401
|
Melatonin's Antineoplastic Potential Against Glioblastoma. Cells 2020; 9:cells9030599. [PMID: 32138190 PMCID: PMC7140435 DOI: 10.3390/cells9030599] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is one of the most intransigent and aggressive brain tumors, and its treatment is extremely challenging and ineffective. To improve patients’ expectancy and quality of life, new therapeutic approaches were investigated. Melatonin is an endogenous indoleamine with an incredible variety of properties. Due to evidence demonstrating melatonin’s activity against several cancer hallmarks, there is growing interest in its use for preventing and treating cancer. In this review, we report on the potential effects of melatonin, alone or in combination with anticancer drugs, against GBM. We also summarize melatonin targets and/or the intracellular pathways involved. Moreover, we describe melatonin’s epigenetic activity responsible for its antineoplastic effects. To date, there are too few clinical studies (involving a small number of patients) investigating the antineoplastic effects of melatonin against GBM. Nevertheless, these studies described improvement of GBM patients’ quality of life and did not show significant adverse effects. In this review, we also report on studies regarding melatonin-like molecules with the tumor-suppressive properties of melatonin together with implemented pharmacokinetics. Melatonin effects and mechanisms of action against GBM require more research attention due to the unquestionably high potential of this multitasking indoleamine in clinical practice.
Collapse
|
402
|
Schomburg L. The other view: the trace element selenium as a micronutrient in thyroid disease, diabetes, and beyond. Hormones (Athens) 2020; 19:15-24. [PMID: 31823341 DOI: 10.1007/s42000-019-00150-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 10/21/2019] [Indexed: 02/08/2023]
Abstract
Antibiotics are provided for infections caused by bacteria, and statins help to control hypercholesterolemia. When hungry, you need to eat, and when you are deficient in a particular nutrient, the diet should be chosen wisely to provide what is missing. In the matter of providing the essential trace element selenium (Se), there are two different but partly overlapping views on its nature and requirements. Some consider it a medication that should be given to a subset of more or less well-defined (thyroid) patients only, in order to alleviate symptoms, to improve the course of the disease or even to provide a cure, alone or in an adjuvant mode. Such treatment attempts are conducted for a short time period, and potential medical benefits and side effects are evaluated thoroughly. One could also approach Se in medicine in a more holistic way and evaluate primarily the nutritional status of the patient before considering supplementation. The available evidence for positive health effects of supplemental Se can be interpreted as the consequence of correcting deficiency instead of speculating on a direct pharmaceutical action. This short review provides a novel view on Se in (thyroid) disease and beyond and offers an alternative explanation for its positive health effects, i.e., its provision of the substrate needed for allowing adequate endogenous expression of those selenoproteins that are required in certain conditions. In Se deficiency, the lack of the trace element constitutes the main limitation for the required adaptation of selenoprotein expression to counteract health risks and alleviate disease symptoms. Supplemental Se lifts this restriction and enables the full endogenous response of selenoprotein expression. However, since Se does not act as a pharmacological medication per se, it should not be viewed as a dangerous drug, and, importantly, current data show that supplemental Se does not cause diabetes.
Collapse
Affiliation(s)
- Lutz Schomburg
- Institute for Experimental Endocrinology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Freie Universität Berlin, Berlin, Germany.
- Humboldt-Universität zu Berlin, Berlin, Germany.
- Berlin Institute of Health, Berlin, Suedring 10, D-13353, Berlin, Germany.
| |
Collapse
|
403
|
Ramos-Álvarez I, Lee L, Jensen RT. Group II p21-activated kinase, PAK4, is needed for activation of focal adhesion kinases, MAPK, GSK3, and β-catenin in rat pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2020; 318:G490-G503. [PMID: 31984786 PMCID: PMC7099487 DOI: 10.1152/ajpgi.00229.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/31/2023]
Abstract
PAK4 is the only member of the Group II p21-activated kinases (PAKs) present in rat pancreatic acinar cells and is activated by gastrointestinal hormones/neurotransmitters stimulating PLC/cAMP and by various pancreatic growth factors. However, little is known of the role of PAK4 activation in cellular signaling cascades in pancreatic acinar cells. In the present study, we examined the role of PAK4's participation in five different cholecystokinin-8 (CCK-8)-stimulated signaling pathways (PI3K/Akt, MAPK, focal adhesion kinase, GSK3, and β-catenin), which mediate many of its physiological acinar-cell effects, as well as effects in pathophysiological conditions. To define PAK4's role, the effect of two different PAK4 inhibitors, PF-3758309 and LCH-7749944, was examined under experimental conditions that only inhibited PAK4 activation and not activation of the other pancreatic PAK, Group I PAK2. The inhibitors' effects on activation of these five signaling cascades by both physiological and pathophysiological concentrations of CCK, as well as by 12-O-tetradecanoylphobol-13-acetate (TPA), a PKC-activator, were examined. CCK/TPA activation of focal adhesion kinases(PYK2/p125FAK) and the accompanying adapter proteins (paxillin/p130CAS), Mek1/2, and p44/42, but not c-Raf or other MAPKs (JNK/p38), were mediated by PAK4. Activation of PI3K/Akt/p70s6K was independent of PAK4, whereas GSK3 and β-catenin stimulation was PAK4-dependent. These results, coupled with recent studies showing PAK4 is important in pancreatic fluid/electrolyte/enzyme secretion and acinar cell growth, show that PAK4 plays an important role in different cellular signaling cascades, which have been shown to mediate numerous physiological and pathophysiological processes in pancreatic acinar cells.NEW & NOTEWORTHY In pancreatic acinar cells, cholecystokinin (CCK) or 12-O-tetradecanoylphobol-13-acetate (TPA) activation of focal adhesion kinases (p125FAK,PYK2) and its accompanying adapter proteins, p130CAS/paxillin; Mek1/2, p44/42, GSK3, and β-catenin are mediated by PAK4. PI3K/Akt/p70s6K, c-Raf, JNK, or p38 pathways are independent of PAK4 activation.
Collapse
Affiliation(s)
- Irene Ramos-Álvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Lingaku Lee
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Robert T Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
404
|
Seven I, Tatli Seven P, Gul Baykalir B, Parlak Ak T, Ozer Kaya S, Yaman M. Bee glue (propolis) improves reproductive organs, sperm quality and histological changes and antioxidant parameters of testis tissues in rats exposed to excess copper. Andrologia 2020; 52:e13540. [PMID: 32068907 DOI: 10.1111/and.13540] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/08/2020] [Accepted: 01/17/2020] [Indexed: 12/17/2022] Open
Abstract
This study was designed to determine the effects of propolis on the sperm quality, antioxidant and histological parameters in the testicular tissues of male Sprague Dawley rats exposed to excessive copper (Cu). In this aim, 24 rats were randomly divided into four groups as follows: the control, Cu, Propolis and Cu+Propolis. When compared to control group, Cu administration significantly decreased sperm motility and concentration, increased total abnormal sperm rate. It caused a significant induction the malondialdehyde (MDA), and reduction the superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) in testicular tissues. Also, it caused loss, disorganisation and vacuolation of the germinal epithelium, oedema of the interstitial tissues, proliferation of the interstitial cells, spilled immature spermatogenic cells in the lumen of some seminiferous tubules. A large number of active caspase-3-positive stained apoptotic cells and a significant decrease in Johnsen's testicular score were determined. However, significant ameliorations were observed in all sperm characteristics, MDA, SOD, CAT, GSH, seminiferous tubules, number of apoptotic cells and Johnsen's testicular score in Cu+Propolis group. Our results showed that oral supplementation of propolis had curative effect on the sperm quality, antioxidant and histological parameters in the testicular tissues of male Sprague Dawley rats exposed to Cu.
Collapse
Affiliation(s)
- Ismail Seven
- Department of Plant and Animal Production, Vocational School of Sivrice, University of Firat, Elazig, Turkey
| | - Pinar Tatli Seven
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, University of Firat, Elazig, Turkey
| | - Burcu Gul Baykalir
- Department of Nursing, Faculty of Health Sciences, University of Firat, Elazig, Turkey
| | - Tuba Parlak Ak
- Department of Nutrition and Dietetic, Faculty of Health Sciences, University of Munzur, Tunceli, Turkey
| | - Seyma Ozer Kaya
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, University of Firat, Elazig, Turkey
| | - Mine Yaman
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Firat, Elazig, Turkey
| |
Collapse
|
405
|
Chen Y, Yin H, Tao Y, Zhong S, Yu H, Li J, Bai Z, Ou Y. Antitumor effects and mechanisms of pyropheophorbide‑α methyl ester‑mediated photodynamic therapy on the human osteosarcoma cell line MG‑63. Int J Mol Med 2020; 45:971-982. [PMID: 32124948 PMCID: PMC7053850 DOI: 10.3892/ijmm.2020.4494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/20/2019] [Indexed: 12/18/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising treatment for osteosarcoma, and pyropheophorbide-α methyl ester (MPPa) is a second-generation photosensitizer for tumor treatment. The present study aimed to determine the efficacy and possible mechanisms of MPPa-PDT in the treatment of osteosarcoma MG-63 cells. Flow cytometry and western blotting were used to detect cell cycle-related indicators Cyclin D1, Cyclin E, Cyclin A and Cyclin B1. Cell migration and invasion abilities were detected using wound-healing and Transwell chamber assays. Cellular endoplasmic reticulum stress (ERS), autophagy and apoptosis-related indicators were detected by flow cytometry and western blotting. The results demonstrated that MPPa-PDT blocked the MG-63 cell cycle and inhibited cell migration and invasion. Additionally, MPPa-PDT inhibited the activation of the Akt/mammalian target of rapamycin (mTOR) pathway. MG-63 cells underwent ERS-induced apoptosis following MPPa-PDT treatment. Pretreatment with the mTOR phosphorylation inhibitor rapamycin affected the autophagy of MPPa-PDT-induced osteosarcoma MG-63 cells and enhanced apoptosis through targeting mTOR.
Collapse
Affiliation(s)
- Yanyang Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hang Yin
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yong Tao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shenxi Zhong
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Haoyang Yu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jianxiao Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhibiao Bai
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yunsheng Ou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
406
|
Chen Y, Qin C, Huang J, Tang X, Liu C, Huang K, Xu J, Guo G, Tong A, Zhou L. The role of astrocytes in oxidative stress of central nervous system: A mixed blessing. Cell Prolif 2020; 53:e12781. [PMID: 32035016 PMCID: PMC7106951 DOI: 10.1111/cpr.12781] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/17/2019] [Accepted: 01/20/2020] [Indexed: 02/05/2023] Open
Abstract
Central nervous system (CNS) maintains a high level of metabolism, which leads to the generation of large amounts of free radicals, and it is also one of the most vulnerable organs to oxidative stress. Emerging evidences have shown that, as the key homeostatic cells in CNS, astrocytes are deeply involved in multiple aspects of CNS function including oxidative stress regulation. Besides, the redox level in CNS can in turn affect astrocytes in morphology and function. The complex and multiple roles of astrocytes indicate that their correct performance is crucial for the normal functioning of the CNS, and its dysfunction may result in the occurrence and progression of various neurological disorders. To date, the influence of astrocytes in CNS oxidative stress is rarely reviewed. Therefore, in this review we sum up the roles of astrocytes in redox regulation and the corresponding mechanisms under both normal and different pathological conditions.
Collapse
Affiliation(s)
- Yaxing Chen
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Qin
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Jianhan Huang
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Tang
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Chang Liu
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Keru Huang
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Guo
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
407
|
Ismail FS, Faustmann PM. Astrocytes and their potential role in anti-NMDA receptor encephalitis. Med Hypotheses 2020; 139:109612. [PMID: 32085980 DOI: 10.1016/j.mehy.2020.109612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 10/25/2022]
Abstract
The N-methyl-d-aspartate receptor (NMDAR) encephalitis is the most common form of autoimmune encephalitis. Antibodies against the GluN1 subunit of the NMDAR showed in primary cultures of rat hippocampal neurons and in a mouse model pathogenic effects including cross-linking and internalization of the target receptors (NMDAR). Several studies demonstrated that not only neurons, but also astrocytes express functional NMDA receptors including GluN1 subunit. It is conceivable that the pathogenic antibodies against the NMDAR causing the anti-NMDAR encephalitis affect not only the neuronal receptors, but also the NMDAR on astrocytes. We hypothesize that antibodies against NMDAR can lead to cross-linking and internalization of the target receptors in astrocytes similar to neurons with disruption of the calcium release within the astrocytes and consequently blocking release of inhibitory gliotransmitters. Further, we assume influence on expression of aquaporin 4 channels and gap-junctional communication due to modification of the astrocytic NMDAR. The disruption of these interactions and dysbalance could result in impairment of CNS homeostasis and co-determine the severity of clinical disease manisfestation and recovery.
