401
|
Tongjaroenbuangam W, Jongkamonwiwat N, Phansuwan-Pujito P, Casalotti SO, Forge A, Dodson H, Govitrapong P. Relationship of opioid receptors with GABAergic neurons in the rat inferior colliculus. Eur J Neurosci 2006; 24:1987-94. [PMID: 17040471 DOI: 10.1111/j.1460-9568.2006.05098.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The inferior colliculus is a critical structure for processing auditory information and receives ascending and descending synaptic auditory projections. In addition to GABAergic and glutamatergic innervations, other neurotransmitter systems are also reported in the inferior colliculus, including opioid peptides. In the present study, the relative distribution of each type of opioid receptor, mu (MOR), delta (DOR) and kappa (KOR) within GABAergic neurons in the inferior colliculus was examined. GABA immunoreactivity was expressed by small, medium and large neurons and distributed in the central nucleus and the pericentral nucleus of the inferior colliculus. Immunostaining for MOR, DOR and KOR receptors was found in both disc-shaped cells and stellate cells. Punctiform beta-endorphin immunolabelling was observed in the proximity of GABA-positive neurons. Co-localization of GABA and MOR receptors was observed in neurons and nerve terminals in the central nucleus, dorsal cortex and external cortex of the inferior colliculus. Quantification of the co-localization patterns determined that a higher proportion of GABA neurons was associated with MOR receptors compared with KOR or DOR receptors.
Collapse
Affiliation(s)
- W Tongjaroenbuangam
- Neuro-Behavioral Biology Center, Institute of Science and Technology for Research and Development, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand
| | | | | | | | | | | | | |
Collapse
|
402
|
Kuzmin A, Madjid N, Terenius L, Ogren SO, Bakalkin G. Big dynorphin, a prodynorphin-derived peptide produces NMDA receptor-mediated effects on memory, anxiolytic-like and locomotor behavior in mice. Neuropsychopharmacology 2006; 31:1928-37. [PMID: 16292317 DOI: 10.1038/sj.npp.1300959] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Effects of big dynorphin (Big Dyn), a prodynorphin-derived peptide consisting of dynorphin A (Dyn A) and dynorphin B (Dyn B) on memory function, anxiety, and locomotor activity were studied in mice and compared to those of Dyn A and Dyn B. All peptides administered i.c.v. increased step-through latency in the passive avoidance test with the maximum effective doses of 2.5, 0.005, and 0.7 nmol/animal, respectively. Effects of Big Dyn were inhibited by MK 801 (0.1 mg/kg), an NMDA ion-channel blocker whereas those of dynorphins A and B were blocked by the kappa-opioid antagonist nor-binaltorphimine (6 mg/kg). Big Dyn (2.5 nmol) enhanced locomotor activity in the open field test and induced anxiolytic-like behavior both effects blocked by MK 801. No changes in locomotor activity and no signs of anxiolytic-like behavior were produced by dynorphins A and B. Big Dyn (2.5 nmol) increased time spent in the open branches of the elevated plus maze apparatus with no changes in general locomotion. Whereas dynorphins A and B (i.c.v., 0.05 and 7 nmol/animal, respectively) produced analgesia in the hot-plate test Big Dyn did not. Thus, Big Dyn differs from its fragments dynorphins A and B in its unique pattern of memory enhancing, locomotor- and anxiolytic-like effects that are sensitive to the NMDA receptor blockade. The findings suggest that Big Dyn has its own function in the brain different from those of the prodynorphin-derived peptides acting through kappa-opioid receptors.
Collapse
Affiliation(s)
- Alexander Kuzmin
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
403
|
Alvarez FA, Rodriguez-Martin I, Gonzalez-Nuñez V, Marrón Fernández de Velasco E, Gonzalez Sarmiento R, Rodríguez RE. New kappa opioid receptor from zebrafish Danio rerio. Neurosci Lett 2006; 405:94-9. [PMID: 16842913 DOI: 10.1016/j.neulet.2006.06.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 05/05/2006] [Accepted: 06/13/2006] [Indexed: 11/19/2022]
Abstract
A cDNA that encodes a kappa opioid receptor like from zebrafish (ZFOR3) has been cloned and characterized. The encoded protein is 377 residues long and presents 70% identity with the mammalian kappa receptors, although less homology is found in the amino- and carboxyl-terminus as well as in the extracellular loops. In situ hybridization studies have revealed that ZFOR3 mRNA is highly expressed in particular brain areas that coincide with the expression of the kappa opioid receptor in other species. When ZFOR3 is stably expressed in HEK293 cells, [(3)H]-diprenorphine binds with high affinity (K(D)=1.05+/-0.26 nM), being this value on the same range as those reported for mammalian kappa opioid receptors. On the other hand, the selective agonist for mammalian kappa receptors U69,593 does not bind to ZFOR3. [(3)H]-diprenorphine binding is readily displaced by the peptidic ligand dynorphin A and by the non-endogenous compounds bremazocine, naloxone and morphine, although with different affinities. Our results demonstrate that ZFOR3 is a unique model to study the kappa opioid receptor functionality.
Collapse
Affiliation(s)
- Franscisco Alvar Alvarez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Instituto de Neurociencias de Castilla y Leon, University of Salamanca, Avda. Alfonso X El Sabio s/n, 37007 Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
404
|
Reyes BAS, Glaser JD, Magtoto R, Van Bockstaele EJ. Pro-opiomelanocortin colocalizes with corticotropin- releasing factor in axon terminals of the noradrenergic nucleus locus coeruleus. Eur J Neurosci 2006; 23:2067-77. [PMID: 16630054 DOI: 10.1111/j.1460-9568.2006.04744.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We previously demonstrated that the opioid peptide enkephalin and corticotropin-releasing factor (CRF) are occasionally colocalized in individual axon terminals but more frequently converge on common dendrites in the locus coeruleus (LC). To further examine potential opioid cotransmitters in CRF afferents we investigated the distribution of pro-opiomelanocortin (POMC), the precursor that yields the potent bioactive peptide beta-endorphin, with respect to CRF immunoreactivity using immunofluorescence and immunoelectron microscopic analyses of the LC. Coronal sections were collected through the dorsal pontine tegmentum of rat brain and processed for immunocytochemical detection of POMC and CRF or tyrosine hydroxylase (TH). POMC-immunoreactive processes exhibited a distinct distribution within the LC as compared to the enkephalin family of opioid peptides. Specifically, POMC fibers were enriched in the ventromedial aspect of the LC with fewer fibers present dorsolaterally. Immunofluorescence microscopy showed frequent coexistence of POMC and CRF in varicose processes that overlapped TH-containing somatodendritic processes in the LC. Ultrastructural analysis showed POMC immunoreactivity in unmyelinated axons and axon terminals. Axon terminals containing POMC were filled with numerous large dense-core vesicles. In sections processed for POMC and TH, approximately 29% of POMC-containing axon terminals (n = 405) targeted dendrites that exhibited immunogold-silver labeling for TH. In contrast, sections processed for POMC and CRF showed that 27% of POMC-labeled axon terminals (n = 657) also exhibited CRF immunoreactivity. Taken together, these data indicate that a subset of CRF afferents targeting the LC contain POMC and may be positioned to dually impact LC activity.
Collapse
Affiliation(s)
- Beverly A S Reyes
- Department of Neurosurgery, Further Institute for Neurosciences, Thomas Jefferson University, 900 Walnut Street, Suite 400, Philadelphia, PA 19107, USA.
| | | | | | | |
Collapse
|
405
|
Do Carmo GP, Mello NK, Rice KC, Folk JE, Negus SS. Effects of the selective delta opioid agonist SNC80 on cocaine- and food-maintained responding in rhesus monkeys. Eur J Pharmacol 2006; 547:92-100. [PMID: 16934797 PMCID: PMC1850968 DOI: 10.1016/j.ejphar.2006.06.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 06/27/2006] [Accepted: 06/28/2006] [Indexed: 11/27/2022]
Abstract
Delta agonists such as SNC80 ((+)-4-[(aR)-a-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide) produce some cocaine-like behavioral effects and warrant evaluation as candidate "agonist" medications for cocaine abuse. The present study examined acute and chronic effects of the systemically active delta agonist SNC80 on cocaine- and food-maintained responding in rhesus monkeys. Acute SNC80 (0.32-3.2 mg/kg, i.m.) pretreatment dose-dependently decreased cocaine self-administration (0.0032 mg/kg/injection), but doses of SNC80 that decreased cocaine self-administration also decreased food-maintained responding. In chronic studies, SNC80 (0.32-3.2 mg/kg/h, i.v.) was delivered for 7 days, and food or cocaine (0.01 mg/kg/injection) was available during 4 daily components of food availability and 4 daily components of drug availability. Chronic SNC80 (1.8 mg/kg/h) tended to decrease cocaine self-administration but produced greater reductions in food-maintained responding. A higher dose of 3.2 mg/kg/h SNC80 eliminated both cocaine- and food-maintained responding and produced profound sedation in one monkey and was not tested in other monkeys. These findings indicate that SNC80 produced dose-dependent and non-selective reductions in cocaine self-administration. These results suggest that SNC80 is unlikely to be useful as a treatment for cocaine dependence.
Collapse
Affiliation(s)
- Gail Pereira Do Carmo
- Alcohol and Drug Abuse Research Center, McLean Hospital - Harvard Medical School, Belmont, MA 02478, USA
| | | | | | | | | |
Collapse
|
406
|
Mizoguchi H, Nakayama D, Watanabe H, Ito K, Sakurada W, Sawai T, Fujimura T, Sato T, Sakurada T, Sakurada S. Involvement of spinal μ1-opioid receptors on the Tyr-d-Arg-Phe-sarcosine-induced antinociception. Eur J Pharmacol 2006; 540:67-72. [PMID: 16730704 DOI: 10.1016/j.ejphar.2006.04.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 04/22/2006] [Accepted: 04/25/2006] [Indexed: 12/27/2022]
Abstract
The involvement of spinal mu-opioid receptor subtypes on the antinociception induced by i.t.-administered Tyr-D-Arg-Phe-sarcosine (TAPS), a N-terminal tetrapeptide analog of dermorphin, was determined in mice tail-flick test. Intrathecal administration of TAPS produced the marked inhibition of the tail-flick response in a dose-dependent manner. The antinociception induced by TAPS was completely eliminated by i.t.-co-administration of Tyr-D-Pro-Phe-Phe-NH2 (D-Pro2-endomorphin-2), the mu1-opioid receptor antagonist, whereas i.t. co-treatment with Tyr-D-Pro-Trp-Phe-NH2 (D-Pro2-endomorphin-1) or Tyr-D-Pro-Trp-Gly-NH2 (D-Pro2-Tyr-W-MIF-1), the mu2-opioid receptor antagonists, did not affect the TAPS-induced antinociception. In contrast, the antinociception induced by i.t.-administered [D-Ala2,N-MePhe4,Gly-ol5]enkephalin was significantly attenuated by i.t.-co-administration of D-Pro2-endomorphin-1 or D-Pro2-Tyr-W-MIF-1, but not D-Pro2-endomorphin-2. These results suggest that TAPS may stimulate spinal mu1-opioid receptors to produce the antinociception.
