401
|
Wu BS, Zhang YR, Li HQ, Kuo K, Chen SD, Dong Q, Liu Y, Yu JT. Cortical structure and the risk for Alzheimer's disease: a bidirectional Mendelian randomization study. Transl Psychiatry 2021; 11:476. [PMID: 34526483 PMCID: PMC8443658 DOI: 10.1038/s41398-021-01599-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/16/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023] Open
Abstract
Progressive loss of neurons in a specific brain area is one of the manifestations of Alzheimer's disease (AD). Much effort has been devoted to investigating brain atrophy and AD. However, the causal relationship between cortical structure and AD is not clear. We conducted a bidirectional two-sample Mendelian randomization analysis to investigate the causal relationship between cortical structure (surface area and thickness of the whole cortex and 34 cortical regions) and AD risk. Genetic variants used as instruments came from a large genome-wide association meta-analysis of cortical structure (33,992 participants of European ancestry) and AD (AD and AD-by-proxy, 71,880 cases, 383,378 controls). We found suggestive associations of the decreased surface area of the temporal pole (OR (95% CI): 0.95 (0.9, 0.997), p = 0.04), and decreased thickness of cuneus (OR (95% CI): 0.93 (0.89, 0.98), p = 0.006) with higher AD risk. We also found a suggestive association of vulnerability to AD with the decreased surface area of precentral (β (SE): -43.4 (21.3), p = 0.042) and isthmus cingulate (β (SE): -18.5 (7.3), p = 0.011). However, none of the Bonferroni-corrected p values of the causal relationship between cortical structure and AD met the threshold. We show suggestive evidence of an association of the atrophy of the temporal pole and cuneus with higher AD risk. In the other direction, there was a suggestive causal relationship between vulnerability to AD and the decreased surface area of the precentral and isthmus cingulate. Our findings shed light on the associations of cortical structure with the occurrence of AD.
Collapse
Affiliation(s)
- Bang-Sheng Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong-Qi Li
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kevin Kuo
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
402
|
Lombardo MV, Eyler L, Pramparo T, Gazestani VH, Hagler DJ, Chen CH, Dale AM, Seidlitz J, Bethlehem RAI, Bertelsen N, Barnes CC, Lopez L, Campbell K, Lewis NE, Pierce K, Courchesne E. Atypical genomic cortical patterning in autism with poor early language outcome. SCIENCE ADVANCES 2021; 7:eabh1663. [PMID: 34516910 PMCID: PMC8442861 DOI: 10.1126/sciadv.abh1663] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/15/2021] [Indexed: 05/21/2023]
Abstract
Cortical regionalization develops via genomic patterning along anterior-posterior (A-P) and dorsal-ventral (D-V) gradients. Here, we find that normative A-P and D-V genomic patterning of cortical surface area (SA) and thickness (CT), present in typically developing and autistic toddlers with good early language outcome, is absent in autistic toddlers with poor early language outcome. Autistic toddlers with poor early language outcome are instead specifically characterized by a secondary and independent genomic patterning effect on CT. Genes involved in these effects can be traced back to midgestational A-P and D-V gene expression gradients and different prenatal cell types (e.g., progenitor cells and excitatory neurons), are functionally important for vocal learning and human-specific evolution, and are prominent in prenatal coexpression networks enriched for high-penetrance autism risk genes. Autism with poor early language outcome may be explained by atypical genomic cortical patterning starting in prenatal development, which may detrimentally affect later regional functional specialization and circuit formation.
Collapse
Affiliation(s)
- Michael V. Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Lisa Eyler
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- VISN 22 Mental Illness Research, Education, and Clinical Center, VA San Diego Healthcare System, San Diego, CA, USA
| | - Tiziano Pramparo
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Vahid H. Gazestani
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Donald J. Hagler
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Chi-Hua Chen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Anders M. Dale
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Jakob Seidlitz
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard A. I. Bethlehem
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Natasha Bertelsen
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Cynthia Carter Barnes
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Linda Lopez
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Kathleen Campbell
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Nathan E. Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, La Jolla, CA, USA
| | - Karen Pierce
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Eric Courchesne
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
403
|
Aygün N, Elwell AL, Liang D, Lafferty MJ, Cheek KE, Courtney KP, Mory J, Hadden-Ford E, Krupa O, de la Torre-Ubieta L, Geschwind DH, Love MI, Stein JL. Brain-trait-associated variants impact cell-type-specific gene regulation during neurogenesis. Am J Hum Genet 2021; 108:1647-1668. [PMID: 34416157 PMCID: PMC8456186 DOI: 10.1016/j.ajhg.2021.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
Interpretation of the function of non-coding risk loci for neuropsychiatric disorders and brain-relevant traits via gene expression and alternative splicing quantitative trait locus (e/sQTL) analyses is generally performed in bulk post-mortem adult tissue. However, genetic risk loci are enriched in regulatory elements active during neocortical differentiation, and regulatory effects of risk variants may be masked by heterogeneity in bulk tissue. Here, we map e/sQTLs, and allele-specific expression in cultured cells representing two major developmental stages, primary human neural progenitors (n = 85) and their sorted neuronal progeny (n = 74), identifying numerous loci not detected in either bulk developing cortical wall or adult cortex. Using colocalization and genetic imputation via transcriptome-wide association, we uncover cell-type-specific regulatory mechanisms underlying risk for brain-relevant traits that are active during neocortical differentiation. Specifically, we identified a progenitor-specific eQTL for CENPW co-localized with common variant associations for cortical surface area and educational attainment.
Collapse
Affiliation(s)
- Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Angela L Elwell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael J Lafferty
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kerry E Cheek
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kenan P Courtney
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica Mory
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ellie Hadden-Ford
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Oleh Krupa
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Luis de la Torre-Ubieta
- Neurogenetics Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel H Geschwind
- Neurogenetics Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
404
|
Sha Z, Schijven D, Carrion-Castillo A, Joliot M, Mazoyer B, Fisher SE, Crivello F, Francks C. The genetic architecture of structural left-right asymmetry of the human brain. Nat Hum Behav 2021; 5:1226-1239. [PMID: 33723403 PMCID: PMC8455338 DOI: 10.1038/s41562-021-01069-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023]
Abstract
Left-right hemispheric asymmetry is an important aspect of healthy brain organization for many functions including language, and it can be altered in cognitive and psychiatric disorders. No mechanism has yet been identified for establishing the human brain's left-right axis. We performed multivariate genome-wide association scanning of cortical regional surface area and thickness asymmetries, and subcortical volume asymmetries, using data from 32,256 participants from the UK Biobank. There were 21 significant loci associated with different aspects of brain asymmetry, with functional enrichment involving microtubule-related genes and embryonic brain expression. These findings are consistent with a known role of the cytoskeleton in left-right axis determination in other organs of invertebrates and frogs. Genetic variants associated with brain asymmetry overlapped with those associated with autism, educational attainment and schizophrenia. Comparably large datasets will likely be required in future studies, to replicate and further clarify the associations of microtubule-related genes with variation in brain asymmetry, behavioural and psychiatric traits.
Collapse
Affiliation(s)
- Zhiqiang Sha
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Dick Schijven
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Amaia Carrion-Castillo
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Marc Joliot
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, et Université de Bordeaux, Bordeaux, France
| | - Bernard Mazoyer
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, et Université de Bordeaux, Bordeaux, France
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Fabrice Crivello
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, et Université de Bordeaux, Bordeaux, France
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
405
|
Han LKM, Dinga R, Hahn T, Ching CRK, Eyler LT, Aftanas L, Aghajani M, Aleman A, Baune BT, Berger K, Brak I, Filho GB, Carballedo A, Connolly CG, Couvy-Duchesne B, Cullen KR, Dannlowski U, Davey CG, Dima D, Duran FLS, Enneking V, Filimonova E, Frenzel S, Frodl T, Fu CHY, Godlewska BR, Gotlib IH, Grabe HJ, Groenewold NA, Grotegerd D, Gruber O, Hall GB, Harrison BJ, Hatton SN, Hermesdorf M, Hickie IB, Ho TC, Hosten N, Jansen A, Kähler C, Kircher T, Klimes-Dougan B, Krämer B, Krug A, Lagopoulos J, Leenings R, MacMaster FP, MacQueen G, McIntosh A, McLellan Q, McMahon KL, Medland SE, Mueller BA, Mwangi B, Osipov E, Portella MJ, Pozzi E, Reneman L, Repple J, Rosa PGP, Sacchet MD, Sämann PG, Schnell K, Schrantee A, Simulionyte E, Soares JC, Sommer J, Stein DJ, Steinsträter O, Strike LT, Thomopoulos SI, van Tol MJ, Veer IM, Vermeiren RRJM, Walter H, van der Wee NJA, van der Werff SJA, Whalley H, Winter NR, Wittfeld K, Wright MJ, Wu MJ, Völzke H, Yang TT, Zannias V, de Zubicaray GI, Zunta-Soares GB, Abé C, Alda M, Andreassen OA, Bøen E, Bonnin CM, Canales-Rodriguez EJ, Cannon D, Caseras X, Chaim-Avancini TM, Elvsåshagen T, Favre P, Foley SF, Fullerton JM, et alHan LKM, Dinga R, Hahn T, Ching CRK, Eyler LT, Aftanas L, Aghajani M, Aleman A, Baune BT, Berger K, Brak I, Filho GB, Carballedo A, Connolly CG, Couvy-Duchesne B, Cullen KR, Dannlowski U, Davey CG, Dima D, Duran FLS, Enneking V, Filimonova E, Frenzel S, Frodl T, Fu CHY, Godlewska BR, Gotlib IH, Grabe HJ, Groenewold NA, Grotegerd D, Gruber O, Hall GB, Harrison BJ, Hatton SN, Hermesdorf M, Hickie IB, Ho TC, Hosten N, Jansen A, Kähler C, Kircher T, Klimes-Dougan B, Krämer B, Krug A, Lagopoulos J, Leenings R, MacMaster FP, MacQueen G, McIntosh A, McLellan Q, McMahon KL, Medland SE, Mueller BA, Mwangi B, Osipov E, Portella MJ, Pozzi E, Reneman L, Repple J, Rosa PGP, Sacchet MD, Sämann PG, Schnell K, Schrantee A, Simulionyte E, Soares JC, Sommer J, Stein DJ, Steinsträter O, Strike LT, Thomopoulos SI, van Tol MJ, Veer IM, Vermeiren RRJM, Walter H, van der Wee NJA, van der Werff SJA, Whalley H, Winter NR, Wittfeld K, Wright MJ, Wu MJ, Völzke H, Yang TT, Zannias V, de Zubicaray GI, Zunta-Soares GB, Abé C, Alda M, Andreassen OA, Bøen E, Bonnin CM, Canales-Rodriguez EJ, Cannon D, Caseras X, Chaim-Avancini TM, Elvsåshagen T, Favre P, Foley SF, Fullerton JM, Goikolea JM, Haarman BCM, Hajek T, Henry C, Houenou J, Howells FM, Ingvar M, Kuplicki R, Lafer B, Landén M, Machado-Vieira R, Malt UF, McDonald C, Mitchell PB, Nabulsi L, Otaduy MCG, Overs BJ, Polosan M, Pomarol-Clotet E, Radua J, Rive MM, Roberts G, Ruhe HG, Salvador R, Sarró S, Satterthwaite TD, Savitz J, Schene AH, Schofield PR, Serpa MH, Sim K, Soeiro-de-Souza MG, Sutherland AN, Temmingh HS, Timmons GM, Uhlmann A, Vieta E, Wolf DH, Zanetti MV, Jahanshad N, Thompson PM, Veltman DJ, Penninx BWJH, Marquand AF, Cole JH, Schmaal L. Brain aging in major depressive disorder: results from the ENIGMA major depressive disorder working group. Mol Psychiatry 2021; 26:5124-5139. [PMID: 32424236 PMCID: PMC8589647 DOI: 10.1038/s41380-020-0754-0] [Show More Authors] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/01/2020] [Accepted: 04/23/2020] [Indexed: 01/15/2023]
Abstract
Major depressive disorder (MDD) is associated with an increased risk of brain atrophy, aging-related diseases, and mortality. We examined potential advanced brain aging in adult MDD patients, and whether this process is associated with clinical characteristics in a large multicenter international dataset. We performed a mega-analysis by pooling brain measures derived from T1-weighted MRI scans from 19 samples worldwide. Healthy brain aging was estimated by predicting chronological age (18-75 years) from 7 subcortical volumes, 34 cortical thickness and 34 surface area, lateral ventricles and total intracranial volume measures separately in 952 male and 1236 female controls from the ENIGMA MDD working group. The learned model coefficients were applied to 927 male controls and 986 depressed males, and 1199 female controls and 1689 depressed females to obtain independent unbiased brain-based age predictions. The difference between predicted "brain age" and chronological age was calculated to indicate brain-predicted age difference (brain-PAD). On average, MDD patients showed a higher brain-PAD of +1.08 (SE 0.22) years (Cohen's d = 0.14, 95% CI: 0.08-0.20) compared with controls. However, this difference did not seem to be driven by specific clinical characteristics (recurrent status, remission status, antidepressant medication use, age of onset, or symptom severity). This highly powered collaborative effort showed subtle patterns of age-related structural brain abnormalities in MDD. Substantial within-group variance and overlap between groups were observed. Longitudinal studies of MDD and somatic health outcomes are needed to further assess the clinical value of these brain-PAD estimates.
Collapse
Grants
- RF1 AG041915 NIA NIH HHS
- G0802594 Medical Research Council
- R01 MH083968 NIMH NIH HHS
- MR/L010305/1 Medical Research Council
- R01 MH116147 NIMH NIH HHS
- T32 AG058507 NIA NIH HHS
- R01 HD050735 NICHD NIH HHS
- R21 MH113871 NIMH NIH HHS
- T35 AG026757 NIA NIH HHS
- R56 AG058854 NIA NIH HHS
- K23 MH090421 NIMH NIH HHS
- Wellcome Trust
- R61 AT009864 NCCIH NIH HHS
- P41 EB015922 NIBIB NIH HHS
- P20 GM121312 NIGMS NIH HHS
- R37 MH101495 NIMH NIH HHS
- P41 RR008079 NCRR NIH HHS
- T32 MH073526 NIMH NIH HHS
- 104036/Z/14/Z Wellcome Trust
- UL1 TR001872 NCATS NIH HHS
- Department of Health
- U54 EB020403 NIBIB NIH HHS
- R01 MH117601 NIMH NIH HHS
- MR/R024790/2 Medical Research Council
- K01 MH117442 NIMH NIH HHS
- R01 MH085734 NIMH NIH HHS
- R21 AT009173 NCCIH NIH HHS
- RF1 AG051710 NIA NIH HHS
- R01 AG059874 NIA NIH HHS
- CC was supported by NIH grants U54 EB020403, RF1 AG041915, RF1AG051710, P41EB015922, R01MH116147, and R56AG058854
- Russian Science Foundation (RSF)
- The study was supported by a grant from the German Federal Ministry of Education and Research (BMBF; grant FKZ-01ER0816 and FKZ-01ER1506)
- Dr. Busatto was supported by the funding agencies FAPESP and CNPq, Brazil
- Department of Health | National Health and Medical Research Council (NHMRC)
- Deutsche Forschungsgemeinschaft (German Research Foundation)
- This study was funded by National Health and Medical Research Council of Australia (NHMRC) Project Grants 1064643 (Principal Investigator BJH) and 1024570 (Principal Investigator CGD).
- Science Foundation Ireland (SFI)
- This work was supported by NIH grant R37 MH101495
- The Study of Health in Pomerania (SHIP) is part of the Community Medicine Research net (CMR) (http://www.medizin.uni-greifswald.de/icm) of the University Medicine Greifswald, which is supported by the German Federal State of Mecklenburg- West Pomerania. MRI scans in SHIP and SHIP-TREND have been supported by a joint grant from Siemens Healthineers, Erlangen, Germany and the Federal State of Mecklenburg-West Pomerania. This study was further supported by the EU-JPND Funding for BRIDGET (FKZ:01ED1615).
- Gratama Foundation, the Netherlands (2012/35 to NG)
- This work was partially supported by the Deutsche Forschungsgemeinschaft (DFG) via grants to OG (GR1950/5-1 and GR1950/10-1).
- This study was supported by the following National Health and Medical Research Council funding sources: Programme Grant (no. 566529), Centres of Clinical Research Excellence Grant (no. 264611), Australia Fellowship (no. 511921) and Clinical Research Fellowship (no. 402864).
- This study was funded by the National Institute of Mental health grant K23MH090421 (D. Cullen) and Biotechnology Research Center grant P41RR008079 (Center for Magnetic Resonance Research), the National Alliance for Research on Schizophrenia and Depression, the University of Minnesota Graduate School, and the Minnesota Medical Foundation. This work was carried out in part using computing resources at the University of Minnesota Supercomputing Institute.
- This work was funded by the German Research Foundation (DFG, grant FOR2107 KR 3822/7-2 to AK; FOR2107 KI 588/14-2 to TK and FOR2107 JA 1890/7-2 to AJ)
- The research leading to these results was supported by IMAGEMEND, which received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 602450. This paper reflects only the author’s views and the European Union is not liable for any use that may be made of the information contained therein. This work was also supported by a Wellcome Trust Strategic Award 104036/Z/14/Z
- The QTIM dataset was supported by the Australian National Health and Medical Research Council (Project Grants No. 496682 and 1009064) and US National Institute of Child Health and Human Development(RO1HD050735)
- MJP was funded by Ministerio de Ciencia e Innovación of Spanish Government (ISCIII) through a "Miguel Servet II" (CP16/00020)
- Jair C. Soares supported by the Pat Rutherford Chair in Psychiatry, UTHealth. Jair Soares has received research support from Allergan, Pfizer, Johnson & Johnson, Alquermes and COMPASS. He is a member of the speakers’ bureaus for Sunovion and Sanofi and he is a consultant for Johnson & Johnson.
- The QTIM dataset was supported by the Australian National Health and Medical Research Council (Project Grants No. 496682 and 1009064) and US National Institute of Child Health and Human Development (RO1HD050735)
- SIT was supported in part by NIH grants U54 EB020403, RF1 AG041915, RF1AG051710, P41EB015922, R01MH116147, and R56AG058854
- The CODE cohort was collected from studies funded by Lundbeck and the German Research Foundation (WA 1539/4-1, SCHN 1205/3-1, SCHR443/11-1)
- Canadian Institutes of Health Research (142255)
- Fundet by Research Council of Norway (223273, 248778, 273291), NIH (ENIGMA grants)
- Funded by the South-Eastern Norway Regional Health Authority and a research grant from Mrs. Throne-Holst.
- This work was supported by the Health Research Board, Ireland and the Irish Research Council
- The Cardiff dataset was supported through a 2010 NARSAD Young Investigator Award (ref: 17319) to Dr. Xavier Caseras
- This work was supported by the FRM (Fondation pour la recherche Biomédicale) "Bio-informatique pour la biologie" 2014 grant
- Canadian Institutes of Health Research (103703, 106469), Nova Scotia Health Research Foundation, Dalhousie Clinical Research Scholarship to T. Hajek, Brain & Behavior Research Foundation (formerly NARSAD) 2007 Young Investigator and 2015 Independent Investigator Awards to T. Hajek
- This work was supported by the University Research Council of the University of Cape Town and the National Research Foundation of South Africa.
- Australian NHMRC Program Grant 1037196 and Project Grants 1063960 and 1066177.
- This work was supported by research grants from Grenoble University Hospital
- This work was supported by the Generalitat de Catalunya (2014 SGR 1573) and Instituto de Salud Carlos III (CPII16/00018) and (PI14/01151 and PI14/01148).
- The DIADE dataset was suported by a ZonMW OOG 2007 grant (100-002-034). HG Ruhe was supported by a ZonMW VENI grant (016.126.059)
- JS is supported by the National Institute of General Medical Sciences (P20GM121312) and the National Insitute of Mental Health (R21MH113871)
- Dr. Mauricio was supported by the funding agencies CAPES, Brazil
- This study was supported by R01MH083968, Desert-Pacific Mental Illness Research Education and Clinical Center, and the US National Science Foundation (Science Gateways Community Institutes; XSEDE).
- GT's work was supported by the National Institutes of Health, Grant T35 AG026757/AG/NIA and the University of California San Diego, Stein Institute for Research on Aging
- "EV thanks the support of the Spanish Ministry of Science, Innovation and Universities (PI15/00283) integrated into the Plan Nacional de I+D+I y cofinanciado por el ISCIII-Subdirección General de Evaluación y el Fondo Europeo de Desarrollo Regional (FEDER); CIBERSAM; and the Comissionat per a Universitats i Recerca del DIUE de la Generalitat de Catalunya to the Bipolar Disorders Group (2017 SGR 1365) and the project SLT006/17/00357, from PERIS 2016-2020 (Departament de Salut). CERCA Programme/Generalitat de Catalunya. "
- Dr. Zanetti was supported by FAPESP, Brazil (grant no. 2013/03905-4).
