by reducing the production and releases of novel entities, noting that even so, the persistence of many novel entities and/or their associated effects will continue to pose a threat.
Collapse
Affiliation(s)
- Linn Persson
- Stockholm
Environment Institute, Linnégatan 87D, Box 24218, 104
51 Stockholm, Sweden
| | - Bethanie M. Carney Almroth
- Department
of Biology and Environmental Sciences, University
of Gothenburg, Box 465, 405 30 Gothenburg, Sweden
| | - Christopher D. Collins
- Department
of Geography and Environmental Sciences, University of Reading, PO Box 217, Reading, Berkshire, RG6 6AH, United Kingdom
| | - Sarah Cornell
- Stockholm
Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden
| | - Cynthia A. de Wit
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Miriam L. Diamond
- Department
of Earth Sciences; and School of the Environment, University of Toronto, Toronto, Canada M5S 3B1
| | - Peter Fantke
- Quantitative
Sustainability Assessment, Department of Technology, Management and
Economics, Technical University of Denmark, Produktionstorvet 424, 2800, Kgs. Lyngby, Denmark
| | - Martin Hassellöv
- Department
of Marine Sciences, University of Gothenburg, Box 100, 405 30 Gothenburg, Sweden
| | - Matthew MacLeod
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Morten W. Ryberg
- Quantitative
Sustainability Assessment, Department of Technology, Management and
Economics, Technical University of Denmark, Produktionstorvet 424, 2800, Kgs. Lyngby, Denmark
| | - Peter Søgaard Jørgensen
- Stockholm
Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden
- Global
Economic Dynamics and the Biosphere, Royal
Swedish Academy of Sciences, Lilla Frescativägen 4A, 104
05 Stockholm, Sweden
| | | | - Zhanyun Wang
- Institute
of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Michael Zwicky Hauschild
- Quantitative
Sustainability Assessment, Department of Technology, Management and
Economics, Technical University of Denmark, Produktionstorvet 424, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
236
|
Du Y, Xu X, Liu Q, Bai L, Hang K, Wang D. Identification of organic pollutants with potential ecological and health risks in aquatic environments: Progress and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150691. [PMID: 34600995 DOI: 10.1016/j.scitotenv.2021.150691] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Thousands of organic pollutants are intentionally and unintentionally discharged into water bodies, adversely affecting the ecological environment and human health. Screening for organic pollutants that pose a potential risk in aquatic environments is essential for risk management. This review evaluates the processes, methods, and technologies used to screen such pollutants in the aquatic environment and discuss their advantages and disadvantages, in addition to the challenges and knowledge gaps in this field. Combining non-target screening, target screening, and suspect screening is often effective for compiling a list of potential risk compounds and enables the quantitative analysis of these compounds. Sample preparation technologies and pollutant detection technologies considerably affect the results of pollutant screening. The limited amount of chemical and toxicological information contained in databases hinders the screening of organic pollutants with potential risk. Machine learning, high-throughput methods, and other technologies will increase the accuracy and convenience of screening for high-risk pollutants. This review provides an important reference for screening these compounds in aquatic environments and can be used in future pollutant screening and risk management.
Collapse
Affiliation(s)
- Yanjun Du
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China; National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, 100021 Beijing, China
| | - Xiong Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Quanzhen Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lu Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Kexin Hang
- Experimental High School Attached to Beijing Normal University, 100052 Beijing, China
| | - Donghong Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
237
|
Polazzo F, Roth SK, Hermann M, Mangold‐Döring A, Rico A, Sobek A, Van den Brink PJ, Jackson M. Combined effects of heatwaves and micropollutants on freshwater ecosystems: Towards an integrated assessment of extreme events in multiple stressors research. GLOBAL CHANGE BIOLOGY 2022; 28:1248-1267. [PMID: 34735747 PMCID: PMC9298819 DOI: 10.1111/gcb.15971] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 05/11/2023]
Abstract
Freshwater ecosystems are strongly influenced by weather extremes such as heatwaves (HWs), which are predicted to increase in frequency and magnitude in the future. In addition to these climate extremes, the freshwater realm is impacted by the exposure to various classes of chemicals emitted by anthropogenic activities. Currently, there is limited knowledge on how the combined exposure to HWs and chemicals affects the structure and functioning of freshwater ecosystems. Here, we review the available literature describing the single and combined effects of HWs and chemicals on different levels of biological organization, to obtain a holistic view of their potential interactive effects. We only found a few studies (13 out of the 61 studies included in this review) that investigated the biological effects of HWs in combination with chemical pollution. The reported interactive effects of HWs and chemicals varied largely not only within the different trophic levels but also depending on the studied endpoints for populations or individuals. Hence, owing also to the little number of studies available, no consistent interactive effects could be highlighted at any level of biological organization. Moreover, we found an imbalance towards single species and population experiments, with only five studies using a multitrophic approach. This results in a knowledge gap for relevant community and ecosystem level endpoints, which prevents the exploration of important indirect effects that can compromise food web stability. Moreover, this knowledge gap impairs the validity of chemical risk assessments and our ability to protect ecosystems. Finally, we highlight the urgency of integrating extreme events into multiple stressors studies and provide specific recommendations to guide further experimental research in this regard.