Collapse
MESH Headings
- Analgesics/administration & dosage
- Analgesics/pharmacology
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacology
- Animals
- Dose-Response Relationship, Drug
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/administration & dosage
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Hot Temperature/adverse effects
- Hyperalgesia/etiology
- Hyperalgesia/metabolism
- Hyperalgesia/prevention & control
- Injections, Spinal
- MSH Release-Inhibiting Hormone/administration & dosage
- MSH Release-Inhibiting Hormone/analogs & derivatives
- MSH Release-Inhibiting Hormone/pharmacology
- Male
- Mice
- Oligopeptides/administration & dosage
- Oligopeptides/pharmacology
- Pain Measurement/methods
- Protein Isoforms/agonists
- Protein Isoforms/antagonists & inhibitors
- Protein Isoforms/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Spinal Cord/metabolism
Collapse
Affiliation(s)
- Hirokazu Mizoguchi
- Department of Physiology and Anatomy, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
407
|
Zhang Y, Pan YX, Kolesnikov Y, Pasternak GW. Immunohistochemical labeling of the mu opioid receptor carboxy terminal splice variant mMOR-1B4 in the mouse central nervous system. Brain Res 2006; 1099:33-43. [PMID: 16793025 DOI: 10.1016/j.brainres.2006.04.133] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 04/14/2006] [Accepted: 04/17/2006] [Indexed: 12/21/2022]
Abstract
The mu opioid receptor gene Oprm is alternatively spliced into many variants, providing for the multiplicity of mu opioid receptor subtypes. One of the mouse variants, mMOR-1B4, is unique in that it displays high affinity towards a wide range of mu opioid receptor antagonists, but poor affinity towards most classical mu opioid agonists. The present study examined the immunohistochemical distribution of the mMOR-1B4 variant in mouse brain and spinal cord. mMOR-1B4-like immunoreactivity (mMOR-1B4-LI) was enriched in many regions of the brain, spinal cord and in the dorsal root ganglia. Some of the structures showing prominent mMOR-1B4-LI include the olfactory bulb, cerebral cortex, bed nucleus of stria terminalis, hippocampus, habenular nucleus, amygdala, thalamus, hypothalamus, medium eminence, substantia nigra, ventral tegmental area, oculomotor nucleus, red nucleus, raphe nuclei, periaqueductal gray, locus coeruleus, trigeminal nucleus, reticular formation, area postrema and Purkinje cell layer and deep nuclei of cerebellum. mMOR-1B4-LI was present in afferent neurons of the dorsal root ganglia and their projecting fibers into the superficial laminae of the spinal dorsal horn. Some motor neurons in the anterior horn of the spinal cord also were immunopositive. The overall distribution of mMOR-1B4-LI in the central nervous system is distinguishable from previously characterized variants such as MOR-1-LI, MOR-1C-LI and exon-11-LI. These studies provide evidence for the region- and neuron-specific processing of the Oprm gene and support the possibility of functional differences among the variants.
Collapse
Affiliation(s)
- Yahong Zhang
- Laboratory of Molecular Neuropharmacology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | |
Collapse
|
408
|
Leri F, Zhou Y, Goddard B, Cummins E, Kreek MJ. Effects of high-dose methadone maintenance on cocaine place conditioning, cocaine self-administration, and mu-opioid receptor mRNA expression in the rat brain. Neuropsychopharmacology 2006; 31:1462-74. [PMID: 16237390 DOI: 10.1038/sj.npp.1300927] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Methadone maintenance at appropriate doses can effectively reduce cocaine abuse in heroin-dependent individuals. In the present studies, we investigated the effect of high-dose methadone maintenance cocaine conditioned place preference (CPP) and cocaine intravenous self-administration. Rats implanted with methadone-filled osmotic mini-pumps (20 and 55 mg/kg/day, SC) and conditioned with cocaine (1, 5, and 20 mg/kg, i.p.) did not express cocaine CPP. Similarly, rats implanted with methadone pumps (55 mg/kg/day) after cocaine conditioning (20 mg/kg) displayed neither spontaneous nor cocaine-precipitated (20 mg/kg, i.p.) CPP. In contrast, methadone maintenance (30 and 55 mg/kg/day, SC) did not alter the intravenous self-administration (continuous schedule of reinforcement) of various doses of cocaine (0.1, 0.5, and 2.0 mg/kg/inf). To explore neuropharmacological interactions between methadone maintenance and cocaine conditioning, we quantitatively measured mRNA levels of mu-opioid receptor (MOR) and proopiomelanocortin genes 10 days after methadone maintenance. MOR mRNA levels in both the nucleus accumbens core and frontal cortex were significantly elevated in rats exposed to cocaine during CPP conditioning. However, upregulation of MOR mRNA levels in the nucleus accumbens core were reduced by methadone maintenance in a dose-dependent manner. In conclusion, our results suggest that high-dose methadone maintenance does not alter the direct reinforcing effect of cocaine, but blocks spontaneous and cocaine-precipitated cocaine-seeking, possibly by preventing MOR alterations in the nucleus accumbens core induced by cocaine conditioning.
Collapse
Affiliation(s)
- Francesco Leri
- Department of Psychology, University of Guelph, Guelph, ON, Canada.
| | | | | | | | | |
Collapse
|
409
|
Inyushkin AN. The effects of leucine-enkephalin on the membrane potential and activity of rat respiratory center neurons in vitro. ACTA ACUST UNITED AC 2006; 36:573-9. [PMID: 16783508 DOI: 10.1007/s11055-006-0059-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Indexed: 12/20/2022]
Abstract
Studies of transverse slices of Wistar rat brainstem using a patch clamp technique addressed the effects of the opioid peptide leucine-enkephalin (10 nM-1 microM) on the membrane potential and pattern of spontaneous activity of neurons in two parts of the respiratory center: the ventrolateral area of the solitary tract nucleus and the pre-Bötzinger complex. Leucine-enkephalin induced membrane hyperpolarization of respiratory center neurons and decreased the level of spike activity in spontaneously active cells. In pre-Bötzinger complex neurons showing a burst pattern of activity, leucine-enkephalin decreased the burst frequency, and two cells showed a transition from burst activity to tonic activity. These results provide evidence that the mechanism of the central respiratory activity of leucine-enkephalin results from its direct action on the membranes of respiratory center neurons.
Collapse
Affiliation(s)
- A N Inyushkin
- Samara State University, 1 Academician Pavlov Street, 443011, Samara, Russia
| |
Collapse
|
410
|
Gray AC, Coupar IM, White PJ. Comparison of opioid receptor distributions in the rat central nervous system. Life Sci 2006; 79:674-85. [PMID: 16546223 DOI: 10.1016/j.lfs.2006.02.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 02/09/2006] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
The opioid receptors, mu, delta and kappa, conduct the major pharmacological effects of opioid drugs, and exhibit intriguing functional relationships and interactions in the CNS. Previously established hypotheses regarding the mechanisms underlying these phenomena specify theoretical patterns of relative cellular localisation for the different receptor types. In this study, we have used double-label immunohistochemistry to compare the cellular distributions of delta and kappa receptors with those of mu receptors in the rat CNS. Regions of established significance in opioid addiction were examined. Extensive mu/delta co-localisation was observed in neuron-like cells in several regions. mu and kappa receptors were also often co-localised in neuron-like cell bodies in several regions. However, intense kappa immunoreactivity (ir) also appeared in a separate, morphologically distinct population of cells that did not express mu receptors. These small, ovoid cells were often closely apposed against the larger, mu-ir cell bodies. Such cellular appositions were seen in several regions, but were particularly common in the medial thalamus, the periaqueductal grey and brainstem regions. These findings support proposals that functional similarities, synergy and cooperativity between mu and delta receptors arise from widespread co-expression by cells and intracellular molecular interactions. Although co-expression of mu and kappa receptors was also detected, the appearance of a separate population of kappa-expressing cells supports proposals that the contrasting and functionally antagonistic properties of mu and kappa receptors are due to expression in physiologically distinct cell types. Greater understanding of opioid receptor interaction mechanisms may provide possibilities for therapeutic intervention in opioid addiction and other conditions.
Collapse
MESH Headings
- Animals
- Antibodies/chemistry
- Antibodies/immunology
- Brain Chemistry
- Central Nervous System/metabolism
- Female
- Immunohistochemistry
- Microscopy, Confocal
- Microscopy, Fluorescence
- Neuropeptides/chemistry
- Neuropeptides/immunology
- Rats
- Rats, Wistar
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/metabolism
- Spinal Cord/metabolism
Collapse
Affiliation(s)
- Andrew C Gray
- Department of Pharmaceutical Biology and Pharmacology, Victorian College of Pharmacy, Monash University, 381 Royal Pde, Parkville, VIC 3052, Melbourne, Australia
| | | | | |
Collapse
|
411
|
Puehler W, Rittner HL, Mousa SA, Brack A, Krause H, Stein C, Schäfer M. Interleukin-1 beta contributes to the upregulation of kappa opioid receptor mrna in dorsal root ganglia in response to peripheral inflammation. Neuroscience 2006; 141:989-998. [PMID: 16782281 DOI: 10.1016/j.neuroscience.2006.03.078] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 03/22/2006] [Accepted: 03/30/2006] [Indexed: 01/13/2023]
Abstract
During local painful inflammation, axonal transport of opioid receptors from dorsal root ganglia toward the periphery is increased, associated with a higher receptor density and enhanced efficacy of opioid analgesics at the injured site. To examine whether this increase is related to transcription, mRNA of the kappa opioid receptor in lumbar dorsal root ganglia was quantified by real time light cycler polymerase chain reaction. In dorsal root ganglia of naive rats, kappa opioid receptor mRNA expression was three-fold higher than previously shown for delta opioid receptor and two times lower than mu opioid receptor mRNA, respectively. After induction of unilateral paw inflammation by Freund's complete adjuvant, kappa opioid receptor mRNA was significantly upregulated with a peak at 12 h in ipsilateral dorsal root ganglia. This effect could be mimicked by intraplantar injection of the proinflammatory cytokine interleukin-1 beta. Kappa opioid receptor mRNA upregulation lasted longer in interleukin-1 beta-treated rats compared with Freund's complete adjuvant-treated rats. Furthermore, a significant increase in kappa opioid receptor positive neurons was detected by immunohistochemistry 24 h after local injection of Freund's complete adjuvant or interleukin-1 beta. In Freund's complete adjuvant-induced inflammation, kappa opioid receptor upregulation was blocked by treatment with interleukin-1 receptor antagonist without changing the leukocyte infiltration in the paw. In conclusion, kappa opioid receptor mRNA and protein in dorsal root ganglia are upregulated in response to peripheral inflammation. This effect can be mimicked by a single local injection of interleukin-1 beta, and Freund's complete adjuvant-induced upregulation in kappa opioid receptor mRNA and protein can be prevented by treatment with interleukin-1 receptor antagonist. These data suggest that the peripheral production of the proinflammatory cytokine interleukin-1 beta is a specific inducer of kappa opioid receptor expression in the dorsal root ganglia.
Collapse
Affiliation(s)
- W Puehler
- Klinik für Anaesthesiologie und operative Intensivmedizin, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany.
| | - H L Rittner
- Klinik für Anaesthesiologie und operative Intensivmedizin, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany
| | - S A Mousa
- Klinik für Anaesthesiologie und operative Intensivmedizin, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany
| | - A Brack
- Klinik für Anaesthesiologie und operative Intensivmedizin, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany
| | - H Krause
- Klinik für Urologie, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany
| | - C Stein
- Klinik für Anaesthesiologie und operative Intensivmedizin, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany
| | - M Schäfer
- Klinik für Anaesthesiologie und operative Intensivmedizin, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany
| |
Collapse
|
412
|
Hugonin L, Vukojević V, Bakalkin G, Gräslund A. Membrane leakage induced by dynorphins. FEBS Lett 2006; 580:3201-5. [PMID: 16697372 DOI: 10.1016/j.febslet.2006.04.078] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 04/24/2006] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
Abstract
Dynorphins, endogeneous opioid peptides, function as ligands to the opioid kappa receptors and induce non-opioid excitotoxic effects. Here we show that big dynorphin and dynorphin A, but not dynorphin B, cause leakage effects in large unilamellar phospholipid vesicles (LUVs). The effects parallel the previously studied potency of dynorphins to translocate through biological membranes. Calcein leakage caused by dynorphin A from LUVs with varying POPG/POPC molar ratios was promoted by higher phospholipid headgroup charges, suggesting that electrostatic interactions are important for the effects. A possibility that dynorphins generate non-opioid excitatory effects by inducing perturbations in the lipid bilayer of the plasma membrane is discussed.
