1
|
Khan A, Sharma P, Dahiya S, Sharma B. Plexins: Navigating through the Neural Regulation and Brain Pathology. Neurosci Biobehav Rev 2025:105999. [PMID: 39756719 DOI: 10.1016/j.neubiorev.2024.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Plexins are a family of transmembrane receptors known for their diverse roles in neural development, axon guidance, neuronal migration, synaptogenesis, and circuit formation. Semaphorins are a class of secreted and membrane proteins that act as primary ligands for plexin receptors. Semaphorins play a crucial role in central nervous system (CNS) development by regulating processes such as axonal growth, neuronal positioning, and synaptic connectivity. Various types of semaphorins like sema3A, sema4A, sema4C, sema4D, and many more have a crucial role in developing brain diseases. Likewise, various evidence suggests that plexin receptors are of four types: plexin A, plexin B, plexin C, and plexin D. Plexins have emerged as crucial regulators of neurogenesis and neuronal development and connectivity. When bound to semaphorins, these receptors trigger two major networking cascades, namely Rho and Ras GTPase networks. Dysregulation of plexin networking has been implicated in a myriad of brain disorders, including autism spectrum disorder (ASD), Schizophrenia, Alzheimer's disease (AD), Parkinson's disease (PD), and many more. This review synthesizes findings from molecular, cellular, and animal model studies to elucidate the mechanisms by which plexins contribute to the pathogenesis of various brain diseases.
Collapse
Affiliation(s)
- Ariba Khan
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India; Department of Pharmacology, Lloyd Institute of Management and Technology (Pharm.), Greater Noida, Uttar Pradesh, India
| | - Sarthak Dahiya
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Gurugram University (A State Govt. University), Gurugram, Haryana, India.
| |
Collapse
|
2
|
Yang R, Han Z, Zhou W, Li X, Zhang X, Zhu L, Wang J, Li X, Zhang CL, Han Y, Li L, Liu S. Population structure and selective signature of Kirghiz sheep by Illumina Ovine SNP50 BeadChip. PeerJ 2024; 12:e17980. [PMID: 39308831 PMCID: PMC11416764 DOI: 10.7717/peerj.17980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/06/2024] [Indexed: 09/25/2024] Open
Abstract
Objective By assessing the genetic diversity and associated selective traits of Kirghiz sheep (KIR), we aim to uncover the mechanisms that contribute to sheep's adaptability to the Pamir Plateau environment. Methods This study utilized Illumina Ovine SNP50 BeadChip data from KIR residing in the Pamir Plateau, Qira Black sheep (QBS) inhabiting the Taklamakan Desert, and commonly introduced breeds including Dorper sheep (DOR), Suffolk sheep (SUF), and Hu sheep (HU). The data was analyzed using principal component analysis, phylogenetic analysis, population admixture analysis, kinship matrix analysis, linkage disequilibrium analysis, and selective signature analysis. We employed four methods for selective signature analysis: fixation index (Fst), cross-population extended homozygosity (XP-EHH), integrated haplotype score (iHS), and nucleotide diversity (Pi). These methods aim to uncover the genetic mechanisms underlying the germplasm resources of Kirghiz sheep, enhance their production traits, and explore their adaptation to challenging environmental conditions. Results The test results unveiled potential selective signals associated with adaptive traits and growth characteristics in sheep under harsh environmental conditions, and annotated the corresponding genes accordingly. These genes encompass various functionalities such as adaptations associated with plateau, cold, and arid environment (ETAA1, UBE3D, TLE4, NXPH1, MAT2B, PPARGC1A, VEGFA, TBX15 and PLXNA4), wool traits (LMO3, TRPS1, EPHA5), body size traits (PLXNA2, EFNA5), reproductive traits (PPP3CA, PDHA2, NTRK2), and immunity (GATA3). Conclusion Our study identified candidate genes associated with the production traits and adaptation to the harsh environment of the Pamir Plateau in Kirghiz sheep. These findings provide valuable resources for local sheep breeding programs. The objective of this study is to offer valuable insights for the sustainable development of the Kirghiz sheep industry.
