351
|
Lett TA, Vogel BO, Ripke S, Wackerhagen C, Erk S, Awasthi S, Trubetskoy V, Brandl EJ, Mohnke S, Veer IM, Nöthen MM, Rietschel M, Degenhardt F, Romanczuk-Seiferth N, Witt SH, Banaschewski T, Bokde ALW, Büchel C, Quinlan EB, Desrivières S, Flor H, Frouin V, Garavan H, Gowland P, Ittermann B, Martinot JL, Martinot MLP, Nees F, Papadopoulos-Orfanos D, Paus T, Poustka L, Fröhner JH, Smolka MN, Whelan R, Schumann G, Tost H, Meyer-Lindenberg A, Heinz A, Walter H, IMAGEN consortium. Cortical Surfaces Mediate the Relationship Between Polygenic Scores for Intelligence and General Intelligence. Cereb Cortex 2020; 30:2707-2718. [PMID: 31828294 PMCID: PMC7175009 DOI: 10.1093/cercor/bhz270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/23/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022] Open
Abstract
Recent large-scale, genome-wide association studies (GWAS) have identified hundreds of genetic loci associated with general intelligence. The cumulative influence of these loci on brain structure is unknown. We examined if cortical morphology mediates the relationship between GWAS-derived polygenic scores for intelligence (PSi) and g-factor. Using the effect sizes from one of the largest GWAS meta-analysis on general intelligence to date, PSi were calculated among 10 P value thresholds. PSi were assessed for the association with g-factor performance, cortical thickness (CT), and surface area (SA) in two large imaging-genetics samples (IMAGEN N = 1651; IntegraMooDS N = 742). PSi explained up to 5.1% of the variance of g-factor in IMAGEN (F1,1640 = 12.2-94.3; P < 0.005), and up to 3.0% in IntegraMooDS (F1,725 = 10.0-21.0; P < 0.005). The association between polygenic scores and g-factor was partially mediated by SA and CT in prefrontal, anterior cingulate, insula, and medial temporal cortices in both samples (PFWER-corrected < 0.005). The variance explained by mediation was up to 0.75% in IMAGEN and 0.77% in IntegraMooDS. Our results provide evidence that cumulative genetic load influences g-factor via cortical structure. The consistency of our results across samples suggests that cortex morphology could be a novel potential biomarker for neurocognitive dysfunction that is among the most intractable psychiatric symptoms.
Collapse
Affiliation(s)
- Tristram A Lett
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany
| | - Bob O Vogel
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Carolin Wackerhagen
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany
| | - Susanne Erk
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany
| | - Swapnil Awasthi
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vassily Trubetskoy
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eva J Brandl
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany
| | - Sebastian Mohnke
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany
| | - Ilya M Veer
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany
| | - Markus M Nöthen
- Department of Genomics, Life & Brain Center, University of Bonn, 53127 Bonn, Germany
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
| | - Marcella Rietschel
- Central Institute of Mental Health, University of Heidelberg, 68159 Mannheim, Germany
| | - Franziska Degenhardt
- Department of Genomics, Life & Brain Center, University of Bonn, 53127 Bonn, Germany
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
| | - Nina Romanczuk-Seiferth
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany
| | - Stephanie H Witt
- Central Institute of Mental Health, University of Heidelberg, 68159 Mannheim, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, 68159 Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College, Institute of Neuroscience, College Green, Dublin 2, Ireland
| | - Christian Büchel
- University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Erin B Quinlan
- Centre for Population Neuroscience and Stratified Medicine (PONS) and MRC-SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College De Crespigny Park, London, WC2R 2LS, UK
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Stratified Medicine (PONS) and MRC-SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College De Crespigny Park, London, WC2R 2LS, UK
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
| | - Vincent Frouin
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, 05405 Burlington, VT, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry,” University Paris Sud, University Paris Descartes – Sorbonne Paris Cité; and Maison de Solenn, Paris, France
| | - Marie-Laure Paillère Martinot
- Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud, University Paris Descartes; Sorbonne Université; and AP-HP, Paris, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, 68159 Mannheim, Germany
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | | | - Tomáš Paus
- Holland Bloorview Kids Rehabilitation Hospital and Departments of Psychology and Psychiatry, Bloorview Research Institute, University of Toronto, Toronto, Ontario, M6A 2E1, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, 37075, Göttingen, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS) and MRC-SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College De Crespigny Park, London, WC2R 2LS, UK
| | - Heike Tost
- Central Institute of Mental Health, University of Heidelberg, 68159 Mannheim, Germany
| | | | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany
| | | |
Collapse
|
352
|
Soerensen M, Hozakowska-Roszkowska DM, Nygaard M, Larsen MJ, Schwämmle V, Christensen K, Christiansen L, Tan Q. A Genome-Wide Integrative Association Study of DNA Methylation and Gene Expression Data and Later Life Cognitive Functioning in Monozygotic Twins. Front Neurosci 2020; 14:233. [PMID: 32327964 PMCID: PMC7160301 DOI: 10.3389/fnins.2020.00233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/02/2020] [Indexed: 12/02/2022] Open
Abstract
Monozygotic twins are genetically identical but rarely phenotypically identical. Epigenetic and transcriptional variation could influence this phenotypic discordance. Investigation of intra-pair differences in molecular markers and a given phenotype in monozygotic twins controls most of the genetic contribution, enabling studies of the molecular features of the phenotype. This study aimed to identify genes associated with cognition in later life using integrated enrichment analyses of the results of blood-derived intra-pair epigenome-wide and transcriptome-wide association analyses of cognition in 452 middle-aged and old-aged monozygotic twins (56–80 years). Integrated analyses were performed with an unsupervised approach using KeyPathwayMiner, and a supervised approach using the KEGG and Reactome databases. The supervised approach identified several enriched gene sets, including “neuroactive ligand receptor interaction” (p-value = 1.62∗10-2), “Neurotrophin signaling” (p-value = 2.52∗10-3), “Alzheimer’s disease” (p-value = 1.20∗10-2), and “long-term depression” (p-value = 1.62∗10-2). The unsupervised approach resulted in a 238 gene network, including the Alzheimer’s disease gene APP (Amyloid Beta Precursor Protein) as an exception node, and several novel candidate genes. The strength of the unsupervised method is that it can reveal previously uncharacterized sub-pathways and detect interplay between biological processes, which remain undetected by the current supervised methods. In conclusion, this study identified several previously reported cognition genes and pathways and, additionally, puts forward novel candidates for further verification and validation.
Collapse
Affiliation(s)
- Mette Soerensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Center for Individualized Medicine in Arterial Diseases, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Dominika Marzena Hozakowska-Roszkowska
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Marianne Nygaard
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Martin J Larsen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Kaare Christensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Lene Christiansen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Qihua Tan
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
353
|
Smeland OB, Bahrami S, Frei O, Shadrin A, O'Connell K, Savage J, Watanabe K, Krull F, Bettella F, Steen NE, Ueland T, Posthuma D, Djurovic S, Dale AM, Andreassen OA. Genome-wide analysis reveals extensive genetic overlap between schizophrenia, bipolar disorder, and intelligence. Mol Psychiatry 2020; 25:844-853. [PMID: 30610197 PMCID: PMC6609490 DOI: 10.1038/s41380-018-0332-x] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/18/2018] [Accepted: 11/29/2018] [Indexed: 02/08/2023]
Abstract
Schizophrenia (SCZ) and bipolar disorder (BD) are severe mental disorders associated with cognitive impairment, which is considered a major determinant of functional outcome. Despite this, the etiology of the cognitive impairment is poorly understood, and no satisfactory cognitive treatments exist. Increasing evidence indicates that genetic risk for SCZ may contribute to cognitive impairment, whereas the genetic relationship between BD and cognitive function remains unclear. Here, we combined large genome-wide association study data on SCZ (n = 82,315), BD (n = 51,710), and general intelligence (n = 269,867) to investigate overlap in common genetic variants using conditional false discovery rate (condFDR) analysis. We observed substantial genetic enrichment in both SCZ and BD conditional on associations with intelligence indicating polygenic overlap. Using condFDR analysis, we leveraged this enrichment to increase statistical power and identified 75 distinct genomic loci associated with both SCZ and intelligence, and 12 loci associated with both BD and intelligence at conjunctional FDR < 0.01. Among these loci, 20 are novel for SCZ, and four are novel for BD. Most SCZ risk alleles (61 of 75, 81%) were associated with poorer cognitive performance, whereas most BD risk alleles (9 of 12, 75%) were associated with better cognitive performance. A gene set analysis of the loci shared between SCZ and intelligence implicated biological processes related to neurodevelopment, synaptic integrity, and neurotransmission; the same analysis for BD was underpowered. Altogether, the study demonstrates that both SCZ and BD share genetic influences with intelligence, albeit in a different manner, providing new insights into their genetic architectures.
Collapse
Affiliation(s)
- Olav B Smeland
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway.
| | - Shahram Bahrami
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Oleksandr Frei
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Alexey Shadrin
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Kevin O'Connell
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Jeanne Savage
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Kyoko Watanabe
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Florian Krull
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Francesco Bettella
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Torill Ueland
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, section Complex Trait Genetics, Neuroscience Campus Amsterdam, VU Medical Center, Amsterdam, the Netherlands
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anders M Dale
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Neuroscience, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, USA
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway.
| |
Collapse
|
354
|
Malanchini M, Rimfeld K, Allegrini AG, Ritchie SJ, Plomin R. Cognitive ability and education: How behavioural genetic research has advanced our knowledge and understanding of their association. Neurosci Biobehav Rev 2020; 111:229-245. [PMID: 31968216 PMCID: PMC8048133 DOI: 10.1016/j.neubiorev.2020.01.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/30/2019] [Accepted: 01/17/2020] [Indexed: 01/07/2023]
Abstract
Cognitive ability and educational success predict positive outcomes across the lifespan, from higher earnings to better health and longevity. The shared positive outcomes associated with cognitive ability and education are emblematic of the strong interconnections between them. Part of the observed associations between cognitive ability and education, as well as their links with wealth, morbidity and mortality, are rooted in genetic variation. The current review evaluates the contribution of decades of behavioural genetic research to our knowledge and understanding of the biological and environmental basis of the association between cognitive ability and education. The evidence reviewed points to a strong genetic basis in their association, observed from middle childhood to old age, which is amplified by environmental experiences. In addition, the strong stability and heritability of educational success are not driven entirely by cognitive ability. This highlights the contribution of other educationally relevant noncognitive characteristics. Considering both cognitive and noncognitive skills as well as their biological and environmental underpinnings will be fundamental in moving towards a comprehensive, evidence-based model of education.
Collapse
Affiliation(s)
- Margherita Malanchini
- Department of Biological and Experimental Psychology, Queen Mary University of London, United Kingdom; Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Population Research Center, The University of Texas at Austin, United States.
| | - Kaili Rimfeld
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Andrea G Allegrini
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Stuart J Ritchie
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Robert Plomin
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| |
Collapse
|
355
|
Harvey PD, Sun N, Bigdeli TB, Fanous AH, Aslan M, Malhotra AK, Lu Q, Hu Y, Li B, Chen Q, Mane S, Miller P, Rajeevan N, Sayward F, Cheung KH, Li Y, Greenwood TA, Gur RE, Braff DL, Brophy M, Pyarajan S, O'Leary TJ, Gleason T, Przygodszki R, Muralidhar S, Gaziano JM, Concato J, Zhao H, Siever LJ. Genome-wide association study of cognitive performance in U.S. veterans with schizophrenia or bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2020; 183:181-194. [PMID: 31872970 DOI: 10.1002/ajmg.b.32775] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/22/2019] [Accepted: 12/09/2019] [Indexed: 12/25/2022]
Abstract
Cognitive impairment is a frequent and serious problem in patients with various forms of severe mental illnesses (SMI), including schizophrenia (SZ) and bipolar disorder (BP). Recent research suggests genetic links to several cognitive phenotypes in both SMI and in the general population. Our goal in this study was to identify potential genomic signatures of cognitive functioning in veterans with severe mental illness and compare them to previous findings for cognition across different populations. Veterans Affairs (VA) Cooperative Studies Program (CSP) Study #572 evaluated cognitive and functional capacity measures among SZ and BP patients. In conjunction with the VA Million Veteran Program, 3,959 European American (1,095 SZ, 2,864 BP) and 2,601 African American (1,095 SZ, 2,864 BP) patients were genotyped using a custom Affymetrix Axiom Biobank array. We performed a genome-wide association study of global cognitive functioning, constructed polygenic scores for SZ and cognition in the general population, and examined genetic correlations with 2,626 UK Biobank traits. Although no single locus attained genome-wide significance, observed allelic effects were strongly consistent with previous studies. We observed robust associations between global cognitive functioning and polygenic scores for cognitive performance, intelligence, and SZ risk. We also identified significant genetic correlations with several cognition-related traits in UK Biobank. In a diverse cohort of U.S. veterans with SZ or BP, we demonstrate broad overlap of common genetic effects on cognition in the general population, and find that greater polygenic loading for SZ risk is associated with poorer cognitive performance.
Collapse
Affiliation(s)
- Philip D Harvey
- Research Service, Bruce W. Carter Miami Veterans Affairs (VA) Medical Center, Miami, Florida.,Department of Psychiatry and Behavioral Sciences, University of Miami School of Medicine, Miami, Florida
| | - Ning Sun
- Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut.,Yale University School of Medicine, New Haven, Connecticut
| | - Tim B Bigdeli
- Department of Psychiatry, VA New York Harbor Healthcare System, Brooklyn, New York.,Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, New York
| | - Ayman H Fanous
- Department of Psychiatry, VA New York Harbor Healthcare System, Brooklyn, New York.,Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, New York
| | - Mihaela Aslan
- Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut.,Yale University School of Medicine, New Haven, Connecticut
| | - Anil K Malhotra
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, New York.,Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York.,Department of Psychiatry, Hofstra Northwell School of Medicine, Hempstead, New York
| | - Qiongshi Lu
- Yale University School of Medicine, New Haven, Connecticut.,Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Yiming Hu
- Yale University School of Medicine, New Haven, Connecticut
| | - Boyang Li
- Yale University School of Medicine, New Haven, Connecticut
| | - Quan Chen
- Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut.,Yale University School of Medicine, New Haven, Connecticut
| | - Shrikant Mane
- Yale University School of Medicine, New Haven, Connecticut
| | - Perry Miller
- Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut.,Yale University School of Medicine, New Haven, Connecticut
| | - Nallakkandi Rajeevan
- Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut.,Yale University School of Medicine, New Haven, Connecticut
| | - Frederick Sayward
- Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut.,Yale University School of Medicine, New Haven, Connecticut
| | - Kei-Hoi Cheung
- Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut.,Yale University School of Medicine, New Haven, Connecticut
| | - Yuli Li
- Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut.,Yale University School of Medicine, New Haven, Connecticut
| | | | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Child & Adolescent Psychiatry and Lifespan Brain Institute, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David L Braff
- Department of Psychiatry, University of California, San Diego, California.,VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, California
| | | | - Mary Brophy
- Massachusetts Area Veterans Epidemiology Research, and Information Center (MAVERIC), Jamaica Plain, Massachusetts.,Boston University School of Medicine, Boston, Massachusetts
| | - Saiju Pyarajan
- Massachusetts Area Veterans Epidemiology Research, and Information Center (MAVERIC), Jamaica Plain, Massachusetts
| | - Timothy J O'Leary
- Office of Research and Development, Veterans Health Administration, Washington, District of Columbia
| | - Theresa Gleason
- Office of Research and Development, Veterans Health Administration, Washington, District of Columbia
| | - Ronald Przygodszki
- Office of Research and Development, Veterans Health Administration, Washington, District of Columbia
| | - Sumitra Muralidhar
- Office of Research and Development, Veterans Health Administration, Washington, District of Columbia
| | - J Michael Gaziano
- Massachusetts Area Veterans Epidemiology Research, and Information Center (MAVERIC), Jamaica Plain, Massachusetts.,Department of Medicine, Harvard University, Boston, Massachusetts
| | - John Concato
- Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut.,Yale University School of Medicine, New Haven, Connecticut
| | - Hongyu Zhao
- Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut.,Yale University School of Medicine, New Haven, Connecticut
| | - Larry J Siever
- James J. Peters Veterans Affairs Medical Center, Bronx, New York.,Department of Psychiatry, Mount Sinai School of Medicine, New York, New York
| |
Collapse
|
356
|
Price KM, Wigg KG, Feng Y, Blokland K, Wilkinson M, He G, Kerr EN, Carter TC, Guger SL, Lovett MW, Strug LJ, Barr CL. Genome-wide association study of word reading: Overlap with risk genes for neurodevelopmental disorders. GENES BRAIN AND BEHAVIOR 2020; 19:e12648. [PMID: 32108986 DOI: 10.1111/gbb.12648] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 01/28/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
Reading disabilities (RD) are the most common neurocognitive disorder, affecting 5% to 17% of children in North America. These children often have comorbid neurodevelopmental/psychiatric disorders, such as attention deficit/hyperactivity disorder (ADHD). The genetics of RD and their overlap with other disorders is incompletely understood. To contribute to this, we performed a genome-wide association study (GWAS) for word reading. Then, using summary statistics from neurodevelopmental/psychiatric disorders, we computed polygenic risk scores (PRS) and used them to predict reading ability in our samples. This enabled us to test the shared aetiology between RD and other disorders. The GWAS consisted of 5.3 million single nucleotide polymorphisms (SNPs) and two samples; a family-based sample recruited for reading difficulties in Toronto (n = 624) and a population-based sample recruited in Philadelphia [Philadelphia Neurodevelopmental Cohort (PNC)] (n = 4430). The Toronto sample SNP-based analysis identified suggestive SNPs (P ~ 5 × 10-7 ) in the ARHGAP23 gene, which is implicated in neuronal migration/axon pathfinding. The PNC gene-based analysis identified significant associations (P < 2.72 × 10-6 ) for LINC00935 and CCNT1, located in the region of the KANSL2/CCNT1/LINC00935/SNORA2B/SNORA34/MIR4701/ADCY6 genes on chromosome 12q, with near significant SNP-based analysis. PRS identified significant overlap between word reading and intelligence (R2 = 0.18, P = 7.25 × 10-181 ), word reading and educational attainment (R2 = 0.07, P = 4.91 × 10-48 ) and word reading and ADHD (R2 = 0.02, P = 8.70 × 10-6 ; threshold for significance = 7.14 × 10-3 ). Overlap was also found between RD and autism spectrum disorder (ASD) as top-ranked genes were previously implicated in autism by rare and copy number variant analyses. These findings support shared risk between word reading, cognitive measures, educational outcomes and neurodevelopmental disorders, including ASD.
