2451
|
Gandhi D, Molotkov A, Batourina E, Schneider K, Dan H, Reiley M, Laufer E, Metzger D, Liang F, Liao Y, Sun TT, Aronow B, Rosen R, Mauney J, Adam R, Rosselot C, Van Batavia J, McMahon A, McMahon J, Guo JJ, Mendelsohn C. Retinoid signaling in progenitors controls specification and regeneration of the urothelium. Dev Cell 2013; 26:469-482. [PMID: 23993789 DOI: 10.1016/j.devcel.2013.07.017] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 06/20/2013] [Accepted: 07/24/2013] [Indexed: 12/20/2022]
Abstract
The urothelium is a multilayered epithelium that serves as a barrier between the urinary tract and blood, preventing the exchange of water and toxic substances. It consists of superficial cells specialized for synthesis and transport of uroplakins that assemble into a tough apical plaque, one or more layers of intermediate cells, and keratin 5-expressing basal cells (K5-BCs), which are considered to be progenitors in the urothelium and other specialized epithelia. Fate mapping, however, reveals that intermediate cells rather than K5-BCs are progenitors in the adult regenerating urothelium, that P cells, a transient population, are progenitors in the embryo, and that retinoids are critical in P cells and intermediate cells, respectively, for their specification during development and regeneration. These observations have important implications for tissue engineering and repair and, ultimately, may lead to treatments that prevent loss of the urothelial barrier, a major cause of voiding dysfunction and bladder pain syndrome.
Collapse
Affiliation(s)
- Devangini Gandhi
- Columbia University, Depts. of Urology, Genetics & Development and Pathology 1130 St. Nicholas Avenue, New York NY, USA
| | - Andrei Molotkov
- Columbia University, Depts. of Urology, Genetics & Development and Pathology 1130 St. Nicholas Avenue, New York NY, USA
| | - Ekatherina Batourina
- Columbia University, Depts. of Urology, Genetics & Development and Pathology 1130 St. Nicholas Avenue, New York NY, USA
| | - Kerry Schneider
- Columbia University, Depts. of Urology, Genetics & Development and Pathology 1130 St. Nicholas Avenue, New York NY, USA
| | - Hanbin Dan
- Columbia University, Depts. of Urology, Genetics & Development and Pathology 1130 St. Nicholas Avenue, New York NY, USA
| | - Maia Reiley
- Columbia University, Depts. of Urology, Genetics & Development and Pathology 1130 St. Nicholas Avenue, New York NY, USA
| | - Ed Laufer
- Columbia University, Department of Pathology, 630 West 168th Street, New York, NY, USA
| | - Daniel Metzger
- IGBMC, CNRS UMR7104/ INSERM U964, Université de Strasbourg, Collège de France, B.P. 10142, ILLKIRCH Cedex, FRANCE
| | - Fengxia Liang
- Department of Cell Biology, New York University Medical School, 550 First Avenue, New York, NY, USA
| | - Yi Liao
- Department of Cell Biology, New York University Medical School, 550 First Avenue, New York, NY, USA
| | - Tung-Tien Sun
- Department of Cell Biology, New York University Medical School, 550 First Avenue, New York, NY, USA
| | - Bruce Aronow
- Division of Biomedical Informatics 3333 Burnet Ave., MLC 7024 Cincinnati, OH 45229
| | - Roni Rosen
- Columbia University, Depts. of Urology, Genetics & Development and Pathology 1130 St. Nicholas Avenue, New York NY, USA
| | - Josh Mauney
- Boston Children's Hospital, Urological Diseases Research Center, Enders Research Building, 300, Longwood Avenue, Boston, MA 02115 USA
| | - Rosalyn Adam
- Department of Cell Biology, New York University Medical School, 550 First Avenue, New York, NY, USA
| | - Carolina Rosselot
- Columbia University, Depts. of Urology, Genetics & Development and Pathology 1130 St. Nicholas Avenue, New York NY, USA
| | - Jason Van Batavia
- Columbia University, Depts. of Urology, Genetics & Development and Pathology 1130 St. Nicholas Avenue, New York NY, USA
| | - Andrew McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Jill McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Jin-Jin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Cathy Mendelsohn
- Columbia University, Depts. of Urology, Genetics & Development and Pathology 1130 St. Nicholas Avenue, New York NY, USA
| |
Collapse
|
2452
|
Ancestral Myf5 gene activity in periocular connective tissue identifies a subset of fibro/adipogenic progenitors but does not connote a myogenic origin. Dev Biol 2013; 385:366-79. [PMID: 23969310 DOI: 10.1016/j.ydbio.2013.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/21/2013] [Accepted: 08/13/2013] [Indexed: 11/23/2022]
Abstract
Extraocular muscles (EOM) represent a unique muscle group that controls eye movements and originates from head mesoderm, while the more typically studied body and limb muscles are somite-derived. Aiming to investigate myogenic progenitors (satellite cells) in EOM versus limb and diaphragm of adult mice, we have been using flow cytometry in combination with myogenic-specific Cre-loxP lineage marking for cell isolation. While analyzing cells from the EOM of mice that harbor Myf5(Cre)-driven GFP expression, we identified in addition to the expected GFP(+) myogenic cells (presumably satellite cells), a second dominant GFP(+) population distinguished as being Sca1(+), non-myogenic, and exhibiting a fibro/adipogenic potential. This unexpected population was not only unique to EOM compared to the other muscles but also specific to the Myf5(Cre)-driven reporter when compared to the MyoD(Cre) driver. Histological studies of periocular tissue preparations demonstrated the presence of Myf5(Cre)-driven GFP(+) cells in connective tissue locations adjacent to the muscle masses, including cells in the vasculature wall. These vasculature-associated GFP(+) cells were further identified as mural cells based on the presence of the specific XLacZ4 transgene. Unlike the EOM satellite cells that originate from a Pax3-negative lineage, these non-myogenic Myf5(Cre)-driven GFP(+) cells appear to be related to cells of a Pax3-expressing origin, presumably derived from the neural crest. In all, our lineage tracing based on multiple reporter lines has demonstrated that regardless of common ancestral expression of Myf5, there is a clear distinction between periocular myogenic and non-myogenic cell lineages according to their mutually exclusive antecedence of MyoD and Pax3 gene activity.
Collapse
|
2453
|
Transient, afferent input-dependent, postnatal niche for neural progenitor cells in the cochlear nucleus. Proc Natl Acad Sci U S A 2013; 110:14456-61. [PMID: 23940359 DOI: 10.1073/pnas.1307376110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the cochlear nucleus (CN), the first central relay of the auditory pathway, the survival of neurons during the first weeks after birth depends on afferent innervation from the cochlea. Although input-dependent neuron survival has been extensively studied in the CN, neurogenesis has not been evaluated as a possible mechanism of postnatal plasticity. Here we show that new neurons are born in the CN during the critical period of postnatal plasticity. Coincidently, we found a population of neural progenitor cells that are controlled by a complex interplay of Wnt, Notch, and TGFβ/BMP signaling, in which low levels of TGFβ/BMP signaling are permissive for progenitor proliferation that is promoted by Wnt and Notch activation. We further show that cells with activated Wnt signaling reside in the CN and that these cells have high propensity for neurosphere formation. Cochlear ablation resulted in diminishment of progenitors and Wnt/β-catenin-active cells, suggesting that the neonatal CN maintains an afferent innervation-dependent population of progenitor cells that display active canonical Wnt signaling.
Collapse
|
2454
|
Lin C, Yin Y, Stemler K, Humphrey P, Kibel AS, Mysorekar IU, Ma L. Constitutive β-catenin activation induces male-specific tumorigenesis in the bladder urothelium. Cancer Res 2013; 73:5914-25. [PMID: 23928991 DOI: 10.1158/0008-5472.can-12-4198] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The incidence for bladder urothelial carcinoma, a common malignancy of the urinary tract, is about three times higher in men than in women. Although this gender difference has been primarily attributed to differential exposures, it is likely that underlying biologic causes contribute to the gender inequality. In this study, we report a transgenic mouse bladder tumor model upon induction of constitutively activated β-catenin signaling in the adult urothelium. We showed that the histopathology of the tumors observed in our model closely resembled that of the human low-grade urothelial carcinoma. In addition, we provided evidence supporting the KRT5-positive;KRT7-negative (KRT5(+); KRT7(-)) basal cells as the putative cells-of-origin for β-catenin-induced luminal tumor. Intriguingly, the tumorigenesis in this model showed a marked difference between opposite sexes; 40% of males developed macroscopically detectable luminal tumors in 12 weeks, whereas only 3% of females developed tumors. We investigated the mechanisms underlying this sexual dimorphism in pathogenesis and showed that nuclear translocation of the androgen receptor (AR) in the urothelial cells is a critical mechanism contributing to tumor development in male mice. Finally, we carried out global gene profiling experiments and defined the molecular signature for the β-catenin-induced tumorigenesis in males. Altogether, we have established a model for investigating sexual dimorphism in urothelial carcinoma development, and implicated synergy between β-catenin signaling and androgen/AR signaling in carcinogenesis of the basal urothelial cells.
Collapse
Affiliation(s)
- Congxing Lin
- Authors' Affiliations: Division of Dermatology, Department of Medicine, Departments of Obstetrics and Gynecology, and Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri; and Division of Urology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | |
Collapse
|
2455
|
Integrin-linked kinase regulates process extension in oligodendrocytes via control of actin cytoskeletal dynamics. J Neurosci 2013; 33:9781-93. [PMID: 23739974 DOI: 10.1523/jneurosci.5582-12.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Integrin-linked kinase (ILK) is a major structural adaptor protein governing signaling complex formation and cytoskeletal dynamics. Here, through the use of conditional knock-out mice, we demonstrate a requirement for ILK in oligodendrocyte differentiation and axonal myelination in vivo. In conjunction, ILK-deficient primary oligodendrocytes are defined by a failure in process extension and an inability to form myelin membrane upon axonal contact. Surprisingly, phosphorylation of the canonical downstream targets Akt and GSK3β is unaffected following ILK loss. Rather, the defects are due in part to actin cytoskeleton dysregulation with a correspondent increase in active RhoA levels. Morphological rescue is possible following Rho kinase inhibition in an oligodendrocyte subset. Furthermore, phenotypic severity correlates with environmental complexity; oligodendrocytes are severely malformed in vitro (a relatively simple environment), but undergo phenotypic recovery in the context of the whole animal. Together, our work demonstrates ILK as necessary for normal oligodendrocyte development, reinforces its role as a bridge between the actin cytoskeleton and cell membrane, and highlights the overarching compensatory capacity of oligodendrocytes in response to cellular milieu.
