301
|
Kuenzel S, Pretzel D, Andert J, Beck K, Reissmann S. Synthesis and characterization of metal binding pseudotripeptides. J Pept Sci 2003; 9:502-9. [PMID: 12952391 DOI: 10.1002/psc.468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Metal complexes with peptide or pseudopeptide type ligands can serve as good model compounds for a deeper understanding of enzymatic catalysis, but ligands with a high selectivity for different transition metal cations are hard to find due to the rather flexible nature of peptides. Since such ligands would be the sine qua non condition for the synthesis of heterodinuclear peptide metal complexes with catalytic activity, the search for small, affine and selective metal chelating sequences is of interest. Using four different amino acids (His, Lys, Asp, Glu) a set of 16 pseudotripeptides of the common structure Bz-AS1-Sar-AS2-NH2 has been synthesized, purified and characterized by mass spectrometry and 1H-NMR. Their ability to form metal complexes has been investigated leading to short motifs capable of selectively binding only one or two transition metal cations with high affinity. As expected, the complexation of transition metal cations by pseudotripeptides is strongly dependent not only on the amino acid composition, but also on the sequence with regard to the stability of the resulting complexes, as well as the selectivity of the ligands towards Cu2+, Co2+, Ni2+, Zn2+ and Mn2+.
Collapse
Affiliation(s)
- Sebastian Kuenzel
- Institut für Biochemie und Biophysik, Friedrich-Schiller-Universität Jena, Philosophenweg 12, D-07743 Jena, Germany
| | | | | | | | | |
Collapse
|
302
|
Shimizu K, Rajapakse N, Horiguchi T, Payne RM, Busija DW. Neuroprotection against hypoxia-ischemia in neonatal rat brain by novel superoxide dismutase mimetics. Neurosci Lett 2003; 346:41-4. [PMID: 12850543 DOI: 10.1016/s0304-3940(03)00558-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We investigated the effects of two new low molecular weight nonpeptidyl superoxide dismutase (SOD) mimetics (M40403/M40401; MetaPhore Pharmaceuticals) on infarct volume after hypoxia-ischemia injury (H/I) in immature rats. Animals received vehicle or different doses of M40403 or M40401 i.p. 2 h before exposure to 3 h of 8% hypoxia. The infarct volume of the hemisphere ipsilateral to carotid ligation 24 h later was 73.9+/-8.9% in vehicle animals (n=9), and decreased to 39.7+/-7.2% (P<0.05, n=10) in animals treated with 3 mg/kg M40403 and to 37.2+/-6.4% for animals receiving 3 mg/kg M40401 (P<0.05, n=8). These data indicate that the SOD mimetics M40403 and M40401 have protective effects against hypoxic-ischemic brain injury, and suggest the involvement of superoxide anion in neuronal cell injury during H/I.
Collapse
Affiliation(s)
- Katsuyoshi Shimizu
- Departments of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, USA.
| | | | | | | | | |
Collapse
|
303
|
Jiang F, Guo Y, Salvemini D, Dusting GJ. Superoxide dismutase mimetic M40403 improves endothelial function in apolipoprotein(E)-deficient mice. Br J Pharmacol 2003; 139:1127-34. [PMID: 12871831 PMCID: PMC1573947 DOI: 10.1038/sj.bjp.0705354] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
1. Overproduction of superoxide anions in the vascular wall contributes to endothelial dysfunction in vascular disease. A superoxide-generating reduced beta-nicotinamide adenine dinucleotide phosphate (NADPH) oxidase has recently been identified as a major source of oxidative radicals in vascular tissues. We studied the effects of a synthetic manganese-containing superoxide dismutase (SOD) mimetic, M40403, on NADPH oxidase-dependent superoxide generation and on endothelial dysfunction. 2. In rat aortic smooth muscle cells, NADPH (100 micro M) markedly stimulated superoxide production as detected by lucigenin (5 micro M)-enhanced chemiluminescence. M40403 reduced NADPH oxidase-dependent superoxide production in a concentration-dependent manner, with IC(50) being 31.6 micro M. In contrast, native Cu/Zn SOD (up to 300 U ml(-1)) had no effect. Angiotensin II (100 nM) increased the NADPH oxidase activity by 70%, and treatment with M40403 (10 micro M) reduced this increased superoxide to the control level. 3. In aortae from apolipoprotein(E)-deficient mice (apoE(0)) with hyperlipidemia and atherosclerosis, superoxide production is largely derived from NADPH oxidase. The attenuation of endothelial nitric oxide vasodilator function parallels the increase in vascular superoxide production at different stages of the disease. Acute incubation of such aortic rings with M40403 significantly suppressed superoxide production and improved endothelium-dependent vasorelaxation to a level comparable to that in wildtype control mice. 4. In summary, the cell-permeable SOD mimetic M40403 was found to reverse endothelial dysfunction in apoE(0) aorta ex vivo by decreasing NADPH oxidase-dependent superoxide levels. The advantages of synthetic SOD mimetics over the native Cu/Zn SOD enzyme, such as greater cell permeability and stability, confer significant therapeutic potential in vascular disease.
Collapse
Affiliation(s)
- Fan Jiang
- Howard Florey Institute, The University of Melbourne, Victoria 3010, Australia
| | - Yanan Guo
- Howard Florey Institute, The University of Melbourne, Victoria 3010, Australia
| | | | - Gregory J Dusting
- Howard Florey Institute, The University of Melbourne, Victoria 3010, Australia
- Author for correspondence:
| |
Collapse
|
304
|
Montalto MC, Hart ML, Jordan JE, Wada K, Stahl GL. Role for complement in mediating intestinal nitric oxide synthase-2 and superoxide dismutase expression. Am J Physiol Gastrointest Liver Physiol 2003; 285:G197-206. [PMID: 12637249 DOI: 10.1152/ajpgi.00029.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inducible nitric oxide synthase (iNOS) and superoxide dismutase (SOD) play an important role in the pathology of ischemia-reperfusion. This study sought to determine if the proinflammatory effects of complement modulate iNOS and SOD in the rat after gastrointestinal ischemia and reperfusion (GI/R). An inhibitory or noninhibitory anti-complement component 5 (C5) monoclonal antibody (18A or 16C, respectively) was administered before GI/R. RT-PCR revealed a significant increase in intestinal iNOS mRNA compared with sham after GI/R that was attenuated significantly by 18A. Immunohistochemistry demonstrated increased iNOS protein expression within the intestinal crypts after GI/R. Cu/Zn SOD (mRNA and protein) was unaffected by GI/R, whereas Cu/Zn SOD activity was reduced significantly. Mn SOD protein expression was decreased significantly by GI/R. Anti-C5 preserved Cu/Zn SOD activity and Mn SOD protein expression. Staining for nitrotyrosine showed that anti-C5 treatment reduced protein nitration in the reperfused intestine. Immunohistochemistry demonstrated prominent phosphorylated (p) inhibitory factor-kappaB (IkappaB)-alpha staining of intestinal tissue after GI/R, whereas anti-C5 reduced p-IkappaB-alpha expression. These data indicate that complement may mediate tissue damage during GI/R by increasing intestinal iNOS and decreasing the activity and protein levels of Cu/Zn SOD and Mn SOD, respectively.
Collapse
Affiliation(s)
- Michael C Montalto
- Center for Experimental Therapeutics and Reperfusion Injury, Dept. of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
305
|
Weber DS, Griendling KK. The yin/yang of superoxide dismutase mimetics: potential cardiovascular therapies? Br J Pharmacol 2003; 139:1059-60. [PMID: 12871823 PMCID: PMC1573946 DOI: 10.1038/sj.bjp.0705353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- David S Weber
- Division of Cardiology, Emory University, WMB 319, 1639 Pierce Dr., Atlanta, GA 30322 U.S.A
| | - Kathy K Griendling
- Division of Cardiology, Emory University, WMB 319, 1639 Pierce Dr., Atlanta, GA 30322 U.S.A
- Author for correspondence:
| |
Collapse
|
306
|
Tuder RM, Zhen L, Cho CY, Taraseviciene-Stewart L, Kasahara Y, Salvemini D, Voelkel NF, Flores SC. Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade. Am J Respir Cell Mol Biol 2003; 29:88-97. [PMID: 12600822 DOI: 10.1165/rcmb.2002-0228oc] [Citation(s) in RCA: 276] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have previously demonstrated that a failure of pulmonary endothelial cell survival induced by vascular endothelial growth factor (VEGF) receptor blockade results in lung alveolar septal cell apoptosis and emphysema. Because apoptosis and oxidative stress may be pathobiologically linked, we hypothesized that oxidative stress has a central role in alveolar septal cell apoptosis and emphysema induced by VEGF receptor blockade. When compared with control animals, rats treated with the VEGF receptor blocker SU5416 showed increased alveolar enlargement, alveolar septal cell apoptosis, and expression of markers of oxidative stress, all of which were prevented by the superoxide dismutase mimetic M40419. The preservation of lung structure in SU5416+M40419-treated lungs was associated with increased septal cell proliferation, and enhanced phosphorylation of the prosurvival and antiapoptotic Akt, when compared with SU5416-treated lungs. Consistent with a positive feedback interaction between oxidative stress and apoptosis, we found that apoptosis predominated in areas of oxidative stress, and that apoptosis blockade by a broad spectrum caspase inhibitor markedly reduced the expression of markers of oxidative stress induced by SU5416 treatment. Oxidative stress and apoptosis, which cause lung cellular destruction in emphysema induced by VEGF receptor blockade, may be important mediators common to human and experimental emphysema.
Collapse
Affiliation(s)
- Rubin M Tuder
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
307
|
Fries DM, Paxinou E, Themistocleous M, Swanberg E, Griendling KK, Salvemini D, Slot JW, Heijnen HFG, Hazen SL, Ischiropoulos H. Expression of inducible nitric-oxide synthase and intracellular protein tyrosine nitration in vascular smooth muscle cells: role of reactive oxygen species. J Biol Chem 2003; 278:22901-7. [PMID: 12690103 DOI: 10.1074/jbc.m210806200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A significant increase in the induction of inducible nitric-oxide synthase (iNOS) protein expression and in the levels of nitrite plus nitrate was observed in rat aortic smooth muscle cells (RASMCs) stably transfected with catalase (RASMC-2C2) as compared with empty vector-transfected RASMC-V4 cells after exposure to cytokines and lipopolysaccharide. The increased expression of iNOS protein in the RASMC-2C2 cells was associated with a significant activation of nuclear transcription factor kappaB, one of the transcriptional regulators of iNOS expression. The induction of iNOS was also accompanied by increased protein tyrosine nitration in both cell types as revealed by immunocytochemical staining and high pressure liquid chromatography with on-line electrospray ionization tandem mass spectrometry. Nitrotyrosine formation was inhibited by 1400W, an iNOS inhibitor, by 4-(2-aminoethyl) benzenesulfonyl fluoride, an inhibitor of NADPH oxidase, and by the superoxide dismutase mimetic M40403, but not by the peroxidase inhibitor 4-aminobenzoic hydrazide. Electron microscopy using affinity-purified anti-nitrotyrosine antibodies revealed labeling at the cytosolic side of the rough endoplasmic reticulum membranes, in the nucleus, occasionally in mitochondria, and consistently within the fibrillar layer underneath the plasma membrane. Collectively, the data in this model system indicate that hydrogen peroxide, by inhibiting the activation of nuclear transcription factor kappaB, prevents iNOS expression, whereas superoxide contributes in a precise pattern of intracellular protein tyrosine nitration.