Collapse
Affiliation(s)
- Kaitlyn M Price
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Karen G Wigg
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yu Feng
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kirsten Blokland
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Margaret Wilkinson
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gengming He
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elizabeth N Kerr
- Department of Psychology, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Tasha-Cate Carter
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Holland Bloorview Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Sharon L Guger
- Department of Psychology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Maureen W Lovett
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Lisa J Strug
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Cathy L Barr
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
357
|
Li HJ, Qu N, Hui L, Cai X, Zhang CY, Zhong BL, Zhang SF, Chen J, Xia B, Wang L, Jia QF, Li W, Chang H, Xiao X, Li M, Li Y. Further confirmation of netrin 1 receptor (DCC) as a depression risk gene via integrations of multi-omics data. Transl Psychiatry 2020; 10:98. [PMID: 32184385 PMCID: PMC7078234 DOI: 10.1038/s41398-020-0777-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/21/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
Genome-wide association studies (GWAS) of major depression and its relevant biological phenotypes have been extensively conducted in large samples, and transcriptome-wide analyses in the tissues of brain regions relevant to pathogenesis of depression, e.g., dorsolateral prefrontal cortex (DLPFC), have also been widely performed recently. Integrating these multi-omics data will enable unveiling of depression risk genes and even underlying pathological mechanisms. Here, we employ summary data-based Mendelian randomization (SMR) and integrative risk gene selector (iRIGS) approaches to integrate multi-omics data from GWAS, DLPFC expression quantitative trait loci (eQTL) analyses and enhancer-promoter physical link studies to prioritize high-confidence risk genes for depression, followed by independent replications across distinct populations. These integrative analyses identify multiple high-confidence depression risk genes, and numerous lines of evidence supporting pivotal roles of the netrin 1 receptor (DCC) gene in this illness across different populations. Our subsequent explorative analyses further suggest that DCC significantly predicts neuroticism, well-being spectrum, cognitive function and putamen structure in general populations. Gene expression correlation and pathway analyses in DLPFC further show that DCC potentially participates in the biological processes and pathways underlying synaptic plasticity, axon guidance, circadian entrainment, as well as learning and long-term potentiation. These results are in agreement with the recent findings of this gene in neurodevelopment and psychiatric disorders, and we thus further confirm that DCC is an important susceptibility gene for depression, and might be a potential target for new antidepressants.
Collapse
Affiliation(s)
- Hui-Juan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Na Qu
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Li Hui
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xin Cai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Bao-Liang Zhong
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Shu-Fang Zhang
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Jing Chen
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Bin Xia
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Lu Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Qiu-Fang Jia
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Li
- Department of Blood Transfusion, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hong Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Yi Li
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China.
| |
Collapse
|
358
|
Integrating genome-wide association study and expression quantitative trait loci data identifies NEGR1 as a causal risk gene of major depression disorder. J Affect Disord 2020; 265:679-686. [PMID: 32090785 DOI: 10.1016/j.jad.2019.11.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 10/31/2019] [Accepted: 11/28/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified several genetic variants associated with major depression disorder (MDD). However, pinpointing the causal variants which are responsible for the association signal at a risk locus remains a major challenge. METHODS We used Summary data-based Mendelian Randomization (SMR) with Psychiatric Genomics Consortium (PGC) GWAS summary and brain expression quantitative trait loci (eQTL) data to identify genes whose expression levels are causally associated with MDD. Then we performed differential expression analysis, methylation quantitative trait loci analysis, and cognitive genetics analysis to investigate the potential roles of risk genes in the pathogenesis of MDD. RESULTS Through SMR integrative analysis, we identified the SNP rs10789336 located in Neuronal growth regulator 1 (NEGR1) gene significantly affected the expression level of RPL31P12 in brain tissues and contributed to the risk of MDD (P = 1.96 × 10-6). Consistently, the SNP rs10789336 was associated with the methylation levels of three nearby DNA methylation sites, including cg09256413 (NEGR1, P=1.72 × 10-10), cg11418303 (prostaglandin E receptor 3 [PTGER3], P = 4.78 × 10-6), and cg23032215 (ZRANB2 antisense RNA 2 [ZRANB2-AS2], P = 1.23 × 10-4). Differential expression analysis suggested that the NEGR1 gene was upregulated in prefrontal cortex (P = 5.14 × 10-3). Cognitive genetics analysis showed that the SNP rs10789336 was associated with cognitive performance (P = 2.41 × 10-16), educational attainment (P = 1.75 × 10-14), general cognitive function (P = 2.65 × 10-12), and verbal numerical reasoning (P = 1.36 × 10-12). CONCLUSION Collectively, our results revealed that the SNP rs10789336 in NEGR1 might confer risk to MDD. Further investigation of the roles of NEGR1 in the pathogenesis of MDD is warranted.
Collapse
|
359
|
Barkhuizen W, Pain O, Dudbridge F, Ronald A. Genetic overlap between psychotic experiences in the community across age and with psychiatric disorders. Transl Psychiatry 2020; 10:86. [PMID: 32152294 PMCID: PMC7062754 DOI: 10.1038/s41398-020-0765-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
This study explores the degree to which genetic influences on psychotic experiences are stable across adolescence and adulthood, and their overlap with psychiatric disorders. Genome-wide association results were obtained for adolescent psychotic experiences and negative symptom traits (N = 6297-10,098), schizotypy (N = 3967-4057) and positive psychotic experiences in adulthood (N = 116,787-117,794), schizophrenia (N = 150,064), bipolar disorder (N = 41,653), and depression (N = 173,005). Linkage disequilibrium score regression was used to estimate genetic correlations. Implicated genes from functional and gene-based analyses were compared. Mendelian randomization was performed on trait pairs with significant genetic correlations. Results indicated that subclinical auditory and visual hallucinations and delusions of persecution during adulthood were significantly genetically correlated with schizophrenia (rg = 0.27-0.67) and major depression (rg = 0.41-96) after correction for multiple testing. Auditory and visual subclinical hallucinations were highly genetically correlated (rg = 0.95). Cross-age genetic correlations for psychotic experiences were not significant. Gene mapping and association analyses revealed 14 possible genes associated with psychotic experiences that overlapped across age for psychotic experiences or between psychotic experiences and psychiatric disorders. Mendelian randomization indicated bidirectional associations between auditory and visual hallucinations in adults but did not support causal relationships between psychotic experiences and psychiatric disorders. These findings indicate that psychotic experiences in adulthood may be more linked genetically to schizophrenia and major depression than psychotic experiences in adolescence. Our study implicated specific genes that are associated with psychotic experiences across development, as well as genes shared between psychotic experiences and psychiatric disorders.
Collapse
Affiliation(s)
- Wikus Barkhuizen
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck, University of London, London, UK
| | - Oliver Pain
- NIHR Maudsley Biomedical Research Centre, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Frank Dudbridge
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Angelica Ronald
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck, University of London, London, UK.
| |
Collapse
|
360
|
Ohi K, Otowa T, Shimada M, Sasaki T, Tanii H. Shared genetic etiology between anxiety disorders and psychiatric and related intermediate phenotypes. Psychol Med 2020; 50:692-704. [PMID: 30919790 DOI: 10.1017/s003329171900059x] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Psychiatric disorders and related intermediate phenotypes are highly heritable and have a complex, overlapping polygenic architecture. A large-scale genome-wide association study (GWAS) of anxiety disorders identified genetic variants that are significant on a genome-wide. The current study investigated the genetic etiological overlaps between anxiety disorders and frequently cooccurring psychiatric disorders and intermediate phenotypes. METHODS Using case-control and factor score models, we investigated the genetic correlations of anxiety disorders with eight psychiatric disorders and intermediate phenotypes [the volumes of seven subcortical brain regions, childhood cognition, general cognitive ability and personality traits (subjective well-being, loneliness, neuroticism and extraversion)] from large-scale GWASs (n = 7556-298 420) by linkage disequilibrium score regression. RESULTS Among psychiatric disorders, the risk of anxiety disorders was positively genetically correlated with the risks of major depressive disorder (MDD) (rg ± standard error = 0.83 ± 0.16, p = 1.97 × 10-7), schizophrenia (SCZ) (0.28 ± 0.09, p = 1.10 × 10-3) and attention-deficit/hyperactivity disorder (ADHD) (0.34 ± 0.13, p = 8.40 × 10-3). Among intermediate phenotypes, significant genetic correlations existed between the risk of anxiety disorders and neuroticism (0.81 ± 0.17, p = 1.30 × 10-6), subjective well-being (-0.73 ± 0.18, p = 4.89 × 10-5), general cognitive ability (-0.23 ± 0.08, p = 4.70 × 10-3) and putamen volume (-0.50 ± 0.18, p = 5.00 × 10-3). No other significant genetic correlations between anxiety disorders and psychiatric or intermediate phenotypes were observed (p > 0.05). The case-control model yielded stronger genetic effect sizes than the factor score model. CONCLUSIONS Our findings suggest that common genetic variants underlying the risk of anxiety disorders contribute to elevated risks of MDD, SCZ, ADHD and neuroticism and reduced quality of life, putamen volume and cognitive performance. We suggest that the comorbidity of anxiety disorders is partly explained by common genetic variants.
Collapse
Affiliation(s)
- Kazutaka Ohi
- Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan
| | - Takeshi Otowa
- Graduate School of Clinical Psychology, Professional Degree Program in Clinical Psychology, Teikyo Heisei University, Tokyo, Japan
| | - Mihoko Shimada
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsukasa Sasaki
- Department of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Hisashi Tanii
- Center for Physical and Mental Health, Mie University, Mie, Japan
- Department of Health Promotion and Disease Prevention, Graduate School of Medicine, Mie University, Mie, Japan
| |
Collapse
|
361
|
Brunet T, Radivojkov-Blagojevic M, Lichtner P, Kraus V, Meitinger T, Wagner M. Biallelic loss-of-function variants in RBL2 in siblings with a neurodevelopmental disorder. Ann Clin Transl Neurol 2020; 7:390-396. [PMID: 32105419 PMCID: PMC7086002 DOI: 10.1002/acn3.50992] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 12/15/2022] Open
Abstract
The RBL2 locus has been associated with intelligence and educational attainment but not with a monogenic disorder to date. RBL2 encodes p130, a member of the retinoblastoma protein family, which is involved in mediating neuron survival and death. Previous studies on p130 knockout mice revealing embryonic death and impaired neurogenesis underscore the importance of RBL2 in brain development. Exome sequencing in two siblings with severe intellectual disability, stereotypies and dysmorphic features identified biallelic loss-of-function variants c.556C>T, p.(Arg186Ter) and a deletion of exon 13-17 in RBL2 (NM_005611.3), establishing RBL2 as a candidate gene for an autosomal recessive neurodevelopmental disorder.
Collapse
Affiliation(s)
- Theresa Brunet
- Institute of Human Genetics, Faculty of Medicine, Technical University Munich, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Peter Lichtner
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Verena Kraus
- Department of Pediatrics, Klinik für Kinder- und Jugendmedizin, München Klinik Schwabing und Harlaching, Klinikum Rechts der Isar der Technischen Universität Munich, Munich, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Faculty of Medicine, Technical University Munich, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Matias Wagner
- Institute of Human Genetics, Faculty of Medicine, Technical University Munich, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute for Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
362
|
Gonzalez R, Gonzalez SD, McCarthy MJ. Using Chronobiological Phenotypes to Address Heterogeneity in Bipolar Disorder. MOLECULAR NEUROPSYCHIATRY 2020; 5:72-84. [PMID: 32399471 DOI: 10.1159/000506636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/18/2020] [Indexed: 12/12/2022]
Abstract
Bipolar disorder (BD) is a neuropsychiatric mood disorder characterized by recurrent episodes of mania and depression in addition to disruptions in sleep, energy, appetite, and cognitive functions-rhythmic behaviors that typically change on daily cycles. BD symptoms can also be provoked by seasonal changes, sleep, and/or circadian disruption, indicating that chronobiological factors linked to the circadian clock may be a common feature in the disorder. Research indicates that BD exists on a clinical spectrum, with distinct subtypes often intersecting with other psychiatric disorders. This heterogeneity has been a major challenge to BD research and contributes to problems in diagnostic stability and treatment outcomes. To address this heterogeneity, we propose that chronobiologically related biomarkers could be useful in classifying BD into objectively measurable phenotypes to establish better diagnoses, inform treatments, and perhaps lead to better clinical outcomes. Presently, we review the biological basis of circadian time keeping in humans, discuss the links of BD to the circadian clock, and pre-sent recent studies that evaluated chronobiological measures as a basis for establishing BD phenotypes. We conclude that chronobiology may inform future research using other novel techniques such as genomics, cell biology, and advanced behavioral analyses to establish new and more biologically based BD phenotypes.
Collapse
Affiliation(s)
- Robert Gonzalez
- Department of Psychiatry and Behavioral Health, Penn State Health, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Suzanne D Gonzalez
- Department of Psychiatry and Behavioral Health, Penn State Health, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA.,Department of Pharmacology, Penn State Health, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Michael J McCarthy
- VA San Diego Healthcare System, San Diego, California, USA.,Department of Psychiatry and Center for Chronobiology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
363
|
Comes AL, Czamara D, Adorjan K, Anderson-Schmidt H, Andlauer TFM, Budde M, Gade K, Hake M, Kalman JL, Papiol S, Reich-Erkelenz D, Klöhn-Saghatolislam F, Schaupp SK, Schulte EC, Senner F, Juckel G, Schmauß M, Zimmermann J, Reimer J, Reininghaus E, Anghelescu IG, Konrad C, Thiel A, Figge C, von Hagen M, Koller M, Dietrich DE, Stierl S, Scherk H, Witt SH, Sivalingam S, Degenhardt F, Forstner AJ, Rietschel M, Nöthen MM, Wiltfang J, Falkai P, Schulze TG, Heilbronner U. The role of environmental stress and DNA methylation in the longitudinal course of bipolar disorder. Int J Bipolar Disord 2020; 8:9. [PMID: 32048126 PMCID: PMC7013010 DOI: 10.1186/s40345-019-0176-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Stressful life events influence the course of affective disorders, however, the mechanisms by which they bring about phenotypic change are not entirely known. METHODS We explored the role of DNA methylation in response to recent stressful life events in a cohort of bipolar patients from the longitudinal PsyCourse study (n = 96). Peripheral blood DNA methylomes were profiled at two time points for over 850,000 methylation sites. The association between impact ratings of stressful life events and DNA methylation was assessed, first by interrogating methylation sites in the vicinity of candidate genes previously implicated in the stress response and, second, by conducting an exploratory epigenome-wide association analysis. Third, the association between epigenetic aging and change in stress and symptom measures over time was investigated. RESULTS Investigation of methylation signatures over time revealed just over half of the CpG sites tested had an absolute difference in methylation of at least 1% over a 1-year period. Although not a single CpG site withstood correction for multiple testing, methylation at one site (cg15212455) was suggestively associated with stressful life events (p < 1.0 × 10-5). Epigenetic aging over a 1-year period was not associated with changes in stress or symptom measures. CONCLUSIONS To the best of our knowledge, our study is the first to investigate epigenome-wide methylation across time in bipolar patients and in relation to recent, non-traumatic stressful life events. Limited and inconclusive evidence warrants future longitudinal investigations in larger samples of well-characterized bipolar patients to give a complete picture regarding the role of DNA methylation in the course of bipolar disorder.
Collapse
Affiliation(s)
- Ashley L Comes
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany. .,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany.
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Kristina Adorjan
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Heike Anderson-Schmidt
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Till F M Andlauer
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804, Munich, Germany.,Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675, Munich, Germany
| | - Monika Budde
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Katrin Gade
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Maria Hake
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Janos L Kalman
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Daniela Reich-Erkelenz
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Farah Klöhn-Saghatolislam
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Sabrina K Schaupp
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Eva C Schulte
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Fanny Senner
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Georg Juckel
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, 44791, Bochum, Germany
| | - Max Schmauß
- Department of Psychiatry and Psychotherapy, Bezirkskrankenhaus Augsburg, University of Augsburg, 86156, Augsburg, Germany
| | - Jörg Zimmermann
- Psychiatrieverbund Oldenburger Land gGmbH, Karl-Jaspers-Klinik, 26160, Bad Zwischenahn, Germany
| | - Jens Reimer
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Eva Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for Bipolar Affective Disorder, Medical University of Graz, 8036, Graz, Austria
| | | | - Carsten Konrad
- Department of Psychiatry and Psychotherapy, Agaplesion Diakonieklinikum, 27356, Rotenburg, Germany
| | - Andreas Thiel
- Department of Psychiatry and Psychotherapy, Agaplesion Diakonieklinikum, 27356, Rotenburg, Germany
| | - Christian Figge
- Karl-Jaspers Clinic, European Medical School Oldenburg-Groningen, 26160, Oldenburg, Germany
| | - Martin von Hagen
- Clinic for Psychiatry and Psychotherapy, Clinical Center Werra-Meißner, 37269, Eschwege, Germany
| | - Manfred Koller
- Asklepios Specialized Hospital, 37081, Göttingen, Germany
| | - Detlef E Dietrich
- AMEOS Clinical Center Hildesheim, 31135, Hildesheim, Germany.,Center für Systems Neuroscience (ZSN) Hannover, 30559, Hannover, Germany.,Department of Psychiatry, Medical School of Hannover, 30625, Hannover, Germany
| | | | - Harald Scherk
- AMEOS Clinical Center Osnabrück, 49088, Osnabrück, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
| | - Sugirthan Sivalingam
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, 53127, Bonn, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, 53127, Bonn, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, 53127, Bonn, Germany.,Center for Human Genetics, University of Marburg, 35033, Marburg, Germany.,Department of Biomedicine, University of Basel, 4031, Basel, Switzerland.,Department of Psychiatry (UPK), University of Basel, 4002, Basel, Switzerland
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, 53127, Bonn, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany.,iBiMED, Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| |
Collapse
|
364
|
Abstract
The past two centuries have witnessed an unprecedented rise in human life expectancy. Sustaining longer lives with reduced periods of disability will require an understanding of the underlying mechanisms of ageing, and genetics is a powerful tool for identifying these mechanisms. Large-scale genome-wide association studies have recently identified many loci that influence key human ageing traits, including lifespan. Multi-trait loci have been linked with several age-related diseases, suggesting shared ageing influences. Mutations that drive accelerated ageing in prototypical progeria syndromes in humans point to an important role for genome maintenance and stability. Together, these different strands of genetic research are highlighting pathways for the discovery of anti-ageing interventions that may be applicable in humans.