- NIH grants R01 MH117601, R01 AG059874, U54 EB020403, RF1 AG041915, RF1AG051710, P41EB015922, R01MH116147, and R56AG058854
- PT was supported in part by NIH grants U54 EB020403, RF1 AG041915, RF1AG051710, P41EB015922, R01MH116147, and R56AG058854
- Dr Cole is funded by a UKRI Innovation Fellowship
- This work was supported by NIH grants U54 EB020403 and R01 MH116147. LS is supported by a NHMRC Career Development Fellowship (1140764).
Collapse
Affiliation(s)
- Laura K M Han
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit & GGZinGeest, Amsterdam, The Netherlands.
| | - Richard Dinga
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit & GGZinGeest, Amsterdam, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Tim Hahn
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Christopher R K Ching
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lisa T Eyler
- Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, Los Angeles, CA, USA
| | - Lyubomir Aftanas
- FSSBI "Scientific Research Institute of Physiology & Basic Medicine", Laboratory of Affective, Cognitive & Translational Neuroscience, Novosibirsk, Russia
- Department of Neuroscience, Novosibirsk State University, Novosibirsk, Russia
| | - Moji Aghajani
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit & GGZinGeest, Amsterdam, The Netherlands
| | - André Aleman
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Groningen, The Netherlands
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Ivan Brak
- FSSBI "Scientific Research Institute of Physiology & Basic Medicine", Laboratory of Affective, Cognitive & Translational Neuroscience, Novosibirsk, Russia
- Laboratory of Experimental & Translational Neuroscience, Novosibirsk State University, Novosibirsk, Russia
| | - Geraldo Busatto Filho
- Laboratory of Psychiatric Neuroimaging (LIM-21), Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Angela Carballedo
- Department for Psychiatry, Trinity College Dublin, Dublin, Ireland
- North Dublin Mental Health Services, Dublin, Ireland
| | - Colm G Connolly
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | | | - Kathryn R Cullen
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Christopher G Davey
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Danai Dima
- Department of Psychology, School of Arts and Social Sciences, City, University of London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College, London, UK
| | - Fabio L S Duran
- Laboratory of Psychiatric Neuroimaging (LIM-21), Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Verena Enneking
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Elena Filimonova
- FSSBI "Scientific Research Institute of Physiology & Basic Medicine", Laboratory of Affective, Cognitive & Translational Neuroscience, Novosibirsk, Russia
| | - Stefan Frenzel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Frodl
- Department for Psychiatry, Trinity College Dublin, Dublin, Ireland
- Department of Psychiatry and Psychotherapy, Otto von Guericke University (OVGU), Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Cynthia H Y Fu
- Centre for Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- School of Psychology, University of East London, London, UK
| | | | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center of Neurodegenerative Diseases (DZNE) Site Rostock/Greifswald, Greifswald, Germany
| | - Nynke A Groenewold
- Interdisciplinary Center Psychopathology and Emotion regulation (ICPE), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | | | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Geoffrey B Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, VIC, Australia
| | - Sean N Hatton
- Youth Mental Health Team, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Department of Neuroscience, University of California San Diego, San Diego, CA, USA
| | - Marco Hermesdorf
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Ian B Hickie
- Youth Mental Health Team, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Tiffany C Ho
- Department of Psychology, Stanford University, Stanford, CA, USA
- Department of Psychiatry & Behavioral Sciences, Standord University, Stanford, CA, USA
| | - Norbert Hosten
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Andreas Jansen
- Department of Psychiatry, Philipps-University Marburg, Marburg, Germany
| | - Claas Kähler
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry, Philipps-University Marburg, Marburg, Germany
| | | | - Bernd Krämer
- Section for Experimental Psychopathology and Neuroimaging, Department of Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Axel Krug
- Department of Psychiatry, Philipps-University Marburg, Marburg, Germany
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Jim Lagopoulos
- Youth Mental Health Team, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Sunshine Coast Mind and Neuroscience Institute, University of the Sunshine Coast QLD, Sippy Downs, QLD, Australia
| | - Ramona Leenings
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Frank P MacMaster
- Departments of Psychiatry and Pediatrics, University of Calgary, Calgary, AB, Canada
- Addictions and Mental Health Strategic Clinical Network, Calgary, AB, Canada
| | - Glenda MacQueen
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Andrew McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Quinn McLellan
- Departments of Psychiatry and Pediatrics, University of Calgary, Calgary, AB, Canada
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Katie L McMahon
- School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Sarah E Medland
- QIMR Berghofer Medical Research Instititute, Brisbane, QLD, Australia
| | - Bryon A Mueller
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Benson Mwangi
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Evgeny Osipov
- Laboratory of Experimental & Translational Neuroscience, Novosibirsk State University, Novosibirsk, Russia
| | - Maria J Portella
- Institut d'Investigació Biomèdica Sant Pau, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Cibersam, Spain
| | - Elena Pozzi
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, VIC, Australia
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, AMC, Amsterdam, The Netherlands
| | - Jonathan Repple
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Pedro G P Rosa
- Laboratory of Psychiatric Neuroimaging (LIM-21), Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Matthew D Sacchet
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | | | - Knut Schnell
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, Asklepios Fachklinikum Göttingen, Göttingen, Germany
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, AMC, Amsterdam, The Netherlands
| | - Egle Simulionyte
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jens Sommer
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Dan J Stein
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- SA MRC Unit on Risk and Resilience, University of Cape Town, Cape Town, South Africa
| | - Olaf Steinsträter
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Lachlan T Strike
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Marie-José van Tol
- Cognitive Neuroscience Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ilya M Veer
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert R J M Vermeiren
- Department of Child Psychiatry, University Medical Center, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Henrik Walter
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nic J A van der Wee
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
| | - Steven J A van der Werff
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
| | - Heather Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Nils R Winter
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center of Neurodegenerative Diseases (DZNE) Site Rostock/Greifswald, Greifswald, Germany
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, Australia
| | - Mon-Ju Wu
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Tony T Yang
- Department of Psychiatry, Division of Child and Adolescent Psychiatry, UCSF School of Medicine, UCSF, San Francisco, CA, USA
| | | | - Greig I de Zubicaray
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
- Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Giovana B Zunta-Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christoph Abé
- Department of Clinical Neuroscience, Osher Center, Karolinska Institutet, Stockholm, Sweden
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Erlend Bøen
- Clinic for Mental Health and Dependency, C-L psychiatry and Psychosomatic Unit, Oslo University Hospital, Oslo, Norway
| | - Caterina M Bonnin
- Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | | | - Dara Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91 TK33, Galway, Ireland
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Tiffany M Chaim-Avancini
- Laboratory of Psychiatric Neuroimaging (LIM-21), Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Pauline Favre
- UNIACT, Psychiatry Team, Neurospin, Atomic Energy Commission, Gif-Sur-Yvette, France
- Translational Psychiatry Team, Pôle de psychiatrie, Faculté de Médecine, APHP, Hôpitaux Universitaires Mondor, INSERM, U955, Créteil, France
| | - Sonya F Foley
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| | - Janice M Fullerton
- Neuroscience Research Australia, Randwick, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jose M Goikolea
- Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Bartholomeus C M Haarman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Chantal Henry
- Université de Paris, Service Hospitalo-Universitaire, GHU Paris Psychiatrie & Neuroscience, F-75014, Paris, France
| | - Josselin Houenou
- UNIACT, Psychiatry Team, Neurospin, Atomic Energy Commission, Gif-Sur-Yvette, France
- Translational Psychiatry Team, Pôle de psychiatrie, Faculté de Médecine, APHP, Hôpitaux Universitaires Mondor, INSERM, U955, Créteil, France
| | - Fleur M Howells
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Martin Ingvar
- Department of Clinical Neuroscience, Osher Center, Karolinska Institutet, Stockholm, Sweden
| | | | - Beny Lafer
- Department of Psychiatry, School of Medicine, University of Sao Paulo (FMUSP), Sao Paulo, Brazil
| | - Mikael Landén
- Department of Clinical Neuroscience, Osher Center, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Rodrigo Machado-Vieira
- Department of Psychiatry, School of Medicine, University of Sao Paulo (FMUSP), Sao Paulo, Brazil
| | - Ulrik F Malt
- Department of Clinical Neuroscience, University of Oslo, Oslo, Norway
- Clinic for Psychiatry and Dependency, C-L psychiatry and Psychosomatic Unit, Oslo University Hospital, Oslo, Norway
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91 TK33, Galway, Ireland
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Kingsford, Sydney, NSW, Australia
- Black Dog Institute, Prince of Wales Hospital, Randwick, Sydney, NSW, Australia
| | - Leila Nabulsi
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91 TK33, Galway, Ireland
| | - Maria Concepcion Garcia Otaduy
- Instituto de Radiologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Bronwyn J Overs
- Neuroscience Research Australia, Randwick, Sydney, NSW, Australia
| | - Mircea Polosan
- Department of Psychiatry and Neurology, CHU Grenoble Alpes, Université Grenoble Alpes, F-38000, Grenoble, France
- Inserm 1216, Grenoble Institut des Neurosciences, GIN, F-38000, Grenoble, France
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, CIBERSAM, Barcelona, Catalonia, Spain
| | - Joaquim Radua
- Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Maria M Rive
- Department of Psychiatry, Amsterdam University Medical Centers, AMC, Amsterdam, The Netherlands
| | - Gloria Roberts
- School of Psychiatry, University of New South Wales, Kingsford, Sydney, NSW, Australia
- Black Dog Institute, Prince of Wales Hospital, Randwick, Sydney, NSW, Australia
| | - Henricus G Ruhe
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Amsterdam University Medical Centers, AMC, Amsterdam, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, CIBERSAM, Barcelona, Catalonia, Spain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research Foundation, CIBERSAM, Barcelona, Catalonia, Spain
| | - Theodore D Satterthwaite
- Department of Psychiatry, University of Pennsylvannia Perelman School of Medicine, Philadelphia, PA, USA
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| | - Aart H Schene
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter R Schofield
- Neuroscience Research Australia, Randwick, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Mauricio H Serpa
- Laboratory of Psychiatric Neuroimaging (LIM-21), Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Kang Sim
- West Region and Research Division, Institute of Mental Health, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Ashley N Sutherland
- Department of Psychiatry, University of California San Diego, Los Angeles, CA, USA
| | - Henk S Temmingh
- Section for Experimental Psychopathology and Neuroimaging, Department of Psychiatry, University of Heidelberg, Heidelberg, Germany
- Valkenberg Psychiatric Hospital, Cape Town, South Africa
| | - Garrett M Timmons
- Department of Psychiatry, University of California San Diego, Los Angeles, CA, USA
| | - Anne Uhlmann
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Eduard Vieta
- Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Daniel H Wolf
- Department of Psychiatry, University of Pennsylvannia Perelman School of Medicine, Philadelphia, PA, USA
| | - Marcus V Zanetti
- Laboratory of Psychiatric Neuroimaging (LIM-21), Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Instituto de Ensino e Pesquisa, Hospital Sírio-Libanês, Sao Paulo, SP, Brazil
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit & GGZinGeest, Amsterdam, The Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit & GGZinGeest, Amsterdam, The Netherlands
| | - Andre F Marquand
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - James H Cole
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College, London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Lianne Schmaal
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
406
|
Mallard TT, Liu S, Seidlitz J, Ma Z, Moraczewski D, Thomas A, Raznahan A. X-chromosome influences on neuroanatomical variation in humans. Nat Neurosci 2021; 24:1216-1224. [PMID: 34294918 DOI: 10.1038/s41593-021-00890-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/14/2021] [Indexed: 02/06/2023]
Abstract
The X-chromosome has long been hypothesized to have a disproportionate influence on the brain based on its enrichment for genes that are expressed in the brain and associated with intellectual disability. Here, we verify this hypothesis through partitioned heritability analysis of X-chromosome influences (XIs) on human brain anatomy in 32,256 individuals from the UK Biobank. We first establish evidence for dosage compensation in XIs on brain anatomy-reflecting larger XIs in males compared to females, which correlate with regional sex-biases in neuroanatomical variance. XIs are significantly larger than would be predicted from X-chromosome size for the relative surface area of cortical systems supporting attention, decision-making and motor control. Follow-up association analyses implicate X-linked genes with pleiotropic effects on cognition. Our study reveals a privileged role for the X-chromosome in human neurodevelopment and urges greater inclusion of this chromosome in future genome-wide association studies.
Collapse
Affiliation(s)
- Travis T Mallard
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Siyuan Liu
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Jakob Seidlitz
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Zhiwei Ma
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Dustin Moraczewski
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Adam Thomas
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA.
| |
Collapse
|
407
|
Cheng W, Frei O, van der Meer D, Wang Y, O’Connell KS, Chu Y, Bahrami S, Shadrin AA, Alnæs D, Hindley GFL, Lin A, Karadag N, Fan CC, Westlye LT, Kaufmann T, Molden E, Dale AM, Djurovic S, Smeland OB, Andreassen OA. Genetic Association Between Schizophrenia and Cortical Brain Surface Area and Thickness. JAMA Psychiatry 2021; 78:1020-1030. [PMID: 34160554 PMCID: PMC8223140 DOI: 10.1001/jamapsychiatry.2021.1435] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/28/2021] [Indexed: 01/03/2023]
Abstract
Importance Schizophrenia is a complex heritable disorder associated with many genetic variants, each with a small effect. While cortical differences between patients with schizophrenia and healthy controls are consistently reported, the underlying molecular mechanisms remain elusive. Objective To investigate the extent of shared genetic architecture between schizophrenia and brain cortical surface area (SA) and thickness (TH) and to identify shared genomic loci. Design, Setting, and Participants Independent genome-wide association study data on schizophrenia (Psychiatric Genomics Consortium and CLOZUK: n = 105 318) and SA and TH (UK Biobank: n = 33 735) were obtained. The extent of polygenic overlap was investigated using MiXeR. The specific shared genomic loci were identified by conditional/conjunctional false discovery rate analysis and were further examined in 3 independent cohorts. Data were collected from December 2019 to February 2021, and data analysis was performed from May 2020 to February 2021. Main Outcomes and Measures The primary outcomes were estimated fractions of polygenic overlap between schizophrenia, total SA, and average TH and a list of functionally characterized shared genomic loci. Results Based on genome-wide association study data from 139 053 participants, MiXeR estimated schizophrenia to be more polygenic (9703 single-nucleotide variants [SNVs]) than total SA (2101 SNVs) and average TH (1363 SNVs). Most SNVs associated with total SA (1966 of 2101 [93.6%]) and average TH (1322 of 1363 [97.0%]) may be associated with the development of schizophrenia. Subsequent conjunctional false discovery rate analysis identified 44 and 23 schizophrenia risk loci shared with total SA and average TH, respectively. The SNV associations of shared loci between schizophrenia and total SA revealed en masse concordant association between the discovery and independent cohorts. After removing high linkage disequilibrium regions, such as the major histocompatibility complex region, the shared loci were enriched in immunologic signature gene sets. Polygenic overlap and shared loci between schizophrenia and schizophrenia-associated regions of interest for SA (superior frontal and middle temporal gyri) and for TH (superior temporal, inferior temporal, and superior frontal gyri) were also identified. Conclusions and Relevance This study demonstrated shared genetic loci between cortical morphometry and schizophrenia, among which a subset are associated with immunity. These findings provide an insight into the complex genetic architecture and associated with schizophrenia.
Collapse
Affiliation(s)
- Weiqiu Cheng
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dennis van der Meer
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Yunpeng Wang
- Centre for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Kevin S. O’Connell
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Yunhan Chu
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Shahram Bahrami
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alexey A. Shadrin
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dag Alnæs
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Guy F. L. Hindley
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Psychosis Studies, Institute of Psychiatry, Psychology and Neurosciences, King’s College London, London, United Kingdom
| | - Aihua Lin
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Naz Karadag
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Chun-Chieh Fan
- Population Neuroscience and Genetics Lab, University of California, San Diego, La Jolla
- Center for Human Development, University of California, San Diego, La Jolla
| | - Lars T. Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Anders M. Dale
- Department of Radiology, University of California, San Diego, La Jolla
- Department of Psychiatry, University of California, San Diego, La Jolla
- Department of Neurosciences, University of California San Diego, La Jolla
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Olav B. Smeland
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A. Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
408
|
Pani J, Reitlo LS, Evensmoen HR, Lydersen S, Wisløff U, Stensvold D, Håberg AK. Effect of 5 Years of Exercise Intervention at Different Intensities on Brain Structure in Older Adults from the General Population: A Generation 100 Substudy. Clin Interv Aging 2021; 16:1485-1501. [PMID: 34408409 PMCID: PMC8366938 DOI: 10.2147/cia.s318679] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/21/2021] [Indexed: 01/28/2023] Open
Abstract
Purpose The aim was to examine the effect of a 5-year exercise intervention at different intensities on brain structure in older adults from the general population partaking in the randomized controlled trial Generation 100 Study. Participants and Methods Generation 100 Study participants were invited to a longitudinal neuroimaging study before randomization. A total of 105 participants (52 women, 70–77 years) volunteered. Participants were randomized into supervised exercise twice a week performing high intensity interval training in 4×4 intervals at ~90% peak heart rate (HIIT, n = 33) or 50 minutes of moderate intensity continuous training at ~70% of peak heart rate (MICT, n = 24). The control group (n = 48) followed the national physical activity guidelines of ≥30 min physical activity daily. Brain MRI at 3T, clinical and cardiorespiratory fitness (CRF), measured as peak oxygen uptake, were collected at baseline, and after 1, 3, and 5 years of intervention. Brain volumes and cortical thickness were derived from T1 weighted 3D MRI data using FreeSurfer. The effect of HIIT or MICT on brain volumes over time was investigated with linear mixed models, while linear regressions examined the effect of baseline CRF on brain volumes at later time points. Results Adherence in each group was between 79 and 94% after 5 years. CRF increased significantly in all groups during the first year. Compared to controls, the HIIT group had significantly increased hippocampal atrophy located to CA1 and hippocampal body, though within normal range, and the MICT group greater thalamic atrophy. No other effects of intervention group were found. CRF across the intervention was not associated with brain structure, but CRF at baseline was positively associated with cortical volume at all later time points. Conclusion Higher baseline CRF reduced 5-year cortical atrophy rate in older adults, while following physical activity guidelines was associated with the lowest hippocampal and thalamic atrophy rates.
Collapse
Affiliation(s)
- Jasmine Pani
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU (Norwegian University of Science and Technology), Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Line S Reitlo
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU (Norwegian University of Science and Technology), Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Hallvard Røe Evensmoen
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Stian Lydersen
- Department of Mental Health, Faculty of Medicine and Health Sciences, NTNU (Norwegian University of Science and Technology), Trondheim, Norway
| | - Ulrik Wisløff
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU (Norwegian University of Science and Technology), Trondheim, Norway.,School of Human Movement & Nutrition Sciences, University of Queensland, Queensland, Australia
| | - Dorthe Stensvold
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU (Norwegian University of Science and Technology), Trondheim, Norway.,Department of Cardiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU (Norwegian University of Science and Technology), Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
409
|
Mu S, Wu H, Zhang J, Chang C. Structural Brain Changes and Associated Symptoms of ADHD Subtypes in Children. Cereb Cortex 2021; 32:1152-1158. [PMID: 34409439 DOI: 10.1093/cercor/bhab276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/21/2021] [Accepted: 07/08/2021] [Indexed: 11/14/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is presumed to be heterogeneous, but the best way to characterize this heterogeneity remains unclear. Although considerable evidence suggests that the 2 different types of ADHD, inattention and combined, have different cognitive and behavioral profiles, and underlying neurobiologies, we currently lack information on whether these subtypes reflect separated brain structure changes. Structural magnetic resonance imaging scans (N = 234), diagnostic, and demographic information were obtained from the ADHD-200 database. Of this sample, 138 were Typically Developing people, 37 were ADHD-Combined, and 59 were ADHD-Inattentive patients. Freesurfer segmentation methods were used to measure cortical thickness, area, and volume, subcortical volume and hipposubfield volume. ADHD-Inattentive patients showed milder clinical symptoms but more serious cognitive injury than ADHD-Combined patients. In addition, dissociable structural brain changes were found in different subtypes of ADHD, particularly in terms of decreased subcortical volume in ADHD-Combined patients compared with Typically Developing people. Clinical symptoms were predominantly related to smaller rh_caudalanteriorcingulate thickness and left-Pallidum volume, whereas verbal IQ injury was correlated strongly with smaller rh_insula area. These findings indicate that there are significant differences in clinical symptoms and gray matter damage between ADHD-Combined and -Inattentive patients. This supports the growing evidence of heterogeneity in the ADHD-Inattentive subtype and the evidence of brain structure differences.
