251
|
Yao L, Berman BP, Farnham PJ. Demystifying the secret mission of enhancers: linking distal regulatory elements to target genes. Crit Rev Biochem Mol Biol 2015; 50:550-73. [PMID: 26446758 PMCID: PMC4666684 DOI: 10.3109/10409238.2015.1087961] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Enhancers are short regulatory sequences bound by sequence-specific transcription factors and play a major role in the spatiotemporal specificity of gene expression patterns in development and disease. While it is now possible to identify enhancer regions genomewide in both cultured cells and primary tissues using epigenomic approaches, it has been more challenging to develop methods to understand the function of individual enhancers because enhancers are located far from the gene(s) that they regulate. However, it is essential to identify target genes of enhancers not only so that we can understand the role of enhancers in disease but also because this information will assist in the development of future therapeutic options. After reviewing models of enhancer function, we discuss recent methods for identifying target genes of enhancers. First, we describe chromatin structure-based approaches for directly mapping interactions between enhancers and promoters. Second, we describe the use of correlation-based approaches to link enhancer state with the activity of nearby promoters and/or gene expression. Third, we describe how to test the function of specific enhancers experimentally by perturbing enhancer–target relationships using high-throughput reporter assays and genome editing. Finally, we conclude by discussing as yet unanswered questions concerning how enhancers function, how target genes can be identified, and how to distinguish direct from indirect changes in gene expression mediated by individual enhancers.
Collapse
Affiliation(s)
- Lijing Yao
- a Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California , Los Angeles , CA , USA and
| | - Benjamin P Berman
- b Department of Biomedical Sciences , Bioinformatics and Computational Biology Research Center, Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Peggy J Farnham
- a Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California , Los Angeles , CA , USA and
| |
Collapse
|
252
|
Solving the genetic puzzle of systemic lupus erythematosus. Pediatr Nephrol 2015; 30:1735-48. [PMID: 25239301 DOI: 10.1007/s00467-014-2947-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/30/2014] [Accepted: 08/14/2014] [Indexed: 02/06/2023]
Abstract
In recent years, genome-wide association studies on systemic lupus erythematosus (SLE) have significantly improved our understanding of the genetic architecture of this prototypic autoimmune disease. However, there is still a long way to go before we can fully understand the genetic factors for this very heterogeneous disease and the interplays between environmental factors and genetic predisposition that lead to the pathogenesis of SLE. Here we summarize the recent advances in our understanding of the genetics of SLE and discuss the future directions towards fully elucidating the mechanisms of this disease.
Collapse
|
253
|
Flores Saiffe Farías A, Jaime Herrera López E, Moreno Vázquez CJ, Li W, Prado Montes de Oca E. Predicting functional regulatory SNPs in the human antimicrobial peptide genes DEFB1 and CAMP in tuberculosis and HIV/AIDS. Comput Biol Chem 2015; 59 Pt A:117-25. [PMID: 26447748 DOI: 10.1016/j.compbiolchem.2015.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 01/04/2023]
Abstract
Single nucleotide polymorphisms (SNPs) in transcription factor binding sites (TFBSs) within gene promoter region or enhancers can modify the transcription rate of genes related to complex diseases. These SNPs can be called regulatory SNPs (rSNPs). Data compiled from recent projects, such as the 1000 Genomes Project and ENCODE, has revealed essential information used to perform in silico prediction of the molecular and biological repercussions of SNPs within TFBS. However, most of these studies are very limited, as they only analyze SNPs in coding regions or when applied to promoters, and do not integrate essential biological data like TFBSs, expression profiles, pathway analysis, homotypic redundancy (number of TFBSs for the same TF in a region), chromatin accessibility and others, which could lead to a more accurate prediction. Our aim was to integrate different data in a biologically coherent method to analyze the proximal promoter regions of two antimicrobial peptide genes, DEFB1 and CAMP, that are associated with tuberculosis (TB) and HIV/AIDS. We predicted SNPs within the promoter regions that are more likely to interact with transcription factors (TFs). We also assessed the impact of homotypic redundancy using a novel approach called the homotypic redundancy weight factor (HWF). Our results identified 10 SNPs, which putatively modify the binding affinity of 24 TFs previously identified as related to TB and HIV/AIDS expression profiles (e.g. KLF5, CEBPA and NFKB1 for TB; FOXP2, BRCA1, CEBPB, CREB1, EBF1 and ZNF354C for HIV/AIDS; and RUNX2, HIF1A, JUN/AP-1, NR4A2, EGR1 for both diseases). Validating with the OregAnno database and cell-specific functional/non functional SNPs from additional 13 genes, our algorithm performed 53% sensitivity and 84.6% specificity to detect functional rSNPs using the DNAseI-HUP database. We are proposing our algorithm as a novel in silico method to detect true functional rSNPs in antimicrobial peptide genes. With further improvement, this novel method could be applied to other promoters in order to design probes and to discover new drug targets for complex diseases.
Collapse
Affiliation(s)
- Adolfo Flores Saiffe Farías
- Personalized Medicine Laboratory (LAMPER), Medical and Pharmaceutical Biotechnology, Guadalajara Unit, Research Center of Technology and Design Assistance of Jalisco State, National Council of Science and Technology (CIATEJ AC, CONACYT), Av. Normalistas 800, Col. Colinas de la Normal, CP 44270 Guadalajara, Jalisco, Mexico.
| | - Enrique Jaime Herrera López
- Industrial Biotechnology, CIATEJ AC, Zapopan Unit, CONACYT, Camino Arenero 1227, Col. El Bajío del Arenal, CP 45019 Zapopan, Jalisco, Mexico.
| | - Cristopher Jorge Moreno Vázquez
- Personalized Medicine Laboratory (LAMPER), Medical and Pharmaceutical Biotechnology, Guadalajara Unit, Research Center of Technology and Design Assistance of Jalisco State, National Council of Science and Technology (CIATEJ AC, CONACYT), Av. Normalistas 800, Col. Colinas de la Normal, CP 44270 Guadalajara, Jalisco, Mexico.
| | - Wentian Li
- The Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, 350 Community Dr. Manhasset, NY 11030, USA.
| | - Ernesto Prado Montes de Oca
- Personalized Medicine Laboratory (LAMPER), Medical and Pharmaceutical Biotechnology, Guadalajara Unit, Research Center of Technology and Design Assistance of Jalisco State, National Council of Science and Technology (CIATEJ AC, CONACYT), Av. Normalistas 800, Col. Colinas de la Normal, CP 44270 Guadalajara, Jalisco, Mexico; Molecular Biology Laboratory, Biosafety Area, Medical and Pharmaceutical Biotechnology, Guadalajara Unit, CIATEJ AC, CONACYT, Av. Normalistas 800, Col. Colinas de la Normal, CP 44270 Guadalajara, Jalisco, Mexico.
| |
Collapse
|
254
|
de Rezende MC, Araújo ES, Moreira JMP, Rodrigues VF, Rodrigues JL, Pereira CADJ, Negrão-Corrêa D. Effect of different stages of Schistosoma mansoni infection on the parasite burden and immune response to Strongyloides venezuelensis in co-infected mice. Parasitol Res 2015; 114:4601-16. [DOI: 10.1007/s00436-015-4706-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 08/26/2015] [Indexed: 11/25/2022]
|
255
|
Derrick T, Roberts CH, Last AR, Burr SE, Holland MJ. Trachoma and Ocular Chlamydial Infection in the Era of Genomics. Mediators Inflamm 2015; 2015:791847. [PMID: 26424969 PMCID: PMC4573990 DOI: 10.1155/2015/791847] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/05/2015] [Indexed: 12/19/2022] Open
Abstract
Trachoma is a blinding disease usually caused by infection with Chlamydia trachomatis (Ct) serovars A, B, and C in the upper tarsal conjunctiva. Individuals in endemic regions are repeatedly infected with Ct throughout childhood. A proportion of individuals experience prolonged or severe inflammatory episodes that are known to be significant risk factors for ocular scarring in later life. Continued scarring often leads to trichiasis and in-turning of the eyelashes, which causes pain and can eventually cause blindness. The mechanisms driving the chronic immunopathology in the conjunctiva, which largely progresses in the absence of detectable Ct infection in adults, are likely to be multifactorial. Socioeconomic status, education, and behavior have been identified as contributing to the risk of scarring and inflammation. We focus on the contribution of host and pathogen genetic variation, bacterial ecology of the conjunctiva, and host epigenetic imprinting including small RNA regulation by both host and pathogen in the development of ocular pathology. Each of these factors or processes contributes to pathogenic outcomes in other inflammatory diseases and we outline their potential role in trachoma.
Collapse
Affiliation(s)
- Tamsyn Derrick
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Chrissy h. Roberts
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Anna R. Last
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Sarah E. Burr
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Martin J. Holland
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
256
|
Waszak SM, Delaneau O, Gschwind AR, Kilpinen H, Raghav SK, Witwicki RM, Orioli A, Wiederkehr M, Panousis NI, Yurovsky A, Romano-Palumbo L, Planchon A, Bielser D, Padioleau I, Udin G, Thurnheer S, Hacker D, Hernandez N, Reymond A, Deplancke B, Dermitzakis ET. Population Variation and Genetic Control of Modular Chromatin Architecture in Humans. Cell 2015; 162:1039-50. [PMID: 26300124 DOI: 10.1016/j.cell.2015.08.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 03/17/2015] [Accepted: 07/29/2015] [Indexed: 12/12/2022]
Abstract
Chromatin state variation at gene regulatory elements is abundant across individuals, yet we understand little about the genetic basis of this variability. Here, we profiled several histone modifications, the transcription factor (TF) PU.1, RNA polymerase II, and gene expression in lymphoblastoid cell lines from 47 whole-genome sequenced individuals. We observed that distinct cis-regulatory elements exhibit coordinated chromatin variation across individuals in the form of variable chromatin modules (VCMs) at sub-Mb scale. VCMs were associated with thousands of genes and preferentially cluster within chromosomal contact domains. We mapped strong proximal and weak, yet more ubiquitous, distal-acting chromatin quantitative trait loci (cQTL) that frequently explain this variation. cQTLs were associated with molecular activity at clusters of cis-regulatory elements and mapped preferentially within TF-bound regions. We propose that local, sequence-independent chromatin variation emerges as a result of genetic perturbations in cooperative interactions between cis-regulatory elements that are located within the same genomic domain.
Collapse
Affiliation(s)
- Sebastian M Waszak
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland; Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Olivier Delaneau
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland; Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva 1211, Switzerland
| | - Andreas R Gschwind
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne 1015, Switzerland
| | - Helena Kilpinen
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland; Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva 1211, Switzerland
| | - Sunil K Raghav
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Robert M Witwicki
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne 1015, Switzerland
| | - Andrea Orioli
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne 1015, Switzerland
| | - Michael Wiederkehr
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne 1015, Switzerland
| | - Nikolaos I Panousis
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland; Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva 1211, Switzerland
| | - Alisa Yurovsky
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland; Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva 1211, Switzerland
| | - Luciana Romano-Palumbo
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
| | - Alexandra Planchon
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
| | - Deborah Bielser
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
| | - Ismael Padioleau
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland; Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva 1211, Switzerland
| | - Gilles Udin
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Sarah Thurnheer
- Protein Expression Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - David Hacker
- Protein Expression Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne 1015, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne 1015, Switzerland
| | - Bart Deplancke
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland; Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland.
| | - Emmanouil T Dermitzakis
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland; Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva 1211, Switzerland.
| |
Collapse
|
257
|
Brænne I, Civelek M, Vilne B, Di Narzo A, Johnson AD, Zhao Y, Reiz B, Codoni V, Webb TR, Foroughi Asl H, Hamby SE, Zeng L, Trégouët DA, Hao K, Topol EJ, Schadt EE, Yang X, Samani NJ, Björkegren JLM, Erdmann J, Schunkert H, Lusis AJ. Prediction of Causal Candidate Genes in Coronary Artery Disease Loci. Arterioscler Thromb Vasc Biol 2015; 35:2207-17. [PMID: 26293461 DOI: 10.1161/atvbaha.115.306108] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 05/05/2015] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Genome-wide association studies have to date identified 159 significant and suggestive loci for coronary artery disease (CAD). We now report comprehensive bioinformatics analyses of sequence variation in these loci to predict candidate causal genes. APPROACH AND RESULTS All annotated genes in the loci were evaluated with respect to protein-coding single-nucleotide polymorphism and gene expression parameters. The latter included expression quantitative trait loci, tissue specificity, and miRNA binding. High priority candidate genes were further identified based on literature searches and our experimental data. We conclude that the great majority of causal variations affecting CAD risk occur in noncoding regions, with 41% affecting gene expression robustly versus 6% leading to amino acid changes. Many of these genes differed from the traditionally annotated genes, which was usually based on proximity to the lead single-nucleotide polymorphism. Indeed, we obtained evidence that genetic variants at CAD loci affect 98 genes which had not been linked to CAD previously. CONCLUSIONS Our results substantially revise the list of likely candidates for CAD and suggest that genome-wide association studies efforts in other diseases may benefit from similar bioinformatics analyses.
Collapse
Affiliation(s)
- Ingrid Brænne
- From the Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany (I.B., B.R., J.E.); DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany (I.B., B.R., J.E.); University Heart Center Lübeck, Lübeck, Germany (I.B., B.R., J.E.); Departments of Medicine (M.C., A.J.L.) and Integrative Biology and Physiology (Y.Z., X.Y.), University of California, Los Angeles; Deutsches Herzzentrum München, Klinik für Herz-und Kreislauferkrankungen, Technische Universität München, Munich, Germany (B.V., L.Z., H.S.); Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung, and Blood Institute, The Framingham Heart Study, Framingham, MA (A.D.J.); Unité Mixte de Recherche en Santé (UMR_S) 1166, Institut National pour la Santé et la Recherche Médicale (INSERM), Paris, France (V.C., D.-A.T.); UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France (V.C., D.-A.T.); Institute for Cardiometabolism and Nutrition (ICAN), Paris, France (V.C., D.-A.T.); Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, BHF Cardiovascular Research Centre, Leicester, United Kingdom (T.R.W., S.E.H., N.J.S.); Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.F.A., J.L.M.B.); and Department of Molecular and Experimental Medicine, Scripps Translational Science Institute, La Jolla, CA (E.J.T.)
| | - Mete Civelek
- From the Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany (I.B., B.R., J.E.); DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany (I.B., B.R., J.E.); University Heart Center Lübeck, Lübeck, Germany (I.B., B.R., J.E.); Departments of Medicine (M.C., A.J.L.) and Integrative Biology and Physiology (Y.Z., X.Y.), University of California, Los Angeles; Deutsches Herzzentrum München, Klinik für Herz-und Kreislauferkrankungen, Technische Universität München, Munich, Germany (B.V., L.Z., H.S.); Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung, and Blood Institute, The Framingham Heart Study, Framingham, MA (A.D.J.); Unité Mixte de Recherche en Santé (UMR_S) 1166, Institut National pour la Santé et la Recherche Médicale (INSERM), Paris, France (V.C., D.-A.T.); UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France (V.C., D.-A.T.); Institute for Cardiometabolism and Nutrition (ICAN), Paris, France (V.C., D.-A.T.); Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, BHF Cardiovascular Research Centre, Leicester, United Kingdom (T.R.W., S.E.H., N.J.S.); Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.F.A., J.L.M.B.); and Department of Molecular and Experimental Medicine, Scripps Translational Science Institute, La Jolla, CA (E.J.T.)
| | - Baiba Vilne
- From the Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany (I.B., B.R., J.E.); DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany (I.B., B.R., J.E.); University Heart Center Lübeck, Lübeck, Germany (I.B., B.R., J.E.); Departments of Medicine (M.C., A.J.L.) and Integrative Biology and Physiology (Y.Z., X.Y.), University of California, Los Angeles; Deutsches Herzzentrum München, Klinik für Herz-und Kreislauferkrankungen, Technische Universität München, Munich, Germany (B.V., L.Z., H.S.); Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung, and Blood Institute, The Framingham Heart Study, Framingham, MA (A.D.J.); Unité Mixte de Recherche en Santé (UMR_S) 1166, Institut National pour la Santé et la Recherche Médicale (INSERM), Paris, France (V.C., D.-A.T.); UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France (V.C., D.-A.T.); Institute for Cardiometabolism and Nutrition (ICAN), Paris, France (V.C., D.-A.T.); Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, BHF Cardiovascular Research Centre, Leicester, United Kingdom (T.R.W., S.E.H., N.J.S.); Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.F.A., J.L.M.B.); and Department of Molecular and Experimental Medicine, Scripps Translational Science Institute, La Jolla, CA (E.J.T.)
| | - Antonio Di Narzo
- From the Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany (I.B., B.R., J.E.); DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany (I.B., B.R., J.E.); University Heart Center Lübeck, Lübeck, Germany (I.B., B.R., J.E.); Departments of Medicine (M.C., A.J.L.) and Integrative Biology and Physiology (Y.Z., X.Y.), University of California, Los Angeles; Deutsches Herzzentrum München, Klinik für Herz-und Kreislauferkrankungen, Technische Universität München, Munich, Germany (B.V., L.Z., H.S.); Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung, and Blood Institute, The Framingham Heart Study, Framingham, MA (A.D.J.); Unité Mixte de Recherche en Santé (UMR_S) 1166, Institut National pour la Santé et la Recherche Médicale (INSERM), Paris, France (V.C., D.-A.T.); UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France (V.C., D.-A.T.); Institute for Cardiometabolism and Nutrition (ICAN), Paris, France (V.C., D.-A.T.); Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, BHF Cardiovascular Research Centre, Leicester, United Kingdom (T.R.W., S.E.H., N.J.S.); Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.F.A., J.L.M.B.); and Department of Molecular and Experimental Medicine, Scripps Translational Science Institute, La Jolla, CA (E.J.T.)
| | - Andrew D Johnson
- From the Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany (I.B., B.R., J.E.); DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany (I.B., B.R., J.E.); University Heart Center Lübeck, Lübeck, Germany (I.B., B.R., J.E.); Departments of Medicine (M.C., A.J.L.) and Integrative Biology and Physiology (Y.Z., X.Y.), University of California, Los Angeles; Deutsches Herzzentrum München, Klinik für Herz-und Kreislauferkrankungen, Technische Universität München, Munich, Germany (B.V., L.Z., H.S.); Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung, and Blood Institute, The Framingham Heart Study, Framingham, MA (A.D.J.); Unité Mixte de Recherche en Santé (UMR_S) 1166, Institut National pour la Santé et la Recherche Médicale (INSERM), Paris, France (V.C., D.-A.T.); UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France (V.C., D.-A.T.); Institute for Cardiometabolism and Nutrition (ICAN), Paris, France (V.C., D.-A.T.); Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, BHF Cardiovascular Research Centre, Leicester, United Kingdom (T.R.W., S.E.H., N.J.S.); Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.F.A., J.L.M.B.); and Department of Molecular and Experimental Medicine, Scripps Translational Science Institute, La Jolla, CA (E.J.T.)
| | - Yuqi Zhao
- From the Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany (I.B., B.R., J.E.); DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany (I.B., B.R., J.E.); University Heart Center Lübeck, Lübeck, Germany (I.B., B.R., J.E.); Departments of Medicine (M.C., A.J.L.) and Integrative Biology and Physiology (Y.Z., X.Y.), University of California, Los Angeles; Deutsches Herzzentrum München, Klinik für Herz-und Kreislauferkrankungen, Technische Universität München, Munich, Germany (B.V., L.Z., H.S.); Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung, and Blood Institute, The Framingham Heart Study, Framingham, MA (A.D.J.); Unité Mixte de Recherche en Santé (UMR_S) 1166, Institut National pour la Santé et la Recherche Médicale (INSERM), Paris, France (V.C., D.-A.T.); UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France (V.C., D.-A.T.); Institute for Cardiometabolism and Nutrition (ICAN), Paris, France (V.C., D.-A.T.); Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, BHF Cardiovascular Research Centre, Leicester, United Kingdom (T.R.W., S.E.H., N.J.S.); Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.F.A., J.L.M.B.); and Department of Molecular and Experimental Medicine, Scripps Translational Science Institute, La Jolla, CA (E.J.T.)
| | - Benedikt Reiz
- From the Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany (I.B., B.R., J.E.); DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany (I.B., B.R., J.E.); University Heart Center Lübeck, Lübeck, Germany (I.B., B.R., J.E.); Departments of Medicine (M.C., A.J.L.) and Integrative Biology and Physiology (Y.Z., X.Y.), University of California, Los Angeles; Deutsches Herzzentrum München, Klinik für Herz-und Kreislauferkrankungen, Technische Universität München, Munich, Germany (B.V., L.Z., H.S.); Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung, and Blood Institute, The Framingham Heart Study, Framingham, MA (A.D.J.); Unité Mixte de Recherche en Santé (UMR_S) 1166, Institut National pour la Santé et la Recherche Médicale (INSERM), Paris, France (V.C., D.-A.T.); UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France (V.C., D.-A.T.); Institute for Cardiometabolism and Nutrition (ICAN), Paris, France (V.C., D.-A.T.); Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, BHF Cardiovascular Research Centre, Leicester, United Kingdom (T.R.W., S.E.H., N.J.S.); Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.F.A., J.L.M.B.); and Department of Molecular and Experimental Medicine, Scripps Translational Science Institute, La Jolla, CA (E.J.T.)
| | - Veronica Codoni
- From the Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany (I.B., B.R., J.E.); DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany (I.B., B.R., J.E.); University Heart Center Lübeck, Lübeck, Germany (I.B., B.R., J.E.); Departments of Medicine (M.C., A.J.L.) and Integrative Biology and Physiology (Y.Z., X.Y.), University of California, Los Angeles; Deutsches Herzzentrum München, Klinik für Herz-und Kreislauferkrankungen, Technische Universität München, Munich, Germany (B.V., L.Z., H.S.); Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung, and Blood Institute, The Framingham Heart Study, Framingham, MA (A.D.J.); Unité Mixte de Recherche en Santé (UMR_S) 1166, Institut National pour la Santé et la Recherche Médicale (INSERM), Paris, France (V.C., D.-A.T.); UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France (V.C., D.-A.T.); Institute for Cardiometabolism and Nutrition (ICAN), Paris, France (V.C., D.-A.T.); Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, BHF Cardiovascular Research Centre, Leicester, United Kingdom (T.R.W., S.E.H., N.J.S.); Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.F.A., J.L.M.B.); and Department of Molecular and Experimental Medicine, Scripps Translational Science Institute, La Jolla, CA (E.J.T.)