Collapse
|
365
|
McClain L, Mansour H, Ibrahim I, Klei L, Fathi W, Wood J, Kodavali C, Maysterchuk A, Wood S, El-Chennawi F, Ibrahim N, Eissa A, El-Bahaei W, El Sayed H, Yassein A, Tobar S, El-Boraie H, El-Sheshtawy E, Salah H, Ali A, Erdin S, Devlin B, Talkowski M, Nimgaonkar V. Age dependent association of inbreeding with risk for schizophrenia in Egypt. Schizophr Res 2020; 216:450-459. [PMID: 31928911 PMCID: PMC8054776 DOI: 10.1016/j.schres.2019.10.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Self-reported consanguinity is associated with risk for schizophrenia (SZ) in several inbred populations, but estimates using DNA-based coefficients of inbreeding are unavailable. Further, it is not known whether recessively inherited risk mutations can be identified through homozygosity by descent (HBD) mapping. METHODS We studied self-reported and DNA-based estimates of inbreeding among Egyptian patients with SZ (n = 421, DSM IV criteria) and adult controls without psychosis (n = 301), who were evaluated using semi-structured diagnostic interview schedules and genotyped using the Illumina Infinium PsychArray. Following quality control checks, coefficients of inbreeding (F) and regions of homozygosity (ROH) were estimated using PLINK software for HBD analysis. Exome sequencing was conducted in selected cases. RESULTS Inbreeding was associated with schizophrenia based on self-reported consanguinity (χ2 = 4.506, 1 df, p = 0.034) and DNA-based estimates for inbreeding (F); the latter with a significant F × age interaction (β = 32.34, p = 0.0047). The association was most notable among patients older than age 40 years. Eleven ROH were over-represented in cases on chromosomes 1, 3, 6, 11, and 14; all but one region is novel for schizophrenia risk. Exome sequencing identified six recessively-acting genes in ROH with loss-of-function variants; one of which causes primary hereditary microcephaly. CONCLUSIONS We propose consanguinity as an age-dependent risk factor for SZ in Egypt. HBD mapping is feasible for SZ in adequately powered samples.
Collapse
Affiliation(s)
- Lora McClain
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Hospital, Pittsburgh, PA, USA
| | - Hader Mansour
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Hospital, Pittsburgh, PA, USA; Department of Psychiatry, Mansoura University School of Medicine, Mansoura, Egypt
| | - Ibtihal Ibrahim
- Department of Psychiatry, Mansoura University School of Medicine, Mansoura, Egypt
| | - Lambertus Klei
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Hospital, Pittsburgh, PA, USA
| | - Warda Fathi
- Department of Psychiatry, Mansoura University School of Medicine, Mansoura, Egypt
| | - Joel Wood
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Hospital, Pittsburgh, PA, USA
| | - Chowdari Kodavali
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Hospital, Pittsburgh, PA, USA
| | - Alina Maysterchuk
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Hospital, Pittsburgh, PA, USA
| | - Shawn Wood
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Hospital, Pittsburgh, PA, USA
| | - Farha El-Chennawi
- Department of Clinical Pathology, Mansoura University School of Medicine, Mansoura, Egypt
| | - Nahed Ibrahim
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Hospital, Pittsburgh, PA, USA
| | - Ahmed Eissa
- Department of Psychiatry and Neuropsychiatry, Port Said University, Port Said, Egypt
| | - Wafaa El-Bahaei
- Department of Psychiatry, Mansoura University School of Medicine, Mansoura, Egypt
| | - Hanan El Sayed
- Department of Psychiatry, Mansoura University School of Medicine, Mansoura, Egypt
| | - Amal Yassein
- Department of Psychiatry, Mansoura University School of Medicine, Mansoura, Egypt
| | - Salwa Tobar
- Department of Psychiatry, Mansoura University School of Medicine, Mansoura, Egypt
| | - Hala El-Boraie
- Department of Psychiatry, Mansoura University School of Medicine, Mansoura, Egypt
| | - Eman El-Sheshtawy
- Department of Psychiatry, Mansoura University School of Medicine, Mansoura, Egypt
| | - Hala Salah
- Department of Psychiatry, Mansoura University School of Medicine, Mansoura, Egypt
| | - Ahmed Ali
- Department of Clinical Pathology, Mansoura University Student Hospital, Mansoura, Egypt
| | - Serkan Erdin
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA, USA
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Hospital, Pittsburgh, PA, USA
| | - Michael Talkowski
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA, USA
| | - Vishwajit Nimgaonkar
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Hospital, Pittsburgh, PA, USA; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
366
|
Marees AT, Smit DJA, Ong JS, MacGregor S, An J, Denys D, Vorspan F, van den Brink W, Derks EM. Potential influence of socioeconomic status on genetic correlations between alcohol consumption measures and mental health. Psychol Med 2020; 50:484-498. [PMID: 30874500 PMCID: PMC7083578 DOI: 10.1017/s0033291719000357] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 02/01/2019] [Accepted: 02/12/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND Frequency and quantity of alcohol consumption are metrics commonly used to measure alcohol consumption behaviors. Epidemiological studies indicate that these alcohol consumption measures are differentially associated with (mental) health outcomes and socioeconomic status (SES). The current study aims to elucidate to what extent genetic risk factors are shared between frequency and quantity of alcohol consumption, and how these alcohol consumption measures are genetically associated with four broad phenotypic categories: (i) SES; (ii) substance use disorders; (iii) other psychiatric disorders; and (iv) psychological/personality traits. METHODS Genome-Wide Association analyses were conducted to test genetic associations with alcohol consumption frequency (N = 438 308) and alcohol consumption quantity (N = 307 098 regular alcohol drinkers) within UK Biobank. For the other phenotypes, we used genome-wide association studies summary statistics. Genetic correlations (rg) between the alcohol measures and other phenotypes were estimated using LD score regression. RESULTS We found a substantial genetic correlation between the frequency and quantity of alcohol consumption (rg = 0.52). Nevertheless, both measures consistently showed opposite genetic correlations with SES traits, and many substance use, psychiatric, and psychological/personality traits. High alcohol consumption frequency was genetically associated with high SES and low risk of substance use disorders and other psychiatric disorders, whereas the opposite applies for high alcohol consumption quantity. CONCLUSIONS Although the frequency and quantity of alcohol consumption show substantial genetic overlap, they consistently show opposite patterns of genetic associations with SES-related phenotypes. Future studies should carefully consider the potential influence of SES on the shared genetic etiology between alcohol and adverse (mental) health outcomes.
Collapse
Affiliation(s)
- Andries T. Marees
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Translational Neurogenomics Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Dirk J. A. Smit
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Jue-Sheng Ong
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jiyuan An
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Damiaan Denys
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Florence Vorspan
- Assistance Publique – Hôpitaux de Paris, Hôpital Fernand Widal, Département de Psychiatrie et de Médecine Addictologique, 200 rue du Faubourg Saint Denis, 75010Paris, France
- Inserm umr-s 1144, Université Paris Descartes, Université Paris Diderot, 4 avenue de l'Observatoire, 75006Paris, France
| | - Wim van den Brink
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Eske M. Derks
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Translational Neurogenomics Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
367
|
Richards AL, Pardiñas AF, Frizzati A, Tansey KE, Lynham AJ, Holmans P, Legge SE, Savage JE, Agartz I, Andreassen OA, Blokland GAM, Corvin A, Cosgrove D, Degenhardt F, Djurovic S, Espeseth T, Ferraro L, Gayer-Anderson C, Giegling I, van Haren NE, Hartmann AM, Hubert JJ, Jönsson EG, Konte B, Lennertz L, Olde Loohuis LM, Melle I, Morgan C, Morris DW, Murray RM, Nyman H, Ophoff RA, GROUP Investigators, van Os J, EUGEI WP2 Group, Schizophrenia Working Group of the Psychiatric Genomics Consortium, Petryshen TL, Quattrone D, Rietschel M, Rujescu D, Rutten BPF, Streit F, Strohmaier J, Sullivan PF, Sundet K, Wagner M, Escott-Price V, Owen MJ, Donohoe G, O’Donovan MC, Walters JTR. The Relationship Between Polygenic Risk Scores and Cognition in Schizophrenia. Schizophr Bull 2020; 46:336-344. [PMID: 31206164 PMCID: PMC7442352 DOI: 10.1093/schbul/sbz061] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cognitive impairment is a clinically important feature of schizophrenia. Polygenic risk score (PRS) methods have demonstrated genetic overlap between schizophrenia, bipolar disorder (BD), major depressive disorder (MDD), educational attainment (EA), and IQ, but very few studies have examined associations between these PRS and cognitive phenotypes within schizophrenia cases. METHODS We combined genetic and cognitive data in 3034 schizophrenia cases from 11 samples using the general intelligence factor g as the primary measure of cognition. We used linear regression to examine the association between cognition and PRS for EA, IQ, schizophrenia, BD, and MDD. The results were then meta-analyzed across all samples. A genome-wide association studies (GWAS) of cognition was conducted in schizophrenia cases. RESULTS PRS for both population IQ (P = 4.39 × 10-28) and EA (P = 1.27 × 10-26) were positively correlated with cognition in those with schizophrenia. In contrast, there was no association between cognition in schizophrenia cases and PRS for schizophrenia (P = .39), BD (P = .51), or MDD (P = .49). No individual variant approached genome-wide significance in the GWAS. CONCLUSIONS Cognition in schizophrenia cases is more strongly associated with PRS that index cognitive traits in the general population than PRS for neuropsychiatric disorders. This suggests the mechanisms of cognitive variation within schizophrenia are at least partly independent from those that predispose to schizophrenia diagnosis itself. Our findings indicate that this cognitive variation arises at least in part due to genetic factors shared with cognitive performance in populations and is not solely due to illness or treatment-related factors, although our findings are consistent with important contributions from these factors.
Collapse
Affiliation(s)
- Alexander L Richards
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Aura Frizzati
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Katherine E Tansey
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Amy J Lynham
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Sophie E Legge
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Jeanne E Savage
- Complex Trait Genetics Lab, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway,Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Ole A Andreassen
- CoE NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gabriella A M Blokland
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands,Department of Psychiatry, Harvard Medical School, Boston, MA,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - Donna Cosgrove
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging and Cognitive Genomics Center, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Franziska Degenhardt
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany,Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Srdjan Djurovic
- CoE NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Thomas Espeseth
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Laura Ferraro
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy
| | - Charlotte Gayer-Anderson
- Department of Health Service and Population Research, Institute of Psychiatry, King’s College London, London, UK
| | - Ina Giegling
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Neeltje E van Haren
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands,Department of Child and Adolescent Psychiatry/Psychology, Sophia Children’s Hospital, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Annette M Hartmann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - John J Hubert
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Erik G Jönsson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden,CoE NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bettina Konte
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Leonhard Lennertz
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Loes M Olde Loohuis
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA
| | - Ingrid Melle
- CoE NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Craig Morgan
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College, London, UK
| | - Derek W Morris
- Centre for Neuroimaging and Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - Robin M Murray
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Håkan Nyman
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Roel A Ophoff
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | | | - Jim van Os
- Department of Psychiatry and Medical Psychology, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands,Department of Psychiatry, Utrecht University Medical Centre, Utrecht, The Netherlands,King’s Health Partners Department of Psychosis Studies, King’s College London, Institute of Psychiatry, London, UK
| | | | | | - Tracey L Petryshen
- Department of Psychiatry, Harvard Medical School, Boston, MA,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA,Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Diego Quattrone
- Social, Genetics and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Dan Rujescu
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, South Limburg Mental Health Research and Teaching Network, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Fabian Streit
- Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Jana Strohmaier
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Patrick F Sullivan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kjetil Sundet
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Michael Wagner
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Valentina Escott-Price
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Gary Donohoe
- Centre for Neuroimaging and Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - Michael C O’Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK,To whom correspondence should be addressed; tel: 44 (0)29-20688-434, fax: 44 (0)29-20687-068, e-mail:
| |
Collapse
|
368
|
Edwards R, Campbell A, Porteous D. Generation Scotland participant survey on data collection. Wellcome Open Res 2020; 4:111. [PMID: 31984240 PMCID: PMC6964360 DOI: 10.12688/wellcomeopenres.15354.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 01/17/2023] Open
Abstract
Background: Generation Scotland (GS) is a population and family-based study of genetic and environmental health determinants. Recruitment to the Scottish Family Health Study component of GS took place between 2006-2011. Participants were aged 18 or over and consented to genetic studies, linkage to health records and recontact. Several recontact exercises have been successfully conducted aimed at a) recruitment to embedded or partner studies and b) the collection of additional data. As the cohort matures in age, we were interested in surveying attitudes to potential new approaches to data collection and recruitment. Methods: A ten-question online survey was sent to those participants who provided an email address. Results: We report a high level of positive responses to encouraging relatives to participate, to remote data and sample collection and for research access to stored newborn dried blood spots. Conclusions: The majority of current and prospective GS participants are likely to respond positively to future requests for remote data and sample collection.
Collapse
Affiliation(s)
- Rachel Edwards
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, City of Edinburgh, EH4 2XU, UK.,MRC Human Genetics Unit, University of Edinburgh, Edinburgh, City of Edinburgh, EH4 2XU, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, City of Edinburgh, EH4 2XU, UK.,Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, City of Edinburgh, EH4 2XU, UK
| | - David Porteous
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, City of Edinburgh, EH4 2XU, UK
| |
Collapse
|
369
|
Mallet J, Le Strat Y, Dubertret C, Gorwood P. Polygenic Risk Scores Shed Light on the Relationship between Schizophrenia and Cognitive Functioning: Review and Meta-Analysis. J Clin Med 2020; 9:E341. [PMID: 31991840 PMCID: PMC7074036 DOI: 10.3390/jcm9020341] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/14/2020] [Accepted: 01/23/2020] [Indexed: 12/26/2022] Open
Abstract
Schizophrenia is a multifactorial disease associated with widespread cognitive impairment. Although cognitive deficits are one of the factors most strongly associated with functional impairment in schizophrenia (SZ), current treatment strategies hardly tackle these impairments. To develop more efficient treatment strategies in patients, a better understanding of their pathogenesis is needed. Recent progress in genetics, driven by large genome-wide association studies (GWAS) and the use of polygenic risk scores (PRS), has provided new insights about the genetic architecture of complex human traits, including cognition and SZ. Here, we review the recent findings examining the genetic links between SZ and cognitive functions in population-based samples as well as in participants with SZ. The performed meta-analysis showed a negative correlation between the polygenetic risk score of schizophrenia and global cognition (p < 0.001) when the samples rely on general and healthy participants, while no significant correlation was detected when the three studies devoted to schizophrenia patients were meta-analysed (p > 0.05). Our review and meta-analysis therefore argues against universal pleiotropy for schizophrenia alleles and cognition, since cognition in SZ patients would be underpinned by the same genetic factors than in the general population, and substantially independent of common variant liability to the disorder.
Collapse
Affiliation(s)
- Jasmina Mallet
- APHP; Department of Psychiatry, Universitary Hospital Louis Mourier, 92700 Colombes, France; (Y.L.S.); (C.D.)
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, F-75014 Paris, France
| | - Yann Le Strat
- APHP; Department of Psychiatry, Universitary Hospital Louis Mourier, 92700 Colombes, France; (Y.L.S.); (C.D.)
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, F-75014 Paris, France
| | - Caroline Dubertret
- APHP; Department of Psychiatry, Universitary Hospital Louis Mourier, 92700 Colombes, France; (Y.L.S.); (C.D.)
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, F-75014 Paris, France
| | - Philip Gorwood
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, F-75014 Paris, France
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France
| |
Collapse
|
370
|
Yang ZH, Cai X, Qu N, Zhao LJ, Zhong BL, Zhang SF, Chen J, Xia B, Jiang HY, Zhou DY, Liu WP, Chang H, Xiao X, Li Y, Li M. Identification of a functional 339 bp Alu insertion polymorphism in the schizophrenia-associated locus at 10q24.32. Zool Res 2020; 41:84-89. [PMID: 31840948 PMCID: PMC6956716 DOI: 10.24272/j.issn.2095-8137.2020.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified multiple single nucleotide polymorphisms (SNPs) or small indels robustly associated with schizophrenia; however, the functional risk variations remain largely unknown. We investigated the 10q24.32 locus and discovered a 339 bp Alu insertion polymorphism (rs71389983) in complete linkage disequilibrium (LD) with the schizophrenia GWAS risk variant rs7914558. The presence of the Alu insertion at rs71389983 strongly repressed transcriptional activities in in vitro luciferase assays. This polymorphism may be a target for future mechanistic research. Our study also underlines the importance and necessity of considering previously underestimated Alu polymorphisms in future genetic studies of schizophrenia.
Collapse
Affiliation(s)
- Zhi-Hui Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xin Cai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Na Qu
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei 430012, China
| | - Li-Juan Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Bao-Liang Zhong
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei 430012, China
| | - Shu-Fang Zhang
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei 430012, China
| | - Jing Chen
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei 430012, China
| | - Bin Xia
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei 430012, China
| | - Hong-Yan Jiang
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Dan-Yang Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Wei-Peng Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Hong Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yi Li
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei 430012, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
371
|
Abstract
PURPOSE OF REVIEW We review recent progress in uncovering the complex genetic architecture of cognition, arising primarily from genome-wide association studies (GWAS). We explore the genetic correlations between cognitive performance and neuropsychiatric disorders, the genetic and environmental factors associated with age-related cognitive decline, and speculate about the future role of genomics in the understanding of cognitive processes. RECENT FINDINGS Improvements in genomic methods, and the increasing availability of large datasets via consortia cooperation, have led to a greater understanding of the role played by common and rare variants in the genomics of cognition, the highly polygenic basis of cognitive function and dysfunction, and the multiple biological processes involved. Recent research has aided in our understanding of the complex biological nature of genomics of cognition. Further development of data banks and techniques to analyze this data hold significant promise for understanding cognitive ability, and for treating cognitively related disability.