Collapse
Affiliation(s)
- Fatme Seval Ismail
- Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany.
| | - Pedro M Faustmann
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
408
|
Xia D, Halder B, Godoy C, Chakraborty A, Singla B, Thomas E, Shuja JB, Kashif H, Miller L, Csanyi G, Sabbatini ME. NADPH oxidase 1 mediates caerulein-induced pancreatic fibrosis in chronic pancreatitis. Free Radic Biol Med 2020; 147:139-149. [PMID: 31837426 PMCID: PMC7227077 DOI: 10.1016/j.freeradbiomed.2019.11.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory disorders of the pancreas are divided into acute (AP) and chronic (CP) forms. Both states of pancreatitis are a result of pro-inflammatory mediators, including reactive oxygen species (ROS). One of the sources of ROS is NADPH oxidase (Nox). The rodent genome encodes Nox1-4, Duox1 and Duox2. Our purpose was to assess the extent to which Nox enzymes contribute to the pathogenesis of both AP and CP using Nox-deficient mice. Using RT-PCR, Nox1 was found in both isolated mouse pancreatic acini and pancreatic stellate cells (PaSCs). Subsequently, mice with genetically deleted Nox1 were further studied and showed that the histo-morphologic characteristics of caerulein-induced CP, but not caerulein-induced AP, was ameliorated in Nox1 KO mice. We also found that the lack of Nox1 impaired caerulein-induced ROS generation in PaSCs. Using Western blotting, we found that AKT mediates the fibrotic effect of Nox1 in a mouse model of CP. We also found a decrease in phospho-ERK and p38MAPK levels in Nox1 KO mice with CP, but not with AP. Both CP-induced TGF-β up-regulation and NF-ĸB activation were impaired in pancreas from Nox1 KO mice. Western blotting indicated increases in proteins involved in fibrosis and acinar-to-ductal metaplasia in WT mice with CP. No change in those proteins were observed in Nox1 KO mice. The lack of Nox1 lowered mRNA levels of CP-induced matrix metalloproteinase MMP-9 and E-cadherin repressor Twist in PaSCs. CONCLUSION: Nox1-derived ROS in PaSCs mediate the fibrotic process of CP by activating the downstream redox-sensitive signaling pathways AKT and NF-ĸB, up-regulating MMP-9 and Twist, and producing α-smooth muscle actin and collagen I and III.
Collapse
Affiliation(s)
- Di Xia
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Bithika Halder
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Catalina Godoy
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | | | - Bhupesh Singla
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Eyana Thomas
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Jasim B Shuja
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Hisham Kashif
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Laurence Miller
- Department of Psychological Sciences, Augusta University, Augusta, GA, USA
| | - Gabor Csanyi
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA
| | - Maria E Sabbatini
- Department of Biological Sciences, Augusta University, Augusta, GA, USA.
| |
Collapse
|
409
|
Intertwined ROS and Metabolic Signaling at the Neuron-Astrocyte Interface. Neurochem Res 2020; 46:23-33. [PMID: 31989468 DOI: 10.1007/s11064-020-02965-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/03/2020] [Accepted: 01/16/2020] [Indexed: 12/23/2022]
Abstract
Metabolism and redox signalling share critical nodes in the nervous system. In the last years, a series of major findings have challenged the current vision on how neural reactive oxygen species (ROS) are produced and handled in the nervous system. Once regarded as deleterious by-products, ROS are now shown to be essential for a metabolic and redox crosstalk. In turn, this coupling defines neural viability and function to control behaviour or leading to neurodegeneration when compromised. Findings like a different assembly of mitochondrial respiratory supercomplexes in neurons and astrocytes stands behind a divergent production of ROS in either cell type, more prominent in astrocytes. ROS levels are however tightly controlled by an antioxidant machinery in astrocytes, assumed as more efficient than that of neurons, to regulate redox signalling. By exerting this control in ROS abundance, metabolic functions are finely tuned in both neural cells. Further, a higher engagement of mitochondrial respiration and oxidative function in neurons, underpinned by redox equivalents supplied from the pentose phosphate pathway and from glia, differs from the otherwise strong glycolytic capacity of astrocytes. Here, we recapitulate major findings on how ROS and metabolism differ between neural cells but merge to define reciprocal signalling pathways, ultimately defining neural function and fate.
Collapse
|
410
|
Bandookwala M, Sengupta P. 3-Nitrotyrosine: a versatile oxidative stress biomarker for major neurodegenerative diseases. Int J Neurosci 2020; 130:1047-1062. [PMID: 31914343 DOI: 10.1080/00207454.2020.1713776] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species are generated as a by-product of routine biochemical reactions. However, dysfunction of the antioxidant system or mutations in gene function may result in the elevated production of the pro-oxidant species. Modified endogenous molecules due to chemical interactions with increased levels of reactive oxygen and nitrogen species in the cellular microenvironment can be termed as biomarkers of oxidative stress. 3-Nitrotyrosine is one such promising biomarker of oxidative stress formed due to nitration of protein-bound and free tyrosine residues by reactive peroxynitrite molecules. Nitration of proteins at the subcellular level results in conformational alterations that damage the cytoskeleton and result in neurodegeneration. In this review, we summarized the role of oxidative/nitrosative processes as a contributing factor for progressive neurodegeneration in Alzheimer's disease, Parkinson's disease, Huntington's disease, Lou Gehrig's disease and Prion disease. The selective tyrosine protein nitration of the major marker proteins in related pathologies has been discussed. The alteration in 3-Nitrotyrosine profile occurs well before any symptoms appear and can be considered as a potential target for early diagnosis of neurodegenerative diseases. Furthermore, the reduction in 3-Nitrotyrosine levels in response to treatment with neuroprotective has been highlighted which is indicative of the importance of this particular marker in oxidative stress-related brain and central nervous system pathologies.
Collapse
Affiliation(s)
- Maria Bandookwala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| |
Collapse
|
411
|
Wu Q, Chen X, He Q, Lang L, Xu P, Wang P, Lee SC. Resveratrol attenuates diabetes-associated cell centrosome amplification via inhibiting the PKCα-p38 to c-myc/c-jun pathway. Acta Biochim Biophys Sin (Shanghai) 2020; 52:72-83. [PMID: 31844893 DOI: 10.1093/abbs/gmz142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/06/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes increases the risk for cancer. Centrosome amplification can initiate tumorigenesis. We have described that type 2 diabetes increases the centrosome amplification of peripheral blood mononuclear cells, with high glucose, insulin, and palmitic acid as the triggers, which suggests that centrosome amplification is a candidate biological mechanism linking diabetes to cancer. In this study, we aimed to further investigate the signaling pathways of the diabetes-associated centrosome amplification and to examine whether and how resveratrol inhibits the centrosome amplification. The results showed that treatment with high glucose, insulin, and palmitic acid, alone or in combination, could increase the protein levels of phospho-protein kinase C alpha (p-PKCα), phospho-p38 mitogen-activated protein kinases (p-p38), c-myc, and c-jun, as well as the mRNA levels of c-myc and c-jun. PKCα inhibitor could inhibit the treatment-induced increase in the protein levels of p-p38, c-myc, and c-jun. Inhibitor or siRNA of p38 was also able to inhibit the treatment-induced increase in the levels of p-p38, c-myc, and c-jun. Meanwhile, knockdown of c-myc or c-jun did not alter the treatment-induced increase in the phosphorylation of PKCα or p38. Importantly, inhibition of the phosphorylation of PKCα or p38 and knockdown of c-myc or c-jun could attenuate the centrosome amplification. In diabetic mice, the levels of p-PKCα, p-p38, c-myc, and c-jun were all increased in the colon tissues. Interestingly, resveratrol, but not metformin, was able to attenuate the treatment-induced increase in the levels of p-PKCα, p-p38, c-myc, and c-jun, as well as the centrosome amplification. In conclusion, our results suggest that PKCα-p38 to c-myc/c-jun is the signaling pathway of the diabetes-associated centrosome amplification, and resveratrol attenuates the centrosome amplification by inhibiting this signaling pathway.
Collapse
Affiliation(s)
- Qigui Wu
- School of Life Sciences, Shanxi University, Taiyuan 030006, China, and
| | - Xiaoyu Chen
- School of Life Sciences, Shanxi University, Taiyuan 030006, China, and
| | - Qinju He
- School of Life Sciences, Shanxi University, Taiyuan 030006, China, and
| | - Lang Lang
- School of Life Sciences, Shanxi University, Taiyuan 030006, China, and
| | - Peng Xu
- School of Life Sciences, Shanxi University, Taiyuan 030006, China, and
| | - Pu Wang
- School of Life Sciences, Shanxi University, Taiyuan 030006, China, and
| | - Shao Chin Lee
- School of Life Sciences, Shanxi University, Taiyuan 030006, China, and
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
412
|
Tang JM, Fan WT, Chu PY, Wu DL, Cao FD, Zhang Y. Sonochemical Synthesis of Two New Nanostructured La(III) Coordination Polymers: Inducing Tongue Cancer Cell Apoptosis and ROS Accumulation by Targeting FHIT. J CLUST SCI 2020. [DOI: 10.1007/s10876-019-01636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
413
|
Imam Aliagan A, Madungwe NB, Tombo N, Feng Y, Bopassa JC. Chronic GPER1 Activation Protects Against Oxidative Stress-Induced Cardiomyoblast Death via Preservation of Mitochondrial Integrity and Deactivation of Mammalian Sterile-20-Like Kinase/Yes-Associated Protein Pathway. Front Endocrinol (Lausanne) 2020; 11:579161. [PMID: 33193095 PMCID: PMC7604496 DOI: 10.3389/fendo.2020.579161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction: Estrogen (17β-estradiol, E2) is well-known to induce cardioprotective effects against ischemia/reperfusion (I/R) injury. We recently reported that acute application of E2 at the onset of reperfusion in vivo induces cardioprotective effects against I/R injury via activation of its non-steroidal receptor, G protein-coupled estrogen receptor 1 (GPER1). Here, we investigated the impact and mechanism underlying chronic GPER1 activation in cultured H9c2 rat cardiomyoblasts. Methods: H9c2 rat cardiomyoblasts were cultured and pretreated with the cytotoxic agent H2O2 for 24 h and incubated in the presence of vehicle (control), GPER1 agonists E2 and G1, or GPER1 agonists supplemented with G15 (GPER1 antagonist) for 48 or 96 h. After treatment, cells were collected to measure the rate of cell death and viability using flow cytometry and Calcein AM assay or MTT assay, respectively. The resistance to opening of the mitochondrial permeability transition pore (mPTP), the mitochondrial membrane potential, and ATP production was assessed using fluorescence microscopy, and the mitochondrial structural integrity was observed with electron microscopy. The levels of the phosphorylation of mammalian sterile-20-like kinase (MST1) and yes-associated protein (YAP) were assessed by Western blot analysis in whole-cell lysate, while the expression levels of mitochondrial biogenesis genes, YAP target genes, and proapoptotic genes were measured by qRT-PCR. Results: We found that after H2O2 treatment, chronic E2/G1 treatment decreased cell death effect was associated with the prevention of the S phase of the cell cycle arrest compared to control. In the mitochondria, chronic E2/G1 activation treatment preserved the cristae morphology, and increased resistance to opening of mPTP, but with little change to mitochondrial fusion/fission. Additionally, chronic E2/G1 treatment predominantly reduced phosphorylation of MST1 and YAP, as well as increased MST1 and YAP protein levels. E2 treatment also upregulated the expression levels of TGF-β and PGC-1α mRNAs and downregulated PUMA and Bim mRNAs. Except for ATP production, all the E2 or G1 effects were prevented by the cotreatment with the GPER1 antagonist, G15. Conclusion: Together, these results indicate that chronic GPER1 activation with its agonists E2 or G1 treatment protects H9c2 cardiomyoblasts against oxidative stress-induced cell death and increases cell viability by preserving mitochondrial structure and function as well as delaying the opening of mPTP. These chronic GPER1 effects are associated with the deactivation of the non-canonical MST1/YAP mechanism that leads to genetic upregulation of cell growth genes (CTGF, CYR61, PGC-1α, and ANKRD1), and downregulation of proapoptotic genes (PUMA and Bim).