Collapse
|
2456
|
Zheng D, Limmon GV, Yin L, Leung NHN, Yu H, Chow VTK, Chen J. A cellular pathway involved in Clara cell to alveolar type II cell differentiation after severe lung injury. PLoS One 2013; 8:e71028. [PMID: 23940685 PMCID: PMC3734298 DOI: 10.1371/journal.pone.0071028] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 06/29/2013] [Indexed: 11/18/2022] Open
Abstract
Regeneration of alveolar epithelia following severe pulmonary damage is critical for lung function. We and others have previously shown that Scgb1a1-expressing cells, most likely Clara cells, can give rise to newly generated alveolar type 2 cells (AT2s) in response to severe lung damage induced by either influenza virus infection or bleomycin treatment. In this study, we have investigated cellular pathway underlying the Clara cell to AT2 differentiation. We show that the initial intermediates are bronchiolar epithelial cells that exhibit Clara cell morphology and express Clara cell marker, Scgb1a1, as well as the AT2 cell marker, pro-surfactant protein C (pro-SPC). These cells, referred to as pro-SPC(+) bronchiolar epithelial cells (or SBECs), gradually lose Scgb1a1 expression and give rise to pro-SPC(+) cells in the ring structures in the damaged parenchyma, which appear to differentiate into AT2s via a process sharing some features with that observed during alveolar epithelial development in the embryonic lung. These findings suggest that SBECs are intermediates of Clara cell to AT2 differentiation during the repair of alveolar epithelia following severe pulmonary injury.
Collapse
Affiliation(s)
- Dahai Zheng
- Interdisciplinary Research Group in Infectious Diseases, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Singapore
| | - Gino V. Limmon
- Interdisciplinary Research Group in Infectious Diseases, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Singapore
| | - Lu Yin
- Interdisciplinary Research Group in Infectious Diseases, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Singapore
| | - Nicola H. N. Leung
- Interdisciplinary Research Group in Infectious Diseases, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Singapore
| | - Hanry Yu
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research, Singapore; Department of Physiology & Mechanobiology, National University of Singapore, Singapore
| | - Vincent T. K. Chow
- Human Genome Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Health System, National University of Singapore, Singapore
- * E-mail: (JC); (VC)
| | - Jianzhu Chen
- Interdisciplinary Research Group in Infectious Diseases, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Singapore
- The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (JC); (VC)
| |
Collapse
|
2457
|
Hillestad ML, Guenzel AJ, Nath KA, Barry MA. A vector-host system to fingerprint virus tropism. Hum Gene Ther 2013; 23:1116-26. [PMID: 22834781 DOI: 10.1089/hum.2011.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reporter genes are important tools for assessing vector pharmacology in vivo. Although useful, current systems are limited by (1) the need to generate a new vector for each different reporter, (2) the inability to package reporter genes in small vectors, and (3) variations in reporter gene feedback due to variations in cell-to-cell vector copy number. To circumvent these problems, we have used Cre recombinase as a "cat's paw" to activate reporter genes embedded in transgenic mice. The small Cre gene was introduced into self-complementary adeno-associated viral (scAAV) vectors with limited packaging capacity. Injection of scAAV-Cre vectors into mice with loxP-inactivated luciferase enabled in vivo imaging distributions comparable to the signal observed after AAV-luciferase injection. When injected into mT/mG mice, AAV-Cre converted ubiquitous expression of red fluorescent protein (RFP) to green fluorescent protein (GFP) expression only where the vectors transduced cells. Injection into F(1) hybrid luciferase and mT/mG mice enabled simultaneous three-reporter tracking. This system was able to discriminate cell-specific transduction in all organs tested, with particular usefulness for detecting AAV serotype-specific transduction in the liver, kidney, and muscle. Given that F(1) mice bear exactly one copy of luciferase and one copy of RFP-GFP, each reporter gene is either "on" or "off" in a cell. The Cre system therefore provides a unique quantum method to quantify vector delivery that can be applied when vector capacity is limited.
Collapse
Affiliation(s)
- Matthew L Hillestad
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
2458
|
Snyder CS, Harrington AR, Kaushal S, Mose E, Lowy AM, Hoffman RM, Bouvet M. A dual-color genetically engineered mouse model for multispectral imaging of the pancreatic microenvironment. Pancreas 2013; 42:952-8. [PMID: 23648841 PMCID: PMC3713119 DOI: 10.1097/mpa.0b013e31828643df] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To develop a mouse model for multispectral fluorescence imaging of the pancreas and pancreatic microenvironment. METHODS Cre/loxP technology was used to develop this model. We crossed mT/mG indicator mice, engineered to constitutively express a conditional tdTomato transgene that converts to green fluorescent protein (GFP) expression after exposure to Cre recombinase, with Pdx1-Cre transgenic mice. To characterize this model for studies of pancreas biology, we performed bright light and fluorescence imaging of body cavities and intact organs and confocal microscopy of pancreata from offspring of Pdx1-Cre and mT/mG crosses. RESULTS Pdx1-Cre-mT/mG mice demonstrated bright GFP expression within the pancreas and duodenum and intense tdTomato expression in all other organs. Green fluorescent protein expression was mosaic in Pdx1-Cre-mT/mG pancreata, with most showing extensive conversion from tdTomato to GFP expression within the epithelial-derived elements of the pancreatic parenchyma. Because both GFP and tdTomato are membrane targeted, individual cell borders were clearly outlined in confocal images of mT/mG pancreata. CONCLUSIONS This mouse model enables multispectral fluorescence imaging of individual cells and cell processes at the microscopic level of the pancreatic microenvironment; it should prove valuable for a variety of fluorescence imaging studies, ranging from pancreatic development to pancreatic cancer biology.
Collapse
Affiliation(s)
- Cynthia S Snyder
- Department of Surgery, UCSD Moores Cancer Center, La Jolla, CA 92093-0987, USA
| | | | | | | | | | | | | |
Collapse
|
2459
|
Ma M, Tian X, Igarashi P, Pazour GJ, Somlo S. Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nat Genet 2013; 45:1004-12. [PMID: 23892607 PMCID: PMC3758452 DOI: 10.1038/ng.2715] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 07/02/2013] [Indexed: 12/14/2022]
Abstract
Kidney cysts occur following inactivation of polycystins in otherwise intact cilia or following complete removal of cilia by inactivation of intraflagellar transport-related proteins. We investigated the mechanisms of cyst formation in these two distinct processes by combining conditional inactivation of polycystins with concomitant ablation of cilia in developing and adult kidney and liver. We found that loss of intact cilia suppresses cyst growth following inactivation of polycystins and that the severity of cystic disease was directly related to the length of time between the initial loss of the polycystin proteins and the subsequent involution of cilia. This cilia-dependent cyst growth was not explained by activation of the MAPK/ERK, mTOR or cAMP pathways and is likely to be distinct from the mechanism of cyst growth following complete loss of cilia. The data establish the existence of a novel pathway defined by polycystin-dependent inhibition and cilia-dependent activation that promotes rapid cyst growth.
Collapse
Affiliation(s)
- Ming Ma
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | |
Collapse
|
2460
|
Hennig AK, Peng GH, Chen S. Transcription coactivators p300 and CBP are necessary for photoreceptor-specific chromatin organization and gene expression. PLoS One 2013; 8:e69721. [PMID: 23922782 PMCID: PMC3724885 DOI: 10.1371/journal.pone.0069721] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 06/12/2013] [Indexed: 12/12/2022] Open
Abstract
Rod and cone photoreceptor neurons in the mammalian retina possess specialized cellular architecture and functional features for converting light to a neuronal signal. Establishing and maintaining these characteristics requires appropriate expression of a specific set of genes, which is tightly regulated by a network of photoreceptor transcription factors centered on the cone-rod homeobox protein CRX. CRX recruits transcription coactivators p300 and CBP to acetylate promoter-bound histones and activate transcription of target genes. To further elucidate the role of these two coactivators, we conditionally knocked out Ep300 and/or CrebBP in differentiating rods or cones, using opsin-driven Cre recombinase. Knockout of either factor alone exerted minimal effects, but loss of both factors severely disrupted target cell morphology and function: the unique nuclear chromatin organization seen in mouse rods was reversed, accompanied by redistribution of nuclear territories associated with repressive and active histone marks. Transcription of many genes including CRX targets was severely impaired, correlating with reduced histone H3/H4 acetylation (the products of p300/CBP) on target gene promoters. Interestingly, the presence of a single wild-type allele of either coactivator prevented many of these defects, with Ep300 more effective than Cbp. These results suggest that p300 and CBP play essential roles in maintaining photoreceptor-specific structure, function and gene expression.
Collapse
Affiliation(s)
- Anne K. Hennig
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Guang-Hua Peng
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
2461
|
Ion channel-kinase TRPM7 is required for maintaining cardiac automaticity. Proc Natl Acad Sci U S A 2013; 110:E3037-46. [PMID: 23878236 DOI: 10.1073/pnas.1311865110] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sick sinus syndrome and atrioventricular block are common clinical problems, often necessitating permanent pacemaker placement, yet the pathophysiology of these conditions remains poorly understood. Here we show that Transient Receptor Potential Melastatin 7 (TRPM7), a divalent-permeant channel-kinase of unknown function, is highly expressed in embryonic myocardium and sinoatrial node (SAN) and is required for cardiac automaticity in these specialized tissues. TRPM7 disruption in vitro, in cultured embryonic cardiomyocytes, significantly reduces spontaneous Ca(2+) transient firing rates and is associated with robust down-regulation of Hcn4, Cav3.1, and SERCA2a mRNA. TRPM7 knockdown in zebrafish, global murine cardiac Trpm7 deletion (KO(αMHC-Cre)), and tamoxifen-inducible SAN restricted Trpm7 deletion (KO(HCN4-CreERT2)) disrupts cardiac automaticity in vivo. Telemetered and sedated KO(αMHC-Cre) and KO(HCN4-CreERT2) mice show episodes of sinus pauses and atrioventricular block. Isolated SAN from KO(αMHC-Cre) mice exhibit diminished Ca(2+) transient firing rates with a blunted diastolic increase in Ca(2+). Action potential firing rates are diminished owing to slower diastolic depolarization. Accordingly, Hcn4 mRNA and the pacemaker current, I(f), are diminished in SAN from both KO(αMHC-Cre) and KO(HCN4-CreERT2) mice. Moreover, heart rates of KO(αMHC-Cre) mice are less sensitive to the selective I(f) blocker ivabradine, and acute application of the recently identified TRPM7 blocker FTY720 has no effect on action potential firing rates of wild-type SAN cells. We conclude that TRPM7 influences diastolic membrane depolarization and automaticity in SAN indirectly via regulation of Hcn4 expression.
Collapse
|
2462
|
Lyons DB, Allen WE, Goh T, Tsai L, Barnea G, Lomvardas S. An epigenetic trap stabilizes singular olfactory receptor expression. Cell 2013; 154:325-36. [PMID: 23870122 PMCID: PMC3929589 DOI: 10.1016/j.cell.2013.06.039] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/06/2013] [Accepted: 06/20/2013] [Indexed: 11/27/2022]
Abstract
The molecular mechanisms regulating olfactory receptor (OR) expression in the mammalian nose are not yet understood. Here, we identify the transient expression of histone demethylase LSD1 and the OR-dependent expression of adenylyl cyclase 3 (Adcy3) as requirements for initiation and stabilization of OR expression. As a transcriptional coactivator, LSD1 is necessary for desilencing and initiating OR transcription, but as a transcriptional corepressor, it is incompatible with maintenance of OR expression, and its downregulation is imperative for stable OR choice. Adcy3, a sensor of OR expression and a transmitter of an OR-elicited feedback, mediates the downregulation of LSD1 and promotes the differentiation of olfactory sensory neurons (OSNs). This novel, three-node signaling cascade locks the epigenetic state of the chosen OR, stabilizes its singular expression, and prevents the transcriptional activation of additional OR alleles for the life of the neuron.
