201
|
Sohrabi Y, Dos Santos JC, Dorenkamp M, Findeisen H, Godfrey R, Netea MG, Joosten LAB. Trained immunity as a novel approach against COVID-19 with a focus on Bacillus Calmette-Guérin vaccine: mechanisms, challenges and perspectives. Clin Transl Immunology 2020; 9:e1228. [PMID: 33363733 PMCID: PMC7755499 DOI: 10.1002/cti2.1228] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/03/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022] Open
Abstract
COVID-19 is a severe health problem in many countries and has altered day-to-day life in the whole world. This infection is caused by the SARS-CoV-2 virus, and depending on age, sex and health status of the patient, it can present with variety of clinical symptoms such as mild infection, a very severe form or even asymptomatic course of the disease. Similarly to other viruses, innate immune response plays a vital role in protection against COVID-19. However, dysregulation of innate immunity could have a significant influence on the severity of the disease. Despite various efforts, there is no effective vaccine against the disease so far. Recent data have demonstrated that the Bacillus Calmette-Guérin (BCG) vaccine could reduce disease severity and the burden of several infectious diseases in addition to targeting its primary focus tuberculosis. There is growing evidence for the concept of beneficial non-specific boosting of immune responses by BCG or other microbial compounds termed trained immunity, which may protect against COVID-19. In this manuscript, we review data on how the development of innate immune memory due to microbial compounds specifically BCG can result in protection against SARS-CoV-2 infection. We also discuss possible mechanisms, challenges and perspectives of using innate immunity as an approach to reduce COVID-19 severity.
Collapse
Affiliation(s)
- Yahya Sohrabi
- Department of Cardiology I – Coronary and Peripheral Vascular Disease, Heart FailureUniversity Hospital MünsterMünsterGermany
- Institute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jéssica Cristina Dos Santos
- Department of Internal Medicine and Radboud Centre of Infectious Diseases (RCI)Radboud University Medical CentreNijmegenThe Netherlands
| | - Marc Dorenkamp
- Department of Cardiology I – Coronary and Peripheral Vascular Disease, Heart FailureUniversity Hospital MünsterMünsterGermany
| | - Hannes Findeisen
- Department of Cardiology I – Coronary and Peripheral Vascular Disease, Heart FailureUniversity Hospital MünsterMünsterGermany
| | - Rinesh Godfrey
- Department of Cardiology I – Coronary and Peripheral Vascular Disease, Heart FailureUniversity Hospital MünsterMünsterGermany
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Centre of Infectious Diseases (RCI)Radboud University Medical CentreNijmegenThe Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES)University of BonnBonnGermany
| | - Leo AB Joosten
- Department of Internal Medicine and Radboud Centre of Infectious Diseases (RCI)Radboud University Medical CentreNijmegenThe Netherlands
- Núcleo de Pesquisa da Faculdade da Polícia Militar (FPM) do Estado de GoiásGoiâniaBrazil
| |
Collapse
|
202
|
Pfortmueller CA, Spinetti T, Urman RD, Luedi MM, Schefold JC. COVID-19-associated acute respiratory distress syndrome (CARDS): Current knowledge on pathophysiology and ICU treatment - A narrative review. Best Pract Res Clin Anaesthesiol 2020; 35:351-368. [PMID: 34511224 PMCID: PMC7831801 DOI: 10.1016/j.bpa.2020.12.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces coronavirus-19 disease (COVID-19) and is a major health concern. Following two SARS-CoV-2 pandemic “waves,” intensive care unit (ICU) specialists are treating a large number of COVID19-associated acute respiratory distress syndrome (ARDS) patients. From a pathophysiological perspective, prominent mechanisms of COVID19-associated ARDS (CARDS) include severe pulmonary infiltration/edema and inflammation leading to impaired alveolar homeostasis, alteration of pulmonary physiology resulting in pulmonary fibrosis, endothelial inflammation (endotheliitis), vascular thrombosis, and immune cell activation. Although the syndrome ARDS serves as an umbrella term, distinct, i.e., CARDS-specific pathomechanisms and comorbidities can be noted (e.g., virus-induced endotheliitis associated with thromboembolism) and some aspects of CARDS can be considered ARDS “atypical.” Importantly, specific evidence-based medical interventions for CARDS (with the potential exception of corticosteroid use) are currently unavailable, limiting treatment efforts to mostly supportive ICU care. In this article, we will discuss the underlying pulmonary pathophysiology and the clinical management of CARDS. In addition, we will outline current and potential future treatment approaches.
Collapse
Affiliation(s)
- Carmen A Pfortmueller
- Department of Intensive Care Medicine, Inselspital, Bern, University Hospital, University of Bern, Freiburgstrasse, CH-3010 Bern, Switzerland.
| | - Thibaud Spinetti
- Department of Intensive Care Medicine, Inselspital, Bern, University Hospital, University of Bern, Freiburgstrasse, CH-3010 Bern, Switzerland.
| | - Richard D Urman
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | - Markus M Luedi
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern, University Hospital, University of Bern, Freiburgstrasse, CH-3010 Bern, Switzerland.
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital, Bern, University Hospital, University of Bern, Freiburgstrasse, CH-3010 Bern, Switzerland.
| |
Collapse
|
203
|
Drechsler Y, Vasconcelos EJR, Griggs LM, Diniz PPPV. CRFK and Primary Macrophages Transcriptomes in Response to Feline Coronavirus Infection Differ Significantly. Front Genet 2020; 11:584744. [PMID: 33343631 PMCID: PMC7745755 DOI: 10.3389/fgene.2020.584744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
Coronaviruses are highly infectious and common in many species, including in humans, and agricultural and domestic animals. Host responses play an important role in viral entry, replication, assembly, and pathogenesis, although much is still to be understood, particularly host-virus interactions. Feline coronavirus is highly contagious, and ubiquitous in virtually all cat populations. Host-pathogen interactions have not been studied extensively due to the complex pathogenesis and development of clinical disease. Few studies have investigated cellular host responses to feline coronavirus infection, particularly at early time points. Transcriptome studies based on next-generation sequencing have the potential to elucidate the early responses of cells after viral infection and, consequently, give further insight into the pathogenesis of viruses. The current study aims to characterize and compare the viral- and immune-related differentially expressed genes in response to the coronavirus FIPV across different time points in a cell line which is permissive for productive replication versus primary cells implicated in pathogenesis. When comparing host responses in Crandell-Rees Feline Kidney (CRFK) cells to primary macrophages, many differences were observed with regards to expressed genes and their enrichments for both KEGG pathways and GO terms. CRFK cells which are permissive for productive replication of feline infectious peritonitis virus, showed induction of a large network of immunological and virally induced pathways. In contrast, Macrophages did not show similar host responses, with stronger pathway enrichment in downregulated transcripts. This study provides insights to better understand gene transcription in immune cells compared to epithelial cells discerning pathways relevant to pathogenesis in the early stages of infection.
Collapse
Affiliation(s)
- Yvonne Drechsler
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | | | - Lisa M Griggs
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Pedro P P V Diniz
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
204
|
Sosa-Hernández VA, Torres-Ruíz J, Cervantes-Díaz R, Romero-Ramírez S, Páez-Franco JC, Meza-Sánchez DE, Juárez-Vega G, Pérez-Fragoso A, Ortiz-Navarrete V, Ponce-de-León A, Llorente L, Berrón-Ruiz L, Mejía-Domínguez NR, Gómez-Martín D, Maravillas-Montero JL. B Cell Subsets as Severity-Associated Signatures in COVID-19 Patients. Front Immunol 2020; 11:611004. [PMID: 33343585 PMCID: PMC7744304 DOI: 10.3389/fimmu.2020.611004] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/11/2020] [Indexed: 01/08/2023] Open
Abstract
Background SARS-CoV-2 infection represents a global health problem that has affected millions of people. The fine host immune response and its association with the disease course have not yet been fully elucidated. Consequently, we analyze circulating B cell subsets and their possible relationship with COVID-19 features and severity. Methods Using a multiparametric flow cytometric approach, we determined B cell subsets frequencies from 52 COVID-19 patients, grouped them by hierarchical cluster analysis, and correlated their values with clinical data. Results The frequency of CD19+ B cells is increased in severe COVID-19 compared to mild cases. Specific subset frequencies such as transitional B cell subsets increase in mild/moderate cases but decrease with the severity of the disease. Memory B compartment decreased in severe and critical cases, and antibody-secreting cells are increased according to the severity of the disease. Other non-typical subsets such as double-negative B cells also showed significant changes according to disease severity. Globally, these differences allow us to identify severity-associated patient clusters with specific altered subsets. Finally, respiratory parameters, biomarkers of inflammation, and clinical scores exhibited correlations with some of these subpopulations. Conclusions The severity of COVID-19 is accompanied by changes in the B cell subpopulations, either immature or terminally differentiated. Furthermore, the existing relationship of B cell subset frequencies with clinical and laboratory parameters suggest that these lymphocytes could serve as potential biomarkers and even active participants in the adaptive antiviral response mounted against SARS-CoV-2.
Collapse
Affiliation(s)
- Víctor A Sosa-Hernández
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jiram Torres-Ruíz
- Departamento de Atención Institucional Continua y Urgencias, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Rodrigo Cervantes-Díaz
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sandra Romero-Ramírez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José C Páez-Franco
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - David E Meza-Sánchez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Guillermo Juárez-Vega
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Alfredo Pérez-Fragoso
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Vianney Ortiz-Navarrete
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Alfredo Ponce-de-León
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Luis Llorente
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Laura Berrón-Ruiz
- Unidad de Investigación en Inmunodeficiencias, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Nancy R Mejía-Domínguez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Diana Gómez-Martín
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José L Maravillas-Montero
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
205
|
Zizzo G, Cohen PL. Imperfect storm: is interleukin-33 the Achilles heel of COVID-19? THE LANCET. RHEUMATOLOGY 2020; 2:e779-e790. [PMID: 33073244 PMCID: PMC7546716 DOI: 10.1016/s2665-9913(20)30340-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The unique cytokine signature of COVID-19 might provide clues to disease mechanisms and possible future therapies. Here, we propose a pathogenic model in which the alarmin cytokine, interleukin (IL)-33, is a key player in driving all stages of COVID-19 disease (ie, asymptomatic, mild-moderate, severe-critical, and chronic-fibrotic). In susceptible individuals, IL-33 release by damaged lower respiratory cells might induce dysregulated GATA-binding factor 3-expressing regulatory T cells, thereby breaking immune tolerance and eliciting severe acute respiratory syndrome coronavirus 2-induced autoinflammatory lung disease. Such disease might be initially sustained by IL-33-differentiated type-2 innate lymphoid cells and locally expanded γδ T cells. In severe COVID-19 cases, the IL-33-ST2 axis might act to expand the number of pathogenic granulocyte-macrophage colony-stimulating factor-expressing T cells, dampen antiviral interferon responses, elicit hyperinflammation, and favour thromboses. In patients who survive severe COVID-19, IL-33 might drive pulmonary fibrosis by inducing myofibroblasts and epithelial-mesenchymal transition. We discuss the therapeutic implications of these hypothetical pathways, including use of therapies that target IL-33 (eg, anti-ST2), T helper 17-like γδ T cells, immune cell homing, and cytokine balance.