Collapse
Affiliation(s)
- Diana M Fries
- Stokes Research Institute, Children's Hospital of Pennsylvania and University of Pennsylvania, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
308
|
Mollace V, Iannone M, Muscoli C, Palma E, Granato T, Modesti A, Nisticò R, Rotiroti D, Salvemini D. The protective effect of M40401, a superoxide dismutase mimetic, on post-ischemic brain damage in Mongolian gerbils. BMC Pharmacol 2003; 3:8. [PMID: 12809567 PMCID: PMC165580 DOI: 10.1186/1471-2210-3-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2003] [Accepted: 06/16/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Overproduction of free radical species has been shown to occur in brain tissues after ischemia-reperfusion injury. However, most of free radical scavengers known to antagonize oxidative damage (e.g. superoxide dismutase, catalase), are unable to protect against ischemia-reperfusion brain injury when given in vivo, an effect mainly due to their difficulty to gain access to brain tissues. Here we studied the effect of a low molecular weight superoxide dismutase mimetic (M40401) in brain damage subsequent to ischemia-reperfusion injury in Mongolian gerbils. RESULTS In animals undergoing ischemia-reperfusion injury, neuropathological and ultrastructural changes were monitored for 1-7 days either in the presence or in the absence of M40401 after bilateral common carotid artery occlusion (BCCO). Administration of M40401 (1-40 mg/kg, given i.p. 1 h after BCCO) protected against post-ischemic, ultrastructural and neuropathological changes occurring within the hippocampal CA1 area. The protective effect of M40401 was associated with a significant reduction of the levels of malondialdehyde (MDA; a marker of lipid peroxidation) in ischemic brain tissues after ischemia-reperfusion. CONCLUSION Taken together, these results demonstrate that M40401 provides protective effects when given early after the induction of ischemia-reperfusion of brain tissues and suggest the possible use of such compounds in the treatment of neurological dysfunction subsequent to cerebral flow disturbances.
Collapse
Affiliation(s)
- Vincenzo Mollace
- Faculty of Pharmacy, University of Catanzaro "Magna Graecia", Roccelletta di Borgia, Catanzaro Italy
| | - Michelangelo Iannone
- Institute of Neurological Science ISN – Section of Pharmacology, CNR, Roccelletta di Borgia, Catanzaro, Italy
| | - Carolina Muscoli
- Faculty of Pharmacy, University of Catanzaro "Magna Graecia", Roccelletta di Borgia, Catanzaro Italy
- Metaphore Pharmaceuticals, 1910 Innerbelt Business Center Dr, St Louis MO 63114, USA
| | - Ernesto Palma
- Faculty of Pharmacy, University of Catanzaro "Magna Graecia", Roccelletta di Borgia, Catanzaro Italy
| | - Teresa Granato
- Institute of Neurological Science ISN – Section of Pharmacology, CNR, Roccelletta di Borgia, Catanzaro, Italy
| | - Andrea Modesti
- Department of Experimental Medicine and Biochemical Science, University of Rome "Tor Vergata", Rome 00161, Italy
| | - Robert Nisticò
- Faculty of Pharmacy, University of Calabria – Arcavacata di Rende (CS), Italy
| | - Domenicantonio Rotiroti
- Faculty of Pharmacy, University of Catanzaro "Magna Graecia", Roccelletta di Borgia, Catanzaro Italy
| | - Daniela Salvemini
- Metaphore Pharmaceuticals, 1910 Innerbelt Business Center Dr, St Louis MO 63114, USA
| |
Collapse
|
309
|
Samlowski WE, Petersen R, Cuzzocrea S, Macarthur H, Burton D, McGregor JR, Salvemini D. A nonpeptidyl mimic of superoxide dismutase, M40403, inhibits dose-limiting hypotension associated with interleukin-2 and increases its antitumor effects. Nat Med 2003; 9:750-5. [PMID: 12730689 DOI: 10.1038/nm874] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2003] [Accepted: 03/21/2003] [Indexed: 11/09/2022]
Abstract
Interleukin-2 (IL-2) is used to treat metastatic renal cell carcinoma and malignant melanoma, but its use is limited by the severe hypotension it produces. We have shown here that M40403, a superoxide dismutase (SOD) mimetic, blocked IL-2-induced hypotension and allowed the dose of IL-2 to be increased in mice. The reversal of IL-2-mediated hypotension was associated with an increase in plasma catecholamines. In addition, M40403 increased lymphokine-activated killer (LAK) cell cytotoxicity in vitro and in vivo, through inhibition of macrophage superoxide production. Treatment of methylcholanthrene-induced (Meth A) ascites tumors with IL-2 and > or =3 mg per kg body weight M40403 induced 50% complete remissions lasting for more than 200 d, which was longer than those of untreated mice (15-d median survival) or mice treated with IL-2 alone (22-d median). Growth of subcutaneous implants of RENCA renal carcinoma was also inhibited by the combination of IL-2 and M40403. These results established that M40403 prevented IL-2 from causing dose-limiting hypotension, while enhancing its anticancer activity.
Collapse
Affiliation(s)
- Wolfram E Samlowski
- Melanoma Program, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | |
Collapse
|
310
|
|
311
|
Pawlak K, Borawski J, Naumnik B, Mysliwiec M. Relationship between oxidative stress and extrinsic coagulation pathway in haemodialyzed patients. Thromb Res 2003; 109:247-51. [PMID: 12818246 DOI: 10.1016/s0049-3848(03)00241-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enhanced oxidative stress (SOX), endothelial dysfunction and haemostatic abnormalities are common in end-stage renal failure patients undergoing maintenance haemodialysis (HD). We studied associations among circulating immunoreactive total lipid peroxides as a marker of short-time SOX, autoantibodies against oxidized LDL as a surrogate of prolonged SOX, copper/zinc superoxide dismutase (Cu/Zn SOD) as a major antioxidant enzyme, tissue factor (TF) as a principal initiator of extrinsic coagulation pathway counteracted by its inhibitor (TFPI), and prothrombin fragment 1+2 (F 1+2) as a surrogate of activated haemostasis.Pre-dialysis blood levels of all the markers studied were higher in 24 clinically stable HD patients compared to 11 healthy controls. Spearman's correlations among the three SOX markers were positive but nonsignificant in both HD patients and controls. In HD subjects, increased Cu/Zn SOD levels directly correlated with those of TF (rho=0.551, p=0.005) and TFPI (rho=0.501, p=0.001); the coagulation markers were also positively associated with each other (rho=0.663, p=0.0004). In healthy subjects, the relations between Cu/Zn SOD, TF and TFPI levels were inverse but not significant, and the direct association between TF and TFPI was nonsignificant either. In conclusion, increased plasma levels of Cu/Zn SOD, the antioxidant enzyme with emerging endothelial cell-protective and antithrombotic properties, may be a novel part of the system counteracting activated extrinsic coagulation system in maintenance HD patients.
Collapse
Affiliation(s)
- Krystyna Pawlak
- Department of Nephrology and Internal Medicine, Medical University of Bialystok, 14 Zurawia Street, 15-540 Bialystok, Poland.
| | | | | | | |
Collapse
|
312
|
Lin J, Tu C, Lin H, Jiang P, Ding J, Guo Z. Crystal structure and superoxide dismutase activity of a six-coordinate manganese(III) complex. INORG CHEM COMMUN 2003. [DOI: 10.1016/s1387-7003(02)00741-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
313
|
Abstract
In this review we describe the potential role(s) of superoxide in inflammatory disorders.
Collapse
Affiliation(s)
- Daniela Salvemini
- Metaphore Pharmaceuticals, 1910 Innerbelt Business Center Drive, St Louis, MO, 63114, USA.
| | | | | | | |
Collapse
|
314
|
Shimizu K, Rajapakse N, Horiguchi T, Payne RM, Busija DW. Protective effect of a new nonpeptidyl mimetic of SOD, M40401, against focal cerebral ischemia in the rat. Brain Res 2003; 963:8-14. [PMID: 12560107 DOI: 10.1016/s0006-8993(02)03796-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We tested the neuroprotective effects of M40401, a new, low molecular weight (511.4 Da) maganese superoxide dismutase mimetic, against 90 min of middle cerebral artery occlusion (MCAO) in male Wistar rats. Animals received a single injection of vehicle (n=8), 1 mg/kg (n=6), or 3 mg/kg (n=7) 30 min before MCAO. Total lesion volume was reduced only in the group receiving 3 mg/kg M40401 (163.5+/-18.7 versus 43.4+/-7.0 mm(3), for vehicle and M40401, respectively; P<0.05), with almost complete reduction of lesion volume in the cortex but little protection in the basal ganglia. Neurological score was also improved in this group. The dose of 1 mg/kg M40401 had smaller and inconsistent effects on lesion parameters. Administration of a single dose of 3 mg/kg M40401 at 60 min of MCAO or at the end of MCAO (90 min) failed to significantly reduce lesion volume. A single dose of M40401 plus prolonged infusion into the post-MCAO period also failed to decrease lesion volume significantly. These data indicate that M40401 protects cerebral tissue from ischemic insult when administered before MCAO, probably by limiting damage mediated by detrimental actions of superoxide anion.
Collapse
Affiliation(s)
- Katsuyoshi Shimizu
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1083, USA.
| | | | | | | | | |
Collapse
|
315
|
Abstract
The formation and modulation of nitric oxide (NO) in the lungs is reviewed. Its beneficial and deleterious roles in airways diseases, including asthma, chronic obstructive pulmonary disease, and cystic fibrosis, and in animal models is discussed. The pharmacological effects of agents that modulate NO production or act as NO donors are described. The clinical pharmacology of these agents is described and the therapeutic potential for their use in airways disease is considered.
