301
|
Wu H, Xing N, Meng K, Fu B, Xue W, Dong P, Tang W, Xiao Y, Liu G, Luo H, Zhu W, Lin X, Meng G, Zhu Z. Nucleocapsid mutations R203K/G204R increase the infectivity, fitness, and virulence of SARS-CoV-2. Cell Host Microbe 2021; 29:1788-1801.e6. [PMID: 34822776 PMCID: PMC8590493 DOI: 10.1016/j.chom.2021.11.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/07/2021] [Accepted: 11/09/2021] [Indexed: 12/30/2022]
Abstract
Previous work found that the co-occurring mutations R203K/G204R on the SARS-CoV-2 nucleocapsid (N) protein are increasing in frequency among emerging variants of concern or interest. Through a combination of in silico analyses, this study demonstrates that R203K/G204R are adaptive, while large-scale phylogenetic analyses indicate that R203K/G204R associate with the emergence of the high-transmissibility SARS-CoV-2 lineage B.1.1.7. Competition experiments suggest that the 203K/204R variants possess a replication advantage over the preceding R203/G204 variants, possibly related to ribonucleocapsid (RNP) assembly. Moreover, the 203K/204R virus shows increased infectivity in human lung cells and hamsters. Accordingly, we observe a positive association between increased COVID-19 severity and sample frequency of 203K/204R. Our work suggests that the 203K/204R mutations contribute to the increased transmission and virulence of select SARS-CoV-2 variants. In addition to mutations in the spike protein, mutations in the nucleocapsid protein are important for viral spreading during the pandemic.
Collapse
Affiliation(s)
- Haibo Wu
- School of Life Sciences, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Na Xing
- Institute of Virology, Free University of Berlin, Robert-von-Ostertag-Str. 7-13, Berlin 14163, Germany
| | - Kaiwen Meng
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100094, China
| | - Beibei Fu
- School of Life Sciences, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Pan Dong
- School of Life Sciences, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Wanyan Tang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba, Chongqing 400030, China
| | - Yang Xiao
- School of Life Sciences, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Gexin Liu
- School of Life Sciences, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Haitao Luo
- School of Life Sciences, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Wenzhuang Zhu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100094, China
| | - Xiaoyuan Lin
- School of Life Sciences, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China.
| | - Geng Meng
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100094, China.
| | - Zhenglin Zhu
- School of Life Sciences, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China.
| |
Collapse
|
302
|
Li T, Cai H, Zhao Y, Li Y, Lai Y, Yao H, Liu LD, Sun Z, van Vlissingen MF, Kuiken T, GeurtsvanKessel CH, Zhang N, Zhou B, Lu L, Gong Y, Qin W, Mondal M, Duan B, Xu S, Richard AS, Raoul H, Chen J, Xu C, Wu L, Zhou H, Huang Z, Zhang X, Li J, Wang Y, Bi Y, Rockx B, Chen J, Meng F, Lavillette D, Li D. Uncovering a conserved vulnerability site in SARS-CoV-2 by a human antibody. EMBO Mol Med 2021; 13:e14544. [PMID: 34672091 PMCID: PMC8646660 DOI: 10.15252/emmm.202114544] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
An essential step for SARS-CoV-2 infection is the attachment to the host cell receptor by its Spike receptor-binding domain (RBD). Most of the existing RBD-targeting neutralizing antibodies block the receptor-binding motif (RBM), a mutable region with the potential to generate neutralization escape mutants. Here, we isolated and structurally characterized a non-RBM-targeting monoclonal antibody (FD20) from convalescent patients. FD20 engages the RBD at an epitope distal to the RBM with a KD of 5.6 nM, neutralizes SARS-CoV-2 including the current Variants of Concern such as B.1.1.7, B.1.351, P.1, and B.1.617.2 (Delta), displays modest cross-reactivity against SARS-CoV, and reduces viral replication in hamsters. The epitope coincides with a predicted "ideal" vulnerability site with high functional and structural constraints. Mutation of the residues of the conserved epitope variably affects FD20-binding but confers little or no resistance to neutralization. Finally, in vitro mode-of-action characterization and negative-stain electron microscopy suggest a neutralization mechanism by which FD20 destructs the Spike. Our results reveal a conserved vulnerability site in the SARS-CoV-2 Spike for the development of potential antiviral drugs.
Collapse
|
303
|
Impact of Vaccination on the Sense of Security, the Anxiety of COVID-19 and Quality of Life among Polish. A Nationwide Online Survey in Poland. Vaccines (Basel) 2021; 9:vaccines9121444. [PMID: 34960190 PMCID: PMC8707505 DOI: 10.3390/vaccines9121444] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/14/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022] Open
Abstract
The pandemic state has a destructive effect on the human psyche and induces fear for one’s own health. By reducing the risk of severe COVID-19, vaccination may indirectly improve the mental state. This study aims to assess the effects of vaccination on respondents’ mental well-being, their attitudes towards adherence to government recommendations limiting viral transmission, and to identify factors that may influence the decision to get vaccinated. The survey took the form of the authors’ own, fully voluntary, anonymous, online questionnaire. Standardised psychometric tools were used in the survey: Generalised Anxiety Disorder Assessment (GAD-7) and Manchester Short Assessment of Quality of Life (MANSA). The survey involved 1696 respondents, the vast majority of whom were women, and were aged 18–29. The vaccination status was declared by 1677 respondents (98.9%), 430 (25.4%) of whom were vaccinated with at least one dose of vaccine, while 303 (17.9%) respondents were not only unvaccinated at all, and declared no intention to get vaccinated in the future. Fully vaccinated individuals were found to have lower levels of anxiety, higher MANSA scores and lower subjective anxiety about being infected with COVID-19 than those awaiting vaccination or those with an incomplete vaccination regimen (one dose). Those who are not willing to get vaccinated have the lowest sense of anxiety and fear of being infected and they have the lowest adherence to government recommendations limiting SARS-CoV-2 transmission. Conclusions: COVID-19 vaccination reduces the level of anxiety about being infected and anxiety due to COVID-19 disease in people from the immediate environment. Those who are not willing to get vaccinated have extreme attitudes that negate the pandemic as a whole, including the need for COVID-19 vaccination. Fully vaccinated individuals still adhere to the SARS-CoV-2 prevention policies in place.
Collapse
|
304
|
Lu X, Hosono Y, Nagae M, Ishizuka S, Ishikawa E, Motooka D, Ozaki Y, Sax N, Maeda Y, Kato Y, Morita T, Shinnakasu R, Inoue T, Onodera T, Matsumura T, Shinkai M, Sato T, Nakamura S, Mori S, Kanda T, Nakayama EE, Shioda T, Kurosaki T, Takeda K, Kumanogoh A, Arase H, Nakagami H, Yamashita K, Takahashi Y, Yamasaki S. Identification of conserved SARS-CoV-2 spike epitopes that expand public cTfh clonotypes in mild COVID-19 patients. J Exp Med 2021; 218:212701. [PMID: 34647971 PMCID: PMC8641254 DOI: 10.1084/jem.20211327] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/21/2021] [Accepted: 09/28/2021] [Indexed: 11/04/2022] Open
Abstract
Adaptive immunity is a fundamental component in controlling COVID-19. In this process, follicular helper T (Tfh) cells are a subset of CD4+ T cells that mediate the production of protective antibodies; however, the SARS-CoV-2 epitopes activating Tfh cells are not well characterized. Here, we identified and crystallized TCRs of public circulating Tfh (cTfh) clonotypes that are expanded in patients who have recovered from mild symptoms. These public clonotypes recognized the SARS-CoV-2 spike (S) epitopes conserved across emerging variants. The epitope of the most prevalent cTfh clonotype, S864-882, was presented by multiple HLAs and activated T cells in most healthy donors, suggesting that this S region is a universal T cell epitope useful for booster antigen. SARS-CoV-2-specific public cTfh clonotypes also cross-reacted with specific commensal bacteria. In this study, we identified conserved SARS-CoV-2 S epitopes that activate public cTfh clonotypes associated with mild symptoms.
Collapse
Affiliation(s)
- Xiuyuan Lu
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Yuki Hosono
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masamichi Nagae
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Shigenari Ishizuka
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Eri Ishikawa
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yuki Ozaki
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | | | - Yuichi Maeda
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yasuhiro Kato
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Takayoshi Morita
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Ryo Shinnakasu
- Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takayuki Matsumura
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | - Shota Nakamura
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Shunsuke Mori
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.,Laboratory of Immunochemistry, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Teru Kanda
- Division of Microbiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Emi E Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.,Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Suita, Japan.,Center for Infectious Disease Education and Research, Osaka University, Suita, Japan.,Laboratory of Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Center for Infectious Disease Education and Research, Osaka University, Suita, Japan.,Department of Mucosal Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita, Japan.,Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.,Laboratory of Immunochemistry, Immunology Frontier Research Center, Osaka University, Suita, Japan.,Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| | - Hironori Nakagami
- Department of Health Development and Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | | | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sho Yamasaki
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.,Center for Infectious Disease Education and Research, Osaka University, Suita, Japan.,Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan.,Division of Molecular Design, Research Center for Systems Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
305
|
Goel RR, Painter MM, Apostolidis SA, Mathew D, Meng W, Rosenfeld AM, Lundgreen KA, Reynaldi A, Khoury DS, Pattekar A, Gouma S, Kuri-Cervantes L, Hicks P, Dysinger S, Hicks A, Sharma H, Herring S, Korte S, Baxter AE, Oldridge DA, Giles JR, Weirick ME, McAllister CM, Awofolaju M, Tanenbaum N, Drapeau EM, Dougherty J, Long S, D’Andrea K, Hamilton JT, McLaughlin M, Williams JC, Adamski S, Kuthuru O, Frank I, Betts MR, Vella LA, Grifoni A, Weiskopf D, Sette A, Hensley SE, Davenport MP, Bates P, Luning Prak ET, Greenplate AR, Wherry EJ. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science 2021; 374:abm0829. [PMID: 34648302 PMCID: PMC9284784 DOI: 10.1126/science.abm0829] [Citation(s) in RCA: 566] [Impact Index Per Article: 188.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022]
Abstract
The durability of immune memory after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) messenger RNA (mRNA) vaccination remains unclear. In this study, we longitudinally profiled vaccine responses in SARS-CoV-2–naïve and –recovered individuals for 6 months after vaccination. Antibodies declined from peak levels but remained detectable in most subjects at 6 months. By contrast, mRNA vaccines generated functional memory B cells that increased from 3 to 6 months postvaccination, with the majority of these cells cross-binding the Alpha, Beta, and Delta variants. mRNA vaccination further induced antigen-specific CD4+ and CD8+ T cells, and early CD4+ T cell responses correlated with long-term humoral immunity. Recall responses to vaccination in individuals with preexisting immunity primarily increased antibody levels without substantially altering antibody decay rates. Together, these findings demonstrate robust cellular immune memory to SARS-CoV-2 and its variants for at least 6 months after mRNA vaccination.
Collapse
Affiliation(s)
- Rishi R. Goel
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mark M. Painter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sokratis A. Apostolidis
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Rheumatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Divij Mathew
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Wenzhao Meng
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aaron M. Rosenfeld
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kendall A. Lundgreen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - David S. Khoury
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Ajinkya Pattekar
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sigrid Gouma
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Leticia Kuri-Cervantes
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Philip Hicks
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sarah Dysinger
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amanda Hicks
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Harsh Sharma
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sarah Herring
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott Korte
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amy E. Baxter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Derek A. Oldridge
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Josephine R. Giles
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Madison E. Weirick
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christopher M. McAllister
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Moses Awofolaju
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nicole Tanenbaum
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elizabeth M. Drapeau
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jeanette Dougherty
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sherea Long
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kurt D’Andrea
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jacob T. Hamilton
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Maura McLaughlin
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Justine C. Williams
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sharon Adamski
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Oliva Kuthuru
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - The UPenn COVID Processing Unit‡
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Rheumatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Infectious Disease, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Infectious Disease, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Ian Frank
- Division of Infectious Disease, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael R. Betts
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Laura A. Vella
- Division of Infectious Disease, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Scott E. Hensley
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Paul Bates
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eline T. Luning Prak
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Allison R. Greenplate
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - E. John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
306
|
Hu J, Wei XY, Xiang J, Peng P, Xu FL, Wu K, Luo FY, Jin AS, Fang L, Liu BZ, Wang K, Tang N, Huang AL. Reduced neutralization of SARS-CoV-2 B.1.617 variant by convalescent and vaccinated sera. Genes Dis 2021; 9:1290-1300. [PMID: 34877393 PMCID: PMC8639289 DOI: 10.1016/j.gendis.2021.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/26/2021] [Accepted: 11/05/2021] [Indexed: 01/10/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The Spike protein that mediates coronavirus entry into host cells is a major target for COVID-19 vaccines and antibody therapeutics. However, multiple variants of SARS-CoV-2 have emerged, which may potentially compromise vaccine effectiveness. Using a pseudovirus-based assay, we evaluated SARS-CoV-2 cell entry mediated by the viral Spike B.1.617 and B.1.1.7 variants. We also compared the neutralization ability of monoclonal antibodies from convalescent sera and neutralizing antibodies (NAbs) elicited by CoronaVac (inactivated vaccine) and ZF2001 (RBD-subunit vaccine) against B.1.617 and B.1.1.7 variants. Our results showed that, compared to D614G and B.1.1.7 variants, B.1.617 shows enhanced viral entry and membrane fusion, as well as more resistant to antibody neutralization. These findings have important implications for understanding viral infectivity and for immunization policy against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Jie Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, PR China
| | - Xiao-Yu Wei
- Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402177, PR China
| | - Jin Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, PR China
| | - Pai Peng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, PR China
| | - Feng-Li Xu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, PR China
| | - Kang Wu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, PR China
| | - Fei-Yang Luo
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Ai-Shun Jin
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Liang Fang
- Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402177, PR China
| | - Bei-Zhong Liu
- Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402177, PR China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, PR China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, PR China
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, PR China
| |
Collapse
|
307
|
Prediction of suitable T and B cell epitopes for eliciting immunogenic response against SARS-CoV-2 and its mutant. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2021; 11:1. [PMID: 34849327 PMCID: PMC8619655 DOI: 10.1007/s13721-021-00348-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/21/2021] [Accepted: 11/12/2021] [Indexed: 12/23/2022]
Abstract
Spike glycoprotein of SARS-CoV-2 is mainly responsible for the recognition and membrane fusion within the host and this protein has an ability to mutate. Hence, T cell and B cell epitopes were derived from the spike glycoprotein sequence of wild SARS-CoV-2. The proposed T cell and B cell epitopes were found to be antigenic and conserved in the sequence of SARS-CoV-2 mutant (B.1.1.7). Thus, the proposed epitopes are effective against SARS-CoV-2 and its B.1.1.7 mutant. MHC-I that best interacts with the proposed T cell epitopes were found, using immune epitope database. Molecular docking and molecular dynamic simulations were done for ensuring a good binding between the proposed MHC-I and T cell epitopes. The finally proposed T cell epitope was found to be antigenic, non-allergenic, non-toxic and stable. Further, the finally proposed B cell epitopes were also found to be antigenic. The population conservation analysis has ensured the presence of MHC-I molecule (respective to the finally proposed T cell) in human population of most affected countries with SARS-CoV-2. Thus the proposed T and B cell epitope could be effective in designing an epitope-based vaccine, which is effective on SARS-CoV-2 and its B.1.1.7mutant. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13721-021-00348-w.