Collapse
Affiliation(s)
- Francesco Polazzo
- IMDEA Water Institute, Science and Technology Campus of the University of AlcaláAlcalá de HenaresSpain
| | - Sabrina K. Roth
- Department of Environmental ScienceStockholm UniversityStockholmSweden
| | - Markus Hermann
- Aquatic Ecology and Water Quality Management GroupWageningen UniversityWageningenThe Netherlands
| | - Annika Mangold‐Döring
- Aquatic Ecology and Water Quality Management GroupWageningen UniversityWageningenThe Netherlands
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of AlcaláAlcalá de HenaresSpain
- Cavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of ValenciaValenciaSpain
| | - Anna Sobek
- Department of Environmental ScienceStockholm UniversityStockholmSweden
| | - Paul J. Van den Brink
- Aquatic Ecology and Water Quality Management GroupWageningen UniversityWageningenThe Netherlands
- Wageningen Environmental ResearchWageningenThe Netherlands
| | | |
Collapse
|
238
|
Abstract
In this Quick guide, Bertram et al. highlight the growing problem of micropollutants - a wide array of natural and synthetic organic compounds found in the environment.
Collapse
Affiliation(s)
- Michael G Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Jake M Martin
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
239
|
Gwak J, Cha J, Lee J, Kim Y, An SA, Lee S, Moon HB, Hur J, Giesy JP, Hong S, Khim JS. Effect-directed identification of novel aryl hydrocarbon receptor-active aromatic compounds in coastal sediments collected from a highly industrialized area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149969. [PMID: 34481160 DOI: 10.1016/j.scitotenv.2021.149969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
In this study, we identified major aryl hydrocarbon receptor (AhR) agonists in the sediments from Yeongil Bay (n = 6) using effect-directed analysis. Using the H4IIE-luc bioassays, great AhR-mediated potencies were found in aromatic fractions (F2) of sediment organic extracts from silica gel column chromatography and sub-fractions (F2.6-F2.8) from reverse phase-HPLC. Full-scan mass spectrometric analysis using GC-QTOFMS was conducted to identify novel AhR agonists in highly potent fractions, such as F2.6-F2.8 of S1 (Gumu Creek). Selection criteria for AhR-active compounds consisted of three steps, including matching factor of NIST library (≥70), aromatic structures, and the number of aromatic rings (≥4). Fifty-nine compounds were selected as tentative AhR agonist candidates, with the AhR-mediated activity being assessed for six compounds for which standard materials were available commercially. Of these compounds, 20-methylcholanthrene, 7-methylbenz[a]anthracene, 10-methylbenz[a]pyrene, and 7,12-dimethylbenz[a]anthracene exhibited significant AhR-mediated potency. Relative potency values of these compounds were determined relative to benzo[a]pyrene to be 3.2, 1.4, 1.2, and 0.2, respectively. EPA positive matrix factorization modeling indicated that the sedimentary AhR-active aromatic compounds primarily originated from coal combustion and vehicle emissions. Potency balance analysis indicated that four novel AhR agonists explained 0.007% to 1.7% of bioassay-derived AhR-mediated potencies in samples.