Collapse
Affiliation(s)
- B J Nevin
- Division of Pharmacology, Welsh School of Pharmacy, Cardiff University, Cathays Park, Cardiff, CF10 3XF, UK
| | | |
Collapse
|
316
|
Pong K. Oxidative stress in neurodegenerative diseases: therapeutic implications for superoxide dismutase mimetics. Expert Opin Biol Ther 2003; 3:127-39. [PMID: 12718737 DOI: 10.1517/14712598.3.1.127] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Evidence of oxidative stress is apparent in both acute and chronic neurodegenerative diseases, such as stroke, Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Increased generation of reactive oxygen species simply overwhelm endogenous antioxidant defences, leading to subsequent oxidative damage and cell death. Tissue culture and animal models have been developed to mimic some of the biochemical changes and neuropathology found in these diseases. In doing so, it has been experimentally demonstrated that oxidative stress plays a critical role in neuronal cell death. Antioxidant enzymes, such as superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) have demonstrated therapeutic efficacy in models of neurodegeneration. However, delivery and stability issues have reduced the enthusiasm to clinically develop these proteins. Most recently, SOD mimetics, small molecules which mimic the activity of endogenous superoxide dismutase, have come to the forefront of antioxidant therapeutics. This review will examine the experimental evidence supporting the use of scavengers of superoxide anions in treating some neurodegenerative diseases, such as stroke, PD and ALS, but also the pitfalls that have met antioxidant molecules in clinical trials.
Collapse
Affiliation(s)
- Kevin Pong
- Department of Neuroscience, Wyeth Research, Princeton, NJ 08543, USA.
| |
Collapse
|
317
|
Mollace V, Iannone M, Muscoli C, Palma E, Granato T, Rispoli V, Nisticò R, Rotiroti D, Salvemini D. The role of oxidative stress in paraquat-induced neurotoxicity in rats: protection by non peptidyl superoxide dismutase mimetic. Neurosci Lett 2003; 335:163-6. [PMID: 12531458 DOI: 10.1016/s0304-3940(02)01168-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herbicides, including paraquat, may produce neurodegenerative effect when given both peripherally and into the brain though the pathophysiological mechanism is still unknown. Microinfusion of paraquat into the Substantia Nigra (50 microg) produced increased motor activity, jumping and circling opposite to the injection site, associated with ECoG desynchronization, high voltage epileptogenic spikes, and with neuropathological effects. These effects were accompanied by increase of malondialdehyde (MDA) levels in the Substantia Nigra, suggesting that paraquat was able to induce oxidative stress when injected directly into the rat brain. Pre-treatment of rats with M40401, a non peptidyl superoxide dismutase (SOD) mimetic given directly into the Substantia Nigra or i.p. prevented both behavioural, electrocorticogram and neuropathological effects and MDA elevation. Taken together, these results demonstrate that paraquat produces brain damage via abnormal formation of oxygen free radicals and that this effect may be counteracted by novel SOD mimetics.
Collapse
Affiliation(s)
- Vincenzo Mollace
- Department of Pharmacobiological Sciences, University of Catanzaro Magna Graecia, Complesso Niní Barbieri-88021, Roccelletta di Borgia (CZ), Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
318
|
Salvemini D, Cuzzocrea S. Therapeutic potential of superoxide dismutase mimetics as therapeutic agents in critical care medicine. Crit Care Med 2003; 31:S29-38. [PMID: 12544974 DOI: 10.1097/00003246-200301001-00005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Oxidative stress results from an oxidant/antioxidant imbalance, an excess of oxidants, or a depletion of antioxidants. A considerable body of recent evidence suggests that oxidative stress and exaggerated production of reactive oxygen species play a major role in several aspects of septic shock and ischemia and reperfusion. Initiation of lipid peroxidation, direct inhibition of mitochondrial respiratory chain enzymes, inactivation of glyceraldehyde-3-phosphate dehydrogenase, inhibition of membrane Na /K adenosine triphosphatase activity, inactivation of membrane sodium channels, and other oxidative protein modifications contribute to the cytotoxic effect of reactive oxygen species. In addition, reactive oxygen species are potent triggers of DNA strand breakage, with subsequent activation of the nuclear enzyme poly-adenosine 5'-diphosphate ribosyl synthetase, and eventual severe energy depletion of the cells. Pharmacologic evidence suggests that the peroxynitrite-poly-adenosine 5'-diphosphate ribosyl polymerase pathway contributes to the cellular injury in shock and endothelial injury. Treatment with superoxide dismutase mimetics, which selectively mimic the catalytic activity of the human superoxide dismutase enzymes, has been shown to prevent the cellular energetic failure associated with shock and ischemia-reperfusion and to prevent tissue damage associated with these conditions. In this article, we will briefly review the role of superoxide in septic shock and ischemia-reperfusion injury. We hope to present evidence to support the potential development of superoxide dismutase mimetics as novel and effective agents in the area of critical care medicine.
Collapse
|
319
|
McFadden SL, Ding D, Salvemini D, Salvi RJ. M40403, a superoxide dismutase mimetic, protects cochlear hair cells from gentamicin, but not cisplatin toxicity. Toxicol Appl Pharmacol 2003; 186:46-54. [PMID: 12583992 DOI: 10.1016/s0041-008x(02)00017-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Gentamicin, an aminoglycoside antibiotic, and cisplatin, a platinum-based anticancer drug, are two commonly used clinical drugs with ototoxic side effects. The ototoxicity of gentamicin and cisplatin has been linked to the production of reactive oxygen species (ROS), although the specific ROS pathways have not been identified. One ROS that might play a role in ototoxicity is the superoxide radical, which is enzymatically dismutated to molecular oxygen and hydrogen peroxide by endogenous superoxide dismutase (SOD) enzymes. M40403, a manganese-based nonpeptidyl molecule that mimics the activity of SOD, was tested for its ability to protect against gentamicin and cisplatin toxicity in cochlear organotypic cultures from neonatal C57BL/10J mice. Cultures were treated with gentamicin or cisplatin alone or in combination with M40403. M40403 alone had no effect on outer hair cell (OHC) or inner hair cell (IHC) survival at doses of 1, 5, and 10 microM, but a high dose of 30 microM reduced hair cell numbers by approximately 30%. Gentamicin alone and cisplatin alone killed OHCs and IHCs in a dose-dependent manner. The addition of M40403 to gentamicin-treated cultures significantly increased OHC and IHC survival in a dose-dependent manner, whereas M40403 failed to protect hair cells in cisplatin-treated cultures at any dose. The results suggest that the toxicity of gentamicin and cisplatin to cochlear hair cells are mediated by different pathways. Clinically, increased levels of SOD or SOD mimetics might provide significant protection against aminoglycoside ototoxicity.
Collapse
Affiliation(s)
- Sandra L McFadden
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA.
| | | | | | | |
Collapse
|
320
|
Wang C, McInnis J, West JB, Bao J, Anastasio N, Guidry JA, Ye Y, Salvemini D, Johnson KM. Blockade of phencyclidine-induced cortical apoptosis and deficits in prepulse inhibition by M40403, a superoxide dismutase mimetic. J Pharmacol Exp Ther 2003; 304:266-71. [PMID: 12490600 DOI: 10.1124/jpet.102.041798] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Repetitive administration of phencyclidine (PCP) in the perinatal period results in cortical apoptosis and a long-lasting deficit in sensorimotor gating. Because these changes are olanzapine-sensitive, we have suggested that the effects of perinatal PCP could be used to model certain aspects of schizophrenia. Studies of PCP and N-methyl-D-aspartate-induced cell death suggested that superoxide could play a role in the pathway leading to death after PCP administration. The purpose of the current study was to determine whether the in vivo administration of M40403, a superoxide dismutase mimetic, could prevent PCP-induced cortical apoptosis and/or deficits in prepulse inhibition. Perinatal rat pups were administered 10 mg/kg PCP on postnatal (PN) days 7, 9, and 11 with or without treatment with 10 mg/kg M40403. Pups were either killed on PN 12 for analysis of various apoptotic markers or they were assessed for prepulse inhibition on PN 24 to 26. Treatment with M40403 2 and 24 h after each PCP treatment prevented PCP-induced increases in two measures of apoptosis in the dorsolateral frontal cortex and in the olfactory cortex. PCP-induced proapoptotic changes in Bax and Bcl-X(L) were also prevented by M40403 treatment. This regimen did not prevent the deficit in prepulse inhibition caused by PCP treatment, but when the treatment regimen was extended through PN 23, M40403 completely prevented the PCP-induced deficit in prepulse inhibition. These data suggest that perinatal PCP treatment leads to long-lasting changes in the pathway(s), leading to cell death and behavioral deficits, and that the superoxide radical plays a critical role in the underlying mechanism.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555-1031, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
321
|
Metabolism and life span determination in C. elegans. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1566-3124(03)14008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
322
|
Macarthur H, Couri DM, Wilken GH, Westfall TC, Lechner AJ, Matuschak GM, Chen Z, Salvemini D. Modulation of serum cytokine levels by a novel superoxide dismutase mimetic, M40401, in an Escherichia coli model of septic shock: correlation with preserved circulating catecholamines. Crit Care Med 2003; 31:237-45. [PMID: 12545022 DOI: 10.1097/00003246-200301000-00037] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES We have shown previously that inactivation of catecholamines by superoxide anions contributes to the loss of vascular reactivity to norepinephrine and the subsequent hypotension that develops in Gram-negative endotoxic shock. In addition to their vasopressor actions, catecholamines, via beta-adrenoceptor activation, are important regulators of cytokine production. Here we examined if maintenance of serum catecholamine levels by the superoxide dismutase mimetic, M40401, modulates serum cytokine levels and arterial hypotension in an Escherichia coli-infected conscious rat model of septic shock. DESIGN Controlled laboratory animal study. SETTING University animal research laboratory. SUBJECTS Pathogen-free male Sprague-Dawley rats (n = 51). INTERVENTIONS Conscious, antibiotic-treated animals with chronic in-dwelling carotid arterial and jugular venous catheters were intravenously infected with 10(10) live E. coli bacteria (O55:B5, n = 51) over 30 mins, ending at time = 0 hrs. At 0.5 or 3 hrs, infected rats were administered an intravenous infusion of either M40401 (n = 33) or 0.9% saline (n = 18) for 6 hrs at a rate of 1 mL/h. In additional experiments, anesthetized animals with catheterized left femoral arteries and veins were administered a dose-range of norepinephrine (0.1-1 microg/kg) as bolus intravenous injections. Thereafter, E. coli lipopolysaccharide (4 mg/kg, n = 6) was administered as a 0.3-mL slow bolus intravenous injection. One hour later, the norepinephrine protocol was repeated, after which the rats were administered an intravenous infusion of either M40401 or 0.9% saline for 15 mins. At 2 hrs, the dose response to norepinephrine was repeated. MEASUREMENTS AND MAIN RESULTS Rats infected with live E. coli exhibited a biphasic fall in mean arterial pressure, with mortality reaching 83% by 24 hrs. Rats treated with M40401 (0.25, 2.5, or 25 microg x kg-1 x hr-1 ) 3 hrs after bacteremic sepsis maintained a normal mean arterial pressure, and mortality was dose-dependently reduced to 44, 33, and 22%, respectively, at 24 hrs. Furthermore, serum catecholamine levels were diminished in E. coli-infected rats treated with saline compared with rats treated with M40401. In separate experiments, E. coli-infected rats were administered M40401 (25 microg x kg-1 x hr-1 ) 0.5 hr after bacterial challenge. Blood samples taken at 0, 1.5, 3.5, and 6 hrs were analyzed for tumor necrosis factor-alpha, interleukin (IL)-1 beta, IL-6, and IL-10 and for norepinephrine and epinephrine. Serum levels of tumor necrosis factor-alpha and IL-1 beta were significantly depressed in M40401-treated septic rats, whereas IL-10 was elevated. Moreover, serum catecholamine levels were greater in M40401-treated septic rats at the same time points. IL-6 levels were unaffected by M40401 treatment. Finally we examined whether treatment with M40401 could reverse the hyporeactivity to norepinephrine typifying early septic shock. Using the E. coli lipopolysaccharide (4 mg/kg) challenged anesthetized rat model of shock, we demonstrated that the vasoconstrictor ability of norepinephrine was indeed restored after M40401 treatment (25 microg/kg). CONCLUSION Postinfection treatment with the superoxide dismutase mimetic M40401 protects against hypotension, vascular hyporeactivity to catecholamines, and mortality associated with septic shock. Such beneficial effects correlate with both reduced oxidative inactivation of serum catecholamines and a reduction in canonical cytokine mediators of inflammation.