Collapse
|
308
|
Deb B, Vilvadrinath R, Goel S. COVID-19 variants that escape vaccine immunity: Global and Indian context—are more vaccines needed? J Biosci 2021. [PMID: 34857677 PMCID: PMC8633907 DOI: 10.1007/s12038-021-00226-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The COVID-19 pandemic that emerged around December 2019 claimed millions of lives. For vaccine development, S protein on viral envelope that binds to ACE2 receptor on cells for entry was identified as vaccine candidate. S protein consists of Receptor Binding Motif (RBM) in the S1 subunit followed by the S2 subunit with an intermediate furin cleavage site. A stabilized version of S protein with 2 proline residues was used as antigen. Overall, most vaccines exhibited efficacy between 80 and 95%. However, being a RNA virus that is prone to mutations along with selection pressure on S protein and frequent use of convalescent plasma led to evolution of variants. These variants are responsible for multiple waves of infection observed globally. In our review, we discuss current data on vaccines and its efficacy in neutralizing SARS-CoV-2 from Wuhan and its variants. Further, our docked mutations observed in variants on the ACE2-S complex cryo-EM structure show that mostly the S1 domain is under selection pressure where major mutations occur in the N terminal domain (NTD), RBM and junction near S1-S2 subunit. Therefore, this review would be a reference for development of new candidate antigen(s) with better efficacy against variants.
Collapse
Affiliation(s)
- Bijayeeta Deb
- Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Ramya Vilvadrinath
- Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Suchi Goel
- Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| |
Collapse
|
309
|
Ramadan AM, Ibrahim KM, Belaid SM, Abusanina MS, Ben Elfghi M, Abughnia E, Elkikkli A, Alhudiri IM, Elzagheid A. Travel during COVID-19 pandemic in Libya: reasons of travel, disease importation and travel regulations. Libyan J Med 2021; 16:1994740. [PMID: 34694964 PMCID: PMC8547827 DOI: 10.1080/19932820.2021.1994740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/14/2021] [Indexed: 11/04/2022] Open
Abstract
Restriction of mobility between countries is an important regulatory measure to combat pandemics such as the coronavirus disease 2019 (COVID-19). Currently, PCR testing is required to enter the Libyan borders. However, no post-travel quarantine is employed. In this report, we briefly discuss travel regulations in Libya during the COVID-19 pandemic and disease importation by travelers. The results showed that almost half of the sample travel because of health care and therapy reasons. Tunisia was the most visited destination mainly for trading and business and receiving healthcare. Importantly, 13% of asymptomatic travelers were SARS-CoV-2 positive. Issues regarding repeated testing among very frequent travelers and variant importation needs to be addressed in a more efficient manner.
Collapse
Affiliation(s)
- Ahmad M. Ramadan
- Genetic Engineering Department, Biotechnology Research Center, Tabriz, Iran
| | - Khaled M Ibrahim
- Genetic Engineering Department, Biotechnology Research Center, Tabriz, Iran
| | | | | | | | - Elmundr Abughnia
- Microbiology Department, Biotechnology Research Center, Tabriz, Iran
| | - Ahmed Elkikkli
- Genetic Engineering Department, Biotechnology Research Center, Tabriz, Iran
| | - Inas M Alhudiri
- Genetic Engineering Department, Biotechnology Research Center, Tabriz, Iran
| | - Adam Elzagheid
- Genetic Engineering Department, Biotechnology Research Center, Tabriz, Iran
| |
Collapse
|
310
|
Paniri A, Hosseini MM, Akhavan-Niaki H. Impact of new UK (B.1.1.7) SARS-Cov-2 variant on interacting with ACE2 and host immune response. GENE REPORTS 2021; 25:101342. [PMID: 34493993 PMCID: PMC8414842 DOI: 10.1016/j.genrep.2021.101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/28/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Alireza Paniri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | | | - Haleh Akhavan-Niaki
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran
| |
Collapse
|
311
|
Amitai A. Viral surface geometry shapes influenza and coronavirus spike evolution through antibody pressure. PLoS Comput Biol 2021; 17:e1009664. [PMID: 34898597 PMCID: PMC8699686 DOI: 10.1371/journal.pcbi.1009664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/23/2021] [Accepted: 11/19/2021] [Indexed: 01/02/2023] Open
Abstract
The evolution of circulating viruses is shaped by their need to evade antibody response, which mainly targets the viral spike. Because of the high density of spikes on the viral surface, not all antigenic sites are targeted equally by antibodies. We offer here a geometry-based approach to predict and rank the probability of surface residues of SARS spike (S protein) and influenza H1N1 spike (hemagglutinin) to acquire antibody-escaping mutations utilizing in-silico models of viral structure. We used coarse-grained MD simulations to estimate the on-rate (targeting) of an antibody model to surface residues of the spike protein. Analyzing publicly available sequences, we found that spike surface sequence diversity of the pre-pandemic seasonal influenza H1N1 and the sarbecovirus subgenus highly correlates with our model prediction of antibody targeting. In particular, we identified an antibody-targeting gradient, which matches a mutability gradient along the main axis of the spike. This identifies the role of viral surface geometry in shaping the evolution of circulating viruses. For the 2009 H1N1 and SARS-CoV-2 pandemics, a mutability gradient along the main axis of the spike was not observed. Our model further allowed us to identify key residues of the SARS-CoV-2 spike at which antibody escape mutations have now occurred. Therefore, it can inform of the likely functional role of observed mutations and predict at which residues antibody-escaping mutation might arise.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- COVID-19/epidemiology
- COVID-19/immunology
- COVID-19/virology
- Computational Biology
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/genetics
- Evolution, Molecular
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Host Microbial Interactions/genetics
- Host Microbial Interactions/immunology
- Humans
- Immune Evasion/genetics
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza, Human/immunology
- Influenza, Human/virology
- Models, Immunological
- Molecular Dynamics Simulation
- Mutation
- Pandemics
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Assaf Amitai
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
312
|
Li J, Lai S, Gao GF, Shi W. The emergence, genomic diversity and global spread of SARS-CoV-2. Nature 2021; 600:408-418. [PMID: 34880490 DOI: 10.1038/s41586-021-04188-6] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022]
Abstract
Since the first cases of COVID-19 were documented in Wuhan, China in 2019, the world has witnessed a devastating global pandemic, with more than 238 million cases, nearly 5 million fatalities and the daily number of people infected increasing rapidly. Here we describe the currently available data on the emergence of the SARS-CoV-2 virus, the causative agent of COVID-19, outline the early viral spread in Wuhan and its transmission patterns in China and across the rest of the world, and highlight how genomic surveillance, together with other data such as those on human mobility, has helped to trace the spread and genetic variation of the virus and has also comprised a key element for the control of the pandemic. We pay particular attention to characterizing and describing the international spread of the major variants of concern of SARS-CoV-2 that were first identified in late 2020 and demonstrate that virus evolution has entered a new phase. More broadly, we highlight our currently limited understanding of coronavirus diversity in nature, the rapid spread of the virus and its variants in such an increasingly connected world, the reduced protection of vaccines, and the urgent need for coordinated global surveillance using genomic techniques. In summary, we provide important information for the prevention and control of both the ongoing COVID-19 pandemic and any new diseases that will inevitably emerge in the human population in future generations.
Collapse
Affiliation(s)
- Juan Li
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China.,Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in the Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Shengjie Lai
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, UK
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China.,CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology,, Chinese Academy of Sciences, Beijing, China.,Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, China
| | - Weifeng Shi
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China. .,Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in the Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China.
| |
Collapse
|
313
|
Ludwig H, Sonneveld P, Facon T, San-Miguel J, Avet-Loiseau H, Mohty M, Mateos MV, Moreau P, Cavo M, Pawlyn C, Zweegman S, Engelhardt M, Driessen C, Cook G, Dimopoulos MA, Gay F, Einsele H, Delforge M, Caers J, Weisel K, Jackson G, Garderet L, van de Donk N, Leleu X, Goldschmidt H, Beksac M, Nijhof I, Schreder M, Abildgaard N, Hajek R, Zojer N, Kastritis E, Broijl A, Schjesvold F, Boccadoro M, Terpos E. COVID-19 vaccination in patients with multiple myeloma: a consensus of the European Myeloma Network. Lancet Haematol 2021; 8:e934-e946. [PMID: 34756169 PMCID: PMC8553271 DOI: 10.1016/s2352-3026(21)00278-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
Patients with multiple myeloma frequently present with substantial immune impairment and an increased risk for infections and infection-related mortality. The risk for infection with SARS-CoV-2 virus and resulting mortality is also increased, emphasising the importance of protecting patients by vaccination. Available data in patients with multiple myeloma suggest a suboptimal anti-SARS-CoV-2 immune response, meaning a proportion of patients are unprotected. Factors associated with poor response are uncontrolled disease, immunosuppression, concomitant therapy, more lines of therapy, and CD38 antibody-directed and B-cell maturation antigen-directed therapy. These facts suggest that monitoring the immune response to vaccination in patients with multiple myeloma might provide guidance for clinical management, such as administration of additional doses of the same or another vaccine, or even temporary treatment discontinuation, if possible. In those who do not exhibit a good response, prophylactic treatment with neutralising monoclonal antibody cocktails might be considered. In patients deficient of a SARS-CoV-2 immune response, adherence to measures for infection risk reduction is particularly recommended. This consensus was generated by members of the European Multiple Myeloma Network and some external experts. The panel members convened in virtual meetings and conducted an extensive literature research and evaluated recently published data and work presented at meetings, as well as findings from their own studies. The outcome of the discussions on establishing consensus recommendations for COVID-19 vaccination in patients with multiple myeloma was condensed into this Review.
Collapse
Affiliation(s)
- Heinz Ludwig
- Wilhelminen Cancer Research Institute, First Department of Medicine, Center for Oncology, Hematology, and Palliative Care, Clinic Ottakring, Vienna, Austria.
| | - Pieter Sonneveld
- Erasmus Medical Center Cancer Institute-Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Thierry Facon
- University of Lille, CHU Lille, Service des Maladies du Sang, Lille, France
| | - Jesus San-Miguel
- Clínica Universidad de Navarra, CIMA, CIBERONC, IDISNA, Pamplona, Spain
| | | | - Mohamad Mohty
- Service d'Hematologie Clinique et Therapie Cellulaire, Hopital Saint-Antoine, Assistance Publique-Hopitaux de Paris (AP-HP), Sorbonne University, INSERM Unite Mixte de Recherche (UMR) 938, Paris, France
| | - Maria-Victoria Mateos
- Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca, Instituto de Biología Molecular y Celular del Cáncer (Universidad de Salamanca-Consejo Superior de Investigaciones Científicas), CIBERONC, Salamanca, Spain
| | - Philippe Moreau
- Department of Hematology, University hospital Hotel-Dieu, Nantes, France
| | - Michele Cavo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Charlotte Pawlyn
- Institute of Cancer Research, London, UK; Royal Marsden Hospital, London, UK
| | - Sonja Zweegman
- Department of Hematology, Amsterdam UMC, VU University, Amsterdam, Netherlands
| | - Monika Engelhardt
- Department of Medicine I and Department of Hematology, Oncology, and Stem-Cell Transplantation, Clinical Cancer Research Group, University Hospital of Freiburg, Freiburg, Germany
| | - Christoph Driessen
- Department of Oncology and Hematology, Kantonsspital St Gallen, St Gallen, Switzerland
| | - Gordon Cook
- Leeds Institute of Clinical Trial Research, University of Leeds, Leeds, UK
| | - Melitios A Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Francesca Gay
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza, Torino, Italy
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | | | - Jo Caers
- Department of Hematology, CHU de Liège, Liège, Belgium
| | - Katja Weisel
- Universitätsklinikum Hamburg-Eppendorf II, Medizinische Klinik und Poliklinik, Hamburg, Germany
| | - Graham Jackson
- Northern Centre for Cancer Care, Freeman Hospital, Newcastle Upon Tyne Hospitals trust, Newcastle Upon Tyne, UK
| | - Laurent Garderet
- Sorbonne Université-INSERM, UMR-S 938, Centre de Recherche Saint-Antoine-Team Hematopoietic and leukemic development, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié Salpetrière, Département d'Hématologie et de Thérapie Cellulaire, Paris, France
| | - Niels van de Donk
- Department of Hematology, Amsterdam UMC, VU University, Amsterdam, Netherlands
| | - Xavier Leleu
- CHU Poitiers, Poitiers, France; Inserm, Poitiers, France
| | - Hartmut Goldschmidt
- University Hospital Heidelberg, Internal Medicine V and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Meral Beksac
- Department of Hematology, Ankara University, Ankara, Turkey
| | - Inger Nijhof
- Department of Hematology, Amsterdam UMC, VU University, Amsterdam, Netherlands
| | - Martin Schreder
- First Department of Medicine, Center for Oncology, Hematology, and Palliative Care, Clinic Ottakring, Vienna, Austria
| | - Niels Abildgaard
- Hematology Research Unit, Department of Hematology, Odense University Hospital, and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Roman Hajek
- Department of Hematooncology, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Niklas Zojer
- First Department of Medicine, Center for Oncology, Hematology, and Palliative Care, Clinic Ottakring, Vienna, Austria
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Annemiek Broijl
- Erasmus Medical Center Cancer Institute-Erasmus University Rotterdam, Rotterdam, Netherlands
| | | | - Mario Boccadoro
- KG Jebsen Center for B Cell Malignancies, University of Oslo, Oslo, Norway; European Myeloma Network (EMN) Italy, Torino, Italy
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
314
|
Tao K, Tzou PL, Nouhin J, Gupta RK, de Oliveira T, Kosakovsky Pond SL, Fera D, Shafer RW. The biological and clinical significance of emerging SARS-CoV-2 variants. Nat Rev Genet 2021; 22:757-773. [PMID: 34535792 PMCID: PMC8447121 DOI: 10.1038/s41576-021-00408-x] [Citation(s) in RCA: 650] [Impact Index Per Article: 216.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 12/13/2022]
Abstract
The past several months have witnessed the emergence of SARS-CoV-2 variants with novel spike protein mutations that are influencing the epidemiological and clinical aspects of the COVID-19 pandemic. These variants can increase rates of virus transmission and/or increase the risk of reinfection and reduce the protection afforded by neutralizing monoclonal antibodies and vaccination. These variants can therefore enable SARS-CoV-2 to continue its spread in the face of rising population immunity while maintaining or increasing its replication fitness. The identification of four rapidly expanding virus lineages since December 2020, designated variants of concern, has ushered in a new stage of the pandemic. The four variants of concern, the Alpha variant (originally identified in the UK), the Beta variant (originally identified in South Africa), the Gamma variant (originally identified in Brazil) and the Delta variant (originally identified in India), share several mutations with one another as well as with an increasing number of other recently identified SARS-CoV-2 variants. Collectively, these SARS-CoV-2 variants complicate the COVID-19 research agenda and necessitate additional avenues of laboratory, epidemiological and clinical research.