Collapse
Affiliation(s)
- Jiyun Gwak
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jihyun Cha
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Junghyun Lee
- School of Earth and Environmental Sciences, Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Youngnam Kim
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seong-Ah An
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sunggyu Lee
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - John P Giesy
- Department of Veterinary Biomedical Sciences & Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N5B3, Canada; Department of Environmental Science, Baylor University, Waco, TX 76798-7266, United States
| | - Seongjin Hong
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Jong Seong Khim
- School of Earth and Environmental Sciences, Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
240
|
Zhang D, Liu W, Wang S, Zhao J, Xu S, Yao H, Wang H, Bai L, Wang Y, Gu H, Tao J, Shi P. Risk assessments of emerging contaminants in various waters and changes of microbial diversity in sediments from Yangtze River chemical contiguous zone, Eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149982. [PMID: 34487908 DOI: 10.1016/j.scitotenv.2021.149982] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Over recent decades, increasing chemical contamination has greatly affected aquatic life and human health, even though most contaminants are present at low concentrations. The large-scale chemical industrial parks (CIPs) concentrated in the Yangtze River Delta account for over half of the total in China, and Jiangsu Province occupies one fifth of the Yangtze River Delta. Inevitably, the ecosystems could be affected by these CIPs. In this study, we collected 35 water and 12 sediment samples from the Yangtze River (Taizhou section) surrounding waters adjacent to concentrated CIPs and determined their cumulative chemical levels to be 0.2 to 28.4 μg/L and cumulative detections to be 11 to 39 contaminants with a median of 20 contaminants. 61 out of 153 screened chemicals were detected from at least one sampling site, and 6 contaminants, mostly semi-volatile organic compounds, appeared at all sites. Among these detected chemicals, di-n-octyl phthalate and dibutyl phthalate were at the highest levels. Ecological assessment revealed that 4-chloroaniline, phenol and dibutyl phthalate possibly would induce adverse effects on Yangtze River (Taizhou) ecosystems. Further aided with an evaluation of integrated biomarker response (IBR) index, it was found that site W06 (downstream of Binjiang CIP wastewater inlet) was the location in greatest need of urgent action. As a result, the microbial diversity of sediments in the Yangtze River mainstream was significantly higher than that of tributaries, where CIPs wastewater entered.
Collapse
Affiliation(s)
- Dan Zhang
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China
| | - Wei Liu
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China.
| | - Shui Wang
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China
| | - Jing Zhao
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China
| | - Shuhui Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongye Yao
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China
| | - Hao Wang
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China
| | - Lisen Bai
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China
| | - Ying Wang
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China
| | - Huanglin Gu
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China
| | - Jingzhong Tao
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
241
|
Coffin JL, Kelley JL, Jeyasingh PD, Tobler M. Impacts of heavy metal pollution on the ionomes and transcriptomes of Western mosquitofish (Gambusia affinis). Mol Ecol 2022; 31:1527-1542. [PMID: 35000238 DOI: 10.1111/mec.16342] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022]
Abstract
Our understanding of the mechanisms mediating the resilience of organisms to environmental change remains lacking. Heavy metals negatively affect processes at all biological scales, yet organisms inhabiting contaminated environments must maintain homeostasis to survive. Tar Creek in Oklahoma, USA, contains high concentrations of heavy metals and an abundance of Western mosquitofish (Gambusia affinis), though several fish species persist at lower frequency. To test hypotheses about the mechanisms mediating the persistence and abundance of mosquitofish in Tar Creek, we integrated ionomic data from seven resident fish species and transcriptomic data from mosquitofish to test hypotheses about the mechanisms mediating the persistence of mosquitofish in Tar Creek. We predicted that mosquitofish minimize uptake of heavy metals more than other Tar Creek fish inhabitants and induce transcriptional responses to detoxify metals that enter the body, allowing them to persist in Tar Creek at higher density than species that may lack these responses. Tar Creek populations of all seven fish species accumulated heavy metals, suggesting mosquitofish cannot block uptake more efficiently than other species. We found population-level gene expression changes between mosquitofish in Tar Creek and nearby unpolluted sites. Gene expression differences primarily occurred in the gill, where we found upregulation of genes involved with lowering transfer of metal ions from the blood into cells and mitigating free radicals. However, many differentially expressed genes were not in known metal response pathways, suggesting multifarious selective regimes and/or previously undocumented pathways could impact tolerance in mosquitofish. Our systems-level study identified well characterized and putatively new mechanisms that enable mosquitofish to inhabit heavy metal-contaminated environments.