Collapse
Affiliation(s)
- Loïc Hugonin
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, S-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
413
|
Krivsky JA, Stoffel EC, Sumner JE, Inman BC, Craft RM. Role of ventral tegmental area, periaqueductal gray and parabrachial nucleus in the discriminative stimulus effects of morphine in the rat. Behav Pharmacol 2006; 17:259-70. [PMID: 16572004 DOI: 10.1097/00008877-200605000-00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous studies have produced mixed results about the role of the ventral tegmental area, periaqueductal gray and parabrachial nucleus in morphine discriminations, perhaps owing to the considerably different methodologies used. The purpose of the present study was to compare the roles of these three brain areas using the same food-reinforced discrimination protocol, to determine whether the schedule of reinforcement influenced maximal substitution produced by site-specific morphine administration and to determine whether the time course of substitution differed by site of morphine administration. Rats were trained to discriminate 3.0 mg/kg subcutaneous morphine from saline under variable interval 15-s or fixed ratio 10 schedules of food reinforcement. Rats were then implanted with one cannula aimed at the lateral ventricle (intracerebroventricular) and one aimed at the ventral tegmental area, periaqueductal gray or parabrachial nucleus. Morphine discrimination curves were obtained by subcutaneous, intracerebroventricular and intrasite routes. When administered subcutaneously, morphine was equipotent in variable interval-trained and fixed ratio-trained rats, although it was more potent in fixed ratio-trained females than fixed ratio-trained males. When administered intracerebroventricularly, morphine (0.3-10 microg) engendered a maximum average of 63% drug-appropriate responding in both variable interval-trained and fixed ratio-trained rats; females showed significantly greater drug-appropriate responding than males, again under the fixed ratio but not under the variable interval schedule. In variable interval-trained rats, intrasite infusions of morphine (0.3-10 microg) produced maximal drug-appropriate responding of approximately 57% (ventral tegmental area), 56% (periaqueductal gray) and 41% (parabrachial nucleus); mean maximal substitution was slightly (< or = 17%) greater in fixed ratio-trained rats. When injected into the ventral tegmental area or periaqueductal gray, but not the parabrachial nucleus, naloxone methiodide (2 microg) significantly decreased drug-appropriate responding following 3.0 mg/kg subcutaneous morphine, in both variable interval-trained and fixed ratio-trained rats. The time course of the discriminative stimulus effects of morphine differed among the three brain sites: intraventral tegmental area morphine produced peak drug-appropriate responding by 15 min after injection, whereas the discriminative stimulus effects of intraperiaqueductal gray and intraparabrachial nucleus morphine peaked at approximately 60 min after injection. Taken together, these results indicate that ventral tegmental area, periaqueductal gray and parabrachial nucleus each play a role in the ability of morphine to function as a discriminative stimulus, regardless of the sex of the subject or the schedule under which the subjects are responding. Ventral tegmental area and periaqueductal gray, however, appear to be more critical than parabrachial nucleus in mediating the discriminative effects of systemic morphine in rats responding under a food reinforcement procedure. The pretreatment time and, to a lesser extent, the schedule of reinforcement are additional variables that should be considered when comparing the relative roles of different brain areas in drug discrimination.
Collapse
Affiliation(s)
- Julie A Krivsky
- Department of Psychology, Washington State University, Pullman, Washington 99164-4820, USA
| | | | | | | | | |
Collapse
|
414
|
Kim KS, Lee KW, Lee KW, Im JY, Yoo JY, Kim SW, Lee JK, Nestler EJ, Han PL. Adenylyl cyclase type 5 (AC5) is an essential mediator of morphine action. Proc Natl Acad Sci U S A 2006; 103:3908-13. [PMID: 16537460 PMCID: PMC1533788 DOI: 10.1073/pnas.0508812103] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Opioid drugs produce their pharmacological effects by activating inhibitory guanine nucleotide-binding regulatory protein-linked mu, delta, and kappa opioid receptors. One major effector for these receptors is adenylyl cyclase, which is inhibited upon receptor activation. However, little is known about which of the ten known forms of adenylyl cyclase are involved in mediating opioid actions. Here we show that all of the major behavioral effects of morphine, including locomotor activation, analgesia, tolerance, reward, and physical dependence and withdrawal symptoms, are attenuated in mice lacking adenylyl cyclase type 5 (AC5), a form of adenylyl cyclase that is highly enriched in striatum. Furthermore, the behavioral effects of selective mu or delta opioid receptor agonists are lost in AC5-/- mice, whereas the behavioral effects of selective kappa opioid receptor agonists are unaffected. These behavioral data are consistent with the observation that the ability of a mu or delta opioid receptor agonist to suppress adenylyl cyclase activity was absent in striatum of AC5-/- mice. Together, these results establish AC5 as an important component of mu and delta opioid receptor signal transduction mechanisms in vivo and provide further support for the importance of the cAMP pathway as a critical mediator of opioid action.
Collapse
MESH Headings
- Adenylyl Cyclases/deficiency
- Adenylyl Cyclases/genetics
- Adenylyl Cyclases/metabolism
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Conditioning, Psychological/drug effects
- Corpus Striatum/drug effects
- Corpus Striatum/enzymology
- Isoenzymes/deficiency
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Morphine/pharmacology
- Motor Activity/drug effects
- Pain Measurement
- Receptors, Opioid/agonists
- Receptors, Opioid/drug effects
- Receptors, Opioid/physiology
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/physiology
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/physiology
- Signal Transduction
- Substance Withdrawal Syndrome
Collapse
Affiliation(s)
- Kyoung-Shim Kim
- *Department of Neuroscience, Medical Research Institute, Ewha Womans University School of Medicine, Seoul 110-783, Korea
| | - Ko-Woon Lee
- *Department of Neuroscience, Medical Research Institute, Ewha Womans University School of Medicine, Seoul 110-783, Korea
| | - Kang-Woo Lee
- *Department of Neuroscience, Medical Research Institute, Ewha Womans University School of Medicine, Seoul 110-783, Korea
| | - Joo-Young Im
- *Department of Neuroscience, Medical Research Institute, Ewha Womans University School of Medicine, Seoul 110-783, Korea
| | - Ji Yeoun Yoo
- *Department of Neuroscience, Medical Research Institute, Ewha Womans University School of Medicine, Seoul 110-783, Korea
| | - Seung-Woo Kim
- Department of Anatomy, Inha University School of Medicine, Inchon 400-712, Korea; and
| | - Ja-Kyeong Lee
- Department of Anatomy, Inha University School of Medicine, Inchon 400-712, Korea; and
| | - Eric J. Nestler
- Department of Psychiatry and Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9070
| | - Pyung-Lim Han
- *Department of Neuroscience, Medical Research Institute, Ewha Womans University School of Medicine, Seoul 110-783, Korea
- To whom correspondence should be addressed at:
Department of Neuroscience, Ewha Womans University School of Medicine, 911-1, Mok-6-dong, Yangchun-Gu, Seoul 158-710, Korea. E-mail:
| |
Collapse
|
415
|
Tanaka S, Fan LW, Tien LT, Park Y, Liu-Chen LY, Rockhold RW, Ho IK. Butorphanol dependence increases hippocampal kappa-opioid receptor gene expression. J Neurosci Res 2006; 82:255-63. [PMID: 16130146 DOI: 10.1002/jnr.20620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Butorphanol is a synthetic opioid agonist/antagonist analgesic agent, which exerts its effects mainly via kappa-opioid receptors. Characterizations of the gene expression levels of the mRNA for and protein levels of the kappa-opioid receptor in different brain regions of rats are essential for investigating possible mechanisms in the development of physical dependence on and withdrawal from butorphanol. Animals were rendered dependent by intracerebroventricular (i.c.v.) infusion of butorphanol (26 nmol/microl/hr) via osmotic minipumps for 3 days. Rats were sacrificed immediately (dependent group) or 7 hr after discontinuation of i.c.v. butorphanol infusion (withdrawal group). Expression levels of the mRNA for the kappa-opioid receptor, as detected by reverse transcription-polymerase chain reaction followed by Southern blot analysis, were significantly increased in the cerebral cortex, striatum, and midbrain, including thalamus, hippocampus, and pons, in animals dependent on butorphanol. In both dependent and withdrawal groups, Western blot analysis of kappa-opioid receptor protein levels showed significant increases in the amygdaloid nucleus, paraventricular thalamus, and thalamus. However, in the withdrawal group, there were significant decreases in the hippocampus and cortical regions, including the frontal, parietal, and temporal cortex. Regional changes in the mRNA for and protein levels of the kappa-opioid receptor focus attention on highly special roles for this receptor in the development of physical dependence on and the expression of withdrawal from butorphanol dependence.
Collapse
Affiliation(s)
- Sachiko Tanaka
- Department of Biochemical Toxicology, School of Pharmaceutical Science, Showa University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
416
|
Borsook D, Becerra L, Carlezon WA, Shaw M, Renshaw P, Elman I, Levine J. Reward-aversion circuitry in analgesia and pain: implications for psychiatric disorders. Eur J Pain 2006; 11:7-20. [PMID: 16495096 DOI: 10.1016/j.ejpain.2005.12.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 11/16/2005] [Accepted: 12/13/2005] [Indexed: 01/06/2023]
Abstract
Sensory and emotional systems normally interact in a manner that optimizes an organism's ability to survive using conscious and unconscious processing. Pain and analgesia are interpreted by the nervous system as aversive and rewarding processes that trigger specific behavioral responses. Under normal physiological conditions these processes are adaptive. However, under chronic pain conditions, functional alterations of the central nervous system frequently result in maladaptive behaviors. In this review, we examine: (a) the interactions between sensory and emotional systems involved in processing pain and analgesia in the physiological state; (b) the role of reward/aversion circuitry in pain and analgesia; and (c) the role of alterations in reward/aversion circuitry in the development of chronic pain and co-morbid psychiatric disorders. These underlying features have implications for understanding the neurobiology of functional illnesses such as depression and anxiety and for the development and evaluation of novel therapeutic interventions.
Collapse
Affiliation(s)
- David Borsook
- PAIN Group, Department of Psychiatry, Brain Imaging Center, McLean Hospital and Harvard Medical School, Belmont MA 02748, United States.
| | | | | | | | | | | | | |
Collapse
|
417
|
Jin M, Ishida M, Katoh-Fukui Y, Tsuchiya R, Higashinakagawa T, Ikegami S, Arimatsu Y. Reduced pain sensitivity in mice lacking latexin, an inhibitor of metallocarboxypeptidases. Brain Res 2006; 1075:117-21. [PMID: 16469302 DOI: 10.1016/j.brainres.2005.12.099] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 12/23/2005] [Accepted: 12/27/2005] [Indexed: 11/18/2022]
Abstract
Latexin, the endogenous protein inhibitor of the A/B subfamily of metallocarboxypeptidases, is expressed in small nociceptive neurons in sensory ganglia and in a subset of neurons in the telencephalon. In this study, we generated latexin-deficient mice that exhibited increased tail-flick latency compared to wild-type animals upon noxious heat stimulation. The reduced pain sensitivity in the mutants was rescued by the systemic administration of a plant carboxypeptidase inhibitor that inhibits the A/B subfamily of metallocarboxypeptidases. These findings suggest that latexin is involved in the transmission of pain.
Collapse
Affiliation(s)
- Minghao Jin
- Mitsubishi Kagaku Institute of Life Sciences, Machida, Tokyo 194-8511, Japan
| | | | | | | | | | | | | |
Collapse
|
418
|
Rawls SM, Cowan A. Modulation of delta opioid-evoked hypothermia in rats by WAY 100635 and fluoxetine. Neurosci Lett 2006; 398:319-24. [PMID: 16483716 DOI: 10.1016/j.neulet.2006.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 01/11/2006] [Accepted: 01/11/2006] [Indexed: 10/25/2022]
Abstract
Delta opioid receptor and 5-hydroxytryptamine (5-HT) interactions in rats were investigated using the endpoint of hypothermia. The intraperitoneal (i.p.) administration of SNC-80, a delta opioid agonist (35 mg/kg, i.p.), produced a significant hypothermia. For combined administration, SNC-80-evoked hypothermia was (1) abolished by pre-treatment with naltrindole (5 mg/kg, i.p.); (2) attenuated by pre-treatment with WAY 100635 (1 mg/kg, s.c.), a 5-HT1A antagonist; and (3) enhanced by pre-treatment with non-hypothermic doses of fluoxetine (2.5, 5 and 10 mg/kg, i.p.). The present data reveal that 5-HT1A receptor activation mediates a significant proportion of the hypothermic response to delta opioid receptor activation and that a 5-HT uptake blockade potentiates delta receptor-induced hypothermia.