Collapse
Affiliation(s)
- Kaiming Tao
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Philip L Tzou
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Janin Nouhin
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Ravindra K Gupta
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), University of KwaZulu-Natal, Durban, South Africa
| | | | - Daniela Fera
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA, USA
| | - Robert W Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
315
|
Kimura I, Kosugi Y, Wu J, Zahradnik J, Yamasoba D, Butlertanaka EP, Tanaka YL, Uriu K, Liu Y, Morizako N, Shirakawa K, Kazuma Y, Nomura R, Horisawa Y, Tokunaga K, Ueno T, Takaori-Kondo A, Schreiber G, Arase H, Motozono C, Saito A, Nakagawa S, Sato K. The SARS-CoV-2 Lambda variant exhibits enhanced infectivity and immune resistance. Cell Rep 2021; 38:110218. [PMID: 34968415 PMCID: PMC8683271 DOI: 10.1016/j.celrep.2021.110218] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
|
316
|
Davis C, Logan N, Tyson G, Orton R, Harvey WT, Perkins JS, Mollett G, Blacow RM, Peacock TP, Barclay WS, Cherepanov P, Palmarini M, Murcia PR, Patel AH, Robertson DL, Haughney J, Thomson EC, Willett BJ. Reduced neutralisation of the Delta (B.1.617.2) SARS-CoV-2 variant of concern following vaccination. PLoS Pathog 2021; 17:e1010022. [PMID: 34855916 PMCID: PMC8639073 DOI: 10.1371/journal.ppat.1010022] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/10/2021] [Indexed: 11/20/2022] Open
Abstract
Vaccines are proving to be highly effective in controlling hospitalisation and deaths associated with SARS-CoV-2 infection but the emergence of viral variants with novel antigenic profiles threatens to diminish their efficacy. Assessment of the ability of sera from vaccine recipients to neutralise SARS-CoV-2 variants will inform the success of strategies for minimising COVID19 cases and the design of effective antigenic formulations. Here, we examine the sensitivity of variants of concern (VOCs) representative of the B.1.617.1 and B.1.617.2 (first associated with infections in India) and B.1.351 (first associated with infection in South Africa) lineages of SARS-CoV-2 to neutralisation by sera from individuals vaccinated with the BNT162b2 (Pfizer/BioNTech) and ChAdOx1 (Oxford/AstraZeneca) vaccines. Across all vaccinated individuals, the spike glycoproteins from B.1.617.1 and B.1.617.2 conferred reductions in neutralisation of 4.31 and 5.11-fold respectively. The reduction seen with the B.1.617.2 lineage approached that conferred by the glycoprotein from B.1.351 (South African) variant (6.29-fold reduction) that is known to be associated with reduced vaccine efficacy. Neutralising antibody titres elicited by vaccination with two doses of BNT162b2 were significantly higher than those elicited by vaccination with two doses of ChAdOx1. Fold decreases in the magnitude of neutralisation titre following two doses of BNT162b2, conferred reductions in titre of 7.77, 11.30 and 9.56-fold respectively to B.1.617.1, B.1.617.2 and B.1.351 pseudoviruses, the reduction in neutralisation of the delta variant B.1.617.2 surpassing that of B.1.351. Fold changes in those vaccinated with two doses of ChAdOx1 were 0.69, 4.01 and 1.48 respectively. The accumulation of mutations in these VOCs, and others, demonstrate the quantifiable risk of antigenic drift and subsequent reduction in vaccine efficacy. Accordingly, booster vaccines based on updated variants are likely to be required over time to prevent productive infection. This study also suggests that two dose regimes of vaccine are required for maximal BNT162b2 and ChAdOx1-induced immunity.
Collapse
Affiliation(s)
- Chris Davis
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Nicola Logan
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Grace Tyson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Richard Orton
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - William T. Harvey
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Jonathan S. Perkins
- Clinical Research Facility, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Guy Mollett
- Clinical Research Facility, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Rachel M. Blacow
- Clinical Research Facility, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | | | - Thomas P. Peacock
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Wendy S. Barclay
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | | | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Pablo R. Murcia
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Arvind H. Patel
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - David L. Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - John Haughney
- Clinical Research Facility, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Emma C. Thomson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Brian J. Willett
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | | |
Collapse
|
317
|
Fu Q, Xie H, Zhou L, Li X, Liu Y, Liu M, Wang C, Wang X, Wang Z, Tang J, Xiao H, Xiao Z, Zhou J, Feng C, Wang L, Ao Z, Chen X, Su C, Wu X, Zhao M, Hu S, Lin H, Huang J, Xu G, Zhang Q, Jiang L. Auricular acupressure for adverse events following immunization related to COVID-19 vaccine injection: study protocol for a multicenter, three-arm, blinded randomized controlled trial. Trials 2021; 22:857. [PMID: 34838110 PMCID: PMC8626745 DOI: 10.1186/s13063-021-05837-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/16/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Some pain, fatigue, and gastrointestinal adverse events were observed in potential association with injection of COVID-19 vaccines, while there was no preventive intervention for it. We aim to investigate the efficacy of auricular acupressure (AA) therapy in preventing and relieving AEFI after injection of COVID-19 vaccine. METHODS The study design is a randomized, multicentre, three-arm controlled, single-blind trial. Participants meeting the inclusion criteria will be advertised and enrolled and assigned in the medical institutions randomly for post-injection observation. No less than 360 participants will be randomized into one of three groups: auricular acupressure group, sham auricular acupressure group, and wait-list group. Interventions will be performed immediately and will happen 4 to 5 times per day for 5 days. The primary clinical outcomes will be quality and quantity evaluation among participants who reported any AEFI and who reported local pain at injection site. Secondary outcomes will concern headache, muscle and (or) joint pain, fatigue, nausea, vomiting, diarrhoea, and other potential events. All the outcomes will be assessed at baseline and 1, 3, 5, 7, and 14 days after the injection. Both intention-to-treat and per-protocol analyses will be performed, with significance level determined as 5%. DISCUSSION Results of this trial will help to clarify the value of auricular acupressure therapy in preventing and relieving overall and certain adverse events following immunization after injection of COVID-19 vaccine. TRIAL REGISTRATION China Clinical Trial Registry (ChiCTR) ( ChiCTR2100043210 ). Registered on 8 February, 2021.
Collapse
Affiliation(s)
- Qinwei Fu
- Hospital of Chengdu university of Traditional Chinese Medicine, Chengdu university of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Hui Xie
- Hospital of Chengdu university of Traditional Chinese Medicine, Chengdu university of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Li Zhou
- Hospital of Chengdu university of Traditional Chinese Medicine, Chengdu university of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xinrong Li
- Hospital of Chengdu university of Traditional Chinese Medicine, Chengdu university of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yang Liu
- Hospital of Chengdu university of Traditional Chinese Medicine, Chengdu university of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Min Liu
- Du Jiang Yan Medical Center, Du Jiang Yan, 611830, China
| | - Chaoyu Wang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xiaocen Wang
- Hospital of Chengdu university of Traditional Chinese Medicine, Chengdu university of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Zhiqiao Wang
- Hospital of Chengdu university of Traditional Chinese Medicine, Chengdu university of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jinfan Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Huan Xiao
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Zhiyong Xiao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jing Zhou
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Chengzhi Feng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Li Wang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Zhimin Ao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xi Chen
- Hospital of Chengdu university of Traditional Chinese Medicine, Chengdu university of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Chang Su
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xuanyu Wu
- Hospital of Chengdu university of Traditional Chinese Medicine, Chengdu university of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Maolan Zhao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Sihan Hu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Hanwen Lin
- Hospital of Chengdu university of Traditional Chinese Medicine, Chengdu university of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jiali Huang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Guo Xu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Qinxiu Zhang
- Hospital of Chengdu university of Traditional Chinese Medicine, Chengdu university of Traditional Chinese Medicine, Chengdu, 610075, China.
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Luyun Jiang
- Hospital of Chengdu university of Traditional Chinese Medicine, Chengdu university of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
318
|
Gorczynski RM, Lindley RA, Steele EJ, Wickramasinghe NC. Nature of Acquired Immune Responses, Epitope Specificity and Resultant Protection from SARS-CoV-2. J Pers Med 2021; 11:1253. [PMID: 34945725 PMCID: PMC8708741 DOI: 10.3390/jpm11121253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/12/2021] [Accepted: 11/20/2021] [Indexed: 01/08/2023] Open
Abstract
The primary global response to the SARS-CoV-2 pandemic has been to bring to the clinic as rapidly as possible a number of vaccines that are predicted to enhance immunity to this viral infection. While the rapidity with which these vaccines have been developed and tested (at least for short-term efficacy and safety) is commendable, it should be acknowledged that this has occurred despite the lack of research into, and understanding of, the immune elements important for natural host protection against the virus, making this endeavor a somewhat unique one in medical history. In contrast, as pointed out in the review below, there were already important past observations that suggested that respiratory infections at mucosal surfaces were susceptible to immune clearance by mechanisms not typical of infections caused by systemic (blood-borne) pathogens. Accordingly, it was likely to be important to understand the role for both innate and acquired immunity in response to viral infection, as well as the optimum acquired immune resistance mechanisms for viral clearance (B cell or antibody-mediated, versus T cell mediated). This information was needed both to guide vaccine development and to monitor its success. We have known that many pathogens enter into a quasi-symbiotic relationship with the host, with each undergoing sequential change in response to alterations the other makes to its presence. The subsequent evolution of viral variants which has caused such widespread concern over the last 3-6 months as host immunity develops was an entirely predictable response. What is still not known is whether there will be other unexpected side-effects of the deployment of novel vaccines in humans which have yet to be characterized, and, if so, how and if these can be avoided. We conclude by remarking that to ignore a substantial body of well-attested immunological research in favour of expediency is a poor way to proceed.
Collapse
Affiliation(s)
- Reginald M. Gorczynski
- Institute of Medical Science, Department of Immunology and Surgery, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Robyn A. Lindley
- Department of Clinical Pathology, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Melbourne, VIC 3000, Australia;
- GMDx Group Ltd., Melbourne, VIC 3000, Australia
| | - Edward J. Steele
- C.Y.O’Connor ERADE Village Foundation, Piara Waters, Perth, WA 6207, Australia;
- Melville Analytics Pty Ltd., Melbourne, VIC 3000, Australia
| | - Nalin Chandra Wickramasinghe
- Buckingham Centre for Astrobiology, University of Buckingham, Buckingham MK18 1EG, UK;
- Centre for Astrobiology, University of Ruhuna, Matara 81000, Sri Lanka
- National Institute of Fundamental Studies, Kandy 20000, Sri Lanka
| |
Collapse
|
319
|
Takeda Y, Jamsransuren D, Nagao T, Fukui Y, Matsuda S, Ogawa H. Application of Copper Iodide Nanoparticle-Doped Film and Fabric To Inactivate SARS-CoV-2 via the Virucidal Activity of Cuprous Ions (Cu +). Appl Environ Microbiol 2021; 87:e0182421. [PMID: 34613751 PMCID: PMC8612262 DOI: 10.1128/aem.01824-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/14/2022] Open
Abstract
As a result of the novel coronavirus disease 2019 pandemic, strengthening control measures against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become an urgent global issue. In addition to antiviral therapy and vaccination strategies, applying available virucidal substances for SARS-CoV-2 inactivation is also a target of research to prevent the spread of infection. Here, we evaluated the SARS-CoV-2 inactivation activity of a copper iodide (CuI) nanoparticle dispersion, which provides Cu+ ions having high virucidal activity, and its mode of actions. In addition, the utility of CuI-doped film and fabric for SARS-CoV-2 inactivation was evaluated. The CuI dispersion exhibited time-dependent rapid virucidal activity. Analyses of the modes of action of CuI performed by Western blotting and real-time reverse transcription-PCR targeting viral proteins and the genome revealed that CuI treatment induced the destruction of these viral components. In this setting, the indirect action of CuI-derived reactive oxygen species contributed to the destruction of viral protein. Moreover, the CuI-doped film and fabric demonstrated rapid inactivation of the SARS-CoV-2 solution in which the viral titer was high. These findings indicated the utility of the CuI-doped film and fabric as anti-SARS-CoV-2 materials for the protection of high-touch environmental surfaces and surgical masks/protective clothes. Throughout this study, we demonstrated the effectiveness of CuI nanoparticles for inactivating SARS-CoV-2 and revealed a part of its virucidal mechanism of action. IMPORTANCE The COVID-19 pandemic has caused an unprecedented number of infections and deaths. As the spread of the disease is rapid and the risk of infection is severe, hand and environmental hygiene may contribute to suppressing contact transmission of SARS-CoV-2. Here, we evaluated the SARS-CoV-2 inactivation activity of CuI nanoparticles, which provide the Cu+ ion as an antiviral agent, and we provided advanced findings of the virucidal mechanisms of action of Cu+. Our results showed that the CuI dispersion, as well as CuI-doped film and fabric, rapidly inactivated SARS-CoV-2 with a high viral titer. We also demonstrated the CuI's virucidal mechanisms of action, specifically the destruction of viral proteins and the genome by CuI treatment. Protein destruction largely depended on CuI-derived reactive oxygen species. This study provides novel information about the utility and mechanisms of action of promising virucidal material against SARS-CoV-2.