Collapse
Affiliation(s)
- John L Coffin
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Punidan D Jeyasingh
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Michael Tobler
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
242
|
Li W, Qi Y, Gao C, Liu Y, Duan J. A sensitive approach for screening acetylcholinesterase inhibition of water samples using ultra-performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1190:123101. [PMID: 35030473 DOI: 10.1016/j.jchromb.2022.123101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/08/2021] [Accepted: 01/03/2022] [Indexed: 11/26/2022]
Abstract
A sensitive assay was developed to evaluate inhibitory effects of aqueous solution on acetylcholinesterase (AChE) activity via measuring hydrolysis rates of acetylcholine (ACh) based on ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Upon having identified precursor ions and product ions of the ACh and its hydrolysis products choline (Ch), the separation chromatogram for these two analytes has been established using a 50 mm reverse-phase BEH Shield RP18 column. The total chromatographic separation time is 7 min; limits of detection (LODs) for ACh and Ch are 0.14 µg L-1 and 0.12 µg L-1, respectively. A simple method for inactivation of AChE and optimization of operational parameters were then sequentially performed. It was found that adjusting solution pH to 2.5 not only can terminate the enzymatic reaction but also solve band shifting and broadening caused by aqueous matrices in chromatographic separation during UPLC-MS/MS detection. Under conditions of 0.00075 U mL-1 AChE, initial concentration of ACh at 100 µg L-1 and 20 min observation time, IC50 values of the proposed assay for chlorpyrifos-oxon, diazoxon, malaoxon, methidathion oxon, omethoate and paraoxon were 3.5 nM, 16.8 nM, 2.4 nM, 6.8 nM, 270 nM and 36.9 nM, respectively. They are 4.5-51.9 times smaller than those reported in a LC-MS based method, and >120 times lower than those obtained by the traditional Ellman method. The results suggested that, the proposed assay significantly increases the sensitivity of commercial AChE. In addition, inhibition efficiencies of three surface waters, a groundwater and four commercial brands of bottled drinking water samples on AChE activity were firstly measured using this UPLC-MS/MS based method. These water samples were proved to have different inhibitory effects on AChE activity, and the inhibition efficiencies dependent on concentrations of dissolved organic carbon (DOC) but are independent of UV absorbance at 254 nm (UV254) values. These results indicate that the proposed method has advantages of high sensitivity over all other conventional methods. It may become a promising AChE inhibition assay for assessing toxicity of aqueous solution containing neurotoxicity contaminants such as organophosphorus pesticides (OPPs) at low levels, or used to evaluate potential inhibition effects of natural waters on AChE activity.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055 China.
| | - Yikun Qi
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055 China
| | - Chuan Gao
- Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, 13 Yanta Road, Xi'an 710055 China
| | - Yucan Liu
- School of Civil Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Jinming Duan
- Centre for Water Management and Reuse, University of South Australia, Mawson Lakes Campus, SA 5095, Australia.
| |
Collapse
|
243
|
Crawford SE, Brinkmann M, Ouellet JD, Lehmkuhl F, Reicherter K, Schwarzbauer J, Bellanova P, Letmathe P, Blank LM, Weber R, Brack W, van Dongen JT, Menzel L, Hecker M, Schüttrumpf H, Hollert H. Remobilization of pollutants during extreme flood events poses severe risks to human and environmental health. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126691. [PMID: 34315022 DOI: 10.1016/j.jhazmat.2021.126691] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 05/24/2023]
Abstract
While it is well recognized that the frequency and intensity of flood events are increasing worldwide, the environmental, economic, and societal consequences of remobilization and distribution of pollutants during flood events are not widely recognized. Loss of life, damage to infrastructure, and monetary cleanup costs associated with floods are important direct effects. However, there is a lack of attention towards the indirect effects of pollutants that are remobilized and redistributed during such catastrophic flood events, particularly considering the known toxic effects of substances present in flood-prone areas. The global examination of floods caused by a range of extreme events (e.g., heavy rainfall, tsunamis, extra- and tropical storms) and subsequent distribution of sediment-bound pollutants are needed to improve interdisciplinary investigations. Such examinations will aid in the remediation and management action plans necessary to tackle issues of environmental pollution from flooding. River basin-wide and coastal lowland action plans need to balance the opposing goals of flood retention, catchment conservation, and economical use of water.
Collapse
Affiliation(s)
- Sarah E Crawford
- Department of Evolutionary Ecology and Environmental Toxicology, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada
| | - Jacob D Ouellet
- Department of Evolutionary Ecology and Environmental Toxicology, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Frank Lehmkuhl
- Department of Geography, RWTH Aachen University, Aachen, Germany
| | - Klaus Reicherter
- Institute of Neotectonics and Natural Hazards, RWTH Aachen University, Aachen, Germany
| | - Jan Schwarzbauer
- Institute of Geology and Geochemistry of Petroleum and Coal, RWTH Aachen University, Aachen, Germany
| | - Piero Bellanova
- Institute of Neotectonics and Natural Hazards, RWTH Aachen University, Aachen, Germany; Institute of Geology and Geochemistry of Petroleum and Coal, RWTH Aachen University, Aachen, Germany
| | - Peter Letmathe
- Chair of Management Accounting, RWTH Aachen University, Aachen, Germany
| | - Lars M Blank
- Chair of Applied Microbiology, Institute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen University, Germany
| | - Roland Weber
- POPs Environmental Consulting, Schwäbisch Gmünd, Germany
| | - Werner Brack
- Department of Evolutionary Ecology and Environmental Toxicology, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany; Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research GmbH, Leipzig, Germany
| | - Joost T van Dongen
- Institute of Biology I, Aachen Biology and Biotechnology, RWTH Aachen University, Germany
| | - Lucas Menzel
- Department of Geography, Heidelberg University, Heidelberg, Germany
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Holger Schüttrumpf
- Institute for Hydraulic Engineering and Water Resources Management, RWTH Aachen University, Aachen, Germany
| | - Henner Hollert
- Department of Evolutionary Ecology and Environmental Toxicology, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany.