Collapse
|
372
|
Nikpay M, Mohammadzadeh S. Phenome-wide screening for traits causally associated with the risk of coronary artery disease. J Hum Genet 2020; 65:371-380. [PMID: 31907388 DOI: 10.1038/s10038-019-0716-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/29/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022]
Abstract
Using two independent approaches, Mendelian randomization and Polygenic risk score in a sample of 6194 CAD cases and 4287 controls of European ancestry, we did a comprehensive phenome-wide search (PheWAS) for traits that causally associated with the risk of CAD. We found 46 risk factors that represented diverse categories including cardiovascular, CNS (central nervous system), diabetes, lipids, immune, anthropometry, and life style features; moreover, we noted numerous evidences of genetic correlations and causal associations between risk factors from different categories. Among the identified risk factors, CAD showed highest genetic relatedness with thrombotic conditions. The most represented category was life style features (29%) with evidence of strong genetic overlap with CNS traits. Genetic variants associated with higher cognition were associated with life style characteristics and cardiometabolic features that lower the risk of CAD. Conditional analysis indicated this trend is in part attributed to higher age of first sexual intercourse (AFS) in those with higher cognition. Lower AFS was concordantly associated with higher risk of CAD in males, females, and the combined sample; furthermore, lower AFS was causally associated with several CAD-risk factors including, higher fasting insulin, fasting glucose, LDL, immature reticulocyte fraction, HbA1c levels, as well as, higher risk of T2D and pulmonary embolism but lower levels of HDL. These results indicate CAD is the outcome of several phenotypically distinct but genetically interrelated sources; moreover, we identified lower AFS as an independent causal risk factor of CAD and revealed its role in mediating the effect of other risk factors.
Collapse
Affiliation(s)
- Majid Nikpay
- Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada.
| | - Sara Mohammadzadeh
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, 6714967346, Iran
| |
Collapse
|
373
|
The genome-wide risk alleles for psychiatric disorders at 3p21.1 show convergent effects on mRNA expression, cognitive function, and mushroom dendritic spine. Mol Psychiatry 2020; 25:48-66. [PMID: 31723243 DOI: 10.1038/s41380-019-0592-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022]
Abstract
Schizophrenia and bipolar disorder (BPD) are believed to share clinical features, etiological factors, and disease pathologies (such as impaired cognitive functions and dendritic spine pathology). Meanwhile, there is growing evidence of shared genetic risk between schizophrenia and BPD, despite that our knowledge of the functional risk variations and biological mechanisms is still limited. Here, we conduct summary data-based Mendelian randomization (SMR) analyses through combining the statistical data from genome-wide association studies (GWAS) of both schizophrenia and BPD and multiple expression quantitative trait loci (eQTL) datasets of the human brain dorsolateral prefrontal cortex (DLPFC) tissues. These integrative investigations identify a lead risk locus at the chromosome 3p21.1 region, which contains numerous single-nucleotide polymorphisms (SNPs) in varied linkage disequilibrium (LD) and encompasses more than 20 genes. Further analyses suggest that many SNPs at 3p21.1 are significantly associated with both schizophrenia and BPD, and even depression, and the psychiatric risk alleles at 3p21.1 are correlated with mRNA expression of multiple genes such as NEK4, GNL3, and PBRM1. We also identify a 335-bp functional Alu polymorphism rs71052682 in significant LD with the psychiatric GWAS risk SNP rs2251219, and confirm the regulatory effects of this Alu polymorphism on transcription activities. We then explore the involvement of the 3p21.1 locus in the common clinical features and etiology of these illnesses. We reveal that psychiatric risk alleles at 3p21.1 in low-to-high LD consistently predict worse cognitive functions in humans, and manipulating the gene expression (NEK4, GNL3, and PBRM1) linked with higher genetic risk could reduce the density of mushroom dendritic spines in rat primary cortical neurons, mirroring the spine pathology in the prefrontal cortex of psychiatric patients. Our results find that, although the risk alleles at 3p21.1 are in low-to-moderate LD spanning a large genomic area, their underlying biological mechanisms in psychiatric disorders likely converge. These results provide essential insights into the neural mechanisms underlying the chromosome 3p21.1 risk locus in the shared pathological and etiological features of both schizophrenia and BPD.
Collapse
|
374
|
|
375
|
Altschul DM, Wraw C, Gale CR, Deary IJ. How youth cognitive and sociodemographic factors relate to the development of overweight and obesity in the UK and the USA: a prospective cross-cohort study of the National Child Development Study and National Longitudinal Study of Youth 1979. BMJ Open 2019; 9:e033011. [PMID: 31852706 PMCID: PMC6937025 DOI: 10.1136/bmjopen-2019-033011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES We investigated how youth cognitive and sociodemographic factors are associated with the aetiology of overweight and obesity. We examined both onset (who is at early risk for overweight and obesity) and development (who gains weight and when). DESIGN Prospective cohort study. SETTING We used data from the US National Longitudinal Study of Youth 1979 (NLSY) and the UK National Child Development Study (NCDS); most of both studies completed a cognitive function test in youth. PARTICIPANTS 12 686 and 18 558 members of the NLSY and NCDS, respectively, with data on validated measures of youth cognitive function, youth socioeconomic disadvantage (eg, parental occupational class and time spent in school) and educational attainment. Height, weight and income data were available from across adulthood, from individuals' 20s into their 50s. PRIMARY AND SECONDARY OUTCOME MEASURES Body mass index (BMI) for four time points in adulthood. We modelled gain in BMI using latent growth curve models to capture linear and quadratic components of change in BMI over time. RESULTS Across cohorts, higher cognitive function was associated with lower overall BMI. In the UK, 1 SD higher score in cognitive function was associated with lower BMI (β=-0.20, 95% CI -0.33 to -0.06 kg/m²). In America, this was true only for women (β=-0.53, 95% CI -0.90 to -0.15 kg/m²), for whom higher cognitive function was associated with lower BMI. In British participants only, we found limited evidence for negative and positive associations, respectively, between education (β=-0.15, 95% CI -0.26 to -0.04 kg/m²) and socioeconomic disadvantage (β=0.33, 95% CI 0.23 to 0.43 kg/m²) and higher BMI. Overall, no cognitive or socioeconomic factors in youth were associated with longitudinal changes in BMI. CONCLUSIONS While sociodemographic and particularly cognitive factors can explain some patterns in individuals' overall weight levels, differences in who gains weight in adulthood could not be explained by any of these factors.
Collapse
Affiliation(s)
- Drew M Altschul
- Psychology, The University of Edinburgh, Edinburgh, Scotland, UK
| | | | - Catharine R Gale
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Ian J Deary
- Psychology, The University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
376
|
Penadés R, Bosia M, Catalán R, Spangaro M, García-Rizo C, Amoretti S, Bioque M, Bernardo M. The role of genetics in cognitive remediation in schizophrenia: A systematic review. SCHIZOPHRENIA RESEARCH-COGNITION 2019; 19:100146. [PMID: 31832337 PMCID: PMC6889757 DOI: 10.1016/j.scog.2019.100146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/08/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022]
Abstract
The role of genetics in cognitive remediation therapies in schizophrenia has not been completely understood yet. Different genes involved in neurotrophic, dopaminergic and serotonin systems have reported to influence cognitive functioning in schizophrenia. These genetic factors could also be contributing to the variability in responsiveness to cognitive treatments. No comprehensive synthesis of the literature of the role of genetics in the context of cognitive remediation has been conducted until now. We aimed to systematically review the published works through three electronic database searches: PubMed, Scopus, and the Cochrane Library. Eligible studies revealed a rising interest in the field although the number of published studies was rather small (n = 10). Eventually, promising results showing a relationship between some phenotypic variations based on different polymorphisms and different levels of responsivity to cognitive remediation therapies have been described although results are still inconclusive. In case those findings will be replicated, they could be guiding future research and informing clinical decision-making in the next future.
Collapse
Affiliation(s)
- Rafael Penadés
- Barcelona Clinic Schizophrenia Unit, Hospital Clinic Barcelona, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Marta Bosia
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Rosa Catalán
- Barcelona Clinic Schizophrenia Unit, Hospital Clinic Barcelona, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Marco Spangaro
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Clemente García-Rizo
- Barcelona Clinic Schizophrenia Unit, Hospital Clinic Barcelona, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Silvia Amoretti
- Barcelona Clinic Schizophrenia Unit, Hospital Clinic Barcelona, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Miquel Bioque
- Barcelona Clinic Schizophrenia Unit, Hospital Clinic Barcelona, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Miquel Bernardo
- Barcelona Clinic Schizophrenia Unit, Hospital Clinic Barcelona, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| |
Collapse
|
377
|
Lázaro-Muñoz G, Sabatello M, Huckins L, Peay H, Degenhardt F, Meiser B, Lencz T, Soda T, Docherty A, Crepaz-Keay D, Austin J, Peterson RE, Davis LK. International Society of Psychiatric Genetics Ethics Committee: Issues facing us. Am J Med Genet B Neuropsychiatr Genet 2019; 180:543-554. [PMID: 31124312 PMCID: PMC6861601 DOI: 10.1002/ajmg.b.32736] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/21/2019] [Accepted: 05/10/2019] [Indexed: 12/19/2022]
Abstract
Psychiatric genetics research is improving our understanding of the biological underpinnings of neurodiversity and mental illness. Using psychiatric genetics in ways that maximize benefits and minimize harms to individuals and society depends largely on how the ethical, legal, and social implications (ELSI) of psychiatric genetics are managed. The International Society of Psychiatric Genetics (ISPG) is the largest international organization dedicated to psychiatric genetics. Given its history, membership, and international reach, we believe the ISPG is well-equipped to contribute to the resolution of these ELSI challenges. As such, we recently created the ISPG Ethics Committee, an interdisciplinary group comprised of psychiatric genetics researchers, clinical geneticists, genetic counselors, mental health professionals, patients, patient advocates, bioethicists, and lawyers. This article highlights key ELSI challenges identified by the ISPG Ethics Committee to be of paramount importance for the ethical translation of psychiatric research into society in three contexts: research settings, clinical settings, and legal proceedings. For each of these arenas, we identify and discuss pressing psychiatric genetics ELSI dilemmas that merit attention and require action. The goal is to increase awareness about psychiatric genetics ELSI issues and encourage dialogue and action among stakeholders.
Collapse
Affiliation(s)
| | | | - Laura Huckins
- Icahn School of Medicine at Mount Sinai, New York, NY, USA 10029
| | - Holly Peay
- RTI International, Research Triangle Park, NC, USA 27709
| | | | - Bettina Meiser
- University of New South Wales, UNSW Sydney 2052, Australia
| | - Todd Lencz
- Hofstra University, Hempstead, NY, USA 11549
| | - Takahiro Soda
- University of North Carolina at Chapel Hill, NC, USA 27599
| | | | | | | | | | | |
Collapse
|
378
|
Friedrich J, Strandberg E, Arvelius P, Sánchez-Molano E, Pong-Wong R, Hickey JM, Haskell MJ, Wiener P. Genetic dissection of complex behaviour traits in German Shepherd dogs. Heredity (Edinb) 2019; 123:746-758. [PMID: 31611599 PMCID: PMC6834583 DOI: 10.1038/s41437-019-0275-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 12/20/2022] Open
Abstract
A favourable genetic structure and diversity of behavioural features highlights the potential of dogs for studying the genetic architecture of behaviour traits. However, behaviours are complex traits, which have been shown to be influenced by numerous genetic and non-genetic factors, complicating their analysis. In this study, the genetic contribution to behaviour variation in German Shepherd dogs (GSDs) was analysed using genomic approaches. GSDs were phenotyped for behaviour traits using the established Canine Behavioural Assessment and Research Questionnaire (C-BARQ). Genome-wide association study (GWAS) and regional heritability mapping (RHM) approaches were employed to identify associations between behaviour traits and genetic variants, while accounting for relevant non-genetic factors. By combining these complementary methods we endeavoured to increase the power to detect loci with small effects. Several behavioural traits exhibited moderate heritabilities, with the highest identified for Human-directed playfulness, a trait characterised by positive interactions with humans. We identified several genomic regions associated with one or more of the analysed behaviour traits. Some candidate genes located in these regions were previously linked to behavioural disorders in humans, suggesting a new context for their influence on behaviour characteristics. Overall, the results support dogs as a valuable resource to dissect the genetic architecture of behaviour traits and also highlight the value of focusing on a single breed in order to control for background genetic effects and thus avoid limitations of between-breed analyses.
Collapse
Affiliation(s)
- Juliane Friedrich
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Erling Strandberg
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, 750 07, Uppsala, Sweden
| | - Per Arvelius
- Swedish Armed Forces Dog Training Centre, PO Box 194, 195 24, Märsta, Sweden
| | - E Sánchez-Molano
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Ricardo Pong-Wong
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - John M Hickey
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Marie J Haskell
- Animal and Veterinary Sciences Group, Scotland's Rural College, Edinburgh, EH25 9RG, UK.
| | - Pamela Wiener
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK.
| |
Collapse
|
379
|
Karavani E, Zuk O, Zeevi D, Barzilai N, Stefanis NC, Hatzimanolis A, Smyrnis N, Avramopoulos D, Kruglyak L, Atzmon G, Lam M, Lencz T, Carmi S. Screening Human Embryos for Polygenic Traits Has Limited Utility. Cell 2019; 179:1424-1435.e8. [PMID: 31761530 PMCID: PMC6957074 DOI: 10.1016/j.cell.2019.10.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/11/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022]
Abstract
The increasing proportion of variance in human complex traits explained by polygenic scores, along with progress in preimplantation genetic diagnosis, suggests the possibility of screening embryos for traits such as height or cognitive ability. However, the expected outcomes of embryo screening are unclear, which undermines discussion of associated ethical concerns. Here, we use theory, simulations, and real data to evaluate the potential gain of embryo screening, defined as the difference in trait value between the top-scoring embryo and the average embryo. The gain increases very slowly with the number of embryos but more rapidly with the variance explained by the score. Given current technology, the average gain due to screening would be ≈2.5 cm for height and ≈2.5 IQ points for cognitive ability. These mean values are accompanied by wide prediction intervals, and indeed, in large nuclear families, the majority of children top-scoring for height are not the tallest.
Collapse
Affiliation(s)
- Ehud Karavani
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Or Zuk
- Department of Statistics, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Danny Zeevi
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nir Barzilai
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Genetics, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nikos C Stefanis
- Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, 115 28 Athens, Greece; University Mental Health Research Institute, 115 27 Athens, Greece; Neurobiology Research Institute, Theodor-Theohari Cozzika Foundation, 115 21 Athens, Greece
| | - Alex Hatzimanolis
- Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, 115 28 Athens, Greece; Neurobiology Research Institute, Theodor-Theohari Cozzika Foundation, 115 21 Athens, Greece
| | - Nikolaos Smyrnis
- Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, 115 28 Athens, Greece; University Mental Health Research Institute, 115 27 Athens, Greece
| | - Dimitrios Avramopoulos
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Leonid Kruglyak
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gil Atzmon
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Genetics, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Max Lam
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY 11004, USA; Institute of Behavioral Science, Feinstein Institutes of Medical Research, Manhasset, NY 11030, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Todd Lencz
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY 11004, USA; Institute of Behavioral Science, Feinstein Institutes of Medical Research, Manhasset, NY 11030, USA; Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA.
| | - Shai Carmi
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| |
Collapse
|
380
|
Altschul DM, Wraw C, Der G, Gale CR, Deary IJ. Hypertension Development by Midlife and the Roles of Premorbid Cognitive Function, Sex, and Their Interaction. Hypertension 2019; 73:812-819. [PMID: 30776973 PMCID: PMC6426348 DOI: 10.1161/hypertensionaha.118.12164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Higher early-life cognitive function is associated with better later-life health outcomes, including hypertension. Associations between higher prior cognitive function and less hypertension persist even when accounting for socioeconomic status, but socioeconomic status-hypertension gradients are more pronounced in women. We predicted that differences in hypertension development between sexes might be associated with cognitive function and its interaction with sex, such that higher early-life cognitive function would be associated with lower hypertension risk more in women than in men. We used accelerated failure time modeling with the National Longitudinal Study of Youth 1979. Cognitive function was assessed in youth, when participants were aged between 14 and 21 years. Of 2572 men and 2679 women who completed all assessments, 977 men and 940 women reported hypertension diagnoses by 2015. Socioeconomic status in youth and adulthood were investigated as covariates, as were components of adult socioeconomic status: education, occupational status, and family income. An SD of higher cognitive function in youth was associated with reduced hypertension risk (acceleration factor: ĉ=0.97; 95% CI, 0.96-0.99; P=0.001). The overall effect was stronger in women (sex×cognitive function: ĉ=0.97; 95% CI, 0.94-0.99; P=0.010); especially, higher functioning women were less at risk than their male counterparts. This interaction was itself attenuated by a sex by family income interaction. People with better cognitive function in youth, especially women, are less likely to develop hypertension later in life. Income differences accounted for these associations. Possible causal explanations are discussed.
Collapse
Affiliation(s)
- Drew M Altschul
- From the Department of Psychology (D.M.A., C.W., I.J.D.), University of Edinburgh, United Kingdom.,Centre for Cognitive Ageing and Cognitive Epidemiology (D.M.A., C.W., C.R.G., I.J.D.), University of Edinburgh, United Kingdom
| | - Christina Wraw
- From the Department of Psychology (D.M.A., C.W., I.J.D.), University of Edinburgh, United Kingdom.,Centre for Cognitive Ageing and Cognitive Epidemiology (D.M.A., C.W., C.R.G., I.J.D.), University of Edinburgh, United Kingdom
| | - Geoff Der
- MRC/CSO Social and Public Health Sciences Unit, University of Glasgow, United Kingdom (G.D.)
| | - Catharine R Gale
- Centre for Cognitive Ageing and Cognitive Epidemiology (D.M.A., C.W., C.R.G., I.J.D.), University of Edinburgh, United Kingdom.,MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, United Kingdom (C.R.G.)
| | - Ian J Deary
- From the Department of Psychology (D.M.A., C.W., I.J.D.), University of Edinburgh, United Kingdom.,Centre for Cognitive Ageing and Cognitive Epidemiology (D.M.A., C.W., C.R.G., I.J.D.), University of Edinburgh, United Kingdom
| |
Collapse
|
381
|
Nott A, Holtman IR, Coufal NG, Schlachetzki JCM, Yu M, Hu R, Han CZ, Pena M, Xiao J, Wu Y, Keulen Z, Pasillas MP, O'Connor C, Nickl CK, Schafer ST, Shen Z, Rissman RA, Brewer JB, Gosselin D, Gonda DD, Levy ML, Rosenfeld MG, McVicker G, Gage FH, Ren B, Glass CK. Brain cell type-specific enhancer-promoter interactome maps and disease -risk association. Science 2019; 366:1134-1139. [PMID: 31727856 DOI: 10.1126/science.aay0793] [Citation(s) in RCA: 471] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
Noncoding genetic variation is a major driver of phenotypic diversity, but functional interpretation is challenging. To better understand common genetic variation associated with brain diseases, we defined noncoding regulatory regions for major cell types of the human brain. Whereas psychiatric disorders were primarily associated with variants in transcriptional enhancers and promoters in neurons, sporadic Alzheimer's disease (AD) variants were largely confined to microglia enhancers. Interactome maps connecting disease-risk variants in cell-type-specific enhancers to promoters revealed an extended microglia gene network in AD. Deletion of a microglia-specific enhancer harboring AD-risk variants ablated BIN1 expression in microglia, but not in neurons or astrocytes. These findings revise and expand the list of genes likely to be influenced by noncoding variants in AD and suggest the probable cell types in which they function.