Collapse
Affiliation(s)
- David B Lyons
- Tetrad Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | |
Collapse
|
2463
|
In J, Lukyanenko V, Foulke-Abel J, Hubbard AL, Delannoy M, Hansen AM, Kaper JB, Boisen N, Nataro JP, Zhu C, Boedeker EC, Girón JA, Kovbasnjuk O. Serine protease EspP from enterohemorrhagic Escherichia coli is sufficient to induce shiga toxin macropinocytosis in intestinal epithelium. PLoS One 2013; 8:e69196. [PMID: 23874912 PMCID: PMC3715455 DOI: 10.1371/journal.pone.0069196] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 06/05/2013] [Indexed: 12/14/2022] Open
Abstract
Life-threatening intestinal and systemic effects of the Shiga toxins produced by enterohemorrhagic Escherichia coli (EHEC) require toxin uptake and transcytosis across intestinal epithelial cells. We have recently demonstrated that EHEC infection of intestinal epithelial cells stimulates toxin macropinocytosis, an actin-dependent endocytic pathway. Host actin rearrangement necessary for EHEC attachment to enterocytes is mediated by the type 3 secretion system which functions as a molecular syringe to translocate bacterial effector proteins directly into host cells. Actin-dependent EHEC attachment also requires the outer membrane protein intimin, a major EHEC adhesin. Here, we investigate the role of type 3 secretion in actin turnover occurring during toxin macropinocytosis. Toxin macropinocytosis is independent of EHEC type 3 secretion and intimin attachment. EHEC soluble factors are sufficient to stimulate macropinocytosis and deliver toxin into enterocytes in vitro and in vivo; intact bacteria are not required. Intimin-negative enteroaggregative Escherichia coli (EAEC) O104:H4 robustly stimulate Shiga toxin macropinocytosis into intestinal epithelial cells. The apical macropinosomes formed in intestinal epithelial cells move through the cells and release their cargo at these cells' basolateral sides. Further analysis of EHEC secreted proteins shows that a serine protease EspP alone is able to stimulate host actin remodeling and toxin macropinocytosis. The observation that soluble factors, possibly serine proteases including EspP, from each of two genetically distinct toxin-producing strains, can stimulate Shiga toxin macropinocytosis and transcellular transcytosis alters current ideas concerning mechanisms whereby Shiga toxin interacts with human enterocytes. Mechanisms important for this macropinocytic pathway could suggest new potential therapeutic targets for Shiga toxin-induced disease.
Collapse
Affiliation(s)
- Julie In
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Valeriy Lukyanenko
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jennifer Foulke-Abel
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ann L. Hubbard
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Michael Delannoy
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Anne-Marie Hansen
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - James B. Kaper
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Nadia Boisen
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - James P. Nataro
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Chengru Zhu
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Edgar C. Boedeker
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Jorge A. Girón
- Department of Molecular Genetics and Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Olga Kovbasnjuk
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
2464
|
Franco CA, Blanc J, Parlakian A, Blanco R, Aspalter IM, Kazakova N, Diguet N, Mylonas E, Gao-Li J, Vaahtokari A, Penard-Lacronique V, Fruttiger M, Rosewell I, Mericskay M, Gerhardt H, Li Z. SRF selectively controls tip cell invasive behavior in angiogenesis. Development 2013; 140:2321-33. [PMID: 23674601 DOI: 10.1242/dev.091074] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Efficient angiogenic sprouting is essential for embryonic, postnatal and tumor development. Serum response factor (SRF) is known to be important for embryonic vascular development. Here, we studied the effect of inducible endothelial-specific deletion of Srf in postnatal and adult mice. We find that endothelial SRF activity is vital for postnatal growth and survival, and is equally required for developmental and pathological angiogenesis, including during tumor growth. Our results demonstrate that SRF is selectively required for endothelial filopodia formation and cell contractility during sprouting angiogenesis, but seems dispensable for vascular remodeling. At the molecular level, we observe that vascular endothelial growth factor A induces nuclear accumulation of myocardin-related transcription factors (MRTFs) and regulates MRTF/SRF-dependent target genes including Myl9, which is important for endothelial cell migration in vitro. We conclude that SRF has a unique function in regulating migratory tip cell behavior during sprouting angiogenesis. We hypothesize that targeting the SRF pathway could provide an opportunity to selectively target tip cell filopodia-driven angiogenesis to restrict tumor growth.
Collapse
Affiliation(s)
- Claudio A Franco
- UPMC Univ Paris 06, UR 4, Aging, Stress and Inflammation, 75005 Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2465
|
Trowe MO, Zhao L, Weiss AC, Christoffels V, Epstein DJ, Kispert A. Inhibition of Sox2-dependent activation of Shh in the ventral diencephalon by Tbx3 is required for formation of the neurohypophysis. Development 2013; 140:2299-309. [PMID: 23674600 DOI: 10.1242/dev.094524] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tbx2 and Tbx3 are two highly related members of the T-box transcription factor gene family that regulate patterning and differentiation of a number of tissue rudiments in the mouse. Both genes are partially co-expressed in the ventral diencephalon and the infundibulum; however, a functional requirement in murine pituitary development has not been reported. Here, we show by genetic lineage tracing that Tbx2(+) cells constitute the precursor population of the neurohypophysis. However, Tbx2 is dispensable for neurohypophysis development as revealed by normal formation of this organ in Tbx2-deficient mice. By contrast, loss of Tbx3 from the ventral diencephalon results in a failure to establish the Tbx2(+) domain in this region, and a lack of evagination of the infundibulum and formation of the neurohypophysis. Rathke's pouch is severely hypoplastic, exhibits defects in dorsoventral patterning, and degenerates after E12.5. In Tbx3-deficient embryos, the ventral diencephalon is hyperproliferative and displays an abnormal cellular architecture, probably resulting from a failure to repress transcription of Shh. We further show that Tbx3 and Tbx2 repress Shh by sequestering the SRY box-containing transcription factor Sox2 away from a Shh forebrain enhancer (SBE2), thus preventing its activation. These data suggest that Tbx3 is required in the ventral diencephalon to establish a Shh(-) domain to allow formation of the infundibulum.
Collapse
Affiliation(s)
- Mark-Oliver Trowe
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
2466
|
Ehling M, Adams S, Benedito R, Adams RH. Notch controls retinal blood vessel maturation and quiescence. Development 2013; 140:3051-61. [DOI: 10.1242/dev.093351] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Blood vessels form a hierarchically organized network of arteries, capillaries and veins, which develops through a series of growth, pruning and maturation processes. In contrast to the rapidly increasing insight into the processes controlling vascular growth and, in particular, endothelial sprouting and proliferation, the conversion of immature vessels into a fully functional, quiescent vasculature remains little understood. Here we used inducible, cell type-specific genetic approaches to show that endothelial Notch signaling is crucial for the remodeling of veins and the perivenous capillary plexus, which occurs after the completion of the initial angiogenic growth phase in the retina of adolescent mice. Mutant vessels showed ectopic proliferation and sprouting, defective recruitment of supporting mural cells, and failed to downregulate the expression of VEGF receptors. Surprisingly, by contrast Notch was dispensable in the endothelium of remodeling postnatal arteries. Taken together, our results identify key processes contributing to vessel remodeling, maturation and the acquisition of a quiescent phenotype in the final stage of developmental angiogenesis.
Collapse
Affiliation(s)
- Manuel Ehling
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149 Münster, Germany
| | - Susanne Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149 Münster, Germany
| | - Rui Benedito
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149 Münster, Germany
| | - Ralf H. Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149 Münster, Germany
| |
Collapse
|
2467
|
Clonal precursor of bone, cartilage, and hematopoietic niche stromal cells. Proc Natl Acad Sci U S A 2013; 110:12643-8. [PMID: 23858471 DOI: 10.1073/pnas.1310212110] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Organs are composites of tissue types with diverse developmental origins, and they rely on distinct stem and progenitor cells to meet physiological demands for cellular production and homeostasis. How diverse stem cell activity is coordinated within organs is not well understood. Here we describe a lineage-restricted, self-renewing common skeletal progenitor (bone, cartilage, stromal progenitor; BCSP) isolated from limb bones and bone marrow tissue of fetal, neonatal, and adult mice. The BCSP clonally produces chondrocytes (cartilage-forming) and osteogenic (bone-forming) cells and at least three subsets of stromal cells that exhibit differential expression of cell surface markers, including CD105 (or endoglin), Thy1 [or CD90 (cluster of differentiation 90)], and 6C3 [ENPEP glutamyl aminopeptidase (aminopeptidase A)]. These three stromal subsets exhibit differential capacities to support hematopoietic (blood-forming) stem and progenitor cells. Although the 6C3-expressing subset demonstrates functional stem cell niche activity by maintaining primitive hematopoietic stem cell (HSC) renewal in vitro, the other stromal populations promote HSC differentiation to more committed lines of hematopoiesis, such as the B-cell lineage. Gene expression analysis and microscopic studies further reveal a microenvironment in which CD105-, Thy1-, and 6C3-expressing marrow stroma collaborate to provide cytokine signaling to HSCs and more committed hematopoietic progenitors. As a result, within the context of bone as a blood-forming organ, the BCSP plays a critical role in supporting hematopoiesis through its generation of diverse osteogenic and hematopoietic-promoting stroma, including HSC supportive 6C3(+) niche cells.
Collapse
|
2468
|
Gorrini C, Baniasadi PS, Harris IS, Silvester J, Inoue S, Snow B, Joshi PA, Wakeham A, Molyneux SD, Martin B, Bouwman P, Cescon DW, Elia AJ, Winterton-Perks Z, Cruickshank J, Brenner D, Tseng A, Musgrave M, Berman HK, Khokha R, Jonkers J, Mak TW, Gauthier ML. BRCA1 interacts with Nrf2 to regulate antioxidant signaling and cell survival. ACTA ACUST UNITED AC 2013; 210:1529-44. [PMID: 23857982 PMCID: PMC3727320 DOI: 10.1084/jem.20121337] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BRCA1 deficiency results in impaired Nrf2-mediated antioxidant responses followed by cell death, with estradiol rescuing the effect by inducing Nrf2 stabilization. Oxidative stress plays an important role in cancer development and treatment. Recent data implicate the tumor suppressor BRCA1 in regulating oxidative stress, but the molecular mechanism and the impact in BRCA1-associated tumorigenesis remain unclear. Here, we show that BRCA1 regulates Nrf2-dependent antioxidant signaling by physically interacting with Nrf2 and promoting its stability and activation. BRCA1-deficient mouse primary mammary epithelial cells show low expression of Nrf2-regulated antioxidant enzymes and accumulate reactive oxygen species (ROS) that impair survival in vivo. Increased Nrf2 activation rescues survival and ROS levels in BRCA1-null cells. Interestingly, 53BP1 inactivation, which has been shown to alleviate several defects associated with BRCA1 loss, rescues survival of BRCA1-null cells without restoring ROS levels. We demonstrate that estrogen treatment partially restores Nrf2 levels in the absence of BRCA1. Our data suggest that Nrf2-regulated antioxidant response plays a crucial role in controlling survival downstream of BRCA1 loss. The ability of estrogen to induce Nrf2 posits an involvement of an estrogen-Nrf2 connection in BRCA1 tumor suppression. Lastly, BRCA1-mutated tumors retain a defective antioxidant response that increases the sensitivity to oxidative stress. In conclusion, the role of BRCA1 in regulating Nrf2 activity suggests important implications for both the etiology and treatment of BRCA1-related cancers.