Collapse
Affiliation(s)
- Gaetano Zizzo
- Temple Autoimmunity Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Unit of Rheumatology, Department of Internal Medicine, ASST Ovest Milanese, Milan, Italy
| | - Philip L Cohen
- Temple Autoimmunity Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Section of Rheumatology, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
206
|
Lee S, Channappanavar R, Kanneganti TD. Coronaviruses: Innate Immunity, Inflammasome Activation, Inflammatory Cell Death, and Cytokines. Trends Immunol 2020; 41:1083-1099. [PMID: 33153908 PMCID: PMC7561287 DOI: 10.1016/j.it.2020.10.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
The innate immune system acts as the first line of defense against pathogens, including coronaviruses (CoVs). Severe acute respiratory syndrome (SARS)-CoV and Middle East respiratory syndrome (MERS)-CoV are epidemic zoonotic CoVs that emerged at the beginning of the 21st century. The recently emerged virus SARS-CoV-2 is a novel strain of CoV that has caused the coronavirus 2019 (COVID-19) pandemic. Scientific advancements made by studying the SARS-CoV and MERS-CoV outbreaks have provided a foundation for understanding pathogenesis and innate immunity against SARS-CoV-2. In this review, we focus on our present understanding of innate immune responses, inflammasome activation, inflammatory cell death pathways, and cytokine secretion during SARS-CoV, MERS-CoV, and SARS-CoV-2 infection. We also discuss how the pathogenesis of these viruses influences these biological processes.
Collapse
Affiliation(s)
- SangJoon Lee
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Rudragouda Channappanavar
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA; Department of Acute and Tertiary Care, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | | |
Collapse
|
207
|
Hosseini A, Hashemi V, Shomali N, Asghari F, Gharibi T, Akbari M, Gholizadeh S, Jafari A. Innate and adaptive immune responses against coronavirus. Biomed Pharmacother 2020; 132:110859. [PMID: 33120236 PMCID: PMC7580677 DOI: 10.1016/j.biopha.2020.110859] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 01/08/2023] Open
Abstract
Coronaviruses (CoVs) are a member of the Coronaviridae family with positive-sense single- stranded RNA. In recent years, the CoVs have become a global problem to public health. The immune responses (innate and adaptive immunity) are essential for elimination and clearance of CoVs infections, however, uncontrolled immune responses can result in aggravating acute lung injury and significant immunopathology. Gaining profound understanding about the interaction between CoVs and the innate and adaptive immune systems could be a critical step in the field of treatment. In this review, we present an update on the host innate and adaptive immune responses against SARS-CoV, MERS-CoV and newly appeared SARS-CoV-2.
Collapse
Affiliation(s)
- Arezoo Hosseini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vida Hashemi
- Department of Basic Science, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Asghari
- Department of Immunology, School of Medicine, Tarbiat Modares University of Medical Sciences, Tehran, Iran
| | - Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saber Gholizadeh
- Department of Medical Entomology and Vector Control, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Jafari
- Department of Toxicology and Cellular and Molecular Research Center, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
208
|
Ahmad T, Chaudhuri R, Joshi MC, Almatroudi A, Rahmani AH, Ali SM. COVID-19: The Emerging Immunopathological Determinants for Recovery or Death. Front Microbiol 2020; 11:588409. [PMID: 33335518 PMCID: PMC7736111 DOI: 10.3389/fmicb.2020.588409] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023] Open
Abstract
Hyperactivation of the host immune system during infection by SARS-CoV-2 is the leading cause of death in COVID-19 patients. It is also evident that patients who develop mild/moderate symptoms and successfully recover display functional and well-regulated immune response. Whereas a delayed initial interferon response is associated with severe disease outcome and can be the tipping point towards immunopathological deterioration, often preceding death in COVID-19 patients. Further, adaptive immune response during COVID-19 is heterogeneous and poorly understood. At the same time, some studies suggest activated T and B cell response in severe and critically ill patients and the presence of SARS-CoV2-specific antibodies. Thus, understanding this problem and the underlying molecular pathways implicated in host immune function/dysfunction is imperative to devise effective therapeutic interventions. In this comprehensive review, we discuss the emerging immunopathological determinants and the mechanism of virus evasion by the host cell immune system. Using the knowledge gained from previous respiratory viruses and the emerging clinical and molecular findings on SARS-CoV-2, we have tried to provide a holistic understanding of the host innate and adaptive immune response that may determine disease outcome. Considering the critical role of the adaptive immune system during the viral clearance, we have presented the molecular insights of the plausible mechanisms involved in impaired T cell function/dysfunction during various stages of COVID-19.
Collapse
Affiliation(s)
- Tanveer Ahmad
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Rituparna Chaudhuri
- Department of Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre (NBRC), Haryana, India
| | - Mohan C. Joshi
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, Saudi Arabia
| | - Syed Mansoor Ali
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
209
|
Jain N, Shankar U, Majee P, Kumar A. Scrutinizing the SARS-CoV-2 protein information for designing an effective vaccine encompassing both the T-cell and B-cell epitopes. INFECTION GENETICS AND EVOLUTION 2020; 87:104648. [PMID: 33264668 PMCID: PMC7700730 DOI: 10.1016/j.meegid.2020.104648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022]
Abstract
Novel SARS coronavirus (SARS-CoV-2) has caused a pandemic condition worldwide. It has been declared as a public health emergency of international concern by WHO in a very short span of time. The community transmission of this highly infectious virus has severely affected various parts of China, Italy, Spain, India, and USA, among others. The prophylactic solution against SARS-CoV-2 infection is challenging due to the high mutation rate of its RNA genome. Herein, we exploited a next-generation vaccinology approach to construct a multi-epitope vaccine candidate against SARS-CoV-2 that is predicted to have high antigenicity, safety, and efficacy to combat this deadly infectious agent. The whole proteome was scrutinized for the screening of highly conserved, antigenic, non-allergen, and non-toxic epitopes having high population coverage that can elicit both humoral and cellular mediated immune response against COVID-19 infection. These epitopes along with four different adjuvants, were utilized to construct a multi-epitope-vaccine candidate that can generate strong immunological memory response having high efficacy in humans. Various physiochemical analyses revealed the formation of a stable vaccine product having a high propensity to form a protective solution against the detrimental SARS-CoV-2 strain with high efficacy. The vaccine candidate interacted with immunological receptor TLR3 with a high affinity depicting the generation of innate immunity. Further, the codon optimization and in silico expression show the plausibility of the high expression and easy purification of the vaccine product. Thus, this present study provides an initial platform for the rapid generation of an efficacious protective vaccine for combating COVID-19.
Collapse
Affiliation(s)
- Neha Jain
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Uma Shankar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Prativa Majee
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
| |
Collapse
|
210
|
Donati Zeppa S, Agostini D, Piccoli G, Stocchi V, Sestili P. Gut Microbiota Status in COVID-19: An Unrecognized Player? Front Cell Infect Microbiol 2020; 10:576551. [PMID: 33324572 PMCID: PMC7725702 DOI: 10.3389/fcimb.2020.576551] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/30/2020] [Indexed: 01/07/2023] Open
Abstract
Infection with the SARS-CoV-2 virus causes cardiopulmonary and vascular complications, ranging in severity. Understanding the pathogenic mechanisms of the novel SARS-CoV2 infection and progression can provide potential novel targets for its prevention and/or treatment. Virus microbiota reciprocal interactions have been studied in a variety of viral infections. For example, the integrity of Coronavirus particles can be disrupted by surfactin, a bacterial surface molecule that targets other viruses, including that of influenza A. In this light, intestinal microbiota likely influences COVID-19 virulence, while from its side SARS-CoV-2 may affect the intestinal microbiome promoting dysbiosis and other deleterious consequences. Hence, the microbiota pre-existing health status and its alterations in the course of SARS-CoV-2 infection, are likely to play an important, still underscored role in determining individual susceptibility and resilience to COVID-19. Indeed, the vast majority of COVID-19 worst clinical conditions and fatalities develop in subjects with specific risk factors such as aging and the presence of one or more comorbidities, which are intriguingly characterized also by unhealthy microbiome status. Moreover, these comorbidities require complex pharmacological regimens known as "polypharmacy" that may further affect microbiota integrity and worsen the resilience to viral infections. This complex situation may represent a further and underestimated risk with regard to COVID-19 clinical burden for the elderly and comorbid people. Here, we discuss the possible biological, physiopathological, and clinical implications of gut microbiota in COVID-19 and the strategies to improve/maintain its healthy status as a simple and adjunctive strategy to reduce COVID-19 virulence and socio-sanitary burden.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | | | | | | | |
Collapse
|
211
|
Sun J, Ye F, Wu A, Yang R, Pan M, Sheng J, Zhu W, Mao L, Wang M, Xia Z, Huang B, Tan W, Jiang T. Comparative Transcriptome Analysis Reveals the Intensive Early Stage Responses of Host Cells to SARS-CoV-2 Infection. Front Microbiol 2020; 11:593857. [PMID: 33324374 PMCID: PMC7723856 DOI: 10.3389/fmicb.2020.593857] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/23/2020] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a widespread outbreak of highly pathogenic coronavirus disease 2019 (COVID-19). It is therefore important and timely to characterize interactions between the virus and host cell at the molecular level to understand its disease pathogenesis. To gain insights, we performed high-throughput sequencing that generated time-series data simultaneously for bioinformatics analysis of virus genomes and host transcriptomes implicated in SARS-CoV-2 infection. Our analysis results showed that the rapid growth of the virus was accompanied by an early intensive response of host genes. We also systematically compared the molecular footprints of the host cells in response to SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV). Upon infection, SARS-CoV-2 induced hundreds of up-regulated host genes hallmarked by a significant cytokine production, followed by virus-specific host antiviral responses. While the cytokine and antiviral responses triggered by SARS-CoV and MERS-CoV were only observed during the late stage of infection, the host antiviral responses during the SARS-CoV-2 infection were gradually enhanced lagging behind the production of cytokine. The early rapid host responses were potentially attributed to the high efficiency of SARS-CoV-2 entry into host cells, underscored by evidence of a remarkably up-regulated gene expression of TPRMSS2 soon after infection. Taken together, our findings provide novel molecular insights into the mechanisms underlying the infectivity and pathogenicity of SARS-CoV-2.
Collapse
Affiliation(s)
- Jiya Sun
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Fei Ye
- Key Laboratory of Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Aiping Wu
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Ren Yang
- Key Laboratory of Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mei Pan
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Jie Sheng
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Wenjie Zhu
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Longfei Mao
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Ming Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Zanxian Xia
- Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Baoying Huang
- Key Laboratory of Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenjie Tan
- Key Laboratory of Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Taijiao Jiang
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| |
Collapse
|
212
|
Abstract
In Part One of this exploration of the pathogenesis of coronavirus disease (COVID-19), the author will evaluate the viral and cellular immunological basis for the condition. The virus demonstrates a remarkable capability not just to evade, but to exploit host immune characteristics to perpetuate viral replication. In this regard, severe acute respiratory syndrome (SARS)/severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) disables most antiviral mechanisms, including the early interferon response, and avoids detection to permit unimpeded viral multiplication. Consequently, antigen-presenting cells fail to adequately stimulate the T-cell receptor. As a consequence, T-cell p53 remains highly expressed, which in turn disables an adequate effector T-cell response.