Collapse
Affiliation(s)
- Ruizhi Yang
- College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Zhipeng Han
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
| | - Wen Zhou
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
| | - Xuejiao Li
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Xuechen Zhang
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
| | - Lijun Zhu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
| | - Jieru Wang
- College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Xiaopeng Li
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Cheng-long Zhang
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Yahui Han
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Lianrui Li
- College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Alar, Xinjiang, China
| | - Shudong Liu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Alar, Xinjiang, China
| |
Collapse
|
3
|
Malamon JS, Farrell JJ, Xia LC, Dombroski BA, Das RG, Way J, Kuzma AB, Valladares O, Leung YY, Scanlon AJ, Lopez IAB, Brehony J, Worley KC, Zhang NR, Wang LS, Farrer LA, Schellenberg GD, Lee WP, Vardarajan BN. A comparative study of structural variant calling in WGS from Alzheimer's disease families. Life Sci Alliance 2024; 7:e202302181. [PMID: 38418088 PMCID: PMC10902710 DOI: 10.26508/lsa.202302181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/01/2024] Open
Abstract
Detecting structural variants (SVs) in whole-genome sequencing poses significant challenges. We present a protocol for variant calling, merging, genotyping, sensitivity analysis, and laboratory validation for generating a high-quality SV call set in whole-genome sequencing from the Alzheimer's Disease Sequencing Project comprising 578 individuals from 111 families. Employing two complementary pipelines, Scalpel and Parliament, for SV/indel calling, we assessed sensitivity through sample replicates (N = 9) with in silico variant spike-ins. We developed a novel metric, D-score, to evaluate caller specificity for deletions. The accuracy of deletions was evaluated by Sanger sequencing. We generated a high-quality call set of 152,301 deletions of diverse sizes. Sanger sequencing validated 114 of 146 detected deletions (78.1%). Scalpel excelled in accuracy for deletions ≤100 bp, whereas Parliament was optimal for deletions >900 bp. Overall, 83.0% and 72.5% of calls by Scalpel and Parliament were validated, respectively, including all 11 deletions called by both Parliament and Scalpel between 101 and 900 bp. Our flexible protocol successfully generated a high-quality deletion call set and a truth set of Sanger sequencing-validated deletions with precise breakpoints spanning 1-17,000 bp.
Collapse
Affiliation(s)
- John S Malamon
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - John J Farrell
- Biomedical Genetics Section, Department of Medicine, Boston University School of Medicine, Boston University, Boston, MA, USA
| | - Li Charlie Xia
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Beth A Dombroski
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rueben G Das
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jessica Way
- Broad Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amanda B Kuzma
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Otto Valladares
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yuk Yee Leung
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Allison J Scanlon
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Irving Antonio Barrera Lopez
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jack Brehony
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kim C Worley
- Human Genome Sequencing Center, and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Nancy R Zhang
- Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lindsay A Farrer
- Biomedical Genetics Section, Department of Medicine, Boston University School of Medicine, Boston University, Boston, MA, USA
- Departments of Neurology and Ophthalmology, Boston University School of Medicine, Boston University, Boston, MA, USA
- Departments of Epidemiology and Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Badri N Vardarajan
- Gertrude H. Sergievsky Center and Taub Institute of Aging Brain, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
4
|
Nurcombe ZW, Hehr CL, McFarlane S. Plexina4 and cell survival in the developing zebrafish hindbrain. Dev Dyn 2023; 252:1323-1337. [PMID: 37283310 DOI: 10.1002/dvdy.633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Growth factors are important in the developing and mature nervous system to support the survival of neurons. Developmental signaling molecules are known for their roles in controlling neurogenesis and neural circuit formation. Whether or not these molecules also have roles in cell survival in the developing nervous system is poorly understood. Plexins are a family of transmembrane receptors that bind Semaphorin ligands and are known to function in the guidance of developing axons and blood vessels. RESULTS In embryonic zebrafish, plexina4 is expressed widely in the brain, becoming largely restricted to the hindbrain as neurogenesis and differentiation proceed. Apoptosis is increased in the embryonic hindbrain of a plexina4ca307/ca307 CRISPR mutant. Based on the literature, we tested the secreted heat shock protein, Clusterin, as a candidate ligand to mediate cell survival through Plexina4. clusterin is expressed by the floor plate of the embryonic zebrafish hindbrain, in proximity to plexina4-expressing hindbrain cells. Morpholino-mediated knockdown of Clusterin increases cell apoptosis in the hindbrain, with additional cell death observed in epistasis experiments where Clusterin is knocked down in a plexina4 mutant background. CONCLUSIONS Our data suggest that Plexina4 promotes cell survival in the developing zebrafish hindbrain, likely through a pathway independent of Clusterin.