Collapse
Affiliation(s)
- Chiara Gorrini
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2469
|
Diethylstilbestrol induces vaginal adenosis by disrupting SMAD/RUNX1-mediated cell fate decision in the Müllerian duct epithelium. Dev Biol 2013; 381:5-16. [PMID: 23830984 DOI: 10.1016/j.ydbio.2013.06.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 11/21/2022]
Abstract
Women exposed to diethylstilbestrol (DES) in utero frequently develop vaginal adenosis, from which clear cell adenocarcinoma can arise. Despite decades of extensive investigation, the molecular pathogenesis of DES-associated vaginal adenosis remains elusive. Here we report that DES induces vaginal adenosis by inhibiting the BMP4/Activin A-regulated vaginal cell fate decision through a downregulation of RUNX1. BMP4 and Activin A produced by vaginal mesenchyme synergistically activated the expression of ΔNp63, thus deciding vaginal epithelial cell fate in the Müllerian duct epithelial cells (MDECs) via direct binding of SMADs on the highly conserved 5' sequence of ΔNp63. Therefore, mice in which Smad4 was deleted in MDECs failed to express ΔNp63 in vaginal epithelium and developed adenosis. This SMAD-dependent ΔNp63 activation required RUNX1, a binding partner of SMADs. Conditional deletion of Runx1 in the MDECs induced adenosis in the cranial portion of vagina, which mimicked the effect of developmental DES-exposure. Furthermore, neonatal DES exposure downregulated RUNX1 in the fornix of the vagina, where DES-associated adenosis is frequently found. This observation strongly suggests that the downregulation of RUNX1 is the cause of vaginal adenosis. However, once cell fate was determined, the BMP/Activin-SMAD/RUNX1 signaling pathway became dispensable for the maintenance of ΔNp63 expression in vaginal epithelium. Instead, the activity of the ΔNp63 locus in vaginal epithelium was maintained by a ΔNp63-dependent mechanism. This is the first demonstration of a molecular mechanism through which developmental chemical exposure causes precancerous lesions by altering cell fate.
Collapse
|
2470
|
The THO ribonucleoprotein complex is required for stem cell homeostasis in the adult mouse small intestine. Mol Cell Biol 2013; 33:3505-14. [PMID: 23816884 DOI: 10.1128/mcb.00751-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
RNA processing and transport are mediated by cotranscriptionally assembled ribonucleoprotein (RNP) complexes. RNPs have been postulated to help specify coordinated gene expression, but the requirements for specific RNP complexes in mammalian development and tissue homeostasis have not been extensively evaluated. THO is an evolutionarily conserved RNP complex that links transcription with nuclear export. THO is not essential for Saccharomyces cerevisiae viability, but it is essential for early mouse embryonic development. Embryonic lethality has limited the characterization of THO requirements in adult tissues. To overcome this limitation, a mouse model has been generated that allows widespread inducible deletion of Thoc1, which encodes an essential protein subunit of THO. Widespread Thoc1 deletion disrupts homeostasis within the small intestine but does not have detectable effects in other epithelial tissues such as the related mucosa of the large intestine. Thoc1 loss compromises the proliferation and lineage-generating capacity of small intestinal stem cells, disrupting the supply of differentiated cells in this rapidly renewing tissue. These findings demonstrate that the effects of THO deficiency in the adult mouse are tissue and cell type dependent.
Collapse
|
2471
|
Separation of intact intestinal epithelium from mesenchyme. Biotechniques 2013; 55:42-4. [DOI: 10.2144/000114055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/16/2013] [Indexed: 11/23/2022] Open
Abstract
Current protocols for separating adult intestinal epithelial cells from the underlying muscular and mesenchymal tissues typically involve extended incubations, harsh mechanical treatment, and exposure to either proteases or chelating agents. The drawbacks of these approaches include fragmentation, contamination with other cell types, reduced viability, and under-representation of crypt cells. Here we describe a gentle procedure that allows harvesting of pure, fully viable sheets of murine intestinal epithelium, with intact crypts and villi, without enzymes or EDTA. The mesenchyme retains intact villus core projections, is virtually free from epithelial cells, and can be cultured in vitro.
Collapse
|
2472
|
Tian X, Hu T, Zhang H, He L, Huang X, Liu Q, Yu W, He L, Yang Z, Zhang Z, Zhong TP, Yang X, Yang Z, Yan Y, Baldini A, Sun Y, Lu J, Schwartz RJ, Evans SM, Gittenberger-de Groot AC, Red-Horse K, Zhou B. Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries. Cell Res 2013; 23:1075-90. [PMID: 23797856 PMCID: PMC3760626 DOI: 10.1038/cr.2013.83] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/16/2013] [Accepted: 05/15/2013] [Indexed: 01/03/2023] Open
Abstract
Coronary arteries bring blood flow to the heart muscle. Understanding the developmental program of the coronary arteries provides insights into the treatment of coronary artery diseases. Multiple sources have been described as contributing to coronary arteries including the proepicardium, sinus venosus (SV), and endocardium. However, the developmental origins of coronary vessels are still under intense study. We have produced a new genetic tool for studying coronary development, an AplnCreER mouse line, which expresses an inducible Cre recombinase specifically in developing coronary vessels. Quantitative analysis of coronary development and timed induction of AplnCreER fate tracing showed that the progenies of subepicardial endothelial cells (ECs) both invade the compact myocardium to form coronary arteries and remain on the surface to produce veins. We found that these subepicardial ECs are the major sources of intramyocardial coronary vessels in the developing heart. In vitro explant assays indicate that the majority of these subepicardial ECs arise from endocardium of the SV and atrium, but not from ventricular endocardium. Clonal analysis of Apln-positive cells indicates that a single subepicardial EC contributes equally to both coronary arteries and veins. Collectively, these data suggested that subepicardial ECs are the major source of intramyocardial coronary arteries in the ventricle wall, and that coronary arteries and veins have a common origin in the developing heart.
Collapse
Affiliation(s)
- Xueying Tian
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2473
|
Liu L, Li M, Spangler LC, Spear C, Veenstra M, Darnall L, Chang C, Cotleur AC, Ransohoff RM. Functional defect of peripheral neutrophils in mice with induced deletion of CXCR2. Genesis 2013; 51:587-95. [PMID: 23650205 DOI: 10.1002/dvg.22401] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/15/2013] [Accepted: 04/26/2013] [Indexed: 01/08/2023]
Abstract
Type 2 CXC chemokine receptor CXCR2 plays roles in development, tumorigenesis, and inflammation. CXCR2 also promotes demyelination and decreases remyelination by actions toward hematopoietic cells and nonhematopoietic cells. Germline CXCR2 deficient (Cxcr2(-/-) ) mice reported in 1994 revealed the complexity of CXCR2 function and its differential expression in varied cell-types. Here, we describe Cxcr2(fl/fl) mice for which the targeting construct was generated by recombineering based on homologous recombination in E. coli. Without recombination Cxcr2(fl/fl) mice have CXCR2 expression on neutrophils in peripheral blood, bone marrow and spleen. Cxcr2(fl/fl) mice were crossed to Mx-Cre mice in which Cre recombinase is induced by Type I interferons, elicited by injection with polyinosinic-polycytidylic acid (poly(I:C)). CXCR2-deficient neutrophils were observed in poly(I:C) treated Cxcr2(fl/fl) ::Mx-Cre(+) (Cxcr2-CKO) mice, but not in poly(I:C) treated Cxcr2(f//+) ::Mx-Cre(+) mice. CXCR2 deletion was mainly observed peripherally but not in the CNS. Cxcr2-CKO mice showed impaired neutrophil migration in sterile peritonitis. Cxcr2-CKO mice reported here will provide a genetic reagent to dissect roles of CXCR2 in the neutrophil granulocyte lineage. Furthermore Cxcr2(fl/fl) mice will provide useful genetic models to evaluate CXCR2 function in varied cell populations.
Collapse
Affiliation(s)
- Liping Liu
- Department of Neuroscience, Neuroinflammation Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2474
|
Pond AC, Bin X, Batts T, Roarty K, Hilsenbeck S, Rosen JM. Fibroblast growth factor receptor signaling is essential for normal mammary gland development and stem cell function. Stem Cells 2013; 31:178-89. [PMID: 23097355 DOI: 10.1002/stem.1266] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/25/2012] [Indexed: 12/30/2022]
Abstract
Fibroblast growth factor (FGF) signaling plays an important role in embryonic stem cells and adult tissue homeostasis, but the function of FGFs in mammary gland stem cells is less well defined. Both FGFR1 and FGFR2 are expressed in basal and luminal mammary epithelial cells (MECs), suggesting that together they might play a role in mammary gland development and stem cell dynamics. Previous studies have demonstrated that the deletion of FGFR2 resulted only in transient developmental defects in branching morphogenesis. Using a conditional deletion strategy, we investigated the consequences of FGFR1 deletion alone and then the simultaneous deletion of both FGFR1 and FGFR2 in the mammary epithelium. FGFR1 deletion using a keratin 14 promoter-driven Cre-recombinase resulted in an early, yet transient delay in development. However, no reduction in functional outgrowth potential was observed following limiting dilution transplantation analysis. In contrast, a significant reduction in outgrowth potential was observed upon the deletion of both FGFR1 and FGFR2 in MECs using adenovirus-Cre. Additionally, using a fluorescent reporter mouse model to monitor Cre-mediated recombination, we observed a competitive disadvantage following transplantation of both FGFR1/R2-null MECs, most prominently in the basal epithelial cells. This correlated with the complete loss of the mammary stem cell repopulating population in the FGFR1/R2-attenuated epithelium. FGFR1/R2-null MECs were partially rescued in chimeric outgrowths containing wild-type MECs, suggesting the potential importance of paracrine mechanisms involved in the maintenance of the basal epithelial stem cells. These studies document the requirement for functional FGFR signaling in mammary stem cells during development.