Collapse
Affiliation(s)
- ShuHua Mu
- School of Psychology, Faculty of Education, Shenzhen University, Shenzhen 518060, China
| | - HuiJun Wu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Jian Zhang
- Health Science Center School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518055, China
| | - ChunQi Chang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518055, China.,Pengcheng Laboratory, Shenzhen 518038, China
| |
Collapse
|
410
|
Campos AI, Thompson PM, Veltman DJ, Pozzi E, van Veltzen LS, Jahanshad N, Adams MJ, Baune BT, Berger K, Brosch K, Bülow R, Connolly CG, Dannlowski U, Davey CG, de Zubicaray GI, Dima D, Erwin-Grabner T, Evans JW, Fu CHY, Gotlib IH, Goya-Maldonado R, Grabe HJ, Grotegerd D, Harris MA, Harrison BJ, Hatton SN, Hermesdorf M, Hickie IB, Ho TC, Kircher T, Krug A, Lagopoulos J, Lemke H, McMahon K, MacMaster FP, Martin NG, McIntosh AM, Medland SE, Meinert S, Meller T, Nenadic I, Opel N, Redlich R, Reneman L, Repple J, Sacchet MD, Schmitt S, Schrantee A, Sim K, Singh A, Stein F, Strike LT, van der Wee NJA, van der Werff SJA, Völzke H, Waltemate L, Whalley HC, Wittfeld K, Wright MJ, Yang TT, Zarate CA, Schmaal L, Rentería ME. Brain Correlates of Suicide Attempt in 18,925 Participants Across 18 International Cohorts. Biol Psychiatry 2021; 90:243-252. [PMID: 34172278 PMCID: PMC8324512 DOI: 10.1016/j.biopsych.2021.03.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Neuroimaging studies of suicidal behavior have so far been conducted in small samples, prone to biases and false-positive associations, yielding inconsistent results. The ENIGMA-MDD Working Group aims to address the issues of poor replicability and comparability by coordinating harmonized analyses across neuroimaging studies of major depressive disorder and related phenotypes, including suicidal behavior. METHODS Here, we pooled data from 18 international cohorts with neuroimaging and clinical measurements in 18,925 participants (12,477 healthy control subjects and 6448 people with depression, of whom 694 had attempted suicide). We compared regional cortical thickness and surface area and measures of subcortical, lateral ventricular, and intracranial volumes between suicide attempters, clinical control subjects (nonattempters with depression), and healthy control subjects. RESULTS We identified 25 regions of interest with statistically significant (false discovery rate < .05) differences between groups. Post hoc examinations identified neuroimaging markers associated with suicide attempt including smaller volumes of the left and right thalamus and the right pallidum and lower surface area of the left inferior parietal lobe. CONCLUSIONS This study addresses the lack of replicability and consistency in several previously published neuroimaging studies of suicide attempt and further demonstrates the need for well-powered samples and collaborative efforts. Our results highlight the potential involvement of the thalamus, a structure viewed historically as a passive gateway in the brain, and the pallidum, a region linked to reward response and positive affect. Future functional and connectivity studies of suicidal behaviors may focus on understanding how these regions relate to the neurobiological mechanisms of suicide attempt risk.
Collapse
Affiliation(s)
- Adrian I Campos
- Genetic Epidemiology Lab, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, California
| | - Dick J Veltman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Elena Pozzi
- Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Australia
| | - Laura S van Veltzen
- Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Australia
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, California
| | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Bernhard T Baune
- Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia; Department of Psychiatry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Katharina Brosch
- Department of Psychiatry, Philipps-University Marburg, Marburg, Hesse, Germany
| | - Robin Bülow
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Colm G Connolly
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Christopher G Davey
- Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Victoria, Australia
| | - Greig I de Zubicaray
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Danai Dima
- Department of Psychology, School of Arts and Social Sciences, City, University of London, London, United Kingdom; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Tracy Erwin-Grabner
- Laboratory of Systems Neuroscience and Imaging in Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Lower Saxony, Germany
| | - Jennifer W Evans
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Cynthia H Y Fu
- Centre for Affective Disorders, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, United Kingdom; School of Psychology, University of East London, London, United Kingdom
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, California
| | - Roberto Goya-Maldonado
- Laboratory of Systems Neuroscience and Imaging in Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Lower Saxony, Germany
| | - Hans J Grabe
- German Center for Neurodegenerative Disease, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Dominik Grotegerd
- Department of Psychiatry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Matthew A Harris
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Ben J Harrison
- Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Victoria, Australia
| | - Sean N Hatton
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Marco Hermesdorf
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Ian B Hickie
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Tiffany C Ho
- Department of Psychiatry & Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - Tilo Kircher
- Department of Psychiatry, Philipps-University Marburg, Marburg, Hesse, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, North Rhine-Westphalia, Germany; Department of Psychiatry, Philipps-University Marburg, Marburg, Hesse, Germany
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia; Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Hannah Lemke
- Department of Psychiatry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Katie McMahon
- Herston Imaging Research Facility & School of Clinical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Frank P MacMaster
- Department of Pediatrics and Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Strategic Clinical Network for Addictions and Mental Health, Alberta Health Services, Calgary, Alberta, Canada
| | - Nicholas G Martin
- Genetic Epidemiology Lab, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah E Medland
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia; Psychiatric Genetics Lab, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Austalia; School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
| | - Susanne Meinert
- Department of Psychiatry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Tina Meller
- Department of Psychiatry, Philipps-University Marburg, Marburg, Hesse, Germany
| | - Igor Nenadic
- Department of Psychiatry, Philipps-University Marburg, Marburg, Hesse, Germany
| | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Ronny Redlich
- Department of Psychiatry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Jonathan Repple
- Department of Psychiatry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Matthew D Sacchet
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Simon Schmitt
- Department of Psychiatry, Philipps-University Marburg, Marburg, Hesse, Germany
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Kang Sim
- West Region, Institute of Mental Health, Buangkok View, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Aditya Singh
- Laboratory of Systems Neuroscience and Imaging in Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Lower Saxony, Germany
| | - Frederike Stein
- Department of Psychiatry, Philipps-University Marburg, Marburg, Hesse, Germany
| | - Lachlan T Strike
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Steven J A van der Werff
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Lena Waltemate
- Department of Psychiatry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Katharina Wittfeld
- German Center for Neurodegenerative Disease, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Margaret J Wright
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Tony T Yang
- Department of Psychiatry & Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Lianne Schmaal
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Australia.
| | - Miguel E Rentería
- Genetic Epidemiology Lab, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
411
|
Yeung HW, Shen X, Stolicyn A, de Nooij L, Harris MA, Romaniuk L, Buchanan CR, Waiter GD, Sandu AL, McNeil CJ, Murray A, Steele JD, Campbell A, Porteous D, Lawrie SM, McIntosh AM, Cox SR, Smith KM, Whalley HC. Spectral clustering based on structural magnetic resonance imaging and its relationship with major depressive disorder and cognitive ability. Eur J Neurosci 2021; 54:6281-6303. [PMID: 34390586 DOI: 10.1111/ejn.15423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022]
Abstract
There is increasing interest in using data-driven unsupervised methods to identify structural underpinnings of common mental illnesses, including major depressive disorder (MDD) and associated traits such as cognition. However, studies are often limited to severe clinical cases with small sample sizes and most do not include replication. Here, we examine two relatively large samples with structural magnetic resonance imaging (MRI), measures of lifetime MDD and cognitive variables: Generation Scotland (GS subsample, N = 980) and UK Biobank (UKB, N = 8,900), for discovery and replication, using an exploratory approach. Regional measures of FreeSurfer derived cortical thickness (CT), cortical surface area (CSA), cortical volume (CV) and subcortical volume (subCV) were input into a clustering process, controlling for common covariates. The main analysis steps involved constructing participant K-nearest neighbour graphs and graph partitioning with Markov stability to determine optimal clustering of participants. Resultant clusters were (1) checked whether they were replicated in an independent cohort and (2) tested for associations with depression status and cognitive measures. Participants separated into two clusters based on structural brain measurements in GS subsample, with large Cohen's d effect sizes between clusters in higher order cortical regions, commonly associated with executive function and decision making. Clustering was replicated in the UKB sample, with high correlations of cluster effect sizes for CT, CSA, CV and subCV between cohorts across regions. The identified clusters were not significantly different with respect to MDD case-control status in either cohort (GS subsample: pFDR = .2239-.6585; UKB: pFDR = .2003-.7690). Significant differences in general cognitive ability were, however, found between the clusters for both datasets, for CSA, CV and subCV (GS subsample: d = 0.2529-.3490, pFDR < .005; UKB: d = 0.0868-0.1070, pFDR < .005). Our results suggest that there are replicable natural groupings of participants based on cortical and subcortical brain measures, which may be related to differences in cognitive performance, but not to the MDD case-control status.
Collapse
Affiliation(s)
- Hon Wah Yeung
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Xueyi Shen
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Aleks Stolicyn
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Laura de Nooij
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Mathew A Harris
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Liana Romaniuk
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Colin R Buchanan
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Gordon D Waiter
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Anca-Larisa Sandu
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Christopher J McNeil
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Alison Murray
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - J Douglas Steele
- School of Medicine, University of Dundee, Dundee, UK.,Department of Neurology, NHS Tayside, Ninewells Hospital and Medical School, Dundee, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - David Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | | | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK.,Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Simon R Cox
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Keith M Smith
- Usher Institute, University of Edinburgh, Edinburgh, UK.,Health Data Research UK, London, UK
| | | |
Collapse
|
412
|
Affiliation(s)
- Francisco Xavier Castellanos
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, and Nathan Kline Institute for Psychiatric Research, New York
| |
Collapse
|
413
|
Iannopollo E, Garcia K, Alzheimer' Disease Neuroimaging Initiative. Enhanced detection of cortical atrophy in Alzheimer's disease using structural MRI with anatomically constrained longitudinal registration. Hum Brain Mapp 2021; 42:3576-3592. [PMID: 33988265 PMCID: PMC8249882 DOI: 10.1002/hbm.25455] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 12/14/2022] Open
Abstract
Cortical atrophy is a defining feature of Alzheimer's disease (AD), often detectable before symptoms arise. In surface-based analyses, studies have commonly focused on cortical thinning while overlooking the impact of loss in surface area. To capture the impact of both cortical thinning and surface area loss, we used anatomically constrained Multimodal Surface Matching (aMSM), a recently developed tool for mapping change in surface area. We examined cortical atrophy over 2 years in cognitively normal subjects and subjects with diagnoses of stable mild cognitive impairment, mild cognitive impairment that converted to AD, and AD. Magnetic resonance imaging scans were segmented and registered to a common atlas using previously described techniques (FreeSurfer and ciftify), then longitudinally registered with aMSM. Changes in cortical thickness, surface area, and volume were mapped within each diagnostic group, and groups were compared statistically. Changes in thickness and surface area detected atrophy at similar levels of significance, though regions of atrophy somewhat differed. Furthermore, we found that surface area maps offered greater consistency across scanners (3.0 vs. 1.5 T). Comparisons to the FreeSurfer longitudinal pipeline and parcellation-based (region-of-interest) analysis suggest that aMSM may allow more robust detection of atrophy, particularly in earlier disease stages and using smaller sample sizes.
Collapse
Affiliation(s)
- Emily Iannopollo
- Department of Radiology and Imaging SciencesIndiana University School of MedicineEvansvilleIndianaUSA
| | - Kara Garcia
- Department of Radiology and Imaging SciencesIndiana University School of MedicineEvansvilleIndianaUSA
| | | |
Collapse
|
414
|
Kong XZ, Postema M, Schijven D, Castillo AC, Pepe A, Crivello F, Joliot M, Mazoyer B, Fisher SE, Francks C. Large-Scale Phenomic and Genomic Analysis of Brain Asymmetrical Skew. Cereb Cortex 2021; 31:4151-4168. [PMID: 33836062 PMCID: PMC8328207 DOI: 10.1093/cercor/bhab075] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/15/2021] [Accepted: 03/10/2021] [Indexed: 12/29/2022] Open
Abstract
The human cerebral hemispheres show a left-right asymmetrical torque pattern, which has been claimed to be absent in chimpanzees. The functional significance and developmental mechanisms are unknown. Here, we carried out the largest-ever analysis of global brain shape asymmetry in magnetic resonance imaging data. Three population datasets were used, UK Biobank (N = 39 678), Human Connectome Project (N = 1113), and BIL&GIN (N = 453). At the population level, there was an anterior and dorsal skew of the right hemisphere, relative to the left. Both skews were associated independently with handedness, and various regional gray and white matter metrics oppositely in the two hemispheres, as well as other variables related to cognitive functions, sociodemographic factors, and physical and mental health. The two skews showed single nucleotide polymorphisms-based heritabilities of 4-13%, but also substantial polygenicity in causal mixture model analysis, and no individually significant loci were found in genome-wide association studies for either skew. There was evidence for a significant genetic correlation between horizontal brain skew and autism, which requires future replication. These results provide the first large-scale description of population-average brain skews and their inter-individual variations, their replicable associations with handedness, and insights into biological and other factors which associate with human brain asymmetry.
Collapse
Affiliation(s)
- Xiang-Zhen Kong
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310028, China
| | - Merel Postema
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
| | - Dick Schijven
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
| | - Amaia Carrión Castillo
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
| | - Antonietta Pepe
- Institut des Maladies Neurodégénératives, UMR5293, Groupe d’Imagerie Neurofonctionnelle, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Université de Bordeaux, Bordeaux cedex 33076, France
| | - Fabrice Crivello
- Institut des Maladies Neurodégénératives, UMR5293, Groupe d’Imagerie Neurofonctionnelle, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Université de Bordeaux, Bordeaux cedex 33076, France
| | - Marc Joliot
- Institut des Maladies Neurodégénératives, UMR5293, Groupe d’Imagerie Neurofonctionnelle, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Université de Bordeaux, Bordeaux cedex 33076, France
| | - Bernard Mazoyer
- Institut des Maladies Neurodégénératives, UMR5293, Groupe d’Imagerie Neurofonctionnelle, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Université de Bordeaux, Bordeaux cedex 33076, France
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen 6525 EN, The Netherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen 6525 EN, The Netherlands
| |
Collapse
|
415
|
Hatoum AS, Johnson EC, Agrawal A, Bogdan R. Brain structure and problematic alcohol use: a test of plausible causation using latent causal variable analysis. Brain Imaging Behav 2021; 15:2741-2745. [PMID: 34287779 DOI: 10.1007/s11682-021-00482-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2021] [Indexed: 11/30/2022]
Abstract
Associations between brain structure and problematic alcohol use may reflect alcohol-induced toxicity and/or preexisting risk. Here, we applied a latent causal variable approach to genome-wide association study summary statistics of problematic alcohol use (n = 435,563) and magnetic resonance imaging-derived brain structure phenotypes (e.g., cortical volume, cortical thickness, white matter volume; ns ranging from 17,706 to 51,665) to test whether variability in brain structure may plausibly contribute to problematic alcohol use and/or whether problematic alcohol use influences brain structure. After correction for multiple testing within each modality, we find evidence that greater volume of the pars opercularis, greater thickness of the cuneus, and lower volume of the basal forebrain may plausibly contribute to problematic alcohol use. All other nominally-significant associations identify brain structure as a potential causal contributor to problematic alcohol use; there was no evidence suggesting that problematic alcohol use may cause differences in brain structure. Collectively, these results challenge common interpretations that associations between alcohol use and brain structure reflect consequences of alcohol, instead supporting emerging work suggesting that brain structure may reflect a predispositional risk factor for alcohol involvement.
Collapse
Affiliation(s)
- Alexander S Hatoum
- Department of Psychiatry, Washington University St. Louis Medical School, 825 S Taylor Ave, St. Louis, MO, 63110, USA.
| | - Emma C Johnson
- Department of Psychiatry, Washington University St. Louis Medical School, 825 S Taylor Ave, St. Louis, MO, 63110, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University St. Louis Medical School, 825 S Taylor Ave, St. Louis, MO, 63110, USA
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University St. Louis, St. Louis, MO, USA
| |
Collapse
|
416
|
Chen J, Dong G, Song L, Zhao X, Cao J, Luo X, Feng J, Zhao XM. Integration of Multimodal Data for Deciphering Brain Disorders. Annu Rev Biomed Data Sci 2021; 4:43-56. [PMID: 34465176 DOI: 10.1146/annurev-biodatasci-092820-020354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The accumulation of vast amounts of multimodal data for the human brain, in both normal and disease conditions, has provided unprecedented opportunities for understanding why and how brain disorders arise. Compared with traditional analyses of single datasets, the integration of multimodal datasets covering different types of data (i.e., genomics, transcriptomics, imaging, etc.) has shed light on the mechanisms underlying brain disorders in greater detail across both the microscopic and macroscopic levels. In this review, we first briefly introduce the popular large datasets for the brain. Then, we discuss in detail how integration of multimodal human brain datasets can reveal the genetic predispositions and the abnormal molecular pathways of brain disorders. Finally, we present an outlook on how future data integration efforts may advance the diagnosis and treatment of brain disorders.
Collapse
Affiliation(s)
- Jingqi Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; , .,MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Ministry of Education, Shanghai 200433, China.,Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China
| | - Guiying Dong
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; ,
| | - Liting Song
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; ,
| | - Xingzhong Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; ,
| | - Jixin Cao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; ,
| | - Xiaohui Luo
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; ,
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; , .,MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Ministry of Education, Shanghai 200433, China.,Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China.,Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; , .,MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Ministry of Education, Shanghai 200433, China.,Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China
| |
Collapse
|
417
|
Modenato C, Kumar K, Moreau C, Martin-Brevet S, Huguet G, Schramm C, Jean-Louis M, Martin CO, Younis N, Tamer P, Douard E, Thébault-Dagher F, Côté V, Charlebois AR, Deguire F, Maillard AM, Rodriguez-Herreros B, Pain A, Richetin S, Melie-Garcia L, Kushan L, Silva AI, van den Bree MBM, Linden DEJ, Owen MJ, Hall J, Lippé S, Chakravarty M, Bzdok D, Bearden CE, Draganski B, Jacquemont S. Effects of eight neuropsychiatric copy number variants on human brain structure. Transl Psychiatry 2021; 11:399. [PMID: 34285187 PMCID: PMC8292542 DOI: 10.1038/s41398-021-01490-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/03/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Many copy number variants (CNVs) confer risk for the same range of neurodevelopmental symptoms and psychiatric conditions including autism and schizophrenia. Yet, to date neuroimaging studies have typically been carried out one mutation at a time, showing that CNVs have large effects on brain anatomy. Here, we aimed to characterize and quantify the distinct brain morphometry effects and latent dimensions across 8 neuropsychiatric CNVs. We analyzed T1-weighted MRI data from clinically and non-clinically ascertained CNV carriers (deletion/duplication) at the 1q21.1 (n = 39/28), 16p11.2 (n = 87/78), 22q11.2 (n = 75/30), and 15q11.2 (n = 72/76) loci as well as 1296 non-carriers (controls). Case-control contrasts of all examined genomic loci demonstrated effects on brain anatomy, with deletions and duplications showing mirror effects at the global and regional levels. Although CNVs mainly showed distinct brain patterns, principal component analysis (PCA) loaded subsets of CNVs on two latent brain dimensions, which explained 32 and 29% of the variance of the 8 Cohen's d maps. The cingulate gyrus, insula, supplementary motor cortex, and cerebellum were identified by PCA and multi-view pattern learning as top regions contributing to latent dimension shared across subsets of CNVs. The large proportion of distinct CNV effects on brain morphology may explain the small neuroimaging effect sizes reported in polygenic psychiatric conditions. Nevertheless, latent gene brain morphology dimensions will help subgroup the rapidly expanding landscape of neuropsychiatric variants and dissect the heterogeneity of idiopathic conditions.