Collapse
Affiliation(s)
- Alexi Nott
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Inge R Holtman
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.,Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Nicole G Coufal
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.,Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Miao Yu
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Rong Hu
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Claudia Z Han
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Monique Pena
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jiayang Xiao
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Yin Wu
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Zahara Keulen
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Martina P Pasillas
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Carolyn O'Connor
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Christian K Nickl
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Simon T Schafer
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Zeyang Shen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.,Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.,Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - James B Brewer
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - David Gosselin
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.,Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec G1V 4G2, Canada
| | - David D Gonda
- Department of Neurosurgery, University of California, San Diego-Rady Children's Hospital, San Diego, CA 92123, USA
| | - Michael L Levy
- Department of Neurosurgery, University of California, San Diego-Rady Children's Hospital, San Diego, CA 92123, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Graham McVicker
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Fred H Gage
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Bing Ren
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.,The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA. .,Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
382
|
Abstract
The Colorado Twin Registry (CTR) is a population-based registry formed from birth and school records including twins born between 1968 and the present. Two previous reports on the CTR [Rhea et al., (2006). Twin Research and Human Genetics, 9, 941-949; Rhea et al., (2013).Twin Research and Human Genetics, 16, 351-357] covered developments in the CTR through 2012. This report briefly summarizes previously presented material on ascertainment and recruitment and the relationships between samples and studies, discusses developments since 2012 for four previously described twin samples, describes two new samples and their complementary studies and expands on two subjects briefly mentioned in the last report: a history of genotyping efforts involving CTR samples, and a survey of collaborations and consortia in which CTR twins have been included. The CTR remains an active resource for both ongoing, longitudinal research and the recruitment of new twin samples for newly identified research opportunities.
Collapse
|
383
|
Abstract
Recent discussions of human brain evolution have largely focused on increased neuron numbers and changes in their connectivity and expression. However, it is increasingly appreciated that oligodendrocytes play important roles in cognitive function and disease. Whether both cell types follow similar or distinctive evolutionary trajectories is not known. We examined the transcriptomes of neurons and oligodendrocytes in the frontal cortex of humans, chimpanzees, and rhesus macaques. We identified human-specific trajectories of gene expression in neurons and oligodendrocytes and show that both cell types exhibit human-specific up-regulation. Moreover, oligodendrocytes have undergone more pronounced accelerated gene expression evolution in the human lineage compared to neurons. We highlighted human-specific coexpression networks with specific functions. Our data suggest that oligodendrocyte human-specific networks are enriched for alternative splicing and transcriptional regulation. Oligodendrocyte networks are also enriched for variants associated with schizophrenia and other neuropsychiatric disorders. Such enrichments were not found in neuronal networks. These results offer a glimpse into the molecular mechanisms of oligodendrocytes during evolution and how such mechanisms are associated with neuropsychiatric disorders.
Collapse
|
384
|
Roggenbuck J, Doyle C, Lincoln T, Glass J. Theme 2 Genetics and genomics. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:114-134. [PMID: 31702465 DOI: 10.1080/21678421.2019.1646990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: A genetic basis is found in ∼70% of familial and ∼15% of sporadic ALS, in research cohorts. Clinical trials of gene-targeted therapies are underway, heralding a new era of personalized medicine in ALS treatment. However, ALS management guidelines do not include recommendations for the offer of genetic testing. Many persons with ALS who desire genetic testing are not currently offered it, and the yield of genetic testing in clinic-based ALS populations is unknown. The ALS GAP program, sponsored by the Northeast ALS (NEALS) Consortium, provides free genetic testing for patients with ALS who have a family history of ALS or dementia. We report genetic testing outcomes in the first 142 patients tested in the
program.Objectives: 1) To create a pilot ALS genetic testing program for NEALS clinics, 2) To study the rate of ALS gene identification in a US clinic-based populationMethods: Persons with ALS and a family history of ALS (fALS) or dementia (dALS) who receive care at a US NEALS clinic are eligible for testing. Patients classified as fALS (having a positive family history of ALS in a 1st, 2nd, or 3rd degree relative) are eligible for C9orf72 testing, with the option to reflex to a 5 gene (SOD1, FUS, TARDBP, TBK1, VCP) panel. Patients classified as dALS (having a positive family history of dementia of any type in a 1st or 2nd degree relative) are eligible for C9orf72 testing only.Results: Currently, 29.5% (34/115) of US NEALS clinics have participated in the program. Of 142 patients who have completed testing to date, 78 (54.9%) were classified as fALS and 64 (45.1%) as dALS. Among fALS cases, 42/78 (53.9%) tested positive, including 32/78 (41%) with a C9orf72 repeat expansion, and 10/78 (12.8%) with other pathogenic or likely pathogenic variants in SOD, FUS, TARDP or VCP. Variants of uncertain significance (VUS) in FUS were identified in 2/78 (2.6%). Among dALS cases, 12/60 (20%) tested positive for C9orf72.Discussion and conclusions: Participation in ALS-GAP indicates significant clinician and patient interest in ALS genetic testing. This program addresses several current barriers to testing access, including cost, identifying appropriate candidates for testing, and appropriate test selection. Although 38% of patients who participated in the program have thus far received a genetic diagnosis, our testing outcome data suggests that the gene identification rate in fALS cases may be lower in clinic-based patients than in research cohorts, particularly for genes other than C9orf72. This program may serve as a model for the practice of ALS genetic testing in the clinic setting. Consistent, equitable testing policies, as well as an accurate understanding of the genetic profile of clinic-based ALS populations, are needed as gene-targeted therapies reach patient care.
Collapse
|
385
|
Saffari A, Arno M, Nasser E, Ronald A, Wong CCY, Schalkwyk LC, Mill J, Dudbridge F, Meaburn EL. RNA sequencing of identical twins discordant for autism reveals blood-based signatures implicating immune and transcriptional dysregulation. Mol Autism 2019; 10:38. [PMID: 31719968 PMCID: PMC6839145 DOI: 10.1186/s13229-019-0285-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/01/2019] [Indexed: 11/13/2022] Open
Abstract
Background A gap exists in our mechanistic understanding of how genetic and environmental risk factors converge at the molecular level to result in the emergence of autism symptoms. We compared blood-based gene expression signatures in identical twins concordant and discordant for autism spectrum condition (ASC) to differentiate genetic and environmentally driven transcription differences, and establish convergent evidence for biological mechanisms involved in ASC. Methods Genome-wide gene expression data were generated using RNA-seq on whole blood samples taken from 16 pairs of monozygotic (MZ) twins and seven twin pair members (39 individuals in total), who had been assessed for ASC and autism traits at age 12. Differential expression (DE) analyses were performed between (a) affected and unaffected subjects (N = 36) and (b) within discordant ASC MZ twin pairs (total N = 11) to identify environmental-driven DE. Gene set enrichment and pathway testing was performed on DE gene lists. Finally, an integrative analysis using DNA methylation data aimed to identify genes with consistent evidence for altered regulation in cis. Results In the discordant twin analysis, three genes showed evidence for DE at FDR < 10%: IGHG4, EVI2A and SNORD15B. In the case-control analysis, four DE genes were identified at FDR < 10% including IGHG4, PRR13P5, DEPDC1B, and ZNF501. We find enrichment for DE of genes curated in the SFARI human gene database. Pathways showing evidence of enrichment included those related to immune cell signalling and immune response, transcriptional control and cell cycle/proliferation. Integrative methylomic and transcriptomic analysis identified a number of genes showing suggestive evidence for cis dysregulation. Limitations Identical twins stably discordant for ASC are rare, and as such the sample size was limited and constrained to the use of peripheral blood tissue for transcriptomic and methylomic profiling. Given these primary limitations, we focused on transcript-level analysis. Conclusions Using a cohort of ASC discordant and concordant MZ twins, we add to the growing body of transcriptomic-based evidence for an immune-based component in the molecular aetiology of ASC. Whilst the sample size was limited, the study demonstrates the utility of the discordant MZ twin design combined with multi-omics integration for maximising the potential to identify disease-associated molecular signals.
Collapse
Affiliation(s)
- Ayden Saffari
- Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck, University of London, London, UK
| | - Matt Arno
- Edinburgh Genomics, University of Edinburgh, Edinburgh, Scotland UK
- King’s Genomics Centre, King’s College London, London, UK
| | - Eric Nasser
- King’s Genomics Centre, King’s College London, London, UK
| | - Angelica Ronald
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck, University of London, London, UK
| | - Chloe C. Y. Wong
- Social Genetic and Developmental Psychology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | | | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Frank Dudbridge
- Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Emma L. Meaburn
- Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck, University of London, London, UK
| |
Collapse
|
386
|
Zhao B, Luo T, Li T, Li Y, Zhang J, Shan Y, Wang X, Yang L, Zhou F, Zhu Z, Zhu H. Genome-wide association analysis of 19,629 individuals identifies variants influencing regional brain volumes and refines their genetic co-architecture with cognitive and mental health traits. Nat Genet 2019; 51:1637-1644. [PMID: 31676860 PMCID: PMC6858580 DOI: 10.1038/s41588-019-0516-6] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022]
Abstract
Volumetric variations of the human brain are heritable and are associated with many brain-related complex traits. Here we performed genome-wide association studies (GWAS) of 101 brain volumetric phenotypes using the UK Biobank sample including 19,629 participants. GWAS identified 365 independent genetic variants exceeding a significance threshold of 4.9 × 10-10, adjusted for testing multiple phenotypes. A gene-based association study found 157 associated genes (124 new), and functional gene mapping analysis linked 146 additional genes. Many of the discovered genetic variants and genes have previously been implicated in cognitive and mental health traits. Through genome-wide polygenic-risk-score prediction, more than 6% of the phenotypic variance (P = 3.13 × 10-24) in four other independent studies could be explained by the UK Biobank GWAS results. In conclusion, our study identifies many new genetic associations at the variant, locus and gene levels and advances our understanding of the pleiotropy and genetic co-architecture between brain volumes and other traits.
Collapse
Affiliation(s)
- Bingxin Zhao
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tianyou Luo
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tengfei Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jingwen Zhang
- Department of Biostatistics, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Yue Shan
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xifeng Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Liuqing Yang
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fan Zhou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ziliang Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
387
|
Satizabal CL, Adams HHH, Hibar DP, White CC, Knol MJ, Stein JL, Scholz M, Sargurupremraj M, Jahanshad N, Roshchupkin GV, Smith AV, Bis JC, Jian X, Luciano M, Hofer E, Teumer A, van der Lee SJ, Yang J, Yanek LR, Lee TV, Li S, Hu Y, Koh JY, Eicher JD, Desrivières S, Arias-Vasquez A, Chauhan G, Athanasiu L, Rentería ME, Kim S, Hoehn D, Armstrong NJ, Chen Q, Holmes AJ, den Braber A, Kloszewska I, Andersson M, Espeseth T, Grimm O, Abramovic L, Alhusaini S, Milaneschi Y, Papmeyer M, Axelsson T, Ehrlich S, Roiz-Santiañez R, Kraemer B, Håberg AK, Jones HJ, Pike GB, Stein DJ, Stevens A, Bralten J, Vernooij MW, Harris TB, Filippi I, Witte AV, Guadalupe T, Wittfeld K, Mosley TH, Becker JT, Doan NT, Hagenaars SP, Saba Y, Cuellar-Partida G, Amin N, Hilal S, Nho K, Mirza-Schreiber N, Arfanakis K, Becker DM, Ames D, Goldman AL, Lee PH, Boomsma DI, Lovestone S, Giddaluru S, Le Hellard S, Mattheisen M, Bohlken MM, Kasperaviciute D, Schmaal L, Lawrie SM, Agartz I, Walton E, Tordesillas-Gutierrez D, Davies GE, Shin J, Ipser JC, Vinke LN, Hoogman M, Jia T, Burkhardt R, Klein M, Crivello F, Janowitz D, Carmichael O, Haukvik UK, Aribisala BS, Schmidt H, et alSatizabal CL, Adams HHH, Hibar DP, White CC, Knol MJ, Stein JL, Scholz M, Sargurupremraj M, Jahanshad N, Roshchupkin GV, Smith AV, Bis JC, Jian X, Luciano M, Hofer E, Teumer A, van der Lee SJ, Yang J, Yanek LR, Lee TV, Li S, Hu Y, Koh JY, Eicher JD, Desrivières S, Arias-Vasquez A, Chauhan G, Athanasiu L, Rentería ME, Kim S, Hoehn D, Armstrong NJ, Chen Q, Holmes AJ, den Braber A, Kloszewska I, Andersson M, Espeseth T, Grimm O, Abramovic L, Alhusaini S, Milaneschi Y, Papmeyer M, Axelsson T, Ehrlich S, Roiz-Santiañez R, Kraemer B, Håberg AK, Jones HJ, Pike GB, Stein DJ, Stevens A, Bralten J, Vernooij MW, Harris TB, Filippi I, Witte AV, Guadalupe T, Wittfeld K, Mosley TH, Becker JT, Doan NT, Hagenaars SP, Saba Y, Cuellar-Partida G, Amin N, Hilal S, Nho K, Mirza-Schreiber N, Arfanakis K, Becker DM, Ames D, Goldman AL, Lee PH, Boomsma DI, Lovestone S, Giddaluru S, Le Hellard S, Mattheisen M, Bohlken MM, Kasperaviciute D, Schmaal L, Lawrie SM, Agartz I, Walton E, Tordesillas-Gutierrez D, Davies GE, Shin J, Ipser JC, Vinke LN, Hoogman M, Jia T, Burkhardt R, Klein M, Crivello F, Janowitz D, Carmichael O, Haukvik UK, Aribisala BS, Schmidt H, Strike LT, Cheng CY, Risacher SL, Pütz B, Fleischman DA, Assareh AA, Mattay VS, Buckner RL, Mecocci P, Dale AM, Cichon S, Boks MP, Matarin M, Penninx BWJH, Calhoun VD, Chakravarty MM, Marquand AF, Macare C, Kharabian Masouleh S, Oosterlaan J, Amouyel P, Hegenscheid K, Rotter JI, Schork AJ, Liewald DCM, de Zubicaray GI, Wong TY, Shen L, Sämann PG, Brodaty H, Roffman JL, de Geus EJC, Tsolaki M, Erk S, van Eijk KR, Cavalleri GL, van der Wee NJA, McIntosh AM, Gollub RL, Bulayeva KB, Bernard M, Richards JS, Himali JJ, Loeffler M, Rommelse N, Hoffmann W, Westlye LT, Valdés Hernández MC, Hansell NK, van Erp TGM, Wolf C, Kwok JBJ, Vellas B, Heinz A, Olde Loohuis LM, Delanty N, Ho BC, Ching CRK, Shumskaya E, Singh B, Hofman A, van der Meer D, Homuth G, Psaty BM, Bastin ME, Montgomery GW, Foroud TM, Reppermund S, Hottenga JJ, Simmons A, Meyer-Lindenberg A, Cahn W, Whelan CD, van Donkelaar MMJ, Yang Q, Hosten N, Green RC, Thalamuthu A, Mohnke S, Hulshoff Pol HE, Lin H, Jack CR, Schofield PR, Mühleisen TW, Maillard P, Potkin SG, Wen W, Fletcher E, Toga AW, Gruber O, Huentelman M, Davey Smith G, Launer LJ, Nyberg L, Jönsson EG, Crespo-Facorro B, Koen N, Greve DN, Uitterlinden AG, Weinberger DR, Steen VM, Fedko IO, Groenewold NA, Niessen WJ, Toro R, Tzourio C, Longstreth WT, Ikram MK, Smoller JW, van Tol MJ, Sussmann JE, Paus T, Lemaître H, Schroeter ML, Mazoyer B, Andreassen OA, Holsboer F, Depondt C, Veltman DJ, Turner JA, Pausova Z, Schumann G, van Rooij D, Djurovic S, Deary IJ, McMahon KL, Müller-Myhsok B, Brouwer RM, Soininen H, Pandolfo M, Wassink TH, Cheung JW, Wolfers T, Martinot JL, Zwiers MP, Nauck M, Melle I, Martin NG, Kanai R, Westman E, Kahn RS, Sisodiya SM, White T, Saremi A, van Bokhoven H, Brunner HG, Völzke H, Wright MJ, van 't Ent D, Nöthen MM, Ophoff RA, Buitelaar JK, Fernández G, Sachdev PS, Rietschel M, van Haren NEM, Fisher SE, Beiser AS, Francks C, Saykin AJ, Mather KA, Romanczuk-Seiferth N, Hartman CA, DeStefano AL, Heslenfeld DJ, Weiner MW, Walter H, Hoekstra PJ, Nyquist PA, Franke B, Bennett DA, Grabe HJ, Johnson AD, Chen C, van Duijn CM, Lopez OL, Fornage M, Wardlaw JM, Schmidt R, DeCarli C, De Jager PL, Villringer A, Debette S, Gudnason V, Medland SE, Shulman JM, Thompson PM, Seshadri S, Ikram MA. Genetic architecture of subcortical brain structures in 38,851 individuals. Nat Genet 2019; 51:1624-1636. [PMID: 31636452 PMCID: PMC7055269 DOI: 10.1038/s41588-019-0511-y] [Show More Authors] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 09/05/2019] [Indexed: 12/15/2022]
Abstract
Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
Collapse
Affiliation(s)
- Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA.
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX, USA.
- The Framingham Heart Study, Framingham, MA, USA.