Collapse
Affiliation(s)
- Adam C Pond
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
2475
|
Tatin F, Taddei A, Weston A, Fuchs E, Devenport D, Tissir F, Makinen T. Planar cell polarity protein Celsr1 regulates endothelial adherens junctions and directed cell rearrangements during valve morphogenesis. Dev Cell 2013; 26:31-44. [PMID: 23792146 PMCID: PMC3714594 DOI: 10.1016/j.devcel.2013.05.015] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/23/2013] [Accepted: 05/14/2013] [Indexed: 01/04/2023]
Abstract
Planar cell polarity (PCP) signaling controls tissue morphogenesis by coordinating collective cell behaviors. We show a critical role for the core PCP proteins Celsr1 and Vangl2 in the complex morphogenetic process of intraluminal valve formation in lymphatic vessels. We found that valve-forming endothelial cells undergo elongation, reorientation, and collective migration into the vessel lumen as they initiate valve leaflet formation. During this process, Celsr1 and Vangl2 are recruited from endothelial filopodia to discrete membrane domains at cell-cell contacts. Celsr1- or Vangl2-deficient mice show valve aplasia due to failure of endothelial cells to undergo rearrangements and adopt perpendicular orientation at valve initiation sites. Mechanistically, we show that Celsr1 regulates dynamic cell movements by inhibiting stabilization of VE-cadherin and maturation of adherens junctions. These findings reveal a role for PCP signaling in regulating adherens junctions and directed cell rearrangements during vascular development. Endothelial cells undergo collective migration during lymphatic valve morphogenesis PCP signaling directs rearrangements of valve-forming endothelial cells PCP components localize to filopodia and cell-cell contacts in valve endothelia PCP signaling regulates adherens junction formation and stabilization
Collapse
Affiliation(s)
- Florence Tatin
- Lymphatic Development Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | | | | | | | | |
Collapse
|
2476
|
Liu W, Shan T, Yang X, Liang S, Zhang P, Liu Y, Liu X, Kuang S. A heterogeneous lineage origin underlies the phenotypic and molecular differences of white and beige adipocytes. J Cell Sci 2013; 126:3527-32. [PMID: 23781029 DOI: 10.1242/jcs.124321] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A worldwide epidemic of obesity and its associated metabolic disorders raise the significance of adipocytes, their origins and characteristics. Our previous study has demonstrated that interscapular brown adipose tissue (BAT), but not intramuscular adipose, is derived from the Pax3-expressing cell lineage. Here, we show that various depots of subcutaneous (SAT) and visceral adipose tissue (VAT) are highly heterogeneous in the Pax3 lineage origin. Interestingly, the relative abundance of Pax3 lineage cells in SAT depots is inversely correlated to expression of BAT signature genes including Prdm16, Pgc1a (Ppargc1a) and Ucp1. FACS analysis further demonstrates that adipocytes differentiated from non-Pax3 lineage preadipocytes express higher levels of BAT and beige adipocyte signature genes compared with the Pax3 lineage adipocytes within the same depots. Although both Pax3 and non-Pax3 lineage preadipocytes can give rise to beige adipocytes, the latter contributes more significantly. Consistently, genetic ablation of Pax3 lineage cells in SAT leads to increased expression of beige cell markers. Finally, non-Pax3 lineage beige adipocytes are more responsive to cAMP-agonist-induced Ucp1 expression. Taken together, these results demonstrate widespread heterogeneity in Pax3 lineage origin, and its inverse association with BAT gene expression within and among subcutaneous adipose depots.
Collapse
Affiliation(s)
- Weiyi Liu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | |
Collapse
|
2477
|
Ghosh S, Varela L, Sood A, Park BH, Lotan TL. mTOR signaling feedback modulates mammary epithelial differentiation and restrains invasion downstream of PTEN loss. Cancer Res 2013; 73:5218-31. [PMID: 23774212 DOI: 10.1158/0008-5472.can-13-0429] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Oncogenic signaling pathways are tightly regulated by negative feedback circuits and relief of these circuits represents a common mechanism of tumor drug resistance. Although the significance of these feedback pathways for signal transduction is evident, their relevance for cellular differentiation and morphogenesis in a genetically defined context is unclear. In this study, we used isogenic benign mammary organotypic cultures to interrogate the role of mTOR-mediated negative feedback in the specific setting of PTEN inactivation. We found that mTOR signaling promoted basal-like differentiation and repressed nuclear hormone receptor expression after short-term PTEN loss in murine cell cultures analyzed ex vivo. Unexpectedly, we found that PTEN inactivation inhibited growth factor-induced epithelial invasion and that downstream mTOR-mediated signaling feedback was both necessary and sufficient for this effect. Mechanistically, using isogenic MCF10A cells with and without somatic PTEN deletion, we showed that mTOR inhibition promoted EGF-mediated epithelial invasion by derepressing upstream EGF receptor, SRC tyrosine kinase, and phosphoinositide 3-kinase signaling. In addition to offering new signal transduction insights, these results bring to light a number of important and potentially clinically relevant cellular consequences of mTOR inhibition in the specific context of PTEN loss, including modulation of hormone and growth factor responsiveness and promotion of epithelial invasion. Our findings prompt future investigations of the possibility that mTOR inhibitor therapy may not only be ineffective but even deleterious in tumors with PTEN loss.
Collapse
Affiliation(s)
- Susmita Ghosh
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
2478
|
Huang H, Cotton JL, Wang Y, Rajurkar M, Zhu LJ, Lewis BC, Mao J. Specific requirement of Gli transcription factors in Hedgehog-mediated intestinal development. J Biol Chem 2013; 288:17589-96. [PMID: 23645682 PMCID: PMC3682558 DOI: 10.1074/jbc.m113.467498] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/01/2013] [Indexed: 11/06/2022] Open
Abstract
Hedgehog (Hh) signaling is involved in multiple aspects of embryonic gut development, including mesenchymal growth and smooth muscle differentiation. The Gli family transcription factors is thought to collectively mediate Hh signaling in mammals. However, the function of different Gli proteins in gut development remains uncharacterized. Here, we genetically dissect the contribution of Gli transcriptional activation and de-repression in intestinal growth and patterning. We find that removal of the Gli3 repressor is dispensable for intestinal development and does not play a major role in Hh-controlled gut development. However, Gli2 activation is able to fully rescue the Smoothened (Smo)-null intestinal phenotype, suggesting that the Gli2 transcription factor is the main effector for Hh signaling in the intestine. To understand further the molecular mechanism underlying Hh/Gli function in the developing gut, we identify a subset of small leucine-rich glycoproteins (SLRPs) that may function downstream of Hh signaling in the mesenchyme. We show that osteoglycin, a SLRP, inhibits Hh-induced differentiation toward the smooth muscle lineage in C3H10T1/2 pluripotent mesenchymal cells. Taken together, our study reveals, for the first time, the distinct roles of Gli proteins in intestine development and suggests SLRPs as novel regulators of smooth muscle cell differentiation.
Collapse
Affiliation(s)
- He Huang
- From the Department of Cancer Biology
- the Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China 410013, and
| | | | - Yang Wang
- the University of Massachusetts MassBiologics, Boston, Massachusetts 02126
| | | | - Lihua J. Zhu
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Brian C. Lewis
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | | |
Collapse
|
2479
|
The transcription factor GATA4 is required for follicular development and normal ovarian function. Dev Biol 2013; 381:144-58. [PMID: 23769843 DOI: 10.1016/j.ydbio.2013.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 11/20/2022]
Abstract
Sex determination in mammals requires interaction between the transcription factor GATA4 and its cofactor FOG2. We have recently described the function of both proteins in testis development beyond the sex determination stage; their roles in the postnatal ovary, however, remain to be defined. Here, we use gene targeting in mice to determine the requirement of GATA4 and FOG2 in ovarian development and folliculogenesis. The results from this study identify an essential role of the GATA4 protein in the ovarian morphogenetic program. We show that in contrast to the sex determination phase, which relies on the GATA4-FOG2 complex, the subsequent regulation of ovarian differentiation is dependent upon GATA4 but not FOG2. The loss of Gata4 expression within the ovary results in impaired granulosa cell proliferation and theca cell recruitment as well as fewer primordial follicles in the ovarian cortex, causing a failure in follicular development. Preantral follicular atresia is observed within the few follicles that develop despite Gata4 deficiency. The depletion of the follicular pool in GATA4 deficient ovary results in the formation of ovarian cysts and sterility.
Collapse
|
2480
|
DiRocco DP, Kobayashi A, Taketo MM, McMahon AP, Humphreys BD. Wnt4/β-catenin signaling in medullary kidney myofibroblasts. J Am Soc Nephrol 2013; 24:1399-412. [PMID: 23766539 DOI: 10.1681/asn.2012050512] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Injury to the adult kidney induces a number of developmental genes thought to regulate repair, including Wnt4. During kidney development, early nephron precursors and medullary stroma both express Wnt4, where it regulates epithelialization and controls smooth muscle fate, respectively. Expression patterns and roles for Wnt4 in the adult kidney, however, remain unclear. In this study, we used reporters, lineage analysis, and conditional knockout or activation of the Wnt/β-catenin pathway to investigate Wnt4 in the adult kidney. Proliferating, medullary, interstitial myofibroblasts strongly expressed Wnt4 during renal fibrosis, whereas tubule epithelia, except for the collecting duct, did not. Exogenous Wnt4 drove myofibroblast differentiation of a pericyte-like cell line, suggesting that Wnt4 might regulate pericyte-to-myofibroblast transition through autocrine signaling. However, conditional deletion of Wnt4 in interstitial cells did not reduce myofibroblast proliferation, cell number, or myofibroblast gene expression during fibrosis. Because the injured kidney expresses multiple Wnt ligands that might compensate for the absence of Wnt4, we generated a mouse model with constitutive activation of canonical Wnt/β-catenin signaling in interstitial pericytes and fibroblasts. Kidneys from these mice exhibited spontaneous myofibroblast differentiation in the absence of injury. Taken together, Wnt4 expression in renal fibrosis defines a population of proliferating medullary myofibroblasts. Although Wnt4 may be dispensable for myofibroblast transformation, canonical Wnt signaling through β-catenin stabilization is sufficient to drive spontaneous myofibroblast differentiation in interstitial pericytes and fibroblasts, emphasizing the importance of this pathway in renal fibrosis.
Collapse
Affiliation(s)
- Derek P DiRocco
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
2481
|
Liang X, Wang G, Lin L, Lowe J, Zhang Q, Bu L, Chen Y, Chen J, Sun Y, Evans SM. HCN4 dynamically marks the first heart field and conduction system precursors. Circ Res 2013; 113:399-407. [PMID: 23743334 DOI: 10.1161/circresaha.113.301588] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RATIONALE To date, there has been no specific marker of the first heart field to facilitate understanding of contributions of the first heart field to cardiac lineages. Cardiac arrhythmia is a leading cause of death, often resulting from abnormalities in the cardiac conduction system (CCS). Understanding origins and identifying markers of CCS lineages are essential steps toward modeling diseases of the CCS and for development of biological pacemakers. OBJECTIVE To investigate HCN4 as a marker for the first heart field and for precursors of distinct components of the CCS, and to gain insight into contributions of first and second heart lineages to the CCS. METHODS AND RESULTS HCN4CreERT2, -nuclear LacZ, and -H2BGFP mouse lines were generated. HCN4 expression was examined by means of immunostaining with HCN4 antibody and reporter gene expression. Lineage studies were performed using HCN4CreERT2, Isl1Cre, Nkx2.5Cre, and Tbx18Cre, coupled to coimmunostaining with CCS markers. Results demonstrated that, at cardiac crescent stages, HCN4 marks the first heart field, with HCN4CreERT2 allowing assessment of cell fates adopted by first heart field myocytes. Throughout embryonic development, HCN4 expression marked distinct CCS precursors at distinct stages, marking the entire CCS by late fetal stages. We also noted expression of HCN4 in distinct subsets of endothelium at specific developmental stages. CONCLUSIONS This study provides insight into contributions of first and second heart lineages to the CCS and highlights the potential use of HCN4 in conjunction with other markers for optimization of protocols for generation and isolation of specific conduction system precursors.