Collapse
Affiliation(s)
- Heather Macarthur
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, MO, USA.
| | | | | | | | | | | | | | | |
Collapse
|
323
|
Abstract
Oxidative stress results from an oxidant/antioxidant imbalance, an excess of oxidants and/or a depletion of antioxidants. A considerable body of recent evidence suggests that oxidant stress plays a major role in several aspects of septic shock and disseminated intravascular coagulation (DIC), and it is the subject of this review. Immunohistochemical and biochemical evidence demonstrate the significant role of reactive oxygen species (ROS) in endotoxic and hemorrhagic shock, and in endothelial injury associated with DIC syndrome. Initiation of lipid peroxidation, direct inhibition of mitochondrial respiratory chain enzymes, inactivation of glyceraldehyde-3-phosphate dehydrogenase, inhibition of membrane Na+/K+ ATP-ase activity, inactivation of membrane sodium channels, and other oxidative protein modifications contribute to the cytotoxic effect of ROS. In addition, reactive oxygen species are potent triggers of DNA strand breakage, with subsequent activation of the nuclear enzyme poly-ADP ribosyl synthetase, with eventual severe energy depletion of the cells. Pharmacological evidence suggests that the peroxynitrite-poly-ADP ribosyl synthetase pathway contributes to the cellular injury in shock and endothelial injury. Treatment with superoxide dismutase mimetics (SODms), which selectively mimic the catalytic activity of the human superoxide dismutase enzymes, have been shown to prevent in vivo shock and the cellular energetic failure associated with shock.
Collapse
|
324
|
Borawski J, Pawlak K, Naumnik B, Myśliwiec M. Relations between oxidative stress, hepatocyte growth factor, and liver disease in hemodialysis patients. Ren Fail 2002; 24:825-37. [PMID: 12472204 DOI: 10.1081/jdi-120015684] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Hepatocyte growth factor (HGF) and copper/zinc superoxide dismutase (Cu/Zn SOD) protect against tissue injury, including that due to oxidative stress (SOX). We studied whether they could be associated with each other, SOX markers, prevalence of viral hepatitis, and cardiovascular disease (CVD) and their laboratory surrogates in maintenance hemodialysis (HD) patients. METHODS In 24 patients, pre-dialysis serum HGF, plasma Cu/Zn SOD, total lipid peroxides, and serum autoantibodies against oxidized LDL were measured by ELISAs. Viral hepatitis B and C markers were determined by third generation microparticle ELISAs, and CVD was identified on a clinical basis. RESULTS In HD patients, circulating HGF, Cu/Zn SOD, and the other SOX markers were higher than in healthy controls, and HGF directly correlated with Cu/Zn SOD levels (P = 0.0006). Both HGF (P = 0.021) and Cu/Zn SOD (P=0.017) were positively associated with prevalence of viral hepatitis and serum alanine aminotransferase activity (P = 0.021 and P=0.040, respectively). Presence of CVD directly correlated with HGF (P = 0.001) but not with Cu/Zn SOD levels (P = 0.087). Circulating HGF positively related to serum C-reactive protein (P = 0.043). In patients without viral hepatitis and CVD, both HGF and Cu/Zn SOD were lower than in those with, and higher than in healthy controls. CVD (P = 0.003) and viral hepatitis (P = 0.024) were independent predictors of increased HGF, while positive viral hepatitis marker predicted increased Cu/Zn SOD levels (P = 0.019) in HD patients. There were no associations between HGF and the SOX markers in controls. CONCLUSIONS In maintenance HD patients, circulating Cu/Zn SOD and HGF levels are increased, likely as a part of the reparatory reaction against liver damage. Viral hepatitis status and liver function should be considered in further studies of Cu/Zn SOD in these subjects.
Collapse
Affiliation(s)
- Jacek Borawski
- Department of Nephrology and Internal Medicine, Medical Academy, Białystok, Poland.
| | | | | | | |
Collapse
|
325
|
Vujaskovic Z, Batinic-Haberle I, Rabbani ZN, Feng QF, Kang SK, Spasojevic I, Samulski TV, Fridovich I, Dewhirst MW, Anscher MS. A small molecular weight catalytic metalloporphyrin antioxidant with superoxide dismutase (SOD) mimetic properties protects lungs from radiation-induced injury. Free Radic Biol Med 2002; 33:857-63. [PMID: 12208373 DOI: 10.1016/s0891-5849(02)00980-2] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Radiation therapy (RT) is an important therapeutic modality in the treatment of thoracic tumors. The maximum doses to these tumors are often limited by the radiation tolerance of lung tissues. Lung injury from ionizing radiation is believed to be a consequence of oxidative stress and a cascade of cytokine activity. Superoxide dismutase (SOD) is a key enzyme in cellular defenses against oxidative damage. The objective of this study was to determine whether the SOD mimetic AEOL 10113 [manganese (III) mesotetrakis (N-ethylpyridinium-2-yl) porphyrin (MnTE-2-PyP(5+))] increases the tolerance of lung to ionizing radiation. AEOL 10113 was able to significantly reduce the severity of RT-induced lung injury. This was strongly supported with histopathology results and measurements of collagen deposition (hydroxyproline content). There was a significant reduction in the plasma level of the profibrogenic cytokine transforming growth factor-beta (TGF-beta) in the group of rats receiving RT + AEOL 10113. In conclusion, the novel SOD mimetic, AEOL 10113, demonstrates a significant protective effect from radiation-induced lung injury.
Collapse
Affiliation(s)
- Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
326
|
Cuzzocrea S, Mazzon E, Dugo L, Serraino I, Di Paola R, Britti D, De Sarro A, Pierpaoli S, Caputi A, Masini E, Salvemini D. A role for superoxide in gentamicin-mediated nephropathy in rats. Eur J Pharmacol 2002; 450:67-76. [PMID: 12176111 DOI: 10.1016/s0014-2999(02)01749-1] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Gentamicin is an antibiotic effective against Gram-negative infection, whose clinical use is limited by its nephrotoxicity. Oxygen free radicals are considered to be important mediators of gentamicin-mediated nephrotoxicity, but the exact nature of the radical in question is not known with certainty. We have investigated the potential role of superoxide in gentamicin-induced renal toxicity by using M40403, a low molecular weight synthetic manganese containing superoxide dismutase mimetic, which selectively removes superoxide. Administration of gentamicin at 100 mg/kg, s.c. for 5 days to rats induced a marked renal failure, characterised by a significant decrease in creatinine clearance and increased plasma creatinine levels, fractional excretion of sodium, lithium, urine gamma glutamyl transferase (gamma GT) and daily urine volume. A significant increase in kidney myeloperoxidase activity and lipid peroxidation was also observed in gentamicin-treated rats. M40403 (10 mg/kg, i.p. for 5 days) attenuated all these parameters of damage. Immunohistochemical localisation demonstrated nitrotyrosine formation and poly(ADP-ribose) synthetase (PARS) activation in the proximal tubule of gentamicin-treated rats. Renal histology examination confirmed tubular necrosis. M40403 significantly prevented gentamicin-induced nitrotyrosine formation, poly(ADP-ribose) synthetase activation and tubular necrosis. These results confirm our hypothesis that superoxide anions play an important role in gentamicin-mediated nephropathy and support the possible clinical use of low molecular weight synthetic superoxide dismutase mimetics in those conditions that are associated with over production of superoxide.
Collapse
Affiliation(s)
- Salvatore Cuzzocrea
- Institute of Pharmacology, University of Messina, Torre Biologica-Policlinico Universitario, Via C. Valeria Gazzi, 98100 Messina, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
327
|
Aquaro S, Caliò R, Balzarini J, Bellocchi MC, Garaci E, Perno CF. Macrophages and HIV infection: therapeutical approaches toward this strategic virus reservoir. Antiviral Res 2002; 55:209-25. [PMID: 12103427 DOI: 10.1016/s0166-3542(02)00052-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cells of macrophage lineage represent a key target of human immunodeficiency virus (HIV) in addition to CD4-lymphocytes. The absolute number of infected macrophages in the body is relatively low compared to CD4-lymphocytes. Nevertheless, the peculiar dynamics of HIV replication in macrophages, their long-term survival after HIV infection, and their ability to spread virus particles to bystander CD4-lymphocytes, make evident their substantial contribution to the pathogenesis of HIV infection. In addition, infected macrophages are able to recruit and activate CD4-lymphocytes through the production of both chemokines and virus proteins (such as nef). In addition, the activation of the oxidative pathway in HIV-infected macrophages may lead to apoptotic death of bystander, not-infected cells. Finally, macrophages are the most important target of HIV in the central nervous system. The alteration of neuronal metabolism induced by infected macrophages plays a crucial role in the pathogenesis of HIV-related encephalopathy. Taken together, these results strongly support the clinical relevance of therapeutic strategies able to interfere with HIV replication in macrophages. In vitro data show the potent efficacy of all nucleoside analogues inhibitors of HIV-reverse transcriptase in macrophages. Nevertheless, the limited penetration of some of these compounds in sequestered districts, coupled with the scarce phosphorylation ability of macrophages, suggests that nucleoside analogues carrying preformed phosphate groups may have a potential role against HIV replication in macrophages. This hypothesis is supported by the great anti-HIV activity of tenofovir and other acyclic nucleoside phosphonates in macrophages that may provide a rationale for the remarkable efficacy of tenofovir in HIV-infected patients. Non-nucleoside reverse transcriptase inhibitors (NNRTI) do not affect HIV-DNA chain termination, and for this reason their antiviral activity in macrophages is similar to that found in CD4-lymphocytes. Interestingly, protease inhibitors (PIs), acting at post-integrational stages of virus replication, are the only drugs able to interfere with virus production and release from macrophages with established and persistent HIV infection (chronically-infected cells). Since this effect is achieved at concentrations and doses higher than those effective in de-novo infected CD4-lymphocytes, it is possible that lack of adherence to therapy, and/or suboptimal dosage leading to insufficient concentrations of PIs may cause a resumption of virus replication from chronically-infected macrophages, ultimately resulting in therapeutic failure. For all these reasons, therapeutic strategies aimed to achieve the greatest and longest control of HIV replication should inhibit HIV not only in CD4-lymphocytes, but also in macrophages. Testing new and promising antiviral compounds in such cells may provide crucial hints about their efficacy in patients infected by HIV.