| | - Thomas R Webb
- From the Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany (I.B., B.R., J.E.); DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany (I.B., B.R., J.E.); University Heart Center Lübeck, Lübeck, Germany (I.B., B.R., J.E.); Departments of Medicine (M.C., A.J.L.) and Integrative Biology and Physiology (Y.Z., X.Y.), University of California, Los Angeles; Deutsches Herzzentrum München, Klinik für Herz-und Kreislauferkrankungen, Technische Universität München, Munich, Germany (B.V., L.Z., H.S.); Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung, and Blood Institute, The Framingham Heart Study, Framingham, MA (A.D.J.); Unité Mixte de Recherche en Santé (UMR_S) 1166, Institut National pour la Santé et la Recherche Médicale (INSERM), Paris, France (V.C., D.-A.T.); UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France (V.C., D.-A.T.); Institute for Cardiometabolism and Nutrition (ICAN), Paris, France (V.C., D.-A.T.); Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, BHF Cardiovascular Research Centre, Leicester, United Kingdom (T.R.W., S.E.H., N.J.S.); Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.F.A., J.L.M.B.); and Department of Molecular and Experimental Medicine, Scripps Translational Science Institute, La Jolla, CA (E.J.T.)
| | - Hassan Foroughi Asl
- From the Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany (I.B., B.R., J.E.); DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany (I.B., B.R., J.E.); University Heart Center Lübeck, Lübeck, Germany (I.B., B.R., J.E.); Departments of Medicine (M.C., A.J.L.) and Integrative Biology and Physiology (Y.Z., X.Y.), University of California, Los Angeles; Deutsches Herzzentrum München, Klinik für Herz-und Kreislauferkrankungen, Technische Universität München, Munich, Germany (B.V., L.Z., H.S.); Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung, and Blood Institute, The Framingham Heart Study, Framingham, MA (A.D.J.); Unité Mixte de Recherche en Santé (UMR_S) 1166, Institut National pour la Santé et la Recherche Médicale (INSERM), Paris, France (V.C., D.-A.T.); UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France (V.C., D.-A.T.); Institute for Cardiometabolism and Nutrition (ICAN), Paris, France (V.C., D.-A.T.); Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, BHF Cardiovascular Research Centre, Leicester, United Kingdom (T.R.W., S.E.H., N.J.S.); Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.F.A., J.L.M.B.); and Department of Molecular and Experimental Medicine, Scripps Translational Science Institute, La Jolla, CA (E.J.T.)
| | - Stephen E Hamby
- From the Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany (I.B., B.R., J.E.); DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany (I.B., B.R., J.E.); University Heart Center Lübeck, Lübeck, Germany (I.B., B.R., J.E.); Departments of Medicine (M.C., A.J.L.) and Integrative Biology and Physiology (Y.Z., X.Y.), University of California, Los Angeles; Deutsches Herzzentrum München, Klinik für Herz-und Kreislauferkrankungen, Technische Universität München, Munich, Germany (B.V., L.Z., H.S.); Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung, and Blood Institute, The Framingham Heart Study, Framingham, MA (A.D.J.); Unité Mixte de Recherche en Santé (UMR_S) 1166, Institut National pour la Santé et la Recherche Médicale (INSERM), Paris, France (V.C., D.-A.T.); UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France (V.C., D.-A.T.); Institute for Cardiometabolism and Nutrition (ICAN), Paris, France (V.C., D.-A.T.); Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, BHF Cardiovascular Research Centre, Leicester, United Kingdom (T.R.W., S.E.H., N.J.S.); Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.F.A., J.L.M.B.); and Department of Molecular and Experimental Medicine, Scripps Translational Science Institute, La Jolla, CA (E.J.T.)
| | - Lingyao Zeng
- From the Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany (I.B., B.R., J.E.); DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany (I.B., B.R., J.E.); University Heart Center Lübeck, Lübeck, Germany (I.B., B.R., J.E.); Departments of Medicine (M.C., A.J.L.) and Integrative Biology and Physiology (Y.Z., X.Y.), University of California, Los Angeles; Deutsches Herzzentrum München, Klinik für Herz-und Kreislauferkrankungen, Technische Universität München, Munich, Germany (B.V., L.Z., H.S.); Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung, and Blood Institute, The Framingham Heart Study, Framingham, MA (A.D.J.); Unité Mixte de Recherche en Santé (UMR_S) 1166, Institut National pour la Santé et la Recherche Médicale (INSERM), Paris, France (V.C., D.-A.T.); UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France (V.C., D.-A.T.); Institute for Cardiometabolism and Nutrition (ICAN), Paris, France (V.C., D.-A.T.); Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, BHF Cardiovascular Research Centre, Leicester, United Kingdom (T.R.W., S.E.H., N.J.S.); Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.F.A., J.L.M.B.); and Department of Molecular and Experimental Medicine, Scripps Translational Science Institute, La Jolla, CA (E.J.T.)
| | - David-Alexandre Trégouët
- From the Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany (I.B., B.R., J.E.); DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany (I.B., B.R., J.E.); University Heart Center Lübeck, Lübeck, Germany (I.B., B.R., J.E.); Departments of Medicine (M.C., A.J.L.) and Integrative Biology and Physiology (Y.Z., X.Y.), University of California, Los Angeles; Deutsches Herzzentrum München, Klinik für Herz-und Kreislauferkrankungen, Technische Universität München, Munich, Germany (B.V., L.Z., H.S.); Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung, and Blood Institute, The Framingham Heart Study, Framingham, MA (A.D.J.); Unité Mixte de Recherche en Santé (UMR_S) 1166, Institut National pour la Santé et la Recherche Médicale (INSERM), Paris, France (V.C., D.-A.T.); UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France (V.C., D.-A.T.); Institute for Cardiometabolism and Nutrition (ICAN), Paris, France (V.C., D.-A.T.); Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, BHF Cardiovascular Research Centre, Leicester, United Kingdom (T.R.W., S.E.H., N.J.S.); Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.F.A., J.L.M.B.); and Department of Molecular and Experimental Medicine, Scripps Translational Science Institute, La Jolla, CA (E.J.T.)
| | - Ke Hao
- From the Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany (I.B., B.R., J.E.); DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany (I.B., B.R., J.E.); University Heart Center Lübeck, Lübeck, Germany (I.B., B.R., J.E.); Departments of Medicine (M.C., A.J.L.) and Integrative Biology and Physiology (Y.Z., X.Y.), University of California, Los Angeles; Deutsches Herzzentrum München, Klinik für Herz-und Kreislauferkrankungen, Technische Universität München, Munich, Germany (B.V., L.Z., H.S.); Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung, and Blood Institute, The Framingham Heart Study, Framingham, MA (A.D.J.); Unité Mixte de Recherche en Santé (UMR_S) 1166, Institut National pour la Santé et la Recherche Médicale (INSERM), Paris, France (V.C., D.-A.T.); UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France (V.C., D.-A.T.); Institute for Cardiometabolism and Nutrition (ICAN), Paris, France (V.C., D.-A.T.); Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, BHF Cardiovascular Research Centre, Leicester, United Kingdom (T.R.W., S.E.H., N.J.S.); Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.F.A., J.L.M.B.); and Department of Molecular and Experimental Medicine, Scripps Translational Science Institute, La Jolla, CA (E.J.T.)
| | - Eric J Topol
- From the Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany (I.B., B.R., J.E.); DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany (I.B., B.R., J.E.); University Heart Center Lübeck, Lübeck, Germany (I.B., B.R., J.E.); Departments of Medicine (M.C., A.J.L.) and Integrative Biology and Physiology (Y.Z., X.Y.), University of California, Los Angeles; Deutsches Herzzentrum München, Klinik für Herz-und Kreislauferkrankungen, Technische Universität München, Munich, Germany (B.V., L.Z., H.S.); Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung, and Blood Institute, The Framingham Heart Study, Framingham, MA (A.D.J.); Unité Mixte de Recherche en Santé (UMR_S) 1166, Institut National pour la Santé et la Recherche Médicale (INSERM), Paris, France (V.C., D.-A.T.); UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France (V.C., D.-A.T.); Institute for Cardiometabolism and Nutrition (ICAN), Paris, France (V.C., D.-A.T.); Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, BHF Cardiovascular Research Centre, Leicester, United Kingdom (T.R.W., S.E.H., N.J.S.); Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.F.A., J.L.M.B.); and Department of Molecular and Experimental Medicine, Scripps Translational Science Institute, La Jolla, CA (E.J.T.)
| | - Eric E Schadt
- From the Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany (I.B., B.R., J.E.); DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany (I.B., B.R., J.E.); University Heart Center Lübeck, Lübeck, Germany (I.B., B.R., J.E.); Departments of Medicine (M.C., A.J.L.) and Integrative Biology and Physiology (Y.Z., X.Y.), University of California, Los Angeles; Deutsches Herzzentrum München, Klinik für Herz-und Kreislauferkrankungen, Technische Universität München, Munich, Germany (B.V., L.Z., H.S.); Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung, and Blood Institute, The Framingham Heart Study, Framingham, MA (A.D.J.); Unité Mixte de Recherche en Santé (UMR_S) 1166, Institut National pour la Santé et la Recherche Médicale (INSERM), Paris, France (V.C., D.-A.T.); UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France (V.C., D.-A.T.); Institute for Cardiometabolism and Nutrition (ICAN), Paris, France (V.C., D.-A.T.); Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, BHF Cardiovascular Research Centre, Leicester, United Kingdom (T.R.W., S.E.H., N.J.S.); Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.F.A., J.L.M.B.); and Department of Molecular and Experimental Medicine, Scripps Translational Science Institute, La Jolla, CA (E.J.T.)
| | - Xia Yang
- From the Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany (I.B., B.R., J.E.); DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany (I.B., B.R., J.E.); University Heart Center Lübeck, Lübeck, Germany (I.B., B.R., J.E.); Departments of Medicine (M.C., A.J.L.) and Integrative Biology and Physiology (Y.Z., X.Y.), University of California, Los Angeles; Deutsches Herzzentrum München, Klinik für Herz-und Kreislauferkrankungen, Technische Universität München, Munich, Germany (B.V., L.Z., H.S.); Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung, and Blood Institute, The Framingham Heart Study, Framingham, MA (A.D.J.); Unité Mixte de Recherche en Santé (UMR_S) 1166, Institut National pour la Santé et la Recherche Médicale (INSERM), Paris, France (V.C., D.-A.T.); UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France (V.C., D.-A.T.); Institute for Cardiometabolism and Nutrition (ICAN), Paris, France (V.C., D.-A.T.); Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, BHF Cardiovascular Research Centre, Leicester, United Kingdom (T.R.W., S.E.H., N.J.S.); Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.F.A., J.L.M.B.); and Department of Molecular and Experimental Medicine, Scripps Translational Science Institute, La Jolla, CA (E.J.T.)
| | - Nilesh J Samani
- From the Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany (I.B., B.R., J.E.); DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany (I.B., B.R., J.E.); University Heart Center Lübeck, Lübeck, Germany (I.B., B.R., J.E.); Departments of Medicine (M.C., A.J.L.) and Integrative Biology and Physiology (Y.Z., X.Y.), University of California, Los Angeles; Deutsches Herzzentrum München, Klinik für Herz-und Kreislauferkrankungen, Technische Universität München, Munich, Germany (B.V., L.Z., H.S.); Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung, and Blood Institute, The Framingham Heart Study, Framingham, MA (A.D.J.); Unité Mixte de Recherche en Santé (UMR_S) 1166, Institut National pour la Santé et la Recherche Médicale (INSERM), Paris, France (V.C., D.-A.T.); UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France (V.C., D.-A.T.); Institute for Cardiometabolism and Nutrition (ICAN), Paris, France (V.C., D.-A.T.); Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, BHF Cardiovascular Research Centre, Leicester, United Kingdom (T.R.W., S.E.H., N.J.S.); Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.F.A., J.L.M.B.); and Department of Molecular and Experimental Medicine, Scripps Translational Science Institute, La Jolla, CA (E.J.T.)
| | - Johan L M Björkegren
- From the Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany (I.B., B.R., J.E.); DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany (I.B., B.R., J.E.); University Heart Center Lübeck, Lübeck, Germany (I.B., B.R., J.E.); Departments of Medicine (M.C., A.J.L.) and Integrative Biology and Physiology (Y.Z., X.Y.), University of California, Los Angeles; Deutsches Herzzentrum München, Klinik für Herz-und Kreislauferkrankungen, Technische Universität München, Munich, Germany (B.V., L.Z., H.S.); Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung, and Blood Institute, The Framingham Heart Study, Framingham, MA (A.D.J.); Unité Mixte de Recherche en Santé (UMR_S) 1166, Institut National pour la Santé et la Recherche Médicale (INSERM), Paris, France (V.C., D.-A.T.); UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France (V.C., D.-A.T.); Institute for Cardiometabolism and Nutrition (ICAN), Paris, France (V.C., D.-A.T.); Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, BHF Cardiovascular Research Centre, Leicester, United Kingdom (T.R.W., S.E.H., N.J.S.); Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.F.A., J.L.M.B.); and Department of Molecular and Experimental Medicine, Scripps Translational Science Institute, La Jolla, CA (E.J.T.)
| | - Jeanette Erdmann
- From the Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany (I.B., B.R., J.E.); DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany (I.B., B.R., J.E.); University Heart Center Lübeck, Lübeck, Germany (I.B., B.R., J.E.); Departments of Medicine (M.C., A.J.L.) and Integrative Biology and Physiology (Y.Z., X.Y.), University of California, Los Angeles; Deutsches Herzzentrum München, Klinik für Herz-und Kreislauferkrankungen, Technische Universität München, Munich, Germany (B.V., L.Z., H.S.); Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung, and Blood Institute, The Framingham Heart Study, Framingham, MA (A.D.J.); Unité Mixte de Recherche en Santé (UMR_S) 1166, Institut National pour la Santé et la Recherche Médicale (INSERM), Paris, France (V.C., D.-A.T.); UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France (V.C., D.-A.T.); Institute for Cardiometabolism and Nutrition (ICAN), Paris, France (V.C., D.-A.T.); Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, BHF Cardiovascular Research Centre, Leicester, United Kingdom (T.R.W., S.E.H., N.J.S.); Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.F.A., J.L.M.B.); and Department of Molecular and Experimental Medicine, Scripps Translational Science Institute, La Jolla, CA (E.J.T.)
| | - Heribert Schunkert
- From the Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany (I.B., B.R., J.E.); DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany (I.B., B.R., J.E.); University Heart Center Lübeck, Lübeck, Germany (I.B., B.R., J.E.); Departments of Medicine (M.C., A.J.L.) and Integrative Biology and Physiology (Y.Z., X.Y.), University of California, Los Angeles; Deutsches Herzzentrum München, Klinik für Herz-und Kreislauferkrankungen, Technische Universität München, Munich, Germany (B.V., L.Z., H.S.); Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung, and Blood Institute, The Framingham Heart Study, Framingham, MA (A.D.J.); Unité Mixte de Recherche en Santé (UMR_S) 1166, Institut National pour la Santé et la Recherche Médicale (INSERM), Paris, France (V.C., D.-A.T.); UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France (V.C., D.-A.T.); Institute for Cardiometabolism and Nutrition (ICAN), Paris, France (V.C., D.-A.T.); Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, BHF Cardiovascular Research Centre, Leicester, United Kingdom (T.R.W., S.E.H., N.J.S.); Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.F.A., J.L.M.B.); and Department of Molecular and Experimental Medicine, Scripps Translational Science Institute, La Jolla, CA (E.J.T.)
| | - Aldons J Lusis
- From the Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany (I.B., B.R., J.E.); DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany (I.B., B.R., J.E.); University Heart Center Lübeck, Lübeck, Germany (I.B., B.R., J.E.); Departments of Medicine (M.C., A.J.L.) and Integrative Biology and Physiology (Y.Z., X.Y.), University of California, Los Angeles; Deutsches Herzzentrum München, Klinik für Herz-und Kreislauferkrankungen, Technische Universität München, Munich, Germany (B.V., L.Z., H.S.); Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (A.D.N., K.H., E.E.S., J.L.M.B.); Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung, and Blood Institute, The Framingham Heart Study, Framingham, MA (A.D.J.); Unité Mixte de Recherche en Santé (UMR_S) 1166, Institut National pour la Santé et la Recherche Médicale (INSERM), Paris, France (V.C., D.-A.T.); UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), Paris, France (V.C., D.-A.T.); Institute for Cardiometabolism and Nutrition (ICAN), Paris, France (V.C., D.-A.T.); Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, BHF Cardiovascular Research Centre, Leicester, United Kingdom (T.R.W., S.E.H., N.J.S.); Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.F.A., J.L.M.B.); and Department of Molecular and Experimental Medicine, Scripps Translational Science Institute, La Jolla, CA (E.J.T.).
| | | |
Collapse
|
258
|
Andiappan AK, Melchiotti R, Poh TY, Nah M, Puan KJ, Vigano E, Haase D, Yusof N, San Luis B, Lum J, Kumar D, Foo S, Zhuang L, Vasudev A, Irwanto A, Lee B, Nardin A, Liu H, Zhang F, Connolly J, Liu J, Mortellaro A, Wang DY, Poidinger M, Larbi A, Zolezzi F, Rotzschke O. Genome-wide analysis of the genetic regulation of gene expression in human neutrophils. Nat Commun 2015; 6:7971. [PMID: 26259071 PMCID: PMC4918343 DOI: 10.1038/ncomms8971] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 07/01/2015] [Indexed: 02/01/2023] Open
Abstract
Neutrophils are an abundant immune cell type involved in both antimicrobial defence and autoimmunity. The regulation of their gene expression, however, is still largely unknown. Here we report an eQTL study on isolated neutrophils from 114 healthy individuals of Chinese ethnicity, identifying 21,210 eQTLs on 832 unique genes. Unsupervised clustering analysis of these eQTLs confirms their role in inflammatory responses and immunological diseases but also indicates strong involvement in dermatological pathologies. One of the strongest eQTL identified (rs2058660) is also the tagSNP of a linkage block reported to affect leprosy and Crohn's disease in opposite directions. In a functional study, we can link the C allele with low expression of the β-chain of IL18-receptor (IL18RAP). In neutrophils, this results in a reduced responsiveness to IL-18, detected both on the RNA and protein level. Thus, the polymorphic regulation of human neutrophils can impact beneficial as well as pathological inflammatory responses. Neutrophils are abundant immune cells important for antimicrobial defence and in autoimmunity. Here, by mapping expression quantitative trait loci (eQTL) in neutrophils of Chinese ethnicity from Singapore, Andiappan et al. provide a resource for understanding immune-related trait associated genetic variants.
Collapse
Affiliation(s)
- Anand Kumar Andiappan
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Rossella Melchiotti
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Tuang Yeow Poh
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Michelle Nah
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Kia Joo Puan
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Elena Vigano
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Doreen Haase
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Nurhashikin Yusof
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Boris San Luis
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Dilip Kumar
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Shihui Foo
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Li Zhuang
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Anusha Vasudev
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Astrid Irwanto
- Department of Human Genetics, Genome institute of Singapore (GIS), Singapore, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Alessandra Nardin
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, Shandong, China.,Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China.,School of Medicine, Shandong University, Shandong Provincial Medical Center for Dermatovenereology, Jinan, Shandong, China.,Shandong Provincial Institute of Dermatology and Venereology, Provincial Academy of Medical Science, Jinan, Shandong, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, Shandong, China.,Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China.,School of Medicine, Shandong University, Shandong Provincial Medical Center for Dermatovenereology, Jinan, Shandong, China.,Shandong Provincial Institute of Dermatology and Venereology, Provincial Academy of Medical Science, Jinan, Shandong, China
| | - John Connolly
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Jianjun Liu
- Department of Human Genetics, Genome institute of Singapore (GIS), Singapore, Singapore.,School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Alessandra Mortellaro
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - De Yun Wang
- Department of Otolaryngology, National University of Singapore, Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Francesca Zolezzi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| | - Olaf Rotzschke
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), #04-06, 8A Biomedical Grove, Singapore, Singapore
| |
Collapse
|
259
|
Costantino F, Talpin A, Evnouchidou I, Kadi A, Leboime A, Said-Nahal R, Bonilla N, Letourneur F, Leturcq T, Ka Z, van Endert P, Garchon HJ, Chiocchia G, Breban M. ERAP1 Gene Expression Is Influenced by Nonsynonymous Polymorphisms Associated With Predisposition to Spondyloarthritis. Arthritis Rheumatol 2015; 67:1525-34. [PMID: 25740711 DOI: 10.1002/art.39072] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/10/2015] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Several polymorphisms in ERAP1 are strongly associated with susceptibility to spondyloarthritis (SpA). The combination of rs17482078, rs10050860, and rs30187 results in the construction of 3 major haplotypes that are associated with SpA (the "protective" haplotype T/T/C, the "neutral" haplotype C/C/C, and the "susceptibility" haplotype C/C/T). The aim of the present study was to determine whether such haplotypes might affect endoplasmic reticulum aminopeptidase 1 (ERAP-1) messenger RNA (mRNA) expression, protein level, and/or enzymatic activity in antigen-presenting cells, a type of cell that is potentially relevant to disease pathogenesis. METHODS Monocyte-derived dendritic cells (DCs) were generated in 2 cohorts (a discovery cohort and a replication cohort) comprising a total of 23 SpA patients and 44 healthy controls. Lymphoblastoid B cell lines were established from individuals who were homozygous for the risk, the neutral, or the protective ERAP1 haplotype, respectively. In those samples, we investigated the relationship between ERAP1 haplotypes and mRNA expression level. We also used Western blot analysis to measure the relative protein expression of ERAP-1 and a fluorogenic assay to measure its enzymatic activity. RESULTS In monocyte-derived DCs, there was a strong association between ERAP1 haplotypes and the ERAP-1 mRNA expression level, with higher levels in subjects harboring the susceptibility haplotype (P = 0.001 and P = 5.6 × 10(-7) in the discovery and replication cohorts, respectively). In lymphoblastoid B cell lines, we observed a significant correlation between haplotype risk score and ERAP1 transcript or protein level (P = 0.003, ρ = 0.92 for both). Enzymatic activity followed a similar trend both in monocyte-derived DCs and in lymphoblastoid B cell lines. CONCLUSION These data provide strong evidence that SpA-associated ERAP1 polymorphisms affect the level of gene expression in antigen-presenting cells. How increased production/activity of ERAP-1 may influence susceptibility to SpA remains to be determined.