Replicating SARS-CoV-2 double-strand RNA robustly activates protein kinase R (PKR)/PKR-like endoplasmic reticulum kinase (PERK). While the virus is grossly invulnerable to its antiviral effects, PKR is crucial for effecting the cytokine milieu in COVID-19. PERK is a component of the unfolded protein response, which eventuates in autophagy. SARS virions use double-membrane vesicles and adapt PERK signalling not only to avoid autophagy, but to facilitate replication. Viral activation of PKR/PERK is mutually exclusive to NLRP3 stimulation. The NLRP3 pathway elaborates IL-1β. This is chiefly a feature of paediatric SARS/SARS-CoV-2 cases. The difficulties encountered in predicting outcome and forging effective therapeutics speaks to the breadth of complexity of the immunopathogenesis of this virus.
Collapse
Affiliation(s)
- Thomas Walsh
- Rheumatology Department, Harrogate and District Hospital, Harrogate, UK
| |
Collapse
|
213
|
Leist SR, Dinnon KH, Schäfer A, Tse LV, Okuda K, Hou YJ, West A, Edwards CE, Sanders W, Fritch EJ, Gully KL, Scobey T, Brown AJ, Sheahan TP, Moorman NJ, Boucher RC, Gralinski LE, Montgomery SA, Baric RS. A Mouse-Adapted SARS-CoV-2 Induces Acute Lung Injury and Mortality in Standard Laboratory Mice. Cell 2020; 183:1070-1085.e12. [PMID: 33031744 PMCID: PMC7510428 DOI: 10.1016/j.cell.2020.09.050] [Citation(s) in RCA: 477] [Impact Index Per Article: 95.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/04/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
The SARS-CoV-2 pandemic has caused extreme human suffering and economic harm. We generated and characterized a new mouse-adapted SARS-CoV-2 virus that captures multiple aspects of severe COVID-19 disease in standard laboratory mice. This SARS-CoV-2 model exhibits the spectrum of morbidity and mortality of COVID-19 disease as well as aspects of host genetics, age, cellular tropisms, elevated Th1 cytokines, and loss of surfactant expression and pulmonary function linked to pathological features of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). This model can rapidly access existing mouse resources to elucidate the role of host genetics, underlying molecular mechanisms governing SARS-CoV-2 pathogenesis, and the protective or pathogenic immune responses related to disease severity. The model promises to provide a robust platform for studies of ALI and ARDS to evaluate vaccine and antiviral drug performance, including in the most vulnerable populations (i.e., the aged) using standard laboratory mice.
Collapse
Affiliation(s)
- Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth H Dinnon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Longping V Tse
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yixuan J Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ande West
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Caitlin E Edwards
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wes Sanders
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ethan J Fritch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kendra L Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Trevor Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ariane J Brown
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nathaniel J Moorman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie A Montgomery
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
214
|
Anjum FR, Anam S, Abbas G, Mahmood MS, Rahman SU, Goraya MU, Abdullah RM, Luqman M, Ali A, Akram MK, Chaudhry TH. Type I IFNs: A Blessing in Disguise or Partner in Crime in MERS-CoV-, SARS-CoV-, and SARS-CoV-2-Induced Pathology and Potential Use of Type I IFNs in Synergism with IFN- γ as a Novel Antiviral Approach Against COVID-19. Viral Immunol 2020; 34:321-329. [PMID: 33181057 DOI: 10.1089/vim.2020.0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Since the end of 2019, the emergence of novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has accelerated the research on host immune responses toward the coronaviruses. When there is no approved drug or vaccine to use against these culprits, host immunity is the major strategy to fight such infections. Type I interferons are an integral part of the host innate immune system and define one of the first lines of innate immune defense against viral infections. The in vitro antiviral role of type I IFNs against Middle East respiratory syndrome coronavirus (MERS-CoV) and SARS-CoV (severe acute respiratory syndrome coronavirus) is well established. Moreover, the involvement of type I IFNs in disease pathology has also been reported. In this study, we have reviewed the protective and the immunopathogenic role of type I IFNs in the pathogenesis of MERS-CoV, SARS-CoV, and SARS-CoV-2. This review will also enlighten the potential implications of type I IFNs for the treatment of COVID-19 when used in combination with IFN-γ.
Collapse
Affiliation(s)
| | - Sidra Anam
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Ghazanfar Abbas
- Melbourne Veterinary School, The University of Melbourne, Werribee, Australia
| | | | - Sajjad Ur Rahman
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | | | | | - Muhammad Luqman
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Ashiq Ali
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Kamran Akram
- Queensland Alliance for Agriculture and food Innovation, The University of Queensland, Brisbane, Australia
| | | |
Collapse
|
215
|
Garduño-Soto M, Choreño-Parra JA, Cazarin-Barrientos J. Dermatological aspects of SARS-CoV-2 infection: mechanisms and manifestations. Arch Dermatol Res 2020; 313:611-622. [PMID: 33159236 PMCID: PMC7646711 DOI: 10.1007/s00403-020-02156-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/11/2020] [Accepted: 10/17/2020] [Indexed: 02/08/2023]
Abstract
The human infection caused by the novel SARS-CoV-2 is a public health emergency of international concern. Although the disease associated to this virus, named COVID-19, mainly affects the lungs, the infection can spread to extrapulmonary tissues, causing multiorgan involvement in severely ill patients. The broad infective capacity of SARS-CoV-2 is related to the pattern of expression of the viral entry factors ACE2 and TMPRSS2 in human tissues. As such, the respiratory and gastrointestinal tracts are at high risk for SARS-CoV-2 infection due to their high expression of ACE2 and TMPRSS2, which explains the clinical phenotype described in the vast majority of infected patients that includes pneumonia and diarrhea. Recently, preoccupation about the potential of the virus to infect the skin has been raised by dermatologists due to the increasing observations of cutaneous manifestations in patients with SARS-CoV-2 infection. Although there is little evidence of the expression of ACE2 and TMPRSS2 in the normal skin, the dermatological findings observed among COVID-19 patients warrants further investigation to delineate the mechanisms of skin affection after SARS-CoV-2 infection. Here, we provide a summary of the dermatological findings observed among patients with laboratory-confirmed SARS-CoV-2 infection based on recent reports. In addition, we analyze possible mechanisms of skin injury in COVID-19 patients and discuss about the risk of individuals with chronic skin conditions for SARS-CoV-2 infection. The present review constitutes a useful informative tool to improve our understanding of the pathophysiological mechanisms of COVID-19 and the possible implications of the current pandemic in dermatology.
Collapse
Affiliation(s)
- Myriam Garduño-Soto
- Department of Dermatology, Hospital General de México "Dr. Eduardo Liceaga", Dr. Balmis 148, Doctores, Cuauhtémoc, 06720, Mexico City, Mexico.
| | | | - Jorge Cazarin-Barrientos
- Department of Dermatology, Hospital General de México "Dr. Eduardo Liceaga", Dr. Balmis 148, Doctores, Cuauhtémoc, 06720, Mexico City, Mexico
| |
Collapse
|
216
|
Kow CS, Hasan SS. Meta-analysis of Effect of Statins in Patients with COVID-19. Am J Cardiol 2020; 134:153-155. [PMID: 32891399 PMCID: PMC7419280 DOI: 10.1016/j.amjcard.2020.08.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 12/29/2022]
|
217
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causal agent of coronavirus disease 2019 (COVID-19). Acute respiratory distress syndrome is the main cause of death from COVID-19 and occurs due to an exaggerated inflammatory response that causes the release of pro-inflammatory cytokines such as interleukins and tumor necrosis factor-alpha (TNF-α). Statins are lipid lowering drugs with pleiotropic effects. They have shown benefit in the management of inflammatory and autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis. Furthermore, due to their immunomodulatory properties, they have been used in the treatment of various infectious diseases such as community-acquired pneumonia and influenza. In this review we analyze the pathophysiological foundations that support the use of statins as an adjunctive treatment in patients with COVID-19.
Collapse
|
218
|
Guijarro C. COVID-19 and cardiovascular disease. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2020; 32:263-266. [PMID: 33213825 PMCID: PMC7669242 DOI: 10.1016/j.arteri.2020.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Carlos Guijarro
- Unidad de Medicina Interna. Consulta de Riesgo Vascular, Hospital Universitario Fundación Alcorcón. Universidad Rey Juan Carlos, c/ Budapest 1 28922, Madrid.
| |
Collapse
|
219
|
Kumar V. Understanding the complexities of SARS-CoV2 infection and its immunology: A road to immune-based therapeutics. Int Immunopharmacol 2020; 88:106980. [PMID: 33182073 PMCID: PMC7843151 DOI: 10.1016/j.intimp.2020.106980] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Emerging infectious diseases always pose a threat to humans along with plant and animal life. SARS-CoV2 is the recently emerged viral infection that originated from Wuhan city of the Republic of China in December 2019. Now, it has become a pandemic. Currently, SARS-CoV2 has infected more than 27.74 million people worldwide, and taken 901,928 human lives. It was named first 'WH 1 Human CoV' and later changed to 2019 novel CoV (2019-nCoV). Scientists have established it as a zoonotic viral disease emerged from Chinese horseshoe bats, which do not develop a severe infection. For example, Rhinolophus Chinese horseshoe bats harboring severe acute respiratory syndrome-related coronavirus (SARSr-CoV) or SARSr-Rh-BatCoV appear healthy and clear the virus within 2-4 months period. The article introduces first the concept of EIDs and some past EIDs, which have affected human life. Next section discusses mysteries regarding SARS-CoV2 origin, its evolution, and human transfer. Third section describes COVID-19 clinical symptoms and factors affecting susceptibility or resistance. The fourth section introduces the SARS-CoV2 entry in the host cell, its replication, and the establishment of productive infection. Section five describes the host's immune response associated with asymptomatic, symptomatic, mild to moderate, and severe COVID-19. The subsequent seventh and eighth sections mention the immune status in COVID-19 convalescent patients and re-emergence of COVID-19 in them. Thereafter, the eighth section describes viral strategies to hijack the host antiviral immune response and generate the "cytokine storm". The ninth section describes about transgenic humane ACE2 (hACE2) receptor expressing mice to study immunity, drugs, and vaccines. The article ends with the development of different immunomodulatory and immunotherapeutics strategies, including vaccines waiting for their approval in humans as prophylaxis or treatment measures.