Collapse
Affiliation(s)
- Scott M Rawls
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
419
|
Gendron L, Lucido AL, Mennicken F, O'Donnell D, Vincent JP, Stroh T, Beaudet A. Morphine and pain-related stimuli enhance cell surface availability of somatic delta-opioid receptors in rat dorsal root ganglia. J Neurosci 2006; 26:953-62. [PMID: 16421315 PMCID: PMC6675352 DOI: 10.1523/jneurosci.3598-05.2006] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 11/22/2005] [Accepted: 11/23/2005] [Indexed: 12/14/2022] Open
Abstract
The present study demonstrates that perikaryaldelta-opioid receptors (deltaORs) in rat dorsal root ganglion (DRG) neurons bind and internalize opioid ligands circulating in the CSF. Using confocal and electron microscopy, we found that prolonged morphine treatment increased the cell surface density of these perikaryal deltaORs and, by way of consequence, receptor-mediated internalization of the fluorescent deltorphin (DLT) analog omega-Bodipy 576/589 deltorphin-I 5-aminopentylamide (Fluo-DLT) in all three types of DRG neurons (small, medium, and large). In contrast, chronic inflammatory pain induced by the injection of complete Freund's adjuvant (CFA) into one hindpaw selectively increased Fluo-DLT internalization in small and medium-sized DRG neurons ipsilateral to the inflammation. Based on our previous studies in the spinal cord of mu-opioid receptor (muOR) knock-out mice, it may be assumed that the enhanced membrane recruitment of deltaORs observed after sustained morphine is attributable to stimulation of muORs. However, the selectivity of the effect induced by inflammatory pain suggests that it involves a different mechanism, namely a modality-specific and pain-related activation of C and Adelta fibers. Indeed, stimulation by capsaicin of transient receptor potential vanilloid 1 receptors, which are selectively expressed by small diameter (< 600 microm2) DRG neurons, increased Fluo-DLT internalization exclusively in this cell population. The present results, therefore, demonstrate that DRG neurons express perikaryal deltaORs accessible to CSF-circulating ligands and that the density and, hence, presumably also the responsiveness, of these receptors may be modulated by both pain-related stimuli and sustained exposure to muOR agonists.
Collapse
MESH Headings
- Animals
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Cells, Cultured
- Dose-Response Relationship, Drug
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Male
- Morphine/pharmacology
- Morphine/therapeutic use
- Pain/drug therapy
- Pain/metabolism
- Pain Measurement/drug effects
- Pain Measurement/methods
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/analysis
- Receptors, Opioid, delta/biosynthesis
- Receptors, Opioid, delta/physiology
Collapse
Affiliation(s)
- Louis Gendron
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec, H3A 2B4, Canada
| | | | | | | | | | | | | |
Collapse
|
420
|
Pimpinelli F, Parenti M, Guzzi F, Piva F, Hokfelt T, Maggi R. Presence of delta opioid receptors on a subset of hypothalamic gonadotropin releasing hormone (GnRH) neurons. Brain Res 2006; 1070:15-23. [PMID: 16405927 DOI: 10.1016/j.brainres.2005.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 10/17/2005] [Accepted: 11/02/2005] [Indexed: 12/27/2022]
Abstract
Opioid peptides exert an inhibitory effect on hypothalamic gonadotropin releasing hormone (GnRH) secretion mainly by interacting with mu-opioid receptors. Although a direct role for opioids via delta-opioid receptors (DORs) has been suggested, the presence of these receptors on GnRH neurons has never been demonstrated. In the present study, we determined the distribution of DORs in the basal hypothalamus of rat with special focus on their relation to GnRH neurons. Double-labelling immunofluorescence and confocal microscopy revealed that DORs are exclusively present in a subpopulation of GnRH nerve terminals, with the highest density in the external layer of the median eminence. We then studied the functional characteristics of DORs in an immortalized GnRH-secreting neuronal cell line (GT1-1) known to endogenously express this receptor. Here, pertussis toxin pretreatment abolished the delta-agonist (DPDPE) inhibitory effect on cAMP accumulation. We also analyzed the type of G proteins involved in the signal transduced by the DOR and showed that GT1-1 cells express the inhibitory Go and Gi2 alpha-subunits. However, only Go was down-regulated under chronic DPDPE exposure. Finally, since DOR is expressed postnatally in brain, we compared GnRH neuronal cells immortalized at different developmental stages (the more mature GT1-1 and GT1-7 cells, versus the more immature GN11 cells), evidencing that only mature neurons express DOR. In conclusion, our study indicates that a direct control of opioids via delta-receptors occurs on GnRH neurons and validates the use of GT1 cells to further investigate the nature of the DOR present on GnRH neurons.
Collapse
Affiliation(s)
- Federica Pimpinelli
- Laboratory of Developmental Neuroendocrinology, Institute of Endocrinology, University of Milano, Via G. Balzaretti, 9 20133 Milan, Italy
| | | | | | | | | | | |
Collapse
|
421
|
Desplats PA, Kass KE, Gilmartin T, Stanwood GD, Woodward EL, Head SR, Sutcliffe JG, Thomas EA. Selective deficits in the expression of striatal-enriched mRNAs in Huntington's disease. J Neurochem 2006; 96:743-57. [PMID: 16405510 DOI: 10.1111/j.1471-4159.2005.03588.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have identified and cataloged 54 genes that exhibit predominant expression in the striatum. Our hypothesis is that such mRNA molecules are likely to encode proteins that are preferentially associated with particular physiological processes intrinsic to striatal neurons, and therefore might contribute to the regional specificity of neurodegeneration observed in striatal disorders such as Huntington's disease (HD). Expression of these genes was measured simultaneously in the striatum of HD R6/1 transgenic mice using Affymetrix oligonucleotide arrays. We found a decrease in expression of 81% of striatum-enriched genes in HD transgenic mice. Changes in expression of genes associated with G-protein signaling and calcium homeostasis were highlighted. The most striking decrement was observed for a newly identified subunit of the sodium channel, beta 4, with dramatic decreases in expression beginning at 8 weeks of age. A subset of striatal genes was tested by real-time PCR in caudate samples from human HD patients. Similar alterations in expression were observed in human HD and the R6/1 model for the striatal genes tested. Expression of 15 of the striatum-enriched genes was measured in 6-hydroxydopamine-lesioned rats to determine their dependence on dopamine innervation. No changes in expression were observed for any of these genes. These findings demonstrate that mutant huntingtin protein causes selective deficits in the expression of mRNAs responsible for striatum-specific physiology and these may contribute to the regional specificity of degeneration observed in HD.
Collapse
Affiliation(s)
- Paula A Desplats
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
422
|
McNally GP, Cole S. Opioid receptors in the midbrain periaqueductal gray regulate prediction errors during Pavlovian fear conditioning. Behav Neurosci 2006; 120:313-23. [PMID: 16719696 DOI: 10.1037/0735-7044.120.2.313] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The authors used a within-subject blocking design to study the role of ventrolateral periaqueductal gray (v1PAG) opioid receptors in regulating prediction errors during Pavlovian fear conditioning. In Stage I, the authors trained rats to fear conditioned stimulus (CS) A by pairing it with shock. In Stage II, CSA and CSB were co-presented and followed with shock. Two novel stimuli, CSC and CSD, were also co-presented and followed with shock in Stage II. CSA blocked fear from accruing to CSB. Blocking was prevented by systemic pretreatment with naloxone. Blocking was also prevented in a dose-dependent and neuroanatomically specific fashion by vlPAG infusions of the micro-opioid receptor antagonist CTAP. These experiments show that v1PAG micro-opioid receptors contribute to Pavlovian fear learning by regulating predictive error.
Collapse
Affiliation(s)
- Gavan P McNally
- School of Psychology, University of New South Wales, Sydney, NSW, Australia.
| | | |
Collapse
|
423
|
Pertovaara A, Almeida A. Chapter 13 Descending inhibitory systems. HANDBOOK OF CLINICAL NEUROLOGY 2006; 81:179-192. [PMID: 18808835 DOI: 10.1016/s0072-9752(06)80017-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
424
|
Jiménez N, Puig MM, Pol O. Antiexudative effects of opioids and expression of kappa- and delta-opioid receptors during intestinal inflammation in mice: involvement of nitric oxide. J Pharmacol Exp Ther 2006; 316:261-70. [PMID: 16183704 DOI: 10.1124/jpet.105.091991] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The study evaluates the effects of kappa- (KOR), delta- (DOR), and mu-opioid receptor (MOR) agonists on the inhibition of plasma extravasation during acute and chronic intestinal inflammation in mice. The antiexudative effects of KOR and DOR agonists in animals treated with nitric oxide synthase (NOS) inhibitors and their protein levels in the gut (whole jejunum and mucosa) and spinal cord of mice with chronic intestinal inflammation were also measured. Inflammation was induced by the intragastric administration of one (acute) or two (chronic) doses of croton oil. Plasma extravasation was measured using Evans blue and protein levels by Western blot and immunoprecipitation. Plasma extravasation was significantly increased 2.7 times during chronic inflammation. The potency of the KOR agonist trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolydinyl)cyclohexyl]-benzeneazetamine (U50,488H) inhibiting plasma extravasation was enhanced 26.3 times during chronic compared with acute inflammation. [d-Pen(2),d-Pen(5)]-Enkephalin (DPDPE) (a DOR agonist) was also 11.8 times more potent during chronic inflammation, whereas the antiexudative effects of fentanyl (a MOR agonist) were not significantly altered. Receptor-specific antagonists reversed the effects. Protein levels of KOR and DOR in the whole jejunum and mucosa were significantly increased after chronic inflammation. Treatment with NOS inhibitors N(omega)-nitro-l-arginine methyl ester or l-N(6)-(1-iminoethyl)-lysine hydrochloride diminished plasma extravasation and inhibited the increased antiexudative effects of U50,488H and DPDPE during chronic intestinal inflammation. The data show that the enhanced antiexudative effects of KOR and DOR agonists could be related to an increased expression of KOR and DOR in the gut and that the release of nitric oxide may play a role augmenting the effects of opioids during chronic inflammation.
Collapse
Affiliation(s)
- Natalia Jiménez
- Laboratori de Neurofarmacologia Molecular, Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Edifici C-Z, 08193 Barcelona, Spain
| | | | | |
Collapse
|
425
|
Jacobsen KX, Höistad M, Staines WA, Fuxe K. The distribution of dopamine D1 receptor and μ-opioid receptor 1 receptor immunoreactivities in the amygdala and interstitial nucleus of the posterior limb of the anterior commissure: Relationships to tyrosine hydroxylase and opioid peptide terminal systems. Neuroscience 2006; 141:2007-18. [PMID: 16820264 DOI: 10.1016/j.neuroscience.2006.05.054] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/25/2006] [Accepted: 05/17/2006] [Indexed: 10/24/2022]
Abstract
Mismatches between dopamine innervation and dopamine D1 receptor (D1) distribution have previously been demonstrated in the intercalated cell masses of the rat amygdala. Here the distribution of enkephalin and beta-endorphin immunoreactive (IR) nerve terminals with respect to their mu-opioid receptors is examined in the intercalated cell masses, along with a further immunohistochemical analysis of the dopamine/D1 mismatches. A similar analysis is also made within the extended amygdala. A spatial mismatch in distribution patterns was found between the mu-opioid receptor-1 immunoreactivity and enkephalin IR in the main intercalated island of the amygdala. Discrete cell patches of dopamine D1 receptor and mu-opioid receptor-1 IR were also identified in a distinct region of the extended amygdala, the interstitial nucleus of the posterior limb of the anterior commissure, medial division (IPACM), which displayed sparse tyrosine hydroxylase or enkephalin/beta-endorphin IR nerve terminals. Furthermore, distinct regions of the main intercalated island that showed dopamine/D1 receptor matches (the rostral and rostrolateral parts) were associated with strong dopamine and cyclic AMP regulated phosphoprotein, 32 kDa-IR in several D1 IR neuronal cell bodies and dendrites, whereas this was not the case for the dopamine/D1 mismatch areas (the rostromedial and caudal parts) of the main intercalated island. The lack of correlation between the terminal/receptor distribution patterns suggests a role for volume transmission for mu-opioid receptor- and dopamine D1 receptor-mediated transmission in distinct regions of the amygdala and extended amygdala. This may have implications for amygdaloid function, where slow long lasting responses may develop as a result of volume transmission operating in opioid peptide and dopaminergic communication.