| |
Collapse
|
244
|
Fuentes ZC, Schwartz YL, Robuck AR, Walker DI. Operationalizing the Exposome Using Passive Silicone Samplers. CURRENT POLLUTION REPORTS 2022; 8:1-29. [PMID: 35004129 PMCID: PMC8724229 DOI: 10.1007/s40726-021-00211-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/11/2021] [Indexed: 05/15/2023]
Abstract
The exposome, which is defined as the cumulative effect of environmental exposures and corresponding biological responses, aims to provide a comprehensive measure for evaluating non-genetic causes of disease. Operationalization of the exposome for environmental health and precision medicine has been limited by the lack of a universal approach for characterizing complex exposures, particularly as they vary temporally and geographically. To overcome these challenges, passive sampling devices (PSDs) provide a key measurement strategy for deep exposome phenotyping, which aims to provide comprehensive chemical assessment using untargeted high-resolution mass spectrometry for exposome-wide association studies. To highlight the advantages of silicone PSDs, we review their use in population studies and evaluate the broad range of applications and chemical classes characterized using these samplers. We assess key aspects of incorporating PSDs within observational studies, including the need to preclean samplers prior to use to remove impurities that interfere with compound detection, analytical considerations, and cost. We close with strategies on how to incorporate measures of the external exposome using PSDs, and their advantages for reducing variability in exposure measures and providing a more thorough accounting of the exposome. Continued development and application of silicone PSDs will facilitate greater understanding of how environmental exposures drive disease risk, while providing a feasible strategy for incorporating untargeted, high-resolution characterization of the external exposome in human studies.
Collapse
Affiliation(s)
- Zoe Coates Fuentes
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY USA
| | - Yuri Levin Schwartz
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY USA
| | - Anna R. Robuck
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY USA
| | - Douglas I. Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave, New York, NY USA
| |
Collapse
|
245
|
Bani A, Randall KC, Clark DR, Gregson BH, Henderson DK, Losty EC, Ferguson RM. Mind the gaps: What do we know about how multiple chemical stressors impact freshwater aquatic microbiomes? ADV ECOL RES 2022. [DOI: 10.1016/bs.aecr.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
246
|
Brack W, Barcelo Culleres D, Boxall ABA, Budzinski H, Castiglioni S, Covaci A, Dulio V, Escher BI, Fantke P, Kandie F, Fatta-Kassinos D, Hernández FJ, Hilscherová K, Hollender J, Hollert H, Jahnke A, Kasprzyk-Hordern B, Khan SJ, Kortenkamp A, Kümmerer K, Lalonde B, Lamoree MH, Levi Y, Lara Martín PA, Montagner CC, Mougin C, Msagati T, Oehlmann J, Posthuma L, Reid M, Reinhard M, Richardson SD, Rostkowski P, Schymanski E, Schneider F, Slobodnik J, Shibata Y, Snyder SA, Fabriz Sodré F, Teodorovic I, Thomas KV, Umbuzeiro GA, Viet PH, Yew-Hoong KG, Zhang X, Zuccato E. One planet: one health. A call to support the initiative on a global science-policy body on chemicals and waste. ENVIRONMENTAL SCIENCES EUROPE 2022; 34:21. [PMID: 35281760 PMCID: PMC8902847 DOI: 10.1186/s12302-022-00602-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/25/2022] [Indexed: 05/08/2023]
Abstract
The chemical pollution crisis severely threatens human and environmental health globally. To tackle this challenge the establishment of an overarching international science-policy body has recently been suggested. We strongly support this initiative based on the awareness that humanity has already likely left the safe operating space within planetary boundaries for novel entities including chemical pollution. Immediate action is essential and needs to be informed by sound scientific knowledge and data compiled and critically evaluated by an overarching science-policy interface body. Major challenges for such a body are (i) to foster global knowledge production on exposure, impacts and governance going beyond data-rich regions (e.g., Europe and North America), (ii) to cover the entirety of hazardous chemicals, mixtures and wastes, (iii) to follow a one-health perspective considering the risks posed by chemicals and waste on ecosystem and human health, and (iv) to strive for solution-oriented assessments based on systems thinking. Based on multiple evidence on urgent action on a global scale, we call scientists and practitioners to mobilize their scientific networks and to intensify science-policy interaction with national governments to support the negotiations on the establishment of an intergovernmental body based on scientific knowledge explaining the anticipated benefit for human and environmental health.