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| | - Hieab H H Adams
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands
| | - Derrek P Hibar
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Charles C White
- Cell Circuits Program, Broad Institute, Cambridge, MA, USA
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Maria J Knol
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Jason L Stein
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE: The Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Muralidharan Sargurupremraj
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, Bordeaux, France
| | - Neda Jahanshad
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Gennady V Roshchupkin
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
- Department of Medical Informatics, Erasmus MC, Rotterdam, the Netherlands
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Xueqiu Jian
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michelle Luciano
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | | | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Lisa R Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tom V Lee
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Shuo Li
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jia Yu Koh
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - John D Eicher
- Division of Intramural Research, Population Sciences Branch, National Heart, Lung and Blood Institute, Framingham, MA, USA
| | - Sylvane Desrivières
- MRC-SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alejandro Arias-Vasquez
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Ganesh Chauhan
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, Bordeaux, France
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Lavinia Athanasiu
- CoE NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- CoE NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Miguel E Rentería
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sungeun Kim
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Neuroimaging, Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David Hoehn
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Nicola J Armstrong
- Mathematics and Statistics, Murdoch University, Perth, Western Australia, Australia
| | - Qiang Chen
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Avram J Holmes
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Anouk den Braber
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Netherlands Twin Register, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, VU Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | | | - Micael Andersson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Thomas Espeseth
- CoE NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Oliver Grimm
- Central Institute of Mental Health, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Lucija Abramovic
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Saud Alhusaini
- The Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Martina Papmeyer
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
- Division of Systems Neuroscience of Psychopathology, Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Tomas Axelsson
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stefan Ehrlich
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Roberto Roiz-Santiañez
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
- Department of Medicine, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
- Centro Investigación Biomédica en Red Salud Mental, Santander, Spain
| | - Bernd Kraemer
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Asta K Håberg
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Hannah J Jones
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | - G Bruce Pike
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
| | - Allison Stevens
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Irina Filippi
- INSERM, Research Unit 1000 'Neuroimaging and Psychiatry', Paris Saclay University and Paris Descartes University-DIGITEO Labs, Gif sur Yvette, France
| | - A Veronica Witte
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Faculty of Medicine, CRC 1052 'Obesity Mechanisms', University of Leipzig, Leipzig, Germany
| | - Tulio Guadalupe
- International Max Planck Research School for Language Sciences, Nijmegen, the Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Katharina Wittfeld
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases, Greifswald, Germany
| | - Thomas H Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - James T Becker
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nhat Trung Doan
- CoE NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Saskia P Hagenaars
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Yasaman Saba
- Research Unit-Genetic Epidemiology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | | | - Najaf Amin
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Saima Hilal
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Center, National University Health System, Singapore, Singapore
| | - Kwangsik Nho
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Neuroimaging, Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nazanin Mirza-Schreiber
- Max Planck Institute of Psychiatry, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Diane M Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Ames
- Academic Unit for Psychiatry of Old Age, University of Melbourne, Melbourne, Victoria, Australia
- National Ageing Research Institute, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | | | - Phil H Lee
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Lexington, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Netherlands Twin Register, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Simon Lovestone
- Department of Psychiatry, University of Oxford, Oxford, UK
- NIHR Dementia Biomedical Research Unit, King's College London, London, UK
| | - Sudheer Giddaluru
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Stephanie Le Hellard
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Manuel Mattheisen
- Centre for integrated Sequencing, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Marc M Bohlken
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Dalia Kasperaviciute
- UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Lianne Schmaal
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia
| | - Stephen M Lawrie
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Ingrid Agartz
- CoE NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
- Department of Research and Development, Diakonhjemmet Hospital, Oslo, Norway
| | - Esther Walton
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
- Department of Psychology, University of Bath, Bath, UK
| | - Diana Tordesillas-Gutierrez
- Centro Investigación Biomédica en Red Salud Mental, Santander, Spain
- Neuroimaging Unit, Technological Facilities, Valdecilla Biomedical Research Institute IDIVAL, Santander, Spain
| | | | - Jean Shin
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan C Ipser
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Louis N Vinke
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Martine Hoogman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Tianye Jia
- MRC-SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ralph Burkhardt
- LIFE: The Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Marieke Klein
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Fabrice Crivello
- Neurodegeneratives Diseases Institute, CNRS UMR 5293, Université de Bordeaux, Bordeaux, France
| | - Deborah Janowitz
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany
| | | | - Unn K Haukvik
- CoE NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Adult Psychiatry, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Benjamin S Aribisala
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Department of Computer Science, Lagos State University, Ojo, Nigeria
| | - Helena Schmidt
- Research Unit-Genetic Epidemiology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Lachlan T Strike
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Shannon L Risacher
- Center for Neuroimaging, Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Benno Pütz
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Debra A Fleischman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Amelia A Assareh
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Venkata S Mattay
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Randy L Buckner
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Patrizia Mecocci
- Section of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California, San Diego, San Diego, CA, USA
- Department of Cognitive Sciences, University of California, San Diego, San Diego, CA, USA
- Department of Neurosciences, University of California. San Diego, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, San Diego, CA, USA
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Sven Cichon
- Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Institute for Neuroscience and Medicine: Structural and Functional Organisation of the Brain (INM-1), Research Centre Jülich, Jülich, Germany
| | - Marco P Boks
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Mar Matarin
- UCL Queen Square Institute of Neurology, London, UK
- Reta Lila Weston Institute, UCL Institute of Neurology, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Vince D Calhoun
- Department of ECE, University of New Mexico, Albuquerque, NM, USA
- The Mind Research Network and LBERI, Albuquerque, NM, USA
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, GA, USA
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Québec, Canada
- Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal, Québec, Canada
| | - Andre F Marquand
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
| | - Christine Macare
- MRC-SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Shahrzad Kharabian Masouleh
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute for Neuroscience and Medicine: Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Jaap Oosterlaan
- Clinical Neuropsychology Section, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Emma Neuroscience Group, Department of Pediatrics, Emma Children's Hospital, Amsterdam Reproduction & Development, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Philippe Amouyel
- LabEx DISTALZ-U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, Lille, France
- Inserm U1167, Lille, France
- Centre Hospitalier Universitaire Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Katrin Hegenscheid
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Pediatrics at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Andrew J Schork
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Roskilde, Denmark
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - David C M Liewald
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Greig I de Zubicaray
- Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Academic Medicine Research Institute, Duke-NUS Medical School, Singapore, Singapore
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Dementia Centre for Research Collaboration, UNSW, Sydney, New South Wales, Australia
| | - Joshua L Roffman
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Netherlands Twin Register, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Magda Tsolaki
- 1st Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Susanne Erk
- Division of Mind and Brain Research, D, Corporate member of Freie Universität Berliepartment of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Kristel R van Eijk
- Brain Center Rudolf Magnus, Human Neurogenetics Unit, UMC Utrecht, Utrecht, the Netherlands
| | - Gianpiero L Cavalleri
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden, the Netherlands
| | - Andrew M McIntosh
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Randy L Gollub
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kazima B Bulayeva
- Department of Evolution and Genetics, Dagestan State University, Makhachkala, Russia
| | - Manon Bernard
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer S Richards
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, the Netherlands
| | - Jayandra J Himali
- The Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE: The Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Nanda Rommelse
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Karakter Child and Adolescent Psychiatry University Center, Nijmegen, the Netherlands
| | - Wolfgang Hoffmann
- German Center for Neurodegenerative Diseases, Greifswald, Germany
- Section Epidemiology of Health Care and Community Health, Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Lars T Westlye
- CoE NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- CoE NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Maria C Valdés Hernández
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Narelle K Hansell
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA
| | - Christiane Wolf
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - John B J Kwok
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Bruno Vellas
- Department of Internal Medicine, INSERM U 1027, University of Toulouse, Toulouse, France
- Department of Geriatric Medicine, INSERM U 1027, University of Toulouse, Toulouse, France
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Loes M Olde Loohuis
- Center for Neurobehavioral Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Norman Delanty
- The Royal College of Surgeons in Ireland, Dublin, Ireland
- Neurology Division, Beaumont Hospital, Dublin, Ireland
| | - Beng-Choon Ho
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Christopher R K Ching
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Interdepartmental Neuroscience Graduate Program, UCLA School of Medicine, Los Angeles, CA, USA
| | - Elena Shumskaya
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
| | - Baljeet Singh
- Imaging of Dementia and Aging Laboratory, Department of Neurology, University of California, Davis, Davis, CA, USA
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Dennis van der Meer
- CoE NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- CoE NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Kaiser Permanent Washington Health Research Institute, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
| | - Mark E Bastin
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Tatiana M Foroud
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Simone Reppermund
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Department of Developmental Disability Neuropsychiatry, School of Psychiatry, UNSW Medicine, Sydney, New South Wales, Australia
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Netherlands Twin Register, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Andrew Simmons
- Biomedical Research Unit for Dementia, King's College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, King's College London, London, UK
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Andreas Meyer-Lindenberg
- Central Institute of Mental Health, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Wiepke Cahn
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Christopher D Whelan
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Marjolein M J van Donkelaar
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Norbert Hosten
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Robert C Green
- Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Sebastian Mohnke
- Division of Mind and Brain Research, D, Corporate member of Freie Universität Berliepartment of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Hilleke E Hulshoff Pol
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Honghuang Lin
- The Framingham Heart Study, Framingham, MA, USA
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | - Peter R Schofield
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Medical Sciences, UNSW, Sydney, New South Wales, Australia
| | - Thomas W Mühleisen
- Institute for Neuroscience and Medicine: Structural and Functional Organisation of the Brain (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Cécile and Oskar Vogt Institute for Brain Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Pauline Maillard
- Imaging of Dementia and Aging Laboratory, Department of Neurology, University of California, Davis, Davis, CA, USA
| | - Steven G Potkin
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Evan Fletcher
- Imaging of Dementia and Aging Laboratory, Department of Neurology, University of California, Davis, Davis, CA, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Matthew Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Lars Nyberg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Radiation Sciences, Umeå University, Umeå, Sweden
| | - Erik G Jönsson
- CoE NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Benedicto Crespo-Facorro
- Department of Medicine, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
- Centro Investigación Biomédica en Red Salud Mental, Santander, Spain
| | - Nastassja Koen
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
| | - Douglas N Greve
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vidar M Steen
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Iryna O Fedko
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Netherlands Twin Register, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Nynke A Groenewold
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Wiro J Niessen
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
- Department of Medical Informatics, Erasmus MC, Rotterdam, the Netherlands
- Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | | | | | - William T Longstreth
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Department of Neurology, Erasmus MC, Rotterdam, the Netherlands
| | - Jordan W Smoller
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Marie-Jose van Tol
- Cognitive Neuroscience Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jessika E Sussmann
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Tomas Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Hervé Lemaître
- INSERM, Research Unit 1000 'Neuroimaging and Psychiatry', Paris Saclay University and Paris Descartes University-DIGITEO Labs, Gif sur Yvette, France
| | - Matthias L Schroeter
- LIFE: The Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Clinic for Cognitive Neurology, University Clinic Leipzig, Leipzig, Germany
| | - Bernard Mazoyer
- Neurodegeneratives Diseases Institute, CNRS UMR 5293, Université de Bordeaux, Bordeaux, France
| | - Ole A Andreassen
- CoE NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- CoE NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Florian Holsboer
- Max Planck Institute of Psychiatry, Munich, Germany
- HMNC Brain Health, Munich, Germany
| | - Chantal Depondt
- Department of Neurology, Hopital Erasme, Universite Libre de Bruxelles, Brussels, Belgium
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Jessica A Turner
- The Mind Research Network and LBERI, Albuquerque, NM, USA
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, GA, USA
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Zdenka Pausova
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Gunter Schumann
- MRC-SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Daan van Rooij
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, the Netherlands
| | - Srdjan Djurovic
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ian J Deary
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Katie L McMahon
- Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Bertram Müller-Myhsok
- Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Rachel M Brouwer
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Hilkka Soininen
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland
- Neurocentre Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Massimo Pandolfo
- Department of Neurology, Hopital Erasme, Universite Libre de Bruxelles, Brussels, Belgium
| | - Thomas H Wassink
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Joshua W Cheung
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Thomas Wolfers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Jean-Luc Martinot
- INSERM, Research Unit 1000 'Neuroimaging and Psychiatry', Paris Saclay University and Paris Descartes University-DIGITEO Labs, Gif sur Yvette, France
| | - Marcel P Zwiers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (partner site Greifswald), Greifswald, Germany
| | - Ingrid Melle
- CoE NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- CoE NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ryota Kanai
- Department of Neuroinformatics, Araya, Tokyo, Japan
- Institute of Cognitive Neuroscience, University College London, London, UK
- School of Psychology, University of Sussex, Brighton, UK
| | - Eric Westman
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - René S Kahn
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sanjay M Sisodiya
- UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Tonya White
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Arvin Saremi
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hans van Bokhoven
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht, the Netherlands
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (partner site Greifswald), Greifswald, Germany
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Dennis van 't Ent
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Netherlands Twin Register, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Roel A Ophoff
- Center for Neurobehavioral Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Karakter Child and Adolescent Psychiatry University Center, Nijmegen, the Netherlands
| | - Guillén Fernández
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Marcella Rietschel
- Central Institute of Mental Health, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Neeltje E M van Haren
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Simon E Fisher
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Alexa S Beiser
- The Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Clyde Francks
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Andrew J Saykin
- Center for Neuroimaging, Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Nina Romanczuk-Seiferth
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Catharina A Hartman
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, the Netherlands
| | - Anita L DeStefano
- The Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Dirk J Heslenfeld
- Department of Psychology, VU University Amsterdam, Amsterdam, the Netherlands
| | - Michael W Weiner
- Center for Imaging of Neurodegenerative Disease, San Francisco VA Medical Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Henrik Walter
- Division of Mind and Brain Research, D, Corporate member of Freie Universität Berliepartment of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Pieter J Hoekstra
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, the Netherlands
| | - Paul A Nyquist
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Hans J Grabe
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases, Greifswald, Germany
| | - Andrew D Johnson
- Division of Intramural Research, Population Sciences Branch, National Heart, Lung and Blood Institute, Framingham, MA, USA
| | - Christopher Chen
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Center, National University Health System, Singapore, Singapore
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Myriam Fornage
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joanna M Wardlaw
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
| | - Charles DeCarli
- Department of Neurology, Center for Neuroscience, University of California, Davis, Sacramento, CA, USA
| | - Philip L De Jager
- Cell Circuits Program, Broad Institute, Cambridge, MA, USA
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Faculty of Medicine, CRC 1052 'Obesity Mechanisms', University of Leipzig, Leipzig, Germany
| | - Stéphanie Debette
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, Bordeaux, France
- Department of Neurology, CHU de Bordeaux, Bordeaux, France
| | - Vilmundur Gudnason
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Joshua M Shulman
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Paul M Thompson
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sudha Seshadri
- The Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands.
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
388
|
Wang D, Guo T, Guo Q, Zhang S, Zhang J, Luo J. The Association Between Schizophrenia Risk Variants and Creativity in Healthy Han Chinese Subjects. Front Psychol 2019; 10:2218. [PMID: 31649580 PMCID: PMC6792478 DOI: 10.3389/fpsyg.2019.02218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/17/2019] [Indexed: 11/14/2022] Open
Abstract
Although previous evidence has suggested that there is a genetic link between schizophrenia and creativity, the specific genetic variants that underlie the link are still largely unknown. To further explore the potential genetic link between schizophrenia and creativity, in a sample of 580 healthy Han Chinese subjects, this study aimed to (1) validate the role of Neuregulin 1 (NRG1) rs6994992 (one schizophrenia risk variant that has been previously linked to creativity in the European population) in the relationship between schizophrenia and creativity and (2) explore the associations between 10 other schizophrenia risk variants and creativity. For NRG1 rs6994992, the result validated its association with creativity measures. However, since NRG1 rs6994992 is not a schizophrenia risk variant in the Han Chinese population, the validated association suggested that ethnic difference may exist in the relationship between NRG1 rs6994992, schizophrenia and creativity. For other schizophrenia risk variants, the result only demonstrated a nominal association between ZNF536 rs2053079 and creativity measures which would not survive correction for multiple testing. No association between polygenic risk score for these 10 schizophrenia risk variants and creativity measures was observed. In conclusion, this study provides limited evidence for the associations between these schizophrenia risk variants and creativity in healthy Han Chinese subjects. Future studies are warranted to better understand the potential genetic link between schizophrenia and creativity.
Collapse
Affiliation(s)
- Dan Wang
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, The Collaborative Innovation Center for Capital Education Development, Capital Normal University, Beijing, China
| | - Tingting Guo
- Beijing Gese Technology Co., Ltd., Beijing, China
| | - Qi Guo
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, The Collaborative Innovation Center for Capital Education Development, Capital Normal University, Beijing, China
| | - Shun Zhang
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Jinghuan Zhang
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Jing Luo
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, The Collaborative Innovation Center for Capital Education Development, Capital Normal University, Beijing, China
| | | |
Collapse
|
389
|
Lobier M, Niittymäki P, Nikiforow N, Palokangas E, Larjo A, Mattila P, Castrén J, Partanen J, Arvas M. FinDonor 10 000 study: a cohort to identify iron depletion and factors affecting it in Finnish blood donors. Vox Sang 2019; 115:36-46. [PMID: 31657023 PMCID: PMC7004091 DOI: 10.1111/vox.12856] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/16/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022]
Abstract
Background and Objectives There is increasing evidence that frequent blood donation depletes the iron stores of some blood donors. The FinDonor 10 000 study was set up to study iron status and factors affecting iron stores in Finnish blood donors. In Finland, iron supplementation for at‐risk groups has been in place since the 1980s. Material and Methods A total of 2584 blood donors (N = 8003 samples) were recruited into the study alongside standard donation at three donation sites in the capital region of Finland between 5/2015 and 12/2017. All participants were asked to fill out a questionnaire about their health and lifestyle. Blood samples were collected from the sample pouch of whole blood collection set, kept in cool temperature and processed centrally. Whole blood count, CRP, ferritin and sTFR were measured from the samples, and DNA was isolated for GWAS studies. Results Participant demographics, albeit in general similar to the general blood donor population in Finland, indicated some bias towards older and more frequent donors. Participation in the study increased median donation frequency of the donors. Analysis of the effect of time lag from the sampling to the analysis and the time of day when sample was drawn revealed small but significant time‐dependent changes. Conclusion The FinDonor cohort now provides us with tools to identify potential donor groups at increased risk of iron deficiency and factors explaining this risk. The increase in donation frequency during the study suggests that scientific projects can be used to increase the commitment of blood donors.