Collapse
Affiliation(s)
- Abdulhafiz Imam Aliagan
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Ngonidzashe B. Madungwe
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, United States
| | - Nathalie Tombo
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Yansheng Feng
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Jean C. Bopassa
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- *Correspondence: Jean C. Bopassa
| |
Collapse
|
414
|
Bertolini M, Ramot Y, Gherardini J, Heinen G, Chéret J, Welss T, Giesen M, Funk W, Paus R. Theophylline exerts complex anti-ageing and anti-cytotoxicity effects in human skin ex vivo. Int J Cosmet Sci 2019; 42:79-88. [PMID: 31633195 DOI: 10.1111/ics.12589] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Theophylline is a phosphodiesterase inhibitor that is being used clinically for asthma therapy. In addition, it is recognized as a cosmetic agent with possible anti-ageing and anti-oxidative properties. Nevertheless, how it affects human skin is still poorly examined. METHODS Theophylline (10 or 100 µM) was administered to the culture medium of full-thickness human skin ex vivo for 24 or 72 h. RESULTS Theophylline stimulated protein expression of the anti-oxidant metallothionein-1 and mRNA levels of collagen I and III. Assessment of fibrillin-1 immunohistology revealed enhanced structural stability of dermal microfibrils. Theophylline also exerted extracellular matrix-protective effects by decreasing MMP-2 and MMP-9 mRNA levels, partially antagonizing the effects of menadione, the potent, toxic ROS donor. In addition, it decreased menadione-stimulated epidermal keratinocytes apoptosis. Interestingly, theophylline also increased the level of intracutaneously produced melatonin, that is the most potent ROS-protective and DNA damage repair neuromediator, and tendentially increased protein expression of MT1, the melatonin receptor. Theophylline also increased the expression of keratin 15, the stem cell marker, in the epidermal basal layer but did not change mitochondrial activity or epidermal pigmentation. CONCLUSION This ex vivo pilot study in human skin shows that theophylline possesses several interesting complex skin-protective properties. It encourages further examination of theophylline as a topical candidate for anti-ageing treatment.
Collapse
Affiliation(s)
- M Bertolini
- Monasterium Laboratory GmbH, 48149 , Muenster, Germany
| | - Y Ramot
- Department of Dermatology, The Faculty of Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, 9112001 , Jerusalem, Israel
| | - J Gherardini
- Monasterium Laboratory GmbH, 48149 , Muenster, Germany
| | - G Heinen
- Henkel AG & Co. KGaA, 40589 , Düsseldorf, Germany
| | - J Chéret
- Monasterium Laboratory GmbH, 48149 , Muenster, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 33136 , Miami, FL, USA
| | - T Welss
- Henkel AG & Co. KGaA, 40589 , Düsseldorf, Germany
| | - M Giesen
- Henkel AG & Co. KGaA, 40589 , Düsseldorf, Germany
| | - W Funk
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Dr. Dr. med. Funk, 81739, Munich, Germany
| | - R Paus
- Monasterium Laboratory GmbH, 48149 , Muenster, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 33136 , Miami, FL, USA.,Centre for Dermatology Research, University of Manchester, M13 9PL, Manchester, UK
| |
Collapse
|
415
|
Joshi AU, Van Wassenhove LD, Logas KR, Minhas PS, Andreasson KI, Weinberg KI, Chen CH, Mochly-Rosen D. Aldehyde dehydrogenase 2 activity and aldehydic load contribute to neuroinflammation and Alzheimer's disease related pathology. Acta Neuropathol Commun 2019; 7:190. [PMID: 31829281 PMCID: PMC6907112 DOI: 10.1186/s40478-019-0839-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Aldehyde dehydrogenase 2 deficiency (ALDH2*2) causes facial flushing in response to alcohol consumption in approximately 560 million East Asians. Recent meta-analysis demonstrated the potential link between ALDH2*2 mutation and Alzheimer's Disease (AD). Other studies have linked chronic alcohol consumption as a risk factor for AD. In the present study, we show that fibroblasts of an AD patient that also has an ALDH2*2 mutation or overexpression of ALDH2*2 in fibroblasts derived from AD patients harboring ApoE ε4 allele exhibited increased aldehydic load, oxidative stress, and increased mitochondrial dysfunction relative to healthy subjects and exposure to ethanol exacerbated these dysfunctions. In an in vivo model, daily exposure of WT mice to ethanol for 11 weeks resulted in mitochondrial dysfunction, oxidative stress and increased aldehyde levels in their brains and these pathologies were greater in ALDH2*2/*2 (homozygous) mice. Following chronic ethanol exposure, the levels of the AD-associated protein, amyloid-β, and neuroinflammation were higher in the brains of the ALDH2*2/*2 mice relative to WT. Cultured primary cortical neurons of ALDH2*2/*2 mice showed increased sensitivity to ethanol and there was a greater activation of their primary astrocytes relative to the responses of neurons or astrocytes from the WT mice. Importantly, an activator of ALDH2 and ALDH2*2, Alda-1, blunted the ethanol-induced increases in Aβ, and the neuroinflammation in vitro and in vivo. These data indicate that impairment in the metabolism of aldehydes, and specifically ethanol-derived acetaldehyde, is a contributor to AD associated pathology and highlights the likely risk of alcohol consumption in the general population and especially in East Asians that carry ALDH2*2 mutation.
Collapse
|
416
|
Mira RG, Tapia-Rojas C, Pérez MJ, Jara C, Vergara EH, Quintanilla RA, Cerpa W. Alcohol impairs hippocampal function: From NMDA receptor synaptic transmission to mitochondrial function. Drug Alcohol Depend 2019; 205:107628. [PMID: 31683244 DOI: 10.1016/j.drugalcdep.2019.107628] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/22/2022]
Abstract
Many studies have reported that alcohol produces harmful effects on several brain structures, including the hippocampus, in both rodents and humans. The hippocampus is one of the most studied areas of the brain due to its function in learning and memory, and a lot of evidence suggests that hippocampal failure is responsible for the cognitive loss present in individuals with recurrent alcohol consumption. Mitochondria are organelles that generate the energy needed for the brain to maintain neuronal communication, and their functional failure is considered a mediator of the synaptic dysfunction induced by alcohol. In this review, we discuss the mechanisms of how alcohol exposure affects neuronal communication through the impairment of glutamate receptor (NMDAR) activity, neuroinflammatory events and oxidative damage observed after alcohol exposure, all processes under the umbrella of mitochondrial function. Finally, we discuss the direct role of mitochondrial dysfunction mediating cognitive and memory decline produced by alcohol exposure and their consequences associated with neurodegeneration.
Collapse
Affiliation(s)
- Rodrigo G Mira
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
| | - Cheril Tapia-Rojas
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile; Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Chile
| | - María Jose Pérez
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile; Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Chile
| | - Claudia Jara
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile; Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Chile
| | - Erick H Vergara
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile; Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Chile
| | - Rodrigo A Quintanilla
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile; Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Chile.
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
417
|
Pan H, Huang H, Zhang L, Ma S, Yang H, Wang H. "Adjusting internal organs and dredging channel" electroacupuncture treatment prevents the development of diabetic peripheral neuropathy by downregulating glucose-related protein 78 (GRP78) and caspase-12 in streptozotocin-diabetic rats. J Diabetes 2019; 11:928-937. [PMID: 30884162 DOI: 10.1111/1753-0407.12916] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/05/2019] [Accepted: 03/13/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The clinical efficacy of electroacupuncture in treating diabetic peripheral neuropathy (DPN) is significant, but the underlying mechanism of action is not clear. Considering that glucose-regulated protein 78 (GRP78) and caspase-12 are major proteins participating in cell apoptosis, we investigated the effects of "adjusting internal organs and dredging channel" electroacupuncture therapy on GRP78 and caspase-12 levels in streptozotocin (STZ)-diabetic rats to elucidate the mechanism of action. METHODS Rats were first divided into two groups: one group was rendered diabetic with a single injection of 50 mg/kg STZ, whereas the other normal control group was injected with an equivalent volume of citrate buffer. The STZ-diabetic rats were randomly divided into three groups: model control and electroacupuncture- and mecobalamin-treated groups. After 12 weeks treatment, the therapeutic efficacy of electroacupuncture was assessed using sciatic nerves isolated from rats. In the electroacupuncture group, rats were treated by electroacupuncture for 20 minutes once daily for 6 days each week, with 1 day off, for 12 consecutive weeks. The selected acupressure points include bilateral acupressure points of BL13 (Fehu), BL20 (Pishu), BL23 (Shenshu), LI4 (Hegu), LR3 (faichong), ST36 (Zusanli), and SP6 (Sanyiniiao). Acupressure points were stimulated using a HuaTuo SDZ-V Electric Acupuncture Therapy Apparatus. The acupressure points of BL13 and BL23, as well as SP6 and LR3, were connected on the same side with a dilatational wave of 3 Hz (frequency ratio of 1 : 5) to stimulate the parts of the body to the extent that could be tolerated by the rat. As for the mecobalamin-treated groups, mecobalamin was administrated to rats intragastrically at a dose of 20 mg/kg once daily for 12 consecutive weeks. Immunofluorescence and western blot analysis were used to determine GRP78 and caspase-12 levels in sciatic nerves. In addition, cell apoptosis in sciatic nerves was determined using the terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labeling (TUNEL) assay. RESULTS Electroacupuncture markedly reduced the pathological injury to sciatic nerves in STZ-diabetic rats. Moreover, electroacupuncture significantly downregulated GRP78 and caspase-12 and reduced cell apoptosis of sciatic nerves in DPN rats. CONCLUSIONS Electroacupuncture improved DPN by downregulating GRP78 and caspase-12 and reducing cell apoptosis of sciatic nerves in STZ-diabetic rats, and further inhibited the occurrence of endoplasmic reticulum stress, thus preventing sciatic nerve injuries.
Collapse
Affiliation(s)
- Hong Pan
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
- Pediatrics, Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Haipeng Huang
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Liying Zhang
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Shiqi Ma
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Hongmei Yang
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Hongfeng Wang
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
418
|
Gupta R, Ranjan S, Yadav A, Verma B, Malhotra K, Madan M, Chopra O, Jain S, Gupta S, Joshi A, Bhasin C, Mudgal P. Toxic Effects of Food Colorants Erythrosine and Tartrazine on Zebrafish Embryo Development. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE 2019. [DOI: 10.12944/crnfsj.7.3.26] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Erythrosine and tartrazine are common artificial food additives which have become a part of daily human consumption. Advised daily intake values for these agents are set strictly, however, the actual intake is much higher than the recommended ADI. A higher intake of erythrosine and tartrazine is shown to exhibit adverse effects in mammalian models, and is thus a matter of public health concern. In this study we have assessed and compared the dose-dependent effects of erythrosine and tartrazine on inducing oxidative stress in zebrafish embryos. We performed the superoxide dismutase (SOD) enzyme activity assay to test the effect of the two food colorants on reactive oxygen species (ROS) production. Erythrosine and tartrazine treated embryos showed significantly increased SOD activity in an enzyme assay. Additionally SOD mRNA transcripts in the treated embryos were found to be upregulated. Erythrosine and tartrazine treatment specifically altered SOD1 mRNA transcript levels while it had no effect on SOD2 mRNA, the other isoform found in zebrafish. Our study shows that erythrosine at a concentration of 0.05% is embryotoxic in a dose and time dependent manner. Tartrazine treated embryos exhibit similar toxicity at a concentration of 0.5%. Erythrosine treated zebrafish embryos hatch much slower when compared to tartrazine treated embryos and control embryos. While erythrosine affects the yolk utilization, tartrazine exhibits teratogenic effects on early zebrafish embryos. The mRNA expression as well as biochemical analysis indicates that exposure to food colorants induces cytoplasmic SOD transcription to combat the ROS toxicity in zebrafish embryos.