Collapse
Affiliation(s)
- V Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
220
|
Amor S, Fernández Blanco L, Baker D. Innate immunity during SARS-CoV-2: evasion strategies and activation trigger hypoxia and vascular damage. Clin Exp Immunol 2020; 202:193-209. [PMID: 32978971 PMCID: PMC7537271 DOI: 10.1111/cei.13523] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022] Open
Abstract
Innate immune sensing of viral molecular patterns is essential for development of antiviral responses. Like many viruses, SARS-CoV-2 has evolved strategies to circumvent innate immune detection, including low cytosine-phosphate-guanosine (CpG) levels in the genome, glycosylation to shield essential elements including the receptor-binding domain, RNA shielding and generation of viral proteins that actively impede anti-viral interferon responses. Together these strategies allow widespread infection and increased viral load. Despite the efforts of immune subversion, SARS-CoV-2 infection activates innate immune pathways inducing a robust type I/III interferon response, production of proinflammatory cytokines and recruitment of neutrophils and myeloid cells. This may induce hyperinflammation or, alternatively, effectively recruit adaptive immune responses that help clear the infection and prevent reinfection. The dysregulation of the renin-angiotensin system due to down-regulation of angiotensin-converting enzyme 2, the receptor for SARS-CoV-2, together with the activation of type I/III interferon response, and inflammasome response converge to promote free radical production and oxidative stress. This exacerbates tissue damage in the respiratory system, but also leads to widespread activation of coagulation pathways leading to thrombosis. Here, we review the current knowledge of the role of the innate immune response following SARS-CoV-2 infection, much of which is based on the knowledge from SARS-CoV and other coronaviruses. Understanding how the virus subverts the initial immune response and how an aberrant innate immune response contributes to the respiratory and vascular damage in COVID-19 may help to explain factors that contribute to the variety of clinical manifestations and outcome of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- S. Amor
- Pathology DepartmentVUMC, Amsterdam UMCAmsterdamthe Netherlands
- Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonUK
| | | | - D. Baker
- Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonUK
| |
Collapse
|
221
|
Zhuang MW, Cheng Y, Zhang J, Jiang XM, Wang L, Deng J, Wang PH. Increasing host cellular receptor-angiotensin-converting enzyme 2 expression by coronavirus may facilitate 2019-nCoV (or SARS-CoV-2) infection. J Med Virol 2020; 92:2693-2701. [PMID: 32497323 DOI: 10.1101/2020.02.24.963348] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 05/27/2023]
Abstract
The ongoing outbreak of a new coronavirus (2019-nCoV, or severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) has caused an epidemic of the acute respiratory syndrome known as coronavirus disease (COVID-19) in humans. SARS-CoV-2 rapidly spread to multiple regions of China and multiple other countries, posing a serious threat to public health. The spike (S) proteins of SARS-CoV-1 and SARS-CoV-2 may use the same host cellular receptor, angiotensin-converting enzyme 2 (ACE2), for entering host cells. The affinity between ACE2 and the SARS-CoV-2 S protein is much higher than that of ACE2 binding to the SARS-CoV S protein, explaining why SARS-CoV-2 seems to be more readily transmitted from human to human. Here, we report that ACE2 can be significantly upregulated after infection of various viruses, including SARS-CoV-1 and SARS-CoV-2, or by the stimulation with inflammatory cytokines such as interferons. We propose that SARS-CoV-2 may positively induce its cellular entry receptor, ACE2, to accelerate its replication and spread; high inflammatory cytokine levels increase ACE2 expression and act as high-risk factors for developing COVID-19, and the infection of other viruses may increase the risk of SARS-CoV-2 infection. Therefore, drugs targeting ACE2 may be developed for the future emerging infectious diseases caused by this cluster of coronaviruses.
Collapse
Affiliation(s)
- Meng-Wei Zhuang
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun Cheng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jing Zhang
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xue-Mei Jiang
- Jinan Infectious Diseases Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li Wang
- Jinan Infectious Diseases Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jian Deng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Pei-Hui Wang
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
222
|
Minz MM, Bansal M, Kasliwal RR. Statins and SARS-CoV-2 disease: Current concepts and possible benefits. Diabetes Metab Syndr 2020; 14:2063-2067. [PMID: 33120281 PMCID: PMC7582042 DOI: 10.1016/j.dsx.2020.10.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Inflammation-mediated tissue injury is the major mechanism involved in the pathogenesis of coronavirus disease 2019 (COVID-2019), caused by Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). Statins have well-established anti-inflammatory, anti-thrombotic and immuno-modulatory effects. They may also influence viral entry into human cells. METHODS A literature search was done using PubMed and Google search engines to prepare a narrative review on this topic. RESULTS Statins interact with several different signaling pathways to exert their anti-inflammatory and vasculoprotective effects. They also variably affect cholesterol content of cell membranes and interfere with certain coronavirus enzymes involved in receptor-binding. Both these actions may influence SARS-CoV-2 entry into human cells. Statins also upregulate expression of angiotensin-converting enzyme 2 receptors on cell surfaces which may promote viral entry into the cells but at the same time, may minimize tissue injury through production of angiotensin [1-7]. The net impact of these different effects on COVID-19 pathogenesis is not clear. However, the retrospective clinical studies have shown that statin use is potentially associated with lower risk of developing severe illness and mortality and a faster time to recovery in patients with COVID-19. CONCLUSIONS Early observations suggest beneficial effect of statin use on the clinical outcomes in COVID-19. Prospective randomized studies as well as well-designed laboratory studies are required to confirm these observations and to elucidate the mechanisms of such benefits, if proven.
Collapse
Affiliation(s)
- Madhu Mary Minz
- Department of Cardiology, Medanta- the Medicity, Gurgaon, India
| | - Manish Bansal
- Department of Cardiology, Medanta- the Medicity, Gurgaon, India.
| | - Ravi R Kasliwal
- Department of Cardiology, Medanta- the Medicity, Gurgaon, India
| |
Collapse
|
223
|
COVID-19 and cardiovascular disease. CLÍNICA E INVESTIGACIÓN EN ARTERIOSCLEROSIS (ENGLISH EDITION) 2020. [PMCID: PMC7833289 DOI: 10.1016/j.artere.2020.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
224
|
Terruzzi I, Senesi P. Does intestinal dysbiosis contribute to an aberrant inflammatory response to severe acute respiratory syndrome coronavirus 2 in frail patients? Nutrition 2020; 79-80:110996. [PMID: 33002653 PMCID: PMC7462523 DOI: 10.1016/j.nut.2020.110996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/02/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023]
Abstract
In a few months, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has become the main health problem worldwide. Epidemiologic studies revealed that populations have different vulnerabilities to SARS-CoV-2. Severe outcomes of the coronavirus disease 2019 (COVID-19) with an increased risk of death are observed in patients with metabolic syndrome, as well as diabetic and heart conditions (frail population). Excessive proinflammatory cytokine storm could be the main cause of increased vulnerability in this frail population. In patients with diabetes and/or heart disease, a low inflammatory state is often associated with gut dysbiosis. The increase amount of microbial metabolites (i.e., trimethylamine N-oxide and lipopolysaccharide), which generate an inflammatory microenvironment, is probably associated with an improved risk of severe illness from COVID-19. Nutritional interventions aimed at restoring the gut microbial balance could represent preventive strategies to protect the frail population from COVID-19. This narrative review presents the possible molecular mechanisms by which intestinal dysbiosis that enhances the inflammatory state could promote the spread of SARS-CoV-2 infection. Some nutritional strategies to counteract inflammation in frail patients are also analyzed.
Collapse
Affiliation(s)
- Ileana Terruzzi
- Department of Biomedical Sciences and Health, Università degli Studi di Milano, Milan, Italy; Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy.
| | - Pamela Senesi
- Department of Biomedical Sciences and Health, Università degli Studi di Milano, Milan, Italy; Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
225
|
Coronavirus Historical Perspective, Disease Mechanisms, and Clinical Outcomes: JACC Focus Seminar. J Am Coll Cardiol 2020; 76:1999-2010. [PMID: 33092736 PMCID: PMC7571970 DOI: 10.1016/j.jacc.2020.08.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 01/08/2023]
Abstract
The emergence of a new coronavirus disease (coronavirus disease 2019 [COVID-19]) has raised global concerns regarding the health and safety of a vulnerable population. Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) incites a profound inflammatory response leading to tissue injury and organ failure. COVID-19 is characterized by the bidirectional relationship between inflammation and thrombosis. The clinical syndrome is propelled by inflammation producing acute lung injury, large-vessel thrombosis, and in situ microthrombi that may contribute to organ failure. Myocardial injury is common, but true myocarditis is rare. Elderly patients, those with established cardiovascular disease, and mechanically ventilated patients face the highest mortality risk. Therapies for COVID-19 are evolving. The antiviral drug remdesivir, dexamethasone, transfusion of convalescent plasma, and use of antithrombotic therapy are promising. Most require additional prospective studies. Although most patients recover, those who survive severe illness may experience persistent physical and psychological disabilities. Severe acute respiratory syndrome coronavirus 2 infection (COVID-19) is a global pandemic affecting millions of people worldwide. Clinical sequelae result largely from an intense inflammatory response triggering large-vessel and microvascular thrombosis. No therapy has been universally effective for COVID-19, but systemic anticoagulation, remdesivir, and corticosteroids hold promise. Long-term sequelae of COVID-19 are variable and incompletely defined, but physical and psychological disabilities can persist.
Collapse
|
226
|
Biswas I, Khan GA. Coagulation Disorders in COVID-19: Role of Toll-like Receptors. J Inflamm Res 2020; 13:823-828. [PMID: 33149655 PMCID: PMC7605922 DOI: 10.2147/jir.s271768] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has spread rapidly throughout the world. The range of the disease is broad but among hospitalized patients with COVID-19 are coagulation disorders, pneumonia, respiratory failure, and acute respiratory distress syndrome (ARDS). The excess production of early response proinflammatory cytokines results in what has been described as a cytokine storm, leading to an increased risk of thrombosis, inflammations, vascular hyperpermeability, multi-organ failure, and eventually death over time. As the pandemic is spreading and the whole picture is not yet clear, we highlight the importance of coagulation disorders in COVID-19 infected subjects and summarize it. COVID-19 infection could induce coagulation disorders leading to clot formation as well as pulmonary embolism with detrimental effects in patient recovery and survival. Coagulation and inflammation are closely related. In this review, we try to establish an association between virus infections associated with innate immune activation, inflammation and coagulation activation.
Collapse
Affiliation(s)
- Indranil Biswas
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK73104, USA
| | - Gausal A Khan
- Department of Physiology & Physiotherapy, College of Medicine, Nursing and Health Sciences, Fiji National University, Suva, Fiji Islands
| |
Collapse
|
227
|
Chowdhury P, Barooah AK. Tea Bioactive Modulate Innate Immunity: In Perception to COVID-19 Pandemic. Front Immunol 2020; 11:590716. [PMID: 33193427 PMCID: PMC7655931 DOI: 10.3389/fimmu.2020.590716] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Innate immunity impairment led to disruption in cascade of signaling pathways upregulating pro-inflammatory cytokines, diminish interferons, depleted natural killer cells and activate reactive oxygen species production. These conditions severely affected body's ability to fight against infectious diseases and also plays a pivotal role in disease progression. Here, in emphasis is on nutritional immunity for regulating effective innate immune response for combating against infectious diseases like novel coronavirus disease (COVID 19). Drawing from discoveries on in-vitro experiments, animal models and human trials, tea polyphenols, micronutrients, and vitamins has the potential to modulate and enhance innate immune response. This article provides a comprehensive review on tea (Camellia sinensis L) infusion (a hot water extract of dried processed tea leaves prepared from young shoots of tea plant) as an innate immunity modulator. Tea infusion is rich in polyphenols; epigallocatechin gallate (EGCG) and theaflavin (TF), major green and black tea polyphenols, respectively. Studies showed their immunomodulatory competence. Tea infusions are also rich in alkaloids; caffeine and its intermediates, theophylline and theobromine, which have anti-inflammatory properties. Tea plant being an acidophilic perennial crop can accumulate different micronutrients, viz., copper (Cu), iron (Fe), manganese (Mn), selenium (Se), and zinc (Zn) from growing medium, i.e., from soil, which led to their considerable presence in tea infusion. Micronutrients are integral part of innate immune response. Overall, this review presents tea infusion as an important source of nutritional immunity which can enhance innate immune response in order to mitigate the unprecedented COVID-19 pandemic.