Collapse
Affiliation(s)
- Yohei Takeda
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Dulamjav Jamsransuren
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Tomokazu Nagao
- Emergent Research Center, R&D Headquarter, NBC Meshtec Inc., Hino, Tokyo, Japan
| | - Yoko Fukui
- Emergent Research Center, R&D Headquarter, NBC Meshtec Inc., Hino, Tokyo, Japan
| | - Sachiko Matsuda
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
320
|
Patel M, Shahjin F, Cohen JD, Hasan M, Machhi J, Chugh H, Singh S, Das S, Kulkarni TA, Herskovitz J, Meigs DD, Chandra R, Hettie KS, Mosley RL, Kevadiya BD, Gendelman HE. The Immunopathobiology of SARS-CoV-2 Infection. FEMS Microbiol Rev 2021; 45:fuab035. [PMID: 34160586 PMCID: PMC8632753 DOI: 10.1093/femsre/fuab035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to coronavirus disease 2019 (COVID-19). Virus-specific immunity controls infection, transmission and disease severity. With respect to disease severity, a spectrum of clinical outcomes occur associated with age, genetics, comorbidities and immune responses in an infected person. Dysfunctions in innate and adaptive immunity commonly follow viral infection. These are heralded by altered innate mononuclear phagocyte differentiation, activation, intracellular killing and adaptive memory, effector, and regulatory T cell responses. All of such affect viral clearance and the progression of end-organ disease. Failures to produce effective controlled antiviral immunity leads to life-threatening end-organ disease that is typified by the acute respiratory distress syndrome. The most effective means to contain SARS-CoV-2 infection is by vaccination. While an arsenal of immunomodulators were developed for control of viral infection and subsequent COVID-19 disease, further research is required to enable therapeutic implementation.
Collapse
Affiliation(s)
- Milankumar Patel
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Farah Shahjin
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Jacob D Cohen
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Mahmudul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, NE 68198, USA
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Heerak Chugh
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Snigdha Singh
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Srijanee Das
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Tanmay A Kulkarni
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, NE 68198, USA
| | - Jonathan Herskovitz
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Douglas D Meigs
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India
| | - Kenneth S Hettie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Department of Otolaryngology –Head & Neck Surgery, Stanford University, Palo Alto, CA 94304, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, NE 68198, USA
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| |
Collapse
|
321
|
Single-Amplicon Multiplex Real-Time Reverse Transcription-PCR with Tiled Probes To Detect SARS-CoV-2 spike Mutations Associated with Variants of Concern. J Clin Microbiol 2021; 59:e0144621. [PMID: 34432488 PMCID: PMC8601233 DOI: 10.1128/jcm.01446-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
To provide an accessible and inexpensive method to surveil for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutations, we developed a multiplex real-time reverse transcription-PCR (rRT-PCR) assay, the Spike single-nucleotide polymorphism (SNP) assay, to detect specific mutations in the spike receptor binding domain. A single primer pair was designed to amplify a 348-bp region of spike, and probes were initially designed to detect K417, E484K, and N501Y. The assay was evaluated using characterized variant sample pools and residual nasopharyngeal samples. Variant calls were confirmed by SARS-CoV-2 genome sequencing in a subset of samples. Subsequently, a fourth probe was designed to detect L452R. The lower limit of 95% detection was 2.46 to 2.48 log10 genome equivalents (GE)/ml for the three initial targets (∼1 to 2 GE/reaction). Among 253 residual nasopharyngeal swabs with detectable SARS-CoV-2 RNA, the Spike SNP assay was positive in 238 (94.1%) samples. All 220 samples with threshold cycle (CT) values of <30 for the SARS-CoV-2 N2 target were detected, whereas 18/33 samples with N2 CT values of ≥30 were detected. Spike SNP results were confirmed by sequencing in 50/50 samples (100%). Addition of the 452R probe did not affect performance for the original targets. The Spike SNP assay accurately identifies SARS-CoV-2 mutations in the receptor binding domain, and it can be quickly modified to detect new mutations that emerge.
Collapse
|
322
|
Yang J, Zhang P, Cheng WX, Lu Y, Gang W, Ren G. Exposing structural variations in SARS-CoV-2 evolution. Sci Rep 2021; 11:22042. [PMID: 34764391 PMCID: PMC8586246 DOI: 10.1038/s41598-021-01650-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022] Open
Abstract
The mutation of SARS-CoV-2 influences viral function as residue replacements affect both physiochemical properties and folding conformations. Although a large amount of data on SARS-CoV-2 is available, the investigation of how viral functions change in response to mutations is hampered by a lack of effective structural analysis. Here, we exploit the advances of protein structure fingerprint technology to study the folding conformational changes induced by mutations. With integration of both protein sequences and folding conformations, the structures are aligned for SARS-CoV to SARS-CoV-2, including Alpha variant (lineage B.1.1.7) and Delta variant (lineage B.1.617.2). The results showed that the virus evolution with change in mutational positions and physicochemical properties increased the affinity between spike protein and ACE2, which plays a critical role in coronavirus entry into human cells. Additionally, these structural variations impact vaccine effectiveness and drug function over the course of SARS-CoV-2 evolution. The analysis of structural variations revealed how the coronavirus has gradually evolved in both structure and function and how the SARS-CoV-2 variants have contributed to more severe acute disease worldwide.
Collapse
Affiliation(s)
- Jiaan Yang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
- Micro Biotech, Ltd., Shanghai, 200123, China.
| | - Peng Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Wen Xiang Cheng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Youyong Lu
- Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Wu Gang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
323
|
Buratto D, Saxena A, Ji Q, Yang G, Pantano S, Zonta F. Rapid Assessment of Binding Affinity of SARS-COV-2 Spike Protein to the Human Angiotensin-Converting Enzyme 2 Receptor and to Neutralizing Biomolecules Based on Computer Simulations. Front Immunol 2021; 12:730099. [PMID: 34858396 PMCID: PMC8632240 DOI: 10.3389/fimmu.2021.730099] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
SARS-CoV-2 infects humans and causes Coronavirus disease 2019 (COVID-19). The S1 domain of the spike glycoprotein of SARS-CoV-2 binds to human angiotensin-converting enzyme 2 (hACE2) via its receptor-binding domain, while the S2 domain facilitates fusion between the virus and the host cell membrane for entry. The spike glycoprotein of circulating SARS-CoV-2 genomes is a mutation hotspot. Some mutations may affect the binding affinity for hACE2, while others may modulate S-glycoprotein expression, or they could result in a virus that can escape from antibodies generated by infection with the original variant or by vaccination. Since a large number of variants are emerging, it is of vital importance to be able to rapidly assess their characteristics: while changes of binding affinity alone do not always cause direct advantages for the virus, they still can provide important insights on where the evolutionary pressure is directed. Here, we propose a simple and cost-effective computational protocol based on Molecular Dynamics simulations to rapidly screen the ability of mutated spike protein to bind to the hACE2 receptor and selected neutralizing biomolecules. Our results show that it is possible to achieve rapid and reliable predictions of binding affinities. A similar approach can be used to perform preliminary screenings of the potential effects of S-RBD mutations, helping to prioritize the more time-consuming and expensive experimental work.
Collapse
Affiliation(s)
- Damiano Buratto
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Abhishek Saxena
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Qun Ji
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Sergio Pantano
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
324
|
McCallum M, Walls AC, Sprouse KR, Bowen JE, Rosen LE, Dang HV, De Marco A, Franko N, Tilles SW, Logue J, Miranda MC, Ahlrichs M, Carter L, Snell G, Pizzuto MS, Chu HY, Van Voorhis WC, Corti D, Veesler D. Molecular basis of immune evasion by the Delta and Kappa SARS-CoV-2 variants. SCIENCE (NEW YORK, N.Y.) 2021; 374:1621-1626. [PMID: 34751595 DOI: 10.1126/science.abl8506] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Ha V Dang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Anna De Marco
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Nicholas Franko
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Sasha W Tilles
- Center for Emerging and Re-emerging Infectious Diseases, Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jennifer Logue
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Marcos C Miranda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Margaret Ahlrichs
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | | | | | - Helen Y Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Wesley C Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases, Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
325
|
Dong Y, Dai T, Wang B, Zhang L, Zeng LH, Huang J, Yan H, Zhang L, Zhou F. The way of SARS-CoV-2 vaccine development: success and challenges. Signal Transduct Target Ther 2021; 6:387. [PMID: 34753918 PMCID: PMC8575680 DOI: 10.1038/s41392-021-00796-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/10/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). To halt the pandemic, multiple SARS-CoV-2 vaccines have been developed and several have been allowed for emergency use and rollout worldwide. With novel SARS-CoV-2 variants emerging and circulating widely, whether the original vaccines that were designed based on the wild-type SARS-CoV-2 were effective against these variants has been a contentious discussion. Moreover, some studies revealed the long-term changes of immune responses post SARS-CoV-2 infection or vaccination and the factors that might impact the vaccine-induced immunity. Thus, in this review, we have summarized the influence of mutational hotspots on the vaccine efficacy and characteristics of variants of interest and concern. We have also discussed the reasons that might result in discrepancies in the efficacy of different vaccines estimated in different trials. Furthermore, we provided an overview of the duration of immune responses after natural infection or vaccination and shed light on the factors that may affect the immunity induced by the vaccines, such as special disease conditions, sex, and pre-existing immunity, with the aim of aiding in combating COVID-19 and distributing SARS-CoV-2 vaccines under the prevalence of diverse SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yetian Dong
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, Zhejiang, China
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, China
| | - Tong Dai
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Bin Wang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lei Zhang
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, China
| | - Ling-Hui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, Zhejiang, China
| | - Jun Huang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Haiyan Yan
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, Zhejiang, China
| | - Long Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
326
|
Deb P, Molla MMA, Saif-Ur-Rahman KM, Das MC, Das D. A review of epidemiology, clinical features and disease course, transmission dynamics, and neutralization efficacy of SARS-CoV-2 variants. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2021. [PMCID: PMC8571979 DOI: 10.1186/s43168-021-00090-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background After the first detection in November 2019, SARS-CoV-2 has spread rapidly over the continents and started the pandemic of the millennium. In addition to several novels and repurposed monoclonal antibodies (mAbs) as a therapeutic option against COVID-19, scientists from across the world have developed several candidate vaccines, developed mainly targeting the Wuhan strain, with very promising results to combat this pandemic. Unfortunately like any RNA viruses, SARS CoV-2 has also gone through the accumulation of hundreds and thousands of mutations in their genome lead to the development of several variants of concerns (VOC) and variants of interests (VOI), resulting in increased transmissibility and virulence of the virus, along with their capacity to escape cross-protection. Seemingly, the main hindrance of containing this pandemic right now is the effectiveness of currently available vaccines and mAbs against newly emerging variants. Therefore, it is important to monitor variants epidemiology, transmission dynamics, clinical characteristics, as well as their immune evasion capacity to implement appropriate vaccine strategy and other containment measures. Body In this review, we tried to focus on variants characteristics and to what extent they can escape immunity, provided by both available vaccinated sera and convalescent sera. A stringent literature review was performed using various databases, mentioned in the methodology portion. The current geographical distribution of these variants of SARS CoV-2 has been presented using a heat map. Findings from published articles comparing these variants, in terms of genome epidemiology, transmissibility, viral load dynamics, and association with different waves have been described briefly. Due strength was given while describing variants neutralization potency against current vaccines, mAbs, and also against convalescent sera. Data from both clinical trials and in vitro/ex-vivo studies have been discussed here. Comparative findings from several articles were brought into one concise paper. After careful reviewing of all the available data, it was clear that, without hesitation, we should strengthen our vaccination strategy, because the severity of COVID 19 is reasonably lower, irrespective of variants and vaccine used. Conclusion We hope that many falsified myths and beliefs regarding vaccine immunity and emerging variants will be clarified in light of this available evidence, which we summarized in our paper.
Collapse
|
327
|
Matsunaga T, Higashidate Y, Inazawa N, Ando S, Takahashi M. mRNA-Based Vaccine BNT162b2 Might Reduce Severe Acute Respiratory Syndrome Coronavirus 2 B.1.1.7 Variant Transmission in Japanese Population. Cureus 2021; 13:e19140. [PMID: 34737915 PMCID: PMC8559422 DOI: 10.7759/cureus.19140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2021] [Indexed: 11/29/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) cluster with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.7 variant occurred between April 10, 2021, and May 26, 2021, at Japan Community Health Care Organization (JCHO) Sapporo Hokushin Hospital in Sapporo, Japan. We found that the four infected staff members accounted for 5.3% of all 75 infected persons, approximately one of 10 the percentage of other Japanese hospitals that experienced disease clusters caused by wild-type SARS-CoV-2 until January 2021. Furthermore, none of the infected staff developed COVID-19. Nationwide vaccination began in February 2021, when wild-type SARS-CoV-2 infection remained prevalent in Japan. During March-May, Sapporo had already experienced an explosive increase in SARS-CoV-2 B.1.1.7 cases. JCHO Sapporo Hokushin Hospital started optional vaccination for staff members using BNT162b2. The first inoculations occurred between February 22, 2021, and April 28, 2021, and the second between March 15, 2021, and May 7, 2021. This is the first report that BNT162b2 might reduce B.1.1.7 variant transmission in Japanese population.
Collapse
Affiliation(s)
- Takuya Matsunaga
- Department of Medical Oncology, Japan Community Health Care Organization (JCHO) Sapporo Hokushin Hospital, Sapporo, JPN
| | - Yoshihito Higashidate
- Department of Pediatrics, Japan Community Health Care Organization (JCHO) Sapporo Hokushin Hospital, Sapporo, JPN
| | - Natsuko Inazawa
- Department of Pediatrics, Japan Community Health Care Organization (JCHO) Sapporo Hokushin Hospital, Sapporo, JPN
| | - Satomi Ando
- Department of Dermatology, Japan Community Health Care Organization (JCHO) Sapporo Hokushin Hospital, Sapporo, JPN
| | - Masahiro Takahashi
- Department of Surgery, Japan Community Health Care Organization (JCHO) Sapporo Hokushin Hospital, Sapporo, JPN
| |
Collapse
|
328
|
Lou F, Li M, Pang Z, Jiang L, Guan L, Tian L, Hu J, Fan J, Fan H. Understanding the Secret of SARS-CoV-2 Variants of Concern/Interest and Immune Escape. Front Immunol 2021; 12:744242. [PMID: 34804024 PMCID: PMC8602852 DOI: 10.3389/fimmu.2021.744242] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/29/2021] [Indexed: 11/29/2022] Open
Abstract
The global pandemic of the coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), places a heavy burden on global public health. Four SARS-CoV-2 variants of concern including B.1.1.7, B.1.351, B.1.617.2, and P.1, and two variants of interest including C.37 and B.1.621 have been reported to have potential immune escape, and one or more mutations endow them with worrisome epidemiologic, immunologic, or pathogenic characteristics. This review introduces the latest research progress on SARS-CoV-2 variants of interest and concern, key mutation sites, and their effects on virus infectivity, mortality, and immune escape. Moreover, we compared the effects of various clinical SARS-CoV-2 vaccines and convalescent sera on epidemic variants, and evaluated the neutralizing capability of several antibodies on epidemic variants. In the end, SARS-CoV-2 evolution strategies in different transmission stages, the impact of different vaccination strategies on SARS-CoV-2 immune escape, antibody therapy strategies and COVID-19 epidemic control prospects are discussed. This review will provide a systematic and comprehensive understanding of the secret of SARS-CoV-2 variants of interest/concern and immune escape.