Collapse
Affiliation(s)
- Radhika Gupta
- Department of Biochemistry, Daulat Ram College, University of Delhi, Delhi-110007
| | | | - Aanchal Yadav
- Department of Biochemistry, Daulat Ram College, University of Delhi, Delhi-110007
| | - Bhawana Verma
- Department of Biochemistry, Daulat Ram College, University of Delhi, Delhi-110007
| | - Kangana Malhotra
- Department of Biochemistry, Daulat Ram College, University of Delhi, Delhi-110007
| | - Mahima Madan
- Department of Biochemistry, Daulat Ram College, University of Delhi, Delhi-110007
| | - Ojasvi Chopra
- Department of Biochemistry, Daulat Ram College, University of Delhi, Delhi-110007
| | - Shefali Jain
- Department of Biochemistry, Daulat Ram College, University of Delhi, Delhi-110007
| | - Sonali Gupta
- Department of Biochemistry, Daulat Ram College, University of Delhi, Delhi-110007
| | | | - Chitra Bhasin
- Department of Zoology, Daulat Ram College, University of Delhi, Delhi-110007
| | - Padmshree Mudgal
- Department of Biochemistry, Daulat Ram College, University of Delhi, Delhi-110007
| |
Collapse
|
419
|
Santofimia-Castaño P, Xia Y, Peng L, Velázquez-Campoy A, Abián O, Lan W, Lomberk G, Urrutia R, Rizzuti B, Soubeyran P, Neira JL, Iovanna J. Targeting the Stress-Induced Protein NUPR1 to Treat Pancreatic Adenocarcinoma. Cells 2019; 8:E1453. [PMID: 31744261 PMCID: PMC6912534 DOI: 10.3390/cells8111453] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022] Open
Abstract
Cancer cells activate stress-response mechanisms to adapt themselves to a variety of stressful conditions. Among these protective mechanisms, those controlled by the stress-induced nuclear protein 1 (NUPR1 ) belong to the most conserved ones. NUPR1 is an 82-residue-long, monomeric, basic and intrinsically disordered protein (IDP), which was found to be invariably overexpressed in some, if not all, cancer tissues. Remarkably, we and others have previously showed that genetic inactivation of the Nupr1 gene antagonizes the growth of pancreatic cancer as well as several other tumors. With the use of a multidisciplinary strategy by combining biophysical, biochemical, bioinformatic, and biological approaches, a trifluoperazine-derived compound, named ZZW-115, has been identified as an inhibitor of the NUPR1 functions. The anticancer activity of the ZZW-115 was first validated on a large panel of cancer cells. Furthermore, ZZW-115 produced a dose-dependent tumor regression of the tumor size in xenografted mice. Mechanistically, we have demonstrated that NUPR1 binds to several importins. Because ZZW-115 binds NUPR1 through the region around the amino acid Thr68, which is located into the nuclear location signal (NLS) region of the protein, we demonstrated that treatment with ZZW-115 inhibits completely the translocation of NUPR1 from the cytoplasm to the nucleus by competing with importins.
Collapse
Affiliation(s)
- Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université, CEDEX, 13288 Marseille, France; (P.S.-C.); (W.L.); (P.S.)
- Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, CEDEX, 13288 Marseille, France
| | - Yi Xia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China;
| | - Ling Peng
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, «Equipe Labellisée Ligue Contre le Cancer», Parc Scientifique et Technologique de Luminy, CEDEX, 13288 Marseille, France;
| | - Adrián Velázquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, 50009 Universidad de Zaragoza, Spain; (A.V.-C.); (O.A.); (J.L.N.)
- Aragon Institute for Health Research (IIS Aragon), Universidad de Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Fundacion ARAID, Government of Aragon, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Olga Abián
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, 50009 Universidad de Zaragoza, Spain; (A.V.-C.); (O.A.); (J.L.N.)
- Aragon Institute for Health Research (IIS Aragon), Universidad de Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto Aragonés de Ciencias de la Salud (IACS), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Wenjun Lan
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université, CEDEX, 13288 Marseille, France; (P.S.-C.); (W.L.); (P.S.)
- Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, CEDEX, 13288 Marseille, France
| | - Gwen Lomberk
- Division of Research, Department of Surgery and the Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA; (G.L.); (R.U.)
| | - Raul Urrutia
- Division of Research, Department of Surgery and the Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA; (G.L.); (R.U.)
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, 87036 Cosenza, Italy;
| | - Philippe Soubeyran
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université, CEDEX, 13288 Marseille, France; (P.S.-C.); (W.L.); (P.S.)
- Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, CEDEX, 13288 Marseille, France
| | - José Luis Neira
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, 50009 Universidad de Zaragoza, Spain; (A.V.-C.); (O.A.); (J.L.N.)
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Edificio Torregaitán, 03202 Elche, Alicante, Spain
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université, CEDEX, 13288 Marseille, France; (P.S.-C.); (W.L.); (P.S.)
- Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, CEDEX, 13288 Marseille, France
| |
Collapse
|
420
|
El Haouari M. Platelet Oxidative Stress and its Relationship with Cardiovascular Diseases in Type 2 Diabetes Mellitus Patients. Curr Med Chem 2019; 26:4145-4165. [PMID: 28982316 DOI: 10.2174/0929867324666171005114456] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 01/01/2023]
Abstract
Enhanced platelet activation and thrombosis are linked to various cardiovascular diseases (CVD). Among other mechanisms, oxidative stress seems to play a pivotal role in platelet hyperactivity. Indeed, upon stimulation by physiological agonists, human platelets generate and release several types of reactive oxygen species (ROS) such as O2 -, H2O2 or OH-, further amplifying the platelet activation response via various signalling pathways, including, formation of isoprostanes, Ca2+ mobilization and NO inactivation. Furthermore, excessive platelet ROS generation, incorporation of free radicals from environment and/or depletion of antioxidants induce pro-oxidant, pro-inflammatory and platelet hyperaggregability effects, leading to the incidence of cardiovascular events. Here, we review the current knowledge regarding the effect of oxidative stress on platelet signaling pathways and its implication in CVD such as type 2 diabetes mellitus. We also summarize the role of natural antioxidants included in vegetables, fruits and medicinal herbs in reducing platelet function via an oxidative stress-mediated mechanism.
Collapse
Affiliation(s)
- Mohammed El Haouari
- Centre Regional des Metiers de l'Education et de la Formation de Taza (CRMEF - Taza), B.P: 1178 - Taza Gare, Morocco
| |
Collapse
|
421
|
Nestin regulates cellular redox homeostasis in lung cancer through the Keap1-Nrf2 feedback loop. Nat Commun 2019; 10:5043. [PMID: 31695040 PMCID: PMC6834667 DOI: 10.1038/s41467-019-12925-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 10/08/2019] [Indexed: 01/09/2023] Open
Abstract
Abnormal cancer antioxidant capacity is considered as a potential mechanism of tumor malignancy. Modulation of oxidative stress status is emerging as an anti-cancer treatment. Our previous studies have found that Nestin-knockdown cells were more sensitive to oxidative stress in non-small cell lung cancer (NSCLC). However, the molecular mechanism by which Nestin protects cells from oxidative damage remains unclear. Here, we identify a feedback loop between Nestin and Nrf2 maintaining the redox homeostasis. Mechanistically, the ESGE motif of Nestin interacts with the Kelch domain of Keap1 and competes with Nrf2 for Keap1 binding, leading to Nrf2 escaping from Keap1-mediated degradation, subsequently promoting antioxidant enzyme generation. Interestingly, we also map that the antioxidant response elements (AREs) in the Nestin promoter are responsible for its induction via Nrf2. Taken together, our results indicate that the Nestin-Keap1-Nrf2 axis regulates cellular redox homeostasis and confers oxidative stress resistance in NSCLC.
Collapse
|
422
|
Ruberte AC, Sanmartin C, Aydillo C, Sharma AK, Plano D. Development and Therapeutic Potential of Selenazo Compounds. J Med Chem 2019; 63:1473-1489. [PMID: 31638805 DOI: 10.1021/acs.jmedchem.9b01152] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Incorporation of selenium (Se) atom into small molecules can substantially enhance their antioxidant, anti-inflammatory, antimutagenic, antitumoral or chemopreventive, antiviral, antibacterial, antifungal, antiparasitic, and neuroprotective effects. Specifically, selenazo compounds have received great attention owing to their chemical properties, pharmaceutical applications, and low toxicity. In this Perspective, we compile extensive literature evidence with the description and discussion of the most recent advances in different selenazo and selenadiazo motifs as potential pharmacological candidates. We also provide some perspectives on the challenges and future directions in the advancement of these selenazo compounds, each of which could generate drug candidates for various diseases.
Collapse
Affiliation(s)
- Ana Carolina Ruberte
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain
| | - Carmen Sanmartin
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain
| | - Carlos Aydillo
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72 , Penn State College of Medicine , 500 University Drive , Hershey , Pennsylvania 17033 , United States
| | - Daniel Plano
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain.,Department of Pharmacology, Penn State Cancer Institute, CH72 , Penn State College of Medicine , 500 University Drive , Hershey , Pennsylvania 17033 , United States
| |
Collapse
|
423
|
Estaras M, Ameur FZ, Roncero V, Fernandez-Bermejo M, Blanco G, Lopez D, Mateos JM, Salido GM, Gonzalez A. The melatonin receptor antagonist luzindole induces Ca 2+ mobilization, reactive oxygen species generation and impairs trypsin secretion in mouse pancreatic acinar cells. Biochim Biophys Acta Gen Subj 2019; 1863:129407. [PMID: 31381958 DOI: 10.1016/j.bbagen.2019.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND In this work we studied the effects of the melatonin receptor-antagonist luzindole (1 μM-50 μM) on isolated mouse pancreatic acinar cells. METHODS Changes in intracellular free-Ca2+ concentration, reactive oxygen species production and trypsin secretion were analyzed. RESULTS Luzindole induced increases in [Ca2+]i that diminished CCK-8 induced Ca2+ mobilization, compared with that observed when CCK-8 was applied alone. Treatment of cells with thapsigargin (1 μM), in the absence of Ca2+ in the extracellular medium, evoked a transient increase in [Ca2+]i. The additional incubation of cells with luzindole (10 μM) failed to induce further mobilization of Ca2+. In the presence of luzindole a concentration-dependent increase in ROS generation was observed that decreased in the absence of Ca2+ or by pretreatment of cells with melatonin (100 μM). Incubation of pancreatic acinar cells with luzindole (10 μM) impaired CCK-8-induced trypsin secretion. Melatonin was unable to revert the effect of luzindole on CCK-8-induced trypsin secretion. CONCLUSION The melatonin receptor-inhibitor luzindole induces Ca2+-mediated pro-oxidative conditions and impairment of enzyme secretion, which creates a situation in pancreatic acinar cells that might compromise their function. GENERAL SIGNIFICANCE The effects of luzindole that we have observed, might be unspecific and could mislead the observations when it is used to study the actions of melatonin on the gland. Another possibility is that melatonin receptors exhibit a basal or agonist-independent activity in pancreatic acinar cells, which might be modulated by melatonin or luzindole.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Fatma Z Ameur
- Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire, Université d'Oran1, Ahmed BenBella, Algeria
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | | | - Gerardo Blanco
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Diego Lopez
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain.
| |
Collapse
|
424
|
Zhang X, Lee MD, Wilson C, McCarron JG. Hydrogen peroxide depolarizes mitochondria and inhibits IP 3-evoked Ca 2+ release in the endothelium of intact arteries. Cell Calcium 2019; 84:102108. [PMID: 31715384 PMCID: PMC6891240 DOI: 10.1016/j.ceca.2019.102108] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/30/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022]
Abstract
H2O2 is produced by several cell processes including mitochondria and may act as an intracellular messenger and cell-cell signalling molecule. Spontaneous local Ca2+ signals and IP3-evoked Ca2+ increases were inhibited by H2O2. H2O2 suppression of IP3-evoked Ca2+ signalling may be mediated by mitochondria via a decrease in the mitochondrial membrane potential. H2O2-induced mitochondrial depolarization and inhibition of IP3-evoked Ca2+ release, may protect mitochondria from Ca2+ overload during IP3-linked Ca2+ signals.