Collapse
Affiliation(s)
- Xingqun Liang
- Skaggs School of Pharmacy and Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.,Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Gang Wang
- Skaggs School of Pharmacy and Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Lizhu Lin
- Skaggs School of Pharmacy and Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Jennifer Lowe
- Skaggs School of Pharmacy and Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Qingquang Zhang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Lei Bu
- Skaggs School of Pharmacy and Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Yihan Chen
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Ju Chen
- Skaggs School of Pharmacy and Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Yunfu Sun
- Skaggs School of Pharmacy and Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.,Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Sylvia M Evans
- Skaggs School of Pharmacy and Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
2482
|
Sah R, Mesirca P, Mason X, Gibson W, Bates-Withers C, Van den Boogert M, Chaudhuri D, Pu WT, Mangoni ME, Clapham DE. Timing of myocardial trpm7 deletion during cardiogenesis variably disrupts adult ventricular function, conduction, and repolarization. Circulation 2013; 128:101-14. [PMID: 23734001 DOI: 10.1161/circulationaha.112.000768] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Transient receptor potential (TRP) channels are a superfamily of broadly expressed ion channels with diverse physiological roles. TRPC1, TRPC3, and TRPC6 are believed to contribute to cardiac hypertrophy in mouse models. Human mutations in TRPM4 have been linked to progressive familial heart block. TRPM7 is a divalent-permeant channel and kinase of unknown function, recently implicated in the pathogenesis of atrial fibrillation; however, its function in ventricular myocardium remains unexplored. METHODS AND RESULTS We generated multiple cardiac-targeted knockout mice to test the hypothesis that TRPM7 is required for normal ventricular function. Early cardiac Trpm7 deletion (before embryonic day 9; TnT/Isl1-Cre) results in congestive heart failure and death by embryonic day 11.5 as a result of hypoproliferation of the compact myocardium. Remarkably, Trpm7 deletion late in cardiogenesis (about embryonic day 13; αMHC-Cre) produces viable mice with normal adult ventricular size, function, and myocardial transcriptional profile. Trpm7 deletion at an intermediate time point results in 50% of mice developing cardiomyopathy associated with heart block, impaired repolarization, and ventricular arrhythmias. Microarray analysis reveals elevations in transcripts of hypertrophy/remodeling genes and reductions in genes important for suppressing hypertrophy (Hdac9) and for ventricular repolarization (Kcnd2) and conduction (Hcn4). These transcriptional changes are accompanied by action potential prolongation and reductions in transient outward current (Ito; Kcnd2). Similarly, the pacemaker current (If; Hcn4) is suppressed in atrioventricular nodal cells, accounting for the observed heart block. CONCLUSIONS Trpm7 is dispensable in adult ventricular myocardium under basal conditions but is critical for myocardial proliferation during early cardiogenesis. Loss of Trpm7 at an intermediate developmental time point alters the myocardial transcriptional profile in adulthood, impairing ventricular function, conduction, and repolarization.
Collapse
Affiliation(s)
- Rajan Sah
- Howard Hughes Medical Institute, Department of Cardiology, Manton Center for Orphan Disease, Children's Hospital Boston, 320 Longwood Ave, Enders 1309, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2483
|
BMI1 represses Ink4a/Arf and Hox genes to regulate stem cells in the rodent incisor. Nat Cell Biol 2013; 15:846-52. [PMID: 23728424 PMCID: PMC3735916 DOI: 10.1038/ncb2766] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 04/19/2013] [Indexed: 12/12/2022]
Abstract
The polycomb group gene Bmi1 is required for maintenance of adult stem cells in many organs. Inactivation of Bmi1 leads to impaired stem cell self-renewal due to deregulated gene expression. One critical target of BMI1 is Ink4a/Arf, which encodes the cell-cycle inhibitors p16(Ink4a) and p19(Arf). However, deletion of Ink4a/Arf only partially rescues Bmi1-null phenotypes, indicating that other important targets of BMI1 exist. Here, using the continuously growing mouse incisor as a model system, we report that Bmi1 is expressed by incisor stem cells and that deletion of Bmi1 resulted in fewer stem cells, perturbed gene expression and defective enamel production. Transcriptional profiling revealed that Hox expression is normally repressed by BMI1 in the adult, and functional assays demonstrated that BMI1-mediated repression of Hox genes preserves the undifferentiated state of stem cells. As Hox gene upregulation has also been reported in other systems when Bmi1 is inactivated, our findings point to a general mechanism whereby BMI1-mediated repression of Hox genes is required for the maintenance of adult stem cells and for prevention of inappropriate differentiation.
Collapse
|
2484
|
Massarwa R, Ray HJ, Niswander L. Morphogenetic movements in the neural plate and neural tube: mouse. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 3:59-68. [DOI: 10.1002/wdev.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- R'ada Massarwa
- Department of Molecular Genetics; The Weizmann Institute of Science; Rehovot Israel
| | - Heather J. Ray
- Department of Pediatrics, Cell Biology Stem Cells and Development Graduate Program; University of Colorado School of Medicine and Children's Hospital Colorado; Aurora CO USA
| | - Lee Niswander
- Department of Pediatrics, Cell Biology Stem Cells and Development Graduate Program; University of Colorado School of Medicine and Children's Hospital Colorado; Aurora CO USA
| |
Collapse
|
2485
|
Inlay MA, Choe V, Bharathi S, Fernhoff NB, Baker JR, Weissman IL, Choi SK. Synthesis of a photocaged tamoxifen for light-dependent activation of Cre-ER recombinase-driven gene modification. Chem Commun (Camb) 2013; 49:4971-3. [PMID: 23612712 PMCID: PMC3926663 DOI: 10.1039/c3cc42179a] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We report the design of a water-soluble, quaternized tamoxifen photoprobe and demonstrate its application in light-controlled induction of green fluorescent protein expression via a Cre-ER recombinase system.
Collapse
Affiliation(s)
- Matthew A. Inlay
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Veronica Choe
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sophia Bharathi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nathaniel B. Fernhoff
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - James R. Baker
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Irving L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2486
|
Nelson BR, Hodge RD, Bedogni F, Hevner RF. Dynamic interactions between intermediate neurogenic progenitors and radial glia in embryonic mouse neocortex: potential role in Dll1-Notch signaling. J Neurosci 2013; 33:9122-39. [PMID: 23699523 PMCID: PMC3716275 DOI: 10.1523/jneurosci.0791-13.2013] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/08/2013] [Accepted: 04/11/2013] [Indexed: 11/21/2022] Open
Abstract
The mammalian neocortical progenitor cell niche is composed of a diverse repertoire of neuroepithelial cells, radial glia (RG), and intermediate neurogenic progenitors (INPs). Previously, live-cell imaging experiments have proved crucial in identifying these distinct progenitor populations, especially INPs, which amplify neural output by undergoing additional rounds of proliferation before differentiating into new neurons. INPs also provide feedback to the RG pool by serving as a source of Delta-like 1 (Dll1), a key ligand for activating Notch signaling in neighboring cells, a well-known mechanism for maintaining RG identity. While much is known about Dll1-Notch signaling at the molecular level, little is known about how this cell-cell contact dependent feedback is transmitted at the cellular level. To investigate how RG and INPs might interact to convey Notch signals, we used high-resolution live-cell multiphoton microscopy (MPM) to directly observe cellular interactions and dynamics, in conjunction with Notch-pathway specific reporters in the neocortical neural stem cell niche in organotypic brain slices from embryonic mice. We found that INPs and RG interact via dynamic and transient elongate processes, some apparently long-range (extending from the subventricular zone to the ventricular zone), and some short-range (filopodia-like). Gene expression profiling of RG and INPs revealed further progenitor cell diversification, including different subpopulations of Hes1+ and/or Hes5+ RG, and Dll1+ and/or Dll3+ INPs. Thus, the embryonic progenitor niche includes a network of dynamic cell-cell interactions, using different combinations of Notch signaling molecules to maintain and likely diversify progenitor pools.
Collapse
Affiliation(s)
- Branden R. Nelson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101, and
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98101
| | - Rebecca D. Hodge
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98101
| | - Francesco Bedogni
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98101
| | - Robert F. Hevner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101, and
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98101
| |
Collapse
|
2487
|
Bohnenpoll T, Bettenhausen E, Weiss AC, Foik AB, Trowe MO, Blank P, Airik R, Kispert A. Tbx18 expression demarcates multipotent precursor populations in the developing urogenital system but is exclusively required within the ureteric mesenchymal lineage to suppress a renal stromal fate. Dev Biol 2013; 380:25-36. [PMID: 23685333 DOI: 10.1016/j.ydbio.2013.04.036] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 04/30/2013] [Accepted: 04/30/2013] [Indexed: 01/08/2023]
Abstract
The mammalian urogenital system derives from multipotent progenitor cells of different germinal tissues. The contribution of individual sub-populations to specific components of the mature system, and the spatiotemporal restriction of the respective lineages have remained poorly characterized. Here, we use comparative expression analysis to delineate sub-regions within the developing urogenital system that express the T-box transcription factor gene Tbx18. We show that Tbx18 is transiently expressed in the epithelial lining and the subjacent mesenchyme of the urogenital ridge. At the onset of metanephric development Tbx18 expression occurs in a band of mesenchyme in between the metanephros and the Wolffian duct but is subsequently restricted to the mesenchyme surrounding the distal ureter stalk. Genetic lineage tracing reveals that former Tbx18(+) cells of the urogenital ridge and the metanephric field contribute substantially to the adrenal glands and gonads, to the kidney stroma, the ureteric and the bladder mesenchyme. Loss of Tbx18 does not affect differentiation of the adrenal gland, the gonad, the bladder and the kidney. However, ureter differentiation is severely disturbed as the mesenchymal lineage adopts a stromal rather than a ureteric smooth muscle fate. DiI labeling and tissue recombination experiments show that the restriction of Tbx18 expression to the prospective ureteric mesenchyme does not reflect an active condensation process but is due to a specific loss of Tbx18 expression in the mesenchyme out of range of signals from the ureteric epithelium. These cells either contribute to the renal stroma or undergo apoptosis aiding in severing the ureter from its surrounding tissues. We show that Tbx18-deficient cells do not respond to epithelial signals suggesting that Tbx18 is required to prepattern the ureteric mesenchyme. Our study provides new insights into the molecular diversity of urogenital progenitor cells and helps to understand the specification of the ureteric mesenchymal sub-lineage.
Collapse
Affiliation(s)
- Tobias Bohnenpoll
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
2488
|
Schmidt BA, Horsley V. Intradermal adipocytes mediate fibroblast recruitment during skin wound healing. Development 2013; 140:1517-27. [PMID: 23482487 DOI: 10.1242/dev.087593] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acute wound healing in the skin involves the communication of multiple cell types to coordinate keratinocyte and fibroblast proliferation and migration for epidermal and dermal repair. Many studies have focused on the interplay between hematopoietic cells, keratinocytes and fibroblasts during skin wound healing, yet the possible roles for other cell types within the skin, such as intradermal adipocytes, have not been investigated during this process. Here, we identify that adipocyte lineage cells are activated and function during acute skin wound healing. We find that adipocyte precursor cells proliferate and mature adipocytes repopulate skin wounds following inflammation and in parallel with fibroblast migration. Functional analysis of mice with defects in adipogenesis demonstrates that adipocytes are necessary for fibroblast recruitment and dermal reconstruction. These data implicate adipocytes as a key component of the intercellular communication that mediates fibroblast function during skin wound healing.