Collapse
Affiliation(s)
- Muriel Lobier
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Pia Niittymäki
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Nina Nikiforow
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Elina Palokangas
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Antti Larjo
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Pirkko Mattila
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Johanna Castrén
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Jukka Partanen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Mikko Arvas
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| |
Collapse
|
390
|
Xia L, Ou J, Li K, Guo H, Hu Z, Bai T, Zhao J, Xia K, Zhang F. Genome-wide association analysis of autism identified multiple loci that have been reported as strong signals for neuropsychiatric disorders. Autism Res 2019; 13:382-396. [PMID: 31647196 DOI: 10.1002/aur.2229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/17/2019] [Accepted: 09/22/2019] [Indexed: 12/13/2022]
Abstract
Autism is a common neurodevelopmental disorder with a moderate to a high degree of heritability, but only a few common genetic variants that explain the heritability have been associated. We performed a genome-wide transmission disequilibrium test analysis of a newly genotyped autism case-parent triad samples (127 trios) in Han Chinese, identified top association signals at multiple single nucleotide polymorphisms (SNPs), including rs9839376 (OR = 2.59, P = 1.27 × 10-05 ) at KCNMB2, rs6044680 (OR = 0.319, P = 4.82 × 10-05 ) and rs7274133 (OR = 0.313, P = 3.22 × 10-05 ) at PCSK2, and rs310619 (OR = 2.40, P = 7.44 × 10-05 ) at EEF1A2. Furthermore, a genome-wide combined P-value of individual SNPs in two independent case-parent triad samples (total 402 triads, n = 1,206) identified SNPs at EGFLAM, ZDHHC2, AGBL1, and SNX29 as additional association signals for autism. While none of these signals achieved a genome-wide significance in the two samples of our study, they have been reported in a previous genome-wide association study of neuropsychiatric disorders, and the majority of these SNP have a significant cis-regulatory association with mRNA in human tissues (false discovery rate (FDR) < 0.05). Our study warrants further study or replication with additional sample for association with autism and other neuropsychiatric disorders. Autism Res 2020, 13: 382-396. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Autism is a common neurodevelopmental disorder, heritable, but only a few common genetic variants that explain the heritability have been associated. We conducted a genome-wide association study with two cohorts of autism case-parent triad samples in Han Chinese and identified multiple single nucleotide polymorphisms that were reported as strong association signals in a previous genome-wide association study of other neuropsychiatric disorders or related traits. Our study provides evidence for shared genetic variants among autism and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Lu Xia
- Center for Medical Genetics and Hunan Provincial Key Laboratory for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jianjun Ou
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Kuokuo Li
- Center for Medical Genetics and Hunan Provincial Key Laboratory for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Hui Guo
- Center for Medical Genetics and Hunan Provincial Key Laboratory for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Zhengmao Hu
- Center for Medical Genetics and Hunan Provincial Key Laboratory for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Ting Bai
- Center for Medical Genetics and Hunan Provincial Key Laboratory for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jingping Zhao
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Kun Xia
- Center for Medical Genetics and Hunan Provincial Key Laboratory for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,CAS Center for Excellence in Brain Science and Intelligences Technology (CEBSIT), Shanghai, China.,Key Laboratory of Medical Information Research, Central South University, Changsha, Hunan, China
| | - Fengyu Zhang
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China.,Global Clinical and Translational Research Institute, Bethesda, Maryland.,Peking University Huilongguan Clinical Medical School and Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|
391
|
Smeland OB, Frei O, Fan CC, Shadrin A, Dale AM, Andreassen OA. The emerging pattern of shared polygenic architecture of psychiatric disorders, conceptual and methodological challenges. Psychiatr Genet 2019; 29:152-159. [PMID: 31464996 PMCID: PMC10752571 DOI: 10.1097/ypg.0000000000000234] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genome-wide association studies have transformed psychiatric genetics and provided novel insights into the genetic etiology of psychiatric disorders. Two major discoveries have emerged; the disorders are polygenic, with a large number of common variants each with a small effect and many genetic variants influence more than one phenotype, suggesting shared genetic etiology. These concepts have the potential to revolutionize the current classification system with diagnostic categories and facilitate development of better treatments. However, to reach clinical impact, we need larger samples and better analytical tools, as most polygenic factors remain undetected. We here present statistical approaches designed to improve the yield of existing genome-wide association studies for polygenic phenotypes. We review how these tools have informed the current knowledge on the genetic architecture of psychiatric disorders, focusing on schizophrenia, bipolar disorder and major depression, and overlap with psychological and cognitive traits. We discuss application of statistical tools for stratification and prediction.
Collapse
Affiliation(s)
- Olav B. Smeland
- NORMENT Centre, Institute of Clinical Medicine, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Oleksandr Frei
- NORMENT Centre, Institute of Clinical Medicine, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Chun-Chieh Fan
- Center for Human Development, University of California, San Diego, USA
| | - Alexey Shadrin
- NORMENT Centre, Institute of Clinical Medicine, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Anders M. Dale
- Department of Radiology, University of California, USA
- Department of Neuroscience, University of California, San Diego, USA
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, California, USA
| | - Ole A. Andreassen
- NORMENT Centre, Institute of Clinical Medicine, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
392
|
Ding X, Barban N, Tropf FC, Mills MC. The relationship between cognitive decline and a genetic predictor of educational attainment. Soc Sci Med 2019; 239:112549. [PMID: 31546143 PMCID: PMC6873779 DOI: 10.1016/j.socscimed.2019.112549] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 12/24/2022]
Abstract
Genetic and environmental factors both make substantial contributions to the heterogeneity in individuals' levels of cognitive ability. Many studies have examined the relationship between educational attainment and cognitive performance and its rate of change. Yet there remains a gap in knowledge regarding whether the effect of genetic predictors on individual differences in cognition becomes more or less prominent over the life course. In this analysis of over 5000 older adults from the Health and Retirement Study (HRS) in the U.S., we measured the change in performance on global cognition, episodic memory, attention & concentration, and mental status over 14 years. Growth curve models are used to evaluate the association between a polygenic risk score for education (education PGS) and cognitive change. Using the most recent education PGS, we find that individuals with higher scores perform better across all measures of cognition in later life. Education PGS is associated with a faster decline in episodic memory in old age. The relationships are robust even after controlling for phenotypic educational attainment, and are unlikely to be driven by mortality bias. Future research should consider genetic effects when examining non-genetic factors in cognitive decline. Our findings represent a need to understand the mechanisms between genetic endowment of educational attainment and cognitive decline from a biological angle.
Collapse
Affiliation(s)
- Xuejie Ding
- Department of Sociology, University of Oxford, UK; Nuffield College, University of Oxford, UK.
| | - Nicola Barban
- Institute for Social and Economic Research (ISER), University of Essex, UK
| | - Felix C Tropf
- Center for Research in economics an Statistics (CREST), École Nationale de la Statistique et de L'administration Économique (ENSAE), France
| | - Melinda C Mills
- Department of Sociology, University of Oxford, UK; Nuffield College, University of Oxford, UK; Leverhulme Centre for Demographic Science, University of Oxford, UK
| |
Collapse
|
393
|
Viola TW, Schuch JB, Rovaris DL, Genovese R, Tondo L, Sanvicente-Vieira B, Zaparte A, Cupertino RB, da Silva BS, Bau CHD, Grassi-Oliveira R. Association between cognitive performance and SYT1-rs2251214 among women with cocaine use disorder. J Neural Transm (Vienna) 2019; 126:1707-1711. [PMID: 31562556 DOI: 10.1007/s00702-019-02086-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/20/2019] [Indexed: 11/29/2022]
Abstract
The SNP rs2251214 of the SYT1 gene was recently associated with externalizing phenotypes, including ADHD and cocaine use disorder (CUD). Here, we investigated whether SYT1-rs2251214 could also be implicated with cognitive performance variations among women with CUD. Results showed that G homozygous (n = 146) have lower cognitive performance in the Stroop, Trail Making and Matrix Reasoning tests compared with A-allele carriers (n = 64), suggesting that rs2251214 may influence the severity of cognitive impairments in CUD.
Collapse
Affiliation(s)
- Thiago Wendt Viola
- Developmental Cognitive Neuroscience Lab, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga 6691 - Predio 11, sala 926, Jardim Botânico, Porto Alegre, RS, Brazil
| | - Jaqueline Bohrer Schuch
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diego Luiz Rovaris
- Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Rafael Genovese
- Developmental Cognitive Neuroscience Lab, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga 6691 - Predio 11, sala 926, Jardim Botânico, Porto Alegre, RS, Brazil
| | - Lucca Tondo
- Developmental Cognitive Neuroscience Lab, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga 6691 - Predio 11, sala 926, Jardim Botânico, Porto Alegre, RS, Brazil
| | - Breno Sanvicente-Vieira
- Department of Psychology, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline Zaparte
- Developmental Cognitive Neuroscience Lab, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga 6691 - Predio 11, sala 926, Jardim Botânico, Porto Alegre, RS, Brazil
| | - Renata Basso Cupertino
- ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruna Santos da Silva
- ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton Henrique Dotto Bau
- ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Avenida Ipiranga 6691 - Predio 11, sala 926, Jardim Botânico, Porto Alegre, RS, Brazil.
| |
Collapse
|
394
|
Kornilov SA, Tan M, Aljughaiman A, Naumova OY, Grigorenko EL. Genome-Wide Homozygosity Mapping Reveals Genes Associated With Cognitive Ability in Children From Saudi Arabia. Front Genet 2019; 10:888. [PMID: 31620175 PMCID: PMC6759945 DOI: 10.3389/fgene.2019.00888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 08/22/2019] [Indexed: 11/28/2022] Open
Abstract
Recent studies of the genetic foundations of cognitive ability rely on large samples (in extreme, hundreds of thousands) of individuals from relatively outbred populations of mostly European ancestry. Hypothesizing that the genetic foundation of cognitive ability depends on the broader population-specific genetic context, we performed a genome-wide association study and homozygosity mapping of cognitive ability estimates obtained through latent variable modeling in a sample of 354 children from a consanguineous population of Saudi Arabia. Approximately half of the sample demonstrated significantly elevated homozygosity levels indicative of inbreeding, and among those with elevated levels, homozygosity was negatively associated with cognitive ability. Further homozygosity mapping identified a specific run, inclusive of the GRIA4 gene, that survived corrections for multiple testing for association with cognitive ability. The results suggest that in a consanguineous population, a notable proportion of the variance in cognitive ability in the normal range in children might be regulated by population-specific mechanisms such as patterns of elevated homozygosity. This observation has implications for the field's understanding of the etiological bases of intelligence and its variability around the world.
Collapse
Affiliation(s)
- Sergey A. Kornilov
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX, United States
- Department of Psychology, University of Houston, Houston, TX, USA
| | - Mei Tan
- Department of Psychology, University of Houston, Houston, TX, USA
| | | | - Oxana Yu Naumova
- Department of Psychology, University of Houston, Houston, TX, USA
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Elena L. Grigorenko
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX, United States
- Department of Psychology, University of Houston, Houston, TX, USA
- Child Study Center, Yale University, New Haven, CT, USA
- Moscow State University for Psychology and Education, Moscow, Russia
| |
Collapse
|
395
|
Smeland OB, Frei O, Shadrin A, O'Connell K, Fan CC, Bahrami S, Holland D, Djurovic S, Thompson WK, Dale AM, Andreassen OA. Discovery of shared genomic loci using the conditional false discovery rate approach. Hum Genet 2019; 139:85-94. [PMID: 31520123 DOI: 10.1007/s00439-019-02060-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 08/08/2019] [Indexed: 02/07/2023]
Abstract
In recent years, genome-wide association study (GWAS) sample sizes have become larger, the statistical power has improved and thousands of trait-associated variants have been uncovered, offering new insights into the genetic etiology of complex human traits and disorders. However, a large fraction of the polygenic architecture underlying most complex phenotypes still remains undetected. We here review the conditional false discovery rate (condFDR) method, a model-free strategy for analysis of GWAS summary data, which has improved yield of existing GWAS and provided novel findings of genetic overlap between a wide range of complex human phenotypes, including psychiatric, cardiovascular, and neurological disorders, as well as psychological and cognitive traits. The condFDR method was inspired by Empirical Bayes approaches and leverages auxiliary genetic information to improve statistical power for discovery of single-nucleotide polymorphisms (SNPs). The cross-trait condFDR strategy analyses separate GWAS data, and leverages overlapping SNP associations, i.e., cross-trait enrichment, to increase discovery of trait-associated SNPs. The extension of the condFDR approach to conjunctional FDR (conjFDR) identifies shared genomic loci between two phenotypes. The conjFDR approach allows for detection of shared genomic associations irrespective of the genetic correlation between the phenotypes, often revealing a mixture of antagonistic and agonistic directional effects among the shared loci. This review provides a methodological comparison between condFDR and other relevant cross-trait analytical tools and demonstrates how condFDR analysis may provide novel insights into the genetic relationship between complex phenotypes.
Collapse
Affiliation(s)
- Olav B Smeland
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0424, Oslo, Norway.
| | - Oleksandr Frei
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0424, Oslo, Norway
| | - Alexey Shadrin
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0424, Oslo, Norway
| | - Kevin O'Connell
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0424, Oslo, Norway
| | - Chun-Chieh Fan
- Department of Cognitive Science, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.,Department of Radiology, University of California of San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Shahram Bahrami
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0424, Oslo, Norway
| | - Dominic Holland
- Department of Radiology, University of California of San Diego, La Jolla, San Diego, CA, 92093, USA.,Department of Neuroscience, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.,Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, San Diego, CA, 92037, USA
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.,NORMENT Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Wesley K Thompson
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Anders M Dale
- Department of Cognitive Science, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.,Department of Radiology, University of California of San Diego, La Jolla, San Diego, CA, 92093, USA.,Department of Neuroscience, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.,Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, San Diego, CA, 92037, USA
| | - Ole A Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0424, Oslo, Norway.
| |
Collapse
|
396
|
Comes AL, Senner F, Budde M, Adorjan K, Anderson-Schmidt H, Andlauer TFM, Gade K, Hake M, Heilbronner U, Kalman JL, Reich-Erkelenz D, Klöhn-Saghatolislam F, Schaupp SK, Schulte EC, Juckel G, Dannlowski U, Schmauß M, Zimmermann J, Reimer J, Reininghaus E, Anghelescu IG, Arolt V, Baune BT, Konrad C, Thiel A, Fallgatter AJ, Nieratschker V, Figge C, von Hagen M, Koller M, Becker T, Wigand ME, Jäger M, Dietrich DE, Stierl S, Scherk H, Spitzer C, Folkerts H, Witt SH, Degenhardt F, Forstner AJ, Rietschel M, Nöthen MM, Wiltfang J, Falkai P, Schulze TG, Papiol S. The genetic relationship between educational attainment and cognitive performance in major psychiatric disorders. Transl Psychiatry 2019; 9:210. [PMID: 31462630 PMCID: PMC6713703 DOI: 10.1038/s41398-019-0547-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/03/2019] [Accepted: 07/17/2019] [Indexed: 11/13/2022] Open
Abstract
Cognitive deficits are a core feature of psychiatric disorders like schizophrenia and bipolar disorder. Evidence supports a genome-wide polygenic score (GPS) for educational attainment (GPSEDU) can be used to explain variability in cognitive performance. We aimed to identify different cognitive domains associated with GPSEDU in a transdiagnostic clinical cohort of chronic psychiatric patients with known cognitive deficits. Bipolar and schizophrenia patients from the PsyCourse cohort (N = 730; 43% female) were used. Likewise, we tested whether GPSs for schizophrenia (GPSSZ) and bipolar disorder (GPSBD) were associated with cognitive outcomes. GPSEDU explained 1.5% of variance in the backward verbal digit span, 1.9% in the number of correctly recalled words of the Verbal Learning and Memory Test, and 1.1% in crystallized intelligence. These effects were robust to the influences of treatment and diagnosis. No significant associations between GPSSZ or GPSBD with cognitive outcomes were found. Furthermore, these risk scores did not confound the effect of GPSEDU on cognitive outcomes. GPSEDU explains a small fraction of cognitive performance in adults with psychiatric disorders, specifically for domains related to linguistic learning and working memory. Investigating such a proxy-phenotype longitudinally, could give intriguing insight into the disease course, highlighting at what time genes play a more influential role on cognitive performance. Better understanding the origin of these deficits might help identify those patients at risk for lower levels of functioning and poor social outcomes. Polygenic estimates may in the future be part of predictive models for more personalized interventions.
Collapse
Affiliation(s)
- Ashley L Comes
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Munich, 80336, Germany.