Collapse
Affiliation(s)
- Fuxing Lou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zehan Pang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lin Jiang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lin Guan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lili Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jiaming Hu
- Tandon School of Engineering, New York University, New York, NY, United States
| | - Junfen Fan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
329
|
Rzymski P, Poniedziałek B, Fal A. Willingness to Receive the Booster COVID-19 Vaccine Dose in Poland. Vaccines (Basel) 2021; 9:1286. [PMID: 34835217 PMCID: PMC8624071 DOI: 10.3390/vaccines9111286] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 12/29/2022] Open
Abstract
COVID-19 vaccinations are essential to mitigate the pandemic and prevent severe SARS-CoV-2 infections. However, the serum antibody levels in vaccinated individuals gradually decrease over time, while SARS-CoV-2 is undergoing an evolution toward more transmissible variants, such as B.1.617.2, ultimately increasing the risk of breakthrough infections and further virus spread. This cross-sectional online study of adult Poles (n = 2427) was conducted in September 2021 (before a general recommendation to administer a booster COVID-19 vaccine dose in Poland was issued) to assess the attitude of individuals who completed the current vaccination regime toward a potential booster dose of the COVID-19 vaccine and identify potential factors that may influence it. Overall, 71% of participants declared willingness to receive a booster COVID-19 dose, with a low median level of fear of receiving it of 1.0 (measured by the 10-point Likert-type scale), which was increased particularly in those having a worse experience (in terms of severity of side effects and associated fear) with past COVID-19 vaccination. The lowest frequency of willingness to receive a booster dose (26.7%) was seen in the group previously vaccinated with Ad26.COV2.S. The majority of individuals vaccinated previously with mRNA vaccines wished to receive the same vaccine, while in the case of AZD1222, such accordance was observed only in 9.1%. The main reasons against accepting a booster COVID-19 dose included the side effects experienced after previous doses, the opinion that further vaccination is unnecessary, and safety uncertainties. Women, older individuals (≥50 years), subjects with obesity, chronic diseases, and pre-vaccination and post-vaccination SARS-CoV-2 infections, and those with a history of vaccination against influenza were significantly more frequently willing to receive a booster COVID-19 dose. Moreover, the majority of immunosuppressed individuals (88%) were willing to receive an additional dose. The results emphasize some hesitancy toward potential further COVID-19 vaccination in the studied group of Poles and indicate the main groups to be targeted with effective science communication regarding the booster doses.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland;
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), 60-806 Poznań, Poland
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland;
| | - Andrzej Fal
- Collegium Medicum, Warsaw Faculty of Medicine, Cardinal Stefan Wyszyński University, 01-938 Warsaw, Poland;
| |
Collapse
|
330
|
Tatsi EB, Filippatos F, Michos A. SARS-CoV-2 variants and effectiveness of vaccines: a review of current evidence. Epidemiol Infect 2021; 149:e237. [PMID: 34732275 PMCID: PMC8632374 DOI: 10.1017/s0950268821002430] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 12/23/2022] Open
Abstract
The SARS-CoV-2 virus is rapidly evolving via mutagenesis, lengthening the pandemic, and threatening the public health. Until August 2021, 12 variants of SARS-CoV-2 named as variants of concern (VOC; Alpha to Delta) or variants of interest (VOI; Epsilon to Mu), with significant impact on transmissibility, morbidity, possible reinfection and mortality, have been identified. The VOC Delta (B.1.617.2) of Indian origin is now the dominant and the most contagious variant worldwide as it provokes a strong binding to the human ACE2 receptor, increases transmissibility and manifests considerable immune escape strategies after natural infection or vaccination. Although the development and administration of SARS-CoV-2 vaccines, based on different technologies (mRNA, adenovirus carrier, recombinant protein, etc.), are very promising for the control of the pandemic, their effectiveness and neutralizing activity against VOCs varies significantly. In this review, we describe the most significant circulating variants of SARS-CoV-2, and the known effectiveness of currently available vaccines against them.
Collapse
Affiliation(s)
- Elizabeth-Barbara Tatsi
- First Department of Pediatrics, Infectious Diseases and Chemotherapy Research Laboratory, Medical School, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527Athens, Greece
| | - Filippos Filippatos
- First Department of Pediatrics, Infectious Diseases and Chemotherapy Research Laboratory, Medical School, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527Athens, Greece
| | - Athanasios Michos
- First Department of Pediatrics, Infectious Diseases and Chemotherapy Research Laboratory, Medical School, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527Athens, Greece
| |
Collapse
|
331
|
Weigang S, Fuchs J, Zimmer G, Schnepf D, Kern L, Beer J, Luxenburger H, Ankerhold J, Falcone V, Kemming J, Hofmann M, Thimme R, Neumann-Haefelin C, Ulferts S, Grosse R, Hornuss D, Tanriver Y, Rieg S, Wagner D, Huzly D, Schwemmle M, Panning M, Kochs G. Within-host evolution of SARS-CoV-2 in an immunosuppressed COVID-19 patient as a source of immune escape variants. Nat Commun 2021; 12:6405. [PMID: 34737266 PMCID: PMC8568958 DOI: 10.1038/s41467-021-26602-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
The origin of SARS-CoV-2 variants of concern remains unclear. Here, we test whether intra-host virus evolution during persistent infections could be a contributing factor by characterizing the long-term SARS-CoV-2 infection dynamics in an immunosuppressed kidney transplant recipient. Applying RT-qPCR and next-generation sequencing (NGS) of sequential respiratory specimens, we identify several mutations in the viral genome late in infection. We demonstrate that a late viral isolate exhibiting genome mutations similar to those found in variants of concern first identified in UK, South Africa, and Brazil, can escape neutralization by COVID-19 antisera. Moreover, infection of susceptible mice with this patient’s escape variant elicits protective immunity against re-infection with either the parental virus and the escape variant, as well as high neutralization titers against the alpha and beta SARS-CoV-2 variants, B.1.1.7 and B.1.351, demonstrating a considerable immune control against such variants of concern. Upon lowering immunosuppressive treatment, the patient generated spike-specific neutralizing antibodies and resolved the infection. Our results suggest that immunocompromised patients could be a source for the emergence of potentially harmful SARS-CoV-2 variants. Here, in a longitudinal case study, Weigang et al. demonstrate that evolution of SARS-CoV-2 within a persistently infected immunosuppressed patient can result in the emergence of novel variants with reduced sensitivity to antibody neutralization.
Collapse
Affiliation(s)
- Sebastian Weigang
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jonas Fuchs
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gert Zimmer
- Institute of Virology and Immunology, Bern & Mittelhäusern, Switzerland, and Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Daniel Schnepf
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa Kern
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julius Beer
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hendrik Luxenburger
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jakob Ankerhold
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Valeria Falcone
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Janine Kemming
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Svenja Ulferts
- Institute of Experimental and Clinical Pharmacology and Toxicology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and Toxicology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Hornuss
- Division of Infectious Diseases, Dept. Med. II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yakup Tanriver
- Division of Nephrology, Dept. Med. IV, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Siegbert Rieg
- Division of Infectious Diseases, Dept. Med. II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dirk Wagner
- Division of Infectious Diseases, Dept. Med. II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniela Huzly
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Schwemmle
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marcus Panning
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Georg Kochs
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
332
|
Ahmad L. Implication of SARS-CoV-2 Immune Escape Spike Variants on Secondary and Vaccine Breakthrough Infections. Front Immunol 2021; 12:742167. [PMID: 34804022 PMCID: PMC8596465 DOI: 10.3389/fimmu.2021.742167] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/14/2021] [Indexed: 11/20/2022] Open
Abstract
COVID-19 pandemic remains an on-going global health and economic threat that has amassed millions of deaths. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of this disease and is constantly under evolutionary pressures that drive the modification of its genome which may represent a threat to the efficacy of current COVID-19 vaccines available. This article highlights the pressures that facilitate the rise of new SARS-CoV-2 variants and the key mutations of the viral spike protein - L452R, E484K, N501Y and D614G- that promote immune escape mechanism and warrant a cautionary point for clinical and public health responses in terms of re-infection, vaccine breakthrough infection and therapeutic values.
Collapse
Affiliation(s)
- Liyana Ahmad
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB) Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
| |
Collapse
|
333
|
Mlcochova P, Kemp SA, Dhar MS, Papa G, Meng B, Ferreira IATM, Datir R, Collier DA, Albecka A, Singh S, Pandey R, Brown J, Zhou J, Goonawardane N, Mishra S, Whittaker C, Mellan T, Marwal R, Datta M, Sengupta S, Ponnusamy K, Radhakrishnan VS, Abdullahi A, Charles O, Chattopadhyay P, Devi P, Caputo D, Peacock T, Wattal C, Goel N, Satwik A, Vaishya R, Agarwal M, Mavousian A, Lee JH, Bassi J, Silacci-Fegni C, Saliba C, Pinto D, Irie T, Yoshida I, Hamilton WL, Sato K, Bhatt S, Flaxman S, James LC, Corti D, Piccoli L, Barclay WS, Rakshit P, Agrawal A, Gupta RK. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 2021; 599:114-119. [PMID: 34488225 DOI: 10.1101/2021.05.08.443253] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/23/2021] [Indexed: 05/23/2023]
Abstract
The B.1.617.2 (Delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha)1. In vitro, B.1.617.2 is sixfold less sensitive to serum neutralizing antibodies from recovered individuals, and eightfold less sensitive to vaccine-elicited antibodies, compared with wild-type Wuhan-1 bearing D614G. Serum neutralizing titres against B.1.617.2 were lower in ChAdOx1 vaccinees than in BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies to the receptor-binding domain and the amino-terminal domain. B.1.617.2 demonstrated higher replication efficiency than B.1.1.7 in both airway organoid and human airway epithelial systems, associated with B.1.617.2 spike being in a predominantly cleaved state compared with B.1.1.7 spike. The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralizing antibody, compared with that of wild-type spike. We also observed that B.1.617.2 had higher replication and spike-mediated entry than B.1.617.1, potentially explaining the B.1.617.2 dominance. In an analysis of more than 130 SARS-CoV-2-infected health care workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding. Compromised vaccine efficacy against the highly fit and immune-evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era.
Collapse
Affiliation(s)
- Petra Mlcochova
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Steven A Kemp
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- University College London, London, UK
| | | | - Guido Papa
- MRC - Laboratory of Molecular Biology, Cambridge, UK
| | - Bo Meng
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Isabella A T M Ferreira
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Rawlings Datir
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Dami A Collier
- Department of Medicine, University of Cambridge, Cambridge, UK
- University College London, London, UK
| | - Anna Albecka
- MRC - Laboratory of Molecular Biology, Cambridge, UK
| | - Sujeet Singh
- National Centre for Disease Control, Delhi, India
| | - Rajesh Pandey
- CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Jonathan Brown
- Department of Infectious Diseases, Imperial College London, London, UK
| | - Jie Zhou
- Department of Infectious Diseases, Imperial College London, London, UK
| | | | - Swapnil Mishra
- Medical Research Council (MRC) Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Charles Whittaker
- Medical Research Council (MRC) Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Thomas Mellan
- Medical Research Council (MRC) Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Robin Marwal
- National Centre for Disease Control, Delhi, India
| | - Meena Datta
- National Centre for Disease Control, Delhi, India
| | | | | | | | - Adam Abdullahi
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | | | - Priti Devi
- CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | | | - Tom Peacock
- Medical Research Council (MRC) Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | | | | | | | | | | | | | - Joo Hyeon Lee
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jessica Bassi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | - Christian Saliba
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Dora Pinto
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Takashi Irie
- Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Isao Yoshida
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | | | - Kei Sato
- Division of Systems Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| | - Samir Bhatt
- National Centre for Disease Control, Delhi, India
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Seth Flaxman
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Leo C James
- MRC - Laboratory of Molecular Biology, Cambridge, UK
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Luca Piccoli
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Wendy S Barclay
- Medical Research Council (MRC) Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | | | - Anurag Agrawal
- CSIR Institute of Genomics and Integrative Biology, Delhi, India.
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Africa Health Research Institute, Durban, South Africa.
| |
Collapse
|
334
|
Mullick B, Magar R, Jhunjhunwala A, Barati Farimani A. Understanding mutation hotspots for the SARS-CoV-2 spike protein using Shannon Entropy and K-means clustering. Comput Biol Med 2021; 138:104915. [PMID: 34655896 PMCID: PMC8492016 DOI: 10.1016/j.compbiomed.2021.104915] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022]
Abstract
The SARS-CoV-2 virus like many other viruses has transformed in a continual manner to give rise to new variants by means of mutations commonly through substitutions and indels. These mutations in some cases can give the virus a survival advantage making the mutants dangerous. In general, laboratory investigation must be carried to determine whether the new variants have any characteristics that can make them more lethal and contagious. Therefore, complex and time-consuming analyses are required in order to delve deeper into the exact impact of a particular mutation. The time required for these analyses makes it difficult to understand the variants of concern and thereby limiting the preventive action that can be taken against them spreading rapidly. In this analysis, we have deployed a statistical technique Shannon Entropy, to identify positions in the spike protein of SARS Cov-2 viral sequence which are most susceptible to mutations. Subsequently, we also use machine learning based clustering techniques to cluster known dangerous mutations based on similarities in properties. This work utilizes embeddings generated using language modeling, the ProtBERT model, to identify mutations of a similar nature and to pick out regions of interest based on proneness to change. Our entropy-based analysis successfully predicted the fifteen hotspot regions, among which we were able to validate ten known variants of interest, in six hotspot regions. As the situation of SARS-COV-2 virus rapidly evolves we believe that the remaining nine mutational hotspots may contain variants that can emerge in the future. We believe that this may be promising in helping the research community to devise therapeutics based on probable new mutation zones in the viral sequence and resemblance in properties of various mutations.
