1
|
Nicolussi P, Pilo G, Cancedda MG, Peng G, Chau NDQ, De la Cadena A, Vanna R, Samad YA, Ahmed T, Marcellino J, Tedde G, Giro L, Ylmazer A, Loi F, Carta G, Secchi L, Dei Giudici S, Macciocu S, Polli D, Nishina Y, Ligios C, Cerullo G, Ferrari A, Bianco A, Fadeel B, Franzoni G, Delogu LG. Biocompatibility of Water-Dispersible Pristine Graphene and Graphene Oxide Using a Close-to-Human Animal Model: A Pilot Study on Swine. Adv Healthc Mater 2024:e2401783. [PMID: 39385652 DOI: 10.1002/adhm.202401783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/30/2024] [Indexed: 10/12/2024]
Abstract
Graphene-based materials (GBMs) are of considerable interest for biomedical applications, and the pilot study on the toxicological and immunological impact of pristine graphene (GR) and graphene oxide (GO) using swine as a close-to-human provides valuable insights. First, ex vivo experiments are conducted on swine blood cells, then GBMs are injected intraperitoneally (i.p.) into swine. Hematological and biochemical analyses at various intervals indicate that neither GO nor GR cause systemic inflammation, pro-coagulant responses, or renal or hepatic dysfunction. Importantly, no systemic toxicity is observed. Analysis of a panel of 84 immune-related genes shows minimal impact of GO and GR. The animals are sacrificed 21 days post-injection, and transient absorption imaging and Raman mapping show the presence of GO and GR in the mesentery only. Histological evaluation reveals no signs of alterations in other organs. Thus, clusters of both materials are detected in the mesentery, and GO aggregates are surrounded only by macrophages with the formation of granulomas. In contrast, modest local reactions are observed around the GR clusters. Overall, these results reveal that i.p. injection of GBMs resulted in a modest local tissue reaction without systemic toxicity. This study, performed in swine, provides essential guidance for future biomedical applications of graphene.
Collapse
Affiliation(s)
- Paola Nicolussi
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | | | | | - Guotao Peng
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Ngoc Do Quyen Chau
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg ISIS, Strasbourg, 67000, France
| | | | - Renzo Vanna
- Istituto di Fotonica e Nanotecnologie - CNR, Milan, 20133, Italy
| | - Yarjan Abdul Samad
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
- Department of Aerospace Engineering, Khalifa University of Science & Technology, Abu Dhabi, 127788, UAE
| | - Tanweer Ahmed
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Jeremia Marcellino
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Giuseppe Tedde
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Linda Giro
- ImmuneNano Laboratory, Department of Biomedical Sciences, University of Padua, Padua, 35131, Italy
| | - Acelya Ylmazer
- Department of Biomedical Engineering, Ankara University, Ankara, 06830, Turkey
| | - Federica Loi
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Gavina Carta
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Loredana Secchi
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Silvia Dei Giudici
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Simona Macciocu
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Dario Polli
- Dipartimento di Fisica, Politecnico di Milano, Milan, 20133, Italy
- Istituto di Fotonica e Nanotecnologie - CNR, Milan, 20133, Italy
| | - Yuta Nishina
- Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
- Research Core for Interdisciplinary Sciences, Okayama University, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Ciriaco Ligios
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, Milan, 20133, Italy
- Istituto di Fotonica e Nanotecnologie - CNR, Milan, 20133, Italy
| | - Andrea Ferrari
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg ISIS, Strasbourg, 67000, France
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Giulia Franzoni
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Lucia Gemma Delogu
- ImmuneNano Laboratory, Department of Biomedical Sciences, University of Padua, Padua, 35131, Italy
- Department of Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi, 127788, UAE
| |
Collapse
|
2
|
Ganesan M, Muthaiah C, Wadaan MA, Kumar M, Yanto DHY, Kumar S, Selvankumar T, Arulraj A, Mangalaraja RV, Suganthi S. Synthesis and characterization of fluorinated graphene oxide nanosheets derived from Lissachatina fulica snail mucus and their biomedical applications. LUMINESCENCE 2024; 39:e4875. [PMID: 39228310 DOI: 10.1002/bio.4875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/29/2024] [Accepted: 08/18/2024] [Indexed: 09/05/2024]
Abstract
The modern nanomedicine incorporates the multimodal treatments into a single formulation, offering innovative cancer therapy options. Nanosheets function as carriers, altering the solubility, biodistribution, and effectiveness of medicinal compounds, resulting in more efficient cancer treatments and reduced side effects. The non-toxic nature of fluorinated graphene oxide (FGO) nanosheets and their potential applications in medication delivery, medical diagnostics, and biomedicine distinguish them from others. Leveraging the unique properties of Lissachatina fulica snail mucus (LfSM), FGO nanosheets were developed to reveal the novel characteristics. Consequently, LfSM was utilized to create non-toxic, environmentally friendly, and long-lasting FGO nanosheets. Ultraviolet-visible (UV-vis) spectroscopy revealed a prominent absorbance peak at 235 nm. The characterization of the synthesized FGO nanosheets involved X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), and atomic force microscopy (AFM) analyses. The antimicrobial activity data demonstrated a broad spectrum of antibacterial effects against Escherichia coli, Bacillus subtilis, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The cytotoxicity efficacy of LfSM-FGO nanosheets against pancreatic cancer cell line (PANC1) showed promising results at low concentrations. The study suggests that FGO nanosheets made from LfSM could serve as alternate factors for in biomedical applications in the future.
Collapse
Affiliation(s)
| | - Chandran Muthaiah
- Department of Zoology, Thiruvalluvar University, Vellore, Tamil Nadu, India
| | - Mohammad Ahmad Wadaan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manimaran Kumar
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong, Republic of Indonesia
| | - Dede Heri Yuli Yanto
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong, Republic of Indonesia
| | - Selvaraj Kumar
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Thangasamy Selvankumar
- Biomaterials Research Unit, Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Arunachalam Arulraj
- Departamento de Electricidad, Facultad de Ingeniería, Universidad Tecnológica Metropolitana (UTEM), Ñuñoa, Santiago, Chile
| | - Ramalinga Viswanathan Mangalaraja
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Peñalolén, Santiago, Chile
- Vicerrectoría de Investigación e Innovación, Universidad Arturo Prat, Iquique, Chile
| | - Sanjeevamuthu Suganthi
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Li YT, Mei KC, Liam-Or R, Wang JTW, Faruqu FN, Zhu S, Wang YL, Lu Y, Al-Jamal KT. Graphene Oxide Nanosheets Toxicity in Mice Is Dependent on Protein Corona Composition and Host Immunity. ACS NANO 2024; 18:22572-22585. [PMID: 39110092 PMCID: PMC11342366 DOI: 10.1021/acsnano.4c08561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024]
Abstract
Two-dimension graphene oxide (GO) nanosheets with high and low serum protein binding profiles (high/low hard-bound protein corona/HChigh/low) are used in this study as model materials and screening tools to investigate the underlying roles of the protein corona on nanomaterial toxicities in vivo. We proposed that the in vivo biocompatibility/nanotoxicity of GO is protein corona-dependent and host immunity-dependent. The hypothesis was tested by injecting HChigh/low GO nanosheets in immunocompetent ICR/CD1 and immunodeficient NOD-scid II2rγnull mice and performed histopathological and hematological evaluation studies on days 1 and 14 post-injection. HClow GO induced more severe acute lung injury compared to HChigh GO in both immunocompetent and immunodeficient mice, with the effect being particularly pronounced in immunocompetent animals. Additionally, HClow GO caused more significant liver injury in both types of mice, with immunodeficient mice being more susceptible to its hepatotoxic effects. Moreover, administration of HClow GO resulted in increased hematological toxicity and elevated levels of serum pro-inflammatory cytokines in immunocompromised and immunocompetent mice, respectively. Correlation studies were conducted to explore the impact of distinct protein corona compositions on resulting toxicities in both immunocompetent and immunodeficient mice. This facilitated the identification of consistent patterns, aligning with those observed in vitro, thus indicating a robust in vitro-in vivo correlation. This research will advance our comprehension of how hard corona proteins interact with immune cells, leading to toxicity, and will facilitate the development of improved immune-modulating nanomaterials for therapeutic purposes.
Collapse
Affiliation(s)
- Yue-ting Li
- School
of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences
& Medicine, King’s College London, Franklin-Wilkins Building, London SE1 9NH, U.K.
- State
Key Laboratory of Functions and Applications of Medicinal Plants,
Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, No. 9, Beijing Road, Yunyan District, Guiyang 550004, China
| | - Kuo-Ching Mei
- School
of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences
& Medicine, King’s College London, Franklin-Wilkins Building, London SE1 9NH, U.K.
- School
of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, 96 Corliss Avenue, Johnson City, New York 13790, United States
| | - Revadee Liam-Or
- School
of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences
& Medicine, King’s College London, Franklin-Wilkins Building, London SE1 9NH, U.K.
- Department
of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong SAR, China
| | - Julie Tzu-Wen Wang
- School
of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences
& Medicine, King’s College London, Franklin-Wilkins Building, London SE1 9NH, U.K.
| | - Farid N. Faruqu
- School
of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences
& Medicine, King’s College London, Franklin-Wilkins Building, London SE1 9NH, U.K.
| | - Shengzhang Zhu
- Qiannan
People’s Hospital, No. 9, Wenfeng Road, Duyun 558000, China
| | - Yong-lin Wang
- State
Key Laboratory of Functions and Applications of Medicinal Plants,
Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, No. 9, Beijing Road, Yunyan District, Guiyang 550004, China
| | - Yuan Lu
- School
of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences
& Medicine, King’s College London, Franklin-Wilkins Building, London SE1 9NH, U.K.
- State
Key Laboratory of Functions and Applications of Medicinal Plants,
Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, No. 9, Beijing Road, Yunyan District, Guiyang 550004, China
| | - Khuloud T. Al-Jamal
- School
of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences
& Medicine, King’s College London, Franklin-Wilkins Building, London SE1 9NH, U.K.
- Department
of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong SAR, China
| |
Collapse
|
4
|
Gupta G, Wang Z, Kissling VM, Gogos A, Wick P, Buerki-Thurnherr T. Boron Nitride Nanosheets Induce Lipid Accumulation and Autophagy in Human Alveolar Lung Epithelial Cells Cultivated at Air-Liquid Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308148. [PMID: 38290809 DOI: 10.1002/smll.202308148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/29/2023] [Indexed: 02/01/2024]
Abstract
Hexagonal boron nitride (hBN) is an emerging 2D material attracting significant attention due to its superior electrical, chemical, and therapeutic properties. However, inhalation toxicity mechanisms of hBN in human lung cells are poorly understood. Here, cellular interaction and effects of hBN nanosheets is investigated in alveolar epithelial cells cultured on porous inserts and exposed under air-liquid interface conditions for 24 h. hBN is taken up by the cells as determined in a label-free manner via RAMAN-confocal microscopy, ICP-MS, TEM, and SEM-EDX. No significant (p > 0.05) effects are observed on cell membrane integrity (LDH release), epithelial barrier integrity (TEER), interleukin-8 cytokine production or reactive oxygen production at tested dose ranges (1, 5, and 10 µg cm-2). However, it is observed that an enhanced accumulation of lipid granules in cells indicating the effect of hBN on lipid metabolism. In addition, it is observed that a significant (p < 0.05) and dose-dependent (5 and 10 µg cm-2) induction of autophagy in cells after exposure to hBN, potentially associated with the downstream processing and breakdown of excess lipid granules to maintain lipid homeostasis. Indeed, lysosomal co-localization of lipid granules supporting this argument is observed. Overall, the results suggest that the continuous presence of excess intracellular lipids may provoke adverse outcomes in the lungs.