Collapse
Affiliation(s)
- Claudia Modenato
- LREN - Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Kuldeep Kumar
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Canada
| | - Clara Moreau
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Canada
| | - Sandra Martin-Brevet
- LREN - Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Guillaume Huguet
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Canada
| | - Catherine Schramm
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Canada
| | - Martineau Jean-Louis
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Canada
| | | | - Nadine Younis
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Canada
| | - Petra Tamer
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Canada
| | - Elise Douard
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Canada
| | | | - Valérie Côté
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Canada
| | | | - Florence Deguire
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Canada
| | - Anne M Maillard
- Service des Troubles du Spectre de l'Autisme et apparentés, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Borja Rodriguez-Herreros
- Service des Troubles du Spectre de l'Autisme et apparentés, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Aurèlie Pain
- Service des Troubles du Spectre de l'Autisme et apparentés, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Sonia Richetin
- Service des Troubles du Spectre de l'Autisme et apparentés, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Lester Melie-Garcia
- Applied Signal Processing Group (ASPG), Swiss Federal Institute Lausanne (EPFL), Lausanne, Switzerland
| | - Leila Kushan
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles, USA
| | - Ana I Silva
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Marianne B M van den Bree
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - David E J Linden
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Sarah Lippé
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Canada
| | | | - Danilo Bzdok
- Department of Biomedical Engineering, McConnell Brain Imaging Centre; Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Mila - Quebec Artificial Intelligence Institute, Montréal, QC, Canada
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles, USA
| | - Bogdan Draganski
- LREN - Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Neurology Department, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Sébastien Jacquemont
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Canada.
| |
Collapse
|
418
|
Ghio M, Cara C, Tettamanti M. The prenatal brain readiness for speech processing: A review on foetal development of auditory and primordial language networks. Neurosci Biobehav Rev 2021; 128:709-719. [PMID: 34274405 DOI: 10.1016/j.neubiorev.2021.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Despite consolidated evidence for the prenatal ability to elaborate and respond to sounds and speech stimuli, the ontogenetic functional brain maturation of language responsiveness in the foetus is still poorly understood. Recent advances in in-vivo foetal neuroimaging have contributed to a finely detailed picture of the anatomo-functional hallmarks that define the prenatal neurodevelopment of auditory and language-related networks. Here, we first outline available evidence for the prenatal development of auditory and language-related brain structures and of their anatomical connections. Second, we focus on functional connectivity data showing the emergence of auditory and primordial language networks in the foetal brain. Third, we recapitulate functional neuroimaging studies assessing the prenatal readiness for sound processing, as a crucial prerequisite for the foetus to experientially respond to spoken language. In conclusion, we suggest that the state of the art has reached sufficient maturity to directly assess the neural mechanisms underlying the prenatal readiness for speech processing and to evaluate whether foetal neuromarkers can predict the postnatal development of language acquisition abilities and disabilities.
Collapse
Affiliation(s)
- Marta Ghio
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Italy
| | - Cristina Cara
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Italy
| | - Marco Tettamanti
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Italy.
| |
Collapse
|
419
|
Menardi A, Reineberg AE, Vallesi A, Friedman NP, Banich MT, Santarnecchi E. Heritability of brain resilience to perturbation in humans. Neuroimage 2021; 235:118013. [PMID: 33794357 PMCID: PMC8192441 DOI: 10.1016/j.neuroimage.2021.118013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/06/2021] [Accepted: 03/23/2021] [Indexed: 01/01/2023] Open
Abstract
Resilience is the capacity of complex systems to persist in the face of external perturbations and retain their functional properties and performance. In the present study, we investigated how individual variations in brain resilience, which might influence response to stress, aging and disease, are influenced by genetics and/or the environment, with potential implications for the implementation of resilience-boosting interventions. Resilience estimates were derived from in silico lesioning of either brain regions or functional connections constituting the connectome of healthy individuals belonging to two different large and unique datasets of twins, specifically: 463 individual twins from the Human Connectome Project and 453 individual twins from the Colorado Longitudinal Twin Study. As has been reported previously, moderate heritability was found for several topological indexes of brain efficiency and modularity. Importantly, evidence of heritability was found for resilience measures based on removal of brain connections rather than specific single regions, suggesting that genetic influences on resilience are preferentially directed toward region-to-region communication rather than local brain activity. Specifically, the strongest genetic influence was observed for moderately weak, long-range connections between a specific subset of functional brain networks: the Default Mode, Visual and Sensorimotor networks. These findings may help identify a link between brain resilience and network-level alterations observed in neurological and psychiatric diseases, as well as inform future studies investigating brain shielding interventions against physiological and pathological perturbations.
Collapse
Affiliation(s)
- Arianna Menardi
- Department of Neuroscience & Padova Neuroscience Center, University of Padova, Padova, 35131 Italy; Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215 USA
| | - Andrew E Reineberg
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, 80309 USA
| | - Antonino Vallesi
- Department of Neuroscience & Padova Neuroscience Center, University of Padova, Padova, 35131 Italy; IRCCS San Camillo Hospital, Venice, 30126 Italy
| | - Naomi P Friedman
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, 80309 USA; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309 USA
| | - Marie T Banich
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309 USA; Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, 80309 USA
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215 USA.
| |
Collapse
|
420
|
Palmer CE, Zhao W, Loughnan R, Zou J, Fan CC, Thompson WK, Dale AM, Jernigan TL. Distinct Regionalization Patterns of Cortical Morphology are Associated with Cognitive Performance Across Different Domains. Cereb Cortex 2021; 31:3856-3871. [PMID: 33825852 PMCID: PMC8258441 DOI: 10.1093/cercor/bhab054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/26/2021] [Accepted: 02/16/2021] [Indexed: 02/02/2023] Open
Abstract
Cognitive performance in children is predictive of academic and social outcomes; therefore, understanding neurobiological mechanisms underlying individual differences in cognition during development may be important for improving quality of life. The belief that a single, psychological construct underlies many cognitive processes is pervasive throughout society. However, it is unclear if there is a consistent neural substrate underlying many cognitive processes. Here, we show that a distributed configuration of cortical surface area and apparent thickness, when controlling for global imaging measures, is differentially associated with cognitive performance on different types of tasks in a large sample (N = 10 145) of 9-11-year-old children from the Adolescent Brain and Cognitive DevelopmentSM (ABCD) study. The minimal overlap in these regionalization patterns of association has implications for competing theories about developing intellectual functions. Surprisingly, not controlling for sociodemographic factors increased the similarity between these regionalization patterns. This highlights the importance of understanding the shared variance between sociodemographic factors, cognition and brain structure, particularly with a population-based sample such as ABCD.
Collapse
Affiliation(s)
- C E Palmer
- Center for Human Development, University of California, San Diego, La Jolla, CA 92161, USA
| | - W Zhao
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA
| | - R Loughnan
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA
| | - J Zou
- Division of Biostatistics, Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92161, USA
| | - C C Fan
- Center for Human Development, University of California, San Diego, La Jolla, CA 92161, USA
- Center for Multimodal Imaging and Genetics, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
| | - W K Thompson
- Division of Biostatistics, Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92161, USA
| | - A M Dale
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
- Department of Neuroscience, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
- Department of Psychiatry, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
| | - T L Jernigan
- Center for Human Development, University of California, San Diego, La Jolla, CA 92161, USA
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
- Department of Psychiatry, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
| |
Collapse
|
421
|
Gialluisi A, Andlauer TFM, Mirza-Schreiber N, Moll K, Becker J, Hoffmann P, Ludwig KU, Czamara D, Pourcain BS, Honbolygó F, Tóth D, Csépe V, Huguet G, Chaix Y, Iannuzzi S, Demonet JF, Morris AP, Hulslander J, Willcutt EG, DeFries JC, Olson RK, Smith SD, Pennington BF, Vaessen A, Maurer U, Lyytinen H, Peyrard-Janvid M, Leppänen PHT, Brandeis D, Bonte M, Stein JF, Talcott JB, Fauchereau F, Wilcke A, Kirsten H, Müller B, Francks C, Bourgeron T, Monaco AP, Ramus F, Landerl K, Kere J, Scerri TS, Paracchini S, Fisher SE, Schumacher J, Nöthen MM, Müller-Myhsok B, Schulte-Körne G. Genome-wide association study reveals new insights into the heritability and genetic correlates of developmental dyslexia. Mol Psychiatry 2021; 26:3004-3017. [PMID: 33057169 PMCID: PMC8505236 DOI: 10.1038/s41380-020-00898-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 07/26/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
Developmental dyslexia (DD) is a learning disorder affecting the ability to read, with a heritability of 40-60%. A notable part of this heritability remains unexplained, and large genetic studies are warranted to identify new susceptibility genes and clarify the genetic bases of dyslexia. We carried out a genome-wide association study (GWAS) on 2274 dyslexia cases and 6272 controls, testing associations at the single variant, gene, and pathway level, and estimating heritability using single-nucleotide polymorphism (SNP) data. We also calculated polygenic scores (PGSs) based on large-scale GWAS data for different neuropsychiatric disorders and cortical brain measures, educational attainment, and fluid intelligence, testing them for association with dyslexia status in our sample. We observed statistically significant (p < 2.8 × 10-6) enrichment of associations at the gene level, for LOC388780 (20p13; uncharacterized gene), and for VEPH1 (3q25), a gene implicated in brain development. We estimated an SNP-based heritability of 20-25% for DD, and observed significant associations of dyslexia risk with PGSs for attention deficit hyperactivity disorder (at pT = 0.05 in the training GWAS: OR = 1.23[1.16; 1.30] per standard deviation increase; p = 8 × 10-13), bipolar disorder (1.53[1.44; 1.63]; p = 1 × 10-43), schizophrenia (1.36[1.28; 1.45]; p = 4 × 10-22), psychiatric cross-disorder susceptibility (1.23[1.16; 1.30]; p = 3 × 10-12), cortical thickness of the transverse temporal gyrus (0.90[0.86; 0.96]; p = 5 × 10-4), educational attainment (0.86[0.82; 0.91]; p = 2 × 10-7), and intelligence (0.72[0.68; 0.76]; p = 9 × 10-29). This study suggests an important contribution of common genetic variants to dyslexia risk, and novel genomic overlaps with psychiatric conditions like bipolar disorder, schizophrenia, and cross-disorder susceptibility. Moreover, it revealed the presence of shared genetic foundations with a neural correlate previously implicated in dyslexia by neuroimaging evidence.
Collapse
Affiliation(s)
- Alessandro Gialluisi
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Till F M Andlauer
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Nazanin Mirza-Schreiber
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kristina Moll
- Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig-Maximilians University, Munich, Germany
| | - Jessica Becker
- Department of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Per Hoffmann
- Department of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Kerstin U Ludwig
- Department of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Beate St Pourcain
- Language and Genetics Department, Max Planck Institute for Psycholinguistics and Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Ferenc Honbolygó
- Brain Imaging Centre, Research Centre of Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Dénes Tóth
- Brain Imaging Centre, Research Centre of Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Valéria Csépe
- Brain Imaging Centre, Research Centre of Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Guillaume Huguet
- Human Genetics and Cognitive Functions Unit, Institut Pasteur and University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Yves Chaix
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
- Children's Hospital, Purpan University Hospital, Toulouse, France
| | | | - Jean-Francois Demonet
- Leenaards Memory Centre, Department of Clinical Neurosciences Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Andrew P Morris
- Department of Biostatistics, University of Liverpool, Liverpool, UK
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jacqueline Hulslander
- Institute for Behavioral Genetics and Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Erik G Willcutt
- Institute for Behavioral Genetics and Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - John C DeFries
- Institute for Behavioral Genetics and Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Richard K Olson
- Institute for Behavioral Genetics and Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Shelley D Smith
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bruce F Pennington
- Developmental Neuropsychology Lab and Clinic, Department of Psychology, University of Denver, Denver, CO, USA
| | - Anniek Vaessen
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience and Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, The Netherlands
| | - Urs Maurer
- Department of Psychology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Heikki Lyytinen
- Centre for Research on Learning and Teaching, Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | | | - Paavo H T Leppänen
- Centre for Research on Learning and Teaching, Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich and ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Milene Bonte
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience and Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, The Netherlands
| | - John F Stein
- Department of Physiology, University of Oxford, Oxford, UK
| | - Joel B Talcott
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Fabien Fauchereau
- Human Genetics and Cognitive Functions Unit, Institut Pasteur and University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Arndt Wilcke
- Cognitive Genetics Unit, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Holger Kirsten
- Cognitive Genetics Unit, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Institute for Medical Informatics, Statistics and Epidemiology and LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Bent Müller
- Cognitive Genetics Unit, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics and Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions Unit, Institut Pasteur and University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Anthony P Monaco
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Tufts University, Medford, MA, USA
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique, Ecole Normale Supérieure, CNRS, EHESS, PSL University, Paris, France
| | - Karin Landerl
- Institute of Psychology, University of Graz and BioTechMed, Graz, Austria
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Stem Cells and Metabolism Research Program, Biomedicum, Folkhälsan Institute of Genetics, University of Helsinki, Helsinki, Finland
| | - Thomas S Scerri
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- The Walter and Eliza Hall Institute of Medical Research, Melbourne University, Melbourne, VIC, Australia
| | | | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics and Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Johannes Schumacher
- Department of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Markus M Nöthen
- Department of Genomics, Life and Brain Center, Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Bertram Müller-Myhsok
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| | - Gerd Schulte-Körne
- Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig-Maximilians University, Munich, Germany.
| |
Collapse
|
422
|
Liang D, Elwell AL, Aygün N, Krupa O, Wolter JM, Kyere FA, Lafferty MJ, Cheek KE, Courtney KP, Yusupova M, Garrett ME, Ashley-Koch A, Crawford GE, Love MI, de la Torre-Ubieta L, Geschwind DH, Stein JL. Cell-type-specific effects of genetic variation on chromatin accessibility during human neuronal differentiation. Nat Neurosci 2021; 24:941-953. [PMID: 34017130 PMCID: PMC8254789 DOI: 10.1038/s41593-021-00858-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/15/2021] [Indexed: 02/03/2023]
Abstract
Common genetic risk for neuropsychiatric disorders is enriched in regulatory elements active during cortical neurogenesis. However, it remains poorly understood as to how these variants influence gene regulation. To model the functional impact of common genetic variation on the noncoding genome during human cortical development, we performed the assay for transposase accessible chromatin using sequencing (ATAC-seq) and analyzed chromatin accessibility quantitative trait loci (QTL) in cultured human neural progenitor cells and their differentiated neuronal progeny from 87 donors. We identified significant genetic effects on 988/1,839 neuron/progenitor regulatory elements, with highly cell-type and temporally specific effects. A subset (roughly 30%) of chromatin accessibility-QTL were also associated with changes in gene expression. Motif-disrupting alleles of transcriptional activators generally led to decreases in chromatin accessibility, whereas motif-disrupting alleles of repressors led to increases in chromatin accessibility. By integrating cell-type-specific chromatin accessibility-QTL and brain-relevant genome-wide association data, we were able to fine-map and identify regulatory mechanisms underlying noncoding neuropsychiatric disorder risk loci.
Collapse
Affiliation(s)
- Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Angela L Elwell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Oleh Krupa
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Justin M Wolter
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Felix A Kyere
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael J Lafferty
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kerry E Cheek
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenan P Courtney
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marianna Yusupova
- Neurogenetics Program, Department of Neurology, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Melanie E Garrett
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Allison Ashley-Koch
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Luis de la Torre-Ubieta
- Neurogenetics Program, Department of Neurology, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel H Geschwind
- Neurogenetics Program, Department of Neurology, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
423
|
Jalbrzikowski M, Hayes RA, Wood SJ, Nordholm D, Zhou JH, Fusar-Poli P, Uhlhaas PJ, Takahashi T, Sugranyes G, Kwak YB, Mathalon DH, Katagiri N, Hooker CI, Smigielski L, Colibazzi T, Via E, Tang J, Koike S, Rasser PE, Michel C, Lebedeva I, Hegelstad WTV, de la Fuente-Sandoval C, Waltz JA, Mizrahi R, Corcoran CM, Resch F, Tamnes CK, Haas SS, Lemmers-Jansen ILJ, Agartz I, Allen P, Amminger GP, Andreassen OA, Atkinson K, Bachman P, Baeza I, Baldwin H, Bartholomeusz CF, Borgwardt S, Catalano S, Chee MWL, Chen X, Cho KIK, Cooper RE, Cropley VL, Dolz M, Ebdrup BH, Fortea A, Glenthøj LB, Glenthøj BY, de Haan L, Hamilton HK, Harris MA, Haut KM, He Y, Heekeren K, Heinz A, Hubl D, Hwang WJ, Kaess M, Kasai K, Kim M, Kindler J, Klaunig MJ, Koppel A, Kristensen TD, Kwon JS, Lawrie SM, Lee J, León-Ortiz P, Lin A, Loewy RL, Ma X, McGorry P, McGuire P, Mizuno M, Møller P, Moncada-Habib T, Muñoz-Samons D, Nelson B, Nemoto T, Nordentoft M, Omelchenko MA, Oppedal K, Ouyang L, Pantelis C, Pariente JC, Raghava JM, Reyes-Madrigal F, Roach BJ, Røssberg JI, Rössler W, Salisbury DF, Sasabayashi D, Schall U, Schiffman J, Schlagenhauf F, Schmidt A, Sørensen ME, et alJalbrzikowski M, Hayes RA, Wood SJ, Nordholm D, Zhou JH, Fusar-Poli P, Uhlhaas PJ, Takahashi T, Sugranyes G, Kwak YB, Mathalon DH, Katagiri N, Hooker CI, Smigielski L, Colibazzi T, Via E, Tang J, Koike S, Rasser PE, Michel C, Lebedeva I, Hegelstad WTV, de la Fuente-Sandoval C, Waltz JA, Mizrahi R, Corcoran CM, Resch F, Tamnes CK, Haas SS, Lemmers-Jansen ILJ, Agartz I, Allen P, Amminger GP, Andreassen OA, Atkinson K, Bachman P, Baeza I, Baldwin H, Bartholomeusz CF, Borgwardt S, Catalano S, Chee MWL, Chen X, Cho KIK, Cooper RE, Cropley VL, Dolz M, Ebdrup BH, Fortea A, Glenthøj LB, Glenthøj BY, de Haan L, Hamilton HK, Harris MA, Haut KM, He Y, Heekeren K, Heinz A, Hubl D, Hwang WJ, Kaess M, Kasai K, Kim M, Kindler J, Klaunig MJ, Koppel A, Kristensen TD, Kwon JS, Lawrie SM, Lee J, León-Ortiz P, Lin A, Loewy RL, Ma X, McGorry P, McGuire P, Mizuno M, Møller P, Moncada-Habib T, Muñoz-Samons D, Nelson B, Nemoto T, Nordentoft M, Omelchenko MA, Oppedal K, Ouyang L, Pantelis C, Pariente JC, Raghava JM, Reyes-Madrigal F, Roach BJ, Røssberg JI, Rössler W, Salisbury DF, Sasabayashi D, Schall U, Schiffman J, Schlagenhauf F, Schmidt A, Sørensen ME, Suzuki M, Theodoridou A, Tomyshev AS, Tor J, Værnes TG, Velakoulis D, Venegoni GD, Vinogradov S, Wenneberg C, Westlye LT, Yamasue H, Yuan L, Yung AR, van Amelsvoort TAMJ, Turner JA, van Erp TGM, Thompson PM, Hernaus D. Association of Structural Magnetic Resonance Imaging Measures With Psychosis Onset in Individuals at Clinical High Risk for Developing Psychosis: An ENIGMA Working Group Mega-analysis. JAMA Psychiatry 2021; 78:753-766. [PMID: 33950164 PMCID: PMC8100913 DOI: 10.1001/jamapsychiatry.2021.0638] [Show More Authors] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/04/2021] [Indexed: 01/10/2023]
Abstract
Importance The ENIGMA clinical high risk (CHR) for psychosis initiative, the largest pooled neuroimaging sample of individuals at CHR to date, aims to discover robust neurobiological markers of psychosis risk. Objective To investigate baseline structural neuroimaging differences between individuals at CHR and healthy controls as well as between participants at CHR who later developed a psychotic disorder (CHR-PS+) and those who did not (CHR-PS-). Design, Setting, and Participants In this case-control study, baseline T1-weighted magnetic resonance imaging (MRI) data were pooled from 31 international sites participating in the ENIGMA Clinical High Risk for Psychosis Working Group. CHR status was assessed using the Comprehensive Assessment of At-Risk Mental States or Structured Interview for Prodromal Syndromes. MRI scans were processed using harmonized protocols and analyzed within a mega-analysis and meta-analysis framework from January to October 2020. Main Outcomes and Measures Measures of regional cortical thickness (CT), surface area, and subcortical volumes were extracted from T1-weighted MRI scans. Independent variables were group (CHR group vs control group) and conversion status (CHR-PS+ group vs CHR-PS- group vs control group). Results Of the 3169 included participants, 1428 (45.1%) were female, and the mean (SD; range) age was 21.1 (4.9; 9.5-39.9) years. This study included 1792 individuals at CHR and 1377 healthy controls. Using longitudinal clinical information, 253 in the CHR-PS+ group, 1234 in the CHR-PS- group, and 305 at CHR without follow-up data were identified. Compared with healthy controls, individuals at CHR exhibited widespread lower CT measures (mean [range] Cohen d = -0.13 [-0.17 to -0.09]), but not surface area or subcortical volume. Lower CT measures in the fusiform, superior temporal, and paracentral regions were associated with psychosis conversion (mean Cohen d = -0.22; 95% CI, -0.35 to 0.10). Among healthy controls, compared with those in the CHR-PS+ group, age showed a stronger negative association with left fusiform CT measures (F = 9.8; P < .001; q < .001) and left paracentral CT measures (F = 5.9; P = .005; q = .02). Effect sizes representing lower CT associated with psychosis conversion resembled patterns of CT differences observed in ENIGMA studies of schizophrenia (ρ = 0.35; 95% CI, 0.12 to 0.55; P = .004) and individuals with 22q11.2 microdeletion syndrome and a psychotic disorder diagnosis (ρ = 0.43; 95% CI, 0.20 to 0.61; P = .001). Conclusions and Relevance This study provides evidence for widespread subtle, lower CT measures in individuals at CHR. The pattern of CT measure differences in those in the CHR-PS+ group was similar to those reported in other large-scale investigations of psychosis. Additionally, a subset of these regions displayed abnormal age associations. Widespread disruptions in CT coupled with abnormal age associations in those at CHR may point to disruptions in postnatal brain developmental processes.