Collapse
Affiliation(s)
- Zachary W Nurcombe
- Department Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Graduate Program in Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Carrie Lynn Hehr
- Department Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sarah McFarlane
- Department Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Matrone C, Ferretti G. Semaphorin 3A influences neuronal processes that are altered in patients with autism spectrum disorder: Potential diagnostic and therapeutic implications. Neurosci Biobehav Rev 2023; 153:105338. [PMID: 37524141 DOI: 10.1016/j.neubiorev.2023.105338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Autism spectrum disorder (ASD) is a pervasive disorder that most frequently manifests in early childhood and lasts for their entire lifespan. Several behavioural traits characterise the phenotype of patients with ASD, including difficulties in reciprocal social communication as well as compulsive/repetitive stereotyped verbal and non-verbal behaviours. Although multiple hypotheses have been proposed to explain the aetiology of ASD and many resources have been used to improve our understanding of ASD, several aspects remain largely unexplored. Class 3 semaphorins (SEMA3) are secreted proteins involved in the organisation of structural and functional connectivity in the brain that regulate synaptic and dendritic development. Alterations in brain connectivity and aberrant neuronal development have been described in some patients with ASD. Mutations and polymorphisms in SEMA3A and alterations in its receptors and signalling have been associated with some neurological disorders such as schizophrenia and epilepsy, which are comorbidities in ASD, but also with ASD itself. In addition, SEMA3A is a key regulator of the immune response and neuroinflammatory processes, which have been found to be dysregulated in mothers of children who develop ASD and in affected patients. In this review, we highlight neurodevelopmental-related processes in which SEMA3A is involved, which are altered in ASD, and provide a viewpoint emphasising the development of strategies targeting changes in the SEMA3A signal to identify patterns of anomalies distinctive of ASD or to predict the prognosis of affected patients.
Collapse
Affiliation(s)
- Carmela Matrone
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy.
| | - Gabriella Ferretti
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
6
|
Arbeev KG, Ukraintseva S, Bagley O, Duan H, Wu D, Akushevich I, Stallard E, Kulminski A, Christensen K, Feitosa MF, O’Connell JR, Parker D, Whitson H, Yashin AI. Interactions between genes involved in physiological dysregulation and axon guidance: role in Alzheimer's disease. Front Genet 2023; 14:1236509. [PMID: 37719713 PMCID: PMC10500346 DOI: 10.3389/fgene.2023.1236509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Dysregulation of physiological processes may contribute to Alzheimer's disease (AD) development. We previously found that an increase in the level of physiological dysregulation (PD) in the aging body is associated with declining resilience and robustness to major diseases. Also, our genome-wide association study found that genes associated with the age-related increase in PD frequently represented pathways implicated in axon guidance and synaptic function, which in turn were linked to AD and related traits (e.g., amyloid, tau, neurodegeneration) in the literature. Here, we tested the hypothesis that genes involved in PD and axon guidance/synapse function may jointly influence onset of AD. We assessed the impact of interactions between SNPs in such genes on AD onset in the Long Life Family Study and sought to replicate the findings in the Health and Retirement Study. We found significant interactions between SNPs in the UNC5C and CNTN6, and PLXNA4 and EPHB2 genes that influenced AD onset in both datasets. Associations with individual SNPs were not statistically significant. Our findings, thus, support a major role of genetic interactions in the heterogeneity of AD and suggest the joint contribution of genes involved in PD and axon guidance/synapse function (essential for the maintenance of complex neural networks) to AD development.