Collapse
Affiliation(s)
- Govind Gupta
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Ziting Wang
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Vera M Kissling
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Alexander Gogos
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Peter Wick
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), Empa, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| |
Collapse
|
5
|
Andrews JPM, Joshi SS, Tzolos E, Syed MB, Cuthbert H, Crica LE, Lozano N, Okwelogu E, Raftis JB, Bruce L, Poland CA, Duffin R, Fokkens PHB, Boere AJF, Leseman DLAC, Megson IL, Whitfield PD, Ziegler K, Tammireddy S, Hadjidemetriou M, Bussy C, Cassee FR, Newby DE, Kostarelos K, Miller MR. First-in-human controlled inhalation of thin graphene oxide nanosheets to study acute cardiorespiratory responses. NATURE NANOTECHNOLOGY 2024; 19:705-714. [PMID: 38366225 PMCID: PMC11106005 DOI: 10.1038/s41565-023-01572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 11/09/2023] [Indexed: 02/18/2024]
Abstract
Graphene oxide nanomaterials are being developed for wide-ranging applications but are associated with potential safety concerns for human health. We conducted a double-blind randomized controlled study to determine how the inhalation of graphene oxide nanosheets affects acute pulmonary and cardiovascular function. Small and ultrasmall graphene oxide nanosheets at a concentration of 200 μg m-3 or filtered air were inhaled for 2 h by 14 young healthy volunteers in repeated visits. Overall, graphene oxide nanosheet exposure was well tolerated with no adverse effects. Heart rate, blood pressure, lung function and inflammatory markers were unaffected irrespective of graphene oxide particle size. Highly enriched blood proteomics analysis revealed very few differential plasma proteins and thrombus formation was mildly increased in an ex vivo model of arterial injury. Overall, acute inhalation of highly purified and thin nanometre-sized graphene oxide nanosheets was not associated with overt detrimental effects in healthy humans. These findings demonstrate the feasibility of carefully controlled human exposures at a clinical setting for risk assessment of graphene oxide, and lay the foundations for investigating the effects of other two-dimensional nanomaterials in humans. Clinicaltrials.gov ref: NCT03659864.
Collapse
Affiliation(s)
- Jack P M Andrews
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- The Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Shruti S Joshi
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Evangelos Tzolos
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Maaz B Syed
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | | - Livia E Crica
- Nanomedicine Lab, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
- National Graphene Institute, The University of Manchester, Manchester, UK
| | - Neus Lozano
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Emmanuel Okwelogu
- Nanomedicine Lab, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Jennifer B Raftis
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Lorraine Bruce
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Craig A Poland
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Rodger Duffin
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Paul H B Fokkens
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - A John F Boere
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Daan L A C Leseman
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ian L Megson
- Division of Biomedical Sciences, University of the Highlands and Islands, Inverness, UK
| | - Phil D Whitfield
- Division of Biomedical Sciences, University of the Highlands and Islands, Inverness, UK
| | - Kerstin Ziegler
- Division of Biomedical Sciences, University of the Highlands and Islands, Inverness, UK
| | - Seshu Tammireddy
- Division of Biomedical Sciences, University of the Highlands and Islands, Inverness, UK
| | - Marilena Hadjidemetriou
- Nanomedicine Lab, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Cyrill Bussy
- Nanomedicine Lab, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
- National Graphene Institute, The University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, UK
- Thomas Ashton Institute for Risk and Regulatory Research, The University of Manchester, Manchester, UK
| | - Flemming R Cassee
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - David E Newby
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK.
- National Graphene Institute, The University of Manchester, Manchester, UK.
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, Spain.
| | - Mark R Miller
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
6
|
Lin H, Buerki-Thurnherr T, Kaur J, Wick P, Pelin M, Tubaro A, Carniel FC, Tretiach M, Flahaut E, Iglesias D, Vázquez E, Cellot G, Ballerini L, Castagnola V, Benfenati F, Armirotti A, Sallustrau A, Taran F, Keck M, Bussy C, Vranic S, Kostarelos K, Connolly M, Navas JM, Mouchet F, Gauthier L, Baker J, Suarez-Merino B, Kanerva T, Prato M, Fadeel B, Bianco A. Environmental and Health Impacts of Graphene and Other Two-Dimensional Materials: A Graphene Flagship Perspective. ACS NANO 2024; 18:6038-6094. [PMID: 38350010 PMCID: PMC10906101 DOI: 10.1021/acsnano.3c09699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Two-dimensional (2D) materials have attracted tremendous interest ever since the isolation of atomically thin sheets of graphene in 2004 due to the specific and versatile properties of these materials. However, the increasing production and use of 2D materials necessitate a thorough evaluation of the potential impact on human health and the environment. Furthermore, harmonized test protocols are needed with which to assess the safety of 2D materials. The Graphene Flagship project (2013-2023), funded by the European Commission, addressed the identification of the possible hazard of graphene-based materials as well as emerging 2D materials including transition metal dichalcogenides, hexagonal boron nitride, and others. Additionally, so-called green chemistry approaches were explored to achieve the goal of a safe and sustainable production and use of this fascinating family of nanomaterials. The present review provides a compact survey of the findings and the lessons learned in the Graphene Flagship.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS,
UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France
| | - Tina Buerki-Thurnherr
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Jasreen Kaur
- Nanosafety
& Nanomedicine Laboratory, Institute
of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Peter Wick
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Marco Pelin
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Aurelia Tubaro
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | | | - Mauro Tretiach
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Emmanuel Flahaut
- CIRIMAT,
Université de Toulouse, CNRS, INPT,
UPS, 31062 Toulouse CEDEX 9, France
| | - Daniel Iglesias
- Facultad
de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Ester Vázquez
- Facultad
de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Giada Cellot
- International
School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Laura Ballerini
- International
School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Valentina Castagnola
- Center
for
Synaptic Neuroscience and Technology, Istituto
Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Fabio Benfenati
- Center
for
Synaptic Neuroscience and Technology, Istituto
Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Andrea Armirotti
- Analytical
Chemistry Facility, Istituto Italiano di
Tecnologia, 16163 Genoa, Italy
| | - Antoine Sallustrau
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Frédéric Taran
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Mathilde Keck
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Cyrill Bussy
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Sandra Vranic
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Kostas Kostarelos
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Mona Connolly
- Instituto Nacional de Investigación y Tecnología
Agraria
y Alimentaria (INIA), CSIC, Carretera de la Coruña Km 7,5, E-28040 Madrid, Spain
| | - José Maria Navas
- Instituto Nacional de Investigación y Tecnología
Agraria
y Alimentaria (INIA), CSIC, Carretera de la Coruña Km 7,5, E-28040 Madrid, Spain
| | - Florence Mouchet
- Laboratoire
Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - Laury Gauthier
- Laboratoire
Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - James Baker
- TEMAS Solutions GmbH, 5212 Hausen, Switzerland
| | | | - Tomi Kanerva
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Maurizio Prato
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Bengt Fadeel
- Nanosafety
& Nanomedicine Laboratory, Institute
of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Alberto Bianco
- CNRS,
UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
7
|
Kong C, Chen J, Li P, Wu Y, Zhang G, Sang B, Li R, Shi Y, Cui X, Zhou T. Respiratory Toxicology of Graphene-Based Nanomaterials: A Review. TOXICS 2024; 12:82. [PMID: 38251037 PMCID: PMC10820349 DOI: 10.3390/toxics12010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Graphene-based nanomaterials (GBNs) consist of a single or few layers of graphene sheets or modified graphene including pristine graphene, graphene nanosheets (GNS), graphene oxide (GO), reduced graphene oxide (rGO), as well as graphene modified with various functional groups or chemicals (e.g., hydroxyl, carboxyl, and polyethylene glycol), which are frequently used in industrial and biomedical applications owing to their exceptional physicochemical properties. Given the widespread production and extensive application of GBNs, they can be disseminated in a wide range of environmental mediums, such as air, water, food, and soil. GBNs can enter the human body through various routes such as inhalation, ingestion, dermal penetration, injection, and implantation in biomedical applications, and the majority of GBNs tend to accumulate in the respiratory system. GBNs inhaled and substantially deposited in the human respiratory tract may impair lung defenses and clearance, resulting in the formation of granulomas and pulmonary fibrosis. However, the specific toxicity of the respiratory system caused by different GBNs, their influencing factors, and the underlying mechanisms remain relatively scarce. This review summarizes recent advances in the exposure, metabolism, toxicity and potential mechanisms, current limitations, and future perspectives of various GBNs in the respiratory system.
Collapse
Affiliation(s)
- Chunxue Kong
- Environmental Toxicology Laboratory, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China; (C.K.); (G.Z.); (B.S.); (Y.S.)
| | - Junwen Chen
- Department of Pulmonary and Critical Care Medicine, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang 441000, China; (J.C.); (P.L.)
| | - Ping Li
- Department of Pulmonary and Critical Care Medicine, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang 441000, China; (J.C.); (P.L.)
| | - Yukang Wu
- Department of Physical and Chemical Laboratory, The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi 214023, China;
| | - Guowei Zhang
- Environmental Toxicology Laboratory, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China; (C.K.); (G.Z.); (B.S.); (Y.S.)
| | - Bimin Sang
- Environmental Toxicology Laboratory, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China; (C.K.); (G.Z.); (B.S.); (Y.S.)
| | - Rui Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China;
| | - Yuqin Shi
- Environmental Toxicology Laboratory, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China; (C.K.); (G.Z.); (B.S.); (Y.S.)
| | - Xiuqing Cui
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Center for Disease Control and Prevention, Wuhan 430079, China
| | - Ting Zhou
- Environmental Toxicology Laboratory, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China; (C.K.); (G.Z.); (B.S.); (Y.S.)
| |
Collapse
|
8
|
Sudheshwar A, Apel C, Kümmerer K, Wang Z, Soeteman-Hernández LG, Valsami-Jones E, Som C, Nowack B. Learning from Safe-by-Design for Safe-and-Sustainable-by-Design: Mapping the current landscape of Safe-by-Design reviews, case studies, and frameworks. ENVIRONMENT INTERNATIONAL 2024; 183:108305. [PMID: 38048736 DOI: 10.1016/j.envint.2023.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 12/06/2023]
Abstract
With the introduction of the European Commission's "Safe and Sustainable-by-Design" (SSbD) framework, the interest in understanding the implications of safety and sustainability assessments of chemicals, materials, and processes at early-innovation stages has skyrocketed. Our study focuses on the "Safe-by-Design" (SbD) approach from the nanomaterials sector, which predates the SSbD framework. In this assessment, SbD studies have been compiled and categorized into reviews, case studies, and frameworks. Reviews of SbD tools have been further classified as quantitative, qualitative, or toolboxes and repositories. We assessed the SbD case studies and classified them into three categories: safe(r)-by-modeling, safe(r)-by-selection, or safe(r)-by-redesign. This classification enabled us to understand past SbD work and subsequently use it to define future SSbD work so as to avoid confusion and possibilities of "SSbD-washing" (similar to greenwashing). Finally, the preexisting SbD frameworks have been studied and contextualized against the SSbD framework. Several key recommendations for SSbD based on our analysis can be made. Knowledge gained from existing approaches such as SbD, green and sustainable chemistry, and benign-by-design approaches needs to be preserved and effectively transferred to SSbD. Better incorporation of chemical and material functionality into the SSbD framework is required. The concept of lifecycle thinking and the stage-gate innovation model need to be reconciled for SSbD. The development of high-throughput screening models is critical for the operationalization of SSbD. We conclude that the rapid pace of both SbD and SSbD development necessitates a regular mapping of the newly published literature that is relevant to this field.