Collapse
Affiliation(s)
- Stefano Aquaro
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
328
|
Masini E, Cuzzocrea S, Mazzon E, Marzocca C, Mannaioni PF, Salvemini D. Protective effects of M40403, a selective superoxide dismutase mimetic, in myocardial ischaemia and reperfusion injury in vivo. Br J Pharmacol 2002; 136:905-17. [PMID: 12110615 PMCID: PMC1573411 DOI: 10.1038/sj.bjp.0704774] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
1. Myocardial injury caused by ischaemia and reperfusion comes from multiple pathogenic events, including endothelial damage, neutrophil extravasation into tissue, mast cell activation, and peroxidation of cell membrane lipids. These events are followed by myocardial cell alterations resulting eventually in cell necrosis. An enhanced formation of reactive oxygen species is widely accepted as a stimulus for tissue destruction and cardiac failure. 2. In this study, we have investigated the cardioprotective effects of M40403 in myocardial ischaemia-reperfusion injury. M40403 is a low molecular weight, synthetic manganese containing superoxide dismutase mimetic (SODm) that selectively removes superoxide anion. Ischaemia was induced in rat hearts in vivo by ligating the left anterior descending coronary artery. Thirty minutes after the induction of ischaemia, the ligature was removed and reperfusion allowed to occur for at least 60 min. M40403 (0.1-1 mg kg(-1)) was given intravenously 15 min before ischaemia. 3. The results obtained in this study showed that M40403 significantly reduced the extent of myocardial damage, mast cell degranulation and the incidence of ventricular arrhythmias. Furthermore, M40403 significantly attenuated, in a dose-dependent manner, neutrophil infiltration in the myocardium as well as the associated induction of lipid peroxidation. Calcium overload seen post-reperfusion of the ischaemic myocardium was also reduced by M40403. 4. Immunohistochemical analysis for nitrotyrosine revealed a positive staining in cardiac tissue taken after reperfusion: this was attenuated by M40403. Moreover reperfused cardiac tissue sections showed positive staining for P-selectin and for anti-intercellular adhesion molecule (ICAM-1) in the vascular endothelial cells. M40403 treatment markedly reduced the intensity and degree of P-selectin and ICAM-1 in these tissues. No staining for nitrotyrosine, P-selectin or ICAM-1 was found in cardiac tissue taken at the end of the ischaemic period. 5. Overall, M40403 treatment reduced the morphological signs of myocardial cell injury and significantly improved survival. 6. Taken together, these results clearly indicate that M40403 treatment exerts a protective effect against ischaemia-reperfusion-induced myocardial injury, supporting a key role for superoxide anion in reperfusion injuries. This suggests that synthetic enzymes of SOD such as M40403, offer a novel therapeutic approach for the treatment of ischaemic heart disease where superoxide anion plays a dominant role.
Collapse
Affiliation(s)
- Emanuela Masini
- Department of Preclinical and Clinical Pharmacology, University of Florence, 50139 Florence, Italy
| | - Salvatore Cuzzocrea
- Institute of Pharmacology, School of Medicine, University of Messina, 98100 Messina, Italy
| | - Emanuela Mazzon
- Department of Biomorphology, School of Medicine, University of Messina, Italy
| | - Cosimo Marzocca
- Department of Preclinical and Clinical Pharmacology, University of Florence, 50139 Florence, Italy
| | - Pier Francesco Mannaioni
- Department of Preclinical and Clinical Pharmacology, University of Florence, 50139 Florence, Italy
| | - Daniela Salvemini
- MetaPhore Pharmaceuticals, 1910 Innerbelt Business Center Drive, St Louis, Missouri, MO 63114, U.S.A
- Author for correspondence:
| |
Collapse
|
329
|
Peng X, Li Y. Induction of cellular glutathione-linked enzymes and catalase by the unique chemoprotective agent, 3H-1,2-dithiole-3-thione in rat cardiomyocytes affords protection against oxidative cell injury. Pharmacol Res 2002; 45:491-7. [PMID: 12162951 DOI: 10.1006/phrs.2002.0991] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Considerable evidence suggests that reactive oxygen species (ROS) are crucially involved in the pathogenesis of cardiovascular diseases, such as myocardial ischemia-reperfusion injury. Consistent with this notion, administration of exogenous antioxidative compounds has been shown to provide protection against oxidative cardiac injury. However, whether induction of endogenous cellular antioxidants by chemicals (drugs) also offers protection against oxidative cardiac injury has not been extensively investigated. In the present study, with rat cardiomyocyte H9C2 cells as an in vitro model, we have investigated the induction of cellular antioxidants by the unique chemoprotective agent, 3 H -1,2-dithiole-3-thione (D3T) and the protective effects of the D3T-induced cellular antioxidants against ROS-mediated injury in cardiac cells. Incubation of H9C2 cells with micromolar concentrations of D3T for 24 h resulted in a significant induction of a battery of cellular antioxidants, including reduced glutathione (GSH), GSH peroxidase, GSSG reductase, GSH S-transferase and catalase. To further examine the protective effects of the induced endogenous antioxidants against oxidative cell injury, H9C2 cells were pre-treated with D3T and then incubated with xanthine oxidase (XO) plus xanthine, a system that generates ROS. We observed that D3T pre-treatment of H9C2 cells led to significant protection against XO/xanthine-induced cytotoxicity as determined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) reduction and morphological changes. Taken together, this study demonstrates for the first time that a number of endogenous antioxidants in cardiomyocytes can be induced by exposure to D3T, and that this chemical (drug) induction of cellular antioxidants is accompanied by markedly increased resistance to ROS-mediated cardiac cell injury.
Collapse
Affiliation(s)
- Xingxiang Peng
- Department of Pharmaceutical Sciences, St John's University College of Pharmacy and Allied Health Professions, 8000 Utopia Parkway, Jamaica, NY 11439, USA
| | | |
Collapse
|
330
|
Chan KL, Hui CWC, Chan KW, Fung PCW, Wo JYH, Tipoe G, Tam PKH. Revisiting ischemia and reperfusion injury as a possible cause of necrotizing enterocolitis: Role of nitric oxide and superoxide dismutase. J Pediatr Surg 2002; 37:828-34. [PMID: 12037744 DOI: 10.1053/jpsu.2002.32882] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND/PURPOSE The pathogenesis of necrotizing enterocolitis (NEC) is unknown. Ischemia and reperfusion (I/R) injury has been considered a major contributing factor. Nitric oxide (NO) and superoxide dismutases (SODs) have been shown to protect bowel from I/R injury. This study aims to assess (1) the ability of premature intestine to resist I/R injury compared with mature intestine and (2) the possible role of NO and SODs in modulating such response. METHODS Intestines from 5 groups of rats (n = 6 for each study group) were studied: (1) premature, gestational age 20 days; (2) premature, gestational age 22 days; (3) full-term, newborn; (4) infant, day 15; (5) infant, day 30. EXPERIMENTS (1) The degrees of I/R injury after 0, 30, 60, 90 and 120 minutes, respectively, of ischemia and 25 minutes of I/R were assessed histologically by a pathologist who was unaware of the operative details. (2) Tissue NO and copper levels were measured by electroparamagnetic resonance (EPR) study; and nitric oxide synthases, copper zinc (CuZn) SODs and manganese (Mn) SODs were examined immunohistochemically. (3) and (4) I/R injury was assessed in rats that had received intraperitoneal injections of L-arginine (NO donor) and L-NAME (NO antagonist), respectively. RESULTS For premature (1,2), newborn (3) and mature (4,5) intestines, grades of injury at maximum I/R period studied (120 minutes of ischemia, 25 minutes of reperfusion) were 0, 0, and 3, respectively (P <.05); NO levels were 1 u +/- 1.5, 3 +/- 2.5, and 22 u +/- 3.5, respectively (P <.05); Cu levels were 150 u +/- 15, 200 u +/- 41 and 12 u +/- 2, respectively (P <.05); NOS in intestines were +, +, +++ and CuZnSODs were ++, +++, +, respectively; and MnSODs were +++, ++, -, respectively. No change in NO levels was detected in groups (1), (2), or (3) after L-arginine and L-NAME injections. CONCLUSIONS Premature rat intestine is highly resistant to I/R injury, which may indicate that I/R alone, in the absence of other predisposing factors (eg, bacterial colonization) may not be sufficient in causing NEC. Nitric oxide does not have a protective role for immature and newborn intestines in I/R as in mature intestine. The high level of SODs of the immature and newborn intestine may play an important role in its high resistance to I/R injury.
Collapse
Affiliation(s)
- K L Chan
- Departments of Surgery, Medicine, Pathology, and Anatomy, University of Hong Kong Medical Centre, Queen Mary Hospital, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
331
|
Czapski G, Samuni A, Goldstein S. Superoxide dismutase mimics: antioxidative and adverse effects. Methods Enzymol 2002; 349:234-42. [PMID: 11912913 DOI: 10.1016/s0076-6879(02)49338-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Gidon Czapski
- Department of Physical Chemistry, Hebrew University of Jerusalem, Jerusalem 91940, Israel
| | | | | |
Collapse
|
332
|
Abstract
The list of pathophysiological conditions that are associated with the overproduction of superoxide anions expands every day. The most exciting realization is that there seems to be a similarity between the tissue injury that is observed in various disease states, as superoxide anions produce tissue injury and associated inflammation in all tissues in similar ways. Tissue injury and inflammation form the basis of many disease pathologies, including ischaemia and reperfusion injuries, radiation injury, hyperoxic lung damage and atherosclerosis. This commonality provides a unique opportunity to manipulate numerous disease states with an agent that removes superoxide anions.