Collapse
Affiliation(s)
- Werner Brack
- UFZ Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
- Faculty Biological Sciences, Goethe University Frankfurt, Max-von-der-Laue-Straße 13, 60438 Frankfurt, Germany
| | - Damia Barcelo Culleres
- Catalan Institute of Water Research, Carrer Emili Grahit 101, 17003 Girona, Spain
- Spanish National Research Council, Institute for Environmental Assessment & Water Research, Water & Soil Quality Research Group, Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | - Hélène Budzinski
- Université de Bordeaux, 351 crs de la Libération, 33405 Talence, France
| | - Sara Castiglioni
- Department of Environmental Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplen 1, 2610 Wilrijk, Belgium
| | - Valeria Dulio
- INERIS - Direction Milieu et Impacts sur le Vivant (MIV), Parc technologique ALATA, 60550 Verneuil-en-Halatte, France
| | - Beate I. Escher
- UFZ Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark
| | - Faith Kandie
- Department of Biological Sciences, Moi University, 3900-30100 Eldoret, Kenya
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering and Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Félix J. Hernández
- Research Institute for Pesticides and Water, University Jaume I, 12006 Castellon, Spain
| | - Klara Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Henner Hollert
- Faculty Biological Sciences, Goethe University Frankfurt, Max-von-der-Laue-Straße 13, 60438 Frankfurt, Germany
| | - Annika Jahnke
- UFZ Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
- RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | | | - Stuart J. Khan
- School of Civil & Environmental Engineering, University of New South Wales, Sydney, NSW 2052 Australia
| | - Andreas Kortenkamp
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH UK
| | - Klaus Kümmerer
- Institute for Sustainable Chemistry, Leuphana University Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany
| | - Brice Lalonde
- The French Water Academy, 51 rue Salvador-Allende, 92027 Nanterre, France
| | - Marja H. Lamoree
- Department Environment & Health, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Yves Levi
- The French Water Academy, 51 rue Salvador-Allende, 92027 Nanterre, France
| | - Pablo Antonio Lara Martín
- Departamento de Química Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz – European Universities of the Seas, Campus Río San Pedro, 11510 Puerto Real, Cádiz Spain
| | | | - Christian Mougin
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 78026 Versailles, France
| | - Titus Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology (CSET), University of South Africa, Pretoria, South Africa
| | - Jörg Oehlmann
- Faculty Biological Sciences, Goethe University Frankfurt, Max-von-der-Laue-Straße 13, 60438 Frankfurt, Germany
| | - Leo Posthuma
- RIVM-National Institute for Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, The Netherlands
- Department of Environmental Science, Radbound University Nijmegen, Nijmegen, The Netherlands
| | - Malcolm Reid
- Norwegian Institute for Water Research, Environmental Chemistry and Technology, Oslo, Norway
| | | | - Susan D. Richardson
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, SC 29208 USA
| | - Pawel Rostkowski
- NILU-Norwegian Institute for Air Research, P.O. Box 100, 2027 Kjeller, Norway
| | - Emma Schymanski
- University of Luxembourg, 6 avenue du Swing, 4367 Belvaux, Luxembourg
| | - Flurina Schneider
- Faculty Biological Sciences, Goethe University Frankfurt, Max-von-der-Laue-Straße 13, 60438 Frankfurt, Germany
- Institute for Social-Ecological Research (ISOE), Hamburger Alee 45, 60486 Frankfurt, Germany
| | | | - Yasuyuki Shibata
- Environmental Safety Center, Tokyo University of Science, 12-1 Ichigaya-Funagawara, Shinjuku, Tokyo 162-0826 Japan
| | - Shane Allen Snyder
- Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, Singapore
| | | | | | - Kevin V. Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102 Australia
| | | | - Pham Hung Viet
- VNU Key Laboratory of Analytical Technology for Environmental Quality, Vietnam National University, 334 Nguyen Trai, Hanoi, Vietnam
| | - Karina Gin Yew-Hoong
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, Singapore
| | - Xiaowei Zhang
- Centre of Chemical Safety and Risks, School of the Environment, Nanjing University, Nanjing, China
| | - Ettore Zuccato
- Department of Environmental Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| |
Collapse
|
247
|