Collapse
Affiliation(s)
- Akshat Sudheshwar
- Empa - Swiss Federal Laboratories for Material Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Christina Apel
- Leuphana University of Lüneburg, Institute of Sustainable Chemistry, Lüneburg, Germany
| | - Klaus Kümmerer
- Leuphana University of Lüneburg, Institute of Sustainable Chemistry, Lüneburg, Germany; International Sustainable Chemistry Collaborative Centre (ISC3), Bonn, Germany
| | - Zhanyun Wang
- Empa - Swiss Federal Laboratories for Material Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Lya G Soeteman-Hernández
- National Institute for Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, The Netherlands
| | | | - Claudia Som
- Empa - Swiss Federal Laboratories for Material Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Bernd Nowack
- Empa - Swiss Federal Laboratories for Material Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| |
Collapse
|
9
|
Visani de Luna LA, Loret T, He Y, Legnani M, Lin H, Galibert AM, Fordham A, Holme S, Del Rio Castillo AE, Bonaccorso F, Bianco A, Flahaut E, Kostarelos K, Bussy C. Pulmonary Toxicity of Boron Nitride Nanomaterials Is Aspect Ratio Dependent. ACS NANO 2023; 17:24919-24935. [PMID: 38051272 PMCID: PMC10753895 DOI: 10.1021/acsnano.3c06599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
Boron nitride (BN) nanomaterials have drawn a lot of interest in the material science community. However, extensive research is still needed to thoroughly analyze their safety profiles. Herein, we investigated the pulmonary impact and clearance of two-dimensional hexagonal boron nitride (h-BN) nanosheets and boron nitride nanotubes (BNNTs) in mice. Animals were exposed by single oropharyngeal aspiration to h-BN or BNNTs. On days 1, 7, and 28, bronchoalveolar lavage (BAL) fluids and lungs were collected. On one hand, adverse effects on lungs were evaluated using various approaches (e.g., immune response, histopathology, tissue remodeling, and genotoxicity). On the other hand, material deposition and clearance from the lungs were assessed. Two-dimensional h-BN did not cause any significant immune response or lung damage, although the presence of materials was confirmed by Raman spectroscopy. In addition, the low aspect ratio h-BN nanosheets were internalized rapidly by phagocytic cells present in alveoli, resulting in efficient clearance from the lungs. In contrast, high aspect ratio BNNTs caused a strong and long-lasting inflammatory response, characterized by sustained inflammation up to 28 days after exposure and the activation of both innate and adaptive immunity. Moreover, the presence of granulomatous structures and an indication of ongoing fibrosis as well as DNA damage in the lung parenchyma were evidenced with these materials. Concurrently, BNNTs were identified in lung sections for up to 28 days, suggesting long-term biopersistence, as previously demonstrated for other high aspect ratio nanomaterials with poor lung clearance such as multiwalled carbon nanotubes (MWCNTs). Overall, we reveal the safer toxicological profile of BN-based two-dimensional nanosheets in comparison to their nanotube counterparts. We also report strong similarities between BNNTs and MWCNTs in lung response, emphasizing their high aspect ratio as a major driver of their toxicity.
Collapse
Affiliation(s)
- Luis Augusto Visani de Luna
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science
Centre, Manchester M13 9PT, U.K.
- National
Graphene Institute, The University of Manchester, Manchester, M13 9PL, U.K.
- Lydia
Becker Institute of Immunology and Inflammation, Faculty of Biology,
Medicine and Health, The University of Manchester,
Manchester Academic Health Science Centre, Manchester M13 9PT, U.K.
| | - Thomas Loret
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science
Centre, Manchester M13 9PT, U.K.
- National
Graphene Institute, The University of Manchester, Manchester, M13 9PL, U.K.
- Lydia
Becker Institute of Immunology and Inflammation, Faculty of Biology,
Medicine and Health, The University of Manchester,
Manchester Academic Health Science Centre, Manchester M13 9PT, U.K.
| | - Yilin He
- CNRS,
Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University
of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Morgan Legnani
- CIRIMAT,
Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université
de Toulouse, 118 Route de Narbonne, 31062 Toulouse cedex 9, France
| | - Hazel Lin
- CNRS,
Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University
of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Anne Marie Galibert
- CIRIMAT,
Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université
de Toulouse, 118 Route de Narbonne, 31062 Toulouse cedex 9, France
| | - Alexander Fordham
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science
Centre, Manchester M13 9PT, U.K.
- National
Graphene Institute, The University of Manchester, Manchester, M13 9PL, U.K.
- Lydia
Becker Institute of Immunology and Inflammation, Faculty of Biology,
Medicine and Health, The University of Manchester,
Manchester Academic Health Science Centre, Manchester M13 9PT, U.K.
| | - Sonja Holme
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science
Centre, Manchester M13 9PT, U.K.
- National
Graphene Institute, The University of Manchester, Manchester, M13 9PL, U.K.
- Lydia
Becker Institute of Immunology and Inflammation, Faculty of Biology,
Medicine and Health, The University of Manchester,
Manchester Academic Health Science Centre, Manchester M13 9PT, U.K.
| | | | - Francesco Bonaccorso
- BeDimensional
S.p.A., Lungo Torrente
Secca 30r, 16163 Genoa, Italy
- Istituto
Italiano di Tecnologia, Graphene Laboratories, Via Morego 30, 16163 Genoa, Italy
| | - Alberto Bianco
- CNRS,
Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University
of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Emmanuel Flahaut
- CIRIMAT,
Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université
de Toulouse, 118 Route de Narbonne, 31062 Toulouse cedex 9, France
| | - Kostas Kostarelos
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science
Centre, Manchester M13 9PT, U.K.
- National
Graphene Institute, The University of Manchester, Manchester, M13 9PL, U.K.
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST,, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Cyrill Bussy
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science
Centre, Manchester M13 9PT, U.K.
- National
Graphene Institute, The University of Manchester, Manchester, M13 9PL, U.K.
- Lydia
Becker Institute of Immunology and Inflammation, Faculty of Biology,
Medicine and Health, The University of Manchester,
Manchester Academic Health Science Centre, Manchester M13 9PT, U.K.
| |
Collapse
|
10
|
Tortella L, Santini I, Lozano N, Kostarelos K, Cellot G, Ballerini L. Graphene Oxide Nanosheets Hamper Glutamate Mediated Excitotoxicity and Protect Neuronal Survival In An In vitro Stroke Model. Chemistry 2023; 29:e202301762. [PMID: 37706581 DOI: 10.1002/chem.202301762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Small graphene oxide (s-GO) nanosheets reversibly downregulate central nervous system (CNS) excitatory synapses, with potential developments as future therapeutic tools to treat neuro-disorders characterized by altered glutamatergic transmission. Excitotoxicity, namely cell death triggered by exceeding ambient glutamate fueling over-activation of excitatory synapses, is a pathogenic mechanism shared by several neural diseases, from ischemic stroke to neurodegenerative disorders. In this work, CNS cultures were exposed to oxygen-glucose deprivation (OGD) to mimic ischemic stroke in vitro, and it is show that the delivery of s-GO following OGD, during the endogenous build-up of secondary damage and excitotoxicity, improved neuronal survival. In a different paradigm, excitotoxicity cell damage was reproduced through exogenous glutamate application, and s-GO co-treatment protected neuronal integrity, potentially by directly downregulating the synaptic over-activation brought about by exogenous glutamate. This proof-of-concept study suggests that s-GO may find novel applications in therapeutic developments for treating excitotoxicity-driven neural cell death.
Collapse
Affiliation(s)
- Lorenza Tortella
- Neuroscience Area, International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, 34136, Trieste, Italy
| | - Irene Santini
- Neuroscience Area, International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, 34136, Trieste, Italy
| | - Neus Lozano
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Kostas Kostarelos
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Nanomedicine Lab, and Faculty of Biology, Medicine & Health, The National Graphene Institute, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Giada Cellot
- Neuroscience Area, International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, 34136, Trieste, Italy
| | - Laura Ballerini
- Neuroscience Area, International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, 34136, Trieste, Italy
| |
Collapse
|
11
|
Sallustrau A, Keck M, Barbe P, Georgin D, Fresneau N, Campidelli S, Pibaleau B, Pinault M, Mayne-L'Hermite M, Granotier-Beckers C, Schlegel M, González VJ, Vázquez E, Servent D, Taran F. One-year post-exposure assessment of 14C-few-layer graphene biodistribution in mice: single versus repeated intratracheal administration. NANOSCALE 2023; 15:17621-17632. [PMID: 37877415 DOI: 10.1039/d3nr03711h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Research on graphene-based nanomaterials has experienced exponential growth in the last few decades, driven by their unique properties and their future potential impact on our everyday life. With the increasing production and commercialization of these materials, there is significant interest in understanding their fate in vivo. Herein, we investigated the distribution of 14C-few-layer graphene (14C-FLG) flakes (lat. dim. ∼ 500 nm) in mice over a period of one year. Furthermore, we compared the effects of repeated low-dose and acute high-dose exposure by tracheal administration. The results showed that most of the radioactivity was found in the lungs in both cases, with longer elimination times in the case of acute high-dose administration. In order to gain deeper insights into the distribution pattern, we conducted ex vivo investigations using μ-autoradiography on tissue sections, revealing the heterogeneous distribution of the material following administration. For the first time, μ-autoradiography was used to conduct a comprehensive investigation into the distribution and potential presence of FLG within lung cells isolated from the exposed lungs. The presence of radioactivity in lung cells strongly suggests internalization of the 14C-FLG particles. Overall these results show the long-term accumulation of the material in the lungs over one year, regardless of the administration protocol, and the higher biopersistence of FLG in the case of an acute exposure. These findings highlight the importance of the exposure scenario in the context of intratracheal administration, which is of interest in the evaluation of the potential health risks of graphene-based nanomaterials.
Collapse
Affiliation(s)
- Antoine Sallustrau
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Mathilde Keck
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMos, 91191 Gif-sur-Yvette, France
| | - Peggy Barbe
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMos, 91191 Gif-sur-Yvette, France
| | - Dominique Georgin
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Nathalie Fresneau
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, 91191 Gif-sur-Yvette, France
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Stephane Campidelli
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, 91191 Gif-sur-Yvette, France
| | - Baptiste Pibaleau
- Université Paris-Saclay, CEA, CNRS, NIMBE, LEDNA, 91191 Gif-sur-Yvette, France
| | - Mathieu Pinault
- Université Paris-Saclay, CEA, CNRS, NIMBE, LEDNA, 91191 Gif-sur-Yvette, France
| | | | - Christine Granotier-Beckers
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations/iRCM, 92265 Fontenay-aux-Roses, France
| | - Michel Schlegel
- Université Paris Saclay, CEA, Service de Recherche en Matériaux et Procédés Avancés, 91191 Gif-sur-Yvette, France
| | - Viviana Jehová González
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071Ciudad Real, Spain
| | - Ester Vázquez
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071Ciudad Real, Spain
| | - Denis Servent
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMos, 91191 Gif-sur-Yvette, France
| | - Frédéric Taran
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
12
|
Ou L, Tan X, Qiao S, Wu J, Su Y, Xie W, Jin N, He J, Luo R, Lai X, Liu W, Zhang Y, Zhao F, Liu J, Kang Y, Shao L. Graphene-Based Material-Mediated Immunomodulation in Tissue Engineering and Regeneration: Mechanism and Significance. ACS NANO 2023; 17:18669-18687. [PMID: 37768738 DOI: 10.1021/acsnano.3c03857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Tissue engineering and regenerative medicine hold promise for improving or even restoring the function of damaged organs. Graphene-based materials (GBMs) have become a key player in biomaterials applied to tissue engineering and regenerative medicine. A series of cellular and molecular events, which affect the outcome of tissue regeneration, occur after GBMs are implanted into the body. The immunomodulatory function of GBMs is considered to be a key factor influencing tissue regeneration. This review introduces the applications of GBMs in bone, neural, skin, and cardiovascular tissue engineering, emphasizing that the immunomodulatory functions of GBMs significantly improve tissue regeneration. This review focuses on summarizing and discussing the mechanisms by which GBMs mediate the sequential regulation of the innate immune cell inflammatory response. During the process of tissue healing, multiple immune responses, such as the inflammatory response, foreign body reaction, tissue fibrosis, and biodegradation of GBMs, are interrelated and influential. We discuss the regulation of these immune responses by GBMs, as well as the immune cells and related immunomodulatory mechanisms involved. Finally, we summarize the limitations in the immunomodulatory strategies of GBMs and ideas for optimizing GBM applications in tissue engineering. This review demonstrates the significance and related mechanism of the immunomodulatory function of GBM application in tissue engineering; more importantly, it contributes insights into the design of GBMs to enhance wound healing and tissue regeneration in tissue engineering.