Collapse
Affiliation(s)
- Félicie Costantino
- INSERM U1173, Université de Versailles St. Quentin-en-Yvelines, and Laboratoire d'Excellence INFLAMEX, Paris, France and Hôpital Ambroise Paré, AP-HP, Boulogne-Billancourt, France
| | - Alice Talpin
- INSERM U1173, Université de Versailles St. Quentin-en-Yvelines, and Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Irini Evnouchidou
- INSERM U1151, CNRS (UMR 8253), Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Amir Kadi
- INSERM U1173, Université de Versailles St. Quentin-en-Yvelines, and Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Ariane Leboime
- Hôpital Ambroise Paré, AP-HP, Boulogne-Billancourt, France
| | | | - Nelly Bonilla
- INSERM U1173, Université de Versailles St. Quentin-en-Yvelines, and Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Franck Letourneur
- Institut Cochin, INSERM U1016, CNRS (UMR8104) and Université Paris Descartes, Paris, France
| | - Tifenn Leturcq
- INSERM U1173, Université de Versailles St. Quentin-en-Yvelines, and Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Zeyna Ka
- INSERM U1173, Université de Versailles St. Quentin-en-Yvelines, and Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Peter van Endert
- INSERM U1151, CNRS (UMR 8253), Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Henri-Jean Garchon
- INSERM U1173, Université de Versailles St. Quentin-en-Yvelines, and Laboratoire d'Excellence INFLAMEX, Paris, France and Hôpital Ambroise Paré, AP-HP, Boulogne-Billancourt, France
| | - Gilles Chiocchia
- INSERM U1173, Université de Versailles St. Quentin-en-Yvelines, and Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Maxime Breban
- INSERM U1173, Université de Versailles St. Quentin-en-Yvelines, and Laboratoire d'Excellence INFLAMEX, Paris, France and Hôpital Ambroise Paré, AP-HP, Boulogne-Billancourt, France
| |
Collapse
|
260
|
GRM4 gene polymorphism is associated with susceptibility and prognosis of osteosarcoma in a Chinese Han population. Med Oncol 2015; 31:50. [PMID: 24984297 PMCID: PMC4079940 DOI: 10.1007/s12032-014-0050-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Osteosarcoma (OS), the most common primary bone malignancy, occurs primarily in adolescents and young adults. In earlier genome-wide association studies, rs7591996, rs10208273, rs17206779 and rs1906953 were identified as candidate loci for OS in Caucasians but the association of these single-nucleotide polymorphisms (SNPs) with OS in a Chinese Han population remains unknown. We measured the frequency of these four variants in a Chinese Han population to better understand the genetic etiology of OS. Polymerase chain reaction sequencing was used to detect the genotypes of four candidate SNPs in peripheral blood samples collected from 168 OS patients and 216 healthy controls. Logistic regression models were used to estimate the odds ratios and 95 % confidence intervals. We found rs1906953 in the glutamate receptor metabotropic 4 (GRM4) gene was associated significantly with OS in our Chinese Han population; as with the other SNPs, however, no statistically significant difference was detected. Further analysis showed the association between rs1906953 and OS was independent of gender and age. The rs1906953 locus was not associated with Enneking stages or tumor location; however, it was associated significantly with OS metastasis and prognosis. The GRM4 gene polymorphism was associated with the susceptibility and metastasis of OS in a Chinese Han population.
Collapse
|
261
|
Naranbhai V, Fairfax BP, Makino S, Humburg P, Wong D, Ng E, Hill AVS, Knight JC. Genomic modulators of gene expression in human neutrophils. Nat Commun 2015; 6:7545. [PMID: 26151758 DOI: 10.1038/ncomms8545] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/19/2015] [Indexed: 12/12/2022] Open
Abstract
Neutrophils form the most abundant leukocyte subset and are central to many disease processes. Technical challenges in transcriptomic profiling have prohibited genomic approaches to date. Here we map expression quantitative trait loci (eQTL) in peripheral blood CD16+ neutrophils from 101 healthy European adults. We identify cis-eQTL for 3281 neutrophil-expressed genes including many implicated in neutrophil function, with 450 of these not previously observed in myeloid or lymphoid cells. Paired comparison with monocyte eQTL demonstrates nuanced conditioning of genetic regulation of gene expression by cellular context, which relates to cell-type-specific DNA methylation and histone modifications. Neutrophil eQTL are markedly enriched for trait-associated variants particularly autoimmune, allergy and infectious disease. We further demonstrate how eQTL in PADI4 and NOD2 delineate risk variant function in rheumatoid arthritis, leprosy and Crohn's disease. Taken together, these data help advance understanding of the genetics of gene expression, neutrophil biology and immune-related diseases.
Collapse
Affiliation(s)
- Vivek Naranbhai
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Benjamin P Fairfax
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Seiko Makino
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Peter Humburg
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Daniel Wong
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Esther Ng
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Adrian V S Hill
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Julian C Knight
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
262
|
Gibson G, Powell JE, Marigorta UM. Expression quantitative trait locus analysis for translational medicine. Genome Med 2015; 7:60. [PMID: 26110023 PMCID: PMC4479075 DOI: 10.1186/s13073-015-0186-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Expression quantitative trait locus analysis has emerged as an important component of efforts to understand how genetic polymorphisms influence disease risk and is poised to make contributions to translational medicine. Here we review how expression quantitative trait locus analysis is aiding the identification of which gene(s) within regions of association are causal for a disease or phenotypic trait; the narrowing down of the cell types or regulators involved in the etiology of disease; the characterization of drivers and modifiers of cancer; and our understanding of how different environments and cellular contexts can modify gene expression. We also introduce the concept of transcriptional risk scores as a means of refining estimates of individual liability to disease based on targeted profiling of the transcripts that are regulated by polymorphisms jointly associated with disease and gene expression.
Collapse
Affiliation(s)
- Greg Gibson
- Center for Integrative Genomics, School of Biology, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Joseph E Powell
- Centre for Neurogenetics and Statistical Genomics, Queensland Brain Institute, University of Queensland, St Lucia, Brisbane, QLD 4072 Australia ; The Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072 Australia
| | - Urko M Marigorta
- Center for Integrative Genomics, School of Biology, Georgia Institute of Technology, Atlanta, GA 30332 USA
| |
Collapse
|
263
|
Spurlock CF, Tossberg JT, Olsen NJ, Aune TM. Cutting Edge: Chronic NF-κB Activation in CD4+ T Cells in Rheumatoid Arthritis Is Genetically Determined by HLA Risk Alleles. THE JOURNAL OF IMMUNOLOGY 2015; 195:791-5. [PMID: 26091715 DOI: 10.4049/jimmunol.1500267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/24/2015] [Indexed: 11/19/2022]
Abstract
Of identified genetic variants, HLA polymorphisms confer the greatest risk for developing autoimmune diseases, including rheumatoid arthritis (HLA-DRB1*04). There are strong influences of HLA polymorphisms on cell type-specific gene expression in B cells and monocytes. Their influence on gene expression in CD4(+) T cells is not known. We determined transcript and proteins levels of target genes in lymphocyte/monocyte subsets in healthy controls and rheumatoid arthritis subjects as a function of HLA-DRB1*04 haplotype. We identified gene expression dependent on HLA-DRB1*04 genotype in CD4(+) T cells. NF-κB activity in CD4(+) T cells was also dependent on HLA-DRB1*04 genotype, and blocking HLA-DR inhibited NF-κB activity in CD4(+) T cells and normalized gene expression, as did pharmacologic inhibition of NF-κB. We conclude that interactions between TCR and MHC class II encoded by HLA-DRB1*04 create a proinflammatory "hum" altering CD4(+) T cell phenotype.
Collapse
Affiliation(s)
- Charles F Spurlock
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - John T Tossberg
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Nancy J Olsen
- Department of Medicine, Penn State Hershey Milton S. Hershey Medical Center, Hershey, PA 17033; and
| | - Thomas M Aune
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
264
|
Folkersen L, Biswas S, Frederiksen KS, Keller P, Fox B, Fleckner J. Applying genetics in inflammatory disease drug discovery. Drug Discov Today 2015; 20:1176-81. [PMID: 26050580 DOI: 10.1016/j.drudis.2015.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/11/2015] [Accepted: 05/20/2015] [Indexed: 11/28/2022]
Abstract
Recent groundbreaking work in genetics has identified thousands of small-effect genetic variants throughout the genome that are associated with almost all major diseases. These genome-wide association studies (GWAS) are often proposed as a source of future medical breakthroughs. However, with several notable exceptions, the journey from a small-effect genetic variant to a functional drug has proven arduous, and few examples of actual contributions to drug discovery exist. Here, we discuss novel approaches of overcoming this hurdle by using instead public genetics resources as a pragmatic guide alongside existing drug discovery methods. Our aim is to evaluate human genetic confidence as a rationale for drug target selection.
Collapse
Affiliation(s)
- Lasse Folkersen
- Department of PharmacoGenetics, Novo Nordisk, Novo Nordisk Park, Måløv, Denmark; Department of Integrative Systems Biology, Center for Biological Sequence Analysis, DTU, Lyngby, Denmark.
| | - Shameek Biswas
- Department of Molecular Immunology, Novo Nordisk, Seattle, WA, USA
| | | | - Pernille Keller
- Department of PharmacoGenetics, Novo Nordisk, Novo Nordisk Park, Måløv, Denmark
| | - Brian Fox
- Department of Molecular Immunology, Novo Nordisk, Seattle, WA, USA
| | - Jan Fleckner
- Department of PharmacoGenetics, Novo Nordisk, Novo Nordisk Park, Måløv, Denmark
| |
Collapse
|
265
|
Sul JH, Raj T, de Jong S, de Bakker PIW, Raychaudhuri S, Ophoff RA, Stranger BE, Eskin E, Han B. Accurate and fast multiple-testing correction in eQTL studies. Am J Hum Genet 2015; 96:857-68. [PMID: 26027500 PMCID: PMC4457958 DOI: 10.1016/j.ajhg.2015.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/15/2015] [Indexed: 12/22/2022] Open
Abstract
In studies of expression quantitative trait loci (eQTLs), it is of increasing interest to identify eGenes, the genes whose expression levels are associated with variation at a particular genetic variant. Detecting eGenes is important for follow-up analyses and prioritization because genes are the main entities in biological processes. To detect eGenes, one typically focuses on the genetic variant with the minimum p value among all variants in cis with a gene and corrects for multiple testing to obtain a gene-level p value. For performing multiple-testing correction, a permutation test is widely used. Because of growing sample sizes of eQTL studies, however, the permutation test has become a computational bottleneck in eQTL studies. In this paper, we propose an efficient approach for correcting for multiple testing and assess eGene p values by utilizing a multivariate normal distribution. Our approach properly takes into account the linkage-disequilibrium structure among variants, and its time complexity is independent of sample size. By applying our small-sample correction techniques, our method achieves high accuracy in both small and large studies. We have shown that our method consistently produces extremely accurate p values (accuracy > 98%) for three human eQTL datasets with different sample sizes and SNP densities: the Genotype-Tissue Expression pilot dataset, the multi-region brain dataset, and the HapMap 3 dataset.
Collapse
Affiliation(s)
- Jae Hoon Sul
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Towfique Raj
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Harvard University, Boston, MA 02115, USA; Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Simone de Jong
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Paul I W de Bakker
- Departments of Epidemiology and Medical Genetics, University Medical Center Utrecht, Utrecht 3584 CG, the Netherlands
| | - Soumya Raychaudhuri
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Arthritis Research UK Epidemiology Unit, Musculoskeletal Research Group, University of Manchester, Manchester Academic Health Sciences Centre, Manchester M13 9PT, UK; Division of Rheumatology, Brigham and Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Roel A Ophoff
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht 3584 CG, the Netherlands; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Barbara E Stranger
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Eleazar Eskin
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Computer Science Department, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Buhm Han
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Republic of Korea; Department of Medicine, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea.
| |
Collapse
|
266
|
Identification of new susceptibility loci for IgA nephropathy in Han Chinese. Nat Commun 2015; 6:7270. [PMID: 26028593 PMCID: PMC4458882 DOI: 10.1038/ncomms8270] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/23/2015] [Indexed: 12/20/2022] Open
Abstract
IgA nephropathy (IgAN) is one of the most common primary glomerulonephritis. Previously identified genome-wide association study (GWAS) loci explain only a fraction of disease risk. To identify novel susceptibility loci in Han Chinese, we conduct a four-stage GWAS comprising 8,313 cases and 19,680 controls. Here, we show novel associations at ST6GAL1 on 3q27.3 (rs7634389, odds ratio (OR)=1.13, P=7.27 × 10(-10)), ACCS on 11p11.2 (rs2074038, OR=1.14, P=3.93 × 10(-9)) and ODF1-KLF10 on 8q22.3 (rs2033562, OR=1.13, P=1.41 × 10(-9)), validate a recently reported association at ITGAX-ITGAM on 16p11.2 (rs7190997, OR=1.22, P=2.26 × 10(-19)), and identify three independent signals within the DEFA locus (rs2738058, P=1.15 × 10(-19); rs12716641, P=9.53 × 10(-9); rs9314614, P=4.25 × 10(-9), multivariate association). The risk variants on 3q27.3 and 11p11.2 show strong association with mRNA expression levels in blood cells while allele frequencies of the risk variants within ST6GAL1, ACCS and DEFA correlate with geographical variation in IgAN prevalence. Our findings expand our understanding on IgAN genetic susceptibility and provide novel biological insights into molecular mechanisms underlying IgAN.
Collapse
|
267
|
Abstract
The functional consequences of trait associated SNPs are often investigated using expression quantitative trait locus (eQTL) mapping. While trait-associated variants may operate in a cell-type specific manner, eQTL datasets for such cell-types may not always be available. We performed a genome-environment interaction (GxE) meta-analysis on data from 5,683 samples to infer the cell type specificity of whole blood cis-eQTLs. We demonstrate that this method is able to predict neutrophil and lymphocyte specific cis-eQTLs and replicate these predictions in independent cell-type specific datasets. Finally, we show that SNPs associated with Crohn’s disease preferentially affect gene expression within neutrophils, including the archetypal NOD2 locus. Many variants in the genome, including variants associated with disease, affect the expression of genes. These so-called expression quantitative trait loci (eQTL) can be used to gain insight in the downstream consequences of disease. While it has been shown that many disease-associated variants alter gene expression in a cell-type dependent manner, eQTL datasets for specific cell types may not always be available and their sample size is often limited. We present a method that is able to detect cell type specific effects within eQTL datasets that have been generated from whole tissues (which may be composed of many cell types), in our case whole blood. By combining numerous whole blood datasets through meta-analysis, we show that we are able to detect eQTL effects that are specific for neutrophils and lymphocytes (two blood cell types). Additionally, we show that the variants associated with some diseases may preferentially alter the gene expression in one of these cell types. We conclude that our method is an alternative method to detect cell type specific eQTL effects, that may complement generating cell type specific eQTL datasets and that may be applied on other cell types and tissues as well.
Collapse
|
268
|
Huang J, Chen J, Esparza J, Ding J, Elder J, Abecasis GR, Lee YA, Lathrop GM, Moffatt MF, Cookson WOC, Liang L. eQTL mapping identifies insertion- and deletion-specific eQTLs in multiple tissues. Nat Commun 2015; 6:6821. [PMID: 25951796 PMCID: PMC4929061 DOI: 10.1038/ncomms7821] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 03/03/2015] [Indexed: 01/01/2023] Open
Abstract
Genome-wide gene expression quantitative trait loci (eQTL) mapping have been focused on single-nucleotide polymorphisms and have helped interpret findings from diseases mapping studies. The functional effect of structure variants, especially short insertions and deletions (indel) has not been well investigated. Here we impute 1,380,133 indels based on the latest 1,000 Genomes Project panel into three eQTL data sets from multiple tissues. Imputation of indels increased 9.9% power and identifies indel-specific eQTLs for 325 genes. We find introns and vicinities of UTRs are more enriched of indel eQTLs and 3.6 (single-tissue)-9.2%(multi-tissue) of previous identified eSNPs were taggers of eindels. Functional analyses identifies epigenetics marks, gene ontology categories and disease GWAS loci affected by SNPs and indels eQTLs showing tissue-consistent or tissue-specific effects. This study provides new insights into the underlying genetic architecture of gene expression across tissues and new resource to interpret function of diseases and traits associated structure variants.
Collapse
Affiliation(s)
- Jinyan Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Epidemiology, Harvard School of Public Health, Boston, MA
| | - Jun Chen
- Department of Biostatistics, Harvard School of Public Health, Boston, MA
| | - Jorge Esparza
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Jun Ding
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - James Elder
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109-0932, USA
| | - Goncalo R Abecasis
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109-0932, USA
| | - Young-Ae Lee
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - G. Mark Lathrop
- Departments of Human and Medical Genetics, McGill University and Génome Québec Innovation Centre, Montréal, Canada
| | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Liming Liang
- Department of Epidemiology, Harvard School of Public Health, Boston, MA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA
| |
Collapse
|
269
|
Liu ZP. Reverse Engineering of Genome-wide Gene Regulatory Networks from Gene Expression Data. Curr Genomics 2015; 16:3-22. [PMID: 25937810 PMCID: PMC4412962 DOI: 10.2174/1389202915666141110210634] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 09/05/2014] [Accepted: 09/05/2014] [Indexed: 12/17/2022] Open
Abstract
Transcriptional regulation plays vital roles in many fundamental biological processes. Reverse engineering of genome-wide regulatory networks from high-throughput transcriptomic data provides a promising way to characterize the global scenario of regulatory relationships between regulators and their targets. In this review, we summarize and categorize the main frameworks and methods currently available for inferring transcriptional regulatory networks from microarray gene expression profiling data. We overview each of strategies and introduce representative methods respectively. Their assumptions, advantages, shortcomings, and possible improvements and extensions are also clarified and commented.
Collapse
Affiliation(s)
- Zhi-Ping Liu
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| |
Collapse
|
270
|
Kim KW, Myers RA, Lee JH, Igartua C, Lee KE, Kim YH, Kim EJ, Yoon D, Lee JS, Hirota T, Tamari M, Takahashi A, Kubo M, Choi JM, Kim KE, Nicolae DL, Ober C, Sohn MH. Genome-wide association study of recalcitrant atopic dermatitis in Korean children. J Allergy Clin Immunol 2015; 136:678-684.e4. [PMID: 25935106 DOI: 10.1016/j.jaci.2015.03.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/05/2015] [Accepted: 03/13/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is a heterogeneous chronic inflammatory skin disease. Most AD during infancy resolves during childhood, but moderate-to-severe AD with allergic sensitization is more likely to persist into adulthood and more often occurs with other allergic diseases. OBJECTIVE We sought to find susceptibility loci by performing the first genome-wide association study (GWAS) of AD in Korean children with recalcitrant AD, which was defined as moderate-to-severe AD with allergic sensitization. METHODS Our study included 246 children with recalcitrant AD and 551 adult control subjects with a negative history of both allergic disease and allergic sensitization. DNA from these subjects was genotyped; sets of common single nucleotide polymorphisms (SNPs) were imputed and used in the GWAS after quality control checks. RESULTS SNPs at a region on 13q21.31 were associated with recalcitrant AD at a genome-wide threshold of significance (P < 2.0 × 10(-8)). These associated SNPs are more than 1 Mb from the closest gene, protocadherin (PCDH)9. SNPs at 4 additional loci had P values of less than 1 × 10(-6), including SNPs at or near the neuroblastoma amplified sequence (NBAS; 2p24.3), thymus-expressed molecule involved in selection (THEMIS; 6q22.33), GATA3 (10p14), and S-phase cyclin A-associated protein in the ER (SCAPER; 15q24.3) genes. Further analysis of total serum IgE levels suggested 13q21.31 might be primarily an IgE locus, and analyses of published data demonstrated that SNPs at the 15q24.3 region are expression quantitative trait loci for 2 nearby genes, ISL2 and proline-serine-threonine phosphatase interacting protein 1 (PSTPIP1), in immune cells. CONCLUSION Our GWAS of recalcitrant AD identified new susceptibility regions containing genes involved in epithelial cell function and immune dysregulation, 2 key features of AD, and potentially extend our understanding of their role in pathogenesis.
Collapse
Affiliation(s)
- Kyung Won Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul, Korea; Department of Human Genetics, University of Chicago, Chicago, Ill
| | - Rachel A Myers
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | - Ji Hyun Lee
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
| | | | - Kyung Eun Lee
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Hee Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Eun-Jin Kim
- Division of Allergy and Chronic Respiratory Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Osong, Korea
| | - Dankyu Yoon
- Division of Allergy and Chronic Respiratory Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Osong, Korea
| | - Joo-Shil Lee
- Division of Allergy and Chronic Respiratory Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Osong, Korea
| | - Tomomitsu Hirota
- Laboratory for Respiratory and Allergic Diseases, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Mayumi Tamari
- Laboratory for Respiratory and Allergic Diseases, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Je-Min Choi
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Kyu-Earn Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Dan L Nicolae
- Department of Human Genetics, University of Chicago, Chicago, Ill; Department of Medicine and Statistics, University of Chicago, Chicago, Ill
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | - Myung Hyun Sohn
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
271
|
Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility. Nat Commun 2015; 6:6916. [PMID: 25903422 PMCID: PMC4423213 DOI: 10.1038/ncomms7916] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 03/13/2015] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is a common inflammatory skin disease with complex genetics and different degrees of prevalence across ethnic populations. Here we present the largest trans-ethnic genome-wide meta-analysis (GWMA) of psoriasis in 15,369 cases and 19,517 controls of Caucasian and Chinese ancestries. We identify four novel associations at LOC144817, COG6, RUNX1 and TP63, as well as three novel secondary associations within IFIH1 and IL12B. Fine-mapping analysis of MHC region demonstrates an important role for all three HLA class I genes and a complex and heterogeneous pattern of HLA associations between Caucasian and Chinese populations. Further, trans-ethnic comparison suggests population-specific effect or allelic heterogeneity for 11 loci. These population-specific effects contribute significantly to the ethnic diversity of psoriasis prevalence. This study not only provides novel biological insights into the involvement of immune and keratinocyte development mechanism, but also demonstrates a complex and heterogeneous genetic architecture of psoriasis susceptibility across ethnic populations. Psoriasis is a common inflammatory skin disease with complex genetics and different degrees of prevalence across ethnic populations. Here Yin et al. conduct a large trans-ethnic genome-wide meta-analysis and identify novel loci that contribute to population-specific susceptibility.