Collapse
Affiliation(s)
- Maria Jalbrzikowski
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rebecca A Hayes
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephen J Wood
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
- Orygen, Melbourne, Australia
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Dorte Nordholm
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Juan H Zhou
- Center for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Center for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Paolo Fusar-Poli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- EPIC Lab, Department of Psychosis Studies, King's College London, London, United Kingdom
| | - Peter J Uhlhaas
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Gisela Sugranyes
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, 2017SGR-881, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Universitat de Barcelona, Barcelona, Spain
| | - Yoo Bin Kwak
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Daniel H Mathalon
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
- San Francisco Veterans Affairs Health Care System, San Francisco, California
| | - Naoyuki Katagiri
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Christine I Hooker
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
| | - Lukasz Smigielski
- Department of Child and Adolescent Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Tiziano Colibazzi
- Department of Psychiatry, Columbia University, New York, New York
- New York State Psychiatric Institute, New York
| | - Esther Via
- Child and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Neurobiology of Zhejiang Province, School of Medicine, Zhejiang University Hangzhou, Hangzhou, China
| | - Shinsuke Koike
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
- The University of Tokyo Institute for Diversity and Adaptation of Human Mind, Tokyo, Japan
| | - Paul E Rasser
- Priority Centre for Brain and Mental Health Research, The University of Newcastle, Newcastle, Australia
- Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Newcastle, Australia
| | - Chantal Michel
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | | | - Wenche Ten Velden Hegelstad
- Faculty of Social Sciences, University of Stavanger, Stavanger, Norway
- TIPS Centre for Clinical Research in Psychosis, Stavanger University Hospital, Stavanger, Norway
| | | | - James A Waltz
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore
| | - Romina Mizrahi
- Douglas Research Center, Montreal, Quebec, Canada
- McGill University, Department of Psychiatry, Montreal, Quebec, Canada
| | - Cheryl M Corcoran
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, New York, New York
| | - Franz Resch
- Clinic for Child and Adolescent Psychiatry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Christian K Tamnes
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Shalaila S Haas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Imke L J Lemmers-Jansen
- Faculty of Behavioural and Movement Sciences, Department of Clinical, Neuro and Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Paul Allen
- Department of Psychology, University of Roehampton, London, United Kingdom
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - G Paul Amminger
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
- Orygen, Melbourne, Australia
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kimberley Atkinson
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Bachman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Inmaculada Baeza
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, 2017SGR-881, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Universitat de Barcelona, Barcelona, Spain
| | - Helen Baldwin
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, United Kingdom
| | - Cali F Bartholomeusz
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
- Orygen, Melbourne, Australia
| | - Stefan Borgwardt
- Department of Psychiatry, University of Basel, Basel, Switzerland
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Sabrina Catalano
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael W L Chee
- Center for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Xiaogang Chen
- National Clinical Research Center for Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kang Ik K Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rebecca E Cooper
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Montserrat Dolz
- Child and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Bjørn H Ebdrup
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adriana Fortea
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, Hospital Clinic Barcelona, Fundació Clínic Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Louise Birkedal Glenthøj
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Birte Y Glenthøj
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lieuwe de Haan
- Department of Psychiatry, Amsterdam University Medical Centre, Amsterdam, the Netherlands
- Arkin, Amsterdam, the Netherlands
| | - Holly K Hamilton
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
- San Francisco Veterans Affairs Health Care System, San Francisco, California
| | - Mathew A Harris
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Kristen M Haut
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
| | - Ying He
- National Clinical Research Center for Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Karsten Heekeren
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Psychiatry and Psychotherapy I, LVR-Hospital Cologne, Cologne, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany
| | - Daniela Hubl
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Wu Jeong Hwang
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Department of Child and Adolescent Psychiatry, Center of Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Kiyoto Kasai
- The University of Tokyo Institute for Diversity and Adaptation of Human Mind, Tokyo, Japan
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence at The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jochen Kindler
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Mallory J Klaunig
- Department of Psychology, University of Maryland, Baltimore County, Baltimore
| | - Alex Koppel
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Tina D Kristensen
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Jun Soo Kwon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Jimmy Lee
- Department of Psychosis, Institute of Mental Health, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Pablo León-Ortiz
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Ashleigh Lin
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Rachel L Loewy
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
| | - Xiaoqian Ma
- National Clinical Research Center for Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Patrick McGorry
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
- Orygen, Melbourne, Australia
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Masafumi Mizuno
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Paul Møller
- Department for Mental Health Research and Development, Division of Mental Health and Addiction, Vestre Viken Hospital Trust, Lier, Norway
| | - Tomas Moncada-Habib
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Daniel Muñoz-Samons
- Child and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Barnaby Nelson
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
- Orygen, Melbourne, Australia
| | - Takahiro Nemoto
- Department of Neuropsychiatry, Toho University School of Medicine, Tokyo, Japan
| | - Merete Nordentoft
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Ketil Oppedal
- Stavanger Medical Imaging Laboratory, Department of Radiology, Stavanger University Hospital, Stavanger, Norway
| | - Lijun Ouyang
- National Clinical Research Center for Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Jose C Pariente
- Magnetic Resonance Imaging Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Jayachandra M Raghava
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Functional Imaging Unit, University of Copenhagen, Glostrup, Denmark
| | - Francisco Reyes-Madrigal
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Brian J Roach
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
- San Francisco Veterans Affairs Health Care System, San Francisco, California
| | - Jan I Røssberg
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Wulf Rössler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany
| | - Dean F Salisbury
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Ulrich Schall
- Priority Centre for Brain and Mental Health Research, The University of Newcastle, Newcastle, Australia
- Priority Research Centre Grow Up Well, The University of Newcastle, Newcastle, Australia
| | - Jason Schiffman
- Department of Psychology, University of Maryland, Baltimore County, Baltimore
- Department of Psychological Science, University of California, Irvine
| | - Florian Schlagenhauf
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany
| | - Andre Schmidt
- Department of Psychiatry, University of Basel, Basel, Switzerland
| | - Mikkel E Sørensen
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Anastasia Theodoridou
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Jordina Tor
- Child and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Tor G Værnes
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Early Intervention in Psychosis Advisory Unit for South-East Norway, TIPS Sør-Øst, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Dennis Velakoulis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
- Neuropsychiatry, The Royal Melbourne Hospital, Melbourne, Australia
| | - Gloria D Venegoni
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Sophia Vinogradov
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis
| | - Christina Wenneberg
- Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu City, Japan
| | - Liu Yuan
- National Clinical Research Center for Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Alison R Yung
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
- Orygen, Melbourne, Australia
- School of Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Thérèse A M J van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | | | - Theo G M van Erp
- Center for the Neurobiology of Learning and Memory, Irvine, California
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles
| | - Dennis Hernaus
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
424
|
Norbom LB, Ferschmann L, Parker N, Agartz I, Andreassen OA, Paus T, Westlye LT, Tamnes CK. New insights into the dynamic development of the cerebral cortex in childhood and adolescence: Integrating macro- and microstructural MRI findings. Prog Neurobiol 2021; 204:102109. [PMID: 34147583 DOI: 10.1016/j.pneurobio.2021.102109] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/26/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Through dynamic transactional processes between genetic and environmental factors, childhood and adolescence involve reorganization and optimization of the cerebral cortex. The cortex and its development plays a crucial role for prototypical human cognitive abilities. At the same time, many common mental disorders appear during these critical phases of neurodevelopment. Magnetic resonance imaging (MRI) can indirectly capture several multifaceted changes of cortical macro- and microstructure, of high relevance to further our understanding of the neural foundation of cognition and mental health. Great progress has been made recently in mapping the typical development of cortical morphology. Moreover, newer less explored MRI signal intensity and specialized quantitative T2 measures have been applied to assess microstructural cortical development. We review recent findings of typical postnatal macro- and microstructural development of the cerebral cortex from early childhood to young adulthood. We cover studies of cortical volume, thickness, area, gyrification, T1-weighted (T1w) tissue contrasts such a grey/white matter contrast, T1w/T2w ratio, magnetization transfer and myelin water fraction. Finally, we integrate imaging studies with cortical gene expression findings to further our understanding of the underlying neurobiology of the developmental changes, bridging the gap between ex vivo histological- and in vivo MRI studies.
Collapse
Affiliation(s)
- Linn B Norbom
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.
| | - Lia Ferschmann
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway
| | - Nadine Parker
- Institute of Medical Science, University of Toronto, Ontario, Canada
| | - Ingrid Agartz
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; K.G Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Norway
| | - Ole A Andreassen
- K.G Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Tomáš Paus
- ECOGENE-21, Chicoutimi, Quebec, Canada; Department of Psychology and Psychiatry, University of Toronto, Ontario, Canada; Department of Psychiatry and Centre hospitalier universitaire Sainte-Justine, University of Montreal, Canada
| | - Lars T Westlye
- K.G Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway
| | - Christian K Tamnes
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.
| |
Collapse
|
425
|
Affiliation(s)
- Nana Matoba
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
426
|
Forsyth JK, Mennigen E, Lin A, Sun D, Vajdi A, Kushan-Wells L, Ching CRK, Villalon-Reina JE, Thompson PM, Bearden CE. Prioritizing Genetic Contributors to Cortical Alterations in 22q11.2 Deletion Syndrome Using Imaging Transcriptomics. Cereb Cortex 2021; 31:3285-3298. [PMID: 33638978 PMCID: PMC8196250 DOI: 10.1093/cercor/bhab008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/13/2020] [Accepted: 05/02/2020] [Indexed: 11/25/2022] Open
Abstract
22q11.2 deletion syndrome (22q11DS) results from a hemizygous deletion that typically spans 46 protein-coding genes and is associated with widespread alterations in brain morphology. The specific genetic mechanisms underlying these alterations remain unclear. In the 22q11.2 ENIGMA Working Group, we characterized cortical alterations in individuals with 22q11DS (n = 232) versus healthy individuals (n = 290) and conducted spatial convergence analyses using gene expression data from the Allen Human Brain Atlas to prioritize individual genes that may contribute to altered surface area (SA) and cortical thickness (CT) in 22q11DS. Total SA was reduced in 22q11DS (Z-score deviance = -1.04), with prominent reductions in midline posterior and lateral association regions. Mean CT was thicker in 22q11DS (Z-score deviance = +0.64), with focal thinning in a subset of regions. Regional expression of DGCR8 was robustly associated with regional severity of SA deviance in 22q11DS; AIFM3 was also associated with SA deviance. Conversely, P2RX6 was associated with CT deviance. Exploratory analysis of gene targets of microRNAs previously identified as down-regulated due to DGCR8 deficiency suggested that DGCR8 haploinsufficiency may contribute to altered corticogenesis in 22q11DS by disrupting cell cycle modulation. These findings demonstrate the utility of combining neuroanatomic and transcriptomic datasets to derive molecular insights into complex, multigene copy number variants.
Collapse
Affiliation(s)
- Jennifer K Forsyth
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA 90024, USA
| | - Eva Mennigen
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA 90024, USA
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA 90024, USA
- Interdepartmental Neuroscience Program, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Daqiang Sun
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA 90024, USA
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Ariana Vajdi
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA 90024, USA
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA 90024, USA
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Julio E Villalon-Reina
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA 90024, USA
- Brain Research Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
427
|
Naqvi S, Sleyp Y, Hoskens H, Indencleef K, Spence JP, Bruffaerts R, Radwan A, Eller RJ, Richmond S, Shriver MD, Shaffer JR, Weinberg SM, Walsh S, Thompson J, Pritchard JK, Sunaert S, Peeters H, Wysocka J, Claes P. Shared heritability of human face and brain shape. Nat Genet 2021; 53:830-839. [PMID: 33821002 PMCID: PMC8232039 DOI: 10.1038/s41588-021-00827-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/16/2021] [Indexed: 02/08/2023]
Abstract
Evidence from model organisms and clinical genetics suggests coordination between the developing brain and face, but the role of this link in common genetic variation remains unknown. We performed a multivariate genome-wide association study of cortical surface morphology in 19,644 individuals of European ancestry, identifying 472 genomic loci influencing brain shape, of which 76 are also linked to face shape. Shared loci include transcription factors involved in craniofacial development, as well as members of signaling pathways implicated in brain-face cross-talk. Brain shape heritability is equivalently enriched near regulatory regions active in either forebrain organoids or facial progenitors. However, we do not detect significant overlap between shared brain-face genome-wide association study signals and variants affecting behavioral-cognitive traits. These results suggest that early in embryogenesis, the face and brain mutually shape each other through both structural effects and paracrine signaling, but this interplay may not impact later brain development associated with cognitive function.
Collapse
Affiliation(s)
- Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Departments of Genetics and Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Yoeri Sleyp
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Hanne Hoskens
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
| | - Karlijne Indencleef
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Jeffrey P Spence
- Departments of Genetics and Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rose Bruffaerts
- Department of Neurosciences, KU Leuven, Leuven, Belgium, Hasselt University, Hasselt, Belgium
- Neurology Department, University Hospitals Leuven, Leuven, Belgium, Hasselt University, Hasselt, Belgium
- Biomedical Research Institute Hasselt University Hasselt Belgium, Hasselt University, Hasselt, Belgium
| | - Ahmed Radwan
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Imaging and Pathology, Translational MRI, KU Leuven, Leuven, Belgium
| | - Ryan J Eller
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Stephen Richmond
- Applied Clinical Research and Public Health, School of Dentistry, Cardiff University, Cardiff, UK
| | - Mark D Shriver
- Department of Anthropology, Pennsylvania State University, State College, PA, USA
| | - John R Shaffer
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seth M Weinberg
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anthropology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Susan Walsh
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - James Thompson
- Department of Psychology, George Mason University, Fairfax, VA, USA
| | - Jonathan K Pritchard
- Departments of Genetics and Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Stefan Sunaert
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Imaging and Pathology, Translational MRI, KU Leuven, Leuven, Belgium
| | - Hilde Peeters
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Peter Claes
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium.
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium.
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
428
|
Moreau CA, Ching CR, Kumar K, Jacquemont S, Bearden CE. Structural and functional brain alterations revealed by neuroimaging in CNV carriers. Curr Opin Genet Dev 2021; 68:88-98. [PMID: 33812299 PMCID: PMC8205978 DOI: 10.1016/j.gde.2021.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/01/2021] [Accepted: 03/09/2021] [Indexed: 01/21/2023]
Abstract
Copy Number Variants (CNVs) are associated with elevated rates of neuropsychiatric disorders. A 'genetics-first' approach, involving the CNV effects on the brain, irrespective of clinical symptomatology, allows investigation of mechanisms underlying neuropsychiatric disorders in the general population. Recent years have seen an increasing number of larger multisite neuroimaging studies investigating the effect of CNVs on structural and functional brain endophenotypes. Alterations overlap with those found in idiopathic psychiatric conditions but effect sizes are twofold to fivefold larger. Here we review new CNV-associated structural and functional brain alterations and outline the future of neuroimaging genomics research, with particular emphasis on developing new resources for the study of high-risk CNVs and rare genomic variants.
Collapse
Affiliation(s)
- Clara A Moreau
- Sainte-Justine Hospital Research Center, Montreal, Canada; Department of Pediatrics, University of Montreal, Montreal, Canada; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada; Human Genetics and Cognitive Functions, CNRS UMR 3571, Université de Paris, Institut Pasteur, Paris, France
| | - Christopher Rk Ching
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, USA
| | - Kuldeep Kumar
- Sainte-Justine Hospital Research Center, Montreal, Canada
| | - Sebastien Jacquemont
- Sainte-Justine Hospital Research Center, Montreal, Canada; Department of Pediatrics, University of Montreal, Montreal, Canada.
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, University of California, Los Angeles, USA.
| |
Collapse
|
429
|
Gurholt TP, Kaufmann T, Frei O, Alnæs D, Haukvik UK, van der Meer D, Moberget T, O'Connell KS, Leinhard OD, Linge J, Simon R, Smeland OB, Sønderby IE, Winterton A, Steen NE, Westlye LT, Andreassen OA. Population-based body-brain mapping links brain morphology with anthropometrics and body composition. Transl Psychiatry 2021; 11:295. [PMID: 34006848 PMCID: PMC8131380 DOI: 10.1038/s41398-021-01414-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Understanding complex body-brain processes and the interplay between adipose tissue and brain health is important for understanding comorbidity between psychiatric and cardiometabolic disorders. We investigated associations between brain structure and anthropometric and body composition measures using brain magnetic resonance imaging (MRI; n = 24,728) and body MRI (n = 4973) of generally healthy participants in the UK Biobank. We derived regional and global measures of brain morphometry using FreeSurfer and tested their association with (i) anthropometric measures, and (ii) adipose and muscle tissue measured from body MRI. We identified several significant associations with small effect sizes. Anthropometric measures showed negative, nonlinear, associations with cerebellar/cortical gray matter, and brain stem structures, and positive associations with ventricular volumes. Subcortical structures exhibited mixed effect directionality, with strongest positive association for accumbens. Adipose tissue measures, including liver fat and muscle fat infiltration, were negatively associated with cortical/cerebellum structures, while total thigh muscle volume was positively associated with brain stem and accumbens. Regional investigations of cortical area, thickness, and volume indicated widespread and largely negative associations with anthropometric and adipose tissue measures, with an opposite pattern for thigh muscle volume. Self-reported diabetes, hypertension, or hypercholesterolemia were associated with brain structure. The findings provide new insight into physiological body-brain associations suggestive of shared mechanisms between cardiometabolic risk factors and brain health. Whereas the causality needs to be determined, the observed patterns of body-brain relationships provide a foundation for understanding the underlying mechanisms linking psychiatric disorders with obesity and cardiovascular disease, with potential for the development of new prevention strategies.
Collapse
Affiliation(s)
- Tiril P Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo, Norway.
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Oleksandr Frei
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Unn K Haukvik
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Torgeir Moberget
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Kevin S O'Connell
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Olof D Leinhard
- AMRA Medical, Linköping, Sweden
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | | | - Rozalyn Simon
- AMRA Medical, Linköping, Sweden
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Olav B Smeland
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ida E Sønderby
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Adriano Winterton
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
430
|
Zhao B, Shan Y, Yang Y, Yu Z, Li T, Wang X, Luo T, Zhu Z, Sullivan P, Zhao H, Li Y, Zhu H. Transcriptome-wide association analysis of brain structures yields insights into pleiotropy with complex neuropsychiatric traits. Nat Commun 2021; 12:2878. [PMID: 34001886 PMCID: PMC8128893 DOI: 10.1038/s41467-021-23130-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/16/2021] [Indexed: 02/03/2023] Open
Abstract
Structural variations of the human brain are heritable and highly polygenic traits, with hundreds of associated genes identified in recent genome-wide association studies (GWAS). Transcriptome-wide association studies (TWAS) can both prioritize these GWAS findings and also identify additional gene-trait associations. Here we perform cross-tissue TWAS analysis of 211 structural neuroimaging and discover 278 associated genes exceeding Bonferroni significance threshold of 1.04 × 10-8. The TWAS-significant genes for brain structures have been linked to a wide range of complex traits in different domains. Through TWAS gene-based polygenic risk scores (PRS) prediction, we find that TWAS PRS gains substantial power in association analysis compared to conventional variant-based GWAS PRS, and up to 6.97% of phenotypic variance (p-value = 7.56 × 10-31) can be explained in independent testing data sets. In conclusion, our study illustrates that TWAS can be a powerful supplement to traditional GWAS in imaging genetics studies for gene discovery-validation, genetic co-architecture analysis, and polygenic risk prediction.