Collapse
Affiliation(s)
- Lingling Ou
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiner Tan
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shijia Qiao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuan Su
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528399, China
| | - Wenqiang Xie
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Nianqiang Jin
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jiankang He
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Ruhui Luo
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xuan Lai
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Fujian Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
13
|
Loret T, de Luna LAV, Lucherelli MA, Fordham A, Lozano N, Bianco A, Kostarelos K, Bussy C. Lung Persistence, Biodegradation, and Elimination of Graphene-Based Materials are Predominantly Size-Dependent and Mediated by Alveolar Phagocytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301201. [PMID: 37264768 PMCID: PMC11475755 DOI: 10.1002/smll.202301201] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/03/2023] [Indexed: 06/03/2023]
Abstract
Graphene-based materials (GBMs) have promising applications in various sectors, including pulmonary nanomedicine. Nevertheless, the influence of GBM physicochemical characteristics on their fate and impact in lung has not been thoroughly addressed. To fill this gap, the biological response, distribution, and bio-persistence of four different GBMs in mouse lungs up to 28 days after single oropharyngeal aspiration are investigated. None of the GBMs, varying in size (large versus small) and carbon to oxygen ratio as well as thickness (few-layers graphene (FLG) versus thin graphene oxide (GO)), induce a strong pulmonary immune response. However, recruited neutrophils internalize nanosheets better and degrade GBMs faster than macrophages, revealing their crucial role in the elimination of small GBMs. In contrast, large GO sheets induce more damages due to a hindered degradation and long-term persistence in macrophages. Overall, small dimensions appear to be a leading feature in the design of safe GBM pulmonary nanovectors due to an enhanced degradation in phagocytes and a faster clearance from the lungs for small GBMs. Thickness also plays an important role, since decreased material loading in alveolar phagocytes and faster elimination are found for FLGs compared to thinner GOs. These results are important for designing safer-by-design GBMs for biomedical application.
Collapse
Affiliation(s)
- Thomas Loret
- Nanomedicine Lab 2.0School of Biological SciencesFaculty of BiologyMedicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
- National Graphene InstituteThe University of ManchesterManchesterM13 9PLUK
- Lydia Becker Institute of Immunology and InflammationFaculty of BiologyMedicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
| | - Luis Augusto Visani de Luna
- Nanomedicine Lab 2.0School of Biological SciencesFaculty of BiologyMedicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
- National Graphene InstituteThe University of ManchesterManchesterM13 9PLUK
- Lydia Becker Institute of Immunology and InflammationFaculty of BiologyMedicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
| | - Matteo Andrea Lucherelli
- CNRSImmunologyImmunopathology and Therapeutic ChemistryUPR 3572University of StrasbourgISISStrasbourg67000France
| | - Alexander Fordham
- Nanomedicine Lab 2.0School of Biological SciencesFaculty of BiologyMedicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
- National Graphene InstituteThe University of ManchesterManchesterM13 9PLUK
- Lydia Becker Institute of Immunology and InflammationFaculty of BiologyMedicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
| | - Neus Lozano
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterraBarcelona08193Spain
| | - Alberto Bianco
- CNRSImmunologyImmunopathology and Therapeutic ChemistryUPR 3572University of StrasbourgISISStrasbourg67000France
| | - Kostas Kostarelos
- Nanomedicine Lab 2.0School of Biological SciencesFaculty of BiologyMedicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
- National Graphene InstituteThe University of ManchesterManchesterM13 9PLUK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterraBarcelona08193Spain
| | - Cyrill Bussy
- Nanomedicine Lab 2.0School of Biological SciencesFaculty of BiologyMedicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
- National Graphene InstituteThe University of ManchesterManchesterM13 9PLUK
- Lydia Becker Institute of Immunology and InflammationFaculty of BiologyMedicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
| |
Collapse
|
14
|
Ostermann M, Bilotto P, Kadlec M, Schodl J, Duchoslav J, Stöger-Pollach M, Lieberzeit P, Valtiner M. l-Ascorbic Acid Treatment of Electrochemical Graphene Nanosheets: Reduction Optimization and Application for De-Icing, Water Uptake Prevention, and Corrosion Resistance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22471-22484. [PMID: 37125734 PMCID: PMC10176320 DOI: 10.1021/acsami.2c22854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The aeronautical industry demands facile lightweight and low-cost solutions to address climate crisis challenges. Graphene can be a valid candidate to tackle these functionalities, although its upscalability remains difficult to achieve. Consequently, graphene-related materials (GRM) are gathering massive attention as top-down graphite exfoliation processes at the industrial scale are feasible and often employed. In this work, environmentally friendly produced partially oxidized graphene nanosheets (POGNs) reduced by green solvents such as l-Ascorbic Acid to rGNs are proposed to deliver functional coatings based on a glass fiber composite or coated Al2024 T3 for strategic R&D questions in the aeronautical industry, i.e., low energy production, de-icing, and water uptake. In detail, energy efficiency in rGNs production is assessed via response-surface modeling of the powder conductivity, hence proposing an optimized reduction window. De-Icing functionality is verified by measuring the stable electrothermal property of an rGNs based composite over 24 h, and water uptake is elucidated by evaluating electrochemical and corrosion properties. Moreover, a mathematical model is proposed to depict the relation between the layers' sheet resistance and applied rGNs mass per area, which extends the system to other graphene-related materials, conductive two-dimensional materials, and various substrates. To conclude, the proposed system based on rGNs and epoxy paves the way for future multifunctional coatings, able to enhance the resistance of surfaces, such as airplane wings, in a flight harsh environment.
Collapse
Affiliation(s)
- Markus Ostermann
- CEST GmbH, Centre for Electrochemical Surface Technology, A-2700 Wiener Neustadt, Austria
- Institute of Physical Chemistry, University of Vienna, A-1090 Vienna, Austria
| | - Pierluigi Bilotto
- CEST GmbH, Centre for Electrochemical Surface Technology, A-2700 Wiener Neustadt, Austria
| | - Martin Kadlec
- VZLU - Czech Aerospace Research Centre, CZ-199 05 Praha, Czech Republic
| | - Jürgen Schodl
- CEST GmbH, Centre for Electrochemical Surface Technology, A-2700 Wiener Neustadt, Austria
| | - Jiri Duchoslav
- CEST GmbH, Centre for Electrochemical Surface Technology, A-2700 Wiener Neustadt, Austria
- Center for Surface and Nanoanalytics (ZONA), Johannes Kepler University Linz, A-4040 Linz, Austria
| | - Michael Stöger-Pollach
- University Service Centre for Transmission Electron Microscopy (USTEM), TU Wien, A-1040 Vienna, Austria
- Institute for Solid State Physics, TU Wien, A-1040 Vienna, Austria
| | - Peter Lieberzeit
- Institute of Physical Chemistry, University of Vienna, A-1090 Vienna, Austria
| | - Markus Valtiner
- CEST GmbH, Centre for Electrochemical Surface Technology, A-2700 Wiener Neustadt, Austria
- Applied Interface Physics, TU Wien, A-1040, Vienna, Austria
| |
Collapse
|
15
|
Xiao Y, Pang YX, Yan Y, Qian P, Zhao H, Manickam S, Wu T, Pang CH. Synthesis and Functionalization of Graphene Materials for Biomedical Applications: Recent Advances, Challenges, and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205292. [PMID: 36658693 PMCID: PMC10037997 DOI: 10.1002/advs.202205292] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Since its discovery in 2004, graphene is increasingly applied in various fields owing to its unique properties. Graphene application in the biomedical domain is promising and intriguing as an emerging 2D material with a high surface area, good mechanical properties, and unrivalled electronic and physical properties. This review summarizes six typical synthesis methods to fabricate pristine graphene (p-G), graphene oxide (GO), and reduced graphene oxide (rGO), followed by characterization techniques to examine the obtained graphene materials. As bare graphene is generally undesirable in vivo and in vitro, functionalization methods to reduce toxicity, increase biocompatibility, and provide more functionalities are demonstrated. Subsequently, in vivo and in vitro behaviors of various bare and functionalized graphene materials are discussed to evaluate the functionalization effects. Reasonable control of dose (<20 mg kg-1 ), sizes (50-1000 nm), and functionalization methods for in vivo application are advantageous. Then, the key biomedical applications based on graphene materials are discussed, coupled with the current challenges and outlooks of this growing field. In a broader sense, this review provides a comprehensive discussion on the synthesis, characterization, functionalization, evaluation, and application of p-G, GO, and rGO in the biomedical field, highlighting their recent advances and potential.
Collapse
Affiliation(s)
- Yuqin Xiao
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
| | - Yoong Xin Pang
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
| | - Yuxin Yan
- College of Energy EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Ping Qian
- Beijing Advanced Innovation Center for Materials Genome EngineeringBeijing100083P. R. China
- School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Haitao Zhao
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
| | - Sivakumar Manickam
- Petroleum and Chemical EngineeringFaculty of EngineeringUniversiti Teknologi BruneiBandar Seri BegawanBE1410Brunei Darussalam
| | - Tao Wu
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
- Key Laboratory for Carbonaceous Wastes Processing and ProcessIntensification Research of Zhejiang ProvinceUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| | - Cheng Heng Pang
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Municipal Key Laboratory of Clean Energy Conversion TechnologiesUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| |
Collapse
|
16
|
Di Mauro G, Amoriello R, Lozano N, Carnasciali A, Guasti D, Becucci M, Cellot G, Kostarelos K, Ballerini C, Ballerini L. Graphene Oxide Nanosheets Reduce Astrocyte Reactivity to Inflammation and Ameliorate Experimental Autoimmune Encephalomyelitis. ACS NANO 2023; 17:1965-1978. [PMID: 36692902 PMCID: PMC9933621 DOI: 10.1021/acsnano.2c06609] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
In neuroinflammation, astrocytes play multifaceted roles that regulate the neuronal environment. Astrocytes sense and respond to pro-inflammatory cytokines (CKs) and, by a repertoire of intracellular Ca2+ signaling, contribute to disease progression. Therapeutic approaches wish to reduce the overactivation in Ca2+ signaling in inflammatory-reactive astrocytes to restore dysregulated cellular changes. Cell-targeting therapeutics might take advantage by the use of nanomaterial-multifunctional platforms such as graphene oxide (GO). GO biomedical applications in the nervous system involve therapeutic delivery and sensing, and GO flakes were shown to enable interfacing of neuronal and glial membrane dynamics. We exploit organotypic spinal cord cultures and optical imaging to explore Ca2+ changes in astrocytes, and we report, when spinal tissue is exposed to CKs, neuroinflammatory-associated modulation of resident glia. We show the efficacy of GO to revert these dynamic changes in astrocytic reactivity to CKs, and we translate this potential in an animal model of immune-mediated neuroinflammatory disease.