Collapse
|
272
|
Germain M, Chasman DI, de Haan H, Tang W, Lindström S, Weng LC, de Andrade M, de Visser MCH, Wiggins KL, Suchon P, Saut N, Smadja DM, Le Gal G, van Hylckama Vlieg A, Di Narzo A, Hao K, Nelson CP, Rocanin-Arjo A, Folkersen L, Monajemi R, Rose LM, Brody JA, Slagboom E, Aïssi D, Gagnon F, Deleuze JF, Deloukas P, Tzourio C, Dartigues JF, Berr C, Taylor KD, Civelek M, Eriksson P, Psaty BM, Houwing-Duitermaat J, Goodall AH, Cambien F, Kraft P, Amouyel P, Samani NJ, Basu S, Ridker PM, Rosendaal FR, Kabrhel C, Folsom AR, Heit J, Reitsma PH, Trégouët DA, Smith NL, Morange PE. Meta-analysis of 65,734 individuals identifies TSPAN15 and SLC44A2 as two susceptibility loci for venous thromboembolism. Am J Hum Genet 2015; 96:532-42. [PMID: 25772935 DOI: 10.1016/j.ajhg.2015.01.019] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/29/2015] [Indexed: 11/18/2022] Open
Abstract
Venous thromboembolism (VTE), the third leading cause of cardiovascular mortality, is a complex thrombotic disorder with environmental and genetic determinants. Although several genetic variants have been found associated with VTE, they explain a minor proportion of VTE risk in cases. We undertook a meta-analysis of genome-wide association studies (GWASs) to identify additional VTE susceptibility genes. Twelve GWASs totaling 7,507 VTE case subjects and 52,632 control subjects formed our discovery stage where 6,751,884 SNPs were tested for association with VTE. Nine loci reached the genome-wide significance level of 5 × 10(-8) including six already known to associate with VTE (ABO, F2, F5, F11, FGG, and PROCR) and three unsuspected loci. SNPs mapping to these latter were selected for replication in three independent case-control studies totaling 3,009 VTE-affected individuals and 2,586 control subjects. This strategy led to the identification and replication of two VTE-associated loci, TSPAN15 and SLC44A2, with lead risk alleles associated with odds ratio for disease of 1.31 (p = 1.67 × 10(-16)) and 1.21 (p = 2.75 × 10(-15)), respectively. The lead SNP at the TSPAN15 locus is the intronic rs78707713 and the lead SLC44A2 SNP is the non-synonymous rs2288904 previously shown to associate with transfusion-related acute lung injury. We further showed that these two variants did not associate with known hemostatic plasma markers. TSPAN15 and SLC44A2 do not belong to conventional pathways for thrombosis and have not been associated to other cardiovascular diseases nor related quantitative biomarkers. Our findings uncovered unexpected actors of VTE etiology and pave the way for novel mechanistic concepts of VTE pathophysiology.
Collapse
Affiliation(s)
- Marine Germain
- Institut National pour la Santé et la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR_S) 1166, 75013 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, 75013 Paris, France; Institute for Cardiometabolism and Nutrition (ICAN), 75013 Paris, France
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Hugoline de Haan
- Department of Thrombosis and Hemostasis, Department of Clinical Epidemiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Weihong Tang
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55454, USA
| | - Sara Lindström
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
| | - Lu-Chen Weng
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55454, USA
| | - Mariza de Andrade
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Marieke C H de Visser
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Thrombosis and Hemostasis, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Kerri L Wiggins
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Pierre Suchon
- Laboratory of Haematology, La Timone Hospital, 13385 Marseille, France; INSERM, UMR_S 1062, Nutrition Obesity and Risk of Thrombosis, 13385 Marseille, France; Nutrition Obesity and Risk of Thrombosis, Aix-Marseille University, UMR_S 1062, 13385 Marseille, France
| | - Noémie Saut
- Laboratory of Haematology, La Timone Hospital, 13385 Marseille, France; INSERM, UMR_S 1062, Nutrition Obesity and Risk of Thrombosis, 13385 Marseille, France; Nutrition Obesity and Risk of Thrombosis, Aix-Marseille University, UMR_S 1062, 13385 Marseille, France
| | - David M Smadja
- Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France; AP-HP, Hopital Européen Georges Pompidou, Service d'Hématologie Biologique, 75015 Paris, France; Faculté de Pharmacie, INSERM, UMR_S 1140, 75006 Paris, France
| | - Grégoire Le Gal
- Université de Brest, EA3878 and CIC1412, 29238 Brest, France; Ottawa Hospital Research Institute at the University of Ottawa, Ottawa, ON K1Y 4E9, Canada
| | - Astrid van Hylckama Vlieg
- Department of Thrombosis and Hemostasis, Department of Clinical Epidemiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Antonio Di Narzo
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, LE1 7RH Leicester, UK; National Institute for Health Research (NIHR) Leicester Cardiovascular Biomedical Research Unit, Leicester LE3 9QP, UK
| | - Ares Rocanin-Arjo
- Institut National pour la Santé et la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR_S) 1166, 75013 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, 75013 Paris, France; Institute for Cardiometabolism and Nutrition (ICAN), 75013 Paris, France
| | - Lasse Folkersen
- Department of PharmacoGenetics, Novo Nordisk Park 9.1.21, 2400 Copenhagen, Denmark
| | - Ramin Monajemi
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Lynda M Rose
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA 98195-5852, USA
| | - Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Dylan Aïssi
- Institut National pour la Santé et la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR_S) 1166, 75013 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, 75013 Paris, France; Institute for Cardiometabolism and Nutrition (ICAN), 75013 Paris, France
| | - France Gagnon
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Jean-Francois Deleuze
- Commissariat à l'Energie Atomique/Direction des Sciences du Vivant/Institut de Génomique, Centre National de Génotypage, 91057 Evry, France
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK; Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Christophe Tzourio
- Inserm Research Center U897, University of Bordeaux, 33000 Bordeaux, France
| | | | - Claudine Berr
- Inserm Research Unit U1061, University of Montpellier I, 34000 Montpellier, France
| | - Kent D Taylor
- Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Torrence, CA 90502, USA
| | - Mete Civelek
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Per Eriksson
- Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA 98195-5852, USA; Group Health Research Institute, Group Health Cooperative, Seattle, WA 98101, USA
| | - Jeanine Houwing-Duitermaat
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Alison H Goodall
- Department of Cardiovascular Sciences, University of Leicester, LE1 7RH Leicester, UK; National Institute for Health Research (NIHR) Leicester Cardiovascular Biomedical Research Unit, Leicester LE3 9QP, UK
| | - François Cambien
- Institut National pour la Santé et la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR_S) 1166, 75013 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, 75013 Paris, France; Institute for Cardiometabolism and Nutrition (ICAN), 75013 Paris, France
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
| | - Philippe Amouyel
- Institut Pasteur de Lille, Université de Lille Nord de France, INSERM UMR_S 744, 59000 Lille, France; Centre Hospitalier Régional Universitaire de Lille, 59000 Lille, France
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, LE1 7RH Leicester, UK; National Institute for Health Research (NIHR) Leicester Cardiovascular Biomedical Research Unit, Leicester LE3 9QP, UK
| | - Saonli Basu
- Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Frits R Rosendaal
- Department of Thrombosis and Hemostasis, Department of Clinical Epidemiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Christopher Kabrhel
- Department of Emergency Medicine, Massachusetts General Hospital, Channing Network Medicine, Harvard Medical School, Boston, MA 2114, USA
| | - Aaron R Folsom
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55454, USA
| | - John Heit
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Pieter H Reitsma
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Thrombosis and Hemostasis, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - David-Alexandre Trégouët
- Institut National pour la Santé et la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR_S) 1166, 75013 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, 75013 Paris, France; Institute for Cardiometabolism and Nutrition (ICAN), 75013 Paris, France
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA; Group Health Research Institute, Group Health Cooperative, Seattle, WA 98101, USA; Seattle Epidemiologic Research and Information Center, VA Office of Research and Development, Seattle, WA 98108, USA.
| | - Pierre-Emmanuel Morange
- Laboratory of Haematology, La Timone Hospital, 13385 Marseille, France; INSERM, UMR_S 1062, Nutrition Obesity and Risk of Thrombosis, 13385 Marseille, France; Nutrition Obesity and Risk of Thrombosis, Aix-Marseille University, UMR_S 1062, 13385 Marseille, France.
| |
Collapse
|
273
|
Onengut-Gumuscu S, Chen WM, Burren O, Cooper NJ, Quinlan AR, Mychaleckyj JC, Farber E, Bonnie JK, Szpak M, Schofield E, Achuthan P, Guo H, Fortune MD, Stevens H, Walker NM, Ward LD, Kundaje A, Kellis M, Daly MJ, Barrett JC, Cooper JD, Deloukas P, Type 1 Diabetes Genetics Consortium, Todd JA, Wallace C, Concannon P, Rich SS. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet 2015; 47:381-6. [PMID: 25751624 PMCID: PMC4380767 DOI: 10.1038/ng.3245] [Citation(s) in RCA: 514] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 02/13/2015] [Indexed: 02/06/2023]
Abstract
Genetic studies of type 1 diabetes (T1D) have identified 50 susceptibility regions, finding major pathways contributing to risk, with some loci shared across immune disorders. To make genetic comparisons across autoimmune disorders as informative as possible, a dense genotyping array, the Immunochip, was developed, from which we identified four new T1D-associated regions (P < 5 × 10(-8)). A comparative analysis with 15 immune diseases showed that T1D is more similar genetically to other autoantibody-positive diseases, significantly most similar to juvenile idiopathic arthritis and significantly least similar to ulcerative colitis, and provided support for three additional new T1D risk loci. Using a Bayesian approach, we defined credible sets for the T1D-associated SNPs. The associated SNPs localized to enhancer sequences active in thymus, T and B cells, and CD34(+) stem cells. Enhancer-promoter interactions can now be analyzed in these cell types to identify which particular genes and regulatory sequences are causal.
Collapse
Affiliation(s)
- Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Medicine, Division of Endocrinology, University of Virginia, Charlottesville, VA, USA
| | - Wei-Min Chen
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, Division of Biostatistics and Epidemiology, University of Virginia, Charlottesville, VA, USA
| | - Oliver Burren
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Biomedical Research Centre, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0XY, UK
| | - Nick J. Cooper
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Biomedical Research Centre, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0XY, UK
| | - Aaron R. Quinlan
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, Division of Biostatistics and Epidemiology, University of Virginia, Charlottesville, VA, USA
| | - Josyf C. Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, Division of Biostatistics and Epidemiology, University of Virginia, Charlottesville, VA, USA
| | - Emily Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jessica K. Bonnie
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Michal Szpak
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Ellen Schofield
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Biomedical Research Centre, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0XY, UK
| | - Premanand Achuthan
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Biomedical Research Centre, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0XY, UK
| | - Hui Guo
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Biomedical Research Centre, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0XY, UK
| | - Mary D. Fortune
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Biomedical Research Centre, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0XY, UK
| | - Helen Stevens
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Biomedical Research Centre, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0XY, UK
| | - Neil M. Walker
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Biomedical Research Centre, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0XY, UK
| | - Luke D. Ward
- Department of Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anshul Kundaje
- Department of Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA. Department of Genetics, Stanford University, Stanford, CA, USA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Manolis Kellis
- Department of Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark J. Daly
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Jason D. Cooper
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Biomedical Research Centre, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0XY, UK
| | | | | | - John A. Todd
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Biomedical Research Centre, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0XY, UK
| | - Chris Wallace
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Biomedical Research Centre, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 0XY, UK
- MRC Biostatistics Unit, Institute of Public Health, University Forvie Site, Robinson Way, CB2 0SR, Cambridge, United Kingdom
| | - Patrick Concannon
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, Division of Biostatistics and Epidemiology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
274
|
Sohrabi N, Shekari Khaniani M, Mansoori Derakhshan S. Evaluation of Association Between HLA Class II DR4-DQ8 Haplotype and Type I Diabetes Mellitus in Children of East Azerbaijan State of Iran. Adv Pharm Bull 2015; 5:137-40. [PMID: 25789232 DOI: 10.5681/apb.2015.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/08/2015] [Accepted: 01/19/2015] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Association between HLA-DR4-DQ8 haplotype and type 1 Diabetes Mellitus (DM-1A) was investigated in children of East Azerbaijan state of Iran because such an association has not been previously studied in this population. METHODS HLA-typing was performed by polymerase chain reaction sequence-specific priming. For haplotype analysis, the logistic regression model was performed. RESULTS Of the three investigated alleles, the frequency of DRB1*0401 was significantly higher among patients compared with that in healthy subjects (76.74% vs. 23.26%). CONCLUSION The findings of the current study are consistent with those of previous studies and show that DRB1*0401 is associated with DM-1A; the frequencies of the two other alleles were also higher among patients, although the differences were not statistically significant. Two haplotypes associated with these alleles were also surveyed, and DRB1*0401--DQA1*0301-, and DRB1*0401--DQA1*0301--DQB1*0302- were the most frequent haplotypes among the patient group.
Collapse
Affiliation(s)
- Nasrin Sohrabi
- Medical Genetic Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. ; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Medical Genetic Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Mansoori Derakhshan
- Medical Genetic Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. ; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
275
|
Meta-analysis of two Chinese populations identifies an autoimmune disease risk allele in 22q11.21 as associated with systemic lupus erythematosus. Arthritis Res Ther 2015; 17:67. [PMID: 25880549 PMCID: PMC4404227 DOI: 10.1186/s13075-015-0577-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 02/20/2015] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is a heterogeneous disease with a diverse spectrum of clinical symptoms, ranging from skin rash to end-organ damage. 22q11.21 has been identified as a susceptibility region for several autoimmune diseases, including SLE. However, detailed information for SLE association and the underlying functional mechanism(s) is still lacking. METHODS Through meta-analysis of two genome-wide association studies (GWAS) on Han Chinese populations, comprising a total of 1,659 cases and 3,398 controls matched geographically, we closely examined the 22q11.21 region, especially on the reported single-nucleotide polymorphisms (SNPs) associated with different autoimmune diseases and their relationships. We further replicated the most significant associations of SNPs with SLE using 2,612 cases and 2,323 controls of Asian ancestry. RESULTS All reported SNPs in the 22q11.21 region with different autoimmune diseases were examined using the two GWAS data and meta-analysis results, and supportive evidence of association with SLE was found (meta-analysis: P_meta ≤ 7.27E-05), which might require further investigation. SNP rs2298428 was identified as the most significant SNP associated with SLE in this region (P_meta =2.70E-09). It showed independent effects through both stepwise and conditional logistic regression, and there is no evidence of other independent association signals for SLE in this region. The association of rs2298428 was further replicated in three cohorts from Hong Kong, Anhui and Thailand comprising a total of 2,612 cases and 2,323 controls (joint analysis of GWAS and replication result: P_all =1.31E-11, odds ratio =1.23). SNP rs2298428 was shown to be an expression quantitative locus for UBE2L3 gene in different cell types, with the risk allele (T) being correlated with higher expression of UBE2L3. This is consistent with earlier reports on higher expression of UBE2L3 in patients with SLE. CONCLUSIONS Association with distinct autoimmune diseases highlights the significance of this region in autoreactive responses and potentially shared functional mechanisms in these diseases.
Collapse
|
276
|
Guo H, Fortune MD, Burren OS, Schofield E, Todd JA, Wallace C. Integration of disease association and eQTL data using a Bayesian colocalisation approach highlights six candidate causal genes in immune-mediated diseases. Hum Mol Genet 2015; 24:3305-13. [PMID: 25743184 PMCID: PMC4498151 DOI: 10.1093/hmg/ddv077] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/24/2015] [Indexed: 01/24/2023] Open
Abstract
The genes and cells that mediate genetic associations identified through genome-wide association studies (GWAS) are only partially understood. Several studies that have investigated the genetic regulation of gene expression have shown that disease-associated variants are over-represented amongst expression quantitative trait loci (eQTL) variants. Evidence for colocalisation of eQTL and disease causal variants can suggest causal genes and cells for these genetic associations. Here, we used colocalisation analysis to investigate whether 595 genetic associations to ten immune-mediated diseases are consistent with a causal variant that regulates, in cis, gene expression in resting B cells, and in resting and stimulated monocytes. Previously published candidate causal genes were over-represented amongst genes exhibiting colocalisation (odds ratio > 1.5), and we identified evidence for colocalisation (posterior odds > 5) between cis eQTLs in at least one cell type and at least one disease for six genes: ADAM15, RGS1, CARD9, LTBR, CTSH and SYNGR1. We identified cell-specific effects, such as for CTSH, the expression of which in monocytes, but not in B cells, may mediate type 1 diabetes and narcolepsy associations in the chromosome 15q25.1 region. Our results demonstrate the utility of integrating genetic studies of disease and gene expression for highlighting causal genes and cell types.
Collapse
Affiliation(s)
- Hui Guo
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK, Centre for Biostatistics, Institute of Population Health, The University of Manchester, Jean McFarlane Building, Oxford Road, Manchester M13 9PL, UK and
| | - Mary D Fortune
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Oliver S Burren
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Ellen Schofield
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - John A Todd
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Chris Wallace
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK, MRC Biostatistics Unit, Cambridge Institute of Public Health, Forvie Site, Robinson Way, Cambridge Biomedical Campus, Cambridge CB2 0SR, UK
| |
Collapse
|
277
|
Genome-wide identification of allele-specific expression in response to Streptococcus suis 2 infection in two differentially susceptible pig breeds. J Appl Genet 2015; 56:481-491. [PMID: 25737137 DOI: 10.1007/s13353-015-0275-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 01/15/2015] [Accepted: 02/10/2015] [Indexed: 12/18/2022]
Abstract
Although allele expression imbalance has been recognized in many species, and strongly linked to diseases, no whole transcriptome allele imbalance has been detected in pigs during pathogen infections. The pathogen Streptococcus suis 2 (SS2) causes serious zoonotic disease. Different pig breeds show differential susceptibility/resistance to pathogen infection, but the biological insight is little known. Here we analyzed allele-specific expression (ASE) using the spleen transcriptome of four pigs belonging to two phenotypically different breeds after SS2 infection. The comparative analysis of allele specific SNPs between control and infected animals revealed 882 and 1096 statistically significant differentially expressed allele SNPs (criteria: ratio ≧ 2 or ≦ 0.5) in Landrace and Enshi black pig, respectively. Twenty nine allelically imbalanced SNPs were further verified by Sanger sequencing, and later six SNPs were quantified by pyrosequencing assay. The pyrosequencing results are in agreement with the RNA-seq results, except two SNPs. Looking at the role of ASE in predisposition to diseases, the discovery of causative variants by ASE analysis might help the pig industry in long term to design breeding programs for improving SS2 resistance.
Collapse
|
278
|
Albert FW, Kruglyak L. The role of regulatory variation in complex traits and disease. Nat Rev Genet 2015; 16:197-212. [DOI: 10.1038/nrg3891] [Citation(s) in RCA: 675] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
279
|
Abstract
The discovery of hypocretins (orexins) and their causal implication in narcolepsy is the most important advance in sleep research and sleep medicine since the discovery of rapid eye movement sleep. Narcolepsy with cataplexy is caused by hypocretin deficiency owing to destruction of most of the hypocretin-producing neurons in the hypothalamus. Ablation of hypocretin or hypocretin receptors also leads to narcolepsy phenotypes in animal models. Although the exact mechanism of hypocretin deficiency is unknown, evidence from the past 20 years strongly favours an immune-mediated or autoimmune attack, targeting specifically hypocretin neurons in genetically predisposed individuals. These neurons form an extensive network of projections throughout the brain and show activity linked to motivational behaviours. The hypothesis that a targeted immune-mediated or autoimmune attack causes the specific degeneration of hypocretin neurons arose mainly through the discovery of genetic associations, first with the HLA-DQB1*06:02 allele and then with the T-cell receptor α locus. Guided by these genetic findings and now awaiting experimental testing are models of the possible immune mechanisms by which a specific and localised brain cell population could become targeted by T-cell subsets. Great hopes for the identification of new targets for therapeutic intervention in narcolepsy also reside in the development of patient-derived induced pluripotent stem cell systems.
Collapse
|
280
|
Lewis M, Vyse S, Shields A, Boeltz S, Gordon P, Spector T, Lehner P, Walczak H, Vyse T. UBE2L3 polymorphism amplifies NF-κB activation and promotes plasma cell development, linking linear ubiquitination to multiple autoimmune diseases. Am J Hum Genet 2015; 96:221-34. [PMID: 25640675 PMCID: PMC4320258 DOI: 10.1016/j.ajhg.2014.12.024] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022] Open
Abstract
UBE2L3 is associated with increased susceptibility to numerous autoimmune diseases, but the underlying mechanism is unexplained. By using data from a genome-wide association study of systemic lupus erythematosus (SLE), we observed a single risk haplotype spanning UBE2L3, consistently aligned across multiple autoimmune diseases, associated with increased UBE2L3 expression in B cells and monocytes. rs140490 in the UBE2L3 promoter region showed the strongest association. UBE2L3 is an E2 ubiquitin-conjugating enzyme, specially adapted to function with HECT and RING-in-between-RING (RBR) E3 ligases, including HOIL-1 and HOIP, components of the linear ubiquitin chain assembly complex (LUBAC). Our data demonstrate that UBE2L3 is the preferred E2 conjugating enzyme for LUBAC in vivo, and UBE2L3 is essential for LUBAC-mediated activation of NF-κB. By accurately quantifying NF-κB translocation in primary human cells from healthy individuals stratified by rs140490 genotype, we observed that the autoimmune disease risk UBE2L3 genotype was correlated with basal NF-κB activation in unstimulated B cells and monocytes and regulated the sensitivity of NF-κB to CD40 stimulation in B cells and TNF stimulation in monocytes. The UBE2L3 risk allele correlated with increased circulating plasmablast and plasma cell numbers in SLE individuals, consistent with substantially elevated UBE2L3 protein levels in plasmablasts and plasma cells. These results identify key immunological consequences of the UBE2L3 autoimmune risk haplotype and highlight an important role for UBE2L3 in plasmablast and plasma cell development.
Collapse
|
281
|
Abstract
The Estonian Biobank and several other biobanks established over a decade ago are now starting to yield valuable longitudinal follow-up data for large numbers of individuals. These samples have been used in hundreds of different genome-wide association studies, resulting in the identification of reliable disease-associated variants. The focus of genomic research has started to shift from identifying genetic and nongenetic risk factors associated with common complex diseases to understanding the underlying mechanisms of the diseases and suggesting novel targets for therapy. However, translation of findings from genomic research into medical practice is still lagging, mainly due to insufficient evidence of clinical validity and utility. In this review, we examine the different elements required for the implementation of personalized medicine based on genomic information. First, biobanks and genome centres are required and have been established for the high-throughput genomic screening of large numbers of samples. Secondly, the combination of susceptibility alleles into polygenic risk scores has improved risk prediction of cardiovascular disease, breast cancer and several other diseases. Finally, national health information systems are being developed internationally, to combine data from electronic medical records from different sources, and also to gradually incorporate genomic information. We focus on the experience in Estonia, one of several countries with national goals towards more personalized health care based on genomic information, where the unique combination of elements required to accomplish this goal are already in place.