Xie P, Yan Q, Xiong J, Li H, Ma X, You J. Point or non-point source: Toxicity evaluation using m-POCIS and zebrafish embryos in municipal sewage treatment plants and urban waterways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118307. [PMID: 34626713 DOI: 10.1016/j.envpol.2021.118307] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Municipal sewage treatment plants (STPs) have been regarded as an important source of organic contaminants in aquatic environment. To assess the impact of STPs on occurrence and toxicity of STP-associated contaminants in receiving waterways, a novel passive sampler modified from polar organic chemical integrative sampler (m-POCIS) was deployed at the inlet and outlet of a STP and several upstream and downstream sites along a river receiving STP effluent in Guangzhou, China. Eighty-seven contaminants were analyzed in m-POCIS extracts, along with toxicity evaluation using zebrafish embryos. Polycyclic musks were the predominant contaminants in both STP and urban waterways, and antibiotics and current-use pesticides (e.g., neonicotinoids, fiproles) were also ubiquitous. The m-POCIS extracts from downstream sites caused significant deformity in embryos, yet the toxicity could not be explained by the measured contaminants, implying the presence of nontarget stressors. Sewage treatment process substantially reduced embryo deformity, chemical oxygen demand, and contamination levels of some contaminants; however, concentrations of neonicotinoids and fiproles increased after STP treatment, possibly due to the release of chemicals from perturbed sludge. Source identification showed that most of the contaminants found in urban waterways were originated from nonpoint runoff, while cosmetics factories and hospitals were likely point sources for musks and antibiotics, respectively. Although the observed embryo toxicity could not be well explained by target contaminants, the present study showed a promising future of using passive samplers to evaluate chemical occurrence and aquatic toxicity concurrently. Zebrafish embryo toxicity significantly decreased after sewage treatment, but higher toxicity was observed for downstream samples, demonstrating that urban runoff may produce detrimental effects to aquatic life, particularly in rainy season. These results highlight the relevance of monitoring nonpoint source pollution along with boosting municipal sewage treatment infrastructure.
Collapse
Affiliation(s)
- Peihong Xie
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Qiankun Yan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Jingjing Xiong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Xue Ma
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
248
|
Huang Z, Li H, Xiong J, You J. Target and Suspect Screening of Urinary Biomarkers for Current-use Pesticides: Application of a Simple Extraction Method. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:73-80. [PMID: 34674301 DOI: 10.1002/etc.5234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/15/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Pesticide residues pose a great threat to human health. Biomonitoring with urine samples has often been used to assess pesticide exposure to humans, and identifying appropriate biomarkers is a premise of success. Current-use pesticides (CUPs) including neonicotinoids tend to be transformed in an organism, and thus the biomonitoring studies focusing on parent compounds alone may underestimate their risk. It is imperative to develop effective methods to analyze CUPs and their metabolites simultaneously and to identify viable metabolites as urinary biomarkers. For analyzing xenobiotics in urine, we optimized CH3 COCH3 -MgSO4 extraction coupled with a high-performance liquid chromatography-tandem mass spectrometry detection method. The method had sensitive method detection limits (0.11-1.39 ng/ml), low matrix effects, and satisfactory recovery and precision (49.4% ± 7.2%-99.8% ± 17.8%) for neonicotinoids and their metabolites. Application of the method for real samples showed that children living in rural areas in South China were ubiquitously exposed to CUPs, including neonicotinoids, fipronil, and chlorpyrifos, and urinary residues were mainly in the form of metabolites. Suitable biomarkers were identified for individual neonicotinoids, including imidacloprid-olefin and imidacloprid-guanidine for imidacloprid, acetamiprid-N-desmethyl for acetamiprid, thiacloprid-amide for thiacloprid, and N-desmethyl-thiamethoxam and thiamethoxam for thiamethoxam. Three metabolites were mainly reported in urine samples, including imidacloprid-urea, thiacloprid-amide, and N-desmethyl-thiamethoxam. In addition, the method was also applied for suspect screening, and an additional metabolite (clothianidin-desmethyl-nitrosoguanidine) was identified, showing its potential application in suspect analysis. Environ Toxicol Chem 2022;41:73-80. © 2021 SETAC.