Collapse
Affiliation(s)
- K X Jacobsen
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smythe Road, Ottawa, Ontario K1H 8M5, Canada.
| | | | | | | |
Collapse
|
426
|
Hacker J, Pedersen NP, Chieng BCH, Keay KA, Christie MJ. Enhanced Fos expression in glutamic acid decarboxylase immunoreactive neurons of the mouse periaqueductal grey during opioid withdrawal. Neuroscience 2005; 137:1389-96. [PMID: 16359817 DOI: 10.1016/j.neuroscience.2005.10.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 10/17/2005] [Accepted: 10/17/2005] [Indexed: 11/18/2022]
Abstract
Previous studies using c-Fos immunohistochemistry suggest that a sub-population of neurons in the midbrain periaqueductal gray region is activated during opioid withdrawal. The neurochemical identity of these cells is unknown but cellular physiological studies have implicated GABAergic neurons. The present study investigated whether GABAergic neurons are activated in the mouse periaqueductal gray during opioid withdrawal using dual-antibody immunohistochemistry for Fos and glutamic acid decarboxylase. Both chronic opioid treatment and naloxone-precipitated opioid withdrawal increased Fos expression in the periaqueductal gray, with the greatest increase being four-fold in the caudal ventrolateral subdivision following withdrawal. Neurons stained for both Fos and glutamic acid decarboxylase were greatly enhanced in all subdivisions of the periaqueductal gray following withdrawal, particularly in the lateral and ventrolateral divisions where the increase was up to 70-fold. These results suggest that activation of a subpopulation of GABAergic interneurons in the periaqueductal gray plays a role in opioid withdrawal.
Collapse
Affiliation(s)
- J Hacker
- Pain Management Research Institute, Kolling Institute, Level 5, Main Block, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
427
|
Schmitt PM, Gohil K, Kaufman MP. Spinal estrogen attenuates the exercise pressor reflex but has little effect on the expression of genes regulating neurotransmitters in the dorsal root ganglia. J Appl Physiol (1985) 2005; 100:958-64. [PMID: 16306253 DOI: 10.1152/japplphysiol.01098.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, our laboratory showed that estrogen, topically applied to the spinal cord, attenuated the exercise pressor reflex in female cats (Schmitt PM and Kaufman MP. J Appl Physiol 95: 1418-1424, 2003; 98: 633-639, 2005). The attenuation was gender specific and was in part opioid dependent. Our finding that the mu- and delta-opioid antagonist naloxone was only able to partially restore estrogen's attenuating effect on the pressor response to static contraction suggested that estrogen affected an additional pathway, involving the dorsal root ganglion (DRG). Estrogen has been described to stimulate transcription within 10 min of its application to the DRG, raising the possibility that rapid genomic effects on neurotransmitter production may have contributed to estrogen's effect on the exercise pressor reflex. This prompted us to test the hypothesis that estrogen modulated the pressor response to static contraction by influencing gene expression of the neurotransmitters released by the thin-fiber muscle afferents that evoke the exercise pressor reflex. We confirmed in decerebrated female rats that topical application of estrogen (0.01 microg/ml) to the lumbosacral spinal cord attenuated the pressor response to static muscle contraction (from 10+/-3 to 1+/-1 mmHg; P<0.05). DRG were then harvested postmortem, and changes in mRNA expression were analyzed. GeneChip analysis revealed that neither estrogen nor contraction alone changed the mRNA expression of substance P, the neurokinin-1 receptor, CGRP, NGF, the P2X3 receptor, GABAA and GABAB, the 5-HT3A and 5-HT3B receptor, N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors, opioid receptors, and opioid-like receptor. Surprisingly, however, contraction stimulated the expression of neuropeptide Y in the DRG in the presence and absence of estrogen. We conclude that estrogen does not attenuate the exercise pressor reflex through a genomic effect in the DRG.
Collapse
MESH Headings
- Animals
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Estradiol/pharmacology
- Female
- Ganglia, Spinal/physiology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Heart Rate/drug effects
- Heart Rate/physiology
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Neuropeptide Y/genetics
- Neuropeptide Y/physiology
- Neurotransmitter Agents/genetics
- Neurotransmitter Agents/physiology
- Physical Conditioning, Animal/physiology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Rats
- Receptor, trkA/genetics
- Receptor, trkA/physiology
- Receptors, Estrogen/genetics
- Receptors, Estrogen/physiology
- Receptors, GABA-B/genetics
- Receptors, GABA-B/physiology
- Receptors, Neurokinin-1/genetics
- Receptors, Neurokinin-1/physiology
- Receptors, Serotonin, 5-HT3/genetics
- Receptors, Serotonin, 5-HT3/physiology
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/physiology
- Spine/drug effects
- Spine/physiology
Collapse
Affiliation(s)
- Petra M Schmitt
- Div. of Cardiovascular Medicine, TB-172, One Shields Dr., Univ. of California-Davis, Davis, CA 95616, USA
| | | | | |
Collapse
|
428
|
Rawls SM, Hewson JM, Inan S, Cowan A. Brain delta2 opioid receptors mediate SNC-80-evoked hypothermia in rats. Brain Res 2005; 1049:61-9. [PMID: 15936000 DOI: 10.1016/j.brainres.2005.04.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 04/25/2005] [Accepted: 04/26/2005] [Indexed: 01/03/2023]
Abstract
Despite insights into an increasingly significant role for delta opioid receptors in thermoregulation, it is unclear whether delta receptors located in the brain or periphery play the more critical role in body temperature regulation. Moreover, it is not entirely clear which delta receptor phenotype, delta1 or delta2, mediates the hypothermic actions of delta agonists. Because SNC-80 distributes into central and peripheral compartments and produces rapid hypothermia following systemic injection, the nonpeptide delta agonist is particularly useful in discriminating the site of action of delta receptor-mediated hypothermia. To determine the locus and phenotype of delta receptor which mediates SNC-80-induced hypothermia, we injected SNC-80 and phenotype selective delta antagonists to male Sprague-Dawley rats. SNC-80 (10-50 mg/kg, im) evoked hypothermia that peaked 30 min post-injection. Naltrexone (5 mg/kg, sc), an opioid antagonist, or naltrindole (5 mg/kg, sc), a delta antagonist, blocked the hypothermic response to SNC-80 (35 mg/kg, im). The hypothermia caused by SNC-80 (35 mg/kg, im) was blocked by a delta2 antagonist, naltriben (2.5 mg/kg, sc), but was not affected by BNTX (5 and 10 mg/kg, sc), a delta1 antagonist. The administration of naltriben (10 microg/rat, icv) 30 min before SNC-80 (35 mg/kg, im) prevented SNC-80-evoked hypothermia. In contrast, methylnaltrexone (5 mg/kg, sc), a peripherally restricted opioid antagonist, did not affect the hypothermia caused by SNC-80. The present data demonstrate that selective activation of brain delta2 receptors is a major mechanism of SNC-80-evoked hypothermia in rats.
Collapse
Affiliation(s)
- Scott Manning Rawls
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, PA 19140, USA.
| | | | | | | |
Collapse
|
429
|
Mathews JL, Peng X, Xiong W, Zhang A, Negus SS, Neumeyer JL, Bidlack JM. Characterization of a novel bivalent morphinan possessing kappa agonist and micro agonist/antagonist properties. J Pharmacol Exp Ther 2005; 315:821-7. [PMID: 16076937 DOI: 10.1124/jpet.105.084343] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous research has shown that compounds with mixed kappa and mu activity may have utility for the treatment of cocaine abuse and dependence. The present study characterizes the pharmacological profile of a bivalent morphinan that was shown to be a kappa opioid receptor agonist and a mu opioid receptor agonist/antagonist. MCL-145 [bis(N-cyclobutylmethylmorphinan) fumarate] is related to the morphinan cyclorphan and its N-cyclobutylmethyl derivative MCL-101 [3-hydroxy-N-cyclobutylmethyl morphinan S-(+)-mandelate]. MCL-145 consists of two morphinans connected by a spacer at the 3-hydroxy position. This compound had K(i) values of 0.078 and 0.20 nM for the kappa and mu opioid receptors, respectively, using radioligand binding assays as shown by Neumeyer et al. in 2003. In the guanosine 5'-O -(3-[(35) S]thiotriphosphate) binding assay, MCL-145 produced an E(max) value of 80% for the kappa opioid receptor and 42% for the mu opioid receptor. The EC(50) values obtained for this compound were 4.3 and 3.1 nM for the kappa and mu opioid receptors, respectively. In vivo MCL-145 produced a full dose-response curve in the 55 degrees C warm water tail-flick test and was equipotent to morphine. The agonist properties of MCL-145 were antagonized by the mu-selective antagonist beta-funaltrexamine and the kappa-selective antagonist nor-binaltorphimine. MCL-145 also acted as a mu antagonist, as measured by the inhibition of morphine-induced antinociception.
Collapse
MESH Headings
- Analgesics, Opioid/antagonists & inhibitors
- Analgesics, Opioid/pharmacology
- Animals
- Binding, Competitive/drug effects
- Dose-Response Relationship, Drug
- Fumarates/pharmacology
- GTP-Binding Proteins/metabolism
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Injections, Intraventricular
- Male
- Mice
- Mice, Inbred ICR
- Morphinans/chemistry
- Morphinans/pharmacology
- Morphine/antagonists & inhibitors
- Morphine/pharmacology
- Pain Measurement/drug effects
- Protein Binding
- Radioligand Assay
- Reaction Time/drug effects
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
Collapse
Affiliation(s)
- Jennifer L Mathews
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, NY 14642-8711, USA
| | | | | | | | | | | | | |
Collapse
|
430
|
Brunjes PC, Illig KR, Meyer EA. A field guide to the anterior olfactory nucleus (cortex). ACTA ACUST UNITED AC 2005; 50:305-35. [PMID: 16229895 DOI: 10.1016/j.brainresrev.2005.08.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 08/25/2005] [Accepted: 08/25/2005] [Indexed: 02/05/2023]
Abstract
While portions of the mammalian olfactory system have been studied extensively, the anterior olfactory nucleus (AON) has been relatively ignored. Furthermore, the existing research is dispersed and obscured by many different nomenclatures and approaches. The present review collects and assembles the relatively sparse literature regarding the portion of the brain situated between the olfactory bulb and primary olfactory (piriform) cortex. Included is an overview of the area's organization, the functional, morphological and neurochemical characteristics of its cells and a comprehensive appraisal of its efferent and afferent fiber systems. Available evidence suggests the existence of subdivisions within the AON and demonstrates that the structure influences ongoing activity in many other olfactory areas. We conclude with a discussion of the AON's mysterious but complex role in olfactory information processing.
Collapse
Affiliation(s)
- Peter C Brunjes
- Department of Psychology, University of Virginia, 102 Gilmer Hall PO Box 400400, Charlottesville, VA 22904-4400, USA
| | | | | |
Collapse
|
431
|
Stumm R, Rüthrich H, Schulz S, Zhou C, Hollt V. Expression of the mu-opioid receptor is induced in dentate gyrus granule cells after focal cerebrocortical ischaemia and stimulation of entorhinal afferents. Eur J Neurosci 2005; 22:1032-44. [PMID: 16176345 DOI: 10.1111/j.1460-9568.2005.04296.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Focal ischaemia in the cerebral cortex affects the inducibility of long-term potentiation (LTP) in the hippocampus. This impairment of hippocampal function may result from excessive activation of cortico-hippocampal afferents and subsequent perturbation of hippocampal LTP-relevant transmitter systems, which include opioids. Here, we tested if permanent focal ischaemia and electrical afferent stimulation influence the expression of the mu-opioid receptor (MOR) in the rat hippocampus. In the applied ischaemia model, the entire ipsilateral cortical hemisphere and hippocampus experienced sustained excitation as indicated by a long-lasting increase in the expression of arg 3.1/arc (ARG) mRNA, a marker for neuronal activity. Expression of MOR mRNA and protein was strongly increased in granule cells, which contain very low MOR levels under normal conditions, but not in gamma-aminobutyric acid (GABA)ergic neurons, which express the MOR constitutively. In the molecular layer, which contains the dendrites of granule cells, focal ischaemia caused a redistribution of MOR-like immunoreactivity. In contrast to the dentate gyrus, MOR expression was unaltered in the hippocampus proper and in non-infarcted cortical areas. Repetitive high-frequency stimulation of cortico-hippocampal perforant path afferents induced strong MOR mRNA expression throughout the granular layer. However, weak tetanization sufficient to induce LTP and ARG expression did not influence MOR mRNA levels. Taken together, we provide direct evidence for the induction of MOR expression in granule cells experiencing sustained excitation by cortical afferents. In activated, MOR-expressing granule cells, inhibitory opioids may counter-regulate glutamatergic excitation by the perforant path.