Collapse
Affiliation(s)
- Baishali Mullick
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Rishikesh Magar
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Aastha Jhunjhunwala
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Amir Barati Farimani
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
335
|
Bager P, Wohlfahrt J, Fonager J, Rasmussen M, Albertsen M, Michaelsen TY, Møller CH, Ethelberg S, Legarth R, Button MSF, Gubbels S, Voldstedlund M, Mølbak K, Skov RL, Fomsgaard A, Krause TG. Risk of hospitalisation associated with infection with SARS-CoV-2 lineage B.1.1.7 in Denmark: an observational cohort study. THE LANCET. INFECTIOUS DISEASES 2021; 21:1507-1517. [PMID: 34171231 PMCID: PMC8219488 DOI: 10.1016/s1473-3099(21)00290-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The more infectious SARS-CoV-2 lineage B.1.1.7 rapidly spread in Europe after December, 2020, and a concern that B.1.1.7 could cause more severe disease has been raised. Taking advantage of Denmark's high RT-PCR testing and whole genome sequencing capacities, we used national health register data to assess the risk of COVID-19 hospitalisation in individuals infected with B.1.1.7 compared with those with other SARS-CoV-2 lineages. METHODS We did an observational cohort study of all SARS-CoV-2-positive cases confirmed by RT-PCR in Denmark, sampled between Jan 1 and March 24, 2021, with 14 days of follow-up for COVID-19 hospitalisation. Cases were identified in the national COVID-19 surveillance system database, which includes data from the Danish Microbiology Database (RT-PCR test results), the Danish COVID-19 Genome Consortium, the National Patient Registry, the Civil Registration System, as well as other nationwide registers. Among all cases, COVID-19 hospitalisation was defined as first admission lasting longer than 12 h within 14 days of a sample with a positive RT-PCR result. The study population and main analysis were restricted to the proportion of cases with viral genome data. We calculated the risk ratio (RR) of admission according to infection with B.1.1.7 versus other co-existing lineages with a Poisson regression model with robust SEs, adjusted a priori for sex, age, calendar time, region, and comorbidities. The contribution of each covariate to confounding of the crude RR was evaluated afterwards by a stepwise forward inclusion. FINDINGS Between Jan 1 and March 24, 2021, 50 958 individuals with a positive SARS-CoV-2 test and at least 14 days of follow-up for hospitalisation were identified; 30 572 (60·0%) had genome data, of whom 10 544 (34·5%) were infected with B.1.1.7. 1944 (6·4%) individuals had a COVID-19 hospitalisation and of these, 571 (29·4%) had a B.1.1.7 infection and 1373 (70·6%) had an infection with other SARS-CoV-2 lineages. Although the overall number of hospitalisations decreased during the study period, the proportion of individuals infected with B.1.1.7 increased from 3·5% to 92·1% per week. B.1.1.7 was associated with a crude RR of hospital admission of 0·79 (95% CI 0·72-0·87; p<0·0001) and an adjusted RR of 1·42 (95% CI 1·25-1·60; p<0·0001). The adjusted RR was increased in all strata of age and calendar period-the two covariates with the largest contribution to confounding of the crude RR. INTERPRETATION Infection with SARS-CoV-2 lineage B.1.1.7 was associated with an increased risk of hospitalisation compared with that of other lineages in an analysis adjusted for covariates. The overall effect on hospitalisations in Denmark was lessened due to a strict lockdown, but our findings could support hospital preparedness and modelling of the projected impact of the epidemic in countries with uncontrolled spread of B.1.1.7. FUNDING None.
Collapse
Affiliation(s)
- Peter Bager
- Division of Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark; Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.
| | - Jan Wohlfahrt
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Jannik Fonager
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Morten Rasmussen
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Mads Albertsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Camilla Holten Møller
- Division of Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Steen Ethelberg
- Infectious Disease Epidemiology & Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Rebecca Legarth
- Infectious Disease Epidemiology & Prevention, Statens Serum Institut, Copenhagen, Denmark
| | | | - Sophie Gubbels
- Division of Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Marianne Voldstedlund
- Division of Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Kåre Mølbak
- Division of Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Robert Leo Skov
- Division of Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Anders Fomsgaard
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Tyra Grove Krause
- Division of Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
336
|
Dupont L, Snell LB, Graham C, Seow J, Merrick B, Lechmere T, Maguire TJA, Hallett SR, Pickering S, Charalampous T, Alcolea-Medina A, Huettner I, Jimenez-Guardeño JM, Acors S, Almeida N, Cox D, Dickenson RE, Galao RP, Kouphou N, Lista MJ, Ortega-Prieto AM, Wilson H, Winstone H, Fairhead C, Su JZ, Nebbia G, Batra R, Neil S, Shankar-Hari M, Edgeworth JD, Malim MH, Doores KJ. Neutralizing antibody activity in convalescent sera from infection in humans with SARS-CoV-2 and variants of concern. Nat Microbiol 2021; 6:1433-1442. [PMID: 34654917 PMCID: PMC8556155 DOI: 10.1038/s41564-021-00974-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/03/2021] [Indexed: 12/17/2022]
Abstract
COVID-19 vaccine design and vaccination rollout need to take into account a detailed understanding of antibody durability and cross-neutralizing potential against SARS-CoV-2 and emerging variants of concern (VOCs). Analyses of convalescent sera provide unique insights into antibody longevity and cross-neutralizing activity induced by variant spike proteins, which are putative vaccine candidates. Using sera from 38 individuals infected in wave 1, we show that cross-neutralizing activity can be detected up to 305 days pos onset of symptoms, although sera were less potent against B.1.1.7 (Alpha) and B1.351 (Beta). Over time, despite a reduction in overall neutralization activity, differences in sera neutralization potency against SARS-CoV-2 and the Alpha and Beta variants decreased, which suggests that continued antibody maturation improves tolerance to spike mutations. We also compared the cross-neutralizing activity of wave 1 sera with sera from individuals infected with the Alpha, the Beta or the B.1.617.2 (Delta) variants up to 79 days post onset of symptoms. While these sera neutralize the infecting VOC and parental virus to similar levels, cross-neutralization of different SARS-CoV-2 VOC lineages is reduced. These findings will inform the optimization of vaccines to protect against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Liane Dupont
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Luke B Snell
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Jeffrey Seow
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Blair Merrick
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Thomas Lechmere
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Thomas J A Maguire
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Sadie R Hallett
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Suzanne Pickering
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Themoula Charalampous
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Adela Alcolea-Medina
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Isabella Huettner
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Jose M Jimenez-Guardeño
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Sam Acors
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Nathalia Almeida
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Daniel Cox
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Ruth E Dickenson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Rui Pedro Galao
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Neophytos Kouphou
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Marie Jose Lista
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Ana Maria Ortega-Prieto
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Harry Wilson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Helena Winstone
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Cassandra Fairhead
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jia Zhe Su
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Gaia Nebbia
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Rahul Batra
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Stuart Neil
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Manu Shankar-Hari
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Jonathan D Edgeworth
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
337
|
Mlcochova P, Kemp SA, Dhar MS, Papa G, Meng B, Ferreira IATM, Datir R, Collier DA, Albecka A, Singh S, Pandey R, Brown J, Zhou J, Goonawardane N, Mishra S, Whittaker C, Mellan T, Marwal R, Datta M, Sengupta S, Ponnusamy K, Radhakrishnan VS, Abdullahi A, Charles O, Chattopadhyay P, Devi P, Caputo D, Peacock T, Wattal C, Goel N, Satwik A, Vaishya R, Agarwal M, Mavousian A, Lee JH, Bassi J, Silacci-Fegni C, Saliba C, Pinto D, Irie T, Yoshida I, Hamilton WL, Sato K, Bhatt S, Flaxman S, James LC, Corti D, Piccoli L, Barclay WS, Rakshit P, Agrawal A, Gupta RK. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 2021; 599:114-119. [PMID: 34488225 PMCID: PMC8566220 DOI: 10.1038/s41586-021-03944-y] [Citation(s) in RCA: 849] [Impact Index Per Article: 283.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/23/2021] [Indexed: 12/26/2022]
Abstract
The B.1.617.2 (Delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha)1. In vitro, B.1.617.2 is sixfold less sensitive to serum neutralizing antibodies from recovered individuals, and eightfold less sensitive to vaccine-elicited antibodies, compared with wild-type Wuhan-1 bearing D614G. Serum neutralizing titres against B.1.617.2 were lower in ChAdOx1 vaccinees than in BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies to the receptor-binding domain and the amino-terminal domain. B.1.617.2 demonstrated higher replication efficiency than B.1.1.7 in both airway organoid and human airway epithelial systems, associated with B.1.617.2 spike being in a predominantly cleaved state compared with B.1.1.7 spike. The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralizing antibody, compared with that of wild-type spike. We also observed that B.1.617.2 had higher replication and spike-mediated entry than B.1.617.1, potentially explaining the B.1.617.2 dominance. In an analysis of more than 130 SARS-CoV-2-infected health care workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding. Compromised vaccine efficacy against the highly fit and immune-evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era.
Collapse
Affiliation(s)
- Petra Mlcochova
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Steven A Kemp
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- University College London, London, UK
| | | | - Guido Papa
- MRC - Laboratory of Molecular Biology, Cambridge, UK
| | - Bo Meng
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Isabella A T M Ferreira
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Rawlings Datir
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Dami A Collier
- Department of Medicine, University of Cambridge, Cambridge, UK
- University College London, London, UK
| | - Anna Albecka
- MRC - Laboratory of Molecular Biology, Cambridge, UK
| | - Sujeet Singh
- National Centre for Disease Control, Delhi, India
| | - Rajesh Pandey
- CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Jonathan Brown
- Department of Infectious Diseases, Imperial College London, London, UK
| | - Jie Zhou
- Department of Infectious Diseases, Imperial College London, London, UK
| | | | - Swapnil Mishra
- Medical Research Council (MRC) Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Charles Whittaker
- Medical Research Council (MRC) Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Thomas Mellan
- Medical Research Council (MRC) Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Robin Marwal
- National Centre for Disease Control, Delhi, India
| | - Meena Datta
- National Centre for Disease Control, Delhi, India
| | | | | | | | - Adam Abdullahi
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | | | - Priti Devi
- CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | | | - Tom Peacock
- Medical Research Council (MRC) Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | | | | | | | | | | | | | - Joo Hyeon Lee
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jessica Bassi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | - Christian Saliba
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Dora Pinto
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Takashi Irie
- Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Isao Yoshida
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | | | - Kei Sato
- Division of Systems Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| | - Samir Bhatt
- National Centre for Disease Control, Delhi, India
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Seth Flaxman
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Leo C James
- MRC - Laboratory of Molecular Biology, Cambridge, UK
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Luca Piccoli
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Wendy S Barclay
- Medical Research Council (MRC) Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | | | - Anurag Agrawal
- CSIR Institute of Genomics and Integrative Biology, Delhi, India.
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Africa Health Research Institute, Durban, South Africa.
| |
Collapse
|
338
|
Monel B, Planas D, Grzelak L, Smith N, Robillard N, Staropoli I, Goncalves P, Porrot F, Guivel-Benhassine F, Guinet ND, Rodary J, Puech J, Euzen V, Bélec L, Orvoen G, Nunes L, Moulin V, Fourgeaud J, Wack M, Imbeaud S, Campagne P, Duffy D, Santo JPD, Bruel T, Péré H, Veyer D, Schwartz O. Release of infectious virus and cytokines in nasopharyngeal swabs from individuals infected with non-alpha or alpha SARS-CoV-2 variants: an observational retrospective study. EBioMedicine 2021; 73:103637. [PMID: 34678613 PMCID: PMC8526063 DOI: 10.1016/j.ebiom.2021.103637] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The dynamics of SARS-CoV-2 alpha variant shedding and immune responses at the nasal mucosa remain poorly characterised. METHODS We measured infectious viral release, antibodies and cytokines in 426 PCR+ nasopharyngeal swabs from individuals harboring non-alpha or alpha variants. FINDINGS With both lineages, viral titers were variable, ranging from 0 to >106 infectious units. Rapid antigenic diagnostic tests were positive in 94% of samples with infectious virus. 68 % of individuals carried infectious virus within two days after onset of symptoms. This proportion decreased overtime. Viable virus was detected up to 14 days. Samples containing anti-spike IgG or IgA did not generally harbor infectious virus. Ct values were slightly but not significantly lower with alpha. This variant was characterized by a fast decrease of infectivity overtime and a marked release of 13 cytokines (including IFN-b, IP-10 and IL-10). INTERPRETATION The alpha variant displays modified viral decay and cytokine profiles at the nasopharyngeal mucosae during symptomatic infection. FUNDING This retrospective study has been funded by Institut Pasteur, ANRS, Vaccine Research Institute, Labex IBEID, ANR/FRM and IDISCOVR, Fondation pour la Recherche Médicale.