Collapse
Affiliation(s)
- Giuseppe Di Mauro
- International
School for Advanced Studies (SISSA/ISAS), 34136Trieste, Italy
| | - Roberta Amoriello
- International
School for Advanced Studies (SISSA/ISAS), 34136Trieste, Italy
- Dipartimento
di Medicina Sperimentale e Clinica, University
of Florence, 50139Florence, Italy
| | - Neus Lozano
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), 08193Barcelona, Spain
| | - Alberto Carnasciali
- Dipartimento
di Medicina Sperimentale e Clinica, University
of Florence, 50139Florence, Italy
| | - Daniele Guasti
- Dipartimento
di Medicina Sperimentale e Clinica, University
of Florence, 50139Florence, Italy
| | - Maurizio Becucci
- Dipartimento
di Chimica “Ugo Schiff”, DICUS, University of Florence, 50139Florence, Italy
| | - Giada Cellot
- International
School for Advanced Studies (SISSA/ISAS), 34136Trieste, Italy
| | - Kostas Kostarelos
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), 08193Barcelona, Spain
- Nanomedicine
Lab, and Faculty of Biology, Medicine & Health, The National Graphene
Institute, University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Clara Ballerini
- Dipartimento
di Medicina Sperimentale e Clinica, University
of Florence, 50139Florence, Italy
| | - Laura Ballerini
- International
School for Advanced Studies (SISSA/ISAS), 34136Trieste, Italy
| |
Collapse
|
17
|
Torres I, González-Tobío B, Ares P, Gómez-Herrero J, Zamora F. Evaluation of the degradation of the graphene-polypropylene composites of masks in harsh working conditions. MATERIALS TODAY. CHEMISTRY 2022; 26:101146. [PMID: 36159446 PMCID: PMC9481924 DOI: 10.1016/j.mtchem.2022.101146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 05/12/2023]
Abstract
The recent COVID-19 outbreak has led health authorities to recommend at least the use of surgical masks, most preferably respirators (FFP2 or KN95), to prevent the spread of the virus. Non-woven fabrics have been chosen as the best option to manufacture the face masks, due to their filtration efficiency, low cost, and versatility. Modifying the mask filters with graphene has been of great interest due to its potential use as antibacterial and virucidal properties. Indeed, some companies have commercialized face masks in which graphene is coated and/or embedded. However, the Canadian sanitary authorities advised against using the Shandong Shengquan New Materials Co. graphene masks because of the possibility of pulmonary damage produced by graphene inhalation. Thus, we have analyzed the stability of the graphene filter of these masks and compared it with two other commercially available graphene mask filters, evaluating the morphological and spectroscopical change of the fibers, as well as the particles released during the endurance tests. Our work introduces the necessary tools and methodology to evaluate the potential degradation of face masks under extreme working conditions. These methods complement the present standard tests ensuring the security of the new filters based on composites or nanomaterials.
Collapse
Affiliation(s)
- I Torres
- Departamento de Química Inorgánica, Institute for Advanced Research in Chemical Sciences (IAdChem) and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - B González-Tobío
- Departamento de Química Inorgánica, Institute for Advanced Research in Chemical Sciences (IAdChem) and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - P Ares
- Departamento de Física de La Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - J Gómez-Herrero
- Departamento de Física de La Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - F Zamora
- Departamento de Química Inorgánica, Institute for Advanced Research in Chemical Sciences (IAdChem) and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
18
|
Zhang T, Lei T, Yan R, Zhou B, Fan C, Zhao Y, Yao S, Pan H, Chen Y, Wu B, Yang Y, Hu L, Gu S, Chen X, Bao F, Li Y, Xie H, Tang R, Chen X, Yin Z. Systemic and single cell level responses to 1 nm size biomaterials demonstrate distinct biological effects revealed by multi-omics atlas. Bioact Mater 2022; 18:199-212. [PMID: 35387162 PMCID: PMC8961465 DOI: 10.1016/j.bioactmat.2022.03.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/26/2022] [Accepted: 03/15/2022] [Indexed: 12/31/2022] Open
Abstract
Although ultra-small nanoclusters (USNCs, < 2 nm) have immense application capabilities in biomedicine, the investigation on body-wide organ responses towards USNCs is scant. Here, applying a novel strategy of single-cell mass cytometry combined with Nano Genome Atlas of multi-tissues, we systematically evaluate the interactions between the host and calcium phosphate (CaP) USNCs at the organism level. Combining single-cell mass cytometry, and magnetic luminex assay results, we identify dynamic immune responses to CaP USNCs at the single cell resolution. The innate immune is initially activated and followed by adaptive immune activation, as evidenced by dynamic immune cells proportions. Furthermore, using Nano Genome Atlas of multi-tissues, we uncover CaP USNCs induce stronger activation of the immune responses in the cartilage and subchondral bone among the five local tissues while promote metabolic activities in the liver and kidney. Moreover, based on the immunological response profiles, histological evaluation of major organs and local tissue, and a body-wide transcriptomics, we demonstrate that CaP USNCs are not more hazardous than the Food and Drug Administration-approved CaP nanoparticles after 14 days of injection. Our findings provide valuable information on the future clinical applications of USNCs and introduce an innovative strategy to decipher the whole body response to implants. We described a new strategy to facilitate the analysis of body-wide systemic responses of CaP USNCs in vivo. At single-cell resolution, we decoded a dynamic immune atlas of CaP USNCs in the blood. Based on the body-wide transcriptomics view, the biological effect of CaP USNCs is organ/tissue specific.
Collapse
|
19
|
Wang Y, Li M, Wang S, Ma J, Liu Y, Guo H, Gao J, Yao L, He B, Hu L, Qu G, Jiang G. Deciphering the Effects of 2D Black Phosphorus on Disrupted Hematopoiesis and Pulmonary Immune Homeostasis Using a Developed Flow Cytometry Method. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15869-15881. [PMID: 36227752 PMCID: PMC9671123 DOI: 10.1021/acs.est.2c03675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 05/28/2023]
Abstract
As an emerging two-dimensional nanomaterial with promising prospects, mono- or few-layer black phosphorus (BP) is potentially toxic to humans. We investigated the effects of two types of BPs on adult male mice through intratracheal instillation. Using the flow cytometry method, the generation, migration, and recruitment of immune cells in different organs have been characterized on days 1, 7, 14, and 21 post-exposure. Compared with small BP (S-BP, lateral size at ∼188 nm), large BP (L-BP, lateral size at ∼326 nm) induced a stronger stress lymphopoiesis and B cell infiltration into the alveolar sac. More importantly, L-BP dramatically increased peripheral neutrophil (NE) counts up to 1.9-fold on day 21 post-exposure. Decreased expression of the CXCR4 on NEs, an important regulator of NE retention in the bone marrow, explained the increased NE release into the circulation induced by L-BP. Therefore, BP triggers systemic inflammation via the disruption of both the generation and migration of inflammatory immune cells.
Collapse
Affiliation(s)
- Yuanyuan Wang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Li
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, Shenyang 110819, China
| | - Shunhao Wang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Ma
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, Shenyang 110819, China
| | - Yaquan Liu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Guo
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Gao
- School
of Environmental, Hangzhou Institute for
Advanced Study, UCAS, Hangzhou 310000, China
| | - Linlin Yao
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Bin He
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environmental, Hangzhou Institute for
Advanced Study, UCAS, Hangzhou 310000, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Ligang Hu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environmental, Hangzhou Institute for
Advanced Study, UCAS, Hangzhou 310000, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
- Institute
of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guangbo Qu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environmental, Hangzhou Institute for
Advanced Study, UCAS, Hangzhou 310000, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
- Institute
of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environmental, Hangzhou Institute for
Advanced Study, UCAS, Hangzhou 310000, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
- Institute
of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
20
|
de Luna LAV, Loret T, Fordham A, Arshad A, Drummond M, Dodd A, Lozano N, Kostarelos K, Bussy C. Lung recovery from DNA damage induced by graphene oxide is dependent on size, dose and inflammation profile. Part Fibre Toxicol 2022; 19:62. [PMID: 36131347 PMCID: PMC9490925 DOI: 10.1186/s12989-022-00502-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A key aspect of any new material safety assessment is the evaluation of their in vivo genotoxicity. Graphene oxide (GO) has been studied for many promising applications, but there are remaining concerns about its safety profile, especially after inhalation. Herein we tested whether GO lateral dimension, comparing micrometric (LGO) and nanometric (USGO) GO sheets, has a role in the formation of DNA double strand breaks in mouse lungs. We used spatial resolution and differential cell type analysis to measure DNA damages in both epithelial and immune cells, after either single or repeated exposure. RESULTS GO induced DNA damages were size and dose dependent, in both exposure scenario. After single exposure to a high dose, both USGO and LGO induced significant DNA damage in the lung parenchyma, but only during the acute phase response (p < 0.05 for USGO; p < 0.01 for LGO). This was followed by a fast lung recovery at day 7 and 28 for both GOs. When evaluating the chronic impact of GO after repeated exposure, only a high dose of LGO induced long-term DNA damages in lung alveolar epithelia (at 84 days, p < 0.05). Regardless of size, low dose GO did not induce any significant DNA damage after repeated exposure. A multiparametric correlation analysis of our repeated exposure data revealed that transient or persistent inflammation and oxidative stress were associated to either recovery or persistent DNA damages. For USGO, recovery from DNA damage was correlated to efficient recovery from acute inflammation (i.e., significant secretion of SAA3, p < 0.001; infiltration of neutrophils, p < 0.01). In contrast, the persistence of LGO in lungs was associated to a long-lasting presence of multinucleated macrophages (up to 84 days, p < 0.05), an underlying inflammation (IL-1α secretion up to 28 days, p < 0.05) and the presence of persistent DNA damages at 84 days. CONCLUSIONS Overall these results highlight the importance of the exposure scenario used. We showed that LGO was more genotoxic after repeated exposure than single exposure due to persistent lung inflammation. These findings are important in the context of human health risk assessment and toward establishing recommendations for a safe use of graphene based materials in the workplace.
Collapse
Affiliation(s)
- Luis Augusto Visani de Luna
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Thomas Loret
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Alexander Fordham
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Atta Arshad
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Matthew Drummond
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - Abbie Dodd
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - Neus Lozano
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Kostas Kostarelos
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.,Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Cyrill Bussy
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK. .,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK. .,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
21
|
Kan Z, Zhao KX, Jiang C, Liu DY, Guo Y, Liu LY, Wang WJ, He ZQ, Zhang ZF, Wang SY. Respiratory exposure to graphene oxide induces pulmonary fibrosis and organ damages in rats involving caspase-1/p38MAPK/TGF-β1 signaling pathways. CHEMOSPHERE 2022; 303:135181. [PMID: 35667501 DOI: 10.1016/j.chemosphere.2022.135181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Numerous studies have shown that graphene oxide (GO) respiratory exposure led to severe lung injury, but whether pulmonary fibrosis caused by GO respiratory exposure is related to the activation of the caspase-1/p38MAPK/TGF-β1 remains unclear. In this study, rats were administrated GO by intratracheal instillation and fed for three months, and the molecular mechanisms of GO on the pulmonary fibrosis and other organ damage caused by GO respiratory exposure were examined. The results showed that the expression of caspase-1/p38MAPK/TGF-β1 pathway-related factors were significantly elevated with the increase of exposure concentrations of GO. Those data proved that the caspase-1/p38MAPK/TGF-β1 signaling pathway was involved in the pulmonary fibrosis caused by GO respiratory exposure. The trends of related factors also proved that the caspase-1/p38MAPK/TGF-β1 pathway was likely to play a dominant role in the sub-acute and sub-chronic stages. The other organ damage examination found that the liver and spleen were damaged initially by the GO respiratory exposure. Meanwhile for the testicle, although the acute injury was severe, signs of recovery were found during the three-month trial period.