Collapse
Affiliation(s)
- L Milani
- Estonian Genome Center, University of TartuTartu, Estonia
| | - L Leitsalu
- Estonian Genome Center, University of TartuTartu, Estonia
- Institute of Molecular and Cell Biology, University of TartuTartu, Estonia
| | - A Metspalu
- Estonian Genome Center, University of TartuTartu, Estonia
- Institute of Molecular and Cell Biology, University of TartuTartu, Estonia
| |
Collapse
|
282
|
Raine T, Liu JZ, Anderson CA, Parkes M, Kaser A. Generation of primary human intestinal T cell transcriptomes reveals differential expression at genetic risk loci for immune-mediated disease. Gut 2015; 64:250-9. [PMID: 24799394 PMCID: PMC4316924 DOI: 10.1136/gutjnl-2013-306657] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/25/2014] [Accepted: 04/06/2014] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Genome-wide association studies (GWAS) have identified genetic variants within multiple risk loci as predisposing to intestinal inflammatory diseases, including Crohn's disease, ulcerative colitis and coeliac disease. Most risk variants affect regulation of transcription, but a critical challenge is to identify which genes and which cell types these variants affect. We aimed to characterise whole transcriptomes for each common T lymphocyte subset resident within the gut mucosa, and use these to infer biological insights and highlight candidate genes of interest within GWAS risk loci. DESIGN We isolated the four major intestinal T cell populations from pinch biopsies from healthy subjects and generated transcriptomes for each. We computationally integrated these transcriptomes with GWAS data from immune-related diseases. RESULTS Robust, high quality transcriptomic data were generated from 1 ng of RNA from precisely sorted cell subsets. Gene expression patterns clearly differentiated intestinal T cells from counterparts in peripheral blood and revealed distinct signalling pathways for each intestinal T cell subset. Intestinal-specific T cell transcripts were enriched in GWAS risk loci for Crohn's disease, ulcerative colitis and coeliac disease, but also specific extraintestinal immune-mediated diseases, allowing prediction of novel candidate genes. CONCLUSIONS This is the first report of transcriptomes for minimally manipulated intestinal T lymphocyte subsets in humans. We have demonstrated that careful processing of mucosal biopsies allows the generation of transcriptomes from as few as 1000 highly purified cells with minimal interindividual variation. Bioinformatic integration of transcriptomic data with recent GWAS data identified specific candidate genes and cell types for inflammatory pathologies.
Collapse
Affiliation(s)
- Tim Raine
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Jimmy Z Liu
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Carl A Anderson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Miles Parkes
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Arthur Kaser
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
283
|
Immunogenetic influences on acquisition of HIV-1 infection: consensus findings from two African cohorts point to an enhancer element in IL19 (1q32.2). Genes Immun 2015; 16:213-20. [PMID: 25633979 PMCID: PMC4409473 DOI: 10.1038/gene.2014.84] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 12/12/2022]
Abstract
Numerous reports have suggested that immunogenetic factors may influence HIV-1 acquisition, yet replicated findings that translate between study cohorts remain elusive. Our work aimed to test several hypotheses about genetic variants within the IL10-IL24 gene cluster that encodes interleukin (IL)-10, IL-19, IL-20, and IL-24. In aggregated data from 515 Rwandans and 762 Zambians with up to 12 years of follow-up, 190 single nucleotide polymorphisms (SNPs) passed quality control procedures. When HIV-1-exposed seronegative subjects (n = 486) were compared with newly seroconverted individuals (n = 313) and seroprevalent subjects (n = 478) who were already infected at enrollment, rs12407485 (G>A) in IL19 showed a robust association signal in adjusted logistic regression models (odds ratio = 0.64, P = 1.7 × 10−4, and q = 0.033). Sensitivity analyses demonstrated that (i) results from both cohorts and subgroups within each cohort were highly consistent; (ii) verification of HIV-1 infection status after enrollment was critical; and (iii) supporting evidence was readily obtained from Cox proportional hazards models. Data from public databases indicate that rs12407485 is part of an enhancer element for three transcription factors. Overall, these findings suggest that molecular features at the IL19 locus may modestly alter the establishment of HIV-1 infection.
Collapse
|
284
|
Abstract
Gene expression as an intermediate molecular phenotype has been a focus of research interest. In particular, studies of expression quantitative trait loci (eQTL) have offered promise for understanding gene regulation through the discovery of genetic variants that explain variation in gene expression levels. Existing eQTL methods are designed for assessing the effects of common variants, but not rare variants. Here, we address the problem by establishing a novel analytical framework for evaluating the effects of rare or private variants on gene expression. Our method starts from the identification of outlier individuals that show markedly different gene expression from the majority of a population, and then reveals the contributions of private SNPs to the aberrant gene expression in these outliers. Using population-scale mRNA sequencing data, we identify outlier individuals using a multivariate approach. We find that outlier individuals are more readily detected with respect to gene sets that include genes involved in cellular regulation and signal transduction, and less likely to be detected with respect to the gene sets with genes involved in metabolic pathways and other fundamental molecular functions. Analysis of polymorphic data suggests that private SNPs of outlier individuals are enriched in the enhancer and promoter regions of corresponding aberrantly-expressed genes, suggesting a specific regulatory role of private SNPs, while the commonly-occurring regulatory genetic variants (i.e., eQTL SNPs) show little evidence of involvement. Additional data suggest that non-genetic factors may also underlie aberrant gene expression. Taken together, our findings advance a novel viewpoint relevant to situations wherein common eQTLs fail to predict gene expression when heritable, rare inter-individual variation exists. The analytical framework we describe, taking into consideration the reality of differential phenotypic robustness, may be valuable for investigating complex traits and conditions. The uniqueness of individuals is due to differences in the combination of genetic, epigenetic and environmental determinants. Understanding the genetic basis of phenotypic variation is a key objective in genetics. Gene expression has been considered as an intermediate phenotype, and the association between gene expression and commonly-occurring genetic variants in the general population has been convincingly established. However, there are few methods to assess the impact of rare genetic variants, such as private SNPs, on gene expression. Here we describe a systematic approach, based on the theory of multivariate outlier detection, to identify individuals that show unusual or aberrant gene expression, relative the rest of the study cohort. Through characterizing detected outliers and corresponding gene sets, we are able to identify which gene sets tend to be aberrantly expressed and which individuals show deviant gene expression within a population. One of our major findings is that private SNPs may contribute to aberrant expression in outlier individuals. These private SNPs are more frequently located in the enhancer and promoter regions of genes that are aberrantly expressed, suggesting a possible regulatory function of these SNPs. Overall, our results provide new insight into the determinants of inter-individual variation, which have not been evaluated by large population-level cohort studies.
Collapse
|
285
|
Variants in ALOX5, ALOX5AP and LTA4H are not associated with atherosclerotic plaque phenotypes: the Athero-Express Genomics Study. Atherosclerosis 2015; 239:528-38. [PMID: 25721704 DOI: 10.1016/j.atherosclerosis.2015.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/07/2015] [Accepted: 01/13/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND The eicosanoid genes ALOX5, ALOX5AP and LTA4H have been implicated in atherosclerosis. We assessed the impact of common variants in these genes on gene expression, circulating protein levels, and atherosclerotic plaque phenotypes. METHODS We included patients from the Stockholm Atherosclerosis Gene Expression study (STAGE, N = 109), and the Athero-Express Biobank Study (AE, N = 1443). We tested 1453 single-nucleotide variants (SNVs) in ALOX5, ALOX5AP and LTA4H for association with gene expression in STAGE. We also tested these SNVs for association with seven histologically defined plaque phenotypes in the AE (which included calcification, collagen, cellular content, atheroma size, and intraplaque vessel density and hemorrhage). RESULTS We replicate a known cis-eQTL (rs6538697, p = 1.96 × 10(-6)) for LTA4H expression in whole blood of patients from STAGE. We found no significant association for any of the SNVs tested with serum levels of ALOX5 or ALOX5AP (p > 5.79 × 10(-4)). For atherosclerotic plaque phenotypes the strongest associations were found for intraplaque vessel density and smooth muscle cells in the ALOX5AP locus (p > 1.67 × 10(-4)). CONCLUSIONS We replicate a known eQTL for LTA4H expression in whole blood using STAGE data. We found no associations of variants in and around ALOX5, ALOX5AP and LTA4H with serum ALOX5 or ALOX5AP levels, or plaque phenotypes. On the supposition that these genes play a causal role in atherosclerosis, these results suggest that common variants in these loci play a limited role (if any) in influencing advanced atherosclerotic plaque morphology to the extent that it impacts atherosclerotic disease.
Collapse
|
286
|
Simpson NH, Ceroni F, Reader RH, Covill LE, Knight JC, Hennessy ER, Bolton PF, Conti-Ramsden G, O'Hare A, Baird G, Fisher SE, Newbury DF. Genome-wide analysis identifies a role for common copy number variants in specific language impairment. Eur J Hum Genet 2015; 23:1370-7. [PMID: 25585696 PMCID: PMC4592089 DOI: 10.1038/ejhg.2014.296] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 12/08/2014] [Accepted: 12/12/2014] [Indexed: 11/29/2022] Open
Abstract
An exploratory genome-wide copy number variant (CNV) study was performed in 127 independent cases with specific language impairment (SLI), their first-degree relatives (385 individuals) and 269 population controls. Language-impaired cases showed an increased CNV burden in terms of the average number of events (11.28 vs 10.01, empirical P=0.003), the total length of CNVs (717 vs 513 Kb, empirical P=0.0001), the average CNV size (63.75 vs 51.6 Kb, empirical P=0.0005) and the number of genes spanned (14.29 vs 10.34, empirical P=0.0007) when compared with population controls, suggesting that CNVs may contribute to SLI risk. A similar trend was observed in first-degree relatives regardless of affection status. The increased burden found in our study was not driven by large or de novo events, which have been described as causative in other neurodevelopmental disorders. Nevertheless, de novo CNVs might be important on a case-by-case basis, as indicated by identification of events affecting relevant genes, such as ACTR2 and CSNK1A1, and small events within known micro-deletion/-duplication syndrome regions, such as chr8p23.1. Pathway analysis of the genes present within the CNVs of the independent cases identified significant overrepresentation of acetylcholine binding, cyclic-nucleotide phosphodiesterase activity and MHC proteins as compared with controls. Taken together, our data suggest that the majority of the risk conferred by CNVs in SLI is via common, inherited events within a ‘common disorder–common variant' model. Therefore the risk conferred by CNVs will depend upon the combination of events inherited (both CNVs and SNPs), the genetic background of the individual and the environmental factors.
Collapse
Affiliation(s)
- Nuala H Simpson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Fabiola Ceroni
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Rose H Reader
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Laura E Covill
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Julian C Knight
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | | | - Patrick F Bolton
- Departments of Child and Adolescent Psychiatry, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, UK
| | - Gina Conti-Ramsden
- School of Psychological Sciences, University of Manchester, Manchester, UK
| | - Anne O'Hare
- Department of Reproductive and Developmental Sciences, University of Edinburgh, Edinburgh, UK
| | - Gillian Baird
- Children's Neurosciences Department, Evelina Children's Hospital and King's Health Partners, London, UK
| | - Simon E Fisher
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Dianne F Newbury
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.,St John's College, University of Oxford, Oxford, UK
| |
Collapse
|
287
|
Foroughi Asl H, Talukdar HA, Kindt ASD, Jain RK, Ermel R, Ruusalepp A, Nguyen KDH, Dobrin R, Reilly DF, Schunkert H, Samani NJ, Braenne I, Erdmann J, Melander O, Qi J, Ivert T, Skogsberg J, Schadt EE, Michoel T, Björkegren JLM. Expression quantitative trait Loci acting across multiple tissues are enriched in inherited risk for coronary artery disease. ACTA ACUST UNITED AC 2015; 8:305-15. [PMID: 25578447 DOI: 10.1161/circgenetics.114.000640] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 12/16/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Despite recent discoveries of new genetic risk factors, the majority of risk for coronary artery disease (CAD) remains elusive. As the most proximal sensor of DNA variation, RNA abundance can help identify subpopulations of genetic variants active in and across tissues mediating CAD risk through gene expression. METHODS AND RESULTS By generating new genomic data on DNA and RNA samples from the Stockholm Atherosclerosis Gene Expression (STAGE) study, 8156 cis-acting expression quantitative trait loci (eQTLs) for 6450 genes across 7 CAD-relevant tissues were detected. The inherited risk enrichments of tissue-defined sets of these eQTLs were assessed using 2 independent genome-wide association data sets. eQTLs acting across increasing numbers of tissues were found increasingly enriched for CAD risk and resided at regulatory hot spots. The risk enrichment of 42 eQTLs acting across 5 to 6 tissues was particularly high (≤7.3-fold) and confirmed in the combined genome-wide association data from Coronary Artery Disease Genome Wide Replication And Meta-Analysis Consortium. Sixteen of the 42 eQTLs associated with 19 master regulatory genes and 29 downstream gene sets (n>30) were further risk enriched comparable to that of the 153 genome-wide association risk single-nucleotide polymorphisms established for CAD (8.4-fold versus 10-fold). Three gene sets, governed by the master regulators FLYWCH1, PSORSIC3, and G3BP1, segregated the STAGE patients according to extent of CAD, and small interfering RNA targeting of these master regulators affected cholesterol-ester accumulation in foam cells of the THP1 monocytic cell line. CONCLUSIONS eQTLs acting across multiple tissues are significant carriers of inherited risk for CAD. FLYWCH1, PSORSIC3, and G3BP1 are novel master regulatory genes in CAD that may be suitable targets.
Collapse
|
288
|
Ramsey SA, Vengrenyuk Y, Menon P, Podolsky I, Feig JE, Aderem A, Fisher EA, Gold ES. Epigenome-guided analysis of the transcriptome of plaque macrophages during atherosclerosis regression reveals activation of the Wnt signaling pathway. PLoS Genet 2014; 10:e1004828. [PMID: 25474352 PMCID: PMC4256277 DOI: 10.1371/journal.pgen.1004828] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 10/15/2014] [Indexed: 11/19/2022] Open
Abstract
We report the first systems biology investigation of regulators controlling arterial plaque macrophage transcriptional changes in response to lipid lowering in vivo in two distinct mouse models of atherosclerosis regression. Transcriptome measurements from plaque macrophages from the Reversa mouse were integrated with measurements from an aortic transplant-based mouse model of plaque regression. Functional relevance of the genes detected as differentially expressed in plaque macrophages in response to lipid lowering in vivo was assessed through analysis of gene functional annotations, overlap with in vitro foam cell studies, and overlap of associated eQTLs with human atherosclerosis/CAD risk SNPs. To identify transcription factors that control plaque macrophage responses to lipid lowering in vivo, we used an integrative strategy – leveraging macrophage epigenomic measurements – to detect enrichment of transcription factor binding sites upstream of genes that are differentially expressed in plaque macrophages during regression. The integrated analysis uncovered eight transcription factor binding site elements that were statistically overrepresented within the 5′ regulatory regions of genes that were upregulated in plaque macrophages in the Reversa model under maximal regression conditions and within the 5′ regulatory regions of genes that were upregulated in the aortic transplant model during regression. Of these, the TCF/LEF binding site was present in promoters of upregulated genes related to cell motility, suggesting that the canonical Wnt signaling pathway may be activated in plaque macrophages during regression. We validated this network-based prediction by demonstrating that β-catenin expression is higher in regressing (vs. control group) plaques in both regression models, and we further demonstrated that stimulation of canonical Wnt signaling increases macrophage migration in vitro. These results suggest involvement of canonical Wnt signaling in macrophage emigration from the plaque during lipid lowering-induced regression, and they illustrate the discovery potential of an epigenome-guided, systems approach to understanding atherosclerosis regression. Atherosclerosis, a progressive accumulation of lipid-rich plaque within arteries, is an inflammatory disease in which the response of macrophages (a key cell type of the innate immune system) to plasma lipoproteins plays a central role. In humans, the goal of significantly reducing already-established plaque through drug treatments, including statins, remains elusive. In mice, atherosclerosis can be reversed by experimental manipulations that lower circulating lipid levels. A common feature of many regression models is that macrophages transition to a less inflammatory state and emigrate from the plaque. While the molecular regulators that control these responses are largely unknown, we hypothesized that by integrating global measurements of macrophage gene expression in regressing plaques with measurements of the macrophage chromatin landscape, we could identify key molecules that control macrophage responses to the lowering of circulating lipid levels. Our systems biology analysis of plaque macrophages yielded a network in which the Wnt signaling pathway emerged as a candidate upstream regulator. Wnt signaling is known to affect both inflammation and the ability of macrophages to migrate from one location to another, and our targeted validation studies provide evidence that Wnt signaling is increased in plaque macrophages during regression. Our findings both demonstrate the power of a systems approach to uncover candidate regulators of regression and to identify a potential new therapeutic target.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Epigenesis, Genetic/drug effects
- Epigenesis, Genetic/physiology
- Female
- Gene Expression Profiling
- Genome/drug effects
- Hypolipidemic Agents/pharmacology
- Hypolipidemic Agents/therapeutic use
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microarray Analysis
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Receptors, LDL/genetics
- Remission Induction
- Transcriptome/drug effects
- Wnt Signaling Pathway/drug effects
- Wnt Signaling Pathway/genetics
Collapse
Affiliation(s)
- Stephen A. Ramsey
- Department of Biomedical Sciences and School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon, United States of America
| | - Yuliya Vengrenyuk
- Division of Cardiology, School of Medicine, New York University, New York, New York, United States of America
| | - Prashanthi Menon
- Division of Cardiology, School of Medicine, New York University, New York, New York, United States of America
| | - Irina Podolsky
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Jonathan E. Feig
- Division of Cardiology, School of Medicine, New York University, New York, New York, United States of America
| | - Alan Aderem
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Edward A. Fisher
- Division of Cardiology, School of Medicine, New York University, New York, New York, United States of America
- * E-mail: (EAF); (ESG)
| | - Elizabeth S. Gold
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- * E-mail: (EAF); (ESG)
| |
Collapse
|
289
|
Pierce BL, Tong L, Chen LS, Rahaman R, Argos M, Jasmine F, Roy S, Paul-Brutus R, Westra HJ, Franke L, Esko T, Zaman R, Islam T, Rahman M, Baron JA, Kibriya MG, Ahsan H. Mediation analysis demonstrates that trans-eQTLs are often explained by cis-mediation: a genome-wide analysis among 1,800 South Asians. PLoS Genet 2014; 10:e1004818. [PMID: 25474530 PMCID: PMC4256471 DOI: 10.1371/journal.pgen.1004818] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 10/13/2014] [Indexed: 11/21/2022] Open
Abstract
A large fraction of human genes are regulated by genetic variation near the transcribed sequence (cis-eQTL, expression quantitative trait locus), and many cis-eQTLs have implications for human disease. Less is known regarding the effects of genetic variation on expression of distant genes (trans-eQTLs) and their biological mechanisms. In this work, we use genome-wide data on SNPs and array-based expression measures from mononuclear cells obtained from a population-based cohort of 1,799 Bangladeshi individuals to characterize cis- and trans-eQTLs and determine if observed trans-eQTL associations are mediated by expression of transcripts in cis with the SNPs showing trans-association, using Sobel tests of mediation. We observed 434 independent trans-eQTL associations at a false-discovery rate of 0.05, and 189 of these trans-eQTLs were also cis-eQTLs (enrichment P<0.0001). Among these 189 trans-eQTL associations, 39 were significantly attenuated after adjusting for a cis-mediator based on Sobel P<10-5. We attempted to replicate 21 of these mediation signals in two European cohorts, and while only 7 trans-eQTL associations were present in one or both cohorts, 6 showed evidence of cis-mediation. Analyses of simulated data show that complete mediation will be observed as partial mediation in the presence of mediator measurement error or imperfect LD between measured and causal variants. Our data demonstrates that trans-associations can become significantly stronger or switch directions after adjusting for a potential mediator. Using simulated data, we demonstrate that this phenomenon is expected in the presence of strong cis-trans confounding and when the measured cis-transcript is correlated with the true (unmeasured) mediator. In conclusion, by applying mediation analysis to eQTL data, we show that a substantial fraction of observed trans-eQTL associations can be explained by cis-mediation. Future studies should focus on understanding the mechanisms underlying widespread cis-mediation and their relevance to disease biology, as well as using mediation analysis to improve eQTL discovery. Expression quantitative trait locus (eQTL) studies have demonstrated that human genes can be regulated by genetic variation residing close to the gene (cis-eQTLs) or in a distant region or on a different chromosome (trans-eQTLs). While cis-eQTL variants are likely to affect transcription factor binding or chromatin structure, our understanding of the mechanisms underlying trans-eQTLs is incomplete. We hypothesize that a substantial fraction of trans-eQTLs influence expression of distant genes through mediation by expression levels of a cis-transcript. In this paper, we use genome-wide SNPs and expression data for 1,799 South Asians to identify cis- and trans-eQTLs and to test our hypothesis using Sobel tests of mediation. Among 189 observed trans-eQTL associations, we provide evidence of cis-mediation for 39, 6 of which show mediation in an independent European cohort. We used simulated data to demonstrate that complete mediation will be observed as partial mediation in the presence of mediator measurement error or imperfect LD between measured and causal variants. We also demonstrate how unobserved confounding variables and incorrect mediator selection can bias mediation estimates. In conclusion, we have identified cis-mediators for many trans-eQTLs and described a mediation analysis approach that can be used to validate, characterize, and enhance discovery of trans-eQTLs.
Collapse
Affiliation(s)
- Brandon L. Pierce
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois, United States of America
- Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (BLP); (HA)
| | - Lin Tong
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois, United States of America
| | - Lin S. Chen
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois, United States of America
| | - Ronald Rahaman
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois, United States of America
| | - Maria Argos
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois, United States of America
| | - Farzana Jasmine
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois, United States of America
| | - Shantanu Roy
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois, United States of America
| | - Rachelle Paul-Brutus
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois, United States of America
| | - Harm-Jan Westra
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lude Franke
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Tonu Esko
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Rakibuz Zaman
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Tariqul Islam
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Mahfuzar Rahman
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
- Research and Evaluation Division, BRAC, Dhaka, Bangladhesh
| | - John A. Baron
- University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, United States of America
| | - Muhammad G. Kibriya
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois, United States of America
| | - Habibul Ahsan
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois, United States of America
- Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine The University of Chicago, Chicago, Illinois, United States of America
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (BLP); (HA)
| |
Collapse
|
290
|
Shendre A, Wiener HW, Zhi D, Vazquez AI, Portman MA, Shrestha S. High-density genotyping of immune loci in Kawasaki disease and IVIG treatment response in European-American case-parent trio study. Genes Immun 2014; 15:534-42. [PMID: 25101798 PMCID: PMC4257866 DOI: 10.1038/gene.2014.47] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 12/04/2022]
Abstract
Kawasaki disease (KD) is a diffuse and acute small-vessel vasculitis observed in children, and has genetic and autoimmune components. We genotyped 112 case-parent trios of European decent (confirmed by ancestry informative markers) using the immunoChip array, and performed association analyses with susceptibility to KD and intravenous immunoglobulin (IVIG) non-response. KD susceptibility was assessed using the transmission disequilibrium test, whereas IVIG non-response was evaluated using multivariable logistic regression analysis. We replicated single-nucleotide polymorphisms (SNPs) in three gene regions (FCGR, CD40/CDH22 and HLA-DQB2/HLA-DOB) that have been previously associated with KD and provide support to other findings of several novel SNPs in genes with a potential pathway in KD pathogenesis. SNP rs838143 in the 3'-untranslated region of the FUT1 gene (2.7 × 10(-5)) and rs9847915 in the intergenic region of LOC730109 | BRD7P2 (6.81 × 10(-7)) were the top hits for KD susceptibility in additive and dominant models, respectively. The top hits for IVIG responsiveness were rs1200332 in the intergenic region of BAZ1A | C14orf19 (1.4 × 10(-4)) and rs4889606 in the intron of the STX1B gene (6.95 × 10(-5)) in additive and dominant models, respectively. Our study suggests that genes and biological pathways involved in autoimmune diseases have an important role in the pathogenesis of KD and IVIG response mechanism.