Collapse
Affiliation(s)
- Barbara A Schmidt
- Yale University, Department of Molecular, Cellular and Developmental Biology, New Haven, CT 06520, USA
| | | |
Collapse
|
2489
|
Laine CM, Joeng KS, Campeau PM, Kiviranta R, Tarkkonen K, Grover M, Lu JT, Pekkinen M, Wessman M, Heino TJ, Nieminen-Pihala V, Aronen M, Laine T, Kröger H, Cole WG, Lehesjoki AE, Nevarez L, Krakow D, Curry CJ, Cohn DH, Gibbs RA, Lee BH, Mäkitie O. WNT1 mutations in early-onset osteoporosis and osteogenesis imperfecta. N Engl J Med 2013; 368:1809-16. [PMID: 23656646 PMCID: PMC3709450 DOI: 10.1056/nejmoa1215458] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This report identifies human skeletal diseases associated with mutations in WNT1. In 10 family members with dominantly inherited, early-onset osteoporosis, we identified a heterozygous missense mutation in WNT1, c.652T→G (p.Cys218Gly). In a separate family with 2 siblings affected by recessive osteogenesis imperfecta, we identified a homozygous nonsense mutation, c.884C→A, p.Ser295*. In vitro, aberrant forms of the WNT1 protein showed impaired capacity to induce canonical WNT signaling, their target genes, and mineralization. In mice, Wnt1 was clearly expressed in bone marrow, especially in B-cell lineage and hematopoietic progenitors; lineage tracing identified the expression of the gene in a subset of osteocytes, suggesting the presence of altered cross-talk in WNT signaling between the hematopoietic and osteoblastic lineage cells in these diseases.
Collapse
Affiliation(s)
- Christine M. Laine
- Folkhälsan Institute of Genetics, Helsinki, FINLAND
- Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, SWEDEN
| | - Kyu Sang Joeng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Philippe M. Campeau
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Riku Kiviranta
- Department of Medical Biochemistry and Genetics and Department of Medicine, University of Turku, Turku, FINLAND
- Department of Medicine, Turku University Hospital, Turku, FINLAND
| | - Kati Tarkkonen
- Department of Medical Biochemistry and Genetics and Department of Medicine, University of Turku, Turku, FINLAND
| | - Monica Grover
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - James T. Lu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Structural and Computational Biology & Molecular Biophysics, Baylor College of Medicine, Houston, TX, USA
| | | | - Maija Wessman
- Folkhälsan Institute of Genetics, Helsinki, FINLAND
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, FINLAND
| | - Terhi J. Heino
- Department of Cell Biology and Anatomy, University of Turku, Turku, FINLAND
| | - Vappu Nieminen-Pihala
- Department of Medical Biochemistry and Genetics and Department of Medicine, University of Turku, Turku, FINLAND
| | - Mira Aronen
- Folkhälsan Institute of Genetics, Helsinki, FINLAND
| | - Tero Laine
- Department of Pediatric Orthopedic Surgery, Sahlgrenska University Hospital, Gothenburg, SWEDEN
| | - Heikki Kröger
- Bone and Cartilage Research Unit, University of Eastern Finland and Kuopio University Hospital, Kuopio, FINLAND
| | - William G. Cole
- Division of Pediatric Surgery, University of Alberta, Edmonton, CANADA
| | - Anna-Elina Lehesjoki
- Folkhälsan Institute of Genetics, Helsinki, FINLAND
- Haartman Institute, Department of Medical Genetics and Research Program’s Unit, Molecular Medicine, University of Helsinki, Helsinki, FINLAND
- Neuroscience Center, University of Helsinki, Helsinki, FINLAND
| | - Lisette Nevarez
- Department of Molecular, Cell and Developmental Biology, University of California-Los Angeles, CA, USA
| | - Deborah Krakow
- Department of Orthopaedic Surgery, University of California-Los Angeles, CA, USA
- Department of Human Genetics, University of California-Los Angeles, CA, USA
| | - Cynthia J.R. Curry
- University of California San Francisco/Genetic Medicine Central California, Fresno, CA, USA
| | - Daniel H. Cohn
- Department of Molecular, Cell and Developmental Biology, University of California-Los Angeles, CA, USA
- Department of Orthopaedic Surgery, University of California-Los Angeles, CA, USA
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Department of Medicine, Turku University Hospital, Turku, FINLAND
| | - Brendan H. Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Howard Hughes Medical Institute, Houston, TX, USA
- Correspondence to: Brendan Lee, MD, PhD, One Baylor Plaza Room R814, Houston, TX 77030, Phone: 713-798-8835, Fax: 713-798-5168,
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics, Helsinki, FINLAND
- Children’s Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, FINLAND
| |
Collapse
|
2490
|
Wood K, Wilhelm JC, Sabatier MJ, Liu K, Gu J, English AW. Sex differences in the effectiveness of treadmill training in enhancing axon regeneration in injured peripheral nerves. Dev Neurobiol 2013; 72:688-98. [PMID: 21805686 DOI: 10.1002/dneu.20960] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exercise in the form of daily treadmill training results in significant enhancement of axon regeneration following peripheral nerve injury. Because androgens are also linked to enhanced axon regeneration, we wanted to investigate whether sex differences in the effect of treadmill training might exist. The common fibular nerves of thy-1-YFP-H mice were cut and repaired with a graft of the same nerve from a strain-matched wild-type donor mouse. Animals were treated with one of two daily treadmill training paradigms: slow continuous walking for 1 h or four higher intensity intervals of 2 min duration separated by 5-min rest periods. Training was begun on the third day following nerve injury and continued 5 days per week for 2 weeks. Effects on regeneration were evaluated by measuring regenerating axon profile lengths in optical sections through the repair sites and grafts at the end of the training period. No sex differences were found in untrained control mice. Continuous training resulted in significant enhancement of axon regeneration only in males. No effect was found in females or in castrated males. Interval training was effective in enhancing axon regeneration only in females and not in intact males or castrated males. Untrained females treated with the aromatase inhibitor, anastrozole, had significant enhancement of axon regeneration without increasing serum testosterone levels. Two different mechanisms exist to promote axon regeneration in a sex-dependent manner. In males treadmill training uses testicular androgens. In females, a different cellular mechanism for the effect of treadmill training must exist.
Collapse
Affiliation(s)
- Kylene Wood
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA
| | | | | | | | | | | |
Collapse
|
2491
|
Expansion of oligodendrocyte progenitor cells following SIRT1 inactivation in the adult brain. Nat Cell Biol 2013; 15:614-24. [PMID: 23644469 DOI: 10.1038/ncb2735] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 03/14/2013] [Indexed: 12/13/2022]
Abstract
Oligodendrocytes-the myelin-forming cells of the central nervous system-can be regenerated during adulthood. In adults, new oligodendrocytes originate from oligodendrocyte progenitor cells (OPCs), but also from neural stem cells (NSCs). Although several factors supporting oligodendrocyte production have been characterized, the mechanisms underlying the generation of adult oligodendrocytes are largely unknown. Here we show that genetic inactivation of SIRT1, a protein deacetylase implicated in energy metabolism, increases the production of new OPCs in the adult mouse brain, in part by acting in NSCs. New OPCs produced following SIRT1 inactivation differentiate normally, generating fully myelinating oligodendrocytes. Remarkably, SIRT1 inactivation ameliorates remyelination and delays paralysis in mouse models of demyelinating injuries. SIRT1 inactivation leads to the upregulation of genes involved in cell metabolism and growth factor signalling, in particular PDGF receptor α (PDGFRα). Oligodendrocyte expansion following SIRT1 inactivation is mediated at least in part by AKT and p38 MAPK-signalling molecules downstream of PDGFRα. The identification of drug-targetable enzymes that regulate oligodendrocyte regeneration in adults could facilitate the development of therapies for demyelinating injuries and diseases, such as multiple sclerosis.
Collapse
|
2492
|
Chen J, Long F. β-catenin promotes bone formation and suppresses bone resorption in postnatal growing mice. J Bone Miner Res 2013; 28. [PMID: 23188722 PMCID: PMC3631304 DOI: 10.1002/jbmr.1834] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Genetic studies in the mouse have demonstrated multiple roles for β-catenin in the skeleton. In the embryo, β-catenin is critical for the early stages of osteoblast differentiation. Postnatally, β-catenin in mature osteoblasts and osteocytes indirectly suppresses osteoclast differentiation. However, a direct role for β-catenin in regulating osteoblast number and/or function specifically in the postnatal life has not been demonstrated. Addressing this knowledge gap is important because low-density lipoprotein receptor-related protein 5 (LRP5), a coreceptor for WNT signaling proposed to function through β-catenin, controls osteoblast number and function in postnatal mice or humans. To overcome the neonatal lethality caused by embryonic deletion of β-catenin in early-stage osteoblast-lineage cells, we use the Osx-CreER(T2) mouse strain to remove β-catenin in Osterix (Osx)-expressing cells by administering tamoxifen (TM) temporarily to postnatal mice. Lineage-tracing experiments in the long bones demonstrate that Osx-CreER(T2) targets predominantly osteoblast-lineage cells on the bone surface, but also transient progenitors that contribute to bone marrow stromal cells and adipocytes. Deletion of β-catenin by this strategy greatly reduces the bone formation activity of the targeted osteoblasts. However, the targeted osteoblasts rapidly turn over and are replaced by an excessive number of non-targeted osteoblasts, causing an unexpected increase in bone formation, but an even greater increase in osteoclast number and activity produces a net effect of severe osteopenia. With time, the mutant mice also exhibit a marked increase in bone marrow adiposity. Thus, β-catenin in postnatal Osx-lineage cells critically regulates bone homeostasis by promoting osteoblast activity and suppressing osteoblast turnover, while restraining osteoclast and marrow fat formation.
Collapse
Affiliation(s)
- Jianquan Chen
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63131, USA
| | | |
Collapse
|
2493
|
Jan TA, Chai R, Sayyid ZN, van Amerongen R, Xia A, Wang T, Sinkkonen ST, Zeng YA, Levin JR, Heller S, Nusse R, Cheng AGL. Tympanic border cells are Wnt-responsive and can act as progenitors for postnatal mouse cochlear cells. Development 2013; 140:1196-206. [PMID: 23444352 DOI: 10.1242/dev.087528] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Permanent hearing loss is caused by the irreversible damage of cochlear sensory hair cells and nonsensory supporting cells. In the postnatal cochlea, the sensory epithelium is terminally differentiated, whereas tympanic border cells (TBCs) beneath the sensory epithelium are proliferative. The functions of TBCs are poorly characterized. Using an Axin2(lacZ) Wnt reporter mouse, we found transient but robust Wnt signaling and proliferation in TBCs during the first 3 postnatal weeks, when the number of TBCs decreases. In vivo lineage tracing shows that a subset of hair cells and supporting cells is derived postnatally from Axin2-expressing TBCs. In cochlear explants, Wnt agonists stimulated the proliferation of TBCs, whereas Wnt inhibitors suppressed it. In addition, purified Axin2(lacZ) cells were clonogenic and self-renewing in culture in a Wnt-dependent manner, and were able to differentiate into hair cell-like and supporting cell-like cells. Taken together, our data indicate that Axin2-positive TBCs are Wnt responsive and can act as precursors to sensory epithelial cells in the postnatal cochlea.