Collapse
Affiliation(s)
- Ze Kan
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin, 150028, PR China
| | - Ke-Xin Zhao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment/School of Environment, Harbin Institute of Technology (HIT), Harbin, 150090, Heilongjiang, China
| | - Chao Jiang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin, 150028, PR China
| | - Da-Yang Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin, 150028, PR China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, And School of Environment, Jinan University, Guangzhou, 510632, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment/School of Environment, Harbin Institute of Technology (HIT), Harbin, 150090, Heilongjiang, China
| | - Wen-Juan Wang
- Heilongjiang Pony Testing Technical Co.,Ltd, Harbin, 150028, Heilongjiang, China
| | - Zhi-Qiang He
- Heilongjiang Pony Testing Technical Co.,Ltd, Harbin, 150028, Heilongjiang, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment/School of Environment, Harbin Institute of Technology (HIT), Harbin, 150090, Heilongjiang, China.
| | - Su-Yi Wang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin, 150028, PR China
| |
Collapse
|
22
|
Chortarea S, Kuru OC, Netkueakul W, Pelin M, Keshavan S, Song Z, Ma B, Gómes J, Abalos EV, Luna LAVD, Loret T, Fordham A, Drummond M, Kontis N, Anagnostopoulos G, Paterakis G, Cataldi P, Tubaro A, Galiotis C, Kinloch I, Fadeel B, Bussy C, Kostarelos K, Buerki-Thurnherr T, Prato M, Bianco A, Wick P. Hazard assessment of abraded thermoplastic composites reinforced with reduced graphene oxide. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129053. [PMID: 35650742 DOI: 10.1016/j.jhazmat.2022.129053] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Graphene-related materials (GRMs) are subject to intensive investigations and considerable progress has been made in recent years in terms of safety assessment. However, limited information is available concerning the hazard potential of GRM-containing products such as graphene-reinforced composites. In the present study, we conducted a comprehensive investigation of the potential biological effects of particles released through an abrasion process from reduced graphene oxide (rGO)-reinforced composites of polyamide 6 (PA6), a widely used engineered thermoplastic polymer, in comparison to as-produced rGO. First, a panel of well-established in vitro models, representative of the immune system and possible target organs such as the lungs, the gut, and the skin, was applied. Limited responses to PA6-rGO exposure were found in the different in vitro models. Only as-produced rGO induced substantial adverse effects, in particular in macrophages. Since inhalation of airborne materials is a key occupational concern, we then sought to test whether the in vitro responses noted for these materials would translate into adverse effects in vivo. To this end, the response at 1, 7 and 28 days after a single pulmonary exposure was evaluated in mice. In agreement with the in vitro data, PA6-rGO induced a modest and transient pulmonary inflammation, resolved by day 28. In contrast, rGO induced a longer-lasting, albeit moderate inflammation that did not lead to tissue remodeling within 28 days. Taken together, the present study suggests a negligible impact on human health under acute exposure conditions of GRM fillers such as rGO when released from composites at doses expected at the workplace.
Collapse
Affiliation(s)
- Savvina Chortarea
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Ogul Can Kuru
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Woranan Netkueakul
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Marco Pelin
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Sandeep Keshavan
- Nanosafety & Nanomedicine Laboratory, Institute of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Zhengmei Song
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Baojin Ma
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Julio Gómes
- Avanzare Innovacion Tecnologica S.L. 26370 Navarrete, Spain
| | - Elvira Villaro Abalos
- Instituto de Tecnologías Químicas de La Rioja (InterQuímica), 26370 Navarrete, Spain
| | - Luis Augusto Visani de Luna
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Thomas Loret
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Alexander Fordham
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Matthew Drummond
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Nikolaos Kontis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - George Anagnostopoulos
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - George Paterakis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - Pietro Cataldi
- National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Department of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Aurelia Tubaro
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Costas Galiotis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), 26504 Patras, Greece; Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Ian Kinloch
- National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Department of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Institute of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Cyrill Bussy
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Catalan Institute of Nanoscience and Nanotechnology (ICN2), and Barcelona Institute of Science and Technology (BIST), Barcelona 08193, Spain
| | - Tina Buerki-Thurnherr
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy; Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia San Sebastián, Spain; Basque Foundation for Science (IKERBASQUE), 48013 Bilbao, Spain
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Peter Wick
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland.
| |
Collapse
|
23
|
Kohzadi S, Najmoddin N, Baharifar H, Shabani M. Functionalized SPION immobilized on graphene-oxide: Anticancer and antiviral study. DIAMOND AND RELATED MATERIALS 2022; 127:109149. [PMID: 35677893 PMCID: PMC9163046 DOI: 10.1016/j.diamond.2022.109149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 05/14/2023]
Abstract
The progressive and fatal outbreak of some diseases such as cancer and coronavirus necessitates using advanced materials to bring such devastating illnesses under control. In this study, graphene oxide (GO) is decorated by superparamagnetic iron oxide nanoparticles (SPION) (GO/SPION) as well as polyethylene glycol functionalized SPION (GO/SPION@PEG), and chitosan functionalized SPION (GO/SPION@CS). Field emission scanning electron microscopic (FESEM) images show the formation of high density uniformly distributed SPION nanoparticles on the surface of GO sheets. The structural and chemical composition of nanostructures is confirmed by X-ray diffraction and Fourier transform infrared spectroscopy. The saturation magnetization of GO/SPION, GO/SPION@PEG and GO- SPION@CS are found to be 20, 19 and 8 emu/g using vibrating sample magnetometer. Specific absorption rate (SAR) values of 305, 283, and 199 W/g and corresponding intrinsic loss power (ILP) values of 9.4, 8.7, and 6.2 nHm2kg-1 are achieved for GO/SPION, GO/SPION@PEG and GO/SPION@CS, respectively. The In vitro cytotoxicity assay indicates higher than 70% cell viability for all nanostructures at 100, 300, and 500 ppm after 24 and 72 h. Additionally, cancerous cell (EJ138 human bladder carcinoma) ablation is observed using functionalized GO/SPION under applied magnetic field. More than 50% cancerous cell death has been achieved for GO/SPION@PEG at 300 ppm concentration. Furthermore, Surrogate virus neutralization test is applied to investigate neutralizing property of the synthesized nanostructures through analysis of SARS-CoV-2 receptor-binding domain and human angiotensin-converting enzyme 2 binding. The highest level of SARS-CoV-2 virus inhibition is related to GO/SPION@CS (86%) due to the synergistic exploitation of GO and chitosan. Thus, GO/SPION and GO/SPION@PEG with higher SAR and ILP values could be beneficial for cancer treatment, while GO/SPION@CS with higher virus suppression has potential to use against coronaviruses. Thus, the developed nanocomposites have a potential in the efficient treatment of cancer and coronavirus.
Collapse
Affiliation(s)
- Shaghayegh Kohzadi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Najmeh Najmoddin
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hadi Baharifar
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Peng G, Fadeel B. Understanding the bidirectional interactions between two-dimensional materials, microorganisms, and the immune system. Adv Drug Deliv Rev 2022; 188:114422. [PMID: 35810883 DOI: 10.1016/j.addr.2022.114422] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022]
Abstract
Two-dimensional (2D) materials such as the graphene-based materials, transition metal dichalcogenides, transition metal carbides and nitrides (MXenes), black phosphorus, hexagonal boron nitride, and others have attracted considerable attention due to their unique physicochemical properties. This is true not least in the field of medicine. Understanding the interactions between 2D materials and the immune system is therefore of paramount importance. Furthermore, emerging evidence suggests that 2D materials may interact with microorganisms - pathogens as well as commensal bacteria that dwell in and on our body. We discuss the interplay between 2D materials, the immune system, and the microbial world in order to bring a systems perspective to bear on the biological interactions of 2D materials. The use of 2D materials as vectors for drug delivery and as immune adjuvants in tumor vaccines, and 2D materials to counteract inflammation and promote tissue regeneration, are explored. The bio-corona formation on and biodegradation of 2D materials, and the reciprocal interactions between 2D materials and microorganisms, are also highlighted. Finally, we consider the future challenges pertaining to the biomedical applications of various classes of 2D materials.
Collapse
Affiliation(s)
- Guotao Peng
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
25
|
Côa F, Delite FDS, Strauss M, Martinez DST. Toxicity mitigation and biodistribution of albumin corona coated graphene oxide and carbon nanotubes in Caenorhabditis elegans. NANOIMPACT 2022; 27:100413. [PMID: 35940564 DOI: 10.1016/j.impact.2022.100413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/26/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
In this work, the toxicity and biodistribution of graphene oxide (GO) and oxidized multi-walled carbon nanotubes (MWCNT) were investigated in Caenorhabditis elegans. Bovine serum albumin (BSA) was selected as a model protein to evaluate the influence of protein corona formation on materials physicochemical properties, colloidal stability, and toxicity. Biological assays were performed to assess the effects of bare and albumin corona coated materials on survival, oxidative stress, intestinal barrier permeability, growth, reproduction, and fertility. Critical alterations in topography, surface roughness and chemistry of GO and MWCNT were observed due to albumin corona formation. These modifications were associated with changes in colloidal stability of materials and prevention of their aggregation and sedimentation in nematode testing medium. Both GO and MWCNT caused damage to nematode survival, growth, reproduction, and fertility, as well as enhanced oxidative stress and permeability of the intestinal barrier. But GO was more toxic than MWCNT to C. elegans, especially at long-term assays. Albumin corona mitigated 100% of acute and chronic effects of MWCNT. In contrast, the negative effects of GO were not completely mitigated; GO inhibited 16.2% of nematode growth, 86.5% of reproduction, and 32.0% of fertility at the highest concentration evaluated (10 mg L-1), while corona coated GO mitigated 50% and 100% of fertility and growth, respectively. Confocal Raman spectroscopy imaging was crucial to point out that bare and albumin corona coated GO and MWCNT crossed the C. elegans intestinal barrier reaching its reproductive organs. However, BSA corona protected the nematodes targeted organs from negative effects from MWCNT and blocked its translocation to other tissues, while coated GO was translocated inside the nematode affecting the functionality of crucial organs. In addition, coated MWCNT was excreted after 2 h of food resumption, whereas coated GO still accumulated in the nematode intestine. Our results demonstrate that the materials different translocation and excretion patterns in C. elegans had a relation to the impaired physiological functions of primary and secondary organs. This work is a contribution towards a better understanding of the impacts of protein corona on the toxicity of graphene oxide and carbon nanotubes; essential information for biological applications and nanosafety.