Collapse
Affiliation(s)
- Ralf Stumm
- Department of Pharmacology and Toxicology, Otto-von-Guericke University, 39120 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
432
|
Bortolato M, Aru GN, Frau R, Orrù M, Fà M, Manunta M, Puddu M, Mereu G, Gessa GL. Kappa opioid receptor activation disrupts prepulse inhibition of the acoustic startle in rats. Biol Psychiatry 2005; 57:1550-8. [PMID: 15953492 DOI: 10.1016/j.biopsych.2005.02.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 02/09/2005] [Accepted: 02/18/2005] [Indexed: 11/17/2022]
Abstract
BACKGROUND Compelling evidence indicates that kappa opioid receptor (KOR) agonists produce perceptual distortions in animals and humans, yet the mechanism of action and clinical relevance of such effects remain unclear. Since abnormalities in preattentional functions and informational processing are hypothesized to underlie psychotic disorders, the present study has been designed to assess the role of KOR on sensorimotor gating. METHODS The effects of the selective KOR agonist U50488 were evaluated on the behavioral paradigm of prepulse inhibition (PPI) of the acoustic startle reflex (ASR). RESULTS U50488 (1.25, 2.5, and 5 mg/kg, subcutaneous [SC]) induced a dose-dependent reduction of PPI, which was efficiently prevented by the selective KOR antagonist norbinaltorphimine (nor-BNI, 10 mg/kg, SC), as well as by the atypical antipsychotic clozapine (5, 8 mg/kg, intraperitoneal [IP]) but not by the typical antipsychotic haloperidol (.1, .5 mg/kg, IP). Conversely, nor-BNI (10 mg/kg, SC) failed to reverse the PPI disruption mediated by both apomorphine (.25 mg/kg, SC) and dizocilpine (.1 mg/kg, SC). CONCLUSIONS Our results support a pivotal role of KOR in the regulation of preattentional functions and sensorimotor gating, pointing to these receptors as a possible neurobiological substrate especially relevant to the clusters of psychosis unresponsive to typical antipsychotics.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Acoustic Stimulation/methods
- Analgesics, Non-Narcotic/pharmacology
- Analysis of Variance
- Animals
- Antipsychotic Agents/pharmacology
- Apomorphine/pharmacology
- Clozapine/pharmacology
- Dizocilpine Maleate/pharmacology
- Dopamine Agonists/pharmacology
- Dose-Response Relationship, Drug
- Dose-Response Relationship, Radiation
- Drug Interactions
- Excitatory Amino Acid Antagonists/pharmacology
- Haloperidol/pharmacology
- Inhibition, Psychological
- Male
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Rats
- Receptors, Opioid, kappa/physiology
- Reflex, Startle/drug effects
- Reflex, Startle/physiology
Collapse
Affiliation(s)
- Marco Bortolato
- Department of Psychiatry and Human Behavior, University of California, Irvine, California, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
433
|
Abstract
Opiate addiction is a central nervous system disorder of unknown mechanism. Neuronal basis of positive reinforcement, which is essential to the action of opioids, relies on activation of dopaminergic neurons resulting in an increased dopamine release in the mesolimbic brain structures. Certain aspects of opioid dependence and withdrawal syndrome are also related to the activity of noradrenergic and serotonergic systems, as well as to both excitatory and inhibitory amino acid and peptidergic systems. The latter pathways have been recently proven to be involved both in the development of dependence and in counteracting the states related to relapse. An important role in neurochemical mechanisms of opioid reward, dependence and vulnerability to addiction has been ascribed to endogenous opioid peptides, particularly those acting via the mu- and kappa-opioid receptors. Opiate abuse leads to adaptive reactions in the nervous system which occur at the cellular and molecular levels. Recent research indicates that intracellular mechanisms of signal transmission-from the receptor, through G proteins, cyclic AMP, MAP kinases to transcription factors--also play an important role in opioid tolerance and dependence. The latter link in this chain of reactions may modify synthesis of target genes and in this manner, it may be responsible for opiate-induced long-lasting neural plasticity.
Collapse
Affiliation(s)
- Ryszard Przewlocki
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland.
| |
Collapse
|
434
|
Vansteensel MJ, Magnone MC, van Oosterhout F, Baeriswyl S, Albrecht U, Albus H, Dahan A, Meijer JH. The opioid fentanyl affects light input, electrical activity andPergene expression in the hamster suprachiasmatic nuclei. Eur J Neurosci 2005; 21:2958-66. [PMID: 15978007 DOI: 10.1111/j.1460-9568.2005.04131.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The suprachiasmatic nuclei (SCN) contain a major circadian pacemaker, which is regulated by photic and nonphotic stimuli. Although enkephalins are present in the SCN, their role in phase regulation of the pacemaker is largely unknown. The opioid agonist fentanyl, a homologue of morphine, is an addictive drug that induces phase shifts of circadian rhythms in hamsters. We observed that these phase shifts are blocked by naloxone, which is a critical test for true opioid receptor involvement, and conclude that opioid receptors are the sole mediators of the actions of fentanyl on the circadian timing system. A strong interaction between opioids and light input was shown by the ability of fentanyl and light to completely block each other's phase shifts of behavioural activity rhythms. Neuronal ensemble recordings in vitro provide first evidence that SCN cells show direct responses to fentanyl and react with a suppression of firing rate. Moreover, we show that fentanyl induces a strong attenuation of light-induced Syrian hamster Period 1 (shPer1) gene expression during the night. During the subjective day, we found no evidence for a role of shPer1 in mediation of fentanyl-induced phase shifts. Based on the present results, however, we cannot exclude the involvement of shPer2. Our data indicate that opioids can strongly modify the photic responsiveness of the circadian pacemaker and may do so via direct effects on SCN electrical activity and regulation of Per genes. This suggests that the pathways regulating addictive behaviour and the circadian clock intersect.
Collapse
Affiliation(s)
- Mariska J Vansteensel
- Department of Neurophysiology, Leiden University Medical Centre, Wassenaarseweg 62, PO Box 9604, 2300 RC Leiden, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
435
|
Nikulina EM, Miczek KA, Hammer RP. Prolonged effects of repeated social defeat stress on mRNA expression and function of mu-opioid receptors in the ventral tegmental area of rats. Neuropsychopharmacology 2005; 30:1096-103. [PMID: 15668724 DOI: 10.1038/sj.npp.1300658] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Social defeat stress alters the activity of mesocorticolimbic dopamine projections from the ventral tegmental area (VTA), a process that has been implicated in the development of sensitization and drug-seeking behavior. We showed previously that acute brief social defeat stress increased short-term expression of mu-opioid receptor mRNA in the VTA. The present study assessed the presence and functional significance of mu-opioid receptor mRNA expression 1 week after the last episode of social defeat stress. Social defeat stress was induced in intruder rats during short confrontations with an aggressive resident rat, and subsequent exposures behind a protective screen once a day for 5 days. Regional mu-receptor mRNA levels were assessed by in situ hybridization histochemistry, and the amount of mRNA labeling was measured in the VTA and the substantia nigra (SN). Expression of mu-opioid receptor mRNA was significantly higher in defeated rats relative to handled control animals in the VTA, but not in the SN. In an additional group of rats, bilateral local intra-VTA injection of the selective mu-opioid receptor agonist DAMGO (1.0 microg per side) was performed 7-10 days after the last defeat stress or handling control procedure. Baseline motor activity did not differ between control and stressed rats. Intra-VTA DAMGO significantly increased locomotor activity in stressed rats compared to handled control rats. These results suggest that repeated social stress upregulates VTA mu-opioid receptors and can produce locomotor activation via stimulation of these receptors. This locomotor effect is probably the consequence of enhanced disinhibition of mesolimbic dopamine neurons.
Collapse
MESH Headings
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacology
- Animals
- Autoradiography
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/administration & dosage
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Handling, Psychological
- Image Processing, Computer-Assisted
- Injections
- Male
- Motor Activity/drug effects
- RNA, Messenger/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, mu/biosynthesis
- Receptors, Opioid, mu/physiology
- Stress, Psychological/psychology
- Substantia Nigra/metabolism
- Up-Regulation/drug effects
- Ventral Tegmental Area/physiology
Collapse
Affiliation(s)
- Ella M Nikulina
- Department of Psychiatry, Tufts University, Boston, MA, USA.
| | | | | |
Collapse
|
436
|
El-Hage N, Gurwell JA, Singh IN, Knapp PE, Nath A, Hauser KF. Synergistic increases in intracellular Ca2+, and the release of MCP-1, RANTES, and IL-6 by astrocytes treated with opiates and HIV-1 Tat. Glia 2005; 50:91-106. [PMID: 15630704 PMCID: PMC4301446 DOI: 10.1002/glia.20148] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent evidence suggests that injection drug users who abuse heroin are at increased risk of CNS complications from human immunodeficiency virus (HIV) infection. Opiate drugs may intrinsically alter the pathogenesis of HIV by directly modulating immune function and by directly modifying the CNS response to HIV. Despite this, the mechanisms by which opiates increase the neuropathogenesis of HIV are uncertain. In the present study, we describe the effect of morphine and the HIV-1 protein toxin Tat(1-72) on astroglial function in cultures derived from ICR mice. Astroglia maintain the blood-brain barrier and influence inflammatory signaling in the CNS. Astrocytes can express mu-opioid receptors, and are likely targets for abused opiates, which preferentially activate mu-opioid receptors. While Tat alone disrupts astrocyte function, when combined with morphine, Tat causes synergistic increases in [Ca(2+)](i). Moreover, astrocyte cultures treated with morphine and Tat showed exaggerated increases in chemokine release, including monocyte chemoattractant protein-1 (MCP-1) and regulated on activation, normal T cell expressed and secreted (RANTES), as well as interleukin-6 (IL-6). Morphine-Tat interactions were prevented by the mu-opioid receptor antagonist beta-funaltrexamine, or by immunoneutralizing Tat(1-72) or substituting a nontoxic, deletion mutant (Tat(Delta31-61)). Our findings suggest that opiates may increase the vulnerability of the CNS to viral entry (via recruitment of monocytes/macrophages) and ensuing HIV encephalitis by synergistically increasing MCP-1 and RANTES release by astrocytes. The results further suggest that astrocytes are key intermediaries in opiate-HIV interactions and disruptions in astroglial function and inflammatory signaling may contribute to an accelerated neuropathogenesis in HIV-infected individuals who abuse opiates.