Hydrogen peroxide (H2O2) is a mitochondrial-derived reactive oxygen species (ROS) that regulates vascular signalling transduction, vasocontraction and vasodilation. Although the physiological role of ROS in endothelial cells is acknowledged, the mechanisms underlying H2O2 regulation of signalling in native, fully-differentiated endothelial cells is unresolved. In the present study, the effects of H2O2 on Ca2+ signalling were investigated in the endothelium of intact rat mesenteric arteries. Spontaneous local Ca2+ signals and acetylcholine evoked Ca2+ increases were inhibited by H2O2. H2O2 inhibition of acetylcholine-evoked Ca2+ signals was reversed by catalase. H2O2 exerts its inhibition on the IP3 receptor as Ca2+ release evoked by photolysis of caged IP3 was supressed by H2O2. H2O2 suppression of IP3-evoked Ca2+ signalling may be mediated by mitochondria. H2O2 depolarized mitochondria membrane potential. Acetylcholine-evoked Ca2+ release was inhibited by depolarisation of the mitochondrial membrane potential by the uncoupler carbonyl cyanide 3-chlorophenylhydrazone (CCCP) or complex 1 inhibitor, rotenone. We propose that the suppression of IP3-evoked Ca2+ release by H2O2 arises from the decrease in mitochondrial membrane potential. These results suggest that mitochondria may protect themselves against Ca2+ overload during IP3-linked Ca2+ signals by a H2O2 mediated negative feedback depolarization of the organelle and inhibition of IP3-evoked Ca2+ release.
Collapse
Affiliation(s)
- Xun Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Matthew D Lee
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
425
|
Liu W, Quan J. A Novel Ionic Liquid of [BeMIM] [Tf2N] for Extracting Pesticides Residues in Tea Sample by Dispersive Liquid–Liquid Microextraction. Chromatographia 2019. [DOI: 10.1007/s10337-019-03819-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
426
|
Robertson OD, Coronado NG, Sethi R, Berk M, Dodd S. Putative neuroprotective pharmacotherapies to target the staged progression of mental illness. Early Interv Psychiatry 2019; 13:1032-1049. [PMID: 30690898 DOI: 10.1111/eip.12775] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/26/2018] [Indexed: 12/22/2022]
Abstract
AIM Neuropsychiatric disorders including depression, bipolar and schizophrenia frequently exhibit a neuroprogressive course from prodrome to chronicity. There are a range of agents exhibiting capacity to attenuate biological mechanisms associated with neuroprogression. This review will update the evidence for putative neuroprotective agents including clinical efficacy, mechanisms of action and limitations in current assessment tools, and identify novel agents with neuroprotective potential. METHOD Data for this review were sourced from online databases PUBMED, Embase and Web of Science. Only data published since 2012 were included in this review, no data were excluded based on language or publication origin. RESULTS Each of the agents reviewed inhibit one or multiple pathways of neuroprogression including: inflammatory gene expression and cytokine release, oxidative and nitrosative stress, mitochondrial dysfunction, neurotrophin dysregulation and apoptotic signalling. Some demonstrate clinical efficacy in preventing neural damage or loss, relapse or cognitive/functional decline. Agents include: the psychotropic medications lithium, second generation antipsychotics and antidepressants; other pharmacological agents such as minocycline, aspirin, cyclooxygenase-2 inhibitors, statins, ketamine and alpha-2-delta ligands; and others such as erythropoietin, oestrogen, leptin, N-acetylcysteine, curcumin, melatonin and ebselen. CONCLUSIONS Signals of evidence of clinical neuroprotection are evident for a number of candidate agents. Adjunctive use of multiple agents may present a viable avenue to clinical realization of neuroprotection. Definitive prospective studies of neuroprotection with multimodal assessment tools are required.
Collapse
Affiliation(s)
- Oliver D Robertson
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia
| | - Nieves G Coronado
- Unidad de Gestión Clinica Salud Mental, Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | - Rickinder Sethi
- Department of Psychiatry, Western University, London, Ontario, Canada
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia.,Mood Disorders Research Program, Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia.,Department of Psychiatry, Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Seetal Dodd
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia.,Mood Disorders Research Program, Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
427
|
Darmayanti L, Kadja GTM, Notodarmojo S, Damanhuri E, Mukti RR. Structural alteration within fly ash-based geopolymers governing the adsorption of Cu 2+ from aqueous environment: Effect of alkali activation. JOURNAL OF HAZARDOUS MATERIALS 2019; 377:305-314. [PMID: 31173980 DOI: 10.1016/j.jhazmat.2019.05.086] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/22/2019] [Accepted: 05/26/2019] [Indexed: 05/22/2023]
Abstract
Fly-ash based geopolymers have been considered as a low-cost yet effective adsorbent for the removal of heavy metal cations, including Cu2+, from the aqueous environment. In the synthesis of geopolymers, the fly-ash needs to be alkali activated using several systems rich in either Na+ or K+. Herein, we investigate the effect of alkali activation on the structural alteration and its consequence on the adsorption capacity. Based on the series of detailed characterizations, the geopolymers formed in Na+-based alkali system is found to have more organized structure compared to that formed in K+-based alkali system. Moreover, the incorporation of additional silicate creates ancillary structure which positively contributes to the organization of the overall structure. All the samples, fly-ash and geopolymers, exhibits Cu2+ adsorption based on Langmuir isotherm and pseudo-second order kinetic. The geopolymers with more organized structure display higher Cu2+ adsorption capacity, which reaches 40 mg g-1 higher in comparison to 7 mg g-1 for fly ash sample. The structural alteration induces the formation of open-framework structure with more accessible sites which can accommodate more Cu2+. Our study provides a fundamental understanding for the design and fabrication of geopolymers as an effective adsorbent for the removal of heavy metal cations.
Collapse
Affiliation(s)
- Lita Darmayanti
- Department of Civil Engineering, Universitas Riau, Kampus Bina Widya Simpang Baru, Pekanbaru, 28293, Indonesia; Department of Environmental Engineering, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung, 40132, Indonesia
| | - Grandprix T M Kadja
- Division of Inorganic and Physical Chemistry, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung, 40132, Indonesia; Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung, 40132, Indonesia.
| | - Suprihanto Notodarmojo
- Department of Environmental Engineering, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung, 40132, Indonesia
| | - Enri Damanhuri
- Department of Environmental Engineering, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung, 40132, Indonesia
| | - Rino R Mukti
- Division of Inorganic and Physical Chemistry, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung, 40132, Indonesia; Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung, 40132, Indonesia.
| |
Collapse
|
428
|
Li Y, Chen G, He Y, Zhang X, Zeng B, Wang C, Yi C, Yu D. Ebselen rescues oxidative-stress-suppressed osteogenic differentiation of bone-marrow-derived mesenchymal stem cells via an antioxidant effect and the PI3K/Akt pathway. J Trace Elem Med Biol 2019; 55:64-70. [PMID: 31345368 DOI: 10.1016/j.jtemb.2019.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Patients with metabolic bone diseases often have high risk of titanium implant failure due to compromised bone regeneration ability. Clinical evidence indicates that the poor osteogenic ability is partly because of excessive oxidative stress. To date, specific treatments for these patients are urgently needed. Ebselen, a non-toxic organoselenium compound, is reported to be a potent antioxidant agent. In this study, we hypothesized that ebselen exerted protective effects on osteogenic differentiation of bone-marrow-derived mesenchymal stem cells (BMSCs) under oxidative stress. METHODS BMSCs were isolated from SD rats, and their morphology and multiple differentiation abilities were characterized. Proliferation rates of BMSCs treated with different concentrations of ebselen were analyzed. Then BMSCs were pretreated by hydrogen peroxide (H2O2), after which ebselen at different concentrations (0, 1, 5, 10 μM) was added, alkaline phosphatase (ALP) activity, mineralization and osteogenic-related protein levels were evaluated and an optimum concentration of ebselen was selected. Subsequently, intracellular reactive oxygen species (ROS) generation and the role of the PI3K/AKT pathway were also investigated. RESULTS Ebselen within a proper range could promote the proliferation of BMSCs. H2O2-induced oxidative stress suppressed osteogenic differentiation of BMSCs, which was verified by the decrease in ALP activity, calcium deposition, Runx2 and β-catenin expression. However, ebselen could alleviate osteogenic dysfunction of BMSCs. We also observed that ebselen reduced ROS accumulation in H2O2-pretreated BMSCs. Moreover, the pro-osteogenic effects afforded by ebselen were almost abolished by the Akt inhibitor. CONCLUSION We concluded that ebselen could attenuate osteogenic dysfunction of BMSCs induced by H2O2 through an antioxidant effect and the activation of the PI3K/Akt pathway, suggesting that ebselen has a potential therapeutic effect for patients with metabolic bone diseases.
Collapse
Affiliation(s)
- Yiming Li
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Guanhui Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Yi He
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Xiliu Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Binghui Zeng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Chao Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Chen Yi
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Dongsheng Yu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China.
| |
Collapse
|
429
|
Huang KF, Ma KH, Jhap TY, Liu PS, Chueh SH. Ultraviolet B irradiation induced Nrf2 degradation occurs via activation of TRPV1 channels in human dermal fibroblasts. Free Radic Biol Med 2019; 141:220-232. [PMID: 31220549 DOI: 10.1016/j.freeradbiomed.2019.06.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 06/10/2019] [Accepted: 06/15/2019] [Indexed: 12/21/2022]
Abstract
Ultraviolet (UV) irradiation causes cellular oxidative stress. Under redox imbalance, Keap1-dependent Nrf2 degradation is minimal. In this study, we examined the role of Ca2+ in Nrf2 homeostasis after UVB irradiation using human dermal fibroblasts. UVB irradiation stimulates 12-lipoxygenase and the product 12-hydroxyeicosatetraenoic acid then activates TRPV1 increasing the cell's cytosolic Ca2+ concentration. UVB irradiation induced reactive oxygen species generation and apoptosis are inhibited in the absence of Ca2+ or in the presence of either a 12-lipoxygenase inhibitor or a TRPV1 inhibitor during and after UVB irradiation. Thus, the Ca2+ increase via TRPV1 is a critical factor in UVB irradiation induced oxidative stress. UVB irradiation induces a Ca2+ dependent Nrf2 degradation and thus activation of TRPV1 with 12-hydroxyeicosatetraenoic acid also decreasing Nrf2 levels. UVB irradiation induced Nrf2 degradation is inhibited by co-treatment of cells with W-7, cyclosporin A, SB-216763 or MG-132, which are inhibitors of calmodulin, calcineurin, GSK3β and the proteasome, respectively. Furthermore, UVB irradiation in parallel induces GSK3β dephosphorylation in a Ca2+ dependent manner. Co-immunoprecipitation showed that UVB irradiation induces an increase in Nrf2 phosphorylation, an increase in the binding of β-TrCP and Nrf2, and an increase in Nrf2 ubiquitination; these effects are all Ca2+ dependent. These findings suggest that UVB irradiation induced GSK3β activation in a Ca2+ dependent manner, which then stimulates the phosphorylation and ubiquitination of Nrf2 via β-TrCP. Indeed, silencing of β-TrCP was found to inhibit UVB irradiation-induced oxidative stress, Nrf2 degradation and apoptosis, while it had no effect on the Ca2+ increase. Taken together, our results suggest that a Ca2+ influx via TRPV1 is responsible for UVB irradiation-induced Nrf2 degradation and that modulation of the Ca2+-calmodulin-calcineurin-GSK3β-Nrf2-β-TrCP-Cullin-1 pathway may explain Ca2+ dependent Nrf2 degradation.