Collapse
Affiliation(s)
- Daniela Salvemini
- MetaPhore Pharmaceuticals, 1910 Innerbelt Business Center Drive, St Louis, Missouri 63114, USA.
| | | | | |
Collapse
|
333
|
McInnis J, Wang C, Anastasio N, Hultman M, Ye Y, Salvemini D, Johnson KM. The role of superoxide and nuclear factor-kappaB signaling in N-methyl-D-aspartate-induced necrosis and apoptosis. J Pharmacol Exp Ther 2002; 301:478-87. [PMID: 11961046 DOI: 10.1124/jpet.301.2.478] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
N-Methyl-D-aspartate (NMDA) receptor-mediated cell death is complex, probably involving elements of necrosis and apoptosis. The mechanisms underlying this phenomenon are incompletely understood but have been suggested to involve reactive oxygen species such as nitric oxide and superoxide anion (O(2)) and nuclear factor-kappaB (NF-kappaB) signaling. In this study, we used a selective nonpeptidyl superoxide dismutase mimetic (M40403) and SN50, a peptide inhibitor of NF-kappaB translocation, to investigate the role of O(2) and the potential downstream signaling molecules in cell death induced by activation of the NMDA receptor. Application of NMDA to a mixed neuronal/glial forebrain culture resulted in an early increase in the release of cytoplasmic lactate dehydrogenase (LDH), which peaked at 4 h. This was followed by a reduction in mitochondrial metabolism of the dye MTT [3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide] that continued to decrease throughout the 20-h exposure. A substantial increase in DNA fragmentation as measured by an enzyme-linked immunosorbent assay (ELISA) specific for DNA-associated histone proteins (nucleosomes) was observed at 7 and 20 h. M40403 and SN50 blocked NMDA-induced changes in LDH release at 2, 4, and 20 h, MTT metabolism at 4 and 20 h, and DNA fragmentation at 20 h as measured by the ELISA and by an increase in terminal dUTP-nick end labeling. M40403 also prevented NMDA-induced nuclear transport of NF-kappaB and increased expression of Bax relative to Bcl-X(L). SN50 was also able to block NMDA-induced cell death as well as the increased Bax/Bcl-X(L) ratio. Time course studies and experiments with SN50 and M40403 suggest that O(2) production and NF-kappaB translocation may be involved in necrosis and apoptosis, but the latter also requires an increased expression of Bax. The ability of M40403 to prevent NMDA-induced cell death relatively early in this cascade suggests its potential therapeutic utility in central nervous systems diseases such as stroke that are associated with increased NMDA receptor-mediated production of O(2).
Collapse
Affiliation(s)
- Justin McInnis
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas
| | | | | | | | | | | | | |
Collapse
|
334
|
Ren X, Xue Y, Liu J, Zhang K, Zheng J, Luo G, Guo C, Mu Y, Shen J. A novel cyclodextrin-derived tellurium compound with glutathione peroxidase activity. Chembiochem 2002; 3:356-63. [PMID: 11933237 DOI: 10.1002/1439-7633(20020402)3:4<356::aid-cbic356>3.0.co;2-o] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A novel dicyclodextrinyl ditelluride (2-TeCD) compound was devised as a functional mimic of the glutathione peroxidase (GPX) enzymes that normally remove hydroperoxides from the cell. The GPX activity of the mimic was found to be 46.7 U microM(-1), which is 46 times as active as Ebselen, a well-known GPX mimic. A detailed steady-state kinetic study was undertaken to probe the reason for the high catalytic efficiency of 2-TeCD. This high efficiency can be explained based on both the binding of the substrate to the cyclodextrin and the catalytic mechanism of 2-TeCD, which is different from that of diselenide compounds. 2-TeCD exhibits good water solubility and is chemically and biologically stable. The biological effect of 2-TeCD was evaluated by its ability to protect mitochondria from oxidative damage. 2-TeCD exhibited excellent antioxidant capacity in comparison with Ebselen.
Collapse
Affiliation(s)
- Xiaojun Ren
- Key Laboratory of Molecular Enzymology and Engineering, Ministry of Education, Jilin University, Changchun 130023, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
335
|
Ouyang XM, Fei BL, Okamura TA, Sun WY, Tang WX, Ueyama N. Synthesis, Crystal Structure and Superoxide Dismutase (SOD) Activity of Novel Seven-Coordinated Manganese(II) Complex with Multidentate Di-Schiff Base Ligands. CHEM LETT 2002. [DOI: 10.1246/cl.2002.362] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
336
|
Abstract
This review describes production and effects of reactive oxygen species (ROS) on airway function. ROS are important in many physiological processes but can also have detrimental effects on airway cells and tissues when produced in high quantities or during the absence of sufficient amounts of anti-oxidants. Therefore, these mediators play a prominent role in the pathogenesis of various inflammatory airway disorders, including asthma. Effects of ROS on airway function in asthma have been studied with isolated airway cells and tissues and with animal models and patients. With the use of inhibitors, transgenic animals and measurements of the release of ROS within the airways, it became clear that oxidative stress contributes to the initiation and worsening of inflammatory respiratory disorders.
Collapse
Affiliation(s)
- P A Henricks
- Department of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands.
| | | |
Collapse
|
337
|
Piganelli JD, Flores SC, Cruz C, Koepp J, Batinic-Haberle I, Crapo J, Day B, Kachadourian R, Young R, Bradley B, Haskins K. A metalloporphyrin-based superoxide dismutase mimic inhibits adoptive transfer of autoimmune diabetes by a diabetogenic T-cell clone. Diabetes 2002; 51:347-55. [PMID: 11812741 DOI: 10.2337/diabetes.51.2.347] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We present here the first report of a metalloporphyrin-based antioxidant that can prevent or delay the onset of autoimmune diabetes. Type 1 diabetes is an autoimmune process whereby T-cells recognize pancreatic beta-cell antigens and initiate a leukocyte infiltrate that produces proinflammatory cytokines and reactive oxygen species (ROS), ultimately leading to beta-cell destruction. Because islet beta-cells have a reduced capacity to scavenge free radicals, they are very sensitive to ROS action. Metalloporphyrin-based superoxide dismutase (SOD) mimics scavenge ROS and protect cells from oxidative stress and apoptosis. To investigate the effect of SOD mimics and the role of oxidative stress in the development of autoimmune diabetes in vivo, we used a diabetogenic T-cell clone, BDC-2.5, to induce rapid onset of diabetes in young nonobese diabetic-severe combined immunodeficient mice (NOD.scid). Disease was significantly delayed or prevented altogether by treatment of recipient mice with an SOD mimic, AEOL-10113, before transfer of the BDC-2.5 clone. To investigate the mechanisms of protection, in vitro assays for T-cell proliferation and gamma-interferon (IFN-gamma) production were carried out using the T-cell clone BDC-2.5. We found that the SOD mimic significantly inhibited antigen-presenting cell-dependent T-cell proliferation and IFN-gamma production in vitro. In addition, pretreatment of lipopolysaccharide (LPS)-stimulated peritoneal macrophages with SOD mimic inhibited the LPS-dependent increase in TNF-alpha as well as the NADPH oxidase-dependent release of superoxide. Finally, this compound protected NIT-1 insulinoma cells from interleukin-1beta and alloxan cytotoxicity in vitro.
Collapse
Affiliation(s)
- Jon D Piganelli
- Department of Immunology, University of Colorado Health Sciences Center and Barbara Davis Center for Childhood Diabetes, Denver, Colorado, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
338
|
Robbins ME, Zhao W, Davis CS, Toyokuni S, Bonsib SM. Radiation-induced kidney injury: a role for chronic oxidative stress? Micron 2002; 33:133-41. [PMID: 11567882 DOI: 10.1016/s0968-4328(01)00006-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Kidney irradiation clearly leads to a progressive reduction in function associated with concomitant glomerulosclerosis and/or tubulointerstitial fibrosis. However, the particular cell types, mediators and/or mechanisms involved in the development and progression of radiation nephropathy remain ill defined. Angiotensin II (Ang II) plays a major pathogenic role; administration of Ang II blockers markedly abrogates the severity of radiation nephropathy in experimental models. Both ionizing radiation and Ang II signal via generation of reactive oxygen species (ROS). Thus, we hypothesized that localized kidney irradiation might lead to a chronic oxidative stress. In view of the difficulty in measuring ROS in vivo we adopted an indirect immunohistochemical approach in which we used a monoclonal antibody specific for 8-hydroxy-2'-deoxyguanosine (8-OHdG), one of the most commonly used markers of DNA oxidation. The right kidney of 7-8 week-old male Sprague-Dawley rats was removed. Five to 6 weeks later the remaining hypertrophied kidney was irradiated with single doses of 0-20.0 Gy X-rays. Groups of rats, three per dose, were killed at 4, 8, 16 and 24 weeks post-irradiation, their kidneys fixed, and sections stained with the 8-OHdG-specific antibody N45.1. For quantitation of glomerular DNA oxidation with the N45.1 antibody stained sections, 50 glomeruli/animal were counted. The presence of any intensely stained nuclei within the glomerular tuft was scored as positive. Quantitation of tubular DNA oxidation employed a 10 x 10 point ocular grid. Sections were examined at 400 magnification; 250 tubular profiles were counted. All tubules with any nuclear staining were scored as positive.Sham-irradiated kidneys showed little evidence of DNA oxidation over the experimental period. In contrast, localized kidney irradiation led to a marked, dose-independent increase in glomerular and tubular cell nuclear DNA oxidation. This increase was evident at the first time point studied, i.e. 4 weeks after irradiation, and persisted for up to 24 weeks postirradiation. DNA oxidation in the irradiated kidney was only seen in apparently viable glomerular and tubular cells. Thus, while from 16 to 24 weeks post-irradiation structural alterations had progressed to glomerular sclerosis and tubular atrophy, positive staining for 8-OHdG was not observed in severely atrophic tubules. Similarly, fewer positive staining cells were noted in glomeruli undergoing sclerosis, while none were seen in totally sclerotic glomeruli. These data support the hypothesis that renal irradiation is associated with a chronic and persistent oxidative stress.