Collapse
Affiliation(s)
- Nazira El-Hage
- Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, Lexington, KY, 40536 USA
| | - Julie A. Gurwell
- Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, Lexington, KY, 40536 USA
| | - Indrapal N. Singh
- Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, Lexington, KY, 40536 USA
| | - Pamela E. Knapp
- Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, Lexington, KY, 40536 USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center, Lexington, KY, 40536 USA
| | - Avindra Nath
- Department of Neurology, Johns Hopkins University, Baltimore, MD, 21287 USA
| | - Kurt F. Hauser
- Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, Lexington, KY, 40536 USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center, Lexington, KY, 40536 USA
- Address correspondence and reprint requests to Dr. Kurt F. Hauser, Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536-0298 USA, ; Phone: (859) 323-6477; FAX: (859) 323-5946)
| |
Collapse
|
437
|
Pradhan AAA, Clarke PBS. Comparison between delta-opioid receptor functional response and autoradiographic labeling in rat brain and spinal cord. J Comp Neurol 2005; 481:416-26. [PMID: 15593339 DOI: 10.1002/cne.20378] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The distribution of delta-opioid receptors (DORs) in the rat central nervous system has been previously characterized by radioligand binding and immunohistochemistry. However, the functional neuroanatomy of DORs has not been mapped in any detail; this is potentially important, because these receptors appear to be primarily cytosolic. Opioid receptors can couple to G(i/o) G proteins, a process that is detected by agonist-stimulated [35S]guanylyl-5'-O-(gamma-thio)-triphosphate ([35S]GTPgammaS) binding. The purpose of this study was therefore to determine the distribution of functional DORs, as assessed by [35S]GTPgammaS autoradiographic labeling in response to the DOR agonist deltorphin II. For comparison, adjacent sections were labeled with [125I]deltorphin II or the DOR antagonist [125I]AR-M100613. In all three assays, mu-opioid receptors were blocked pharmacologically. The distributions of [125I]deltorphin II and [125I]AR-M100613 were highly correlated but not identical. Deltorphin II increased [35S]GTPgammaS binding in a concentration-dependent and naltrindole-sensitive manner. The regional [35S]GTPgammaS response to deltorphin II was only moderately predicted by agonist or antagonist radioligand binding (r = 0.67 and 0.50, respectively). [35S]GTPgammaS responses to deltorphin II were strongest in the extended striatum (caudate putamen, nucleus accumbens, olfactory tubercle) and cerebral cortex. In contrast, some areas reported to mediate DOR analgesia (brainstem, spinal cord) possessed a much lower [35S]GTPgammaS response. These findings demonstrate the existence of a partial mismatch between DOR radioligand binding and [35S]GTPgammaS response. This divergence possibly reflects regional heterogeneity in G-protein receptor coupling, or in the subcellular localization of DOR.
Collapse
|
438
|
Molliver DC, Lindsay J, Albers KM, Davis BM. Overexpression of NGF or GDNF alters transcriptional plasticity evoked by inflammation. Pain 2005; 113:277-284. [PMID: 15661434 DOI: 10.1016/j.pain.2004.10.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 10/01/2004] [Accepted: 10/18/2004] [Indexed: 11/30/2022]
Abstract
Transcriptional changes evoked in nociceptive sensory neurons by inflammatory injury play a substantial role in the generation of and recovery from painful hypersensitivity. Transgenic mice overexpressing nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF) in the skin possess a greatly increased number of nociceptors. Surprisingly, NGF-overexpressers display reduced hypersensitivity and recovered more rapidly in response to inflammation, suggesting a compensatory suppression of nociceptive transmission in these mice. To determine whether these transgenic mice show changes in inflammation-evoked transcriptional plasticity, we examined the expression of a panel of genes implicated in nociceptive signaling in response to injection of complete Freund's adjuvant into the hindpaw. Relative mRNA levels were quantified 1, 4 and 15 days after injection using real-time PCR. In wild type mice CFA injection elicited a reproducible pattern of altered gene expression that returned to baseline over a 2-week period. In mice overexpressing NGF or GDNF the expression patterns for several genes were substantially altered; these changes in injury-evoked patterns of gene expression suggest the existence of endogenous regulatory mechanisms that can compensate for increased nociceptive input by modulating the expression of a limited subset of genes.
Collapse
Affiliation(s)
- Derek C Molliver
- Department of Medicine, University of Pittsburgh Medical Center, S841 Scaife, Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
439
|
Horner KA, Adams DH, Hanson GR, Keefe KA. Blockade of stimulant-induced preprodynorphin mRNA expression in the striatal matrix by serotonin depletion. Neuroscience 2005; 131:67-77. [PMID: 15680692 DOI: 10.1016/j.neuroscience.2004.10.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2004] [Indexed: 11/18/2022]
Abstract
Cocaine and methamphetamine (METH) induce preprodynorphin (PPD) mRNA expression in the striatum. Cocaine induces PPD expression in both the patch and matrix compartments of the rostral striatum, whereas METH induces PPD expression in the patch compartment of the rostral striatum. In middle striatum, both stimulants increase PPD expression in the patch and matrix compartments. METH and cocaine treatment also increase extracellular serotonin (5-HT). Several studies have shown that 5-HT receptors are present on striatonigral neurons that express PPD mRNA, and that 5-HT is a positive regulator of striatal neuropeptide expression. The current study examined whether 5-HT plays a role in the patch/matrix expression of PPD mRNA induced by cocaine and METH in striatum. Male Sprague-Dawley rats were treated with p-chloroamphetamine (PCA; 8 mg/kg, i.p), a serotonin neurotoxin, 1 week prior to cocaine (30 mg/kg, i.p) and METH (15 mg/kg, s.c.) treatment. The 80% loss of 5-HT induced by PCA-pretreatment blocked cocaine-induced PPD expression in the rostral matrix compartment. Cocaine- and METH-induced PPD expression in the rostral patch compartment was unaffected by PCA-pretreatment. PCA-pretreatment also decreased both cocaine- and METH-induced PPD expression in the matrix, but not patch of middle striatum. PCA-induced 5-HT depletion did not affect stimulant-induced increases in PPT mRNA expression in the striatum. These data suggest that 5-HT plays a role in stimulant-induced PPD expression in the matrix compartment of rostral and middle striatum. Thus, 5-HT innervation may play a critical role in basal ganglia function.
Collapse
Affiliation(s)
- K A Horner
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Room 201, Salt Lake City, UT 84112, USA.
| | | | | | | |
Collapse
|
440
|
Rau KK, Caudle RM, Cooper BY, Johnson RD. Diverse immunocytochemical expression of opioid receptors in electrophysiologically defined cells of rat dorsal root ganglia. J Chem Neuroanat 2005; 29:255-64. [PMID: 15927787 DOI: 10.1016/j.jchemneu.2005.02.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 01/14/2005] [Accepted: 02/13/2005] [Indexed: 11/15/2022]
Abstract
The development of opiate analgesics that do not produce adverse side effects is hampered by the difficulty in developing drugs that are tissue/sensory cell-specific. Previously, our laboratory has demonstrated that small- and medium-diameter dorsal root ganglia (DRG) cells can be subclassified into at least nine distinct cell types based upon their patterns of voltage activated currents [Petruska, J.C., Napaporn, J., Johnson, R.D., Gu, J.G., Cooper, B.Y., 2000. Subclassified acutely dissociated cells of rat DRG: histochemistry and patterns of capsaicin-, proton-, and ATP-activated currents. J. Neurophysiol. 84 (5), 2365-2379; Petruska, J.C., Napaporn, J., Johnson, R.D., Cooper, B.Y., 2002. Chemical responsiveness and histochemical phenotype of electrophysiologically classified cells of the adult rat dorsal root ganglion. Neuroscience 115 (1), 15-30.] Based on their responses to algesic compounds and histochemical phenotype, eight of the nine subtypes are likely nociceptors. In the present study, we examined the immunoreactivity (IR) of delta-, kappa- and mu-opioid receptors (DOR, KOR and MOR, respectively), in 164 electrophysiologically subclassified DRG neurons. The expression of opioid receptors in the DRG cell types was diverse. Type 1 (25-30 microm cell diameter) and type 9 (35-45 microm) expressed MOR-IR, but were negative for DOR-IR and KOR-IR. Type 2 (25-30 microm) co-expressed DOR-IR and MOR-IR, but did not express KOR-IR. Type 3 (15-20 microm), the non-nociceptive cell type, was not immunoreactive. Type 4 (35-45 microm), type 6 (35-45 microm), and type 7 (15-20 microm) expressed all three opioid receptors. Type 5 (35-45 microm) and type 8 (35-45 microm), co-expressed KOR-IR and MOR-IR, but did not express DOR-IR. The co-expression of opioid receptors in some of the cell types suggests that these sensory afferents might contain heteromeric opioid receptors. Additionally, the diverse expression patterns of opioid receptors between cell types and the consistency of these patterns maintained within each cell type provides further evidence of distinct functional properties of DRG nociceptors.
Collapse
MESH Headings
- Afferent Pathways/drug effects
- Afferent Pathways/metabolism
- Animals
- Capsaicin/pharmacology
- Cell Size
- Cells, Cultured
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Immunohistochemistry
- Male
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Neurons, Afferent/classification
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Nociceptors/cytology
- Nociceptors/drug effects
- Nociceptors/metabolism
- Pain/drug therapy
- Pain/metabolism
- Pain/physiopathology
- Patch-Clamp Techniques
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid/drug effects
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- K K Rau
- Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, 32610, USA.
| | | | | | | |
Collapse
|
441
|
Herráez-Baranda LA, Carretero J, González-Sarmiento R, Rodríguez RE. Kappa opioid receptor is expressed in the rat cerebellar cortex. Cell Tissue Res 2005; 320:223-8. [PMID: 15778854 DOI: 10.1007/s00441-004-1048-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 11/08/2004] [Indexed: 10/25/2022]
Abstract
Classically, the cerebellum has been shown to be involved in motor and visual functions, although recent evidence point to new roles of this organ. Pain processing is one of the recently described functions of the cerebellum. According to the importance of the opioid system in nociception, a detailed characterization of the expression pattern of opioid peptides in the cerebellum is the first step towards understanding the precise involvement of this organ in pain management. By using two different approaches (reverse transcription/polymerase chain reaction and in situ hybridization), we have detected, for the first time, expression of the kappa opioid receptor (KOR) gene in the cerebellar cortex of the rat. Expression is found in the molecular and granular layers in all the lobules of the cerebellum. Approximately 34% of the cells present in the molecular layer express KOR mRNA. This work contributes to the deeper knowledge of the mechanisms that are involved in cerebellar function and may lead to a better understanding of the relationships between nociceptive activity and drug abuse potential.
Collapse
Affiliation(s)
- Luis A Herráez-Baranda
- Molecular Medicine Unit, Department of Medicine, Faculty of Medicine, University of Salamanca, Spain
| | | | | | | |
Collapse
|
442
|
Abstract
Regulated energy homeostasis is fundamental for maintaining life. Unfortunately, this critical process is affected in a high number of mentally ill patients. Eating disorders such as anorexia nervosa are prevalent in modern societies. Impaired appetite and weight loss are common in patients with depression. In addition, the use of neuroleptics frequently produces obesity and diabetes mellitus. However, the neural mechanisms underlying the pathophysiology of these behavioral and metabolic conditions are largely unknown. In this review, we first concentrate on the established brain machinery of food intake and body weight, especially on the melanocortin and neuropeptide Y (NPY) systems as illustration. These systems play a critical role in receiving and processing critical peripheral metabolic cues such as leptin and ghrelin. It is also notable that both systems modulate emotion and motivated behavior as well. Secondly, we discuss the significance and potential promise of multidisciplinary molecular and neuroanatomic techniques that will likely increase the understanding of brain circuitries coordinating energy homeostasis and emotion. Finally, we introduce several lines of evidence suggesting a link between the melanocortin/NPY systems and several neurotransmitter systems on which many of the psychotropic agents exert their influence.
Collapse
Affiliation(s)
- T Kishi
- Department of Anatomy and Morphological Neuroscience, Shimane University School of Medicine, Izumo 693-8501, Japan.
| | | |
Collapse
|
443
|
Abstract
Neurogenic inflammation and ensuing pain can be modulated by inhibiting the function of primary afferent neurons. The best studied mechanism to accomplish such inhibition is the opioid system. Under inflammatory conditions, the anterograde axonal transport of opioid receptors from dorsal root ganglia toward the peripheral sensory nerve endings is augmented. The increased number of opioid receptors (among other mechanisms) leads to improved analgesic effects of exogenously administered ligands (eg, morphine) and of endogenous leukocyte-derived opioid peptides (eg, beta-endorphin). A current concept proposes that during inflammatory processes endogenous opioid peptides can be secreted from immunocytes, occupy peripheral opioid receptors on sensory nerve endings, and produce analgesia by inhibiting the excitability of these nerves or the release of proinflammatory neuropeptides. This article focuses on the role of peripheral opioid receptors in pain control and on novel pharmaceutical concepts for the treatment of patients who suffer from rheumatoid arthritis and other inflammatory pain.