Collapse
Affiliation(s)
- Blandine Monel
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France; CNRS UMR 3569, Paris, France
| | - Delphine Planas
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France; CNRS UMR 3569, Paris, France; Vaccine Research Institute, Creteil, France
| | - Ludivine Grzelak
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France; CNRS UMR 3569, Paris, France; Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Nikaïa Smith
- Translational Immunology Lab, Department of Immunology, Inserm U1223, Institut Pasteur, Paris
| | - Nicolas Robillard
- Hôpital Européen Georges Pompidou, Laboratoire de Virologie, Service de Microbiologie, Paris, France
| | - Isabelle Staropoli
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France; CNRS UMR 3569, Paris, France
| | - Pedro Goncalves
- Innate Immunity Unit, Department of Immunology, Department of Immunology, Inserm U1223, Institut Pasteur, Paris; Inserm U1223, Paris, France
| | - Françoise Porrot
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France; CNRS UMR 3569, Paris, France
| | - Florence Guivel-Benhassine
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France; CNRS UMR 3569, Paris, France
| | | | - Julien Rodary
- Hôpital Européen Georges Pompidou, Laboratoire de Virologie, Service de Microbiologie, Paris, France
| | - Julien Puech
- Hôpital Européen Georges Pompidou, Laboratoire de Virologie, Service de Microbiologie, Paris, France
| | - Victor Euzen
- Hôpital Européen Georges Pompidou, Laboratoire de Virologie, Service de Microbiologie, Paris, France
| | - Laurent Bélec
- Hôpital Européen Georges Pompidou, Laboratoire de Virologie, Service de Microbiologie, Paris, France; Hôpital européen Georges Pompidou INSERM U970, PARCC, Faculté de Médecine, Université de Paris, Paris, France
| | - Galdric Orvoen
- Hôpital Vaugirard, Service de gériatrie, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Léa Nunes
- Hôpital Corentin Celton, Service de gériatrie, Assistance Publique-Hôpitaux de Paris, Issy-les-Moulineaux, France
| | - Véronique Moulin
- Hôpital Corentin Celton, Service de gériatrie, Assistance Publique-Hôpitaux de Paris, Issy-les-Moulineaux, France
| | - Jacques Fourgeaud
- Université de Paris, EHU 7328 PACT, Institut Imagine, Paris, France; Virology Department, AP-HP, Necker Enfants Malades Hospital, Paris, France
| | - Maxime Wack
- Hôpital Européen Georges Pompidou, Département d'Informatique Médicale, Biostatistiques et Santé Publique
| | - Sandrine Imbeaud
- INSERM, Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, Université de Paris and Sorbonne Université, Paris, France
| | | | - Darragh Duffy
- Translational Immunology Lab, Department of Immunology, Inserm U1223, Institut Pasteur, Paris
| | - James P Di Santo
- Innate Immunity Unit, Department of Immunology, Department of Immunology, Inserm U1223, Institut Pasteur, Paris; Inserm U1223, Paris, France
| | - Timothée Bruel
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France; CNRS UMR 3569, Paris, France; Vaccine Research Institute, Creteil, France
| | - Hélène Péré
- INSERM, Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, Université de Paris and Sorbonne Université, Paris, France
| | - David Veyer
- Hôpital Européen Georges Pompidou, Laboratoire de Virologie, Service de Microbiologie, Paris, France; INSERM, Functional Genomics of Solid Tumors (FunGeST), Centre de Recherche des Cordeliers, Université de Paris and Sorbonne Université, Paris, France
| | - Olivier Schwartz
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris, France; CNRS UMR 3569, Paris, France; Vaccine Research Institute, Creteil, France.
| |
Collapse
|
339
|
Abstract
Since the COVID-19 pandemic first began in December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has continuously evolved with many variants emerging across the world. These variants are categorized as the variant of interest (VOI), variant of concern (VOC), and variant under monitoring (VUM). As of September 15, 2021, there are four SARS-CoV-2 lineages designated as the VOC (alpha, beta, gamma, and delta variants). VOCs have increased transmissibility compared to the original virus, and have the potential for increasing disease severity. In addition, VOCs exhibit decreased susceptibility to vaccine-induced and infection-induced immune responses, and thus possess the ability to reinfect previously infected and recovered individuals. Given their ability to evade immune responses, VOC are less susceptible to monoclonal antibody treatments. VOCs can also impact the effectiveness of mRNA and adenovirus vector vaccines, although the currently authorized COVID-19 vaccines are still effective in preventing infection and severe disease. Current measures to reduce transmission as well as efforts to monitor and understand the impact of variants should be continued. Here, we review the molecular features, epidemiology, impact on transmissibility, disease severity, and vaccine effectiveness of VOCs.
Collapse
Affiliation(s)
- Jun Yong Choi
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| | - Davey M Smith
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
340
|
Kleanthous H, Silverman JM, Makar KW, Yoon IK, Jackson N, Vaughn DW. Scientific rationale for developing potent RBD-based vaccines targeting COVID-19. NPJ Vaccines 2021; 6:128. [PMID: 34711846 PMCID: PMC8553742 DOI: 10.1038/s41541-021-00393-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/01/2021] [Indexed: 12/31/2022] Open
Abstract
Vaccination of the global population against COVID-19 is a great scientific, logistical, and moral challenge. Despite the rapid development and authorization of several full-length Spike (S) protein vaccines, the global demand outweighs the current supply and there is a need for safe, potent, high-volume, affordable vaccines that can fill this gap, especially in low- and middle-income countries. Whether SARS-CoV-2 S-protein receptor-binding domain (RBD)-based vaccines could fill this gap has been debated, especially with regards to its suitability to protect against emerging viral variants of concern. Given a predominance for elicitation of neutralizing antibodies (nAbs) that target RBD following natural infection or vaccination, a key biomarker of protection, there is merit for selection of RBD as a sole vaccine immunogen. With its high-yielding production and manufacturing potential, RBD-based vaccines offer an abundance of temperature-stable doses at an affordable cost. In addition, as the RBD preferentially focuses the immune response to potent and recently recognized cross-protective determinants, this domain may be central to the development of future pan-sarbecovirus vaccines. In this study, we review the data supporting the non-inferiority of RBD as a vaccine immunogen compared to full-length S-protein vaccines with respect to humoral and cellular immune responses against both the prototype pandemic SARS-CoV-2 isolate and emerging variants of concern.
Collapse
Affiliation(s)
| | | | | | - In-Kyu Yoon
- Coalition for Epidemic Preparedness Innovations, Greater London, UK
| | - Nicholas Jackson
- Coalition for Epidemic Preparedness Innovations, Greater London, UK.
| | | |
Collapse
|
341
|
Golcuk M, Hacisuleyman A, Erman B, Yildiz A, Gur M. Binding Mechanism of Neutralizing Nanobodies Targeting SARS-CoV-2 Spike Glycoprotein. J Chem Inf Model 2021; 61:5152-5160. [PMID: 34581563 PMCID: PMC8491549 DOI: 10.1021/acs.jcim.1c00695] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 12/25/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters human cells upon binding of its spike (S) glycoproteins to ACE2 receptors. Several nanobodies neutralize SARS-CoV-2 infection by binding to the receptor-binding domain (RBD) of the S protein, but how their binding antagonizes S-ACE2 interactions is not well understood. Here, we identified interactions between the RBD and nanobodies H11-H4, H11-D4, and Ty1 by performing all-atom molecular dynamics simulations. H11-H4 and H11-D4 can bind to RBD without overlapping with ACE2. H11-H4, and to a lesser extent H11-D4, binding dislocates ACE2 from its binding site due to electrostatic repulsion. In comparison, Ty1 overlaps with ACE2 on RBD and has a similar binding strength to ACE2. Mutations in the Alpha variant of SARS-CoV-2 had a minor effect in RBD binding strengths of ACE2 and nanobodies, but reduced the ability of H11-H4 and H11-D4 to dislocate ACE2 from RBD. In comparison, the Beta variant weakened the RBD binding strengths of H11-H4 and H11-D4, which were less effective to dislocate ACE2 binding. Unexpectedly, mutations in Beta strengthened Ty1 binding to RBD, suggesting that this nanobody may be more effective to neutralize the Beta variant of SARS-CoV-2.
Collapse
Affiliation(s)
- Mert Golcuk
- Department of Mechanical Engineering,
Istanbul Technical University (ITU), 34437 Istanbul,
Turkey
| | - Aysima Hacisuleyman
- Institute of Bioengineering, Swiss
Federal Institute of Technology (EPFL), 1015 Lausanne,
Switzerland
| | - Burak Erman
- Chemical and Biological Engineering Department,
Koc University, 34450 Istanbul,
Turkey
| | - Ahmet Yildiz
- Physics Department, University of
California, Berkeley, California 94720, United
States
- Department of Molecular and Cell Biology,
University of California, Berkeley, California 94720,
United States
| | - Mert Gur
- Department of Mechanical Engineering,
Istanbul Technical University (ITU), 34437 Istanbul,
Turkey
| |
Collapse
|
342
|
Wang B, Goh YS, Prince T, Ngoh EZX, Salleh SNM, Hor PX, Loh CY, Fong SW, Hartley C, Tan SY, Young BE, Leo YS, Lye DC, Maurer-Stroh S, Ng LFP, Hiscox JA, Renia L, Wang CI. Resistance of SARS-CoV-2 variants to neutralization by convalescent plasma from early COVID-19 outbreak in Singapore. NPJ Vaccines 2021; 6:125. [PMID: 34697298 PMCID: PMC8546091 DOI: 10.1038/s41541-021-00389-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/01/2021] [Indexed: 12/22/2022] Open
Abstract
The rapid spreading of SARS-CoV-2 variants B.1.1.7 originated from the United Kingdom and B.1.351 from South Africa has contributed to the second wave of COVID-19 cases in the respective countries and also around the world. In this study, we employed advanced biochemical and virological methodologies to evaluate the impact of Spike mutations of these strains on the degree of protection afforded by humoral immune responses following natural infection of the ancestral SARS-CoV-2 strain during the early stages of the outbreak. We found that antibody-mediated neutralization activity was partially reduced for B.1.1.7 variant and significantly attenuated for the B.1.351 strain. We also found that mutations outside the receptor-binding domain (RBD) can strongly influence antibody binding and neutralization, cautioning the use of solely RBD mutations in evaluating vaccine efficacy. These findings highlight an urgent need to develop new SARS-CoV-2 vaccines that are not based exclusively on the ancestral SARS-CoV-2 Spike gene sequence.
Collapse
Affiliation(s)
- Bei Wang
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yun Shan Goh
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Tessa Prince
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| | - Eve Zi Xian Ngoh
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Siti Nazihah Mohd Salleh
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Pei Xiang Hor
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chiew Yee Loh
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Siew Wai Fong
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Catherine Hartley
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Seow-Yen Tan
- Department of Infectious Diseases, Changi General Hospital, Singapore, Singapore
| | - Barnaby Edward Young
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Yee-Sin Leo
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - David C Lye
- National Centre for Infectious Diseases, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Sebastian Maurer-Stroh
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Bioinformatics Institute, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Lisa F P Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Julian A Hiscox
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| | - Laurent Renia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Cheng-I Wang
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
343
|
Clusters of SARS-CoV-2 Lineage B.1.1.7 Infection after Vaccination with Adenovirus-Vectored and Inactivated Vaccines. Viruses 2021; 13:v13112127. [PMID: 34834934 PMCID: PMC8623206 DOI: 10.3390/v13112127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
A SARS-CoV-2 B.1.1.7 variant of concern (VOC) has been associated with increased transmissibility, hospitalization, and mortality. This study aimed to explore the factors associated with B.1.1.7 VOC infection in the context of vaccination. On March 2021, we detected SARS-CoV-2 RNA in nasopharyngeal samples from 14 of 22 individuals vaccinated with a single-dose of ChAdOx1 (outbreak A, n = 26), and 22 of 42 of individuals with two doses of the CoronaVac vaccine (outbreak B, n = 52) for breakthrough infection rates for ChAdOx1 of 63.6% and 52.4% for CoronaVac. The outbreaks were caused by two independent clusters of the B.1.1.7 VOC. The serum of PCR-positive symptomatic SARS-CoV-2-infected individuals had ~1.8-3.4-fold more neutralizing capacity against B.1.1.7 compared to the serum of asymptomatic individuals. These data based on exploratory analysis suggest that the B.1.1.7 variant can infect individuals partially immunized with a single dose of an adenovirus-vectored vaccine or fully immunized with two doses of an inactivated vaccine, although the vaccines were able to reduce the risk of severe disease and death caused by this VOC, even in the elderly.
Collapse
|
344
|
Lam B, Kung YJ, Lin J, Tseng SH, Tsai YC, He L, Castiglione G, Egbert E, Duh EJ, Bloch EM, Tobian AAR, Milstone AM, Roden RBS, Wu TC, Hung CF. In vivo characterization of emerging SARS-CoV-2 variant infectivity and human antibody escape potential. Cell Rep 2021; 37:109838. [PMID: 34648735 PMCID: PMC8491932 DOI: 10.1016/j.celrep.2021.109838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/30/2021] [Accepted: 09/23/2021] [Indexed: 01/16/2023] Open
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads, variants with enhanced virulence and transmissibility have emerged. Although in vitro systems allow rapid characterization, they do not fully recapitulate the dynamic interaction of virions and neutralizing antibodies in the airway. Here, we demonstrate that the N501Y variant permits respiratory infection in unmodified mice. We utilize N501Y to survey in vivo pseudovirus infection dynamics and susceptibility to reinfection with the L452R (Los Angeles), K417N + E484K (South Africa), and L452R + K417N + E484Q (India) variants. Human coronavirus disease 2019 (COVID-19)+ or vaccinated antibody isotypes, titers, variant receptor binding domain (RBD) binding, and neutralization potential are studied, revealing numerous significant correlations. Immune escape of the K417N + E484K variant is observed because infection can be appreciated in the nasopharynx, but not lungs, of mice transferred with low-antibody-tier plasma. Conversely, near-complete protection is observed in animals receiving high-antibody-tier plasma, a phenomenon that can only be appreciated in vivo.
Collapse
Affiliation(s)
- Brandon Lam
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yu Jui Kung
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John Lin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ssu-Hsueh Tseng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ya Chea Tsai
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Liangmei He
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gianni Castiglione
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily Egbert
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elia J Duh
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Evan M Bloch
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aaron A R Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aaron M Milstone
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Hospital Epidemiology and Infection Control, The Johns Hopkins Hospital, Baltimore, MD 21205, USA
| | - Richard B S Roden
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Obstetrics and Gynecology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tzyy-Choou Wu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Obstetrics and Gynecology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Molecular Microbiology and Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
345
|
Ramesh S, Govindarajulu M, Parise RS, Neel L, Shankar T, Patel S, Lowery P, Smith F, Dhanasekaran M, Moore T. Emerging SARS-CoV-2 Variants: A Review of Its Mutations, Its Implications and Vaccine Efficacy. Vaccines (Basel) 2021; 9:1195. [PMID: 34696303 PMCID: PMC8537675 DOI: 10.3390/vaccines9101195] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/26/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022] Open
Abstract
The widespread increase in multiple severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants is causing a significant health concern in the United States and worldwide. These variants exhibit increased transmissibility, cause more severe disease, exhibit evasive immune properties, impair neutralization by antibodies from vaccinated individuals or convalescence sera, and reinfection. The Centers for Disease Control and Prevention (CDC) has classified SARS-CoV-2 variants into variants of interest, variants of concern, and variants of high consequence. Currently, four variants of concern (B.1.1.7, B.1.351, P.1, and B.1.617.2) and several variants of interests (B.1.526, B.1.525, and P.2) are characterized and are essential for close monitoring. In this review, we discuss the different SARS-CoV-2 variants, emphasizing variants of concern circulating the world and highlight the various mutations and how these mutations affect the characteristics of the virus. In addition, we discuss the most common vaccines and the various studies concerning the efficacy of these vaccines against different variants of concern.