Collapse
Affiliation(s)
- Pritom Chowdhury
- Department of Biotechnology, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| | - Anoop Kumar Barooah
- Directorate, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| |
Collapse
|
228
|
Lima-Martínez MM, Carrera Boada C, Madera-Silva MD, Marín W, Contreras M. COVID-19 and diabetes: A bidirectional relationship. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2020; 33:151-157. [PMID: 33303218 PMCID: PMC7598432 DOI: 10.1016/j.arteri.2020.10.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/20/2020] [Accepted: 10/05/2020] [Indexed: 01/17/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causal agent of coronavirus disease 2019 (COVID-19). Diabetes is one of the most frequent comorbidities in people with COVID-19 with a prevalence that varies between 7 and 30%. Diabetics infected with SARS-CoV-2 have a higher rate of hospital admission, severe pneumonia, and higher mortality compared to non-diabetic subjects. Chronic hyperglycemia can compromise innate and humoral immunity. Furthermore, diabetes is associated with a low-grade chronic inflammatory state that favors the development of an exaggerated inflammatory response and therefore the appearance of acute respiratory distress syndrome. Recent evidence has shown that SARS-CoV-2 is also capable of causing direct damage to the pancreas that could worsen hyperglycemia and even induce the onset of diabetes in previously non-diabetic subjects. Therapeutic strategies should be aimed at facilitating patient access to the healthcare system. Control of blood glucose and comorbidities must be individualized in order to reduce the incidence of complications and decrease the burden on health systems. In this article we will review the pathophysiological mechanisms that explain the bidirectional relationship between COVID-19 and diabetes mellitus, its implication in the prognosis and management of hyperglycemia in this group of patients.
Collapse
Affiliation(s)
- Marcos M Lima-Martínez
- Unidad de Endocrinología, Diabetes, Metabolismo y Nutrición, Anexo Centro Médico Orinoco, Ciudad Bolívar, Bolívar, Venezuela; Departamento de Ciencias Fisiológicas, Universidad de Oriente, Núcleo Bolívar, Ciudad Bolívar, Bolívar, Venezuela.
| | | | | | - Waleskha Marín
- Servicio de Oftalmología, Hospital Universitario de Caracas, Caracas, Venezuela
| | | |
Collapse
|
229
|
Buinitskaya Y, Gurinovich R, Wlodaver CG, Kastsiuchenka S. Centrality of G6PD in COVID-19: The Biochemical Rationale and Clinical Implications. Front Med (Lausanne) 2020; 7:584112. [PMID: 33195336 PMCID: PMC7643021 DOI: 10.3389/fmed.2020.584112] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction: COVID-19 is a novel and devastating disease. Its manifestations vary from asymptomatic to lethal. Moreover, mortality rates differ based on underlying health conditions and ethnicity. We investigated the biochemical rationale behind these observations using machine reasoning by the sci.AI system (https://sci.ai/). Facts were extracted and linked from publications available in nlm.nih.gov and Europe PMC to form the dataset which was validated by medical experts. Results: Based on the analysis of experimental and clinical data, we synthesized detailed biochemical pathways of COVID-19 pathogenesis which were used to explain epidemiological and clinical observations. Clinical manifestations and biomarkers are highlighted to monitor the course of COVID-19 and navigate treatment. As depicted in the Graphical Abstract, SARS-CoV-2 triggers a pro-oxidant (PO) response leading to the production of reactive oxygen species (ROS) as a normal innate defense. However, SARS-CoV-2's unique interference with the antioxidant (AO) system, through suppression of nitric oxide (NO) production in the renin- angiotensin-aldosterone system (RAAS), leads to an excessive inflammatory PO response. The excessive PO response becomes critical in cohorts with a compromised AO system such as patients with glucose-6-phosphate dehydrogenase deficiency (G6PDd) where NO and glutathione (GSH) mechanisms are impaired. G6PDd develops in patients with metabolic syndrome. It is mediated by aldosterone (Ald) which also increases specifically in COVID-19. Conclusion: G6PD is essential for an adequate immune response. Both G6PDd and SARS-CoV-2 compromise the AO system through the same pathways rendering G6PDd the Achilles' heel for COVID-19. Thus, the evolutionary antimalarial advantage of the G6PDd cohort can be a disadvantage against SARS-CoV-2.
Collapse
Affiliation(s)
| | | | - Clifford G Wlodaver
- Oklahoma University Health Sciences Center, Oklahoma City, OK, United States
| | - Siarhei Kastsiuchenka
- Anesthesiology Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
230
|
Minakshi R, Jan AT, Rahman S, Kim J. A Testimony of the Surgent SARS-CoV-2 in the Immunological Panorama of the Human Host. Front Cell Infect Microbiol 2020; 10:575404. [PMID: 33262955 PMCID: PMC7687052 DOI: 10.3389/fcimb.2020.575404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022] Open
Abstract
The resurgence of SARS in the late December of 2019 due to a novel coronavirus, SARS-CoV-2, has shadowed the world with a pandemic. The physiopathology of this virus is very much in semblance with the previously known SARS-CoV and MERS-CoV. However, the unprecedented transmissibility of SARS-CoV-2 has been puzzling the scientific efforts. Though the virus harbors much of the genetic and architectural features of SARS-CoV, a few differences acquired during its evolutionary selective pressure is helping the SARS-CoV-2 to establish prodigious infection. Making entry into host the cell through already established ACE-2 receptor concerted with the action of TMPRSS2, is considered important for the virus. During the infection cycle of SARS-CoV-2, the innate immunity witnesses maximum dysregulations in its molecular network causing fatalities in aged, comorbid cases. The overt immunopathology manifested due to robust cytokine storm shows ARDS in severe cases of SARS-CoV-2. A delayed IFN activation gives appropriate time to the replicating virus to evade the host antiviral response and cause disruption of the adaptive response as well. We have compiled various aspects of SARS-CoV-2 in relation to its unique structural features and ability to modulate innate as well adaptive response in host, aiming at understanding the dynamism of infection.
Collapse
Affiliation(s)
- Rinki Minakshi
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, India
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Safikur Rahman
- Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur, India
| | - Jihoe Kim
- Department of Medical Biotechnology, Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si, South Korea
| |
Collapse
|
231
|
Khadke S, Ahmed N, Ahmed N, Ratts R, Raju S, Gallogly M, de Lima M, Sohail MR. Harnessing the immune system to overcome cytokine storm and reduce viral load in COVID-19: a review of the phases of illness and therapeutic agents. Virol J 2020; 17:154. [PMID: 33059711 PMCID: PMC7558250 DOI: 10.1186/s12985-020-01415-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, previously named 2019-nCov), a novel coronavirus that emerged in China in December 2019 and was declared a global pandemic by World Health Organization by March 11th, 2020. Severe manifestations of COVID-19 are caused by a combination of direct tissue injury by viral replication and associated cytokine storm resulting in progressive organ damage. DISCUSSION We reviewed published literature between January 1st, 2000 and June 30th, 2020, excluding articles focusing on pediatric or obstetric population, with a focus on virus-host interactions and immunological mechanisms responsible for virus associated cytokine release syndrome (CRS). COVID-19 illness encompasses three main phases. In phase 1, SARS-CoV-2 binds with angiotensin converting enzyme (ACE)2 receptor on alveolar macrophages and epithelial cells, triggering toll like receptor (TLR) mediated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ƙB) signaling. It effectively blunts an early (IFN) response allowing unchecked viral replication. Phase 2 is characterized by hypoxia and innate immunity mediated pneumocyte damage as well as capillary leak. Some patients further progress to phase 3 characterized by cytokine storm with worsening respiratory symptoms, persistent fever, and hemodynamic instability. Important cytokines involved in this phase are interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α. This is typically followed by a recovery phase with production of antibodies against the virus. We summarize published data regarding virus-host interactions, key immunological mechanisms responsible for virus-associated CRS, and potential opportunities for therapeutic interventions. CONCLUSION Evidence regarding SARS-CoV-2 epidemiology and pathogenesis is rapidly evolving. A better understanding of the pathophysiology and immune system dysregulation associated with CRS and acute respiratory distress syndrome in severe COVID-19 is imperative to identify novel drug targets and other therapeutic interventions.
Collapse
Affiliation(s)
- Sumanth Khadke
- Our Lady of Fatima University, 120 MacArthur Highway, 1440, Valenzuela, Metro Manila, Philippines
| | - Nayla Ahmed
- Section of Hospital Medicine, Dartmouth-Hitchcock Medical Center - Geisel School of Medicine, One Medical Center Drive, Lebanon, NH, 03766, USA
| | - Nausheen Ahmed
- Section of Hematology Oncology, Bone Marrow Transplant and Cellular Therapy, University Of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Ryan Ratts
- Section of Hospital Medicine, Dartmouth-Hitchcock Medical Center - Geisel School of Medicine, One Medical Center Drive, Lebanon, NH, 03766, USA
- Section of Pediatric Hospital Medicine, Dartmouth-Hitchcock Medical Center - Geisel School of Medicine, One Medical Center Drive, Lebanon, NH, 03766, USA
| | - Shine Raju
- Section of Pulmonary and Critical Care, University Hospitals Cleveland Medical Center - Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Molly Gallogly
- Section of Hematology Oncology, Stem Cell Transplant and Cellular Therapeutics, University Hospitals Seidman Cancer Center - Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Marcos de Lima
- Section of Hematology Oncology, Stem Cell Transplant and Cellular Therapeutics, University Hospitals Seidman Cancer Center - Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Muhammad Rizwan Sohail
- Section of Infectious Diseases and Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, 200 1st St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
232
|
Khairkhah N, Aghasadeghi MR, Namvar A, Bolhassani A. Design of novel multiepitope constructs-based peptide vaccine against the structural S, N and M proteins of human COVID-19 using immunoinformatics analysis. PLoS One 2020; 15:e0240577. [PMID: 33057358 PMCID: PMC7561160 DOI: 10.1371/journal.pone.0240577] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022] Open
Abstract
The causative agent of severe acute respiratory syndrome (SARS) reported by the Chinese Center for Disease Control (China CDC) has been identified as a novel Betacoronavirus (SARS-CoV-2). A computational approach was adopted to identify multiepitope vaccine candidates against SARS-CoV-2 based on S, N and M proteins being able to elicit both humoral and cellular immune responses. In this study, the sequence of the virus was obtained from NCBI database and analyzed with in silico tools such as NetMHCpan, IEDB, BepiPred, NetCTL, Tap transport/proteasomal cleavage, Pa3P, GalexyPepDock, I-TASSER, Ellipro and ClusPro. To identify the most immunodominant regions, after analysis of population coverage and epitope conservancy, we proposed three different constructs based on linear B-cell, CTL and HTL epitopes. The 3D structure of constructs was assessed to find discontinuous B-cell epitopes. Among CTL predicted epitopes, S257-265, S603-611 and S360-368, and among HTL predicted epitopes, N167-181, S313-330 and S1110-1126 had better MHC binding rank. We found one putative CTL epitope, S360-368 related to receptor-binding domain (RBD) region for S protein. The predicted epitopes were non-allergen and showed a high quality of proteasomal cleavage and Tap transport efficiency and 100% conservancy within four different clades of SARS-CoV-2. For CTL and HTL epitopes, the highest population coverage of the world's population was calculated for S27-37 with 86.27% and for S196-231, S303-323, S313-330, S1009-1030 and N328-349 with 90.33%, respectively. We identified overall 10 discontinuous B-cell epitopes for three multiepitope constructs. All three constructs showed strong interactions with TLRs 2, 3 and 4 supporting the hypothesis of SARS-CoV-2 susceptibility to TLRs 2, 3 and 4 like other Coronaviridae families. These data demonstrated that the novel designed multiepitope constructs can contribute to develop SARS-CoV-2 peptide vaccine candidates. The in vivo studies are underway using several vaccination strategies.