Collapse
Affiliation(s)
- Taha Adnan Jan
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2494
|
Abe T, Fujimori T. Reporter mouse lines for fluorescence imaging. Dev Growth Differ 2013; 55:390-405. [PMID: 23621623 DOI: 10.1111/dgd.12062] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 12/16/2022]
Abstract
The use of live imaging approaches to examine and understand the dynamic processes that take place during mouse development has become widespread. Several groups have reported their success in generating different reporter mouse lines that express a variety of fluorescent markers for imaging. However, there is currently no established database of the reporter mouse lines available for live imaging, such as the Cre transgenic lines (Cre-X-Mice). Researchers therefore often have difficulties in determining which reporter mouse line meets their research purposes. In this review, we summarize some of the reporter mouse lines that have been generated for live imaging studies, and discuss their characteristics.
Collapse
Affiliation(s)
- Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | | |
Collapse
|
2495
|
Specialized filopodia direct long-range transport of SHH during vertebrate tissue patterning. Nature 2013; 497:628-32. [PMID: 23624372 PMCID: PMC4197975 DOI: 10.1038/nature12157] [Citation(s) in RCA: 291] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 04/08/2013] [Indexed: 12/20/2022]
Abstract
The ability of signaling proteins to traverse tissues containing tightly packed cells is of fundamental importance for cell specification and tissue development, however, how this is achieved at a cellular level remains poorly understood1. For over a century, the vertebrate limb bud has served as a paradigm to study cell signaling during embryonic development2. Here we optimize single cell real-time imaging to delineate the cellular mechanisms for how signaling proteins, such as Sonic Hedgehog (Shh), that possess membrane-bound covalent lipid modifications transverse long distances within the limb bud in vivo. By directly imaging Shh ligand production under native regulatory control, our findings show that Shh is unexpectedly produced in the form of a particle that remains associated with the cell via long cytoplasmic extensions that span several cell diameters. We show that these cellular extensions are a specialized class of actin-based filopodia with novel cytoskeletal features that have not been previously described. Strikingly, particles containing Shh traffic along these extensions with a net anterograde movement within the field of Shh cell signaling. We further show that in Shh responding cells specific subsets of Shh co-receptors, including Cdo and Boc, actively distribute and co-localize in specific micro-domains within filopodial extensions, far from the cell body. Stabilized interactions are formed between filopodia containing Shh ligand and those containing co-receptors over a long-range. These results suggest that contact-mediated release propagated by specialized filopodia contributes to the delivery of Shh at a distance. Together, these studies identify an important mode of communication between cells that significantly extends our understanding of ligand movement and reception during vertebrate tissue patterning.
Collapse
|
2496
|
Embryonic founders of adult muscle stem cells are primed by the determination gene Mrf4. Dev Biol 2013; 381:241-55. [PMID: 23623977 DOI: 10.1016/j.ydbio.2013.04.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 03/27/2013] [Accepted: 04/17/2013] [Indexed: 01/15/2023]
Abstract
Skeletal muscle satellite cells play a critical role during muscle growth, homoeostasis and regeneration. Selective induction of the muscle determination genes Myf5, Myod and Mrf4 during prenatal development can potentially impact on the reported functional heterogeneity of adult satellite cells. Accordingly, expression of Myf5 was reported to diminish the self-renewal potential of the majority of satellite cells. In contrast, virtually all adult satellite cells showed antecedence of Myod activity. Here we examine the priming of myogenic cells by Mrf4 throughout development. Using a Cre-lox based genetic strategy and novel highly sensitive Pax7 reporter alleles compared to the ubiquitous Rosa26-based reporters, we show that all adult satellite cells, independently of their anatomical location or embryonic origin, have been primed for Mrf4 expression. Given that Mrf4Cre and Mrf4nlacZ are active exclusively in progenitors during embryogenesis, whereas later expression is restricted to differentiated myogenic cells, our findings suggest that adult satellite cells emerge from embryonic founder cells in which the Mrf4 locus was activated. Therefore, this level of myogenic priming by induction of Mrf4, does not compromise the potential of the founder cells to assume an upstream muscle stem cell state. We propose that embryonic myogenic cells and the majority of adult muscle stem cells form a lineage continuum.
Collapse
|
2497
|
Xiao X, Chen Z, Shiota C, Prasadan K, Guo P, El-Gohary Y, Paredes J, Welsh C, Wiersch J, Gittes GK. No evidence for β cell neogenesis in murine adult pancreas. J Clin Invest 2013; 123:2207-17. [PMID: 23619362 DOI: 10.1172/jci66323] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/31/2013] [Indexed: 02/06/2023] Open
Abstract
Whether facultative β cell progenitors exist in the adult pancreas is a major unsolved question. To date, lineage-tracing studies have provided conflicting results. To track β cell neogenesis in vivo, we generated transgenic mice that transiently coexpress mTomato and GFP in a time-sensitive, nonconditional Cre-mediated manner, so that insulin-producing cells express GFP under control of the insulin promoter, while all other cells express mTomato (INSCremTmG mice). Newly differentiated β cells were detected by flow cytometry and fluorescence microscopy, taking advantage of their transient coexpression of GFP and mTomato fluorescent proteins. We found that β cell neogenesis predominantly occurs during embryogenesis, decreases dramatically shortly after birth, and is completely absent in adults across various models of β cell loss, β cell growth and regeneration, and inflammation. Moreover, we demonstrated upregulation of neurogenin 3 (NGN3) in both proliferating ducts and preexisting β cells in the ligated pancreatic tail after pancreatic ductal ligation. These results are consistent with some recent reports, but argue against the widely held belief that NGN3 marks cells undergoing endocrine neogenesis in the pancreas. Our data suggest that β cell neogenesis in the adult pancreas occurs rarely, if ever, under either normal or pathological conditions.
Collapse
Affiliation(s)
- Xiangwei Xiao
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2498
|
Roediger B, Kyle R, Yip KH, Sumaria N, Guy TV, Kim BS, Mitchell AJ, Tay SS, Jain R, Forbes-Blom E, Chen X, Tong PL, Bolton HA, Artis D, Paul WE, Fazekas de St Groth B, Grimbaldeston MA, Le Gros G, Weninger W. Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nat Immunol 2013; 14:564-73. [PMID: 23603794 DOI: 10.1038/ni.2584] [Citation(s) in RCA: 385] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/05/2013] [Indexed: 02/06/2023]
Abstract
Type 2 immunity is critical for defense against cutaneous infections but also underlies the development of allergic skin diseases. We report the identification in normal mouse dermis of an abundant, phenotypically unique group 2 innate lymphoid cell (ILC2) subset that depended on interleukin 7 (IL-7) and constitutively produced IL-13. Intravital multiphoton microscopy showed that dermal ILC2 cells specifically interacted with mast cells, whose function was suppressed by IL-13. Treatment of mice deficient in recombination-activating gene 1 (Rag1(-/-)) with IL-2 resulted in the population expansion of activated, IL-5-producing dermal ILC2 cells, which led to spontaneous dermatitis characterized by eosinophil infiltrates and activated mast cells. Our data show that ILC2 cells have both pro- and anti-inflammatory properties and identify a previously unknown interactive pathway between two innate populations of cells of the immune system linked to type 2 immunity and allergic diseases.
Collapse
|
2499
|
Kim SY, Cordeiro MH, Serna VA, Ebbert K, Butler LM, Sinha S, Mills AA, Woodruff TK, Kurita T. Rescue of platinum-damaged oocytes from programmed cell death through inactivation of the p53 family signaling network. Cell Death Differ 2013; 20:987-97. [PMID: 23598363 DOI: 10.1038/cdd.2013.31] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 02/12/2013] [Accepted: 03/20/2013] [Indexed: 12/24/2022] Open
Abstract
Non-proliferating oocytes within avascular regions of the ovary are exquisitely susceptible to chemotherapy. Early menopause and sterility are unintended consequences of chemotherapy, and efforts to understand the oocyte apoptotic pathway may provide new targets for mitigating this outcome. Recently, the c-Abl kinase inhibitor imatinib mesylate (imatinib) has become the focus of research as a fertoprotective drug against cisplatin. However, the mechanism by which imatinib protects oocytes is not fully understood, and reports of the drug's efficacy have been contradictory. Using in vitro culture and subrenal grafting of mouse ovaries, we demonstrated that imatinib inhibits the cisplatin-induced apoptosis of oocytes within primordial follicles. We found that, before apoptosis, cisplatin induces c-Abl and TAp73 expression in the oocyte. Oocytes undergoing apoptosis showed downregulation of TAp63 and upregulation of Bax. While imatinib was unable to block cisplatin-induced DNA damage and damage response, such as the upregulation of p53, imatinib inhibited the cisplatin-induced nuclear accumulation of c-Abl/TAp73 and the subsequent downregulation of TAp63 and upregulation of Bax, thereby abrogating oocyte cell death. Surprisingly, the conditional deletion of Trp63, but not ΔNp63, in oocytes inhibited apoptosis, as well as the accumulation of c-Abl and TAp73 caused by cisplatin. These data suggest that TAp63 is the master regulator of cisplatin-induced oocyte death. The expression kinetics of TAp63, c-Abl and TAp73 suggest that cisplatin activates TAp63-dependent expression of c-Abl and TAp73 and, in turn, the activation of TAp73 by c-Abl-induced BAX expression. Our findings indicate that imatinib protects oocytes from cisplatin-induced cell death by inhibiting c-Abl kinase, which would otherwise activate TAp73-BAX-mediated apoptosis. Thus, imatinib and other c-Abl kinase inhibitors provide an intriguing new way to halt cisplatin-induced oocyte death in early follicles and perhaps conserve the endocrine function of the ovary against chemotherapy.
Collapse
Affiliation(s)
- S-Y Kim
- Division of Reproductive Biology and Clinical Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2500
|
Lineage tracing with Axin2 reveals distinct developmental and adult populations of Wnt/β-catenin-responsive neural stem cells. Proc Natl Acad Sci U S A 2013; 110:7324-9. [PMID: 23589866 DOI: 10.1073/pnas.1305411110] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Since the discovery of neural stem cells in the mammalian brain, there has been significant interest in understanding their contribution to tissue homeostasis at both the cellular and molecular level. Wnt/β-catenin signaling is crucial for development of the central nervous system and has been implicated in stem cell maintenance in multiple tissues. Based on this, we hypothesized that the Wnt pathway likely controls neural stem cell maintenance and differentiation along the entire developmental continuum. To test this, we performed lineage tracing experiments using the recently developed tamoxifen-inducible Cre at Axin2 mouse strain to follow the developmental fate of Wnt/β-catenin-responsive cells in both the embryonic and postnatal mouse brain. From as early as embryonic day 8.5 onwards, Axin2(+) cells can give rise to spatially and functionally restricted populations of adult neural stem cells in the subventricular zone. Similarly, progeny from Axin2(+) cells labeled from E12.5 contribute to both the subventricular zone and the dentate gyrus of the hippocampus. Labeling in the postnatal brain, in turn, demonstrates the persistence of long-lived, Wnt/β-catenin-responsive stem cells in both of these sites. These results demonstrate the continued importance of Wnt/β-catenin signaling for neural stem and progenitor cell formation and function throughout developmental time.
Collapse
|