Collapse
Affiliation(s)
- Wiebke Puehler
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany.
| | | |
Collapse
|
444
|
Bouryi VA, Lewis DI. Enkephalinergic inhibition of raphe pallidus inputs to rat hypoglossal motoneurones in vitro. Neuroscience 2005; 129:55-64. [PMID: 15489028 DOI: 10.1016/j.neuroscience.2004.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2004] [Indexed: 11/20/2022]
Abstract
Hypoglossal motoneurones play a major role in maintaining the patency of the upper airways and in determining airways resistance. These neurones receive inputs from many different regions of the neuroaxis including the caudal raphe nuclei. Whilst we have previously shown that glutamate is utilised in projections from one of these caudal raphe nuclei, the raphe pallidus, to hypoglossal motoneurones, these raphe pallidus-hypoglossal projections also contain multiple co-localised neuropeptides, including a population that are immunopositive for enkephalin. The role of enkephalin in the control of hypoglossal motoneurones is unknown. Therefore the aim of these studies was to determine whether enkephalins modulate caudal raphe glutamatergic inputs to hypoglossal motoneurones. Whole cell recordings were made from rat hypoglossal motoneurones in vitro, with glutamate-mediated excitatory postsynaptic currents (EPSCs) evoked in these neurones following electrical stimulation within the raphe pallidus. Superfusion of enkephalin significantly decreased the amplitude of these raphe pallidus evoked EPSCs (56.1+/-29% of control, P<0.001), an action that was mirrored by the tau-opioid receptor agonist, [D-Ala, N-Me-Phe, Gly-ol]-enkephalin acetate (DAMGO;53.8+/-26%, P<0.01), but not by the delta-opioid receptor agonist, [D-Pen]-enkephalin (DPDPE). Enkephalin also increased the amplitude ratio (1.57+/-0.36 vs. 1.14+/-0.27, P<0.01) of pairs of evoked EPSCs (paired pulse ratio), decreased the frequency (P<0.0001) but not the amplitude of miniature EPSCs, whilst having no effect on the inward current evoked by glutamate applied directly to the postsynaptic cell (97.8+/-2.2% of control, P=n.s.). Likewise, DAMGO also increased the paired pulse ratio (1.62+/-0.35 vs. 1.31+/-0.14, P<0.05) and decreased the frequency of miniature EPSCs (P<0.0001). Together, these data suggest that enkephalin acts at tau-opioid receptors located on the presynaptic terminals of raphe pallidus inputs to hypoglossal motoneurones to significantly decrease glutamate release from these projections.
Collapse
Affiliation(s)
- V A Bouryi
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|
445
|
Sun YG, Yu LC. Interactions of galanin and opioids in nociceptive modulation in the arcuate nucleus of hypothalamus in rats. ACTA ACUST UNITED AC 2005; 124:37-43. [PMID: 15544839 DOI: 10.1016/j.regpep.2004.06.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2004] [Accepted: 06/22/2004] [Indexed: 11/21/2022]
Abstract
The fact that galanin, beta-endorphin and their receptors are present in the arcuate nucleus of hypothalamus (ARC), coupled with our previous observation that both beta-endorphin and galanin play antinociceptive roles in pain modulation in the ARC, made it of interest to study their interactions. The hindpaw withdrawal latency (HWL) in response to noxious thermal and mechanical stimulation was assessed by the hot-plate test and the Randall Selitto Test. We showed that the antinociceptive effect induced by intra-ARC injection of galanin was dose-dependently attenuated by the following intra-ARC injection of naloxone. Furthermore, intra-ARC administration of the selective mu-opioid receptor antagonist beta-funaltrexamine (beta-FNA) attenuated the increased HWL induced by intra-ARC injection of galanin in a dose-dependent manner, while the delta-opioid receptor antagonist naltrindole or the kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI) did not. Moreover, intra-ARC injection of a galanin receptor antagonist galantide attenuated intraperitoneal morphine-induced increases in HWLs. These results demonstrate that the antinociceptive effect of galanin was related to the opioid system, especially mu-opioid receptor was involved in, and that systemic morphine induced antinociception involves galanin in the ARC.
Collapse
Affiliation(s)
- Yan-Gang Sun
- Department of Physiology, College of Life Sciences, National Laboratory of Biomembrane and Membrane Biotechnology, Center for Brain and Cognitive Science, Peking University, Beijing 100871, People's Republic of China
| | | |
Collapse
|
446
|
Endogenous opioids, stress, and psychopathology. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0921-0709(05)80031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
447
|
López-Fando A, Rodríguez-Muñoz M, Sánchez-Blázquez P, Garzón J. Expression of neural RGS-R7 and Gbeta5 Proteins in Response to Acute and Chronic Morphine. Neuropsychopharmacology 2005; 30:99-110. [PMID: 15199376 DOI: 10.1038/sj.npp.1300515] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The R7 subfamily of regulators of G-protein signaling (RGS) proteins (RGS6, RGS7, RGS9-2, and RGS11), and its binding protein Gbeta5, are found in neural structures of mouse brain. A single intracerebroventricular priming dose of 10 nmol morphine gave rise to acute tolerance to the analgesic effects of successive identical test doses of the opioid. At 2 h after administering the acute opioid, RGS7 mRNA levels in the striatum plus those of RGS9-2 in the striatum and thalamus were increased, whereas RGS9-2 and RGS11 mRNA were reduced in the cortex. Similar but attenuated RGS-R7 mRNA changes persisted 24 h after acute morphine administration. No changes in Gbeta5 mRNA levels were observed. At 2 days after commencing sustained morphine treatment, the levels of mRNA for RGS7, RGS9-2, RGS11, and Gbeta5 increased in most of the brain structures studied (striatum, thalamus, periaqueductal gray matter (PAG), and cortex). In these morphine tolerant-dependent mice, the greater changes were found for RGS9-2 in the thalamus (>500%) and PAG (>200%). In post-dependent mice, the increases in RGS-R7 and Gbeta5 mRNA still persisted in the PAG and striatum at 8 and 16 days after starting the chronic opioid treatment. The raised mRNA levels promoted by chronic, but not by acute, morphine, were accompanied by increases in the encoded proteins. This is probably a result of the costabilization of the RGS-R7 and Gbeta5 proteins forming heterodimers. Opioid-induced adaptations of RGS-R7 and Gbeta5 genes may regulate the severity of morphine-induced tolerance/dependence and the duration of the post-dependent period, helping to recover the normal response.
Collapse
Affiliation(s)
- Almudena López-Fando
- Neurofarmacología, Instituto de Neurobiología Santiago Ramón y Cajal, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
448
|
Dodo KI, Izumi T, Ueda H, Bungo T. Response of neuropeptide Y-induced feeding to μ-, δ- and κ-opioid receptor antagonists in the neonatal chick. Neurosci Lett 2005; 373:85-8. [PMID: 15567558 DOI: 10.1016/j.neulet.2004.09.065] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 08/13/2004] [Accepted: 09/27/2004] [Indexed: 11/16/2022]
Abstract
It is known that opioid antagonists reduce the orexigenic effect of neropeptide Y (NPY) in mammals. We studied the effect of three opioid antagonists on NPY-induced feeding in male broiler chicks. Beta-funaltrexamine (beta-FNA), naloxonazine (NAL), ICI-174,864 (ICI) or nor-binaltorphimine (nor-BNI), antagonists of mu-, mu1-, delta- or kappa-receptors, and NPY were co-injected in chicks. Food intake was measured 30 min after treatment. Co-injection of beta-FNA or NAL was effective in reducing NPY-induced feeding, whereas ICI and nor-BNI had little effect on NPY-induced feeding. These data suggest that the mu-opioid receptor, especially the mu1-opioid has some relation to NPY-induced feeding, and implies that an endogenous ligand, such as beta-endorphin, participates in the orexigenic effect of NPY in neonatal chicks.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Chickens/physiology
- Feeding Behavior/drug effects
- Male
- Narcotic Antagonists/pharmacology
- Neuropeptide Y/metabolism
- Neuropeptide Y/pharmacology
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- beta-Endorphin/drug effects
- beta-Endorphin/metabolism
Collapse
Affiliation(s)
- Koh-Ichi Dodo
- Laboratory of Animal Science, Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Tarumi 3-5-7 Matsuyama, Ehime 790-8566, Japan
| | | | | | | |
Collapse
|
449
|
Fanciulli G, Dettori A, Demontis MP, Tomasi PA, Anania V, Delitala G. Gluten exorphin B5 stimulates prolactin secretion through opioid receptors located outside the blood-brain barrier. Life Sci 2004; 76:1713-9. [PMID: 15698850 DOI: 10.1016/j.lfs.2004.09.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Accepted: 09/03/2004] [Indexed: 01/06/2023]
Abstract
Gluten exorphin B5 (GE-B5) is a food-derived opioid peptide identified in digests of wheat gluten. We have recently shown that GE-B5 stimulates prolactin (PRL) secretion in rats; this effect is abolished by preadministration of the opioid receptor antagonist naloxone. However, since the structure of naloxone allows it to cross the blood-brain barrier (BBB) and antagonize opioid effects centrally as well as peripherally, it could not established, on the basis of those data, if GE-B5-induced PRL release is exerted through sites located inside or outside the BBB. In this study, we sought to determine the site of action of GE-B5 on PRL secretion, by pretreating male rats with naloxone methobromide (NMB), an opioid antagonist that does not cross the BBB. Four groups of rats were given the following treatments: 1) intravenous vehicle; 2) intravenous GE-B5 (3 mg kg(-1) body weight); 3) intraperitoneal NMB (5 mg kg(-1) body weight), followed by vehicle; 4) NMB, followed by GE-B5. Blood samples for PRL were taken at intervals for 40 minutes after vehicle or GE-B5 administration. GE-B5 stimulated PRL secretion; the effect was statistically significant at time 20. NMB preadministration completely abolished PRL response. Our experiment indicates that GE-B5 stimulates PRL secretion through opioid receptors located outside the BBB. Since opioid peptides do not exert their effect on PRL secretion directly, but via a reduced dopaminergic tone, our data suggest that GE-B5 can modify brain neurotransmitter release without crossing the BBB.
Collapse
Affiliation(s)
- Giuseppe Fanciulli
- Dipartimento-Struttura Clinica Medica-Patologia Speciale Medica, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy.
| | | | | | | | | | | |
Collapse
|
450
|
Sinchak K, Mills RH, Eckersell CB, Micevych PE. Medial preoptic area δ-opioid receptors inhibit lordosis. Behav Brain Res 2004; 155:301-6. [PMID: 15364490 DOI: 10.1016/j.bbr.2004.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 04/27/2004] [Accepted: 05/02/2004] [Indexed: 11/24/2022]
Abstract
Endogenous opioid peptides that activate the delta-opioid receptor (DOR) are thought to facilitate female receptive behavior. This facilitation of lordosis has been demonstrated by intracerebroventricular infusions and injection of DOR-active ligands into the ventromedial hypothalamic nucleus, an area with robust DOR binding. However, DOR binding is distributed throughout the hypothalamus, and the role of DOR in other areas of the hypothalamus has not been examined. In the current study, we demonstrated DOR immunoreactivity in the medial preoptic area (MPO), in particular medial preoptic nucleus (MPN) of the preoptic area. DOR immunoreactive processes were sparsely distributed in the medial and lateral parts of the MPN. Larger DOR immunoreactive fibers were localized in the ventrolateral aspect of the lateral MPN. The MPN is involved in the modulation of female sexual receptivity and the distribution of DOR in this area suggested to us that DOR may regulate lordosis. Ovariectomized rats with unilateral cannulae aimed at the MPN were given 5microg 17beta-estradiol benzoate (EB), once every 4 days and tested for lordosis. [D-Pen(2), D-Pen(5)]-enkephalin (DPDPE), a DOR agonist, microinfused into the MPO, 52-54h after EB-priming, inhibited lordosis when compared with the aCSF (vehicle) control (P <== 0.05). The inhibitory effects of DPDPE were reversed by microinjection of naltrindole, a DOR antagonist (P <== 0.05). Interestingly, the DOR inhibition of lordosis is similar to the micro-opioid receptor inhibition of lordosis in the MPN. These results indicate that DOR in the MPO, particularly in the MPNm, plays an important role in the regulation of lordosis.
Collapse
Affiliation(s)
- Kevin Sinchak
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1763, USA
| | | | | | | |
Collapse
|