Collapse
Affiliation(s)
- Niloofar Khairkhah
- Department of Hepatitis, AIDS and Blood-borne diseases, Pasteur Institute of Iran, Tehran, Iran
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | | | - Ali Namvar
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis, AIDS and Blood-borne diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
233
|
Larenas-Linnemann D, Rodríguez-Pérez N, Arias-Cruz A, Blandón-Vijil MV, Del Río-Navarro BE, Estrada-Cardona A, Gereda JE, Luna-Pech JA, Navarrete-Rodríguez EM, Onuma-Takane E, Pozo-Beltrán CF, Rojo-Gutiérrez MI. Enhancing innate immunity against virus in times of COVID-19: Trying to untangle facts from fictions. World Allergy Organ J 2020; 13:100476. [PMID: 33072240 PMCID: PMC7546230 DOI: 10.1016/j.waojou.2020.100476] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction In light of the current COVID-19 pandemic, during which the world is confronted with a new, highly contagious virus that suppresses innate immunity as one of its initial virulence mechanisms, thus escaping from first-line human defense mechanisms, enhancing innate immunity seems a good preventive strategy. Methods Without the intention to write an official systematic review, but more to give an overview of possible strategies, in this review article we discuss several interventions that might stimulate innate immunity and thus our defense against (viral) respiratory tract infections. Some of these interventions can also stimulate the adaptive T- and B-cell responses, but our main focus is on the innate part of immunity. We divide the reviewed interventions into: 1) lifestyle related (exercise, >7 h sleep, forest walking, meditation/mindfulness, vitamin supplementation); 2) Non-specific immune stimulants (letting fever advance, bacterial vaccines, probiotics, dialyzable leukocyte extract, pidotimod), and 3) specific vaccines with heterologous effect (BCG vaccine, mumps-measles-rubeola vaccine, etc). Results For each of these interventions we briefly comment on their definition, possible mechanisms and evidence of clinical efficacy or lack of it, especially focusing on respiratory tract infections, viral infections, and eventually a reduced mortality in severe respiratory infections in the intensive care unit. At the end, a summary table demonstrates the best trials supporting (or not) clinical evidence. Conclusion Several interventions have some degree of evidence for enhancing the innate immune response and thus conveying possible benefit, but specific trials in COVID-19 should be conducted to support solid recommendations.
Collapse
Key Words
- ACE2, Angiotensin converting enzime-2
- APC, Antigen-presenting cell
- BCG, Bacillus Calmette-Guérin
- BV, Bacterial vaccine
- Bacillus calmette-guérin
- Bacterial vaccine
- CCL-5, Chemokine (C–C motif) ligand 5
- CI, Confidence interval
- CNS, Central nervous system
- COVID-19
- COVID-19, Coronavirus disease-2019
- CXCR3A, CXC chemokine receptor 3A
- DAMPs, Damage-associated molecular patterns
- DC, Dendritic cell
- DLE, Dialyzable leukocyte extract
- Exercise
- Gαs: G protein coupled receptor alfa-subunits, HSP
- Heat shock proteins, HLA-DR
- Immune response
- Immunoglobulin, IGFBP6
- Innate
- Insulin-like growth-factor-binding-protein 6, IL
- Intercellular adhesion molecule type 1, IFN
- Interferon, IG
- Interleukin, MBSR
- MCP-1, Monocyte chemoattractant protein-1
- MMR
- MODS, Multi-organ dysfunction syndrome
- Major histocompatibility complex class II cell surface receptor, ICAM-1
- Mindfulness
- Mindfulness-based stress reduction, mCa++: Intramitochondrial calcium
- MyD88, Myeloid differentiation primary response 88
- NF-κB, Nuclear factor kappaB
- NK, Natural killer
- NK-Cell
- NOD2, Nucleotide-binding oligomerization domain-containing protein 2
- OR, Odds ratio
- OxPhos: Oxidative phosphorylation, PAMPs
- PKC, Protein kinase C
- PPD, Purified protein derivative (tuberculin)
- PUFA, Polyunsaturated fatty acid
- Pathogen-associated molecular patterns, PBMC
- Peripheral blood mononuclear cell, PI3K/Akt: Phosphatidylinositol 3-kinase pathway
- R0: Basic reproduction number, REM
- Rapid eye movement, RIPK2
- Reactive nitrogen species, ROS
- Reactive oxygen species, SARS-CoV-2
- Receptor iteracting serine/threonine kinase 2, RNA
- Ribonucleic acid, RNS
- Severe acute respiratory syndrome coronavirus 2, SIRS
- Sleep
- Systemic inflammatory response syndrome, TCR:T-cell receptor
- TLR, Toll-like receptor
- TNF-α, Tumor necrosis factor alpha
- TRPV, Thermolabile calcium channels
- Th, T helper-cell
- Trained immunity
- URTI, Upper-respiratory tract infection
Collapse
Affiliation(s)
- Désirée Larenas-Linnemann
- Médica Sur, Clinical Foundation and Hospital, Mexico City, Mexico
- Corresponding author. Médica Sur, Fundación clínica y hospital, Puente de piedra 150, T2Toriello Guerra, Tlalpan, Ciudad de México, México, 14050, Mexico. E-mails:
| | | | - Alfredo Arias-Cruz
- State University of Nuevo León, School of Medicine and University Hospital Dr. José Eleuterio González, Monterrey, Nuevo Leon, Mexico
| | | | | | | | | | - Jorge A. Luna-Pech
- Departamento de Disciplinas Filosóficas, Metodológicas e Instrumentales (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | | | - Ernesto Onuma-Takane
- Fundación Clínica y Hospital Médica Sur, Ciudad de México, México, Mexico City, Mexico
| | | | | |
Collapse
|
234
|
Pagliari F, Marafioti MG, Genard G, Candeloro P, Viglietto G, Seco J, Tirinato L. ssRNA Virus and Host Lipid Rearrangements: Is There a Role for Lipid Droplets in SARS-CoV-2 Infection? Front Mol Biosci 2020; 7:578964. [PMID: 33134318 PMCID: PMC7579428 DOI: 10.3389/fmolb.2020.578964] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Since its appearance, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has immediately alarmed the World Health Organization for its very high contagiousness and the complexity of patient clinical profiles. The worldwide scientific community is today gathered in a massive effort in order to develop safe vaccines and effective therapies in the shortest possible time. Every day, new pieces of SARS-CoV-2 infective puzzle are disclosed. Based on knowledge gained with other related coronaviruses and, more in general, on single-strand RNA viruses, we highlight underexplored molecular routes in which lipids and lipid droplets (LDs) might serve essential functions in viral infections. In fact, both lipid homeostasis and the pathways connected to lipids seem to be fundamental in all phases of the coronavirus infection. This review aims at describing potential roles for lipid and LDs in host-virus interactions and suggesting LDs as new and central cellular organelles to be investigated as potential targets against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Francesca Pagliari
- Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Maria Grazia Marafioti
- Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Geraldine Genard
- Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Patrizio Candeloro
- BioNEM Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Joao Seco
- Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany.,Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Luca Tirinato
- Biomedical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany.,BioNEM Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
235
|
Ayelign B, Akalu Y, Teferi B, Molla MD, Shibabaw T. Helminth Induced Immunoregulation and Novel Therapeutic Avenue of Allergy. J Asthma Allergy 2020; 13:439-451. [PMID: 33116652 PMCID: PMC7548329 DOI: 10.2147/jaa.s273556] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022] Open
Abstract
Allergic diseases are increasing at an alarming rate worldwide, particularly in developed countries. In contrast, there is a decrease in the prevalence of helminthic infections and other neglected diseases. The hygiene hypothesis elaborates parasitic infection, and allergy-associated diseases have an inverse relationship. Acute helminthic infection and allergic reaction stimulate Type 2 helper cells (Th2) immune response with up-regulation of cytokines IL-4-, IL-5-, and IL-13-mediated IgE and mast cell production, as well as eosinophilia. However, people who chronically suffer from helminthic infections are demarcated through polarized Th2 resulting in alternative macrophage activation and T regulatory response. This regulatory system reduces allergy incidence in individuals that are chronically diseased through helminth. As a result, the excretory-secretory (ES) substance derived from parasites and extracellular vesicular components can be used as a novel therapeutic modality of allergy. Therefore, the aim of this review meticulously explored the link between helminth infection and allergy, and utilization of the helminth secretome for therapeutic immunomodulation.
Collapse
Affiliation(s)
- Birhanu Ayelign
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yonas Akalu
- Department of Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Banchamlak Teferi
- Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Meseret Derbew Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tewodros Shibabaw
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
236
|
Yazdanifar M, Mashkour N, Bertaina A. Making a case for using γδ T cells against SARS-CoV-2. Crit Rev Microbiol 2020; 46:689-702. [PMID: 33023358 DOI: 10.1080/1040841x.2020.1822279] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intensive worldwide efforts are underway to determine both the pathogenesis of SARS-CoV-2 infection and the immune responses in COVID-19 patients in order to develop effective therapeutics and vaccines. One type of cell that may contribute to these immune responses is the γδ T lymphocyte, which plays a key role in immunosurveillance of the mucosal and epithelial barriers by rapidly responding to pathogens. Although found in low numbers in blood, γδ T cells consist the majority of tissue-resident T cells and participate in the front line of the host immune defense. Previous studies have demonstrated the critical protective role of γδ T cells in immune responses to other respiratory viruses, including SARS-CoV-1. However, no studies have profoundly investigated these cells in COVID-19 patients to date. γδ T cells can be safely expanded in vivo using existing inexpensive FDA-approved drugs such as bisphosphonate, in order to test its protective immune response to SARS-CoV-2. To support this line of research, we review insights gained from previous coronavirus research, along with recent findings, discussing the potential role of γδ T cells in controlling SARS-CoV-2. We conclude by proposing several strategies to enhance γδ T cell's antiviral function, which may be used in developing therapies for COVID-19.