Collapse
Affiliation(s)
- Sindhu Ramesh
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| | - Manoj Govindarajulu
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| | - Rachel S. Parise
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| | - Logan Neel
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| | - Tharanath Shankar
- Department of Internal Medicine, Ramaiah Medical College and Hospital, Bengaluru 560054, Karnataka, India;
| | - Shriya Patel
- Department of Neuroscience, Middlebury College, Middlebury, VT 05753, USA;
| | - Payton Lowery
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| | - Forrest Smith
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| | - Timothy Moore
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| |
Collapse
|
346
|
Bermejo‐Jambrina M, Eder J, Kaptein TM, van Hamme JL, Helgers LC, Vlaming KE, Brouwer PJM, van Nuenen AC, Spaargaren M, de Bree GJ, Nijmeijer BM, Kootstra NA, van Gils MJ, Sanders RW, Geijtenbeek TBH. Infection and transmission of SARS-CoV-2 depend on heparan sulfate proteoglycans. EMBO J 2021; 40:e106765. [PMID: 34510494 PMCID: PMC8521309 DOI: 10.15252/embj.2020106765] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/27/2022] Open
Abstract
The current pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and outbreaks of new variants highlight the need for preventive treatments. Here, we identified heparan sulfate proteoglycans as attachment receptors for SARS-CoV-2. Notably, neutralizing antibodies against SARS-CoV-2 isolated from COVID-19 patients interfered with SARS-CoV-2 binding to heparan sulfate proteoglycans, which might be an additional mechanism of antibodies to neutralize infection. SARS-CoV-2 binding to and infection of epithelial cells was blocked by low molecular weight heparins (LMWH). Although dendritic cells (DCs) and mucosal Langerhans cells (LCs) were not infected by SARS-CoV-2, both DC subsets efficiently captured SARS-CoV-2 via heparan sulfate proteoglycans and transmitted the virus to ACE2-positive cells. Notably, human primary nasal cells were infected by SARS-CoV-2, and infection was blocked by pre-treatment with LMWH. These data strongly suggest that heparan sulfate proteoglycans are important attachment receptors facilitating infection and transmission, and support the use of LMWH as prophylaxis against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Marta Bermejo‐Jambrina
- Department of Experimental ImmunologyAmsterdam institute for Infection and ImmunityAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Julia Eder
- Department of Experimental ImmunologyAmsterdam institute for Infection and ImmunityAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Tanja M Kaptein
- Department of Experimental ImmunologyAmsterdam institute for Infection and ImmunityAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - John L van Hamme
- Department of Experimental ImmunologyAmsterdam institute for Infection and ImmunityAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Leanne C Helgers
- Department of Experimental ImmunologyAmsterdam institute for Infection and ImmunityAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Killian E Vlaming
- Department of Experimental ImmunologyAmsterdam institute for Infection and ImmunityAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Philip J M Brouwer
- Department of Medical MicrobiologyAmsterdam institute for Infection and ImmunityAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Ad C van Nuenen
- Department of Experimental ImmunologyAmsterdam institute for Infection and ImmunityAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Marcel Spaargaren
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE)Cancer Center Amsterdam (CCA)Amsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Godelieve J de Bree
- Department of Internal MedicineAmsterdam institute for Infection and ImmunityAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Bernadien M Nijmeijer
- Department of Experimental ImmunologyAmsterdam institute for Infection and ImmunityAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Neeltje A Kootstra
- Department of Experimental ImmunologyAmsterdam institute for Infection and ImmunityAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Marit J van Gils
- Department of Medical MicrobiologyAmsterdam institute for Infection and ImmunityAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Rogier W Sanders
- Department of Medical MicrobiologyAmsterdam institute for Infection and ImmunityAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Microbiology and ImmunologyWeill Medical College of Cornell UniversityNew YorkNYUSA
| | - Teunis B H Geijtenbeek
- Department of Experimental ImmunologyAmsterdam institute for Infection and ImmunityAmsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
347
|
Walls AC, Miranda MC, Schäfer A, Pham MN, Greaney A, Arunachalam PS, Navarro MJ, Tortorici MA, Rogers K, O'Connor MA, Shirreff L, Ferrell DE, Bowen J, Brunette N, Kepl E, Zepeda SK, Starr T, Hsieh CL, Fiala B, Wrenn S, Pettie D, Sydeman C, Sprouse KR, Johnson M, Blackstone A, Ravichandran R, Ogohara C, Carter L, Tilles SW, Rappuoli R, Leist SR, Martinez DR, Clark M, Tisch R, O'Hagan DT, Van Der Most R, Van Voorhis WC, Corti D, McLellan JS, Kleanthous H, Sheahan TP, Smith KD, Fuller DH, Villinger F, Bloom J, Pulendran B, Baric RS, King NP, Veesler D. Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. Cell 2021; 184:5432-5447.e16. [PMID: 34619077 PMCID: PMC8440233 DOI: 10.1016/j.cell.2021.09.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/18/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
Understanding vaccine-elicited protection against SARS-CoV-2 variants and other sarbecoviruses is key for guiding public health policies. We show that a clinical stage multivalent SARS-CoV-2 spike receptor-binding domain nanoparticle (RBD-NP) vaccine protects mice from SARS-CoV-2 challenge after a single immunization, indicating a potential dose-sparing strategy. We benchmarked serum neutralizing activity elicited by RBD-NPs in non-human primates against a lead prefusion-stabilized SARS-CoV-2 spike (HexaPro) using a panel of circulating mutants. Polyclonal antibodies elicited by both vaccines are similarly resilient to many RBD residue substitutions tested, although mutations at and surrounding position 484 have negative consequences for neutralization. Mosaic and cocktail nanoparticle immunogens displaying multiple sarbecovirus RBDs elicit broad neutralizing activity in mice and protect mice against SARS-CoV challenge even in the absence of SARS-CoV RBD in the vaccine. This study provides proof of principle that multivalent sarbecovirus RBD-NPs induce heterotypic protection and motivates advancing such broadly protective sarbecovirus vaccines to the clinic.
Collapse
Affiliation(s)
- Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Marcos C Miranda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Minh N Pham
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Allison Greaney
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Mary-Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - M Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institut Pasteur and CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - Kenneth Rogers
- New Iberia Research Center and Department of Biology, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Megan A O'Connor
- Washington National Primate Research Center, Seattle, WA 98121, USA; Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Lisa Shirreff
- New Iberia Research Center and Department of Biology, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Douglas E Ferrell
- New Iberia Research Center and Department of Biology, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - John Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Natalie Brunette
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth Kepl
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Samantha K Zepeda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Tyler Starr
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ching-Lin Hsieh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Samuel Wrenn
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Deleah Pettie
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Claire Sydeman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Max Johnson
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alyssa Blackstone
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Cassandra Ogohara
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Sasha W Tilles
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Roland Tisch
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | | | | | - Wesley C Van Voorhis
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Kelly D Smith
- UW Medicine Department of Laboratory Medicine and Pathology, Seattle, WA 98195, USA
| | - Deborah H Fuller
- Washington National Primate Research Center, Seattle, WA 98121, USA; Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Francois Villinger
- New Iberia Research Center and Department of Biology, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Jesse Bloom
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
348
|
Greaney AJ, Starr TN, Eguia RT, Loes AN, Khan K, Karim F, Cele S, Bowen JE, Logue JK, Corti D, Veesler D, Chu HY, Sigal A, Bloom JD. A SARS-CoV-2 variant elicits an antibody response with a shifted immunodominance hierarchy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.10.12.464114. [PMID: 34671768 PMCID: PMC8528074 DOI: 10.1101/2021.10.12.464114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many SARS-CoV-2 variants have mutations at key sites targeted by antibodies. However, it is unknown if antibodies elicited by infection with these variants target the same or different regions of the viral spike as antibodies elicited by earlier viral isolates. Here we compare the specificities of polyclonal antibodies produced by humans infected with early 2020 isolates versus the B.1.351 variant of concern (also known as Beta or 20H/501Y.V2), which contains mutations in multiple key spike epitopes. The serum neutralizing activity of antibodies elicited by infection with both early 2020 viruses and B.1.351 is heavily focused on the spike receptor-binding domain (RBD). However, within the RBD, B.1.351-elicited antibodies are more focused on the "class 3" epitope spanning sites 443 to 452, and neutralization by these antibodies is notably less affected by mutations at residue 484. Our results show that SARS-CoV-2 variants can elicit polyclonal antibodies with different immunodominance hierarchies.
Collapse
Affiliation(s)
- Allison J. Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center; Seattle, WA 98109, USA
- Department of Genome Sciences & Medical Scientist Training Program, University of Washington; Seattle, WA 98195, USA
| | - Tyler N. Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center; Seattle, WA 98109, USA
- Howard Hughes Medical Institute; Chevy Chase, MD 20815, USA
| | - Rachel T. Eguia
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center; Seattle, WA 98109, USA
| | - Andrea N. Loes
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center; Seattle, WA 98109, USA
- Howard Hughes Medical Institute; Chevy Chase, MD 20815, USA
| | - Khadija Khan
- Africa Health Research Institute, Durban 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu–Natal, Durban 4001, South Africa
| | - Farina Karim
- Africa Health Research Institute, Durban 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu–Natal, Durban 4001, South Africa
| | - Sandile Cele
- Africa Health Research Institute, Durban 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu–Natal, Durban 4001, South Africa
| | - John E. Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jennifer K. Logue
- Division of Allergy and Infectious Diseases, University of Washington; Seattle, WA 98195, USA
| | - Davide Corti
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - David Veesler
- Howard Hughes Medical Institute; Chevy Chase, MD 20815, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, University of Washington; Seattle, WA 98195, USA
| | - Alex Sigal
- Africa Health Research Institute, Durban 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu–Natal, Durban 4001, South Africa
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center; Seattle, WA 98109, USA
- Howard Hughes Medical Institute; Chevy Chase, MD 20815, USA
| |
Collapse
|
349
|
Fenwick C, Turelli P, Perez L, Pellaton C, Esteves-Leuenberger L, Farina A, Campos J, Lana E, Fiscalini F, Raclot C, Pojer F, Lau K, Demurtas D, Descatoire M, Joo VS, Foglierini M, Noto A, Abdelnabi R, Foo CS, Vangeel L, Neyts J, Du W, Bosch BJ, Veldman G, Leyssen P, Thiel V, LeGrand R, Lévy Y, Trono D, Pantaleo G. A highly potent antibody effective against SARS-CoV-2 variants of concern. Cell Rep 2021; 37:109814. [PMID: 34599871 PMCID: PMC8452523 DOI: 10.1016/j.celrep.2021.109814] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/09/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
Control of the ongoing SARS-CoV-2 pandemic is endangered by the emergence of viral variants with increased transmission efficiency, resistance to marketed therapeutic antibodies, and reduced sensitivity to vaccine-induced immunity. Here, we screen B cells from COVID-19 donors and identify P5C3, a highly potent and broadly neutralizing monoclonal antibody with picomolar neutralizing activity against all SARS-CoV-2 variants of concern (VOCs) identified to date. Structural characterization of P5C3 Fab in complex with the spike demonstrates a neutralizing activity defined by a large buried surface area, highly overlapping with the receptor-binding domain (RBD) surface necessary for ACE2 interaction. We further demonstrate that P5C3 shows complete prophylactic protection in the SARS-CoV-2-infected hamster challenge model. These results indicate that P5C3 opens exciting perspectives either as a prophylactic agent in immunocompromised individuals with poor response to vaccination or as combination therapy in SARS-CoV-2-infected individuals.
Collapse
Affiliation(s)
- Craig Fenwick
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Priscilla Turelli
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Laurent Perez
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Céline Pellaton
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Line Esteves-Leuenberger
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Alex Farina
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jérémy Campos
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Erica Lana
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Flurin Fiscalini
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Charlène Raclot
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Florence Pojer
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kelvin Lau
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Davide Demurtas
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marc Descatoire
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Victor S Joo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mathilde Foglierini
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Alessandra Noto
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Rana Abdelnabi
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Caroline S Foo
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Laura Vangeel
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Wenjuan Du
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Berend-Jan Bosch
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | | | - Pieter Leyssen
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Volker Thiel
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Roger LeGrand
- CEA, Université Paris Sud 11, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Yves Lévy
- VRI, Université Paris-Est Créteil, Faculté de Médicine, INSERM U955, 94010 Créteil, France; INSERM U955, Equipe 16, Créteil, France; AP-HP, Ho^pital Henri-Mondor Albert-Chenevier, Service d'Immunologie Clinique et Maladies Infectieuses, Créteil, France
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; VRI, Université Paris-Est Créteil, Faculté de Médicine, INSERM U955, 94010 Créteil, France; Swiss Vaccine Research Institute, Lausanne University Hospital and University of Lausanne, Switzerland.
| |
Collapse
|
350
|
Neidleman J, Luo X, McGregor M, Xie G, Murray V, Greene WC, Lee SA, Roan NR. mRNA vaccine-induced T cells respond identically to SARS-CoV-2 variants of concern but differ in longevity and homing properties depending on prior infection status. eLife 2021; 10:e72619. [PMID: 34636722 PMCID: PMC8545397 DOI: 10.7554/elife.72619] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/05/2021] [Indexed: 12/11/2022] Open
Abstract
While mRNA vaccines are proving highly efficacious against SARS-CoV-2, it is important to determine how booster doses and prior infection influence the immune defense they elicit, and whether they protect against variants. Focusing on the T cell response, we conducted a longitudinal study of infection-naïve and COVID-19 convalescent donors before vaccination and after their first and second vaccine doses, using a high-parameter CyTOF analysis to phenotype their SARS-CoV-2-specific T cells. Vaccine-elicited spike-specific T cells responded similarly to stimulation by spike epitopes from the ancestral, B.1.1.7 and B.1.351 variant strains, both in terms of cell numbers and phenotypes. In infection-naïve individuals, the second dose boosted the quantity and altered the phenotypic properties of SARS-CoV-2-specific T cells, while in convalescents the second dose changed neither. Spike-specific T cells from convalescent vaccinees differed strikingly from those of infection-naïve vaccinees, with phenotypic features suggesting superior long-term persistence and ability to home to the respiratory tract including the nasopharynx. These results provide reassurance that vaccine-elicited T cells respond robustly to emerging viral variants, confirm that convalescents may not need a second vaccine dose, and suggest that vaccinated convalescents may have more persistent nasopharynx-homing SARS-CoV-2-specific T cells compared to their infection-naïve counterparts.
Collapse
Affiliation(s)
- Jason Neidleman
- Department or Urology, University of California, San FranciscoSan FranciscoUnited States
- Gladstone Institute of VirologySan FranciscoUnited States
| | - Xiaoyu Luo
- Gladstone Institute of VirologySan FranciscoUnited States
| | - Matthew McGregor
- Department or Urology, University of California, San FranciscoSan FranciscoUnited States
- Gladstone Institute of VirologySan FranciscoUnited States
| | - Guorui Xie
- Department or Urology, University of California, San FranciscoSan FranciscoUnited States
- Gladstone Institute of VirologySan FranciscoUnited States
| | - Victoria Murray
- University of California, San FranciscoSan FranciscoUnited States
| | | | - Sulggi A Lee
- Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Nadia R Roan
- Department or Urology, University of California, San FranciscoSan FranciscoUnited States
- Gladstone Institute of VirologySan FranciscoUnited States
| |
Collapse
|