Collapse
Affiliation(s)
- Mike E Robbins
- Free Radical and Radiation Biology Program, Department of Radiology, The University of Iowa, B-180 ML, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
339
|
Mollace V, Salvemini D, Riley DP, Muscoli C, Iannone M, Granato T, Masuelli L, Modesti A, Rotiroti D, Nisticó R, Bertoli A, Perno C, Aquaro S. The contribution of oxidative stress in apoptosis of human‐cultured astroglial cells induced by supernatants of HIV‐1‐infected macrophages. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.1.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Vincenzo Mollace
- Faculty of Pharmacy, University of Catanzaro “Magna Graecia”, Roccelletta di Borgia, Italy
| | | | | | - Carolina Muscoli
- Faculty of Pharmacy, University of Catanzaro “Magna Graecia”, Roccelletta di Borgia, Italy
| | | | | | - Laura Masuelli
- Department of Experimental Medicine and Biochemical Sciences, University of Rome ‘Tor Vergata’, Italy
| | - Andrea Modesti
- Department of Experimental Medicine and Biochemical Sciences, University of Rome ‘Tor Vergata’, Italy
| | | | - Robert Nisticó
- Department of Experimental Medicine and Biochemical Sciences, University of Rome ‘Tor Vergata’, Italy
| | | | - Carlo‐Federico Perno
- Department of Experimental Medicine and Biochemical Sciences, University of Rome ‘Tor Vergata’, Italy
- IRCCS “L. Spallanzani”, Rome, Italy
| | - Stefano Aquaro
- Department of Experimental Medicine and Biochemical Sciences, University of Rome ‘Tor Vergata’, Italy
| |
Collapse
|
340
|
Abstract
At high concentrations, free radicals and radical-derived, nonradical reactive species are hazardous for living organisms and damage all major cellular constituents. At moderate concentrations, however, nitric oxide (NO), superoxide anion, and related reactive oxygen species (ROS) play an important role as regulatory mediators in signaling processes. Many of the ROS-mediated responses actually protect the cells against oxidative stress and reestablish "redox homeostasis." Higher organisms, however, have evolved the use of NO and ROS also as signaling molecules for other physiological functions. These include regulation of vascular tone, monitoring of oxygen tension in the control of ventilation and erythropoietin production, and signal transduction from membrane receptors in various physiological processes. NO and ROS are typically generated in these cases by tightly regulated enzymes such as NO synthase (NOS) and NAD(P)H oxidase isoforms, respectively. In a given signaling protein, oxidative attack induces either a loss of function, a gain of function, or a switch to a different function. Excessive amounts of ROS may arise either from excessive stimulation of NAD(P)H oxidases or from less well-regulated sources such as the mitochondrial electron-transport chain. In mitochondria, ROS are generated as undesirable side products of the oxidative energy metabolism. An excessive and/or sustained increase in ROS production has been implicated in the pathogenesis of cancer, diabetes mellitus, atherosclerosis, neurodegenerative diseases, rheumatoid arthritis, ischemia/reperfusion injury, obstructive sleep apnea, and other diseases. In addition, free radicals have been implicated in the mechanism of senescence. That the process of aging may result, at least in part, from radical-mediated oxidative damage was proposed more than 40 years ago by Harman (J Gerontol 11: 298-300, 1956). There is growing evidence that aging involves, in addition, progressive changes in free radical-mediated regulatory processes that result in altered gene expression.
Collapse
Affiliation(s)
- Wulf Dröge
- Division of Immunochemistry, Deutsches Krebsforschungszentrum, Heidelberg, Germany.
| |
Collapse
|
341
|
Abstract
Diabetes-specific microvascular disease is a leading cause of blindness, renal failure and nerve damage, and diabetes-accelerated atherosclerosis leads to increased risk of myocardial infarction, stroke and limb amputation. Four main molecular mechanisms have been implicated in glucose-mediated vascular damage. All seem to reflect a single hyperglycaemia-induced process of overproduction of superoxide by the mitochondrial electron-transport chain. This integrating paradigm provides a new conceptual framework for future research and drug discovery.
Collapse
Affiliation(s)
- M Brownlee
- Department of Medicine, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, 10461, USA.
| |
Collapse
|
342
|
Malassagne B, Ferret PJ, Hammoud R, Tulliez M, Bedda S, Trébéden H, Jaffray P, Calmus Y, Weill B, Batteux F. The superoxide dismutase mimetic MnTBAP prevents Fas-induced acute liver failure in the mouse. Gastroenterology 2001; 121:1451-9. [PMID: 11729124 DOI: 10.1053/gast.2001.29590] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Acute liver failure (ALF) of viral origin results from massive hepatocyte apoptosis induced by the interaction between Fas expressed on hepatocytes and Fas ligand on activated T lymphocytes. Because Fas-induced apoptosis of hepatocytes involves mitochondrial damages and potential reactive oxygen species (ROS) overproduction, we investigated whether manganese III tetrakis (5,10,15,20 benzoic acid) (MnTBAP), a nonpeptidyl mimic of superoxide dismutase (SOD), can inhibit Fas-induced ALF. METHODS An agonist anti-Fas monoclonal antibody was used to induce hepatocyte apoptosis in vitro and ALF in vivo. RESULTS Preventive and curative treatments by MnTBAP significantly increased survival rates and significantly reduced aspartate aminotransferase levels and parenchymal lesions. ROS generation was suggested by those beneficial effects and significant increases in SOD and Gpx activities after anti-Fas injection. Flow cytometry of isolated hepatocytes incubated with anti-Fas monoclonal antibody showed that ROS production was associated with the collapse of transmembrane potential and loss of cardiolipin content. After injection of anti-Fas monoclonal antibody, mitochondrial Bcl-2 was decreased, cytochrome c released, and caspase-3 activated. Mitochondrial alterations and their consequences were abrogated by MnTBAP. CONCLUSIONS ROS are key executioners in Fas-induced hepatocyte apoptosis. This finding explains why a nonpeptidyl mimic of SOD can cure ALF in a model of viral hepatitis, pointing out the potential interest of this molecule in humans.
Collapse
Affiliation(s)
- B Malassagne
- Laboratoire d'Immunologie, Faculté Cochin, Université Paris V, 75679 Paris Cedex 14, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
343
|
Salvemini D, Mazzon E, Dugo L, Serraino I, De Sarro A, Caputi AP, Cuzzocrea S. Amelioration of joint disease in a rat model of collagen-induced arthritis by M40403, a superoxide dismutase mimetic. ARTHRITIS AND RHEUMATISM 2001; 44:2909-21. [PMID: 11762952 DOI: 10.1002/1529-0131(200112)44:12<2909::aid-art479>3.0.co;2-#] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To investigate the effects of M40403, a synthetic mimetic of superoxide dismutase (SOD), on collagen-induced arthritis (CIA) in rats. METHODS CIA was elicited in Lewis rats by intradermal injection of 100 microl of an emulsion of bovine type II collagen (CII) in Freund's incomplete adjuvant at the base of the tail. A second injection was given on day 21. RESULTS Immunization induced an erosive arthritis of the hind paws. Macroscopic evidence of CIA first appeared as periarticular erythema and edema in the hind paws by days 24-26 after the first injection, with a 100% incidence by days 27. Severity progressed over a 35-day period. Radiography revealed soft tissue swelling and focal resorption of bone, together with osteophyte formation in the tibiotarsal joint. Histopathologic features included erosion of the articular cartilage at the joint margins and subchondral bone resorption associated with bone-derived multinucleated cell-containing granulomatous lesions. Treatment with M40403 (2-10 mg/kg/day) starting at the onset of arthritis (day 25) ameliorated the clinical signs on days 26-35 and improved the histologic findings in the joint and paw. Immunohistochemical analysis for nitrotyrosine (a marker of peroxynitrite formation) and poly(ADP-ribose) polymerase (PARP; a nuclear enzyme activated by DNA single-strand damage) revealed positive staining in the inflamed joints of CII-treated rats, suggestive of the formation of peroxynitrite and DNA damage, both of which were markedly reduced by M40403 treatment. Radiographic evidence of protection from bone resorption, osteophyte formation, and soft tissue swelling was apparent in the tibiotarsal joints of M40403-treated rats. Arthritic rats treated with M40403 gained weight at the same rate and to the same extent as normal, nonarthritic rats. CONCLUSION This study shows that a low molecular weight mimetic of SOD, M40403, attenuates the degree of chronic inflammation, tissue damage, and bone damage associated with CIA in the rat, and supports the possible use of SOD mimetics as therapeutic agents for the management of chronic diseases such as rheumatoid arthritis.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Antibody Formation/drug effects
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Arthrography
- Collagen
- Collagen Type XI
- Disease Models, Animal
- Interleukin-1/biosynthesis
- Interleukin-1/blood
- Joints/metabolism
- Joints/pathology
- Male
- Manganese
- Molecular Weight
- Organometallic Compounds/chemistry
- Organometallic Compounds/pharmacology
- Proteins/metabolism
- Rats
- Rats, Inbred Lew
- Superoxide Dismutase/chemistry
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/metabolism
- Tyrosine/analogs & derivatives
- Tyrosine/metabolism
- Weight Gain/drug effects
Collapse
Affiliation(s)
- D Salvemini
- MetaPhore Pharmaceuticals, St. Louis, Missouri 63114, USA.
| | | | | | | | | | | | | |
Collapse
|
344
|
Cuzzocrea S, Mazzon E, Dugo L, Caputi AP, Riley DP, Salvemini D. Protective effects of M40403, a superoxide dismutase mimetic, in a rodent model of colitis. Eur J Pharmacol 2001; 432:79-89. [PMID: 11734191 DOI: 10.1016/s0014-2999(01)01427-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease is characterised by oxidative and nitrosative stress, leukocyte infiltration, and up-regulation of intercellular adhesion molecule 1 (ICAM-1) expression in the colon. The aim of the present study was to examine the effects of M40403, a superoxide dismutase mimetic, in rats subjected to experimental colitis. Colitis was induced in rats by intracolonic instillation of trinitrobenzene sulfonic acid (TNBS). Rats experienced bloody diarrhoea and significant loss of body weight. At 4 days after TNBS administration, the colon damage was characterised by areas of mucosal necrosis. Neutrophil infiltration (indicated by myeloperoxidase activity in the mucosa) was associated with up-regulation of ICAM-1 and expression of P-selectin and high levels of malondialdehyde. Immunohistochemistry for nitrotyrosine and poly (ADP-ribose) synthetase showed an intense staining in the inflamed colon. Treatment with M40403 (5 mg/kg daily i.p.) significantly reduced the appearance of diarrhoea and the loss of body weight. This was associated with a remarkable amelioration of the disruption of the colonic architecture as well as a significant reduction of colonic myeloperoxidase activity and malondialdehyde levels. M40403 also reduced the appearance of nitrotyrosine and poly (ADP-ribose) synthetase immunoreactivity in the colon as well as reduced the up-regulation of ICAM-1 and the expression of P-selectin. The results of this study suggested that administration of a superoxide dismutase mimetic may be beneficial for treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- S Cuzzocrea
- Institute of Pharmacology, University of Messina, Messina, Italy
| | | | | | | | | | | |
Collapse
|
345
|
Ren X, Xue Y, Zhang K, Liu J, Luo G, Zheng J, Mu Y, Shen J. A novel dicyclodextrinyl ditelluride compound with antioxidant activity. FEBS Lett 2001; 507:377-80. [PMID: 11696375 DOI: 10.1016/s0014-5793(01)03011-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Reactive oxygen species (ROS) primarily arise from products of normal metabolic activities and are thought to be the etiology of many diseases. A novel dicyclodextrinyl ditelluride (2-TeCD) compound was designed to be a functional mimic of the glutathione peroxidase that normally removes ROS. 2-TeCD exhibited highly catalytic efficiency and good water solubility. Antioxidant activity was studied by using ferrous sulfate/ascorbate-induced mitochondria damage model system. 2-TeCD protected the mitochondria against oxidative damage in a dose-dependent manner and exhibited also great antioxidant ability in comparison with 2-phenyl-1,2-benziososelenazol-3(2H)-one. The mimic may result in better clinical therapies for the treatment of ROS-mediated diseases.