Collapse
Affiliation(s)
- Kuo-Feng Huang
- Division of Plastic Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan, ROC
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Tian-You Jhap
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Pei-Shan Liu
- Department of Microbiology, Soochow University, Taipei, Taiwan, ROC
| | - Sheau-Huei Chueh
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC.
| |
Collapse
|
430
|
Dahmardeh N, Shabani M, Basiri M, Kalantaripour TP, Asadi-Shekaari M. Functional Antagonism of Sphingosine-1-Phosphate Receptor 1 Prevents Harmaline-Induced Ultrastructural Alterations and Caspase-3 Mediated Apoptosis. Malays J Med Sci 2019; 26:28-38. [PMID: 31496891 PMCID: PMC6719891 DOI: 10.21315/mjms2019.26.4.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Background There is a meaningful necessity for a targeted therapy of essential tremor (ET), as medications have not been developed specifically for ET. For nearly a century, many drugs have been applied in the treatment of tremor but the drug treatment of ET remains still unknown. Some potential therapeutic factors such fingolimod (FTY720) can be effectively used to treat ET in animals. In the present research, the effect of FTY720, the immunomodulatory sphingosine 1-phosphate (S1P) analog, on degeneration of cerebellar and olivary neurons induced by harmaline in male rats was investigated. Methods The animals were allotted into control dimethyl sulfoxide (DMSO), saline + harmaline [30 mg/kg, intraperitoneally, (i.p.)], harmaline + FTY720 (1 mg/kg, i.p, 1 h and 24 h before harmaline injection) groups (n = 10). The cerebellum and inferior olive nucleus (ION) were studied for neuronal degeneration using immunohistochemistry (IHC) and ultrastructural study by transmission electron microscopy (TEM) techniques. Results Harmaline caused neuronal cell loss, caspase-3 mediated apoptosis, astrocytosis and ultrastructural changes in cerebellar Purkinje cells and inferior olive neurons. FTY720 exhibited neuroprotective effects on cerebellar Purkinje cells and inferior olivary neurons. Conclusion These results suggest that FTY720 has potential efficacy for prevention of ET neurodegeneration and astrocytosis induced by harmaline in male rats.
Collapse
Affiliation(s)
- Narjes Dahmardeh
- Department of Anatomical Sciences, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Basiri
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Taj Pari Kalantaripour
- Department of Physiology, School of Medicine, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Majid Asadi-Shekaari
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
431
|
Joshi A, Thiel K, Jog K, Dringen R. Uptake of Intact Copper Oxide Nanoparticles Causes Acute Toxicity in Cultured Glial Cells. Neurochem Res 2019; 44:2156-2169. [DOI: 10.1007/s11064-019-02855-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/29/2019] [Accepted: 08/03/2019] [Indexed: 01/11/2023]
|
432
|
Li X, Huo C, Xiao Y, Xu R, Liu Y, Jia X, Wang X. Bisdemethoxycurcumin Protection of Cardiomyocyte Mainly Depends on Nrf2/HO-1 Activation Mediated by the PI3K/AKT Pathway. Chem Res Toxicol 2019; 32:1871-1879. [PMID: 31402651 DOI: 10.1021/acs.chemrestox.9b00222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xing Li
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, P.R. China
| | - Cong Huo
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, P.R. China
| | - Yuan Xiao
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, P.R. China
- Hong-Hui Hospital, Xi’an Jiaotong University College of Medicine, Xi’an 710054, P.R. China
| | - Rong Xu
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, P.R. China
| | - Yan Liu
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, P.R. China
| | - Xin Jia
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, P.R. China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, P.R. China
| |
Collapse
|
433
|
Rusetskaya NY, Fedotov IV, Koftina VA, Borodulin VB. [Selenium compounds in redox regulation of inflammation and apoptosis]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:165-179. [PMID: 31258141 DOI: 10.18097/pbmc20196503165] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Monocytes and macrophages play a key role in the development of inflammation: under the action of lipopolysaccharides (LPS), absorbed from the intestine, monocytes and macrophages form reactive oxygen species (ROS) and cytokines, this leads to the development of oxidative stress, inflammation and/or apoptosis in all types of tissues. In the cells LPS induce an "internal" TLR4-mediated MAP-kinase inflammatory signaling pathway and cytokines through the superfamily of tumor necrosis factor receptor (TNFR) and the "death domain" (DD) initiate an "external" caspase apoptosis cascade or necrosis activation that causes necroptosis. Many of the proteins involved in intracellular signaling cascades (MYD88, ASK1, IKKa/b, NF-kB, AP-1) are redox-sensitive and their activity is regulated by antioxidants thioredoxin, glutaredoxin, nitroredoxin, and glutathione. Oxidation of these signaling proteins induced by ROS enhances the development of inflammation and apoptosis, and their reduction with antioxidants, on the contrary, stabilizes the signaling cascades speed, preventing the vicious circle of oxidative stress, inflammation and apoptosis that follows it. Antioxidant (AO) enzymes thioredoxin reductase (TRXR), glutaredoxin reductase (GLRXR), glutathione reductase (GR) are required for reduction of non-enzymatic antioxidants (thioredoxin, glutaredoxin, nitroredoxin, glutathione), and AO enzymes (SOD, catalase, GPX) are required for ROS deactivation. The key AO enzymes (TRXR and GPX) are selenium-dependent; therefore selenium deficiency leads to a decrease in the body's antioxidant defense, the development of oxidative stress, inflammation, and/or apoptosis in various cell types. Nrf2-Keap1 signaling pathway activated by selenium deficiency and/or oxidative stress is necessary to restore redox homeostasis in the cell. In addition, expression of some genes is changed with selenium deficiency. Consequently, growth and proliferation of cells, their movement, development, death, and survival, as well as the interaction between cells, the redox regulation of intracellular signaling cascades of inflammation and apoptosis, depend on the selenium status of the body. Prophylactic administration of selenium-containing preparations (natural and synthetic (organic and inorganic)) is able to normalize the activity of AO enzymes and the general status of the body. Organic selenium compounds have a high bioavailability and, depending on their concentration, can act both as selenium donors to prevent selenium deficiency and as antitumor drugs due to their toxicity and participation in the regulation of signaling pathways of apoptosis. Known selenorganic compounds diphenyldiselenide and ethaselen share similarity with the Russian organo selenium compound, diacetophenonylselenide (DAPS-25), which serves as a source of bioavailable selenium, exhibits a wide range of biological activity, including antioxidant activity, that governs cell redox balance, inflammation and apoptosis regulation.
Collapse
Affiliation(s)
- N Y Rusetskaya
- Razumovsky Saratov State Medical University, Saratov, Russia
| | - I V Fedotov
- Razumovsky Saratov State Medical University, Saratov, Russia
| | - V A Koftina
- Razumovsky Saratov State Medical University, Saratov, Russia
| | - V B Borodulin
- Razumovsky Saratov State Medical University, Saratov, Russia
| |
Collapse
|
434
|
Kim Y, Vadodaria KC, Lenkei Z, Kato T, Gage FH, Marchetto MC, Santos R. Mitochondria, Metabolism, and Redox Mechanisms in Psychiatric Disorders. Antioxid Redox Signal 2019; 31:275-317. [PMID: 30585734 PMCID: PMC6602118 DOI: 10.1089/ars.2018.7606] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/17/2022]
Abstract
Significance: Our current knowledge of the pathophysiology and molecular mechanisms causing psychiatric disorders is modest, but genetic susceptibility and environmental factors are central to the etiology of these conditions. Autism, schizophrenia, bipolar disorder and major depressive disorder show genetic gene risk overlap and share symptoms and metabolic comorbidities. The identification of such common features may provide insights into the development of these disorders. Recent Advances: Multiple pieces of evidence suggest that brain energy metabolism, mitochondrial functions and redox balance are impaired to various degrees in psychiatric disorders. Since mitochondrial metabolism and redox signaling can integrate genetic and environmental environmental factors affecting the brain, it is possible that they are implicated in the etiology and progression of psychiatric disorders. Critical Issue: Evidence for direct links between cellular mitochondrial dysfunction and disease features are missing. Future Directions: A better understanding of the mitochondrial biology and its intracellular connections to the nuclear genome, the endoplasmic reticulum and signaling pathways, as well as its role in intercellular communication in the organism, is still needed. This review focuses on the findings that implicate mitochondrial dysfunction, the resultant metabolic changes and oxidative stress as important etiological factors in the context of psychiatric disorders. We also propose a model where specific pathophysiologies of psychiatric disorders depend on circuit-specific impairments of mitochondrial dysfunction and redox signaling at specific developmental stages.
Collapse
Affiliation(s)
- Yeni Kim
- Department of Child and Adolescent Psychiatry, National Center for Mental Health, Seoul, South Korea
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Krishna C. Vadodaria
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Zsolt Lenkei
- Laboratory of Dynamic of Neuronal Structure in Health and Disease, Institute of Psychiatry and Neuroscience of Paris (UMR_S1266 INSERM, University Paris Descartes), Paris, France
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Japan
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Maria C. Marchetto
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Renata Santos
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
- Laboratory of Dynamic of Neuronal Structure in Health and Disease, Institute of Psychiatry and Neuroscience of Paris (UMR_S1266 INSERM, University Paris Descartes), Paris, France
| |
Collapse
|
435
|
Ahmadi Z, Ashrafizadeh M. Melatonin as a potential modulator of Nrf2. Fundam Clin Pharmacol 2019; 34:11-19. [PMID: 31283051 DOI: 10.1111/fcp.12498] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/19/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is considered as the sensor of oxidative stress, and the main aim of this signaling pathway is to maintain physiological condition by induction of redox balance. Also, this pathway exerts anti-inflammatory effects via antioxidant response element. Oxidative stress is a key factor in a variety of pathological conditions and high level of oxidative stress is associated with damages in lipids, proteins, genetic material, and cell membrane. Multiple drugs have been developed in order to diminish oxidative stress. However, synthetic drugs suffer from various drawbacks such as high cost and side effects. On the other hand, naturally occurring compounds are of interest due to their minimal side effects and valuable biological activities. Melatonin is a hormone of pineal gland which is found in different plants. This compound has a variety of favorable biological and therapeutic activities such as antioxidant, anti-inflammatory, anti-tumor, anti-diabetic, and cardioprotection. At the present review, we demonstrate that Nrf2 signaling pathway explains some of the therapeutic and biological effects of melatonin.
Collapse
Affiliation(s)
- Zahra Ahmadi
- Department of basic science, Shoushtar Branch, Islamic Azad university, Shoushtar, 5563584, Iran
| | - Milad Ashrafizadeh
- Department of basic science, Faculty of veterinary medicine, University of Tabriz, Tabriz, 1455742, Iran
| |
Collapse
|
436
|
Fiod Riccio BV, Fonseca-Santos B, Colerato Ferrari P, Chorilli M. Characteristics, Biological Properties and Analytical Methods of Trans-Resveratrol: A Review. Crit Rev Anal Chem 2019; 50:339-358. [PMID: 31353930 DOI: 10.1080/10408347.2019.1637242] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Trans-resveratrol (TR) is the biological active isomer of resveratrol and the one responsible for therapeutic effects; both molecules are non-flavonoid phenolics of the stilbenes class found mainly in berries and red grapes. TR biological properties lie in modulation of various enzymatic classes. It is a promising candidate to novel drugs due its applications in pharmaceutical and cosmetic industries, such as anticarcinogenic, antidiabetic, antiacne, antioxidant, anti-inflammatory, neuroprotective, and photoprotector agent. It has effects on bone metabolism, gastrointestinal tract, eyes, kidneys, and in obesity treatment as well. Nevertheless, its low solubility in water and other polar solvents may be a hindrance to its therapeutic effects. Various strategies been developed to overcome these issues, such as the drug delivery systems. The present study performed a research about methods to identify TR and RESV in several samples (raw materials, wines, food supplements, drug delivery systems, and blood plasma). Most of the studies tend to analyze TR and RESV by high performance liquid chromatography (HPLC) coupled with different detectors, even so, there are reports of the use of capillary electrophoresis, electron spin resonance, gas chromatography, near-infrared luminescence, UV-Vis spectrophotometer, and vibrational spectrophotometry, for this purpose. Thus, the review evaluates the biological activity of TR and demonstrates the currently used analytical methods for its quantification in different matrices.