Collapse
Affiliation(s)
- Bingxin Zhao
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yue Shan
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yue Yang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhaolong Yu
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Tengfei Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xifeng Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tianyou Luo
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ziliang Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick Sullivan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hongyu Zhao
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Biostatistics, Yale University, New Haven, CT, USA
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
431
|
The Polygenic Nature and Complex Genetic Architecture of Specific Learning Disorder. Brain Sci 2021; 11:brainsci11050631. [PMID: 34068951 PMCID: PMC8156942 DOI: 10.3390/brainsci11050631] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022] Open
Abstract
Specific Learning Disorder (SLD) is a multifactorial, neurodevelopmental disorder which may involve persistent difficulties in reading (dyslexia), written expression and/or mathematics. Dyslexia is characterized by difficulties with speed and accuracy of word reading, deficient decoding abilities, and poor spelling. Several studies from different, but complementary, scientific disciplines have investigated possible causal/risk factors for SLD. Biological, neurological, hereditary, cognitive, linguistic-phonological, developmental and environmental factors have been incriminated. Despite worldwide agreement that SLD is highly heritable, its exact biological basis remains elusive. We herein present: (a) an update of studies that have shaped our current knowledge on the disorder’s genetic architecture; (b) a discussion on whether this genetic architecture is ‘unique’ to SLD or, alternatively, whether there is an underlying common genetic background with other neurodevelopmental disorders; and, (c) a brief discussion on whether we are at a position of generating meaningful correlations between genetic findings and anatomical data from neuroimaging studies or specific molecular/cellular pathways. We conclude with open research questions that could drive future research directions.
Collapse
|
432
|
Bandala C, Cortes-Altamirano JL, Reyes-Long S, Lara-Padilla E, Ilizaliturri-Flores I, Alfaro-Rodríguez A. Putative mechanism of neurological damage in COVID-19 infection. Acta Neurobiol Exp (Wars) 2021; 81:69-79. [PMID: 33949163 DOI: 10.21307/ane-2021-008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/28/2021] [Indexed: 11/11/2022]
Abstract
The recent pandemic of the coronavirus infectious disease 2019 (COVID-19) has affected around 192 countries, and projections have shown that around 40% to 70% of world population could be infected in the next months. COVID-19 is caused by the virus SARS- CoV-2, it enters the cells through the ACE2 receptor (angiotensin converting enzyme 2). It is well known that SARS-CoV-2 could develop mild, moderate, and severe respiratory symptoms that could lead to death. The virus receptor is expressed in different organs such as the lungs, kidney, intestine, and brain, among others. In the lung could cause pneumonia and severe acute respiratory syndrome (SARS). The brain can be directly affected by cellular damage due to viral invasion, which can lead to an inflammatory response, by the decrease in the enzymatic activity of ACE2 that regulates neuroprotective, neuro-immunomodulatory and neutralizing functions of oxidative stress. Another severe damage is hypoxemia in patients that do not receive adequate respiratory support. The neurological symptoms that the patient presents, will depend on factors that condition the expression of ACE2 in the brain such as age and sex, as well as the mechanism of neuronal invasion, the immune response and the general state of the patient. Clinical and histopathological studies have described neurological alterations in human patients with COVID-19. These conditions could have a possible contribution to the morbidity and mortality caused by this disease and may even represent the onset of neurodegenerative activity in recovered patients. The recent pandemic of the coronavirus infectious disease 2019 (COVID-19) has affected around 192 countries, and projections have shown that around 40% to 70% of world population could be infected in the next months. COVID-19 is caused by the virus SARS- CoV-2, it enters the cells through the ACE2 receptor (angiotensin converting enzyme 2). It is well known that SARS-CoV-2 could develop mild, moderate, and severe respiratory symptoms that could lead to death. The virus receptor is expressed in different organs such as the lungs, kidney, intestine, and brain, among others. In the lung could cause pneumonia and severe acute respiratory syndrome (SARS). The brain can be directly affected by cellular damage due to viral invasion, which can lead to an inflammatory response, by the decrease in the enzymatic activity of ACE2 that regulates neuroprotective, neuro-immunomodulatory and neutralizing functions of oxidative stress. Another severe damage is hypoxemia in patients that do not receive adequate respiratory support. The neurological symptoms that the patient presents, will depend on factors that condition the expression of ACE2 in the brain such as age and sex, as well as the mechanism of neuronal invasion, the immune response and the general state of the patient. Clinical and histopathological studies have described neurological alterations in human patients with COVID-19. These conditions could have a possible contribution to the morbidity and mortality caused by this disease and may even represent the onset of neurodegenerative activity in recovered patients.
Collapse
Affiliation(s)
- Cindy Bandala
- División de Neurociencias , Instituto Nacional de Rehabilitación , México ; Escuela Superior de Medicina , Instituto Politécnico Nacional , México
| | - José Luis Cortes-Altamirano
- División de Neurociencias , Instituto Nacional de Rehabilitación , México ; Universidad Estatal del Valle de Ecatepec , México
| | - Samuel Reyes-Long
- División de Neurociencias , Instituto Nacional de Rehabilitación , México ; Escuela Superior de Medicina , Instituto Politécnico Nacional , México
| | | | | | | |
Collapse
|
433
|
Xie Y, Zhang X, Liu F, Qin W, Fu J, Xue K, Yu C. Brain mRNA Expression Associated with Cortical Volume Alterations in Autism Spectrum Disorder. Cell Rep 2021; 32:108137. [PMID: 32937121 DOI: 10.1016/j.celrep.2020.108137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/23/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Numerous studies report abnormal cerebral cortex volume (CCV) in autism spectrum disorder (ASD); however, genes related to CCV abnormalities in ASD remain largely unknown. Here, we identify genes associated with CCV alterations in ASD by performing spatial correlations between the gene expression of 6 donated brains and neuroimaging data from 1,404 ASD patients and 1,499 controls. Based on spatial correlations between gene expression and CCV differences from two independent meta-analyses and between gene expression and individual CCV distributions of 404 patients and 496 controls, we identify 417 genes associated with both CCV differences and individual CCV distributions. These genes are enriched for genetic association signals and genes downregulated in the ASD post-mortem brain. The expression patterns of these genes are correlated with brain activation patterns of language-related neural processes frequently impaired in ASD. These findings highlight a model whereby genetic risk impacts gene expression (downregulated), which leads to CCV alterations in ASD.
Collapse
Affiliation(s)
- Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Xue Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Jilian Fu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Kaizhong Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, 300052 Tianjin, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P.R. China.
| |
Collapse
|
434
|
Nyberg L, Magnussen F, Lundquist A, Baaré W, Bartrés-Faz D, Bertram L, Boraxbekk CJ, Brandmaier AM, Drevon CA, Ebmeier K, Ghisletta P, Henson RN, Junqué C, Kievit R, Kleemeyer M, Knights E, Kühn S, Lindenberger U, Penninx BWJH, Pudas S, Sørensen Ø, Vaqué-Alcázar L, Walhovd KB, Fjell AM. Educational attainment does not influence brain aging. Proc Natl Acad Sci U S A 2021; 118:e2101644118. [PMID: 33903255 PMCID: PMC8106299 DOI: 10.1073/pnas.2101644118] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Education has been related to various advantageous lifetime outcomes. Here, using longitudinal structural MRI data (4,422 observations), we tested the influential hypothesis that higher education translates into slower rates of brain aging. Cross-sectionally, education was modestly associated with regional cortical volume. However, despite marked mean atrophy in the cortex and hippocampus, education did not influence rates of change. The results were replicated across two independent samples. Our findings challenge the view that higher education slows brain aging.
Collapse
Affiliation(s)
- Lars Nyberg
- Department of Radiation Sciences, Radiology, Umeå University, 901 87 Umeå, Sweden;
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0317 Oslo, Norway
| | - Fredrik Magnussen
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0317 Oslo, Norway
| | - Anders Lundquist
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
| | - William Baaré
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Amager and Hvidovre, 2650 Hvidovre, Denmark
| | - David Bartrés-Faz
- Department of Medicine, Faculty of Medicine and Health Sciences and Neurosciences Institute, University of Barcelona, 08014 Barcelona, Spain
| | - Lars Bertram
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0317 Oslo, Norway
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, 23538 Lübeck, Germany
| | - C J Boraxbekk
- Department of Radiation Sciences, Radiology, Umeå University, 901 87 Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Amager and Hvidovre, 2650 Hvidovre, Denmark
- Institute of Sports Medicine Copenhagen, Copenhagen University Hospital, Bispebjerg, 2400 Copenhagen, Denmark
| | - Andreas M Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, D-14195 Berlin, Germany
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, D-14195 Berlin, Germany, and London WC1B 5EH, United Kingdom
| | - Christian A Drevon
- Vitas AS, Research Park, 0349 Oslo, Norway
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, Medicine/University of Oslo, 0317 Oslo, Norway
| | - Klaus Ebmeier
- Warneford Hospital, University of Oxford, Oxford OX3 7JX, United Kingdom
| | - Paolo Ghisletta
- Faculté de Psychologie et des Sciences de l'Education, Université de Genève, 1205 Geneva, Switzerland
| | - Richard N Henson
- Medical Research Council Cognition and Brain Sciences Unit, Department of Psychiatry, University of Cambridge, Cambridge CB2 7EF, United Kingdom
| | - Carme Junqué
- Department of Medicine, Faculty of Medicine and Health Sciences and Neurosciences Institute, University of Barcelona, 08014 Barcelona, Spain
| | - Rogier Kievit
- Medical Research Council Cognition and Brain Sciences Unit, Department of Psychiatry, University of Cambridge, Cambridge CB2 7EF, United Kingdom
- Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 GL Nijmegen, The Netherlands
| | - Maike Kleemeyer
- Center for Lifespan Psychology, Max Planck Institute for Human Development, D-14195 Berlin, Germany
| | - Ethan Knights
- Medical Research Council Cognition and Brain Sciences Unit, Department of Psychiatry, University of Cambridge, Cambridge CB2 7EF, United Kingdom
| | - Simone Kühn
- Center for Lifespan Psychology, Max Planck Institute for Human Development, D-14195 Berlin, Germany
- Department of Psychiatry and Psychotherapy, University Clinic Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, D-14195 Berlin, Germany
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, D-14195 Berlin, Germany, and London WC1B 5EH, United Kingdom
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam University Medical Center, Vrije Universiteit, 1081 HJ Amsterdam, The Netherlands
| | - Sara Pudas
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0317 Oslo, Norway
| | - Lídia Vaqué-Alcázar
- Department of Medicine, Faculty of Medicine and Health Sciences and Neurosciences Institute, University of Barcelona, 08014 Barcelona, Spain
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0317 Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0372 Oslo, Norway
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0317 Oslo, Norway;
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0372 Oslo, Norway
| |
Collapse
|
435
|
He X, Li X, Fu J, Xu J, Liu H, Zhang P, Li W, Yu C, Ye Z, Qin W. The morphometry of left cuneus mediating the genetic regulation on working memory. Hum Brain Mapp 2021; 42:3470-3480. [PMID: 33939221 PMCID: PMC8249898 DOI: 10.1002/hbm.25446] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Working memory is a basic human cognitive function. However, the genetic signatures and their biological pathway remain poorly understood. In the present study, we tried to clarify this issue by exploring the potential associations and pathways among genetic variants, brain morphometry and working memory performance. We first carried out association analyses between 2‐back accuracy and 212 image‐derived phenotypes from 1141 Human Connectome Project (HCP) subjects using a linear mixed model (LMM). We found a significantly positive correlation between the left cuneus volume and 2‐back accuracy (T = 3.615, p = 3.150e−4, Cohen's d = 0.226, corrected using family‐wise error [FWE] method). Based on the LMM‐based genome‐wide association study (GWAS) on the HCP dataset and UK Biobank 33 k GWAS summary statistics, we identified eight independent single nucleotide polymorphisms (SNPs) that were reliably associated with left cuneus volume in both UKB and HCP dataset. Within the eight SNPs, we found a negative correlation between the rs76119478 polymorphism and 2‐back accuracy accuracy (T = −2.045, p = .041, Cohen's d = −0.129). Finally, an LMM‐based mediation analysis elucidated a significant effect of left cuneus volume in mediating rs76119478 polymorphism on the 2‐back accuracy (indirect effect = −0.007, 95% BCa CI = [−0.045, −0.003]). These results were also replicated in a subgroup of Caucasians in the HCP population. Further fine mapping demonstrated that rs76119478 maps on intergene CTD‐2315A10.2 adjacent to protein‐encoding gene DAAM1, and is significantly associated with L3HYPDH mRNA expression. Our study suggested this new variant rs76119478 may regulate the working memory through exerting influence on the left cuneus volume.
Collapse
Affiliation(s)
- Xiaoxi He
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Xi Li
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jilian Fu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Huaigui Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wei Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
436
|
Akhrif A, Roy A, Peters K, Lesch KP, Romanos M, Schmitt-Böhrer A, Neufang S. REVERSE phenotyping-Can the phenotype following constitutive Tph2 gene inactivation in mice be transferred to children and adolescents with and without adhd? Brain Behav 2021; 11:e02054. [PMID: 33523602 PMCID: PMC8119824 DOI: 10.1002/brb3.2054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Experimental models of neuropsychiatric disorders, for example, ADHD, are used to mimic specific phenotypic traits of a complex human disorder. However, it remains unresolved to what extent the animal phenotype reflects the specific human trait. The null mutant mouse of the serotonin-synthesizing tryptophan hydroxylase-2 (Tph2-/- ) gene has been proposed as experimental model for ADHD with high face validity for impulsive, aggressive, and anxious behaviors. To validate this ADHD-like model, we examined the Tph2-/- phenotype in humans when considering allelic variation of TPH2 function ("reverse phenotyping"). METHODS 58 participants (6 females, 8-18 years) were examined, of whom 32 were diagnosed with ADHD. All participants were phenotyped for impulsivity, aggression, and anxiety using questionnaires, behavioral tests, and MRI scanning while performing the 4-choice serial reaction time task. Additionally, participants were genotyped for the TPH2 G-703T (rs4570625) polymorphism. To analyze the relation between TPH2 G-703T variants and the impulsive/aggressive/anxious phenotype, mediation analyses were performed using behavioral and MRI data as potential mediators. RESULTS We found that the relation between TPH2 G-703T and aggression as part of the reverse Tph2- /- phenotype was mediated by structure and function of the right middle and inferior frontal gyrus. CONCLUSION At the example of trait aggression, our results support the assumption that the Tph2 null mutant mouse reflects the TPH2 G-703T-dependent phenotype in humans. Additionally, we conclude that "reverse phenotyping" is a promising method to validate experimental models and human findings for refined analysis of disease mechanisms.
Collapse
Affiliation(s)
- Atae Akhrif
- Department of Child and Adolescent Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Arunima Roy
- The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Katharina Peters
- Department of Child and Adolescent Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Marcel Romanos
- Department of Child and Adolescent Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Angelika Schmitt-Böhrer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Susanne Neufang
- Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany.,Department of Psychiatry and Psychotherapy, Medical Faculty Heinrich, Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
437
|
Schwartz E, Diogo MC, Glatter S, Seidl R, Brugger PC, Gruber GM, Kiss H, Nenning KH, Langs G, Prayer D, Kasprian G. The Prenatal Morphomechanic Impact of Agenesis of the Corpus Callosum on Human Brain Structure and Asymmetry. Cereb Cortex 2021; 31:4024-4037. [PMID: 33872347 DOI: 10.1093/cercor/bhab066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 11/14/2022] Open
Abstract
Genetic, molecular, and physical forces together impact brain morphogenesis. The early impact of deficient midline crossing in agenesis of the Corpus Callosum (ACC) on prenatal human brain development and architecture is widely unknown. Here we analyze the changes of brain structure in 46 fetuses with ACC in vivo to identify their deviations from normal development. Cases of complete ACC show an increase in the thickness of the cerebral wall in the frontomedial regions and a reduction in the temporal, insular, medial occipital and lateral parietal regions, already present at midgestation. ACC is associated with a more symmetric configuration of the temporal lobes and increased frequency of atypical asymmetry patterns, indicating an early morphomechanic effect of callosal growth on human brain development affecting the thickness of the pallium along a ventro-dorsal gradient. Altered prenatal brain architecture in ACC emphasizes the importance of conformational forces introduced by emerging interhemispheric connectivity on the establishment of polygenically determined brain asymmetries.
Collapse
Affiliation(s)
- Ernst Schwartz
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Sarah Glatter
- Department of Pediatric and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Rainer Seidl
- Department of Pediatric and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter C Brugger
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gerlinde M Gruber
- Department of Anatomy and Biomechanics, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| | - Herbert Kiss
- Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria
| | - Karl-Heinz Nenning
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Georg Langs
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
438
|
Nadig A, Seidlitz J, McDermott CL, Liu S, Bethlehem R, Moore TM, Mallard TT, Clasen LS, Blumenthal JD, Lalonde F, Gur RC, Gur RE, Bullmore ET, Satterthwaite TD, Raznahan A. Morphological integration of the human brain across adolescence and adulthood. Proc Natl Acad Sci U S A 2021; 118:e2023860118. [PMID: 33811142 PMCID: PMC8040585 DOI: 10.1073/pnas.2023860118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Brain structural covariance norms capture the coordination of neurodevelopmental programs between different brain regions. We develop and apply anatomical imbalance mapping (AIM), a method to measure and model individual deviations from these norms, to provide a lifespan map of morphological integration in the human cortex. In cross-sectional and longitudinal data, analysis of whole-brain average anatomical imbalance reveals a reproducible tightening of structural covariance by age 25 y, which loosens after the seventh decade of life. Anatomical imbalance change in development and in aging is greatest in the association cortex and least in the sensorimotor cortex. Finally, we show that interindividual variation in whole-brain average anatomical imbalance is positively correlated with a marker of human prenatal stress (birthweight disparity between monozygotic twins) and negatively correlated with general cognitive ability. This work provides methods and empirical insights to advance our understanding of coordinated anatomical organization of the human brain and its interindividual variation.
Collapse
Affiliation(s)
- Ajay Nadig
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, 02115;
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, 20892
| | - Jakob Seidlitz
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, 20892
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, 19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104
| | - Cassidy L McDermott
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, 20892
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104
| | - Siyuan Liu
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, 20892
| | - Richard Bethlehem
- Department of Psychiatry, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Tyler M Moore
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, 19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104
| | - Travis T Mallard
- Department of Psychology, University of Texas at Austin, Austin, TX, 78712
| | - Liv S Clasen
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, 20892
| | - Jonathan D Blumenthal
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, 20892
| | - François Lalonde
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, 20892
| | - Ruben C Gur
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, 19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104
| | - Raquel E Gur
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, 19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge CB2 1TN, United Kingdom
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge CB2 1TN, United Kingdom
| | | | - Armin Raznahan
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, 20892
| |
Collapse
|
439
|
Overs BJ, Lenroot RK, Roberts G, Green MJ, Toma C, Hadzi-Pavlovic D, Pierce KD, Schofield PR, Mitchell PB, Fullerton JM. Cortical mediation of relationships between dopamine receptor D2 and cognition is absent in youth at risk of bipolar disorder. Psychiatry Res Neuroimaging 2021; 309:111258. [PMID: 33529975 DOI: 10.1016/j.pscychresns.2021.111258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/11/2020] [Accepted: 01/26/2021] [Indexed: 11/18/2022]
Abstract
Bipolar disorder is associated with cognitive deficits and cortical changes for which the developmental dynamics are not well understood. The dopamine D2 receptor (DRD2) gene has been associated with both psychiatric disorders and cognitive variability. Here we examined the mediating role of brain structure in the relationship between DRD2 genomic variation and cognitive performance, with target cortical regions selected based on evidence of association with DRD2, bipolar disorder and/or cognition from prior literature. Participants (n = 143) were aged 12-30 years and comprised 62 first-degree relatives of bipolar patients (deemed 'at-risk'), 55 controls, and 26 patients with established bipolar disorder; all were unrelated Caucasian individuals with complete data across the three required modalities (structural magnetic resonance imaging, neuropsychological and genetic data). A DRD2 haplotype was derived from three functional polymorphisms (rs1800497, rs1076560, rs2283265) associated with alternative splicing (i.e., D2-short/-long isoforms). Moderated mediation analyses explored group differences in relationships between this DRD2 haplotype, three structural brain networks which subsume the identified cortical regions of interest (frontoparietal, dorsal-attention, and ventral-attention), and three cognitive indices (intelligence, attention, and immediate memory). Controls who were homozygous for the DRD2 major haplotype demonstrated greater cognitive performance as a result of dorsal-attention network mediation. However, this association was absent in the 'at-risk' group. This study provides the first evidence of a functional DRD2-brain-cognition pathway. The absence of typical brain-cognition relationships in young 'at-risk' individuals may reflect biological differences that precede illness onset. Further insight into early pathogenic processes may facilitate targeted early interventions.