Collapse
Affiliation(s)
- Aditi Shendre
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| | - Howard W. Wiener
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| | - Degui Zhi
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL
| | - Ana I Vazquez
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL
| | - Michael A. Portman
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL
| | - Sadeep Shrestha
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
291
|
Roussos P, Mitchell AC, Voloudakis G, Fullard JF, Pothula VM, Tsang J, Stahl EA, Georgakopoulos A, Ruderfer DM, Charney A, Okada Y, Siminovitch KA, Worthington J, Padyukov L, Klareskog L, Gregersen PK, Plenge RM, Raychaudhuri S, Fromer M, Purcell SM, Brennand KJ, Robakis NK, Schadt EE, Akbarian S, Sklar P. A role for noncoding variation in schizophrenia. Cell Rep 2014; 9:1417-29. [PMID: 25453756 PMCID: PMC4255904 DOI: 10.1016/j.celrep.2014.10.015] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/31/2014] [Accepted: 10/03/2014] [Indexed: 01/20/2023] Open
Abstract
A large portion of common variant loci associated with genetic risk for schizophrenia reside within noncoding sequence of unknown function. Here, we demonstrate promoter and enhancer enrichment in schizophrenia variants associated with expression quantitative trait loci (eQTL). The enrichment is greater when functional annotations derived from the human brain are used relative to peripheral tissues. Regulatory trait concordance analysis ranked genes within schizophrenia genome-wide significant loci for a potential functional role, based on colocalization of a risk SNP, eQTL, and regulatory element sequence. We identified potential physical interactions of noncontiguous proximal and distal regulatory elements. This was verified in prefrontal cortex and -induced pluripotent stem cell-derived neurons for the L-type calcium channel (CACNA1C) risk locus. Our findings point to a functional link between schizophrenia-associated noncoding SNPs and 3D genome architecture associated with chromosomal loopings and transcriptional regulation in the brain.
Collapse
Affiliation(s)
- Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; James J. Peters VA Medical Center, Mental Illness Research Education and Clinical Center (MIRECC), 130 West Kingsbridge Road, Bronx, NY 10468, USA.
| | - Amanda C Mitchell
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Georgios Voloudakis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John F Fullard
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Venu M Pothula
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan Tsang
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eli A Stahl
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Douglas M Ruderfer
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander Charney
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yukinori Okada
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 230-0045, Japan; Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Katherine A Siminovitch
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Toronto General Research Institute, Toronto, ON M5G 2M9, Canada; Department of Medicine, University of Toronto, Toronto, ON M5S 2J7, Canada
| | - Jane Worthington
- Arthritis Research UK Centre for Genetics and Genomics, Musculoskeletal Research Centre, Institute for Inflammation and Repair, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9NT, UK; National Institute for Health Research, Manchester Musculoskeletal Biomedical Research Unit, Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9NT, UK
| | - Leonid Padyukov
- Rheumatology Unit, Department of Medicine (Solna), Karolinska Institutet, Stockholm 171 76, Sweden
| | - Lars Klareskog
- Rheumatology Unit, Department of Medicine (Solna), Karolinska Institutet, Stockholm 171 76, Sweden
| | - Peter K Gregersen
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030, USA
| | - Robert M Plenge
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA; NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9NT, UK
| | - Menachem Fromer
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shaun M Purcell
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristen J Brennand
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nikolaos K Robakis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pamela Sklar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
292
|
Nilsson D, Henmyr V, Halldén C, Säll T, Kull I, Wickman M, Melén E, Cardell LO. Replication of genomewide associations with allergic sensitization and allergic rhinitis. Allergy 2014; 69:1506-14. [PMID: 25066275 DOI: 10.1111/all.12495] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND Three genomewide metastudies have recently reported associations with self-reported allergic rhinitis and allergic sensitization. The three studies together identified a set of 37 loci but showed low concordance. This study investigates the reproducibility of the detected single nucleotide polymorphism (SNP) associations in an extensively characterized longitudinal cohort, BAMSE. METHODS Phenotypic evaluation of allergic rhinitis (AR) and allergic sensitization was performed on 2153 children from BAMSE at 8 and 16 years of age. Allele frequencies of 39 SNPs were investigated for association with the exact allergic phenotypes of the metastudies. Odds ratios and false discovery rates were calculated, and the impact of asthma was evaluated. The cases were also evaluated for age at onset effects (≤ or >8 years of age). RESULTS Association tests of the 39 SNPs identified 12 SNPs with P-values < 0.05 and Q-values < 0.10. Two of the four loci (TLR6-TLR1 and HLA-DQA1-HLA-DQB1) identified in all three original studies were also identified in this study. Three SNPs located in the TLR6-TLR1 locus had the lowest P-values and Q-values < 0.1 when using a well-defined AR phenotype. Two loci showed significant age at onset effects, but the effect of asthma on the associations was very limited. CONCLUSION The TLR6-TLR1 locus is likely to have a central role in the development of allergic disease. The association between genetic variation in the SSTR1-MIPOL1 and TSLP-SLC25A46 loci and age at onset is the first report of age at onset effects in allergic rhinitis.
Collapse
Affiliation(s)
- D. Nilsson
- Division of ENT Diseases; CLINTEC; Karolinska Institutet; Huddinge Sweden
- Biomedicine; Kristianstad University; Kristianstad Sweden
| | - V. Henmyr
- Division of ENT Diseases; CLINTEC; Karolinska Institutet; Huddinge Sweden
- Biomedicine; Kristianstad University; Kristianstad Sweden
| | - C. Halldén
- Biomedicine; Kristianstad University; Kristianstad Sweden
| | - T. Säll
- Department of Biology; Lund University; Lund Sweden
| | - I. Kull
- Department of Clinical Science and Education; Karolinska Institutet; Stockholm Sweden
- Institute of Environmental Medicine Karolinska Institutet; Stockholm Sweden
- Sachs Children's Hospital; Stockholm Sweden
| | - M. Wickman
- Institute of Environmental Medicine Karolinska Institutet; Stockholm Sweden
- Sachs Children's Hospital; Stockholm Sweden
| | - E. Melén
- Institute of Environmental Medicine Karolinska Institutet; Stockholm Sweden
- Sachs Children's Hospital; Stockholm Sweden
| | - L. O. Cardell
- Division of ENT Diseases; CLINTEC; Karolinska Institutet; Huddinge Sweden
| |
Collapse
|
293
|
Kiryluk K, Li Y, Scolari F, Sanna-Cherchi S, Choi M, Verbitsky M, Fasel D, Lata S, Prakash S, Shapiro S, Fischman C, Snyder HJ, Appel G, Izzi C, Viola BF, Dallera N, Vecchio LD, Barlassina C, Salvi E, Bertinetto FE, Amoroso A, Savoldi S, Rocchietti M, Amore A, Peruzzi L, Coppo R, Salvadori M, Ravani P, Magistroni R, Ghiggeri GM, Caridi G, Bodria M, Lugani F, Allegri L, Delsante M, Maiorana M, Magnano A, Frasca G, Boer E, Boscutti G, Ponticelli C, Mignani R, Marcantoni C, Di Landro D, Santoro D, Pani A, Polci R, Feriozzi S, Chicca S, Galliani M, Gigante M, Gesualdo L, Zamboli P, Maixnerová D, Tesar V, Eitner F, Rauen T, Floege J, Kovacs T, Nagy J, Mucha K, Pączek L, Zaniew M, Mizerska-Wasiak M, Roszkowska-Blaim M, Pawlaczyk K, Gale D, Barratt J, Thibaudin L, Berthoux F, Canaud G, Boland A, Metzger M, Panzer U, Suzuki H, Goto S, Narita I, Caliskan Y, Xie J, Hou P, Chen N, Zhang H, Wyatt RJ, Novak J, Julian BA, Feehally J, Stengel B, Cusi D, Lifton RP, Gharavi AG. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet 2014; 46:1187-1196. [PMID: 25305756 PMCID: PMC4213311 DOI: 10.1038/ng.3118] [Citation(s) in RCA: 468] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/23/2014] [Indexed: 12/12/2022]
Abstract
We performed a genome-wide association study (GWAS) of IgA nephropathy (IgAN), the most common form of glomerulonephritis, with discovery and follow-up in 20,612 individuals of European and East Asian ancestry. We identified six new genome-wide significant associations, four in ITGAM-ITGAX, VAV3 and CARD9 and two new independent signals at HLA-DQB1 and DEFA. We replicated the nine previously reported signals, including known SNPs in the HLA-DQB1 and DEFA loci. The cumulative burden of risk alleles is strongly associated with age at disease onset. Most loci are either directly associated with risk of inflammatory bowel disease (IBD) or maintenance of the intestinal epithelial barrier and response to mucosal pathogens. The geospatial distribution of risk alleles is highly suggestive of multi-locus adaptation, and genetic risk correlates strongly with variation in local pathogens, particularly helminth diversity, suggesting a possible role for host-intestinal pathogen interactions in shaping the genetic landscape of IgAN.
Collapse
Affiliation(s)
- Krzysztof Kiryluk
- Dept. of Medicine, Div. of Nephrology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Yifu Li
- Dept. of Medicine, Div. of Nephrology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Francesco Scolari
- Div. of Nephrology, Azienda Ospedaliera Spedali Civili of Brescia, Montichiari Hospital, Univ of Brescia, Brescia, Italy
- Dept. of Medical and Surgical Specialties, Radiological Sciences, University of Brescia, Brescia, Italy
| | - Simone Sanna-Cherchi
- Dept. of Medicine, Div. of Nephrology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Murim Choi
- Dept. of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Dept. of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Miguel Verbitsky
- Dept. of Medicine, Div. of Nephrology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - David Fasel
- Dept. of Medicine, Div. of Nephrology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Sneh Lata
- Dept. of Medicine, Div. of Nephrology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Sindhuri Prakash
- Dept. of Medicine, Div. of Nephrology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Samantha Shapiro
- Dept. of Medicine, Div. of Nephrology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Clara Fischman
- Dept. of Medicine, Div. of Nephrology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Holly J. Snyder
- Dept. of Medicine, Div. of Nephrology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Gerald Appel
- Dept. of Medicine, Div. of Nephrology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Claudia Izzi
- Div. of Nephrology, Azienda Ospedaliera Spedali Civili of Brescia, Montichiari Hospital, Univ of Brescia, Brescia, Italy
- Prenatal Diagnosis Unit, Department of Obstetrics and Gynecology, University of Brescia, Brescia, Italy
| | - Battista Fabio Viola
- Div. of Nephrology, Azienda Ospedaliera Spedali Civili of Brescia, Spedali Civili Hospital, Univ of Brescia, Brescia, Italy
| | - Nadia Dallera
- Div. of Nephrology, Azienda Ospedaliera Spedali Civili of Brescia, Montichiari Hospital, Univ of Brescia, Brescia, Italy
- Dept. of Medical and Surgical Specialties, Radiological Sciences, University of Brescia, Brescia, Italy
| | - Lucia Del Vecchio
- Renal Div., DMCO, San Paolo Hospital, School of Medicine, University of Milan, Milan, Italy
| | - Cristina Barlassina
- Renal Div., DMCO, San Paolo Hospital, School of Medicine, University of Milan, Milan, Italy
| | - Erika Salvi
- Renal Div., DMCO, San Paolo Hospital, School of Medicine, University of Milan, Milan, Italy
| | - Francesca Eleonora Bertinetto
- Immunogenetics and Biology of Transplantation, Città della Salute e della Scienza, University Hospital of Turin, Italy
- Medical Genetics, Dept. of Medical Sciences, University of Torino, Torino, Italy
| | - Antonio Amoroso
- Immunogenetics and Biology of Transplantation, Città della Salute e della Scienza, University Hospital of Turin, Italy
- Medical Genetics, Dept. of Medical Sciences, University of Torino, Torino, Italy
| | - Silvana Savoldi
- Nephrology and Dialysis Unit, Ospedali di Cirié e Chivasso, Cirié, Torino, Italy
| | - Marcella Rocchietti
- Nephrology and Dialysis Unit, Ospedali di Cirié e Chivasso, Cirié, Torino, Italy
| | - Alessandro Amore
- Nephrology, Dialysis, and Transplantation Unit, Regina Margheritra Hospital, Torino, Italy
| | - Licia Peruzzi
- Nephrology, Dialysis, and Transplantation Unit, Regina Margheritra Hospital, Torino, Italy
| | - Rosanna Coppo
- Nephrology, Dialysis, and Transplantation Unit, Regina Margheritra Hospital, Torino, Italy
| | - Maurizio Salvadori
- Div. of Nephrology and Renal Transplantation, Carreggi Hospital, Florence, Italy
| | - Pietro Ravani
- Dept. of Medicine, University of Calgary, Calgary, Canada
- Dept. of Community Health Sciences, University of Calgary, Calgary, Canada
| | - Riccardo Magistroni
- Div. of Nephrology Dialysis and Transplantation, Azienda Ospedaliero Universitaria Policlinico di Modena, Università di Modena e Reggio Emilia, Italy
| | - Gian Marco Ghiggeri
- Div. of Nephrology, Dialysis and Transplantation, Giannina Gaslini Institute, Genova, Italy
| | - Gianluca Caridi
- Div. of Nephrology, Dialysis and Transplantation, Giannina Gaslini Institute, Genova, Italy
| | - Monica Bodria
- Div. of Nephrology, Dialysis and Transplantation, Giannina Gaslini Institute, Genova, Italy
| | - Francesca Lugani
- Div. of Nephrology, Dialysis and Transplantation, Giannina Gaslini Institute, Genova, Italy
| | - Landino Allegri
- Div. of Nephrology, Azienda Ospedaliero-Universitaria and Chair of Nephrology, University of Parma, Parma, Italy
| | - Marco Delsante
- Div. of Nephrology, Azienda Ospedaliero-Universitaria and Chair of Nephrology, University of Parma, Parma, Italy
| | - Mariarosa Maiorana
- Div. of Nephrology, Azienda Ospedaliero-Universitaria and Chair of Nephrology, University of Parma, Parma, Italy
| | - Andrea Magnano
- Div. of Nephrology, Azienda Ospedaliero-Universitaria and Chair of Nephrology, University of Parma, Parma, Italy
| | - Giovanni Frasca
- Div. of Nephrology, Dialysis and Renal Transpantation, Riuniti Hospital, Ancona, Italy
| | - Emanuela Boer
- Div. of Nephrology and Dialysis, Gorizia Hospital, Gorizia, Italy
| | - Giuliano Boscutti
- Div. of Nephrology, Azienda Ospedaliero-Universitaria Ospedali Riuniti di Trieste, Trieste, Italy
| | | | - Renzo Mignani
- Div. of Nephrology and Dialysis, Infermi Hospital, Rimini, Italy
| | | | | | - Domenico Santoro
- Div. of Nephology and Dialysis, Chair of Nephrology, University of Messina, Azienda Ospedaliero-Universitaria Policlinico, Messina, Italy
| | - Antonello Pani
- Dept. of Nephrology and Dialysis, G. Brotzu Hospital, Cagliari, Italy
| | - Rosaria Polci
- Nephrology and Dialysis, Hospital of Viterbo, Viterbo, Italy
| | - Sandro Feriozzi
- Nephrology and Dialysis, Hospital of Viterbo, Viterbo, Italy
| | - Silvana Chicca
- Div. of Nephrology and Dialysis, Sandro Pertini Hospital, Rome, Italy
| | - Marco Galliani
- Div. of Nephrology and Dialysis, Sandro Pertini Hospital, Rome, Italy
| | - Maddalena Gigante
- Dept. of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Loreto Gesualdo
- Section of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | | | - Dita Maixnerová
- Dept. of Nephrology, 1st Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Vladimir Tesar
- Dept. of Nephrology, 1st Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Frank Eitner
- Dept. of Nephrology, RWTH University of Aachen, Aachen, Germany
- Kidney Diseases Research, Bayer Pharma AG, Wuppertal, Germany
| | - Thomas Rauen
- Dept. of Nephrology, RWTH University of Aachen, Aachen, Germany
| | - Jürgen Floege
- Dept. of Nephrology, RWTH University of Aachen, Aachen, Germany
| | - Tibor Kovacs
- Nephrology Center, Medical Faculty, University of Pécs, Pécs, Hungary
- Second Dept. of Internal Medicine, Medical Faculty, University of Pécs, Pécs, Hungary
| | - Judit Nagy
- Nephrology Center, Medical Faculty, University of Pécs, Pécs, Hungary
- Second Dept. of Internal Medicine, Medical Faculty, University of Pécs, Pécs, Hungary
| | - Krzysztof Mucha
- Dept. of Immunology, Transplantology, and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Leszek Pączek
- Dept. of Immunology, Transplantology, and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Zaniew
- Children’s Hospital, Krysiewicza 7/8, Poznań, Poland
| | | | | | - Krzysztof Pawlaczyk
- Dept. of Nephrology, Transplantology, and Internal Medicine, Poznan Medical University, Poznan, Poland
| | - Daniel Gale
- University College London-Centre for Nephrology, Royal Free Hospital Pond Street, London
| | - Jonathan Barratt
- The John Walls Renal Unit, University Hospitals of Leicester, Leicester, United Kingdom
- Dept. of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Lise Thibaudin
- Nephrology, Dialysis, and Renal Transplantation Dept., University North Hospital, Saint Etienne, France
| | - Francois Berthoux
- Nephrology, Dialysis, and Renal Transplantation Dept., University North Hospital, Saint Etienne, France
| | - Guillaume Canaud
- Service de Néphrologie Transplantation Adultes, Hôpital Necker - Enfants Malades, Paris, France
- INSERM, Institut Necker Enfants Malades, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne Boland
- Centre National de Génotypage, CEA, Institut de Génomique, Evry, France
| | - Marie Metzger
- INSERM, Centre for Research in Epidemiology and Population Health, Villejuif, France and University Paris-Sud, Villejuif, France
| | - Ulf Panzer
- III Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Hitoshi Suzuki
- Division of Nephrology, Dept. of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Shin Goto
- Division of Clinical Nephrology and Rheumatology, Niigata University, Niigata, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University, Niigata, Japan
| | - Yasar Caliskan
- Division of Nephrology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Jingyuan Xie
- Dept. of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Hou
- Renal Div., Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
| | - Nan Chen
- Dept. of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Zhang
- Renal Div., Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
| | - Robert J. Wyatt
- Div. of Pediatric Nephrology, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
- Children’s Foundation Research Center, Le Bonheur Children’s Hospital, Memphis, Tennessee, USA
| | - Jan Novak
- Dept. of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bruce A. Julian
- Dept. of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John Feehally
- The John Walls Renal Unit, University Hospitals of Leicester, Leicester, United Kingdom
- Dept. of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Benedicte Stengel
- INSERM, Centre for Research in Epidemiology and Population Health, Villejuif, France and University Paris-Sud, Villejuif, France
| | - Daniele Cusi
- Renal Div., DMCO, San Paolo Hospital, School of Medicine, University of Milan, Milan, Italy
| | - Richard P. Lifton
- Dept. of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ali G. Gharavi
- Dept. of Medicine, Div. of Nephrology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
294
|
Abstract
The diversity of regulatory genetic variants and their mechanisms of action reflect the complexity and context-specificity of gene regulation. Regulatory variants are important in human disease and defining such variants and establishing mechanism is crucial to the interpretation of disease-association studies. This review describes approaches for identifying and functionally characterizing regulatory variants, illustrated using examples from common diseases. Insights from recent advances in resolving the functional epigenomic regulatory landscape in which variants act are highlighted, showing how this has enabled functional annotation of variants and the generation of hypotheses about mechanism of action. The utility of quantitative trait mapping at the transcript, protein and metabolite level to define association of specific genes with particular variants and further inform disease associations are reviewed. Establishing mechanism of action is an essential step in resolving functional regulatory variants, and this review describes how this is being facilitated by new methods for analyzing allele-specific expression, mapping chromatin interactions and advances in genome editing. Finally, integrative approaches are discussed together with examples highlighting how defining the mechanism of action of regulatory variants and identifying specific modulated genes can maximize the translational utility of genome-wide association studies to understand the pathogenesis of diseases and discover new drug targets or opportunities to repurpose existing drugs to treat them.