Collapse
Affiliation(s)
- Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Narges Mashkour
- Australian Institute of Tropical Health and Medicine, CPHMVS, James Cook University, Townsville, QLD, Australia
| | - Alice Bertaina
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
237
|
South K, McCulloch L, McColl BW, Elkind MSV, Allan SM, Smith CJ. Preceding infection and risk of stroke: An old concept revived by the COVID-19 pandemic. Int J Stroke 2020; 15:722-732. [PMID: 32618498 PMCID: PMC7534199 DOI: 10.1177/1747493020943815] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/26/2020] [Indexed: 01/08/2023]
Abstract
Anecdotal reports and clinical observations have recently emerged suggesting a relationship between COVID-19 disease and stroke, highlighting the possibility that infected individuals may be more susceptible to cerebrovascular events. In this review we draw on emerging studies of the current pandemic and data from earlier, viral epidemics, to describe possible mechanisms by which SARS-CoV-2 may influence the prevalence of stroke, with a focus on the thromboinflammatory pathways, which may be perturbed. Some of these potential mechanisms are not novel but are, in fact, long-standing hypotheses linking stroke with preceding infection that are yet to be confirmed. The current pandemic may present a renewed opportunity to better understand the relationship between infection and stroke and possible underlying mechanisms.
Collapse
Affiliation(s)
- Kieron South
- Division of Neuroscience and Experimental Psychology, Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Laura McCulloch
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Barry W McColl
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Mitchell SV Elkind
- Vagelos College of Physicians and Surgeons and Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Stuart M Allan
- Division of Neuroscience and Experimental Psychology, Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Craig J Smith
- Division of Cardiovascular Sciences, Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Manchester Centre for Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, UK
| |
Collapse
|
238
|
Frías Vargas M, Díaz Rodríguez A, Díaz Fernández B. [Lipid treatment in the period COVID-19]. Semergen 2020; 46:497-502. [PMID: 32718781 PMCID: PMC7328617 DOI: 10.1016/j.semerg.2020.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVES The COVID-19 pandemic has shown that cardiovascular diseases carry a higher risk of mortality. Doubts have been raised regarding lipid therapy in these patients. The objectives are to analyze the efficacy and safety of lipid lowering therapy in patients with COVID-19. MATERIAL AND METHODS A review of the scientific literature was conducted in PubMed, CDC Reports, NIH, and NCBI SARS-CoV-2 using the keywords: COVID-2, statins, ezetimibe, PCSK9 inhibitors, hypercholesterolemia, and hypolipidemic drugs. RESULTS The statins should continue to use patients with COVID-19 based on their efficacy, safety, immunosuppressive effects, anti-inflammatory availability and accessibility. Depending on the cardiovascular risk levels of these patients, the use of high potency statins and/or ezetimibe and/or iPCSK9 may be necessary in patients with high and very high cardiovascular risk. Patients treated with iPCSK9 should continue treatment for its beneficial effects in preventing cardiovascular disease. Patients with familial hypercholesterolemia and COVID-19 are especially vulnerable to cardiovascular disease and should continue to receive severe lipid lowering therapy. CONCLUSIONS In patients with COVID-19, the majority of baseline CVDs are of atherosclerotic origin, with the worst prediction for patients with high risk and very high risk of CVD. In these patients, intensive treatment with statins and/or fixed combination with ezetimibe and/or iPCSK9 plays a fundamental role.
Collapse
|
239
|
Taefehshokr N, Taefehshokr S, Hemmat N, Heit B. Covid-19: Perspectives on Innate Immune Evasion. Front Immunol 2020; 11:580641. [PMID: 33101306 PMCID: PMC7554241 DOI: 10.3389/fimmu.2020.580641] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
The ongoing outbreak of Coronavirus disease 2019 infection achieved pandemic status on March 11, 2020. As of September 8, 2020 it has caused over 890,000 mortalities world-wide. Coronaviral infections are enabled by potent immunoevasory mechanisms that target multiple aspects of innate immunity, with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) able to induce a cytokine storm, impair interferon responses, and suppress antigen presentation on both MHC class I and class II. Understanding the immune responses to SARS-CoV-2 and its immunoevasion approaches will improve our understanding of pathogenesis, virus clearance, and contribute toward vaccine and immunotherepeutic design and evaluation. This review discusses the known host innate immune response and immune evasion mechanisms driving SARS-CoV-2 infection and pathophysiology.
Collapse
Affiliation(s)
- Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON, Canada
| | - Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bryan Heit
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON, Canada
- Robarts Research Institute, London, ON, Canada
| |
Collapse
|
240
|
Lotfinejad P, Asadzadeh Z, Najjary S, Somi MH, Hajiasgharzadeh K, Mokhtarzadeh A, Derakhshani A, Roshani E, Baradaran B. COVID-19 Infection: Concise Review Based on the Immunological Perspective. Immunol Invest 2020; 51:246-265. [PMID: 32981399 DOI: 10.1080/08820139.2020.1825480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) has posed a serious threat to public health. There is an urgent need for discovery methods for the prevention and treatment of COVID-19 infection. Understanding immunogenicity together with immune responses are expected to provide further information about this virus. We hope that this narrative review article may create new insights for researchers to take great strides toward designing vaccines and novel therapies in the near future. The functional properties of the immune system in COVID-19 infection is not exactly clarified yet. This is compounded by the many gaps in our understanding of the SARS-CoV-2 immunogenicity properties. Possible immune responses according to current literature are discussed as the first line of defense and acquired immunity. Here, we focus on proposed modern preventive immunotherapy methods in COVID-19 infection.
Collapse
Affiliation(s)
- Parisa Lotfinejad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Najjary
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elmira Roshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
241
|
Ackerman EE, Shoemaker JE. Network Controllability-Based Prioritization of Candidates for SARS-CoV-2 Drug Repositioning. Viruses 2020; 12:v12101087. [PMID: 32993136 PMCID: PMC7650805 DOI: 10.3390/v12101087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
In a short time, the COVID-19 pandemic has left the world with over 25 million cases and staggering death tolls that are still rising. Treatments for SARS-CoV-2 infection are desperately needed as there are currently no approved drug therapies. With limited knowledge of viral mechanisms, a network controllability method of prioritizing existing drugs for repurposing efforts is optimal for quickly moving through the drug approval pipeline using limited, available, virus-specific data. Based on network topology and controllability, 16 proteins involved in translation, cellular transport, cellular stress, and host immune response are predicted as regulators of the SARS-CoV-2 infected cell. Of the 16, eight are prioritized as possible drug targets where two, PVR and SCARB1, are previously unexplored. Known compounds targeting these genes are suggested for viral inhibition study. Prioritized proteins in agreement with previous analysis and viral inhibition studies verify the ability of network controllability to predict biologically relevant candidates.
Collapse
Affiliation(s)
- Emily E. Ackerman
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Jason E. Shoemaker
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260, USA;
- The McGowan Institute for Regenerative Medicine (MIRM), University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Correspondence:
| |
Collapse
|
242
|
Mahapatra SR, Sahoo S, Dehury B, Raina V, Patro S, Misra N, Suar M. Designing an efficient multi-epitope vaccine displaying interactions with diverse HLA molecules for an efficient humoral and cellular immune response to prevent COVID-19 infection. Expert Rev Vaccines 2020; 19:871-885. [PMID: 32869699 PMCID: PMC7544970 DOI: 10.1080/14760584.2020.1811091] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background The novel SARS-CoV-2 coronavirus, the causative agent of the ongoing pandemic COVID-19 disease continues to infect people globally and has infected millions of humans worldwide. However, no effective vaccine against this virus exists. Method Using Immunoinformatics, epitopic sequences from multiple glycoproteins that play crucial role in pathogenesis were identified. Particularly, epitopes were mapped from conserved receptor-binding domain of spike protein which have been experimentally validated in SARS-CoV-1 as a promising target for vaccine development. Results A multi-epitopic vaccine construct comprising of B-cell, CTL, HTL epitopes was developed along with fusion of adjuvant and linkers. The epitopes identified herein are reported for the first time and were predicted to be highly antigenic, stable, nonallergen, nontoxic and displayed conservation across several SARS-CoV-2 isolates from different countries. Additionally, the epitopes associated with maximum HLA alleles and population coverage analysis shows the proposed epitopes would be a relevant representative of large proportion of the world population. A reliable three-dimensional structure of the vaccine construct was developed. Consequently, docking and molecular-dynamics simulation ensured the stable interaction between vaccine and innate-immune receptor.
Collapse
Affiliation(s)
- Soumya Ranjan Mahapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU) , Bhubaneswar 751024, India
| | - Susrita Sahoo
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU) , Bhubaneswar 751024, India
| | - Budheswar Dehury
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU) , Bhubaneswar 751024, India
| | - Vishakha Raina
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU) , Bhubaneswar 751024, India
| | - Shubhransu Patro
- Kalinga Institute of Medical Sciences (KIMS) Kalinga Institute of Industrial Technology (KIIT-DU) , Bhubaneswar 751024, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU) , Bhubaneswar 751024, India.,KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT-DU) , Bhubaneswar 751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU) , Bhubaneswar 751024, India.,KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT-DU) , Bhubaneswar 751024, India
| |
Collapse
|
243
|
Ochsner SA, Pillich RT, McKenna NJ. Consensus transcriptional regulatory networks of coronavirus-infected human cells. Sci Data 2020; 7:314. [PMID: 32963239 PMCID: PMC7509801 DOI: 10.1038/s41597-020-00628-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023] Open
Abstract
Establishing consensus around the transcriptional interface between coronavirus (CoV) infection and human cellular signaling pathways can catalyze the development of novel anti-CoV therapeutics. Here, we used publicly archived transcriptomic datasets to compute consensus regulatory signatures, or consensomes, that rank human genes based on their rates of differential expression in MERS-CoV (MERS), SARS-CoV-1 (SARS1) and SARS-CoV-2 (SARS2)-infected cells. Validating the CoV consensomes, we show that high confidence transcriptional targets (HCTs) of MERS, SARS1 and SARS2 infection intersect with HCTs of signaling pathway nodes with known roles in CoV infection. Among a series of novel use cases, we gather evidence for hypotheses that SARS2 infection efficiently represses E2F family HCTs encoding key drivers of DNA replication and the cell cycle; that progesterone receptor signaling antagonizes SARS2-induced inflammatory signaling in the airway epithelium; and that SARS2 HCTs are enriched for genes involved in epithelial to mesenchymal transition. The CoV infection consensomes and HCT intersection analyses are freely accessible through the Signaling Pathways Project knowledgebase, and as Cytoscape-style networks in the Network Data Exchange repository.
Collapse
Affiliation(s)
- Scott A Ochsner
- The Signaling Pathways Project and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rudolf T Pillich
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Neil J McKenna
- The Signaling Pathways Project and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
244
|
de Queiroz NMGP, Marinho FV, Chagas MA, Leite LCC, Homan EJ, de Magalhães MTQ, Oliveira SC. Vaccines for COVID-19: perspectives from nucleic acid vaccines to BCG as delivery vector system. Microbes Infect 2020; 22:515-524. [PMID: 32961274 PMCID: PMC7501874 DOI: 10.1016/j.micinf.2020.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
This article discusses standard and new disruptive strategies in the race to develop an anti-COVID-19 vaccine. We also included new bioinformatic data from our group mapping immunodominant epitopes and structural analysis of the spike protein. Another innovative approach reviewed here is the use of BCG vaccine as priming strategy and/or delivery system expressing SARS-CoV-2 antigens.