Collapse
Affiliation(s)
- Bronwyn J Overs
- Neuroscience Research Australia, New South Wales, Randwick, Australia
| | - Rhoshel K Lenroot
- Neuroscience Research Australia, New South Wales, Randwick, Australia; School of Psychiatry, University of New South Wales, New South Wales, Kensington, Australia
| | - Gloria Roberts
- School of Psychiatry, University of New South Wales, New South Wales, Kensington, Australia
| | - Melissa J Green
- Neuroscience Research Australia, New South Wales, Randwick, Australia; School of Psychiatry, University of New South Wales, New South Wales, Kensington, Australia
| | - Claudio Toma
- Neuroscience Research Australia, New South Wales, Randwick, Australia; School of Medical Sciences, University of New South Wales, New South Wales, Kensington, Australia
| | - Dusan Hadzi-Pavlovic
- School of Psychiatry, University of New South Wales, New South Wales, Kensington, Australia
| | - Kerrie D Pierce
- Neuroscience Research Australia, New South Wales, Randwick, Australia
| | - Peter R Schofield
- Neuroscience Research Australia, New South Wales, Randwick, Australia; School of Medical Sciences, University of New South Wales, New South Wales, Kensington, Australia
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, New South Wales, Kensington, Australia
| | - Janice M Fullerton
- Neuroscience Research Australia, New South Wales, Randwick, Australia; School of Medical Sciences, University of New South Wales, New South Wales, Kensington, Australia.
| |
Collapse
|
440
|
Ohi K, Ochi R, Noda Y, Wada M, Sugiyama S, Nishi A, Shioiri T, Mimura M, Nakajima S. Polygenic risk scores for major psychiatric and neurodevelopmental disorders contribute to sleep disturbance in childhood: Adolescent Brain Cognitive Development (ABCD) Study. Transl Psychiatry 2021; 11:187. [PMID: 33771979 PMCID: PMC7997961 DOI: 10.1038/s41398-021-01308-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 12/18/2022] Open
Abstract
Sleep disturbance is a common symptom of psychiatric and neurodevelopmental disorders and, especially in childhood, can be a precursor to various mental disorders. However, the genetic etiology of mental illness that contributes to sleep disturbance during childhood is poorly understood. We investigated whether the polygenic features of psychiatric and neurodevelopmental disorders are associated with sleep disturbance during childhood. We conducted polygenic risk score (PRS) analyses by utilizing large-scale genome-wide association studies (GWASs) (n = 46,350-500,199) of five major psychiatric and neurodevelopmental disorders (autism spectrum disorder, schizophrenia, attention-deficit/hyperactivity disorder (ADHD), major depressive disorder (MDD), and bipolar disorder) and, additionally, anxiety disorders as base datasets. We used the data of 9- to 10-year-olds from the Adolescent Brain Cognitive Development study (n = 9683) as a target dataset. Sleep disturbance was assessed based on the Sleep Disturbance Scale for Children (SDSC) scores. The effects of PRSs for these psychiatric and neurodevelopmental disorders on the total scores and six subscale scores of the SDSC were investigated. Of the PRSs for the five psychiatric and neurodevelopmental disorders, the PRSs for ADHD and MDD positively correlated with sleep disturbance in children (ADHD: R2 = 0.0033, p = 6.19 × 10-5, MDD: R2 = 0.0042, p = 5.69 × 10-6). Regarding the six subscale scores of the SDSC, the PRSs for ADHD positively correlated with both disorders of initiating and maintaining sleep (R2 = 0.0028, p = 2.31 × 10-4) and excessive somnolence (R2 = 0.0023, p = 8.44 × 10-4). Furthermore, the PRSs for MDD primarily positively correlated with disorders of initiating and maintaining sleep (R2 = 0.0048, p = 1.26 × 10-6), followed by excessive somnolence (R2 = 0.0023, p = 7.74 × 10-4) and sleep hyperhidrosis (R2 = 0.0014, p = 9.55 × 10-3). Despite high genetic overlap between MDD and anxiety disorders, PRSs for anxiety disorders correlated with different types of sleep disturbances such as disorders of arousal or nightmares (R2 = 0.0013, p = 0.011). These findings suggest that greater genetic susceptibility to specific psychiatric and neurodevelopmental disorders, as represented by ADHD, MDD, and anxiety disorders, may contribute to greater sleep problems among children.
Collapse
Affiliation(s)
- Kazutaka Ohi
- Department of Psychiatry and Psychotherapy, Gifu University Graduate School of Medicine, Gifu, Japan.
- Department of General Internal Medicine, Kanazawa Medical University, Ishikawa, Japan.
| | - Ryo Ochi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry and Psychotherapy, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akira Nishi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Toshiki Shioiri
- Department of Psychiatry and Psychotherapy, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
441
|
Sønderby IE, van der Meer D, Moreau C, Kaufmann T, Walters GB, Ellegaard M, Abdellaoui A, Ames D, Amunts K, Andersson M, Armstrong NJ, Bernard M, Blackburn NB, Blangero J, Boomsma DI, Brodaty H, Brouwer RM, Bülow R, Bøen R, Cahn W, Calhoun VD, Caspers S, Ching CRK, Cichon S, Ciufolini S, Crespo-Facorro B, Curran JE, Dale AM, Dalvie S, Dazzan P, de Geus EJC, de Zubicaray GI, de Zwarte SMC, Desrivieres S, Doherty JL, Donohoe G, Draganski B, Ehrlich S, Eising E, Espeseth T, Fejgin K, Fisher SE, Fladby T, Frei O, Frouin V, Fukunaga M, Gareau T, Ge T, Glahn DC, Grabe HJ, Groenewold NA, Gústafsson Ó, Haavik J, Haberg AK, Hall J, Hashimoto R, Hehir-Kwa JY, Hibar DP, Hillegers MHJ, Hoffmann P, Holleran L, Holmes AJ, Homuth G, Hottenga JJ, Hulshoff Pol HE, Ikeda M, Jahanshad N, Jockwitz C, Johansson S, Jönsson EG, Jørgensen NR, Kikuchi M, Knowles EEM, Kumar K, Le Hellard S, Leu C, Linden DEJ, Liu J, Lundervold A, Lundervold AJ, Maillard AM, Martin NG, Martin-Brevet S, Mather KA, Mathias SR, McMahon KL, McRae AF, Medland SE, Meyer-Lindenberg A, Moberget T, Modenato C, Sánchez JM, Morris DW, Mühleisen TW, Murray RM, Nielsen J, Nordvik JE, Nyberg L, Loohuis LMO, Ophoff RA, et alSønderby IE, van der Meer D, Moreau C, Kaufmann T, Walters GB, Ellegaard M, Abdellaoui A, Ames D, Amunts K, Andersson M, Armstrong NJ, Bernard M, Blackburn NB, Blangero J, Boomsma DI, Brodaty H, Brouwer RM, Bülow R, Bøen R, Cahn W, Calhoun VD, Caspers S, Ching CRK, Cichon S, Ciufolini S, Crespo-Facorro B, Curran JE, Dale AM, Dalvie S, Dazzan P, de Geus EJC, de Zubicaray GI, de Zwarte SMC, Desrivieres S, Doherty JL, Donohoe G, Draganski B, Ehrlich S, Eising E, Espeseth T, Fejgin K, Fisher SE, Fladby T, Frei O, Frouin V, Fukunaga M, Gareau T, Ge T, Glahn DC, Grabe HJ, Groenewold NA, Gústafsson Ó, Haavik J, Haberg AK, Hall J, Hashimoto R, Hehir-Kwa JY, Hibar DP, Hillegers MHJ, Hoffmann P, Holleran L, Holmes AJ, Homuth G, Hottenga JJ, Hulshoff Pol HE, Ikeda M, Jahanshad N, Jockwitz C, Johansson S, Jönsson EG, Jørgensen NR, Kikuchi M, Knowles EEM, Kumar K, Le Hellard S, Leu C, Linden DEJ, Liu J, Lundervold A, Lundervold AJ, Maillard AM, Martin NG, Martin-Brevet S, Mather KA, Mathias SR, McMahon KL, McRae AF, Medland SE, Meyer-Lindenberg A, Moberget T, Modenato C, Sánchez JM, Morris DW, Mühleisen TW, Murray RM, Nielsen J, Nordvik JE, Nyberg L, Loohuis LMO, Ophoff RA, Owen MJ, Paus T, Pausova Z, Peralta JM, Pike GB, Prieto C, Quinlan EB, Reinbold CS, Marques TR, Rucker JJH, Sachdev PS, Sando SB, Schofield PR, Schork AJ, Schumann G, Shin J, Shumskaya E, Silva AI, Sisodiya SM, Steen VM, Stein DJ, Strike LT, Suzuki IK, Tamnes CK, Teumer A, Thalamuthu A, Tordesillas-Gutiérrez D, Uhlmann A, Ulfarsson MO, van 't Ent D, van den Bree MBM, Vanderhaeghen P, Vassos E, Wen W, Wittfeld K, Wright MJ, Agartz I, Djurovic S, Westlye LT, Stefansson H, Stefansson K, Jacquemont S, Thompson PM, Andreassen OA. 1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans. Transl Psychiatry 2021; 11:182. [PMID: 33753722 PMCID: PMC7985307 DOI: 10.1038/s41398-021-01213-0] [Show More Authors] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/23/2020] [Accepted: 01/08/2021] [Indexed: 01/07/2023] Open
Abstract
Low-frequency 1q21.1 distal deletion and duplication copy number variant (CNV) carriers are predisposed to multiple neurodevelopmental disorders, including schizophrenia, autism and intellectual disability. Human carriers display a high prevalence of micro- and macrocephaly in deletion and duplication carriers, respectively. The underlying brain structural diversity remains largely unknown. We systematically called CNVs in 38 cohorts from the large-scale ENIGMA-CNV collaboration and the UK Biobank and identified 28 1q21.1 distal deletion and 22 duplication carriers and 37,088 non-carriers (48% male) derived from 15 distinct magnetic resonance imaging scanner sites. With standardized methods, we compared subcortical and cortical brain measures (all) and cognitive performance (UK Biobank only) between carrier groups also testing for mediation of brain structure on cognition. We identified positive dosage effects of copy number on intracranial volume (ICV) and total cortical surface area, with the largest effects in frontal and cingulate cortices, and negative dosage effects on caudate and hippocampal volumes. The carriers displayed distinct cognitive deficit profiles in cognitive tasks from the UK Biobank with intermediate decreases in duplication carriers and somewhat larger in deletion carriers-the latter potentially mediated by ICV or cortical surface area. These results shed light on pathobiological mechanisms of neurodevelopmental disorders, by demonstrating gene dose effect on specific brain structures and effect on cognitive function.
Collapse
Affiliation(s)
- Ida E Sønderby
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway.
| | - Dennis van der Meer
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Clara Moreau
- Sainte Justine Hospital Research Center, Montreal, Quebec, Canada
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montreal, Quebec, Canada
| | - Tobias Kaufmann
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - G Bragi Walters
- deCODE Genetics (Amgen), Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Maria Ellegaard
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Abdel Abdellaoui
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
| | - David Ames
- University of Melbourne Academic Unit for Psychiatry of Old Age, Kew, Australia
- National Ageing Research Institute, Parkville, Australia
| | - Katrin Amunts
- Institute of Neuroscience and Medicine, INM-1, Research Centre Jülich, Jülich, Germany
- C. and O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Düsseldorf, Germany
| | - Micael Andersson
- Umeå Centre for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | - Manon Bernard
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nicholas B Blackburn
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, USA
| | - Dorret I Boomsma
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Dementia Centre for Research Collaboration, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Rachel M Brouwer
- Department of Psychiatry, University Medical Center Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Robin Bülow
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Rune Bøen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Wiepke Cahn
- Department of Psychiatry, University Medical Center Brain Center, Utrecht University, Utrecht, the Netherlands
- Altrecht Science, Utrecht, the Netherlands
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
- The Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, USA
| | - Svenja Caspers
- Institute of Neuroscience and Medicine, INM-1, Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, USA
| | - Sven Cichon
- Institute of Neuroscience and Medicine, INM-1, Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Simone Ciufolini
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Benedicto Crespo-Facorro
- University Hospital Marqués de Valdecilla, IDIVAL, Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM), Santander, Spain
- University Hospital Virgen del Rocío, IBiS, Centre de Investigació Biomédica en Red Salud Mental (CIBERSAM), Sevilla, Spain
| | - Joanne E Curran
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, USA
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California, San Diego, USA
| | - Shareefa Dalvie
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Eco J C de Geus
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | | | - Sonja M C de Zwarte
- Department of Psychiatry, University Medical Center Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Sylvane Desrivieres
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Joanne L Doherty
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- Cardiff University Brain Research Imaging Centre School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Gary Donohoe
- Centre for Neuroimaging and Cognitive Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Bogdan Draganski
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Neurology Department, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Else Eising
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Thomas Espeseth
- Department of Psychology, University of Oslo, Oslo, Norway
- Bjørknes College, Oslo, Norway
| | - Kim Fejgin
- Signal Transduction, H. Lundbeck A/S, Ottiliavej 9, DK-2500, Valby, Denmark
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, 1474, Nordbyhagen, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vincent Frouin
- Université Paris-Saclay, CEA, Neurospin, 91191, Gif-sur-Yvette, France
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Life Science, Sokendai, Hayama, Japan
| | - Thomas Gareau
- Université Paris-Saclay, CEA, Neurospin, 91191, Gif-sur-Yvette, France
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David C Glahn
- Boston Children's Hospital, Boston, Massachusetts, USA
- Institute of Living, Hartford, Connecticut, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center of Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Greifswald, Germany
| | - Nynke A Groenewold
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, Western Cape, South Africa
| | | | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Asta K Haberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- St Olav's Hospital, Department of Radiology and Nuclear Medicine, Trondheim, Norway
| | - Jeremy Hall
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
- Osaka University, Osaka, Japan
| | - Jayne Y Hehir-Kwa
- Princess Màxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Manon H J Hillegers
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia, Rotterdam, the Netherlands
| | - Per Hoffmann
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Institute of Human Genetics, University of Bonn Medical School, Bonn, Germany
| | - Laurena Holleran
- Centre for Neuroimaging and Cognitive Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Avram J Holmes
- Psychology Department, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jouke-Jan Hottenga
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center, Amsterdam, the Netherlands
| | - Hilleke E Hulshoff Pol
- Department of Psychiatry, University Medical Center Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, USA
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine, INM-1, Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Johansson
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Erik G Jönsson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Niklas R Jørgensen
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Masataka Kikuchi
- Department of Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Emma E M Knowles
- Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Kuldeep Kumar
- Sainte Justine Hospital Research Center, Montreal, Quebec, Canada
| | - Stephanie Le Hellard
- Norwegian Centre for Mental Disorders Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Costin Leu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States
- Chalfont Centre for Epilepsy, Chalfont-St-Peter, United Kingdom
| | - David E J Linden
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Jingyu Liu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
| | - Arvid Lundervold
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | | | - Anne M Maillard
- Service des Troubles du Spectre de l'Autisme et apparentés, Lausanne University Hospital, Lausanne, Switzerland
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Sandra Martin-Brevet
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuroscience Research Australia, Randwick, Australia
| | - Samuel R Mathias
- Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Katie L McMahon
- Herston Imaging Research Facility and School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Allan F McRae
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Torgeir Moberget
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Claudia Modenato
- Laboratory for Research in Neuroimaging LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- University of Lausanne, Lausanne, Switzerland
| | - Jennifer Monereo Sánchez
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Derek W Morris
- Centre for Neuroimaging and Cognitive Genomics, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Thomas W Mühleisen
- Institute of Neuroscience and Medicine, INM-1, Research Centre Jülich, Jülich, Germany
- C. and O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Düsseldorf, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Robin M Murray
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jacob Nielsen
- Signal Transduction, H. Lundbeck A/S, Ottiliavej 9, DK-2500, Valby, Denmark
| | | | - Lars Nyberg
- Umeå Centre for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Loes M Olde Loohuis
- Center for Neurobehavioral Genetics, University of California, Los Angeles, USA
| | - Roel A Ophoff
- Center for Neurobehavioral Genetics, University of California, Los Angeles, USA
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| | - Tomas Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Zdenka Pausova
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Juan M Peralta
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, USA
| | - G Bruce Pike
- Departments of Radiology and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Carlos Prieto
- Bioinformatics Service, Nucleus, University of Salamanca, Salamanca, Spain
| | - Erin B Quinlan
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Céline S Reinbold
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Tiago Reis Marques
- Department of Psychosis, Institute of Psychiatry, Psychology & Neuroscience, Kings College, London, United Kingdom
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital, Imperial College, London, United Kingdom
| | - James J H Rucker
- Institute of Psychiatry, Psychology and Neuroscience, London, London, United Kingdom
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuropsychiatric Institute, The Prince of Wales Hospital, Sydney, Australia
| | - Sigrid B Sando
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- University Hospital of Trondheim,Department of Neurology and Clinical Neurophysiology, Trondheim, Norway
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Andrew J Schork
- Institute of Biological Psychiatry, Roskilde, Denmark
- The Translational Genetics Institute (TGEN), Phoenix, AZ, United States
| | - Gunter Schumann
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jean Shin
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Elena Shumskaya
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ana I Silva
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- Cardiff University Brain Research Imaging Centre School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont-St-Peter, United Kingdom
| | - Vidar M Steen
- Norwegian Centre for Mental Disorders Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Dan J Stein
- South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Lachlan T Strike
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Ikuo K Suzuki
- VIB Center for Brain & Disease Research, Stem Cell and Developmental Neurobiology Lab, Leuven, Belgium
- University of Brussels (ULB), Institute of Interdisciplinary Research (IRIBHM) ULB Neuroscience Institute, Brussels, Belgium
- The University of Tokyo, Department of Biological Sciences, Graduate School of Science, Tokyo, Japan
| | - Christian K Tamnes
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Diana Tordesillas-Gutiérrez
- University Hospital Marqués de Valdecilla, IDIVAL, Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM), Santander, Spain
- Department of Radiology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute IDIVAL, Santander, Spain
| | - Anne Uhlmann
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Magnus O Ulfarsson
- deCODE Genetics (Amgen), Reykjavík, Iceland
- Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavík, Iceland
| | - Dennis van 't Ent
- Department of Biological Psychology and Netherlands Twin Register, VU University Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Marianne B M van den Bree
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000, Leuven, Belgium
- Université Libre de Bruxelles (U.L.B.), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070, Brussels, Belgium
| | - Evangelos Vassos
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- National Institute for Health Research, Mental Health Biomedical Research Centre, South London and Maudsley National Health Service Foundation Trust and King's College London, London, United Kingdom
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center of Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Greifswald, Germany
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Ingrid Agartz
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | | | - Kari Stefansson
- deCODE Genetics (Amgen), Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Sébastien Jacquemont
- Sainte Justine Hospital Research Center, Montreal, Quebec, Canada
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, USA
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
442
|
Tilot AK, Khramtsova EA, Liang D, Grasby KL, Jahanshad N, Painter J, Colodro-Conde L, Bralten J, Hibar DP, Lind PA, Liu S, Brotman SM, Thompson PM, Medland SE, Macciardi F, Stranger BE, Davis LK, Fisher SE, Stein JL. The Evolutionary History of Common Genetic Variants Influencing Human Cortical Surface Area. Cereb Cortex 2021; 31:1873-1887. [PMID: 33290510 PMCID: PMC7945014 DOI: 10.1093/cercor/bhaa327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Structural brain changes along the lineage leading to modern Homo sapiens contributed to our distinctive cognitive and social abilities. However, the evolutionarily relevant molecular variants impacting key aspects of neuroanatomy are largely unknown. Here, we integrate evolutionary annotations of the genome at diverse timescales with common variant associations from large-scale neuroimaging genetic screens. We find that alleles with evidence of recent positive polygenic selection over the past 2000-3000 years are associated with increased surface area (SA) of the entire cortex, as well as specific regions, including those involved in spoken language and visual processing. Therefore, polygenic selective pressures impact the structure of specific cortical areas even over relatively recent timescales. Moreover, common sequence variation within human gained enhancers active in the prenatal cortex is associated with postnatal global SA. We show that such variation modulates the function of a regulatory element of the developmentally relevant transcription factor HEY2 in human neural progenitor cells and is associated with structural changes in the inferior frontal cortex. These results indicate that non-coding genomic regions active during prenatal cortical development are involved in the evolution of human brain structure and identify novel regulatory elements and genes impacting modern human brain structure.