Collapse
Affiliation(s)
- Julian Charles Knight
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN UK
| |
Collapse
|
295
|
Postmus I, Trompet S, Deshmukh HA, Barnes MR, Li X, Warren HR, Chasman DI, Zhou K, Arsenault BJ, Donnelly LA, Wiggins KL, Avery CL, Griffin P, Feng Q, Taylor KD, Li G, Evans DS, Smith AV, de Keyser CE, Johnson AD, de Craen AJM, Stott DJ, Buckley BM, Ford I, Westendorp RGJ, Eline Slagboom P, Sattar N, Munroe PB, Sever P, Poulter N, Stanton A, Shields DC, O’Brien E, Shaw-Hawkins S, Ida Chen YD, Nickerson DA, Smith JD, Pierre Dubé M, Matthijs Boekholdt S, Kees Hovingh G, Kastelein JJP, McKeigue PM, Betteridge J, Neil A, Durrington PN, Doney A, Carr F, Morris A, McCarthy MI, Groop L, Ahlqvist E, Welcome Trust Case Control Consortium, Bis JC, Rice K, Smith NL, Lumley T, Whitsel EA, Stürmer T, Boerwinkle E, Ngwa JS, O’Donnell CJ, Vasan RS, Wei WQ, Wilke RA, Liu CT, Sun F, Guo X, Heckbert SR, Post W, Sotoodehnia N, Arnold AM, Stafford JM, Ding J, Herrington DM, Kritchevsky SB, Eiriksdottir G, Launer LJ, Harris TB, Chu AY, Giulianini F, MacFadyen JG, Barratt BJ, Nyberg F, Stricker BH, Uitterlinden AG, Hofman A, Rivadeneira F, Emilsson V, Franco OH, Ridker PM, Gudnason V, Liu Y, Denny JC, Ballantyne CM, Rotter JI, Adrienne Cupples L, Psaty BM, Palmer CNA, Tardif JC, Colhoun HM, et alPostmus I, Trompet S, Deshmukh HA, Barnes MR, Li X, Warren HR, Chasman DI, Zhou K, Arsenault BJ, Donnelly LA, Wiggins KL, Avery CL, Griffin P, Feng Q, Taylor KD, Li G, Evans DS, Smith AV, de Keyser CE, Johnson AD, de Craen AJM, Stott DJ, Buckley BM, Ford I, Westendorp RGJ, Eline Slagboom P, Sattar N, Munroe PB, Sever P, Poulter N, Stanton A, Shields DC, O’Brien E, Shaw-Hawkins S, Ida Chen YD, Nickerson DA, Smith JD, Pierre Dubé M, Matthijs Boekholdt S, Kees Hovingh G, Kastelein JJP, McKeigue PM, Betteridge J, Neil A, Durrington PN, Doney A, Carr F, Morris A, McCarthy MI, Groop L, Ahlqvist E, Welcome Trust Case Control Consortium, Bis JC, Rice K, Smith NL, Lumley T, Whitsel EA, Stürmer T, Boerwinkle E, Ngwa JS, O’Donnell CJ, Vasan RS, Wei WQ, Wilke RA, Liu CT, Sun F, Guo X, Heckbert SR, Post W, Sotoodehnia N, Arnold AM, Stafford JM, Ding J, Herrington DM, Kritchevsky SB, Eiriksdottir G, Launer LJ, Harris TB, Chu AY, Giulianini F, MacFadyen JG, Barratt BJ, Nyberg F, Stricker BH, Uitterlinden AG, Hofman A, Rivadeneira F, Emilsson V, Franco OH, Ridker PM, Gudnason V, Liu Y, Denny JC, Ballantyne CM, Rotter JI, Adrienne Cupples L, Psaty BM, Palmer CNA, Tardif JC, Colhoun HM, Hitman G, Krauss RM, Wouter Jukema J, Caulfield MJ. Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins. Nat Commun 2014; 5:5068. [PMID: 25350695 PMCID: PMC4220464 DOI: 10.1038/ncomms6068] [Show More Authors] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Collaborators] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 08/22/2014] [Indexed: 11/17/2022] Open
Abstract
Statins effectively lower LDL cholesterol levels in large studies and the observed interindividual response variability may be partially explained by genetic variation. Here we perform a pharmacogenetic meta-analysis of genome-wide association studies (GWAS) in studies addressing the LDL cholesterol response to statins, including up to 18,596 statin-treated subjects. We validate the most promising signals in a further 22,318 statin recipients and identify two loci, SORT1/CELSR2/PSRC1 and SLCO1B1, not previously identified in GWAS. Moreover, we confirm the previously described associations with APOE and LPA. Our findings advance the understanding of the pharmacogenetic architecture of statin response.
Collapse
Affiliation(s)
- Iris Postmus
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- The Netherlands Consortium for Healthy Ageing, Leiden 2300 RC, The Netherlands
| | - Stella Trompet
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Harshal A. Deshmukh
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Michael R. Barnes
- Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London EC1M6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London EC1M 6BQ, UK
| | - Xiaohui Li
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | - Helen R. Warren
- NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London EC1M 6BQ, UK
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London EC1M6BQ, UK
| | - Daniel I. Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215-1204, USA
- Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Kaixin Zhou
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Benoit J. Arsenault
- Montreal Heart Institute, Universite de Montreal, Montreal H1T 1C8, Quebec, Canada
| | - Louise A. Donnelly
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Kerri L. Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 98101 Seattle, Washington, USA
| | - Christy L. Avery
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Paula Griffin
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02215, USA
| | - QiPing Feng
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee 37240, USA
| | - Kent D. Taylor
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | - Guo Li
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 98101 Seattle, Washington, USA
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, California 94107, USA
| | - Albert V. Smith
- Icelandic Heart Association, IS-201 Kopavogur, Iceland
- University of Iceland, IS-101 Reykjavik, Iceland
| | - Catherine E. de Keyser
- Department of Epidemiology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
- Health Care Inspectorate, 2595 AN The Hague, The Netherlands
| | - Andrew D. Johnson
- Framingham Heart Study (FHS) of the National Heart, Lung and Blood Institute, Cardiovascular Epidemiology and Human Genomics, Framingham, Massachusetts 01702, USA
| | - Anton J. M. de Craen
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- The Netherlands Consortium for Healthy Ageing, Leiden 2300 RC, The Netherlands
| | - David J. Stott
- Faculty of Medicine, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G31 2ER, UK
| | - Brendan M. Buckley
- Department of Pharmacology and Therapeutics, University College Cork, Cork 30, Ireland
| | - Ian Ford
- Robertson Center for Biostatistics, University of Glasgow, Glasgow G12 8QQ, UK
| | - Rudi G. J. Westendorp
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- The Netherlands Consortium for Healthy Ageing, Leiden 2300 RC, The Netherlands
- Leyden Academy of Vitality and Ageing, 2333 AA Leiden, The Netherlands
| | - P. Eline Slagboom
- The Netherlands Consortium for Healthy Ageing, Leiden 2300 RC, The Netherlands
- Department of Molecular Epidemiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Naveed Sattar
- Faculty of Medicine, BHF Glasgow Cardiovascular Research Centre, Glasgow G12 8QQ, UK
| | - Patricia B. Munroe
- NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London EC1M 6BQ, UK
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London EC1M6BQ, UK
| | - Peter Sever
- International Centre for Circulatory Health, Imperial College, London SW7 2AZ, UK
| | - Neil Poulter
- International Centre for Circulatory Health, Imperial College, London SW7 2AZ, UK
| | - Alice Stanton
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Beaumont Hospital, Dublin 9, Ireland
| | - Denis C. Shields
- The Conway Institute, University College Dublin, Dublin 4, Ireland
- School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Eoin O’Brien
- The Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Sue Shaw-Hawkins
- Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London EC1M6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London EC1M 6BQ, UK
| | - Y.-D. Ida Chen
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | - Deborah A. Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington 98101, USA
| | - Joshua D. Smith
- Department of Genome Sciences, University of Washington, Seattle, Washington 98101, USA
| | - Marie Pierre Dubé
- Montreal Heart Institute, Universite de Montreal, Montreal H1T 1C8, Quebec, Canada
| | - S. Matthijs Boekholdt
- Department of Cardiology, Academic Medical Center, 1100 DD Amsterdam, The Netherlands
| | - G. Kees Hovingh
- Department of Vascular Medicine, Academic Medical Center, 1100 DD Amsterdam, The Netherlands
| | - John J. P. Kastelein
- Department of Vascular Medicine, Academic Medical Center, 1100 DD Amsterdam, The Netherlands
| | | | | | | | - Paul N. Durrington
- Cardiovascular Research Group, School of Biosciences, University of Manchester, Manchester M13 9NT, UK
| | - Alex Doney
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Fiona Carr
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Andrew Morris
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Mark I. McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK
| | - Leif Groop
- Department of Clinical Sciences/Diabetes & Endocrinology, Lund University, Malmo 205 02, Sweden
| | - Emma Ahlqvist
- Department of Clinical Sciences/Diabetes & Endocrinology, Lund University, Malmo 205 02, Sweden
| | | | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 98101 Seattle, Washington, USA
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, 98115 Seattle, Washington, USA
| | - Nicholas L. Smith
- Department of Epidemiology, University of Washington, Seattle, Washington 98195, USA
- Group Health Research Institute, Group Health Cooperative, Seattle, Washington 98101, USA
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, Washington 98101, USA
| | - Thomas Lumley
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 98101 Seattle, Washington, USA
- Department of Statistic, University of Auckland, Auckland 1142, New Zealand
| | - Eric A. Whitsel
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Til Stürmer
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Julius S. Ngwa
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02215, USA
| | - Christopher J. O’Donnell
- NHLBI Framingham Heart Study, Framingham, Massachusetts 01701, USA
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, USA
| | - Ramachandran S. Vasan
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, and the Framingham Heart Study, Framingham, Massachusetts 01701, USA
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee 37240, USA
| | - Russell A. Wilke
- Department of Internal Medicine, Center for IMAGENETICS, Sanford Healthcare, Fargo, North Dakota, 58104 USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02215, USA
| | - Fangui Sun
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02215, USA
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington, Seattle, Washington 98195, USA
- Group Health Research Institute, Group Health Cooperative, Seattle, Washington 98101, USA
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington 98101, USA
| | - Wendy Post
- Department of Cardiology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 98101 Seattle, Washington, USA
- Division of Cardiology, Harborview Medical Center, University of Washington, Seattle 98101, Washington, USA
| | - Alice M. Arnold
- Department of Biostatistics, University of Washington, 98115 Seattle, Washington, USA
| | - Jeanette M. Stafford
- Division of Public Health Sciences, Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Jingzhong Ding
- Division of Public Health Sciences, Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - David M. Herrington
- Department of Internal Medicine, Section on Cardiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Stephen B. Kritchevsky
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | - Leonore J. Launer
- Laboratory of Epidemiology, Demography, Biometry, National Institute on Aging, National Institutes of Health, 7201 Wisconsin Avenue, Bethesda, Maryland 20892, USA
| | - Tamara B. Harris
- Laboratory of Epidemiology, Demography, Biometry, National Institute on Aging, National Institutes of Health, 7201 Wisconsin Avenue, Bethesda, Maryland 20892, USA
| | - Audrey Y. Chu
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215-1204, USA
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215-1204, USA
| | - Jean G. MacFadyen
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215-1204, USA
| | - Bryan J. Barratt
- Personalised Healthcare and Biomarkers, AstraZeneca, Alderley Park SK10 4TG, UK
| | - Fredrik Nyberg
- AstraZeneca Research and Development, 481 83 Mölndal, Sweden
- Unit of Occupational and Environmental Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Bruno H. Stricker
- Department of Epidemiology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
- Health Care Inspectorate, 2595 AN The Hague, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - André G. Uitterlinden
- The Netherlands Consortium for Healthy Ageing, Leiden 2300 RC, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Albert Hofman
- The Netherlands Consortium for Healthy Ageing, Leiden 2300 RC, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | | | - Oscar H. Franco
- Department of Epidemiology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Paul M. Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215-1204, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, IS-201 Kopavogur, Iceland
- University of Iceland, IS-101 Reykjavik, Iceland
| | - Yongmei Liu
- Division of Public Health Sciences, Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Joshua C. Denny
- Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee 37240, USA
- Department of Medicine, Vanderbilt University, Vanderbilt, Tennessee 37240, USA
| | | | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | - L. Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02215, USA
- NHLBI Framingham Heart Study, Framingham, Massachusetts 01701, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 98101 Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington 98195, USA
- Group Health Research Institute, Group Health Cooperative, Seattle, Washington 98101, USA
- Department of Health Services, University of Washington, Seattle, Washington 98101, USA
| | - Colin N. A. Palmer
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Jean-Claude Tardif
- Montreal Heart Institute, Universite de Montreal, Montreal H1T 1C8, Quebec, Canada
| | - Helen M. Colhoun
- Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
- Department of Public Health, University of Dundee, Dundee DD1 9SY, UK
| | - Graham Hitman
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Ronald M. Krauss
- Children’s Hospital Oakland Research Institute, Oakland, California 94609, USA
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- Durrer Center for Cardiogenetic Research, 1105 AZ Amsterdam, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands, 3511 GC Utrecht, The Netherlands
| | - Mark J. Caulfield
- NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London EC1M 6BQ, UK
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London EC1M6BQ, UK
| |
Collapse
Collaborators
Peter Donnelly, Ines Barroso, Jenefer M Blackwell, Elvira Bramon, Matthew A Brown, Juan P Casas, Aiden Corvin, Panos Deloukas, Audrey Duncanson, Janusz Jankowski, Hugh S Markus, Christopher G Mathew, Colin N A Palmer, Robert Plomin, Anna Rautanen, Stephen J Sawcer, Richard C Trembath, Ananth C Viswanathan, Nicholas W Wood, Chris C A Spencer, Gavin Band, Céline Bellenguez, Colin Freeman, Garrett Hellenthal, Eleni Giannoulatou, Matti Pirinen, Richard Pearson, Amy Strange, Zhan Su, Damjan Vukcevic, Peter Donnelly, Cordelia Langford, Sarah E Hunt, Sarah Edkins, Rhian Gwilliam, Hannah Blackburn, Suzannah J Bumpstead, Serge Dronov, Matthew Gillman, Emma Gray, Naomi Hammond, Alagurevathi Jayakumar, Owen T McCann, Jennifer Liddle, Simon C Potter, Radhi Ravindrarajah, Michelle Ricketts, Matthew Waller, Paul Weston, Sara Widaa, Pamela Whittaker, Ines Barroso, Panos Deloukas, Christopher G Mathew, Jenefer M Blackwell, Matthew A Brown, Aiden Corvin, Mark I McCarthy, Chris C A Spencer,
Collapse
|
296
|
Abstract
Gene enhancer elements are noncoding segments of DNA that play a central role in regulating transcriptional programs that control development, cell identity, and evolutionary processes. Recent studies have shown that noncoding single nucleotide polymorphisms (SNPs) that have been associated with risk for numerous common diseases through genome-wide association studies frequently lie in cell-type-specific enhancer elements. These enhancer variants probably influence transcriptional output, thereby offering a mechanistic basis to explain their association with risk for many common diseases. This review focuses on the identification and interpretation of disease-susceptibility variants that influence enhancer function. We discuss strategies for prioritizing the study of functional enhancer SNPs over those likely to be benign, review experimental and computational approaches to identifying the gene targets of enhancer variants, and highlight efforts to quantify the impact of enhancer variants on target transcript levels and cellular phenotypes. These studies are beginning to provide insights into the mechanistic basis of many common diseases, as well as into how we might translate this knowledge for improved disease diagnosis, prevention and treatments. Finally, we highlight five major challenges often associated with interpreting enhancer variants, and discuss recent technical advances that may help to surmount these challenges.
Collapse
Affiliation(s)
- Olivia Corradin
- />Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44122 USA
| | - Peter C Scacheri
- />Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44122 USA
- />Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106 USA
| |
Collapse
|
297
|
Kim S, Becker J, Bechheim M, Kaiser V, Noursadeghi M, Fricker N, Beier E, Klaschik S, Boor P, Hess T, Hofmann A, Holdenrieder S, Wendland JR, Fröhlich H, Hartmann G, Nöthen MM, Müller-Myhsok B, Pütz B, Hornung V, Schumacher J. Characterizing the genetic basis of innate immune response in TLR4-activated human monocytes. Nat Commun 2014; 5:5236. [PMID: 25327457 DOI: 10.1038/ncomms6236] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/11/2014] [Indexed: 12/18/2022] Open
Abstract
Toll-like receptors (TLRs) play a key role in innate immunity. Apart from their function in host defense, dysregulation in TLR signalling can confer risk to autoimmune diseases, septic shock or cancer. Here we report genetic variants and transcripts that are active only during TLR signalling and contribute to interindividual differences in immune response. Comparing unstimulated versus TLR4-stimulated monocytes reveals 1,471 expression quantitative trait loci (eQTLs) that are unique to TLR4 stimulation. Among these we find functional SNPs for the expression of NEU4, CCL14, CBX3 and IRF5 on TLR4 activation. Furthermore, we show that SNPs conferring risk to primary biliary cirrhosis (PBC), inflammatory bowel disease (IBD) and celiac disease are immune response eQTLs for PDGFB and IL18R1. Thus, PDGFB and IL18R1 represent plausible candidates for studying the pathophysiology of these disorders in the context of TLR4 activation. In summary, this study presents novel insights into the genetic basis of the innate immune response and exemplifies the value of eQTL studies in the context of exogenous cell stimulation.
Collapse
Affiliation(s)
- Sarah Kim
- 1] Institute of Human Genetics, University of Bonn, Bonn 53127, Germany [2] Department of Genomics, Life &Brain Center, University of Bonn, Bonn 53127, Germany [3] Institute of Molecular Medicine, University of Bonn, Bonn 53127, Germany
| | - Jessica Becker
- 1] Institute of Human Genetics, University of Bonn, Bonn 53127, Germany [2] Department of Genomics, Life &Brain Center, University of Bonn, Bonn 53127, Germany
| | - Matthias Bechheim
- Institute of Molecular Medicine, University of Bonn, Bonn 53127, Germany
| | - Vera Kaiser
- Institute of Molecular Medicine, University of Bonn, Bonn 53127, Germany
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Nadine Fricker
- 1] Institute of Human Genetics, University of Bonn, Bonn 53127, Germany [2] Department of Genomics, Life &Brain Center, University of Bonn, Bonn 53127, Germany
| | - Esther Beier
- Institute of Molecular Medicine, University of Bonn, Bonn 53127, Germany
| | - Sven Klaschik
- Department for Anesthesiology and Intensive Care Medicine, University of Bonn, Bonn 53127, Germany
| | - Peter Boor
- Institute of Pathology and Department of Nephrology, University Clinic of RWTH Aachen, Aachen 52074, Germany
| | - Timo Hess
- 1] Institute of Human Genetics, University of Bonn, Bonn 53127, Germany [2] Department of Genomics, Life &Brain Center, University of Bonn, Bonn 53127, Germany
| | - Andrea Hofmann
- 1] Institute of Human Genetics, University of Bonn, Bonn 53127, Germany [2] Department of Genomics, Life &Brain Center, University of Bonn, Bonn 53127, Germany
| | - Stefan Holdenrieder
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn 53127, Germany
| | - Jens R Wendland
- Worldwide R&D, Pfizer Inc., Cambridge, Massachusetts 02139, USA
| | - Holger Fröhlich
- Bonn-Aachen International Center for IT (B-IT), University of Bonn, Bonn 53113, Germany
| | - Gunther Hartmann
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn 53127, Germany
| | - Markus M Nöthen
- 1] Institute of Human Genetics, University of Bonn, Bonn 53127, Germany [2] Department of Genomics, Life &Brain Center, University of Bonn, Bonn 53127, Germany
| | - Bertram Müller-Myhsok
- 1] Statistical Genetics, Max Planck Institute of Psychiatry, Munich 80804, Germany [2] Munich Cluster for Systems Neurology (SyNergy), Munich 80804, Germany [3] Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GL, UK
| | - Benno Pütz
- Statistical Genetics, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Veit Hornung
- Institute of Molecular Medicine, University of Bonn, Bonn 53127, Germany
| | - Johannes Schumacher
- 1] Institute of Human Genetics, University of Bonn, Bonn 53127, Germany [2] Department of Genomics, Life &Brain Center, University of Bonn, Bonn 53127, Germany
| |
Collapse
|
298
|
Adoue V, Schiavi A, Light N, Almlöf JC, Lundmark P, Ge B, Kwan T, Caron M, Rönnblom L, Wang C, Chen SH, Goodall AH, Cambien F, Deloukas P, Ouwehand WH, Syvänen AC, Pastinen T. Allelic expression mapping across cellular lineages to establish impact of non-coding SNPs. Mol Syst Biol 2014; 10:754. [PMID: 25326100 PMCID: PMC4299376 DOI: 10.15252/msb.20145114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Most complex disease-associated genetic variants are located in non-coding regions and are
therefore thought to be regulatory in nature. Association mapping of differential allelic expression
(AE) is a powerful method to identify SNPs with direct cis-regulatory impact
(cis-rSNPs). We used AE mapping to identify cis-rSNPs regulating
gene expression in 55 and 63 HapMap lymphoblastoid cell lines from a Caucasian and an African
population, respectively, 70 fibroblast cell lines, and 188 purified monocyte samples and found
40–60% of these cis-rSNPs to be shared across cell types. We uncover
a new class of cis-rSNPs, which disrupt footprint-derived de novo
motifs that are predominantly bound by repressive factors and are implicated in disease
susceptibility through overlaps with GWAS SNPs. Finally, we provide the proof-of-principle for a new
approach for genome-wide functional validation of transcription factor–SNP interactions. By
perturbing NFκB action in lymphoblasts, we identified 489 cis-regulated
transcripts with altered AE after NFκB perturbation. Altogether, we perform a comprehensive
analysis of cis-variation in four cell populations and provide new tools for the
identification of functional variants associated to complex diseases.
Collapse
Affiliation(s)
- Veronique Adoue
- Institute National de la Santé et de la Recherche Médicale (INSERM), U1043, Toulouse, France
| | - Alicia Schiavi
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Nicholas Light
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Jonas Carlsson Almlöf
- Department of Medical Sciences, Molecular Medicine, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Per Lundmark
- Department of Medical Sciences, Molecular Medicine, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Bing Ge
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Tony Kwan
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Maxime Caron
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Lars Rönnblom
- Rheumatology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Chuan Wang
- Department of Medical Sciences, Molecular Medicine, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Shu-Huang Chen
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Alison H Goodall
- Department of Cardiovascular Science, University of Leicester, Leicester, UK Leicester NIHR Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester, UK Cardiogenics Consortium
| | - Francois Cambien
- Cardiogenics Consortium INSERM UMRS 937 Pierre and Marie Curie University and Medical School, Paris, France
| | - Panos Deloukas
- Cardiogenics Consortium Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Willem H Ouwehand
- Cardiogenics Consortium Department of Haematology, University of Cambridge, Cambridge, UK National Health Service Blood and Transplant, Cambridge Centre, Cambridge, UK
| | - Ann-Christine Syvänen
- Department of Medical Sciences, Molecular Medicine, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tomi Pastinen
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| |
Collapse
|
299
|
Kawasaki A, Furukawa H, Nishida N, Warabi E, Kondo Y, Ito S, Matsumoto I, Kusaoi M, Amano H, Suda A, Nagaoka S, Setoguchi K, Nagai T, Hirohata S, Shimada K, Sugii S, Okamoto A, Chiba N, Suematsu E, Ohno S, Katayama M, Okamoto A, Kono H, Tokunaga K, Takasaki Y, Hashimoto H, Sumida T, Tohma S, Tsuchiya N. Association of functional polymorphisms in interferon regulatory factor 2 (IRF2) with susceptibility to systemic lupus erythematosus: a case-control association study. PLoS One 2014; 9:e109764. [PMID: 25285625 PMCID: PMC4186848 DOI: 10.1371/journal.pone.0109764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/08/2014] [Indexed: 02/02/2023] Open
Abstract
Interferon regulatory factor 2 (IRF2) negatively regulates type I interferon (IFN) responses, while it plays a role in induction of Th1 differentiation. Previous linkage and association studies in European-American populations suggested genetic role of IRF2 in systemic lupus erythematosus (SLE); however, this observation has not yet been confirmed. No studies have been reported in the Asian populations. Here we investigated whether IRF2 polymorphisms contribute to susceptibility to SLE in a Japanese population. Association study of 46 IRF2 tag single nucleotide polymorphisms (SNPs) detected association of an intronic SNP, rs13146124, with SLE. When the association was analyzed in 834 Japanese patients with SLE and 817 healthy controls, rs13146124 T was significantly increased in SLE compared with healthy controls (dominant model, P = 5.4×10−4, Bonferroni-corrected P [Pc] = 0.026, odds ratio [OR] 1.48, 95% confidence interval [CI] 1.18–1.85). To find causal SNPs, resequencing was performed by next-generation sequencing. Twelve polymorphisms in linkage disequilibrium with rs13146124 (r2: 0.30–1.00) were identified, among which significant association was observed for rs66801661 (allele model, P = 7.7×10−4, Pc = 0.037, OR 1.53, 95%CI 1.19–1.96) and rs62339994 (dominant model, P = 9.0×10−4, Pc = 0.043, OR 1.46, 95%CI 1.17–1.82). The haplotype carrying both of the risk alleles (rs66801661A–rs62339994A) was significantly increased in SLE (P = 9.9×10−4), while the haplotype constituted by both of the non-risk alleles (rs66801661G–rs62339994G) was decreased (P = 0.0020). A reporter assay was carried out to examine the effect of the IRF2 haplotypes on the transcriptional activity, and association of the IRF2 risk haplotype with higher transcriptional activity was detected in Jurkat T cells under IFNγ stimulation (Tukey's test, P = 1.2×10−4). In conclusion, our observations supported the association of IRF2 with susceptibility to SLE, and the risk haplotype was suggested to be associated with transcriptional activation of IRF2.