Collapse
Affiliation(s)
- Francine Côa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Fabrício de Souza Delite
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Mathias Strauss
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center of Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Diego Stéfani Teodoro Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.
| |
Collapse
|
26
|
Rapid and efficient testing of the toxicity of graphene-related materials in primary human lung cells. Sci Rep 2022; 12:7664. [PMID: 35538131 PMCID: PMC9088729 DOI: 10.1038/s41598-022-11840-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 04/28/2022] [Indexed: 11/25/2022] Open
Abstract
Graphene and its derivative materials are manufactured by numerous companies and research laboratories, during which processes they can come into contact with their handlers' physiological barriers—for instance, their respiratory system. Despite their potential toxicity, these materials have even been used in face masks to prevent COVID-19 transmission. The increasingly widespread use of these materials requires the design and implementation of appropriate, versatile, and accurate toxicological screening methods to guarantee their safety. Murine models are adequate, though limited when exploring different doses and lengths of exposure—as this increases the number of animals required, contrary to the Three R's principle in animal experimentation. This article proposes an in vitro model using primary, non-transformed normal human bronchial epithelial (NHBE) cells as an alternative to the most widely used model to date, the human lung tumor cell line A549. The model has been tested with three graphene derivatives—graphene oxide (GO), few-layer graphene (FLG), and small FLG (sFLG). We observed a cytotoxic effect (necrosis and apoptosis) at early (6- and 24-h) exposures, which intensified after seven days of contact between cells and the graphene-related materials (GRMs)—with cell death reaching 90% after a 5 µg/mL dose. A549 cells are more resistant to necrosis and apoptosis, yielding values less than half of NHBE cells at low concentrations of GRMs (between 0.05 and 5 µg/mL). Indeed, GRM-induced cell death in NHBE cells is comparable to that induced by toxic compounds such as diesel exhaust particles on the same cell line. We propose NHBE as a suitable model to test GRM-induced toxicity, allowing refinement of the dose concentrations and exposure timings for better-designed in vivo mouse assays.
Collapse
|
27
|
Loret T, de Luna LAV, Fordham A, Arshad A, Barr K, Lozano N, Kostarelos K, Bussy C. Innate but Not Adaptive Immunity Regulates Lung Recovery from Chronic Exposure to Graphene Oxide Nanosheets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104559. [PMID: 35166457 PMCID: PMC9008410 DOI: 10.1002/advs.202104559] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/21/2021] [Indexed: 05/05/2023]
Abstract
Graphene has drawn a lot of interest in the material community due to unique physicochemical properties. Owing to a high surface area to volume ratio and free oxygen groups, the oxidized derivative, graphene oxide (GO) has promising potential as a drug delivery system. Here, the lung tolerability of two distinct GO varying in lateral dimensions is investigated, to reveal the most suitable candidate platform for pulmonary drug delivery. Following repeated chronic pulmonary exposure of mice to GO sheet suspensions, the innate and adaptive immune responses are studied. An acute and transient influx of neutrophils and eosinophils in the alveolar space, together with the replacement of alveolar macrophages by interstitial ones and a significant activation toward anti-inflammatory subsets, are found for both GO materials. Micrometric GO give rise to persistent multinucleated macrophages and granulomas. However, neither adaptive immune response nor lung tissue remodeling are induced after exposure to micrometric GO. Concurrently, milder effects and faster tissue recovery, both associated to a faster clearance from the respiratory tract, are found for nanometric GO, suggesting a greater lung tolerability. Taken together, these results highlight the importance of dimensions in the design of biocompatible 2D materials for pulmonary drug delivery system.
Collapse
Affiliation(s)
- Thomas Loret
- Nanomedicine LabFaculty of Biology, Medicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
- National Graphene InstituteThe University of ManchesterManchesterM13 9PLUK
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
| | - Luis Augusto Visani de Luna
- Nanomedicine LabFaculty of Biology, Medicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
- National Graphene InstituteThe University of ManchesterManchesterM13 9PLUK
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
| | - Alexander Fordham
- Nanomedicine LabFaculty of Biology, Medicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
- National Graphene InstituteThe University of ManchesterManchesterM13 9PLUK
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
| | - Atta Arshad
- Nanomedicine LabFaculty of Biology, Medicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
- National Graphene InstituteThe University of ManchesterManchesterM13 9PLUK
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
| | - Katharine Barr
- Nanomedicine LabFaculty of Biology, Medicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
- National Graphene InstituteThe University of ManchesterManchesterM13 9PLUK
| | - Neus Lozano
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and The Barcelona Institute of Science and Technology (BIST)Campus UABBellaterraBarcelona08193Spain
| | - Kostas Kostarelos
- Nanomedicine LabFaculty of Biology, Medicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
- National Graphene InstituteThe University of ManchesterManchesterM13 9PLUK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and The Barcelona Institute of Science and Technology (BIST)Campus UABBellaterraBarcelona08193Spain
| | - Cyrill Bussy
- Nanomedicine LabFaculty of Biology, Medicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
- National Graphene InstituteThe University of ManchesterManchesterM13 9PLUK
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthThe University of ManchesterManchester Academic Health Science CentreManchesterM13 9PTUK
| |
Collapse
|
28
|
Mamai M, Giasafaki D, Salvanou EA, Charalambopoulou G, Steriotis T, Bouziotis P. Biodistribution of Mesoporous Carbon Nanoparticles via Technetium-99m Radiolabelling after Oral Administration to Mice. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3260. [PMID: 34947611 PMCID: PMC8703805 DOI: 10.3390/nano11123260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023]
Abstract
The use of ordered mesoporous matrices, and in particular carbon-based mesoporous nanoparticles has shown great potential towards enhancing the bioavailability of orally administered drugs. Nevertheless, elucidation of the in vivo absorption, distribution, and excretion of such carriers is essential for understanding their behaviour, and radiolabelling provides a very useful way to track their occurrence inside the body. In this work, uniform spherical CMK-1-type ordered mesoporous carbon nanoparticles have been radiolabelled with Technetium-99m (99mTc) and traced after oral administration to mice. Ex vivo biodistribution studies showed that the radiolabelled nanoparticles accumulated almost exclusively in the gastrointestinal tract; complete elimination of the radiotracer was observed within 24 h after administration, with practically no uptake into other main organs. These findings along with the results from in vitro stability studies indicate that the spherical carbon nanoparticles examined could be safely used as drug carriers with minimal side effects, but also support the great value of radiolabelling methods for monitoring the particles' behaviour in vivo.
Collapse
Affiliation(s)
- Maria Mamai
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece; (M.M.); (E.-A.S.)
- Institute of Nanoscience & Nanotechnology, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece; (D.G.); (T.S.)
| | - Dimitra Giasafaki
- Institute of Nanoscience & Nanotechnology, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece; (D.G.); (T.S.)
| | - Evangelia-Alexandra Salvanou
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece; (M.M.); (E.-A.S.)
| | - Georgia Charalambopoulou
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece; (M.M.); (E.-A.S.)
| | - Theodore Steriotis
- Institute of Nanoscience & Nanotechnology, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece; (D.G.); (T.S.)
| | - Penelope Bouziotis
- Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece; (M.M.); (E.-A.S.)
| |
Collapse
|
29
|
Ballesteros S, Domenech J, Velázquez A, Marcos R, Hernández A. Ex vivo exposure to different types of graphene-based nanomaterials consistently alters human blood secretome. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125471. [PMID: 33647622 DOI: 10.1016/j.jhazmat.2021.125471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/16/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
The biomedical applications of graphene-based nanomaterials (GBN) have significantly grown in the last years. Many of these applications suppose their intravenous exposure and, in this way, GBN could encounter blood cells triggering an immunological response of unknown effects. Consequently, understanding the relationships between GBN and the immune system response should be a prerequisite for its adequate use in biomedicine. In the present study, we have conducted a little explored ex vivo exposure method in order to study the complexity of the secretome given by the interactions between GBN and blood cells. Blood samples from different healthy donors were exposed to three different types of GBN widely used in the biomedical field. In this sense, graphene oxide (GO), graphene nanoplatelets (GNPs), graphene nanoribbons (GNRs) and a panel of 105 proteins representatives of the blood secretome were evaluated. The results show broad changes in both the cytokines number and the expression levels, with important changes in inflammatory response markers. Furthermore, the indirect soft-agar assay was used as a tool to unravel the global functional impact of the found secretome changes. Our results indicate that the GBN-induced altered secretome can modify the natural anchorage-independent growth capacity of HeLa cells, used as a model. As a conclusion, this study describes an innovative approach to study the potential harmful effects of GBN, providing relevant data to be considered in the biomedical context when GBN are planned to be used in patients.
Collapse
Affiliation(s)
- Sandra Ballesteros
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Spain
| | - Josefa Domenech
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Spain
| | - Antonia Velázquez
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain.
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain.
| |
Collapse
|
30
|
Unal MA, Bayrakdar F, Nazir H, Besbinar O, Gurcan C, Lozano N, Arellano LM, Yalcin S, Panatli O, Celik D, Alkaya D, Agan A, Fusco L, Suzuk Yildiz S, Delogu LG, Akcali KC, Kostarelos K, Yilmazer A. Graphene Oxide Nanosheets Interact and Interfere with SARS-CoV-2 Surface Proteins and Cell Receptors to Inhibit Infectivity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101483. [PMID: 33988903 PMCID: PMC8236978 DOI: 10.1002/smll.202101483] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Indexed: 05/19/2023]
Abstract
Nanotechnology can offer a number of options against coronavirus disease 2019 (COVID-19) acting both extracellularly and intracellularly to the host cells. Here, the aim is to explore graphene oxide (GO), the most studied 2D nanomaterial in biomedical applications, as a nanoscale platform for interaction with SARS-CoV-2. Molecular docking analyses of GO sheets on interaction with three different structures: SARS-CoV-2 viral spike (open state - 6VYB or closed state - 6VXX), ACE2 (1R42), and the ACE2-bound spike complex (6M0J) are performed. GO shows high affinity for the surface of all three structures (6M0J, 6VYB and 6VXX). When binding affinities and involved bonding types are compared, GO interacts more strongly with the spike or ACE2, compared to 6M0J. Infection experiments using infectious viral particles from four different clades as classified by Global Initiative on Sharing all Influenza Data (GISAID), are performed for validation purposes. Thin, biological-grade GO nanoscale (few hundred nanometers in lateral dimension) sheets are able to significantly reduce copies for three different viral clades. This data has demonstrated that GO sheets have the capacity to interact with SARS-CoV-2 surface components and disrupt infectivity even in the presence of any mutations on the viral spike. GO nanosheets are proposed to be further explored as a nanoscale platform for development of antiviral strategies against COVID-19.