Collapse
Affiliation(s)
- Nina Marí G P de Queiroz
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabio V Marinho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcelo A Chagas
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciana C C Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| | | | - Mariana T Q de Magalhães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sergio C Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq/MCT, BA, Brazil.
| |
Collapse
|
245
|
Correction: Unpuzzling COVID-19: tissue-related signaling pathways associated with SARS-CoV-2 infection and transmission. Clin Sci (Lond) 2020; 134:2315-2317. [PMID: 32901820 PMCID: PMC7484393 DOI: 10.1042/cs-20200904_cor] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
246
|
Induction of the Antiviral Immune Response and Its Circumvention by Coronaviruses. Viruses 2020; 12:v12091039. [PMID: 32961897 PMCID: PMC7551260 DOI: 10.3390/v12091039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Some coronaviruses are zoonotic viruses of human and veterinary medical importance. The novel coronavirus, severe acute respiratory symptoms coronavirus 2 (SARS-CoV-2), associated with the current global pandemic, is characterized by pneumonia, lymphopenia, and a cytokine storm in humans that has caused catastrophic impacts on public health worldwide. Coronaviruses are known for their ability to evade innate immune surveillance exerted by the host during the early phase of infection. It is important to comprehensively investigate the interaction between highly pathogenic coronaviruses and their hosts. In this review, we summarize the existing knowledge about coronaviruses with a focus on antiviral immune responses in the respiratory and intestinal tracts to infection with severe coronaviruses that have caused epidemic diseases in humans and domestic animals. We emphasize, in particular, the strategies used by these coronaviruses to circumvent host immune surveillance, mainly including the hijack of antigen-presenting cells, shielding RNA intermediates in replication organelles, 2′-O-methylation modification for the evasion of RNA sensors, and blocking of interferon signaling cascades. We also provide information about the potential development of coronavirus vaccines and antiviral drugs.
Collapse
|
247
|
Rizk JG, Kalantar-Zadeh K, Mehra MR, Lavie CJ, Rizk Y, Forthal DN. Pharmaco-Immunomodulatory Therapy in COVID-19. Drugs 2020; 80:1267-1292. [PMID: 32696108 PMCID: PMC7372203 DOI: 10.1007/s40265-020-01367-z] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 associated coronavirus disease 2019 (COVID-19) illness is a syndrome of viral replication in concert with a host inflammatory response. The cytokine storm and viral evasion of cellular immune responses may play an equally important role in the pathogenesis, clinical manifestation, and outcomes of COVID-19. Systemic proinflammatory cytokines and biomarkers are elevated as the disease progresses towards its advanced stages, and correlate with worse chances of survival. Immune modulators have the potential to inhibit cytokines and treat the cytokine storm. A literature search using PubMed, Google Scholar, and ClinicalTrials.gov was conducted through 8 July 2020 using the search terms ‘coronavirus’, ‘immunology’, ‘cytokine storm’, ‘immunomodulators’, ‘pharmacology’, ‘severe acute respiratory syndrome 2’, ‘SARS-CoV-2’, and ‘COVID-19’. Specific immune modulators include anti-cytokines such as interleukin (IL)-1 and IL-6 receptor antagonists (e.g. anakinra, tocilizumab, sarilumab, siltuximab), Janus kinase (JAK) inhibitors (e.g. baricitinib, ruxolitinib), anti-tumor necrosis factor-α (e.g. adalimumab, infliximab), granulocyte–macrophage colony-stimulating factors (e.g. gimsilumab, lenzilumab, namilumab), and convalescent plasma, with promising to negative trials and other data. Non-specific immune modulators include human immunoglobulin, corticosteroids such as dexamethasone, interferons, statins, angiotensin pathway modulators, macrolides (e.g. azithromycin, clarithromycin), hydroxychloroquine and chloroquine, colchicine, and prostaglandin D2 modulators such as ramatroban. Dexamethasone 6 mg once daily (either by mouth or by intravenous injection) for 10 days may result in a reduction in mortality in COVID-19 patients by one-third for patients on ventilators, and by one-fifth for those receiving oxygen. Research efforts should focus not only on the most relevant immunomodulatory strategies but also on the optimal timing of such interventions to maximize therapeutic outcomes. In this review, we discuss the potential role and safety of these agents in the management of severe COVID-19, and their impact on survival and clinical symptoms.
Collapse
Affiliation(s)
- John G Rizk
- Edson College, Arizona State University, Phoenix, AZ, USA.
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California, Irvine, School of Medicine, Irvine, CA, USA.,Department of Epidemiology, University of California, Los Angeles, UCLA Fielding School of Public Health, Los Angeles, CA, USA.,Tibor Rubin VA Long Beach Healthcare System, Long Beach, CA, USA
| | - Mandeep R Mehra
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School-The University of Queensland School of Medicine, New Orleans, LA, USA
| | - Youssef Rizk
- Department of Family Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Donald N Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, School of Medicine, Irvine, CA, USA.,Department of Molecular Biology and Biochemistry, University of California, Irvine, School of Medicine, Irvine, CA, USA
| |
Collapse
|
248
|
Beacon TH, Su RC, Lakowski TM, Delcuve GP, Davie JR. SARS-CoV-2 multifaceted interaction with the human host. Part II: Innate immunity response, immunopathology, and epigenetics. IUBMB Life 2020; 72:2331-2354. [PMID: 32936531 DOI: 10.1002/iub.2379] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022]
Abstract
The SARS-CoV-2 makes its way into the cell via the ACE2 receptor and the proteolytic action of TMPRSS2. In response to the SARS-CoV-2 infection, the innate immune response is the first line of defense, triggering multiple signaling pathways to produce interferons, pro-inflammatory cytokines and chemokines, and initiating the adaptive immune response against the virus. Unsurprisingly, the virus has developed strategies to evade detection, which can result in delayed, excessive activation of the innate immune system. The response elicited by the host depends on multiple factors, including health status, age, and sex. An overactive innate immune response can lead to a cytokine storm, inflammation, and vascular disruption, leading to the vast array of symptoms exhibited by COVID-19 patients. What is known about the expression and epigenetic regulation of the ACE2 gene and the various players in the host response are explored in this review.
Collapse
Affiliation(s)
- Tasnim H Beacon
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ruey-Chyi Su
- National HIV and Retrovirology Laboratory, JC Wilt Infectious Disease Research Centre, Winnipeg, Manitoba, Canada
| | - Ted M Lakowski
- College of Pharmacy, Pharmaceutical Analysis Laboratory, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Geneviève P Delcuve
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
249
|
de Oliveira M, De Sibio MT, Mathias LS, Rodrigues BM, Sakalem ME, Nogueira CR. Irisin modulates genes associated with severe coronavirus disease (COVID-19) outcome in human subcutaneous adipocytes cell culture. Mol Cell Endocrinol 2020; 515:110917. [PMID: 32593740 PMCID: PMC7315947 DOI: 10.1016/j.mce.2020.110917] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022]
Abstract
Obesity patients are more susceptible to develop COVID-19 severe outcome due to the role of angiotensin-converting enzyme 2 (ACE2) in the viral infection. ACE2 is regulated in the human cells by different genes associated with increased (TLR3, HAT1, HDAC2, KDM5B, SIRT1, RAB1A, FURIN and ADAM10) or decreased (TRIB3) virus replication. RNA-seq data revealed 14857 genes expressed in human subcutaneous adipocytes, including genes mentioned above. Irisin treatment increased by 3-fold the levels of TRIB3 transcript and decreased the levels of other genes. The decrease in FURIN and ADAM10 expression enriched diverse biological processes, including extracellular structure organization. Our results, in human subcutaneous adipocytes cell culture, indicate a positive effect of irisin on the expression of multiple genes related to viral infection by SARS-CoV-2; furthermore, translatable for other tissues and organs targeted by the novel coronavirus and present, thus, promising approaches for the treatment of COVID-19 infection as therapeutic strategy to decrease ACE2 regulatory genes.
Collapse
Affiliation(s)
- Miriane de Oliveira
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Maria Teresa De Sibio
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Lucas Solla Mathias
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Bruna Moretto Rodrigues
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Marna Eliana Sakalem
- Department of Anatomy, Londrina State University (UEL), Londrina, Parana, Brazil
| | - Célia Regina Nogueira
- Department of Internal Clinic, Botucatu Medicine School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
250
|
Sinderewicz E, Czelejewska W, Jezierska-Wozniak K, Staszkiewicz-Chodor J, Maksymowicz W. Immune Response to COVID-19: Can We Benefit from the SARS-CoV and MERS-CoV Pandemic Experience? Pathogens 2020; 9:E739. [PMID: 32916812 PMCID: PMC7559562 DOI: 10.3390/pathogens9090739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 01/08/2023] Open
Abstract
The global range and high fatality rate of the newest human coronavirus (HCoV) pandemic has made SARS-CoV-2 the focus of the scientific world. Next-generation sequencing of the viral genome and a phylogenetic analysis have shown the high homology of SARS-CoV-2 to other HCoVs that have led to local epidemics in the past. The experience acquired in SARS and MERS epidemics may prove useful in understanding the SARS-CoV-2 pathomechanism and lead to effective treatment and potential vaccine development. This study summarizes the immune response to SARS-CoV, MERS-CoV, and SARS-CoV-2 and focuses on T cell response, humoral immunity, and complement system activation in different stages of HCoVs infections. The study also presents the quantity and frequency of T cell responses, particularly CD4+ and CD8+; the profile of cytokine production and secretion; and its relation to T cell type, disease severity, and utility in prognostics of the course of SARS, MERS, and COVID-19 outbreaks. The role of interferons in the therapy of these infections is also discussed. Moreover, the kinetics of specific antibody production, the correlation between humoral and cellular immune response and the immunogenicity of the structural HCoVs proteins and their utility in the development of a vaccine against SARS, MERS, and COVID-19 has been updated.
Collapse
Affiliation(s)
- Emilia Sinderewicz
- Department of Neurosurgery, Laboratory of Regenerative Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Warszawska, Poland; (W.C.); (K.J.-W.); (J.S.-C.)
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Warszawska, Poland;
| | - Wioleta Czelejewska
- Department of Neurosurgery, Laboratory of Regenerative Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Warszawska, Poland; (W.C.); (K.J.-W.); (J.S.-C.)
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Warszawska, Poland;
| | - Katarzyna Jezierska-Wozniak
- Department of Neurosurgery, Laboratory of Regenerative Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Warszawska, Poland; (W.C.); (K.J.-W.); (J.S.-C.)
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Warszawska, Poland;
| | - Joanna Staszkiewicz-Chodor
- Department of Neurosurgery, Laboratory of Regenerative Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Warszawska, Poland; (W.C.); (K.J.-W.); (J.S.-C.)
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Warszawska, Poland;
| | - Wojciech Maksymowicz
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Warszawska, Poland;
| |
Collapse
|