Collapse
Affiliation(s)
- Aya Kawasaki
- Molecular and Genetic Epidemiology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Furukawa
- Clinical Research Center for Allergy and Rheumatology, Sagamihara Hospital, National Hospital Organization, Sagamihara, Kanagawa, Japan
| | - Nao Nishida
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Eiji Warabi
- Environmental Molecular Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuya Kondo
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Satoshi Ito
- Department of Rheumatology, Niigata Rheumatic Center, Shibata, Niigata, Japan
| | - Isao Matsumoto
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Makio Kusaoi
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hirofumi Amano
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Akiko Suda
- Department of Rheumatology, Yokohama Minami Kyosai Hospital, Yokohama, Kanagawa, Japan
- Center for Rheumatic Diseases, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Shouhei Nagaoka
- Department of Rheumatology, Yokohama Minami Kyosai Hospital, Yokohama, Kanagawa, Japan
| | - Keigo Setoguchi
- Allergy and Immunological Diseases, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Tatsuo Nagai
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Shunsei Hirohata
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Kota Shimada
- Department of Rheumatology, Tokyo Metropolitan Tama Medical Center, Fuchu, Tokyo, Japan
| | - Shoji Sugii
- Department of Rheumatology, Tokyo Metropolitan Tama Medical Center, Fuchu, Tokyo, Japan
| | - Akira Okamoto
- Department of Rheumatology, Himeji Medical Center, National Hospital Organization, Himeji, Hyogo, Japan
| | - Noriyuki Chiba
- Department of Rheumatology, Morioka Hospital, National Hospital Organization, Morioka, Iwate, Japan
| | - Eiichi Suematsu
- Department of Internal Medicine and Rheumatology, Clinical Research Institute, Kyushu Medical Center, National Hospital Organization, Fukuoka, Japan
| | - Shigeru Ohno
- Center for Rheumatic Diseases, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Masao Katayama
- Department of Internal Medicine, Nagoya Medical Center, National Hospital Organization, Nagoya, Aichi, Japan
| | - Akiko Okamoto
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Hajime Kono
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yoshinari Takasaki
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Takayuki Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shigeto Tohma
- Clinical Research Center for Allergy and Rheumatology, Sagamihara Hospital, National Hospital Organization, Sagamihara, Kanagawa, Japan
| | - Naoyuki Tsuchiya
- Molecular and Genetic Epidemiology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
300
|
Perry JRB, Day F, Elks CE, Sulem P, Thompson DJ, Ferreira T, He C, Chasman DI, Esko T, Thorleifsson G, Albrecht E, Ang WQ, Corre T, Cousminer DL, Feenstra B, Franceschini N, Ganna A, Johnson AD, Kjellqvist S, Lunetta KL, McMahon G, Nolte IM, Paternoster L, Porcu E, Smith AV, Stolk L, Teumer A, Tšernikova N, Tikkanen E, Ulivi S, Wagner EK, Amin N, Bierut LJ, Byrne EM, Hottenga JJ, Koller DL, Mangino M, Pers TH, Yerges-Armstrong LM, Zhao JH, Andrulis IL, Anton-Culver H, Atsma F, Bandinelli S, Beckmann MW, Benitez J, Blomqvist C, Bojesen SE, Bolla MK, Bonanni B, Brauch H, Brenner H, Buring JE, Chang-Claude J, Chanock S, Chen J, Chenevix-Trench G, Collée JM, Couch FJ, Couper D, Coveillo AD, Cox A, Czene K, D’adamo AP, Smith GD, De Vivo I, Demerath EW, Dennis J, Devilee P, Dieffenbach AK, Dunning AM, Eiriksdottir G, Eriksson JG, Fasching PA, Ferrucci L, Flesch-Janys D, Flyger H, Foroud T, Franke L, Garcia ME, García-Closas M, Geller F, de Geus EEJ, Giles GG, Gudbjartsson DF, Gudnason V, Guénel P, Guo S, Hall P, Hamann U, Haring R, Hartman CA, Heath AC, Hofman A, Hooning MJ, Hopper JL, Hu FB, Hunter DJ, Karasik D, Kiel DP, et alPerry JRB, Day F, Elks CE, Sulem P, Thompson DJ, Ferreira T, He C, Chasman DI, Esko T, Thorleifsson G, Albrecht E, Ang WQ, Corre T, Cousminer DL, Feenstra B, Franceschini N, Ganna A, Johnson AD, Kjellqvist S, Lunetta KL, McMahon G, Nolte IM, Paternoster L, Porcu E, Smith AV, Stolk L, Teumer A, Tšernikova N, Tikkanen E, Ulivi S, Wagner EK, Amin N, Bierut LJ, Byrne EM, Hottenga JJ, Koller DL, Mangino M, Pers TH, Yerges-Armstrong LM, Zhao JH, Andrulis IL, Anton-Culver H, Atsma F, Bandinelli S, Beckmann MW, Benitez J, Blomqvist C, Bojesen SE, Bolla MK, Bonanni B, Brauch H, Brenner H, Buring JE, Chang-Claude J, Chanock S, Chen J, Chenevix-Trench G, Collée JM, Couch FJ, Couper D, Coveillo AD, Cox A, Czene K, D’adamo AP, Smith GD, De Vivo I, Demerath EW, Dennis J, Devilee P, Dieffenbach AK, Dunning AM, Eiriksdottir G, Eriksson JG, Fasching PA, Ferrucci L, Flesch-Janys D, Flyger H, Foroud T, Franke L, Garcia ME, García-Closas M, Geller F, de Geus EEJ, Giles GG, Gudbjartsson DF, Gudnason V, Guénel P, Guo S, Hall P, Hamann U, Haring R, Hartman CA, Heath AC, Hofman A, Hooning MJ, Hopper JL, Hu FB, Hunter DJ, Karasik D, Kiel DP, Knight JA, Kosma VM, Kutalik Z, Lai S, Lambrechts D, Lindblom A, Mägi R, Magnusson PK, Mannermaa A, Martin NG, Masson G, McArdle PF, McArdle WL, Melbye M, Michailidou K, Mihailov E, Milani L, Milne RL, Nevanlinna H, Neven P, Nohr EA, Oldehinkel AJ, Oostra BA, Palotie A, Peacock M, Pedersen NL, Peterlongo P, Peto J, Pharoah PDP, Postma DS, Pouta A, Pylkäs K, Radice P, Ring S, Rivadeneira F, Robino A, Rose LM, Rudolph A, Salomaa V, Sanna S, Schlessinger D, Schmidt MK, Southey MC, Sovio U, Stampfer MJ, Stöckl D, Storniolo AM, Timpson NJ, Tyrer J, Visser JA, Vollenweider P, Völzke H, Waeber G, Waldenberger M, Wallaschofski H, Wang Q, Willemsen G, Winqvist R, Wolffenbuttel BHR, Wright MJ, Australian Ovarian Cancer Study, The GENICA Network, kConFab, The LifeLines Cohort Study, The InterAct Consortium, Early Growth Genetics (EGG) Consortium, Boomsma DI, Econs MJ, Khaw KT, Loos RJF, McCarthy MI, Montgomery GW, Rice JP, Streeten EA, Thorsteinsdottir U, van Duijn CM, Alizadeh BZ, Bergmann S, Boerwinkle E, Boyd HA, Crisponi L, Gasparini P, Gieger C, Harris TB, Ingelsson E, Järvelin MR, Kraft P, Lawlor D, Metspalu A, Pennell CE, Ridker PM, Snieder H, Sørensen TIA, Spector TD, Strachan DP, Uitterlinden AG, Wareham NJ, Widen E, Zygmunt M, Murray A, Easton DF, Stefansson K, Murabito JM, Ong KK. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature 2014; 514:92-97. [PMID: 25231870 PMCID: PMC4185210 DOI: 10.1038/nature13545] [Show More Authors] [Citation(s) in RCA: 418] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/30/2014] [Indexed: 02/02/2023]
Abstract
Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition.
Collapse
Affiliation(s)
- John RB Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- University of Exeter Medical School, University of Exeter, Exeter, UK EX1 2LU
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Felix Day
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Cathy E Elks
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | | | - Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, UK
| | - Teresa Ferreira
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Chunyan He
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA 02215
- Harvard Medical School, Boston, MA 02115
| | - Tõnu Esko
- Estonian Genome Center, University of Tartu, Tartu, 51010, Estonia
- Divisions of Endocrinology and Genetics and Center for Basic and Translational Obesity Research, Boston Children’s Hospital, Boston, MA 02115, USA
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, 140 Cambridge 02142, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Eva Albrecht
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Wei Q Ang
- School of Women’s and Infants’ Health, The University of Western Australia
| | - Tanguy Corre
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Diana L Cousminer
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC
| | - Andrea Ganna
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Andrew D Johnson
- NHLBI’s and Boston University’s Framingham Heart Study, Framingham, MA
| | - Sanela Kjellqvist
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Kathryn L Lunetta
- NHLBI’s and Boston University’s Framingham Heart Study, Framingham, MA
- Boston University School of Public Health, Department of Biostatistics. Boston, MA
| | - George McMahon
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Eleonora Porcu
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Italy
- University of Sassari, Dept. Of Biomedical Sciences, Sassari, Italy
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- University of Iceland, Reykjavik, Iceland
| | - Lisette Stolk
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
- Netherlands Consortium on Health Aging and National Genomics Initiative, Leiden, the Netherlands
| | - Alexander Teumer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Natalia Tšernikova
- Estonian Genome Center, University of Tartu, Tartu, 51010, Estonia
- Department of Biotechnology, University of Tartu, Tartu, 51010, Estonia
| | - Emmi Tikkanen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
- Hjelt Institute, University of Helsinki, Finland
| | - Sheila Ulivi
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo” – Trieste, Italy
| | - Erin K Wagner
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Najaf Amin
- Genetic Epidemiology Unit Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Laura J Bierut
- Dept. of Psychiatry, Washington University, St. Louis, MO 63110
| | - Enda M Byrne
- The University of Queensland, Queensland Brain Institute, St.Lucia, QLD, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, VU University Amsterdam, van der Boechorststraat 1, 1081 BT, Amsterdam, The Netherlands
| | - Daniel L Koller
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana USA
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Tune H Pers
- Divisions of Endocrinology and Genetics and Center for Basic and Translational Obesity Research, Boston Children’s Hospital, Boston, MA 02115, USA
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, 140 Cambridge 02142, MA, USA
- Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, US
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical 142 University of Denmark, Lyngby 2800, Denmark
| | - Laura M Yerges-Armstrong
- Program in Personalized and Genomic Medicine, and Department of Medicine, Division of Endocrinology, Diabetes and Nutrition - University of Maryland School of Medicine, USA. Baltimore, MD 21201
| | - Jing Hua Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Irene L Andrulis
- Ontario Cancer Genetics Network, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Hoda Anton-Culver
- Department of Epidemiology, University of California Irvine, Irvine, California, USA
| | | | - Stefania Bandinelli
- Tuscany Regional Health Agency, Florence, Italy, I.O.T. and Department of Medical and Surgical Critical Care, University of Florence, Florence, Italy
- Geriatric Unit, Azienda Sanitaria di Firenze, Florence, Italy
| | - Matthias W Beckmann
- University Breast Center Franconia, Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Javier Benitez
- Human Genetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Carl Blomqvist
- Department of Oncology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, UK
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia (IEO), Milan, Italy
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart
- University of Tübingen, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Julie E Buring
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA 02215
- Harvard Medical School, Boston, MA 02115
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jinhui Chen
- Departments of Anatomy and Neurological Surgery, Indiana University school of Medicine, Indianapolis, IN 46202, USA
- Stark Neuroscience Research Center, Indiana University school of Medicine, Indianapolis, IN 46202, USA
| | | | - J. Margriet Collée
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - David Couper
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC
| | - Andrea D Coveillo
- Boston University School of Medicine, Department of Medicine, Sections of Preventive Medicine and Endocrinology, Boston, MA
| | - Angela Cox
- Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, Sheffield, UK
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Adamo Pio D’adamo
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo” – Trieste, Italy
- Department of Clinical Medical Sciences, Surgical and Health, University of Trieste, Italy
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minn., USA
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, UK
| | - Peter Devilee
- Department of Human Genetics & Department of Pathology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Aida K Dieffenbach
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, UK
| | | | - Johan G Eriksson
- National Institute for Health and Welfare, Finland
- Department of General Practice and Primary health Care, University of Helsinki, Finland
- Helsinki University Central Hospital, Unit of General Practice, Helsinki, Finland
- Folkhalsan Research Centre, Helsinki, Finland
| | - Peter A Fasching
- University Breast Center Franconia, Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Luigi Ferrucci
- Longitudinal Studies Section, Clinical Research Branch, Gerontology Research Center, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Dieter Flesch-Janys
- Department of Cancer Epidemiology/Clinical Cancer Registry and Institute for Medical Biometrics and Epidemiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Henrik Flyger
- Department of Breast Surgery, Herlev Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana USA
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Melissa E Garcia
- National Insitute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Montserrat García-Closas
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey, UK
- Breakthrough Breast Cancer Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Eco EJ de Geus
- Department of Biological Psychology, VU University Amsterdam, van der Boechorststraat 1, 1081 BT, Amsterdam, The Netherlands
- EMGO + Institute for Health and Care Research, VU University Medical Centre, Van der Boechorststraat 7, 1081 Bt, Amsterdam, The Netherlands
| | - Graham G Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Daniel F Gudbjartsson
- deCODE Genetics, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- University of Iceland, Reykjavik, Iceland
| | - Pascal Guénel
- Inserm (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, Villejuif, France
- University Paris-Sud, UMRS 1018, Villejuif, France
| | - Suiqun Guo
- Department of Obstetrics and Gynecology, Southern Medical University, Guangzhou, China
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Robin Haring
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Catharina A Hartman
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andrew C Heath
- Washington University, Department of Psychiatry, St.Louis, Missouri, USA
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, Rotterdan, the Netherlands
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Frank B Hu
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA
| | - David J Hunter
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, 140 Cambridge 02142, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - David Karasik
- Harvard Medical School, Boston, MA 02115
- Hebrew SeniorLife Institute for Aging Research, Boston, MA
| | - Douglas P Kiel
- Hebrew SeniorLife Institute for Aging Research, Boston, MA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115
| | - Julia A Knight
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Veli-Matti Kosma
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Zoltan Kutalik
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sandra Lai
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Italy
| | - Diether Lambrechts
- Vesalius Research Center (VRC), VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, 51010, Estonia
| | - Patrik K Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Arto Mannermaa
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Nicholas G Martin
- Department of Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Patrick F McArdle
- Program in Personalized and Genomic Medicine, and Department of Medicine, Division of Endocrinology, Diabetes and Nutrition - University of Maryland School of Medicine, USA. Baltimore, MD 21201
| | - Wendy L McArdle
- School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institut, DK-2300 Copenhagen, Denmark
- Department of Medicine, Stanford School of Medicine, Stanford, USA
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, UK
| | - Evelin Mihailov
- Estonian Genome Center, University of Tartu, Tartu, 51010, Estonia
- Department of Biotechnology, University of Tartu, Tartu, 51010, Estonia
| | - Lili Milani
- Estonian Genome Center, University of Tartu, Tartu, 51010, Estonia
| | - Roger L Milne
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Patrick Neven
- KULeuven (University of Leuven), Department of Oncology, Multidisciplinary Breast Center, University Hospitals Leuven, Belgium
| | - Ellen A Nohr
- Research Unit of Obstetrics & Gynecology, Institute of Clinical Research, University of Southern denmark, DK
| | - Albertine J Oldehinkel
- Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ben A Oostra
- Genetic Epidemiology Unit Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Munro Peacock
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana USA
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Paolo Peterlongo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Julian Peto
- Non-communicable Disease Epidemiology Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Paul DP Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, UK
| | - Dirkje S Postma
- University Groningen, University Medical Center Groningen, Department Pulmonary Medicine and Tuberculosis, GRIAC Research Institute, Groningen, The Netherlands
| | - Anneli Pouta
- National Institute for Health and Welfare, Finland
- Department of Obstetrics and Gynecology, Oulu University Hospital, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Chemistry and Biocenter Oulu, University of Oulu, Oulu University Hospital/NordLab Oulu, Oulu, Finland
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Susan Ring
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
- Netherlands Consortium on Health Aging and National Genomics Initiative, Leiden, the Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdan, the Netherlands
| | - Antonietta Robino
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo” – Trieste, Italy
- Department of Clinical Medical Sciences, Surgical and Health, University of Trieste, Italy
| | - Lynda M Rose
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA 02215
| | - Anja Rudolph
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Serena Sanna
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Italy
| | - David Schlessinger
- National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Marjanka K Schmidt
- Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Mellissa C Southey
- Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - Ulla Sovio
- Department of Epidemiology and Biostatistics, MRC Health Protection Agency (HPA) Centre for Environment and Health, School of Public Health, Imperial College London, UK
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, United Kingdom
| | - Meir J Stampfer
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA
| | - Doris Stöckl
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Obstetrics and Gynaecology, Campus Grosshadern, Ludwig-Maximilians- University, Munich, Germany
| | - Anna M Storniolo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana USA
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Jonathan Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, UK
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Peter Vollenweider
- Department of Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, 17475 Greifswald, Germany
| | - Gerard Waeber
- Department of Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Henri Wallaschofski
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, 17475 Greifswald, Germany
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, UK
| | - Gonneke Willemsen
- Department of Biological Psychology, VU University Amsterdam, van der Boechorststraat 1, 1081 BT, Amsterdam, The Netherlands
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Chemistry and Biocenter Oulu, University of Oulu, Oulu University Hospital/NordLab Oulu, Oulu, Finland
| | - Bruce HR Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Margaret J Wright
- Queensland Insitute of Medical Research, Brisbane, Queensland, Australia
| | - Australian Ovarian Cancer Study
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - The GENICA Network
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart
- University of Tübingen, Germany
- Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
- Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany
- Institute of Pathology, Medical Faculty of the University of Bonn, Bonn, Germany
- Institute of Occupational Medicine and Maritime Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - kConFab
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | | | | | - Dorret I Boomsma
- Department of Biological Psychology, VU University Amsterdam, van der Boechorststraat 1, 1081 BT, Amsterdam, The Netherlands
| | - Michael J Econs
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana USA
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Ruth JF Loos
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Genetics of Obesity and Related Metabolic Traits Program, The Charles Bronfman Institute for Personalized Medicine, The Mindich Child Health and Development Institute, Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1003, New York, NY 10029, USA
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, OX3 7LE Oxford, UK
- Oxford Centre for Diabetes, Endocrinology, & Metabolism, University of Oxford, Churchill Hospital, OX37LJ Oxford, UK
| | - Grant W Montgomery
- Queensland Insitute of Medical Research, Brisbane, Queensland, Australia
| | - John P Rice
- Dept. of Psychiatry, Washington University, St. Louis, MO 63110
| | - Elizabeth A Streeten
- Program in Personalized and Genomic Medicine, and Department of Medicine, Division of Endocrinology, Diabetes and Nutrition - University of Maryland School of Medicine, USA. Baltimore, MD 21201
- Geriatric Research and Education Clinical Center (GRECC) - Veterans Administration Medical Center, USA. Baltimore, MD 21201
| | - Unnur Thorsteinsdottir
- deCODE Genetics, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Cornelia M van Duijn
- Netherlands Consortium on Health Aging and National Genomics Initiative, Leiden, the Netherlands
- Genetic Epidemiology Unit Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Centre of Medical Systems Biology, Leiden, the Netherlands
| | - Behrooz Z Alizadeh
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sven Bergmann
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Eric Boerwinkle
- Human Genetics Center and Div. of Epidemiology, University of Houston, TX
| | - Heather A Boyd
- Department of Epidemiology Research, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Laura Crisponi
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Italy
| | - Paolo Gasparini
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo” – Trieste, Italy
- Department of Clinical Medical Sciences, Surgical and Health, University of Trieste, Italy
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Tamara B Harris
- National Insitute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Erik Ingelsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, MRC Health Protection Agency (HPA) Centre for Environment and Health, School of Public Health, Imperial College London, UK
- Institute of Health Sciences, P.O.Box 5000, FI-90014 University of Oulu, Finland
- Biocenter Oulu, P.O.Box 5000, Aapistie 5A, FI-90014 University of Oulu, Finland
- Department of Children and Young People and Families, National Institute for Health and Welfare, Aapistie 1, Box 310, FI-90101 Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Kajaanintie 50, P.O.Box 20, FI-90220 Oulu, 90029 OYS, Finland
| | - Peter Kraft
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Debbie Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Tartu, 51010, Estonia
- Department of Biotechnology, University of Tartu, Tartu, 51010, Estonia
| | - Craig E Pennell
- School of Women’s and Infants’ Health, The University of Western Australia
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA 02215
- Harvard Medical School, Boston, MA 02115
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Thorkild IA Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Institute of Preventive Medicine, Bispebjerg and Frederiksberg Hospitals, The Capital Region, Copenhagen, Denmark
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - David P Strachan
- Division of Population Health Sciences and Education, St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
- Netherlands Consortium on Health Aging and National Genomics Initiative, Leiden, the Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdan, the Netherlands
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Elisabeth Widen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
| | - Marek Zygmunt
- Department of Obstetrics and Gynecology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Anna Murray
- University of Exeter Medical School, University of Exeter, Exeter, UK EX1 2LU
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, UK
| | - Kari Stefansson
- deCODE Genetics, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Joanne M Murabito
- NHLBI’s and Boston University’s Framingham Heart Study, Framingham, MA
- Boston University School of Medicine, Department of Medicine, Section of General Internal Medicine, Boston, MA
| | - Ken K Ong
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Department of Paediatrics,University of Cambridge,Cambridge,UK
| |
Collapse
|