Collapse
Affiliation(s)
- Bruno Vincenzo Fiod Riccio
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Bruno Fonseca-Santos
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
437
|
R. Andrade P, Mehta M, Lu J, M. B. Teles R, Montoya D, O. Scumpia P, Nunes Sarno E, Ochoa MT, Ma F, Pellegrini M, Modlin RL. The cell fate regulator NUPR1 is induced by Mycobacterium leprae via type I interferon in human leprosy. PLoS Negl Trop Dis 2019; 13:e0007589. [PMID: 31344041 PMCID: PMC6684084 DOI: 10.1371/journal.pntd.0007589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 08/06/2019] [Accepted: 06/30/2019] [Indexed: 11/18/2022] Open
Abstract
The initial interaction between a microbial pathogen and the host immune response influences the outcome of the battle between the host and the foreign invader. Leprosy, caused by the obligate intracellular pathogen Mycobacterium leprae, provides a model to study relevant human immune responses. Previous studies have adopted a targeted approach to investigate host response to M. leprae infection, focusing on the induction of specific molecules and pathways. By measuring the host transcriptome triggered by M. leprae infection of human macrophages, we were able to detect a host gene signature 24-48 hours after infection characterized by specific innate immune pathways involving the cell fate mechanisms autophagy and apoptosis. The top upstream regulator in the M. leprae-induced gene signature was NUPR1, which is found in the M. leprae-induced cell fate pathways. The induction of NUPR1 by M. leprae was dependent on the production of the type I interferon (IFN), IFN-β. Furthermore, NUPR1 mRNA and protein were upregulated in the skin lesions from patients with the multibacillary form of leprosy. Together, these data indicate that M. leprae induces a cell fate program which includes NUPR1 as part of the host response in the progressive form of leprosy.
Collapse
Affiliation(s)
- Priscila R. Andrade
- Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Manali Mehta
- Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Jing Lu
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Rosane M. B. Teles
- Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Dennis Montoya
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Phillip O. Scumpia
- Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | | | - Maria Teresa Ochoa
- Department of Dermatology, University of Southern California School of Medicine, Los Angeles, California, United States of America
| | - Feiyang Ma
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Robert L. Modlin
- Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
438
|
Chen X, Xi Z, Liang H, Sun Y, Zhong Z, Wang B, Bian L, Sun Q. Melatonin Prevents Mice Cortical Astrocytes From Hemin-Induced Toxicity Through Activating PKCα/Nrf2/HO-1 Signaling in vitro. Front Neurosci 2019; 13:760. [PMID: 31404262 PMCID: PMC6669962 DOI: 10.3389/fnins.2019.00760] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/09/2019] [Indexed: 12/30/2022] Open
Abstract
Secondary injuries mediated by oxidative stress lead to deterioration of neurological functions after intracerebral hemorrhage (ICH). Cortical astrocytes are among the most important cells in the central nervous system (CNS), and play key roles in maintaining redox homeostasis by providing oxidative stress defense. Hemin is a product of hemoglobin degradation, which has strong toxicity and can induce reactive oxygen species (ROS). Melatonin (Mel) and its metabolites are well tolerated without toxicity, prevent tissue damage as well as effectively assist in scavenging free radicals. We evaluated the hemin neurotoxicity to astrocytes and the resistance of Mel-treated astrocytes to hemin neurotoxicity. And we found Mel induced PKCα phosphorylation (p-PKC), nuclear translocation of Nrf2 in astrocytes, and upregulation of HO-1, which contributed to the reduction of ROS accumulation and cell apoptosis. Nrf2 and HO1 protein expression upregulated by Mel were decreased after administration of PKC inhibitor, Ro 31-8220 (Ro 31). Luzindole (Luz), a melatonin receptor inhibitor, suppressed p-PKCα, HO-1, and Nrf2 expression upregulated by Mel and increased cell apoptosis rate. The upregulation of HO-1 induced by Mel was depressed by knocking down Nrf2 expression by siRNA, which also decreased the resistance of astrocytes to toxicity of hemin. Mel activates astrocytes through PKCα/Nrf2/HO-1 signaling pathway to acquire resistance to toxicity of hemin and resist from oxidative stress and apoptosis. The positive effect of Mel on PKCα/Nrf2/HO-1 signaling pathway may become a new target for neuroprotection after intracerebral hemorrhage.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyu Xi
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huaibin Liang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhao Sun
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihong Zhong
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Baofeng Wang
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liuguan Bian
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingfang Sun
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurosurgery, Ruijin Hospital Luwan Branch, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
439
|
Fan T, Chen Y, He Z, Wang Q, Yang X, Ren Z, Zhang S. Inhibition of ROS/NUPR1-dependent autophagy antagonises repeated cadmium exposure -induced oral squamous cell carcinoma cell migration and invasion. Toxicol Lett 2019; 314:142-152. [PMID: 31319114 DOI: 10.1016/j.toxlet.2019.07.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/18/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022]
Abstract
Cadmium (Cd), an established carcinogen, is a risk factor for oral squamous cell carcinoma (OSCC). Macroautophagy/autophagy is proposed to play a pivotal role in Cd-mediated carcinogenic activity. However, the mechanisms underlying Cd-induced autophagy are poorly understood. In the present study, a CAL27 OSCC cell line exposed to 10-6 M Cd for 8 weeks was used as a model system. Repeated Cd exposure induced significant migration and invasion of CAL27 cells. Furthermore, we showed that Cd increased the autophagic flux in CAL27 cells, as evidenced by the upregulation of LC3-II and the downregulation of P62/SQSTM1. The genetic blocking of autophagy inhibited Cd-induced migration and invasion, indicating a carcinogenic role of autophagy in Cd-treated CAL27 cells. Cd-induced NUPR1 expression, which contributes to lysosomal biogenesis and expression of autophagy-related gene, was found to mechanistically initiate autophagy in CAL27 cells. Of note, NUPR1 shRNA abolished Cd-induced autophagy both in vitro and in vivo. We also found that Cd triggered the generation of MDA in a xenograft tumour model and that N-acetyl-l-cysteine, a reactive oxygen species (ROS) scavenger, abrogated the effects of Cd on NUPR1-dependent autophagy in vivo. Taken together, these results demonstrate that ROS-dependent NUPR1-mediated autophagy plays an important role in repeated Cd exposure -induced cell growth, migration and invasion in OSCC cells.
Collapse
Affiliation(s)
- Tengfei Fan
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yanrong Chen
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhijing He
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qing Wang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xi Yang
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenhu Ren
- Department of Oral Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Sheng Zhang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
440
|
Khurana A, Anchi P, Allawadhi P, Kumar V, Sayed N, Packirisamy G, Godugu C. Superoxide dismutase mimetic nanoceria restrains cerulein induced acute pancreatitis. Nanomedicine (Lond) 2019; 14:1805-1825. [PMID: 31267840 DOI: 10.2217/nnm-2018-0318] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: The present study was carried out to assess the effect of nanoceria (NC) on pancreatic inflammation caused by cerulein. Methods: NC was characterized and in vitro studies were carried out in murine macrophages. The in vivo effects were tested on cerulein-induced pancreatitis. Results: In vitro treatment with NC remarkably protected macrophages from lipopolysaccharide-induced inflammation and oxidative stress as evident from the results of 2',7'-dichlorofluorescin diacetate, JC-1 and MitoSox staining. In vivo treatment with NC showed potent superoxide dismutase and catalase mimetic activity, antipancreatitis activity and improved histology. Furthermore, it reduced the expression of p65-NF-κB and acetylation of histone H3 at lysine K14, K56 and K79 residues. Conclusion: We for the first time, demonstrate that NC may be a promising candidate for the therapy of pancreatitis.
Collapse
Affiliation(s)
- Amit Khurana
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Pratibha Anchi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Prince Allawadhi
- Department of Biotechnology, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand-247667, India
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand-247667, India
| | - Nilofer Sayed
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Gopinath Packirisamy
- Department of Biotechnology, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand-247667, India.,Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand-247667, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad, Telangana, India
| |
Collapse
|
441
|
Dong W, Sun Y, Cheng H, Yang B, Wang L, Jiang Z, Li B, Wen S, Guo X, Guan D, Zhao R. Dynamic cell type-specific expression of Nrf2 after traumatic brain injury in mice. Eur J Neurosci 2019; 50:1981-1993. [PMID: 30828870 DOI: 10.1111/ejn.14399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 02/22/2019] [Indexed: 12/19/2022]
Abstract
Nrf2 plays a pivotal role in antioxidant response and anti-inflammation after traumatic brain injury (TBI), and its deletion aggravates TBI-induced brain damage. Previous studies have demonstrated that Nrf2 is activated post TBI, but dynamic changes in expression and cell type-specific characteristics remain unclear. In this study, the Feeney weight-drop contusion model was conducted to mimic TBI, and the ipsilateral cerebral cortex was collected at 1, 3, 7 and 14 days post TBI (dpi). Nrf2 protein levels were observed by western blot. Cell type-specific localization of Nrf2 after TBI was detected at different time intervals by double immunofluorescence staining. NeuN, GFAP, IBA1 and NG2 were used as cell type-specific markers to neurons, astrocytes, microglia and NG2 glia, respectively. After TBI, Nrf2 protein levels peaked at 1 dpi. Robust transient Nrf2 accumulation was co-localized with neurons, which was predominant at 1 dpi. Continuous weak Nrf2 expression was detected in activated astrocytes, and the number of double positive cells peaked at 7 dpi. Inducible widespread immunostaining of Nrf2 was observed in the nucleus of the microglia, and the number of Nrf2+ microglia peaked at 7 dpi. In addition, we also explored colocalization of Nrf2 in NG2 glia, in which the percentage of Nrf2+ in NG2 glia reached a climax at 3 dpi. This study reveals that the accumulation of endogenous Nrf2 might mediate different pathophysical roles in neurons and glias after TBI, the cell-type specific and time-dependent expression provide insights to explain the roles of Nrf2 in different neural cells.
Collapse
Affiliation(s)
- Wenwen Dong
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Yingfu Sun
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Hao Cheng
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Bei Yang
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Linlin Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Zhenfei Jiang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Bingxuan Li
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Shuheng Wen
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Xiangshen Guo
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Dawei Guan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, China
| | - Rui Zhao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, China
| |
Collapse
|
442
|
Estaras M, Moreno N, Santofimia-Castaño P, Martinez-Morcillo S, Roncero V, Blanco G, Lopez D, Fernandez-Bermejo M, Mateos JM, Iovanna JL, Salido GM, Gonzalez A. Melatonin induces reactive oxygen species generation and changes in glutathione levels and reduces viability in human pancreatic stellate cells. J Physiol Biochem 2019; 75:185-197. [PMID: 30868511 DOI: 10.1007/s13105-019-00671-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/26/2019] [Indexed: 12/12/2022]
Abstract
In this study, the effects of pharmacological concentrations of melatonin (1 μM-1 mM) on human pancreatic stellate cells (HPSCs) have been examined. Cell type-specific markers and expression of melatonin receptors were analyzed by western blot analysis. Changes in intracellular free Ca2+ concentration were followed by fluorimetric analysis of fura-2-loaded cells. Reduced glutathione (GSH) and oxidized glutathione (GSSG) levels were determined by fluorescence techniques. Production of reactive oxygen species (ROS) was monitored following 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester and MitoSOX™ Red-derived fluorescence. Cell viability was studied using the AlamarBlue® test. Cultured cells expressed markers typical of stellate cells. However, cell membrane receptors for melatonin could not be detected. Thapsigargin, bradykinin, or melatonin induced changes in intracellular free Ca2+ concentration. In the presence of the indole, a decrease in the GSH/GSSG ratio was observed that depended on the concentration of melatonin used. Furthermore, the indole evoked a concentration-dependent increase in ROS production in the mitochondria and in the cytosol. Finally, melatonin decreased HPSC viability in a time and concentration-dependent manner. We conclude that melatonin, at pharmacological concentrations, induces changes in the oxidative state of HPSC. This might regulate cellular viability and could not involve specific plasma membrane receptors.