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, 80804, Germany.
| | - Fanny Senner
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Munich, 80336, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, 80336, Germany
| | - Monika Budde
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Munich, 80336, Germany
| | - Kristina Adorjan
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Munich, 80336, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, 80336, Germany
| | - Heike Anderson-Schmidt
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Munich, 80336, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - Till F M Andlauer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| | - Katrin Gade
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - Maria Hake
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Munich, 80336, Germany
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Munich, 80336, Germany
| | - Janos L Kalman
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Munich, 80336, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, 80804, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, 80336, Germany
| | - Daniela Reich-Erkelenz
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Munich, 80336, Germany
| | - Farah Klöhn-Saghatolislam
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Munich, 80336, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, 80336, Germany
| | - Sabrina K Schaupp
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Munich, 80336, Germany
| | - Eva C Schulte
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Munich, 80336, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, 80336, Germany
| | - Georg Juckel
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, 44791, Germany
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, 48149, Germany
| | - Max Schmauß
- Department of Psychiatry and Psychotherapy, Bezirkskrankenhaus Augsburg, Augsburg, 86156, Germany
| | - Jörg Zimmermann
- Psychiatrieverbund Oldenburger Land gGmbH, Karl-Jaspers-Klinik, Bad Zwischenahn, 26160, Germany
| | - Jens Reimer
- Department of Psychiatry and Psychotherapy, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Eva Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for Bipolar Affective Disorder, Medical University of Graz, Graz, 8036, Austria
| | | | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster, 48149, Germany
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, 48149, Germany
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Carsten Konrad
- Department of Psychiatry and Psychotherapy, Agaplesion Diakonieklinikum, Rotenburg, 27356, Germany
| | - Andreas Thiel
- Department of Psychiatry and Psychotherapy, Agaplesion Diakonieklinikum, Rotenburg, 27356, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, 72076, Germany
| | - Vanessa Nieratschker
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, 72076, Germany
| | - Christian Figge
- Karl-Jaspers Clinic, European Medical School Oldenburg-Groningen, Oldenburg, 26160, Germany
| | - Martin von Hagen
- Clinic for Psychiatry and Psychotherapy, Clinical Center Werra-Meißner, Eschwege, 37269, Germany
| | - Manfred Koller
- Asklepios Specialized Hospital, Göttingen, 37081, Germany
| | - Thomas Becker
- Department of Psychiatry II, Ulm University, Bezirkskrankenhaus Günzburg, Günzburg, 89312, Germany
| | - Moritz E Wigand
- Department of Psychiatry II, Ulm University, Bezirkskrankenhaus Günzburg, Günzburg, 89312, Germany
| | - Markus Jäger
- Department of Psychiatry II, Ulm University, Bezirkskrankenhaus Günzburg, Günzburg, 89312, Germany
| | - Detlef E Dietrich
- AMEOS Clinical Center Hildesheim, Hildesheim, 31135, Germany
- Center für Systems Neuroscience (ZSN) Hannover, Hannover, 30559, Germany
- Dept. of Psychiatry, Medical School of Hannover, Hannover, 30625, Germany
| | | | - Harald Scherk
- AMEOS Clinical Center Osnabrück, Osnabrück, 49088, Germany
| | - Carsten Spitzer
- ASKLEPIOS Specialized Hospital Tiefenbrunn, Rosdorf, 37124, Germany
- Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, 18051, Germany
| | - Here Folkerts
- Department of Psychiatry, Psychotherapy and Psychosomatics, Clinical Center Wilhelmshaven, Wilhelmshaven, 26389, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68159, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, 53127, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, 53127, Germany
- Center for Human Genetics, University of Marburg, Marburg, 35033, Germany
- Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
- Department of Psychiatry (UPK), University of Basel, Basel, 4002, Switzerland
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68159, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, 53127, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, 37075, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, 37075, Germany
- iBiMED, Medical Sciences Department, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, 80336, Germany
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Munich, 80336, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, 80336, Germany
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Munich, 80336, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, 80336, Germany
| |
Collapse
|
397
|
Pacheco A, Berger R, Freedman R, Law AJ. A VNTR Regulates miR-137 Expression Through Novel Alternative Splicing and Contributes to Risk for Schizophrenia. Sci Rep 2019; 9:11793. [PMID: 31409837 PMCID: PMC6692358 DOI: 10.1038/s41598-019-48141-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022] Open
Abstract
The MIR137HG gene encoding microRNA-137 (miR-137) is genome-wide associated with schizophrenia (SZ), however, the underlying molecular mechanisms remain unknown. Through cloning and sequencing of individual transcripts from fetal and adult human brain tissues we describe novel pri-miR-137 splice variants which exclude the mature miR-137 sequence termed ‘del-miR-137’ that would function to down-regulate miR-137 expression. Sequencing results demonstrate a significant positive association between del-miR-137 transcripts and the length of a proximal variable number tandem repeat (VNTR) element. Additionally, a significantly higher proportion of sequenced transcripts from fetal brain were del-miR-137 transcripts indicating neurodevelopmental splicing regulation. In-silico results predict an independent regulatory function for del-miR-137 transcripts through competitive endogenous RNA function. A case-control haplotype analysis (n = 998) in SZ implicates short VNTR length in risk, with longer lengths imparting a protective effect. Rare high risk haplotypes were also observed indicating multiple risk variants within the region. A second haplotype analysis was performed to evaluate recombination effects excluding the VNTR and results indicate that recombination of the region was found to independently contribute to risk. Evaluation of the evolutionary conservation of the VNTR reveals a human lineage specific expansion. These findings shed further light on the risk architecture of the miR-137 region and provide a novel regulatory mechanism through VNTR length and alternative MIR137HG transcripts which contribute to risk for SZ.
Collapse
Affiliation(s)
- Ashley Pacheco
- University of Colorado, School of Medicine, Department of Psychiatry, Aurora, CO, 80045, USA
| | - Ralph Berger
- University of Colorado, School of Medicine, Department of Psychiatry, Aurora, CO, 80045, USA
| | - Robert Freedman
- University of Colorado, School of Medicine, Department of Psychiatry, Aurora, CO, 80045, USA
| | - Amanda J Law
- University of Colorado, School of Medicine, Department of Psychiatry, Aurora, CO, 80045, USA. .,University of Colorado, School of Medicine, Department of Medicine, Aurora, CO, 80045, USA. .,University of Colorado, School of Medicine, Department of Cell and Developmental Biology, Aurora, CO, 80045, USA.
| |
Collapse
|
398
|
Gardiner SL, Trompet S, Sabayan B, Boogaard MW, Jukema JW, Slagboom PE, Roos RAC, van der Grond J, Aziz NA. Repeat variations in polyglutamine disease-associated genes and cognitive function in old age. Neurobiol Aging 2019; 84:236.e17-236.e28. [PMID: 31522753 DOI: 10.1016/j.neurobiolaging.2019.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/03/2019] [Accepted: 08/04/2019] [Indexed: 02/03/2023]
Abstract
Although the heritability of cognitive function in old age is substantial, genome-wide association studies have had limited success in elucidating its genetic basis, leaving a considerable amount of "missing heritability." Aside from single nucleotide polymorphisms, genome-wide association studies are unable to assess other large sources of genetic variation, such as tandem repeat polymorphisms. Therefore, here, we studied the association of cytosine-adenine-guanine (CAG) repeat variations in polyglutamine disease-associated genes (PDAGs) with cognitive function in older adults. In a large cohort consisting of 5786 participants, we found that the CAG repeat number in 3 PDAGs (TBP, HTT, and AR) were significantly associated with the decline in cognitive function, which together accounted for 0.49% of the variation. Furthermore, in an magnetic resonance imaging substudy, we found that CAG repeat polymorphisms in 4 PDAGs (ATXN2, CACNA1A, ATXN7, and AR) were associated with different imaging characteristics, including brain stem, putamen, globus pallidus, thalamus, and amygdala volumes. Our findings indicate that tandem repeat polymorphisms are associated with cognitive function in older adults and highlight the importance of PDAGs in elucidating its missing heritability.
Collapse
Affiliation(s)
- Sarah L Gardiner
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands.
| | - Stella Trompet
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Behnam Sabayan
- The Ken and Ruth Davee Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Merel W Boogaard
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - P Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Raymund A C Roos
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - N Ahmad Aziz
- Population Health Sciences, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurology, University of Bonn, Bonn, Germany
| |
Collapse
|
399
|
Ghanbari M, Munshi ST, Ma B, Lendemeijer B, Bansal S, Adams HH, Wang W, Goth K, Slump DE, den Hout MC, IJcken WF, Bellusci S, Pan Q, Erkeland SJ, Vrij FM, Kushner SA, Ikram MA. A functional variant in the miR‐142 promoter modulating its expression and conferring risk of Alzheimer disease. Hum Mutat 2019; 40:2131-2145. [DOI: 10.1002/humu.23872] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/13/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
- Department of Genetics, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Shashini T. Munshi
- Department of Psychiatry, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Buyun Ma
- Department of Gastroenterology, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Bas Lendemeijer
- Department of Psychiatry, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Sakshi Bansal
- Department of Psychiatry, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Hieab H. Adams
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
- Department of Clinical Genetics, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Wenshi Wang
- Department of Gastroenterology, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Kerstin Goth
- Department of Lung Matrix Remodeling, Excellence Cluster Cardio‐Pulmonary System (ECCPS) University Justus Liebig Giessen Giessen Germany
| | - Denise E. Slump
- Department of Psychiatry, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Mirjam C.G.N. den Hout
- Center for Biomics, Department of Cell Biology, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Wilfred F.J. IJcken
- Center for Biomics, Department of Cell Biology, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Saverio Bellusci
- Department of Lung Matrix Remodeling, Excellence Cluster Cardio‐Pulmonary System (ECCPS) University Justus Liebig Giessen Giessen Germany
| | - Qiuwei Pan
- Department of Gastroenterology, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Stefan J. Erkeland
- Department of Immunology, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Femke M.S. Vrij
- Department of Psychiatry, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Steven A. Kushner
- Department of Psychiatry, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| |
Collapse
|
400
|
Lam M, Hill WD, Trampush JW, Yu J, Knowles E, Davies G, Stahl E, Huckins L, Liewald DC, Djurovic S, Melle I, Sundet K, Christoforou A, Reinvang I, DeRosse P, Lundervold AJ, Steen VM, Espeseth T, Räikkönen K, Widen E, Palotie A, Eriksson JG, Giegling I, Konte B, Hartmann AM, Roussos P, Giakoumaki S, Burdick KE, Payton A, Ollier W, Chiba-Falek O, Attix DK, Need AC, Cirulli ET, Voineskos AN, Stefanis NC, Avramopoulos D, Hatzimanolis A, Arking DE, Smyrnis N, Bilder RM, Freimer NA, Cannon TD, London E, Poldrack RA, Sabb FW, Congdon E, Conley ED, Scult MA, Dickinson D, Straub RE, Donohoe G, Morris D, Corvin A, Gill M, Hariri AR, Weinberger DR, Pendleton N, Bitsios P, Rujescu D, Lahti J, Le Hellard S, Keller MC, Andreassen OA, Deary IJ, Glahn DC, Malhotra AK, Lencz T. Pleiotropic Meta-Analysis of Cognition, Education, and Schizophrenia Differentiates Roles of Early Neurodevelopmental and Adult Synaptic Pathways. Am J Hum Genet 2019; 105:334-350. [PMID: 31374203 PMCID: PMC6699140 DOI: 10.1016/j.ajhg.2019.06.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022] Open
Abstract
Susceptibility to schizophrenia is inversely correlated with general cognitive ability at both the phenotypic and the genetic level. Paradoxically, a modest but consistent positive genetic correlation has been reported between schizophrenia and educational attainment, despite the strong positive genetic correlation between cognitive ability and educational attainment. Here we leverage published genome-wide association studies (GWASs) in cognitive ability, education, and schizophrenia to parse biological mechanisms underlying these results. Association analysis based on subsets (ASSET), a pleiotropic meta-analytic technique, allowed jointly associated loci to be identified and characterized. Specifically, we identified subsets of variants associated in the expected ("concordant") direction across all three phenotypes (i.e., greater risk for schizophrenia, lower cognitive ability, and lower educational attainment); these were contrasted with variants that demonstrated the counterintuitive ("discordant") relationship between education and schizophrenia (i.e., greater risk for schizophrenia and higher educational attainment). ASSET analysis revealed 235 independent loci associated with cognitive ability, education, and/or schizophrenia at p < 5 × 10-8. Pleiotropic analysis successfully identified more than 100 loci that were not significant in the input GWASs. Many of these have been validated by larger, more recent single-phenotype GWASs. Leveraging the joint genetic correlations of cognitive ability, education, and schizophrenia, we were able to dissociate two distinct biological mechanisms-early neurodevelopmental pathways that characterize concordant allelic variation and adulthood synaptic pruning pathways-that were linked to the paradoxical positive genetic association between education and schizophrenia. Furthermore, genetic correlation analyses revealed that these mechanisms contribute not only to the etiopathogenesis of schizophrenia but also to the broader biological dimensions implicated in both general health outcomes and psychiatric illness.
Collapse
Affiliation(s)
- Max Lam
- Institute of Mental Health, Singapore, 539747, Singapore; Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY 11004, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - W David Hill
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, Scotland, EH8 9JZ, United Kingdom; Department of Psychology, University of Edinburgh, Edinburgh, Scotland, EH8 9JZ, United Kingdom
| | - Joey W Trampush
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jin Yu
- Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY 11004, USA
| | - Emma Knowles
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Gail Davies
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, Scotland, EH8 9JZ, United Kingdom; Department of Psychology, University of Edinburgh, Edinburgh, Scotland, EH8 9JZ, United Kingdom
| | - Eli Stahl
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Laura Huckins
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David C Liewald
- Department of Psychology, University of Edinburgh, Edinburgh, Scotland, EH8 9JZ, United Kingdom
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, University of Bergen, Bergen 4956, Nydalen 0424, Norway; Norsk Senter for Forskning på Mentale Lidelser, K.G. Jebsen Centre for Psychosis Research, University of Bergen, Bergen 4956, Nydalen 0424, Norway
| | - Ingrid Melle
- Norsk Senter for Forskning på Mentale Lidelser, K.G. Jebsen Centre for Psychosis Research, University of Bergen, Bergen 4956, Nydalen 0424, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo 1039, Blindern 0315, Norway
| | - Kjetil Sundet
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo 1039, Blindern 0315, Norway; Department of Psychology, University of Oslo, Oslo 1094, Blindern 0317, Norway
| | - Andrea Christoforou
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen 7804, N-5020 Bergen, Norway
| | - Ivar Reinvang
- Department of Psychology, University of Oslo, Oslo 1094, Blindern 0317, Norway
| | - Pamela DeRosse
- Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY 11004, USA
| | - Astri J Lundervold
- Department of Biological and Medical Psychology, University of Bergen, 7807, N-5020, Norway
| | - Vidar M Steen
- Norsk Senter for Forskning på Mentale Lidelser, K.G. Jebsen Centre for Psychosis Research, University of Bergen, Bergen 4956, Nydalen 0424, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen 7804, N-5020 Bergen, Norway
| | - Thomas Espeseth
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo 1039, Blindern 0315, Norway; Department of Psychology, University of Oslo, Oslo 1094, Blindern 0317, Norway
| | - Katri Räikkönen
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, 00014, Finland
| | - Elisabeth Widen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Finland; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom; Department of Medical Genetics, University of Helsinki and University Central Hospital, Helsinki, 00014, Finland
| | - Johan G Eriksson
- Department of General Practice, University of Helsinki and Helsinki University Hospital, Helsinki, 00014, Finland; National Institute for Health and Welfare, Helsinki FI-00271, Finland; Folkhälsan Research Center, Helsinki 00290, Finland
| | - Ina Giegling
- Department of Psychiatry, Martin Luther University of Halle-Wittenberg, Halle 06108, Germany
| | - Bettina Konte
- Department of Psychiatry, Martin Luther University of Halle-Wittenberg, Halle 06108, Germany
| | - Annette M Hartmann
- Department of Psychiatry, Martin Luther University of Halle-Wittenberg, Halle 06108, Germany
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mental Illness Research, Education, and Clinical Center (VISN 2), James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | | | - Katherine E Burdick
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mental Illness Research, Education, and Clinical Center (VISN 2), James J. Peters VA Medical Center, Bronx, NY 10468, USA; Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Antony Payton
- Division of Informatics, Imaging, and Data Sciences, School of Health Sciences, University of Manchester, Manchester M139NT, United Kingdom
| | - William Ollier
- Centre for Epidemiology, Division of Population Health, Health Services Research and Primary Care, University of Manchester, Manchester M139PL, United Kingdom; School of Healthcare Sciences, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
| | - Ornit Chiba-Falek
- Department of Neurology, Bryan Alzheimer Disease Research Center, Duke University Medical Center, Durham, NC 27705, USA; Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27705, USA
| | - Deborah K Attix
- Department of Neurology, Bryan Alzheimer Disease Research Center, Duke University Medical Center, Durham, NC 27705, USA; Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27705, USA; Psychiatry and Behavioral Sciences, Division of Medical Psychology, Duke University Medical Center, Durham, NC 27708, USA; Department of Neurology, Duke University Medical Center, Durham, NC 27708, USA
| | - Anna C Need
- Division of Brain Sciences, Department of Medicine, Imperial College, London W12 0NN, UK
| | | | - Aristotle N Voineskos
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto M6J 1H4, Canada
| | - Nikos C Stefanis
- Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece; University Mental Health Research Institute, Athens 115 27, Greece; Neurobiology Research Institute, Theodor-Theohari Cozzika Foundation, Athens, Greece
| | - Dimitrios Avramopoulos
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alex Hatzimanolis
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto M6J 1H4, Canada; Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece; University Mental Health Research Institute, Athens 115 27, Greece
| | - Dan E Arking
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nikolaos Smyrnis
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto M6J 1H4, Canada; Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Robert M Bilder
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nelson A Freimer
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, CT 06511, USA
| | - Edythe London
- UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA 90024, USA
| | | | - Fred W Sabb
- Robert and Beverly Lewis Center for Neuroimaging, University of Oregon, Eugene, OR, 97401, USA
| | - Eliza Congdon
- UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA 90024, USA
| | | | - Matthew A Scult
- Laboratory of NeuroGenetics, Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Dwight Dickinson
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institute of Health, Bethesda, MD 20814, USA
| | - Richard E Straub
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD 21205, USA
| | - Gary Donohoe
- Neuroimaging, Cognition, and Genomics Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland, Galway, Ireland
| | - Derek Morris
- Neuroimaging, Cognition, and Genomics Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland, Galway, Ireland
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Michael Gill
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Ahmad R Hariri
- Laboratory of NeuroGenetics, Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD 21205, USA
| | - Neil Pendleton
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Manchester M13 9PL, United Kingdom
| | - Panos Bitsios
- Department of Psychiatry and Behavioral Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete GR-71003, Greece
| | - Dan Rujescu
- Department of Psychiatry, Martin Luther University of Halle-Wittenberg, Halle 06108, Germany
| | - Jari Lahti
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, 00014, Finland; Helsinki Collegium for Advanced Studies, University of Helsinki, Helsinki 00014, Finland
| | - Stephanie Le Hellard
- Norsk Senter for Forskning på Mentale Lidelser, K.G. Jebsen Centre for Psychosis Research, University of Bergen, Bergen 4956, Nydalen 0424, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen 7804, N-5020 Bergen, Norway
| | - Matthew C Keller
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80303, USA
| | - Ole A Andreassen
- Norsk Senter for Forskning på Mentale Lidelser, K.G. Jebsen Centre for Psychosis Research, University of Bergen, Bergen 4956, Nydalen 0424, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo 1039, Blindern 0315, Norway; Institute of Clinical Medicine, University of Oslo, Oslo 0318, Norway
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, Scotland, EH8 9JZ, United Kingdom; Department of Psychology, University of Edinburgh, Edinburgh, Scotland, EH8 9JZ, United Kingdom
| | - David C Glahn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Anil K Malhotra
- Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY 11004, USA; Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Todd Lencz
- Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY 11004, USA; Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.
| |
Collapse
|