Collapse
Affiliation(s)
| | - Fatma Bayrakdar
- Ministry of Health General Directorate of Public HealthMicrobiology References LaboratorySihhiyeAnkara06430Turkey
| | - Hasan Nazir
- Department of ChemistryAnkara UniversityTandoganAnkara06100Turkey
| | - Omur Besbinar
- Stem Cell InstituteAnkara UniversityBalgatAnkara06520Turkey
- Department of Biomedical EngineeringAnkara UniversityGolbasiAnkara06830Turkey
| | - Cansu Gurcan
- Stem Cell InstituteAnkara UniversityBalgatAnkara06520Turkey
- Department of Biomedical EngineeringAnkara UniversityGolbasiAnkara06830Turkey
| | - Neus Lozano
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)UAB Campus BellaterraBarcelona08193Spain
| | - Luis M. Arellano
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)UAB Campus BellaterraBarcelona08193Spain
| | - Süleyman Yalcin
- Ministry of Health General Directorate of Public HealthMicrobiology References LaboratorySihhiyeAnkara06430Turkey
| | - Oguzhan Panatli
- Department of Biomedical EngineeringAnkara UniversityGolbasiAnkara06830Turkey
| | - Dogantan Celik
- Stem Cell InstituteAnkara UniversityBalgatAnkara06520Turkey
- Department of Biomedical EngineeringAnkara UniversityGolbasiAnkara06830Turkey
| | - Damla Alkaya
- Stem Cell InstituteAnkara UniversityBalgatAnkara06520Turkey
- Department of Biomedical EngineeringAnkara UniversityGolbasiAnkara06830Turkey
| | - Aydan Agan
- Department of Biomedical EngineeringAnkara UniversityGolbasiAnkara06830Turkey
| | - Laura Fusco
- Department of Biomedical SciencesUniversity of PaduaPadua35122Italy
| | - Serap Suzuk Yildiz
- Ministry of Health General Directorate of Public HealthMicrobiology References LaboratorySihhiyeAnkara06430Turkey
| | | | - Kamil Can Akcali
- Stem Cell InstituteAnkara UniversityBalgatAnkara06520Turkey
- Department of BiophysicsFaculty of MedicineAnkara UniversitySihhiyeAnkara06230Turkey
| | - Kostas Kostarelos
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)UAB Campus BellaterraBarcelona08193Spain
- Nanomedicine Lab National Graphene Institute and Faculty of Biology Medicine & HealthThe University of ManchesterAV Hill BuildingManchesterM13 9PTUnited Kingdom
| | - Açelya Yilmazer
- Stem Cell InstituteAnkara UniversityBalgatAnkara06520Turkey
- Department of Biomedical EngineeringAnkara UniversityGolbasiAnkara06830Turkey
| |
Collapse
|
31
|
Bellet P, Gasparotto M, Pressi S, Fortunato A, Scapin G, Mba M, Menna E, Filippini F. Graphene-Based Scaffolds for Regenerative Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:404. [PMID: 33562559 PMCID: PMC7914745 DOI: 10.3390/nano11020404] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
Leading-edge regenerative medicine can take advantage of improved knowledge of key roles played, both in stem cell fate determination and in cell growth/differentiation, by mechano-transduction and other physicochemical stimuli from the tissue environment. This prompted advanced nanomaterials research to provide tissue engineers with next-generation scaffolds consisting of smart nanocomposites and/or hydrogels with nanofillers, where balanced combinations of specific matrices and nanomaterials can mediate and finely tune such stimuli and cues. In this review, we focus on graphene-based nanomaterials as, in addition to modulating nanotopography, elastic modulus and viscoelastic features of the scaffold, they can also regulate its conductivity. This feature is crucial to the determination and differentiation of some cell lineages and is of special interest to neural regenerative medicine. Hereafter we depict relevant properties of such nanofillers, illustrate how problems related to their eventual cytotoxicity are solved via enhanced synthesis, purification and derivatization protocols, and finally provide examples of successful applications in regenerative medicine on a number of tissues.
Collapse
Affiliation(s)
- Pietro Bellet
- Department of Biology, University of Padua, 35131 Padua, Italy; (P.B.); (M.G.)
| | - Matteo Gasparotto
- Department of Biology, University of Padua, 35131 Padua, Italy; (P.B.); (M.G.)
| | - Samuel Pressi
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Anna Fortunato
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Giorgia Scapin
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Miriam Mba
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Enzo Menna
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Francesco Filippini
- Department of Biology, University of Padua, 35131 Padua, Italy; (P.B.); (M.G.)
| |
Collapse
|
32
|
Characteristics and Behavior of Different Catalysts Used for Water Decontamination in Photooxidation and Ozonation Processes. Catalysts 2020. [DOI: 10.3390/catal10121485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The objective of this study was to summarize the results obtained in a wide research project carried out for more than 15 years on the catalytic activity of different catalysts (activated carbon, metal–carbon xerogels/aerogels, iron-doped silica xerogels, ruthenium metal complexes, reduced graphene oxide-metal oxide composites, and zeolites) in the photooxidation (by using UV or solar radiation) and ozonation of water pollutants, including herbicides, naphthalenesulfonic acids, sodium para-chlorobenzoate, nitroimidazoles, tetracyclines, parabens, sulfamethazine, sodium diatrizoate, cytarabine, and surfactants. All catalysts were synthesized and then texturally, chemically, and electronically characterized using numerous experimental techniques, including N2 and CO2 adsorption, mercury porosimetry, thermogravimetric analysis, X-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, diffuse reflectance UV–vis spectroscopy, photoluminescence analysis, and transmission electron microscopy. The behavior of these materials as photocatalysts and ozonation catalysts was related to their characteristics, and the catalytic mechanisms in these advanced oxidation processes were explored. Investigations were conducted into the effects on pollutant degradation, total organic carbon reduction, and water toxicity of operational variables and the presence of different chemical species in ultrapure, surface, ground, and wastewaters. Finally, a review is provided of the most recent and relevant published studies on photocatalysis and catalyzed ozonation in water treatments using similar catalysts to those examined in our project.
Collapse
|
33
|
Gallud A, Delaval M, Kinaret P, Marwah VS, Fortino V, Ytterberg J, Zubarev R, Skoog T, Kere J, Correia M, Loeschner K, Al‐Ahmady Z, Kostarelos K, Ruiz J, Astruc D, Monopoli M, Handy R, Moya S, Savolainen K, Alenius H, Greco D, Fadeel B. Multiparametric Profiling of Engineered Nanomaterials: Unmasking the Surface Coating Effect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002221. [PMID: 33240770 PMCID: PMC7675037 DOI: 10.1002/advs.202002221] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/29/2020] [Indexed: 05/02/2023]
Abstract
Despite considerable efforts, the properties that drive the cytotoxicity of engineered nanomaterials (ENMs) remain poorly understood. Here, the authors inverstigate a panel of 31 ENMs with different core chemistries and a variety of surface modifications using conventional in vitro assays coupled with omics-based approaches. Cytotoxicity screening and multiplex-based cytokine profiling reveals a good concordance between primary human monocyte-derived macrophages and the human monocyte-like cell line THP-1. Proteomics analysis following a low-dose exposure of cells suggests a nonspecific stress response to ENMs, while microarray-based profiling reveals significant changes in gene expression as a function of both surface modification and core chemistry. Pathway analysis highlights that the ENMs with cationic surfaces that are shown to elicit cytotoxicity downregulated DNA replication and cell cycle responses, while inflammatory responses are upregulated. These findings are validated using cell-based assays. Notably, certain small, PEGylated ENMs are found to be noncytotoxic yet they induce transcriptional responses reminiscent of viruses. In sum, using a multiparametric approach, it is shown that surface chemistry is a key determinant of cellular responses to ENMs. The data also reveal that cytotoxicity, determined by conventional in vitro assays, does not necessarily correlate with transcriptional effects of ENMs.
Collapse
Affiliation(s)
- Audrey Gallud
- Institute of Environmental MedicineKarolinska InstitutetStockholm171 77Sweden
| | - Mathilde Delaval
- Institute of Environmental MedicineKarolinska InstitutetStockholm171 77Sweden
| | - Pia Kinaret
- Faculty of Medicine and Health TechnologyTampere UniversityTampere33720Finland
- Institute of BiotechnologyUniversity of HelsinkiHelsinki00790Finland
| | - Veer Singh Marwah
- Faculty of Medicine and Health TechnologyTampere UniversityTampere33720Finland
- Institute of BiotechnologyUniversity of HelsinkiHelsinki00790Finland
| | - Vittorio Fortino
- Institute of BiomedicineUniversity of Eastern FinlandKuopio70211Finland
| | - Jimmy Ytterberg
- Department of Medical Biochemistry & BiophysicsKarolinska InstitutetStockholm171 77Sweden
| | - Roman Zubarev
- Department of Medical Biochemistry & BiophysicsKarolinska InstitutetStockholm171 77Sweden
| | - Tiina Skoog
- Department of Biosciences & NutritionKarolinska InstitutetHuddinge141 83Sweden
| | - Juha Kere
- Department of Biosciences & NutritionKarolinska InstitutetHuddinge141 83Sweden
| | - Manuel Correia
- National Food InstituteTechnical University of DenmarkKongens Lyngby2800Denmark
| | - Katrin Loeschner
- National Food InstituteTechnical University of DenmarkKongens Lyngby2800Denmark
| | - Zahraa Al‐Ahmady
- Faculty of BiologyMedicine & HealthUniversity of ManchesterManchesterM20 4GJUK
- School of Science & TechnologyNottingham Trent UniversityNottinghamNG1 8NSUK
| | - Kostas Kostarelos
- Faculty of BiologyMedicine & HealthUniversity of ManchesterManchesterM20 4GJUK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)Barcelona08193Spain
| | - Jaime Ruiz
- ISMUMR CNRS No. 5255University of BordeauxTalence33 405France
| | - Didier Astruc
- ISMUMR CNRS No. 5255University of BordeauxTalence33 405France
| | - Marco Monopoli
- Department of Pharmaceutical & Medicinal ChemistryRoyal College of Surgeons in Ireland (RCSI)Dublin2Ireland
| | - Richard Handy
- School of Biological & Marine SciencesUniversity of PlymouthPlymouthPL4 8AAUK
| | - Sergio Moya
- Soft Matter Nanotechnology LaboratoryCIC biomaGUNEDonostia‐San Sebastián20014Spain
| | - Kai Savolainen
- Finnish Institute of Occupational HealthHelsinki00032Finland
| | - Harri Alenius
- Institute of Environmental MedicineKarolinska InstitutetStockholm171 77Sweden
- Institute of BiotechnologyUniversity of HelsinkiHelsinki00790Finland
| | - Dario Greco
- Faculty of Medicine and Health TechnologyTampere UniversityTampere33720Finland
- Institute of BiotechnologyUniversity of HelsinkiHelsinki00790Finland
| | - Bengt Fadeel
- Institute of Environmental MedicineKarolinska InstitutetStockholm171 77Sweden
| |
Collapse
|
34
|
Barra A, Santos JDC, Silva MRF, Nunes C, Ruiz-Hitzky E, Gonçalves I, Yildirim S, Ferreira P, Marques PAAP. Graphene Derivatives in Biopolymer-Based Composites for Food Packaging Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2077. [PMID: 33096705 PMCID: PMC7589102 DOI: 10.3390/nano10102077] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
This review aims to showcase the current use of graphene derivatives, graphene-based nanomaterials in particular, in biopolymer-based composites for food packaging applications. A brief introduction regarding the valuable attributes of available and emergent bioplastic materials is made so that their contributions to the packaging field can be understood. Furthermore, their drawbacks are also disclosed to highlight the benefits that graphene derivatives can bring to bio-based formulations, from physicochemical to mechanical, barrier, and functional properties as antioxidant activity or electrical conductivity. The reported improvements in biopolymer-based composites carried out by graphene derivatives in the last three years are discussed, pointing to their potential for innovative food packaging applications such as electrically conductive food packaging.
Collapse
Affiliation(s)
- Ana Barra
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.N.); (I.G.)
- Materials Science Institute of Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain;
| | - Jéssica D. C. Santos
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| | - Mariana R. F. Silva
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
| | - Cláudia Nunes
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.N.); (I.G.)
| | - Eduardo Ruiz-Hitzky
- Materials Science Institute of Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain;
| | - Idalina Gonçalves
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.N.); (I.G.)
| | - Selçuk Yildirim
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| | - Paula Ferreira
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
| | - Paula A. A. P. Marques
- Department of Mechanical Engineering, TEMA—Centre for Mechanical Technology and Automation, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|