Collapse
Affiliation(s)
- X Ren
- Key Laboratory for Supramolecular Structure and Materials of Ministry of Education, Jilin University, China
| | | | | | | | | | | | | | | |
Collapse
|
346
|
Jitsukawa K, Harata M, Arii H, Sakurai H, Masuda H. SOD activities of the copper complexes with tripodal polypyridylamine ligands having a hydrogen bonding site. Inorganica Chim Acta 2001. [DOI: 10.1016/s0020-1693(01)00567-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
347
|
Coppey LJ, Gellett JS, Davidson EP, Dunlap JA, Lund DD, Salvemini D, Yorek MA. Effect of M40403 treatment of diabetic rats on endoneurial blood flow, motor nerve conduction velocity and vascular function of epineurial arterioles of the sciatic nerve. Br J Pharmacol 2001; 134:21-9. [PMID: 11522593 PMCID: PMC1572916 DOI: 10.1038/sj.bjp.0704216] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. To further explore the effect of antioxidants in preventing diabetes-induced vascular and neural dysfunction we treated streptozotocin-induced diabetic rats daily with subcutaneous injections of 10 mg kg(-1) of M40403 (n=11) and compared the results obtained from 17 control rats and 14 untreated diabetic rats. M40403 is a manganese(II) complex with a bis(cyclo-hexylpyridine)-substituted macrocyclic ligand that was designed to be a selective functional mimetic of superoxide dismutase. Thus, M40403 provides a useful tool to evaluate the roles of superoxide in disease states. 2. Treatment with M40403 significantly improved diabetes-induced decrease in endoneurial blood flow, acetylcholine-mediated vascular relaxation in arterioles that provide circulation to the region of the sciatic nerve, and motor nerve conduction velocity (P<0.05). M40403 treatment also reduced the appearance of superoxide in the aorta and epineurial vessels and peroxynitrite in epineurial vessels. Treating diabetic rats with M40403 reduced the diabetes-induced increase in thiobarbituric acid reactive substances in serum but did not prevent the decrease in lens glutathione level. Treating diabetic rats with M40403 did not improve sciatic nerve Na(+)/K(+) ATPase activity or the sorbitol, fructose or myo-inositol content of the sciatic nerve. 3. These studies provide additional evidence that diabetes-induced oxidative stress and the generation of superoxide and perhaps peroxynitrite may be partially responsible for the development of diabetic vascular and neural complications.
Collapse
Affiliation(s)
- Lawrence J Coppey
- Veterans Affairs Medical Center, Diabetes Endocrinology Research Center and Department of Internal Medicine, University of Iowa, Iowa City, Iowa, IA 52246, U.S.A
| | - Jill S Gellett
- Veterans Affairs Medical Center, Diabetes Endocrinology Research Center and Department of Internal Medicine, University of Iowa, Iowa City, Iowa, IA 52246, U.S.A
| | - Eric P Davidson
- Veterans Affairs Medical Center, Diabetes Endocrinology Research Center and Department of Internal Medicine, University of Iowa, Iowa City, Iowa, IA 52246, U.S.A
| | - Joyce A Dunlap
- Veterans Affairs Medical Center, Diabetes Endocrinology Research Center and Department of Internal Medicine, University of Iowa, Iowa City, Iowa, IA 52246, U.S.A
| | - Donald D Lund
- Veterans Affairs Medical Center, Diabetes Endocrinology Research Center and Department of Internal Medicine, University of Iowa, Iowa City, Iowa, IA 52246, U.S.A
| | - Daniela Salvemini
- MetaPhore Pharmaceuticals, 1910 Innerbelt Business Center Drive, St. Louis, Missouri, MO 63114, U.S.A
| | - Mark A Yorek
- Veterans Affairs Medical Center, Diabetes Endocrinology Research Center and Department of Internal Medicine, University of Iowa, Iowa City, Iowa, IA 52246, U.S.A
- Author for correspondence:
| |
Collapse
|
348
|
Pong K, Doctrow SR, Huffman K, Adinolfi CA, Baudry M. Attenuation of staurosporine-induced apoptosis, oxidative stress, and mitochondrial dysfunction by synthetic superoxide dismutase and catalase mimetics, in cultured cortical neurons. Exp Neurol 2001; 171:84-97. [PMID: 11520123 DOI: 10.1006/exnr.2001.7747] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuronal apoptosis induced by staurosporine (STS) involves multiple cellular and molecular events, such as the production of reactive oxygen species (ROS). In this study, we tested the efficacy of two synthetic superoxide dismutase/catalase mimetics (EUK-134 and EUK-189) on neuronal apoptosis, oxidative stress, and mitochondrial dysfunction produced by STS in primary cortical neuronal cultures. Exposure of cultures to STS for 24 h increased lactate dehydrogenase (LDH) release, the number of apoptotic cells, and decreased trypan blue exclusion. Pretreatment with 20 microM EUK-134 or 0.5 microM EUK-189 significantly attenuated STS-induced neurotoxicity, as did pretreatment with the caspase-1 inhibitor, Ac-YVAD-CHO, but not the caspase-3 inhibitor, Ac-DEVD-CHO. Posttreatment (1-3 h following STS exposure) with 20 microM EUK-134 or 0.5 microM EUK-189 significantly reduced STS-induced LDH release, in a time-dependent manner. Exposure of cultures to STS for 1 h produced an elevation of ROS, as determined by increased levels of 2,7-dichlorofluorescein (DCF). This rapid elevation of ROS was followed by an increase in lipid peroxidation, and both the increase in DCF fluorescence and in lipid peroxidation were significantly blocked by pretreatment with EUK-134. STS treatment for 3-6 h increased cytochrome c release from mitochondria into the cytosol, an effect also blocked by pretreatment with EUK-134. These results indicate that intracellular oxidative stress and mitochondrial dysfunction are critically involved in STS-induced neurotoxicity. However, there are additional cellular responses to STS, which are insensitive to treatment with radical scavengers that also contribute to its neurotoxicity.
Collapse
Affiliation(s)
- K Pong
- Neuroscience Program, University of Southern California, Los Angeles, California, USA.
| | | | | | | | | |
Collapse
|
349
|
Cuzzocrea S, Reiter RJ. Pharmacological action of melatonin in shock, inflammation and ischemia/reperfusion injury. Eur J Pharmacol 2001; 426:1-10. [PMID: 11525764 DOI: 10.1016/s0014-2999(01)01175-x] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A vast amount of circumstantial evidence implicates oxygen-derived free radicals (especially, superoxide and hydroxyl radical) and high-energy oxidants (such as peroxynitrite) as mediators of inflammation, shock and ischemia/reperfusion injury. The aim of this review is to describe recent developments in the field of oxidative stress research. The first part of the review focuses on the roles of reactive oxygen species in shock, inflammation and ischemia/reperfusion injury. The second part of the review described the pharmacological action of melatonin in shock, ischemia/reperfusion, and inflammation. The role of reactive oxygen species: Immunohistochemical and biochemical evidence demonstrate the production of reactive oxygen species in shock, inflammation and ischemia/reperfusion injury. Reactive oxygen species can initiate a wide range of toxic oxidative reactions. These include the initiation of lipid peroxidation, direct inhibition of mitochondrial respiratory chain enzymes, inactivation of glyceraldehyde-3 phosphate dehydrogenase, inhibition of membrane sodium/potassium ATP-ase activity, inactivation of membrane sodium channels, and other oxidative modifications of proteins. All these toxicities are likely to play a role in the pathophysiology of shock, inflammation and ischemia and reperfusion. Treatment with melatonin has been shown to prevent in vivo the delayed vascular decompensation and the cellular energetic failure associated with shock, inflammation and ischemia/reperfusion injury. Reactive oxygen species (e.g., superoxide, peroxynitrite, hydroxyl radical and hydrogen peroxide) are all potential reactants capable of initiating DNA single-strand breakage, with subsequent activation of the nuclear enzyme poly (ADP-ribose) synthetase (PARS), leading to eventual severe energy depletion of the cells, and necrotic-type cell death. Recently, it has been demonstrated that melatonin inhibits the activation of poly (ADP-ribose) synthetase, and prevents the organ injury associated with shock, inflammation and ischemia and reperfusion.
Collapse
Affiliation(s)
- S Cuzzocrea
- Institute of Pharmacology, School of Medicine, University of Messina, Torre Biologica, Policlinico Universitario, Via C. Valeria-Gazzi, 98100, Messina, Italy.
| | | |
Collapse
|
350
|
Abstract
Hallervorden-Spatz syndrome is an autosomal-recessive brain disorder with signs of extrapyramidal dysfunction and mental deterioration, which associate with iron accumulation in globus pallidus and substantia nigra pars reticulata. Studies of oxidant stress in parkinsonian animal models suggest a linkage of iron overload to axonal dystrophy. Redox cycling of iron complexes (i.e., ferrous citrate and hemoglobin) increases hydroxyl radicals, lipid peroxidation, axonal dystrophy, and necrotic or apoptotic cell death. An increase of oxidative stress in the basal ganglia because of redox cycling of iron complexes leads to dopamine overflow and psychomotor dysfunction. Iron overload-induced axonal dystrophy has been demonstrated consistently using in vitro and in vivo models with a prominent feature of lipid peroxidation. This iron-induced oxidative stress is often accentuated by ascorbate and oxidized glutathione, although it is suppressed by the following antioxidants: S-nitrosoglutathione or nitric oxide, MnSOD mimics, manganese, U-78517F, Trolox, and deferoxamine. Preconditioning induction of stress proteins (i.e., hemeoxygenase-1 and neuronal nitric oxide synthase) and hypothermia therapy suppress the generation of toxic reactive oxygen, lipid, and thiol species evoked by bioactive iron complexes in the brain. Finally, combined antioxidative therapeutics and gene induction procedures may prove to be useful for slowing progressive neurodegeneration caused by iron overload in the brain.
Collapse
Affiliation(s)
- C C Chiueh
- Unit on Neurodegeneration and Neuroprotection, Laboratory of Clinical Science, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1264, USA
| |
Collapse
|