Collapse
Affiliation(s)
- Matias Estaras
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida Universidad s/n, 10003, Cáceres, Spain
| | - Noelia Moreno
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida Universidad s/n, 10003, Cáceres, Spain
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | | | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Cáceres, Spain
| | - Gerardo Blanco
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Diego Lopez
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | | | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Cáceres, Spain
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Gines M Salido
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida Universidad s/n, 10003, Cáceres, Spain
| | - Antonio Gonzalez
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida Universidad s/n, 10003, Cáceres, Spain.
| |
Collapse
|
443
|
Cyanidin-3-O-glucoside promotes progesterone secretion by improving cells viability and mitochondrial function in cadmium-sulfate-damaged R2C cells. Food Chem Toxicol 2019; 128:97-105. [DOI: 10.1016/j.fct.2019.03.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/27/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022]
|
444
|
Effectiveness and therapeutic value of phytochemicals in acute pancreatitis: A review. Pancreatology 2019; 19:481-487. [PMID: 31079933 DOI: 10.1016/j.pan.2019.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/25/2019] [Accepted: 04/21/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Acute pancreatitis (AP) is an inflammatory disorder of the pancreas that can lead to local and systemic complications. Repeated attacks of AP can lead to chronic pancreatitis, which markedly increases the probability of developing pancreatic cancer. Although many researchers have attempted to identify the pathogenesis involved in the initiation and aggravation of AP, the disease is still not fully understood, and effective treatment is limited to supportive therapy. METHODS We aim to summarize available literature focused on phytochemicals (berberine, chlorogenic acid, curcumin, emblica officinalis, ellagic acid, cinnamtannin B-1, resveratrol, piperine and lycopene) and discuss their effectiveness and therapeutic value for improving AP. RESULTS This study is based on pertinent papers that were retrieved by a selective search using relevant keywords in PubMed and ScienceDirect databases. CONCLUSIONS Many phytochemicals hold potential in improving AP symptoms and may be a valuable and effective addition to standard treatment of AP. It has already been proven that the crucial factor for reducing the severity of AP is stimulation of apoptosis along with/or inhibition of necrosis. Supplementation of phytochemicals, which target the balance between apoptosis and necrosis can be recommended in ongoing clinical studies.
Collapse
|
445
|
Kosekli MA, Herek Ö, Ozmen Ö, Sahinduran S. Ameliorative effect of certolizumab on experimentally induced acute necrotic pancreatitis in rats. ACTA ACUST UNITED AC 2019; 65:204-210. [PMID: 30892445 DOI: 10.1590/1806-9282.65.2.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 06/20/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The effects of Certolizumab, a pegylated monoclonal antibody to tumor necrosis factor α, on experimentally induced acute pancreatitis (AP) were examined. METHODS Thirty-six Wistar Albino male rats were randomly divided into four groups. Group I was the control group and no medication administered to this group. Group II was the Certolizumab group, and 100 ml/kg serum physiologic administered into the biliopancreatic duct and a single dose of 10 μg Certolizumab was simultaneously administered intraperitoneally. Acute pancreatitis was induced with a retrograde injection of 3% Na taurocholate into the common biliopancreatic duct in the study (Group III) and treatment (Groups IV) groups. Rats were sacrificed 72 hours later. Serum amylase, lipase, lactate dehydrogenase activities, along with pancreatic histopathology, were examined. RESULTS Certolizumab treatment significantly decreased serum amylase, lipase, and LDH levels; histopathologically edema, hemorrhage, parenchymal necrosis, fat necrosis, and infiltration scores; immunohistochemically MDA, MPO, TNF-α and Caspase-3 activity. CONCLUSION The results support the idea that certolizumab might be beneficial for the severity of AP.
Collapse
Affiliation(s)
| | - Özkan Herek
- Department of Children Surgery, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Özlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Sima Sahinduran
- Department of Internal Medicine, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
446
|
Dang YF, Qiu TX, Song DW, Liu L. PMA-triggered PKCε activity enhances Nrf2-mediated antiviral response on fish rhabdovirus infection. FISH & SHELLFISH IMMUNOLOGY 2019; 87:871-878. [PMID: 30776542 DOI: 10.1016/j.fsi.2019.02.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Viral infection is often accompanied with alteration of intracellular redox state, especially an imbalance between reactive oxygen species (ROS) production and antioxidant cellular defenses. The previous studies showed that an antioxidant cellular defense system, the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), played an important role against spring viraemia of carp virus (SVCV) infection in fish. To further reveal the mediated mechanism that Nrf2 active state was affected by protein kinase C (PKC), here we evaluated SVCV replication in host cells by treated with a strong activator of PKC phorbol-12-myristate-13-acetate (PMA) and an inhibitor staurosporine. Our results showed that PMA significantly repressed SVCV replication and viral-induced apoptosis in Epithelioma papulosum cyprini (EPC) cell, suggesting that PKC may exhibit an anti-SVCV effect. Likewise, PMA resulted in a higher phosphorylation levels of PKCε rather than PKCα/β to participate in the activation of Nrf2, mainly involved in the activation of Nrf2 phosphorylation of Ser40 to favor Nrf2 translocation to nucleus. Furthermore, the data revealed that PMA up-regulated an antiviral response heme oxygenase-1 (HO1) gene expression that was confirmed as the key player against SVCV infection by HO1 specific siRNA. Overall, this study provided a new therapeutic target for the treatment of SVCV infection, and modulating PKC activity could be used for the prevention and treatment of SVCV.
Collapse
Affiliation(s)
- Yun-Fei Dang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Tian-Xiu Qiu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Da-Wei Song
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Lei Liu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
447
|
Santofimia-Castaño P, Xia Y, Lan W, Zhou Z, Huang C, Peng L, Soubeyran P, Velázquez-Campoy A, Abián O, Rizzuti B, Neira JL, Iovanna J. Ligand-based design identifies a potent NUPR1 inhibitor exerting anticancer activity via necroptosis. J Clin Invest 2019; 129:2500-2513. [PMID: 30920390 DOI: 10.1172/jci127223] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are emerging as attractive drug targets by virtue of their prevalence in various diseases including cancer. Drug development targeting IDPs is challenging because they have dynamical structure features and conventional drug design is not applicable. NUPR1 is an IDP playing an important role in pancreatic cancer. We previously reported that Trifluoperazine (TFP), an antipsychotic agent, was capable of binding to NUPR1 and inhibiting tumors growth. Unfortunately, TFP showed strong central nervous system side-effects. In this work, we undertook a multidisciplinary approach to optimize TFP, based on the synergy of computer modeling, chemical synthesis, and a variety of biophysical, biochemical and biological evaluations. A family of TFP-derived compounds was produced and the most active one, named ZZW-115, showed a dose-dependent tumor regression with no neurological effects and induced cell death mainly by necroptosis. This study opens a new perspective for drug development against IDPs, demonstrating the possibility of successful ligand-based drug design for such challenging targets.
Collapse
Affiliation(s)
- Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Yi Xia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Wenjun Lan
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France.,Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, «Equipe Labellisée Ligue Contre le Cancer», Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Zhengwei Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Can Huang
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Ling Peng
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, «Equipe Labellisée Ligue Contre le Cancer», Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Philippe Soubeyran
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Adrián Velázquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Spain; Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain; Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Fundacion ARAID, Government of Aragon, Zaragoza, Spain
| | - Olga Abián
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Spain; Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain; Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, Cosenza, Italy
| | - José L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Edificio Torregaitán, Alicante, Spain
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| |
Collapse
|
448
|
Expression of nuclear factor-erythroid 2-related factor 2 in rat brain following the administration of kainic acid and pentylenetetrazole. Neuroreport 2019; 30:358-362. [PMID: 30724852 DOI: 10.1097/wnr.0000000000001207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Epilepsy is a neurological disorder of the central nervous system characterized by hypersynchronized neuronal activity and has been associated with oxidative stress. Oxidative stress interferes with the expression of genes as well as transcriptional factors such as nuclear factor-erythroid 2-related factor 2 (Nrf2). We evaluated the expression of Nrf2 in the rat brain in treated with kainic acid (KA) and pentylenetetrazole (PTZ). Nrf2 immunoreactivity was observed in astrocytes of the hippocampal region in rats exposed at KA. Nrf2 expression was increased significantly in rats with KA and PTZ. These results provide evidence that the increased expression of Nrf2 is part of the mechanism against KA and PTZ toxicity.
Collapse
|
449
|
Luaces-Regueira M, Castiñeira-Alvariño M, Castro-Manzanares M, Campos-Toimil M, Domínguez-Muñoz JE. Pathophysiological Events Associated With Pancreatitis in Response to Tobacco: An In Vitro Comparative Study With Ethanol in Primary Acinar Cell Culture. Pancreas 2019; 47:1304-1311. [PMID: 30286014 DOI: 10.1097/mpa.0000000000001180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The aim of this study was to comparatively analyze the effects of different concentrations of cigarette smoke condensate (CSC, a standardized tobacco extract) and ethanol on intracellular enzyme activation, cell necrosis, alteration of cytosolic calcium concentration ([Ca]c), and amylase secretion in pancreatic acinar cells. METHODS The effects of CSC (1 μg/mL to 0.4 mg/mL) and ethanol (10-100 mM) on intracellular enzyme activity, cell necrosis, and [Ca]c were measured by fluorescence assays in isolated pancreatic acinar cells. Amylase secretion was evaluated by spectrophotometry. Supramaximal concentrations of cholecystokinin (10-100 nM) were used as positive control. RESULTS Neither CSC nor ethanol induced trypsin or elastase activation. Both CSC (0.1-0.4 mg/mL) and ethanol (10-75 mM) significantly increased [Ca]c. Amylase secretion was increased only in CSC-treated cells (0.3 and 0.4 mg/mL). After 60 minutes, CSC (0.3 and 0.4 mg/mL) significantly increased acinar cell necrosis at a similar percentage to that induced by cholecystokinin. Ethanol did not induce any significant cell necrosis. CONCLUSIONS Cigarette smoke condensate induces acinar cell injury and increases [Ca]c and amylase secretion, independently of intracellular enzyme activation, suggesting that tobacco could induce several main early events of pancreatitis in pancreatic acinar cells. However, ethanol only induces increases [Ca]c, having no effect on cell injury, amylase secretion, or intracellular enzyme activation.
Collapse
Affiliation(s)
| | | | - María Castro-Manzanares
- CD Pharma, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Campos-Toimil
- CD Pharma, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | |
Collapse
|
450
|
Chen G, Niu C, Yi J, Sun L, Cao H, Fang Y, Jin T, Li Y, Lou C, Kang J, Wei W, Zhu J. Novel Triapine Derivative Induces Copper-Dependent Cell Death in Hematopoietic Cancers. J Med Chem 2019; 62:3107-3121. [PMID: 30835473 DOI: 10.1021/acs.jmedchem.8b01996] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Triapine, an iron chelator that inhibits ribonucleotide reductase, has been evaluated in clinical trials for cancer treatment. Triapine in combination with other chemotherapeutic agents shows promising efficacy in certain hematologic malignancies; however, it is less effective against many advanced solid tumors, probably due to the unsatisfactory potency and pharmacokinetic properties. In this report, we developed a triapine derivative IC25 (10) with potent antitumor activity. 10 Preferentially inhibited the proliferation of hematopoietic cancers by inducing mitochondria reactive oxygen species production and mitochondrial dysfunction. Unlike triapine, 10 executed cytotoxic action in a copper-dependent manner. 10-Induced up-expression of thioredoxin-interacting protein resulted in decreased thioredoxin activity to permit c-Jun N-terminal kinase and p38 activation and ultimately led to the execution of the cell death program. Remarkedly, 10 showed good bioavailability and inhibited tumor growth in mouse xenograft models. Taken together, our study identifies compound 10 as a copper-dependent antitumor agent, which may be applied to the treatment of hematopoietic cancers.
Collapse
Affiliation(s)
- Ge Chen
- CAS Center for Excellence in Molecular Cell Science , Shanghai Institutes of Biochemistry and Cell Biology, Chinese Academy of Sciences , Shanghai 200031 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | | | | | | | - Hengyi Cao
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | | | - Taijie Jin
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | | | | | | | - Wanguo Wei
- Shanghai Advanced Research Institute , Chinese Academy of Sciences , Shanghai 201210 , China
| | | |
Collapse
|