Collapse
Affiliation(s)
- Zhoubing Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangzhou, Jinan University, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangzhou, Jinan University, China
| | - Jingjing Xiong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangzhou, Jinan University, China
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangzhou, Jinan University, China
| |
Collapse
|
249
|
Lee J, Khim JS. Revisited a sediment quality triad approach in the Korean coastal waters: Past research, current status, and future directions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118262. [PMID: 34601033 DOI: 10.1016/j.envpol.2021.118262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/15/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
We present a comprehensive review of the sediment quality triad (SQT) assessment studies in Korea. The bibliographic analysis was applied to evaluate how approaches in sediment assessment have evolved. A meta-analysis was performed, to evaluate potential risks of sedimentary persistent toxic substances (PTSs) reported in Korean coastal waters. Within the framework, we identified and discussed current status and spatiotemporal trends in contamination of both classic and emerging PTSs over the recent decadal period. Out of 26 target regions in Korea, five hotspots (Sihwa, Masan, Ulsan, Taean, and Gwangyang) of concern could be identified. Four of those regions have been designated as Specially-Managed Sea Area under the implementation of Total Pollution Load Management System in Korea, except for Taean coast (oil spill site). Meantime, we could identify three stepwise research phases based on a bibliographic analysis; Phase 1 (1995-2008), Phase 2 (2009-2015), and Phase 3 (2016-2020). It is noteworthy that a technical evolution of the SQT assessment by the phase was featured. It was also evidenced that in-depth studies adopting multiple lines of evidence (LOEs) became prevailed upon approaching Phase 3. In a quantitative manner, the toxicity explanatory power of target PTSs increased by about 10% in Phase 3 compared to the earlier phases. The meta-analysis using ratio-to-mean value method applied for the data set having all three LOEs indicated general improvement of sediment qualities in the hotspots. However, their associations quite varied across regions and years, reflecting a dynamicity in oceanographic settings and/or heterogeneity in toxicological effect or benthic community response. At present, SQT assessment adopting the increased LOEs generally supports better assessment. In conclusion, we suggest that future SQT studies globally should reaffirm the utility of the "multiple LOEs approach", focusing on the identification and management of causative toxicants that driving negative ecological impacts on marine ecosystems.
Collapse
Affiliation(s)
- Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
250
|
Scholz S, Nichols JW, Escher BI, Ankley GT, Altenburger R, Blackwell B, Brack W, Burkhard L, Collette TW, Doering JA, Ekman D, Fay K, Fischer F, Hackermüller J, Hoffman JC, Lai C, Leuthold D, Martinovic-Weigelt D, Reemtsma T, Pollesch N, Schroeder A, Schüürmann G, von Bergen M. The Eco-Exposome Concept: Supporting an Integrated Assessment of Mixtures of Environmental Chemicals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:30-45. [PMID: 34714945 PMCID: PMC9104394 DOI: 10.1002/etc.5242] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 05/04/2023]
Abstract
Organisms are exposed to ever-changing complex mixtures of chemicals over the course of their lifetime. The need to more comprehensively describe this exposure and relate it to adverse health effects has led to formulation of the exposome concept in human toxicology. Whether this concept has utility in the context of environmental hazard and risk assessment has not been discussed in detail. In this Critical Perspective, we propose-by analogy to the human exposome-to define the eco-exposome as the totality of the internal exposure (anthropogenic and natural chemicals, their biotransformation products or adducts, and endogenous signaling molecules that may be sensitive to an anthropogenic chemical exposure) over the lifetime of an ecologically relevant organism. We describe how targeted and nontargeted chemical analyses and bioassays can be employed to characterize this exposure and discuss how the adverse outcome pathway concept could be used to link this exposure to adverse effects. Available methods, their limitations, and/or requirement for improvements for practical application of the eco-exposome concept are discussed. Even though analysis of the eco-exposome can be resource-intensive and challenging, new approaches and technologies make this assessment increasingly feasible. Furthermore, an improved understanding of mechanistic relationships between external chemical exposure(s), internal chemical exposure(s), and biological effects could result in the development of proxies, that is, relatively simple chemical and biological measurements that could be used to complement internal exposure assessment or infer the internal exposure when it is difficult to measure. Environ Toxicol Chem 2022;41:30-45. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Stefan Scholz
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Address correspondence to
| | - John W. Nichols
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Beate I. Escher
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tubingen, Tubingen, Germany
| | - Gerald T. Ankley
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Rolf Altenburger
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Institute for Environmental Research, Biologie V, RWTH Aachen University, Aachen, Germany
| | - Brett Blackwell
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Werner Brack
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Department of Evolutionary Ecology and Environmental Toxicology, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lawrence Burkhard
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Timothy W. Collette
- Office of Research and Development, Ecosystem Processes Division, US Environmental Protection Agency, Athens, Georgia
| | - Jon A. Doering
- National Research Council, US Environmental Protection Agency, Duluth, Minnesota
| | - Drew Ekman
- Office of Research and Development, Ecosystem Processes Division, US Environmental Protection Agency, Athens, Georgia
| | - Kellie Fay
- Office of Pollution Prevention and Toxics, Risk Assessment Division, US Environmental Protection Agency, Washington, DC
| | - Fabian Fischer
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | | | - Joel C. Hoffman
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Chih Lai
- College of Arts and Sciences, University of Saint Thomas, St. Paul, Minnesota, USA
| | - David Leuthold
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | | | | | - Nathan Pollesch
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | | | - Gerrit Schüürmann
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Institute of Organic Chemistry, Technische Universitat Bergakademie Freiberg, Freiberg, Germany
| | | |
Collapse
|