Collapse
Affiliation(s)
- Amanda K Tilot
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, Netherlands
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA 90292, USA
| | - Ekaterina A Khramtsova
- Department of Medicine, Section of Genetic Medicine & Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
- Computational Sciences, Janssen Pharmaceuticals, Spring House, PA 19477, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Katrina L Grasby
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Neda Jahanshad
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA 90292, USA
| | - Jodie Painter
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Lucía Colodro-Conde
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Janita Bralten
- Radboud University Medical Center, 6525 XZ Nijmegen, Netherlands
| | | | - Penelope A Lind
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Siyao Liu
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sarah M Brotman
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Paul M Thompson
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA 90292, USA
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA
| | - Barbara E Stranger
- Department of Medicine, Section of Genetic Medicine & Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
- Department of Pharmacology, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lea K Davis
- Department of Medicine, Division of Medical Genetics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt University Medical Center, Vanderbilt Genetics Institute, Nashville, TN 37232, USA
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, 6500 HB, Netherlands
| | - Jason L Stein
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
443
|
Anderson KM, Ge T, Kong R, Patrick LM, Spreng RN, Sabuncu MR, Yeo BTT, Holmes AJ. Heritability of individualized cortical network topography. Proc Natl Acad Sci U S A 2021; 118:e2016271118. [PMID: 33622790 PMCID: PMC7936334 DOI: 10.1073/pnas.2016271118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human cortex is patterned by a complex and interdigitated web of large-scale functional networks. Recent methodological breakthroughs reveal variation in the size, shape, and spatial topography of cortical networks across individuals. While spatial network organization emerges across development, is stable over time, and is predictive of behavior, it is not yet clear to what extent genetic factors underlie interindividual differences in network topography. Here, leveraging a nonlinear multidimensional estimation of heritability, we provide evidence that individual variability in the size and topographic organization of cortical networks are under genetic control. Using twin and family data from the Human Connectome Project (n = 1,023), we find increased variability and reduced heritability in the size of heteromodal association networks (h2 : M = 0.34, SD = 0.070), relative to unimodal sensory/motor cortex (h2 : M = 0.40, SD = 0.097). We then demonstrate that the spatial layout of cortical networks is influenced by genetics, using our multidimensional estimation of heritability (h2-multi; M = 0.14, SD = 0.015). However, topographic heritability did not differ between heteromodal and unimodal networks. Genetic factors had a regionally variable influence on brain organization, such that the heritability of network topography was greatest in prefrontal, precuneus, and posterior parietal cortex. Taken together, these data are consistent with relaxed genetic control of association cortices relative to primary sensory/motor regions and have implications for understanding population-level variability in brain functioning, guiding both individualized prediction and the interpretation of analyses that integrate genetics and neuroimaging.
Collapse
Affiliation(s)
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Ru Kong
- Department of Electrical and Computer Engineering, Centre for Sleep and Cognition, National University of Singapore, Singapore 119077
- Department of Electrical and Computer Engineering, Centre for Translational Magnetic Resonance Research, National University of Singapore, Singapore 119077
- N.1 Institute for Health, National University of Singapore, Singapore 119077
- Institute for Digital Medicine, National University of Singapore, Singapore 119077
| | | | - R Nathan Spreng
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 0G4, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, QC H3A 0G4, Canada
| | - Mert R Sabuncu
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14850
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, Centre for Sleep and Cognition, National University of Singapore, Singapore 119077
- Department of Electrical and Computer Engineering, Centre for Translational Magnetic Resonance Research, National University of Singapore, Singapore 119077
- N.1 Institute for Health, National University of Singapore, Singapore 119077
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
- National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077
| | - Avram J Holmes
- Department of Psychology, Yale University, New Haven, CT 06520
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Department of Psychiatry, Yale University, New Haven, CT 06520
| |
Collapse
|
444
|
Friedrich P, Forkel SJ, Amiez C, Balsters JH, Coulon O, Fan L, Goulas A, Hadj-Bouziane F, Hecht EE, Heuer K, Jiang T, Latzman RD, Liu X, Loh KK, Patil KR, Lopez-Persem A, Procyk E, Sallet J, Toro R, Vickery S, Weis S, Wilson CRE, Xu T, Zerbi V, Eickoff SB, Margulies DS, Mars RB, Thiebaut de Schotten M. Imaging evolution of the primate brain: the next frontier? Neuroimage 2021; 228:117685. [PMID: 33359344 PMCID: PMC7116589 DOI: 10.1016/j.neuroimage.2020.117685] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 11/22/2022] Open
Abstract
Evolution, as we currently understand it, strikes a delicate balance between animals' ancestral history and adaptations to their current niche. Similarities between species are generally considered inherited from a common ancestor whereas observed differences are considered as more recent evolution. Hence comparing species can provide insights into the evolutionary history. Comparative neuroimaging has recently emerged as a novel subdiscipline, which uses magnetic resonance imaging (MRI) to identify similarities and differences in brain structure and function across species. Whereas invasive histological and molecular techniques are superior in spatial resolution, they are laborious, post-mortem, and oftentimes limited to specific species. Neuroimaging, by comparison, has the advantages of being applicable across species and allows for fast, whole-brain, repeatable, and multi-modal measurements of the structure and function in living brains and post-mortem tissue. In this review, we summarise the current state of the art in comparative anatomy and function of the brain and gather together the main scientific questions to be explored in the future of the fascinating new field of brain evolution derived from comparative neuroimaging.
Collapse
Affiliation(s)
- Patrick Friedrich
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany.
| | - Stephanie J Forkel
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France; Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Céline Amiez
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France
| | - Joshua H Balsters
- Department of Psychology, Royal Holloway University of London, United Kingdom
| | - Olivier Coulon
- Institut de Neurosciences de la Timone, Aix Marseille Univ, CNRS, UMR 7289, Marseille, France; Institute for Language, Communication, and the Brain, Aix-Marseille University, Marseille, France
| | - Lingzhong Fan
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Alexandros Goulas
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany
| | - Fadila Hadj-Bouziane
- Lyon Neuroscience Research Center, ImpAct Team, INSERM U1028, CNRS UMR5292, Université Lyon 1, Bron, France
| | - Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Katja Heuer
- Center for Research and Interdisciplinarity (CRI), Université de Paris, Inserm, Paris 75004, France; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tianzi Jiang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; The Queensland Brain Institute, University of Queensland, Brisbane QLD 4072, Australia
| | - Robert D Latzman
- Department of Psychology, Georgia State University, Atlanta, United States
| | - Xiaojin Liu
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany
| | - Kep Kee Loh
- Institut de Neurosciences de la Timone, Aix Marseille Univ, CNRS, UMR 7289, Marseille, France; Institute for Language, Communication, and the Brain, Aix-Marseille University, Marseille, France
| | - Kaustubh R Patil
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany
| | - Alizée Lopez-Persem
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France; Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Emmanuel Procyk
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France
| | - Jerome Sallet
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France; Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Roberto Toro
- Center for Research and Interdisciplinarity (CRI), Université de Paris, Inserm, Paris 75004, France; Neuroscience department, Institut Pasteur, UMR 3571, CNRS, Université de Paris, Paris 75015, France
| | - Sam Vickery
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany
| | - Susanne Weis
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany
| | - Charles R E Wilson
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France
| | - Ting Xu
- Child Mind Institute, New York, United States
| | - Valerio Zerbi
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Simon B Eickoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany
| | - Daniel S Margulies
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Integrative Neuroscience and Cognition Center (UMR 8002), Centre National de la Recherche Scientifique (CNRS) and Université de Paris, 75006, Paris, France
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
445
|
Multivariate Patterns of Brain-Behavior-Environment Associations in the Adolescent Brain and Cognitive Development Study. Biol Psychiatry 2021; 89:510-520. [PMID: 33109338 PMCID: PMC7867576 DOI: 10.1016/j.biopsych.2020.08.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Adolescence is a critical developmental stage. A key challenge is to characterize how variation in adolescent brain organization relates to psychosocial and environmental influences. METHODS We used canonical correlation analysis to discover distinct patterns of covariation between measures of brain organization (brain morphometry, intracortical myelination, white matter integrity, and resting-state functional connectivity) and individual, psychosocial, and environmental factors in a nationally representative U.S. sample of 9623 individuals (aged 9-10 years, 49% female) participating in the Adolescent Brain and Cognitive Development (ABCD) study. RESULTS These analyses identified 14 reliable modes of brain-behavior-environment covariation (canonical rdiscovery = .21 to .49, canonical rtest = .10 to .39, pfalse discovery rate corrected < .0001). Across modes, neighborhood environment, parental characteristics, quality of family life, perinatal history, cardiometabolic health, cognition, and psychopathology had the most consistent and replicable associations with multiple measures of brain organization; positive and negative exposures converged to form patterns of psychosocial advantage or adversity. These showed modality-general, respectively positive or negative, associations with brain structure and function with little evidence of regional specificity. Nested within these cross-modal patterns were more specific associations between prefrontal measures of morphometry, intracortical myelination, and functional connectivity with affective psychopathology, cognition, and family environment. CONCLUSIONS We identified clusters of exposures that showed consistent modality-general associations with global measures of brain organization. These findings underscore the importance of understanding the complex and intertwined influences on brain organization and mental function during development and have the potential to inform public health policies aiming toward interventions to improve mental well-being.
Collapse
|
446
|
Functional brain defects in a mouse model of a chromosomal t(1;11) translocation that disrupts DISC1 and confers increased risk of psychiatric illness. Transl Psychiatry 2021; 11:135. [PMID: 33608504 PMCID: PMC7895946 DOI: 10.1038/s41398-021-01256-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 11/24/2020] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
A balanced t(1;11) translocation that directly disrupts DISC1 is linked to schizophrenia and affective disorders. We previously showed that a mutant mouse, named Der1, recapitulates the effect of the translocation upon DISC1 expression. Here, RNAseq analysis of Der1 mouse brain tissue found enrichment for dysregulation of the same genes and molecular pathways as in neuron cultures generated previously from human t(1;11) translocation carriers via the induced pluripotent stem cell route. DISC1 disruption therefore apparently accounts for a substantial proportion of the effects of the t(1;11) translocation. RNAseq and pathway analysis of the mutant mouse predicts multiple Der1-induced alterations converging upon synapse function and plasticity. Synaptosome proteomics confirmed that the Der1 mutation impacts synapse composition, and electrophysiology found reduced AMPA:NMDA ratio in hippocampal neurons, indicating changed excitatory signalling. Moreover, hippocampal parvalbumin-positive interneuron density is increased, suggesting that the Der1 mutation affects inhibitory control of neuronal circuits. These phenotypes predict that neurotransmission is impacted at many levels by DISC1 disruption in human t(1;11) translocation carriers. Notably, genes implicated in schizophrenia, depression and bipolar disorder by large-scale genetic studies are enriched among the Der1-dysregulated genes, just as we previously observed for the t(1;11) translocation carrier-derived neurons. Furthermore, RNAseq analysis predicts that the Der1 mutation primarily targets a subset of cell types, pyramidal neurons and interneurons, previously shown to be vulnerable to the effects of common schizophrenia-associated genetic variants. In conclusion, DISC1 disruption by the t(1;11) translocation may contribute to the psychiatric disorders of translocation carriers through commonly affected pathways and processes in neurotransmission.
Collapse
|
447
|
Antoniades M, Haas SS, Modabbernia A, Bykowsky O, Frangou S, Borgwardt S, Schmidt A. Personalized Estimates of Brain Structural Variability in Individuals With Early Psychosis. Schizophr Bull 2021; 47:1029-1038. [PMID: 33547470 PMCID: PMC8266574 DOI: 10.1093/schbul/sbab005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Early psychosis in first-episode psychosis (FEP) and clinical high-risk (CHR) individuals has been associated with alterations in mean regional measures of brain morphology. Examination of variability in brain morphology could assist in quantifying the degree of brain structural heterogeneity in clinical relative to healthy control (HC) samples. METHODS Structural magnetic resonance imaging data were obtained from CHR (n = 71), FEP (n = 72), and HC individuals (n = 55). Regional brain variability in cortical thickness (CT), surface area (SA), and subcortical volume (SV) was assessed with the coefficient of variation (CV). Furthermore, the person-based similarity index (PBSI) was employed to quantify the similarity of CT, SA, and SV profile of each individual to others within the same diagnostic group. Normative modeling of the PBSI-CT, PBSI-SA, and PBSI-SV was used to identify CHR and FEP individuals whose scores deviated markedly from those of the healthy individuals. RESULTS There was no effect of diagnosis on the CV for any regional measure (P > .38). CHR and FEP individuals differed significantly from the HC group in terms of PBSI-CT (P < .0001), PBSI-SA (P < .0001), and PBSI-SV (P = .01). In the clinical groups, normative modeling identified 32 (22%) individuals with deviant PBSI-CT, 12 (8.4%) with deviant PBSI-SA, and 21 (15%) with deviant PBSI-SV; differences of small effect size indicated that individuals with deviant PBSI scores had lower IQ and higher psychopathology. CONCLUSIONS Examination of brain structural variability in early psychosis indicated heterogeneity at the level of individual profiles and encourages further large-scale examination to identify individuals that deviate markedly from normative reference data.
Collapse
Affiliation(s)
- Mathilde Antoniades
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Shalaila S Haas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Oleg Bykowsky
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
- Centre for Brain Health, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Stefan Borgwardt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - André Schmidt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
- To whom correspondence should be addressed; Wilhelm Klein-Strasse 27, 4002 Basel, Switzerland; tel: +41 0(61) 325 59 29, fax: +41 (0)61 325 55 82, e-mail:
| |
Collapse
|
448
|
Madrid-Valero JJ, Rubio-Aparicio M, Gregory AM, Sánchez-Meca J, Ordoñana JR. The heritability of insomnia: Systematic review and meta-analysis of twin studies. Sleep Med Rev 2021; 58:101437. [PMID: 33556853 DOI: 10.1016/j.smrv.2021.101437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/07/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
Twin studies have consistently found that genetic factors explain a substantial proportion of the variance for insomnia. However, studies vary widely in their heritability estimates. Therefore, this meta-analysis aimed to: 1) Estimate the mean heritability of insomnia; 2) Assess heterogeneity among twin studies of insomnia; and 3) Search and analyse characteristics of the studies (moderator variables) that may explain heterogeneity among estimates. For this purpose, separate meta-analyses were carried out for MZ and DZ correlations and for heritability estimates by assuming random-effects models. Thirteen independent samples were included in this meta-analysis. The heterogeneity index for heritability estimates was significant in both best fitting models (I2 = 98.77, P < .0001) and full models (I2 = 97.80, P < .0001). MZ correlations were higher (0.37; 95%CI: 0.31,.43) than DZ correlations (0.15; 95%CI: 0.12,.18). A mean heritability of 0.39 (95%CI: 0.32,.44) was found for insomnia. These results highlight the role of genetic factors in explaining differences among the population on insomnia and Emphasize heterogeneity among studies. Further research is needed to identify variables that could explain this heterogeneity.
Collapse
Affiliation(s)
- Juan J Madrid-Valero
- Department of Health Psychology, Faculty of Health Science, University of Alicante, Spain.
| | - María Rubio-Aparicio
- Department of Health Psychology, Faculty of Health Science, University of Alicante, Spain
| | - Alice M Gregory
- Department of Psychology, Goldsmiths, University of London, London, United Kingdom
| | - Julio Sánchez-Meca
- Department of Basic Psychology and Methodology, University of Murcia, Spain
| | - Juan R Ordoñana
- Department of Human Anatomy and Psychobiology, University of Murcia, Spain; Murcia Institute of Biomedical Research, IMIB-Arrixaca, Spain
| |
Collapse
|
449
|
Yang T, Frangou S, Lam RW, Huang J, Su Y, Zhao G, Mao R, Zhu N, Zhou R, Lin X, Xia W, Wang X, Wang Y, Peng D, Wang Z, Yatham LN, Chen J, Fang Y. Probing the clinical and brain structural boundaries of bipolar and major depressive disorder. Transl Psychiatry 2021; 11:48. [PMID: 33446647 PMCID: PMC7809029 DOI: 10.1038/s41398-020-01169-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Bipolar disorder (BD) and major depressive disorder (MDD) have both common and distinct clinical features, that pose both conceptual challenges in terms of their diagnostic boundaries and practical difficulties in optimizing treatment. Multivariate machine learning techniques offer new avenues for exploring these boundaries based on clinical neuroanatomical features. Brain structural data were obtained at 3 T from a sample of 90 patients with BD, 189 patients with MDD, and 162 healthy individuals. We applied sparse partial least squares discriminant analysis (s-PLS-DA) to identify clinical and brain structural features that may discriminate between the two clinical groups, and heterogeneity through discriminative analysis (HYDRA) to detect patient subgroups with reference to healthy individuals. Two clinical dimensions differentiated BD from MDD (area under the curve: 0.76, P < 0.001); one dimension emphasized disease severity as well as irritability, agitation, anxiety and flight of ideas and the other emphasized mostly elevated mood. Brain structural features could not distinguish between the two disorders. HYDRA classified patients in two clusters that differed in global and regional cortical thickness, the distribution proportion of BD and MDD and positive family history of psychiatric disorders. Clinical features remain the most reliable discriminant attributed of BD and MDD depression. The brain structural findings suggests that biological partitions of patients with mood disorders are likely to lead to the identification of subgroups, that transcend current diagnostic divisions into BD and MDD and are more likely to be aligned with underlying genetic variation. These results set the foundation for future studies to enhance our understanding of brain-behavior relationships in mood disorders.
Collapse
Affiliation(s)
- Tao Yang
- grid.16821.3c0000 0004 0368 8293Clinical Research Center & Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.17091.3e0000 0001 2288 9830Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Sophia Frangou
- grid.17091.3e0000 0001 2288 9830Department of Psychiatry, University of British Columbia, Vancouver, Canada ,grid.59734.3c0000 0001 0670 2351Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Raymond W. Lam
- grid.17091.3e0000 0001 2288 9830Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Jia Huang
- grid.16821.3c0000 0004 0368 8293Clinical Research Center & Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yousong Su
- grid.16821.3c0000 0004 0368 8293Clinical Research Center & Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoqing Zhao
- grid.460018.b0000 0004 1769 9639Department of Psychology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Ruizhi Mao
- grid.16821.3c0000 0004 0368 8293Clinical Research Center & Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Zhu
- Shanghai Pudong New District Mental Health Center, Shanghai, China
| | - Rubai Zhou
- grid.16821.3c0000 0004 0368 8293Clinical Research Center & Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Lin
- grid.16821.3c0000 0004 0368 8293Clinical Research Center & Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiping Xia
- grid.16821.3c0000 0004 0368 8293Department of Medical Psychology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing Wang
- grid.16821.3c0000 0004 0368 8293Clinical Research Center & Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Wang
- grid.16821.3c0000 0004 0368 8293Clinical Research Center & Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daihui Peng
- grid.16821.3c0000 0004 0368 8293Clinical Research Center & Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zuowei Wang
- Division of Mood Disorders, Shanghai Hongkou District Mental Health Center, Shanghai, China
| | - Lakshmi N. Yatham
- grid.17091.3e0000 0001 2288 9830Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Jun Chen
- Clinical Research Center & Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yiru Fang
- Clinical Research Center & Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China. .,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.
| |
Collapse
|
450
|
Blumen HM, Schwartz E, Allali G, Beauchet O, Callisaya M, Doi T, Shimada H, Srikanth V, Verghese J. Cortical Thickness, Volume, and Surface Area in the Motoric Cognitive Risk Syndrome. J Alzheimers Dis 2021; 81:651-665. [PMID: 33867359 PMCID: PMC8768501 DOI: 10.3233/jad-201576] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The motoric cognitive risk (MCR) syndrome is a pre-clinical stage of dementia characterized by slow gait and cognitive complaint. Yet, the brain substrates of MCR are not well established. OBJECTIVE To examine cortical thickness, volume, and surface area associated with MCR in the MCR-Neuroimaging Consortium, which harmonizes image processing/analysis of multiple cohorts. METHODS Two-hundred MRIs (M age 72.62 years; 47.74%female; 33.17%MCR) from four different cohorts (50 each) were first processed with FreeSurfer 6.0, and then analyzed using multivariate and univariate general linear models with 1,000 bootstrapped samples (n-1; with resampling). All models adjusted for age, sex, education, white matter lesions, total intracranial volume, and study site. RESULTS Overall, cortical thickness was lower in individuals with MCR than in those without MCR. There was a trend in the same direction for cortical volume (p = 0.051). Regional cortical thickness was also lower among individuals with MCR than individuals without MCR in prefrontal, insular, temporal, and parietal regions. CONCLUSION Cortical atrophy in MCR is pervasive, and include regions previously associated with human locomotion, but also social, cognitive, affective, and motor functions. Cortical atrophy in MCR is easier to detect in cortical thickness than volume and surface area because thickness is more affected by healthy and pathological aging.
Collapse
Affiliation(s)
- Helena M. Blumen
- Department of Medicine Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Emily Schwartz
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gilles Allali
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Clinical Neurosciences, Geneva University Hospitals and University of Geneva, Switzerland
| | - Olivier Beauchet
- Division of Geriatric Medicine, Sir Mortimer B. Davis Jewish General Hospital & Dr. Joseph Kaufmann Chair in Geriatric Medicine, Faculty of Medicine McGill University, Montreal, Quebec, Canada
| | - Michele Callisaya
- Peninsula Clinical School, Central Clinical School, Monash University, Victoria, Australia
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | - Takehiko Doi
- Section for Health Promotion, Department of Preventive Gerontology
| | - Hiroyuki Shimada
- National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Velandai Srikanth
- Peninsula Clinical School, Central Clinical School, Monash University, Victoria, Australia
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | - Joe Verghese
- Department of Medicine Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|