Collapse
Affiliation(s)
- Konstantin G. Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| | - Svetlana Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| | - Olivia Bagley
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| | - Hongzhe Duan
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| | - Deqing Wu
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| | - Igor Akushevich
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| | - Eric Stallard
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| | - Alexander Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| | - Kaare Christensen
- Danish Aging Research Center, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Mary F. Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Jeffrey R. O’Connell
- Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Daniel Parker
- Duke Center for the Study of Aging and Human Development, Duke University, Durham, NC, United States
| | - Heather Whitson
- Duke Center for the Study of Aging and Human Development, Duke University, Durham, NC, United States
- Durham VA Geriatrics Research Education and Clinical Center, Durham, NC, United States
| | - Anatoliy I. Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| |
Collapse
|
7
|
Andrade-Guerrero J, Santiago-Balmaseda A, Jeronimo-Aguilar P, Vargas-Rodríguez I, Cadena-Suárez AR, Sánchez-Garibay C, Pozo-Molina G, Méndez-Catalá CF, Cardenas-Aguayo MDC, Diaz-Cintra S, Pacheco-Herrero M, Luna-Muñoz J, Soto-Rojas LO. Alzheimer's Disease: An Updated Overview of Its Genetics. Int J Mol Sci 2023; 24:ijms24043754. [PMID: 36835161 PMCID: PMC9966419 DOI: 10.3390/ijms24043754] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the world. It is classified as familial and sporadic. The dominant familial or autosomal presentation represents 1-5% of the total number of cases. It is categorized as early onset (EOAD; <65 years of age) and presents genetic mutations in presenilin 1 (PSEN1), presenilin 2 (PSEN2), or the Amyloid precursor protein (APP). Sporadic AD represents 95% of the cases and is categorized as late-onset (LOAD), occurring in patients older than 65 years of age. Several risk factors have been identified in sporadic AD; aging is the main one. Nonetheless, multiple genes have been associated with the different neuropathological events involved in LOAD, such as the pathological processing of Amyloid beta (Aβ) peptide and Tau protein, as well as synaptic and mitochondrial dysfunctions, neurovascular alterations, oxidative stress, and neuroinflammation, among others. Interestingly, using genome-wide association study (GWAS) technology, many polymorphisms associated with LOAD have been identified. This review aims to analyze the new genetic findings that are closely related to the pathophysiology of AD. Likewise, it analyzes the multiple mutations identified to date through GWAS that are associated with a high or low risk of developing this neurodegeneration. Understanding genetic variability will allow for the identification of early biomarkers and opportune therapeutic targets for AD.
Collapse
Affiliation(s)
- Jesús Andrade-Guerrero
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Querétaro, Mexico
| | - Alberto Santiago-Balmaseda
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
| | - Paola Jeronimo-Aguilar
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Isaac Vargas-Rodríguez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Querétaro, Mexico
| | - Ana Ruth Cadena-Suárez
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad-Nacional Autónoma de México, Cuatitlan 53150, Edomex, Mexico
| | - Carlos Sánchez-Garibay
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México 14269, Mexico
| | - Glustein Pozo-Molina
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
| | - Claudia Fabiola Méndez-Catalá
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
- División de Investigación y Posgrado, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Edomex, Mexico
| | - Maria-del-Carmen Cardenas-Aguayo
- Laboratory of Cellular Reprogramming, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Sofía Diaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Querétaro, Mexico
| | - Mar Pacheco-Herrero
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros 51000, Dominican Republic
| | - José Luna-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad-Nacional Autónoma de México, Cuatitlan 53150, Edomex, Mexico
- National Brain Bank-UNPHU, Universidad Nacional Pedro Henríquez Ureña, Santo Domingo 1423, Dominican Republic
- Correspondence: (J.L.-M.); (L.O.S.-R.); Tel.: +52-55-45-23-41-20 (J.L.-M.); +52-55-39-37-94-30 (L.O.S.-R.)
| | - Luis O. Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edomex, Mexico
- Correspondence: (J.L.-M.); (L.O.S.-R.); Tel.: +52-55-45-23-41-20 (J.L.-M.); +52-55-39-37-94-30 (L.O.S.-R.)
| |
Collapse
|
8
|
Jahan MS, Tsuzuki T, Ito T, Bhuiyan MER, Takahashi I, Takamatsu H, Kumanogoh A, Negishi T, Yukawa K. PlexinA1-deficient mice exhibit decreased cell density and augmented oxidative stress in parvalbumin-expressing interneurons in the medial prefrontal cortex. IBRO Neurosci Rep 2022; 13:500-512. [DOI: 10.1016/j.ibneur.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/20/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022] Open
|
9
|
Dong X, Qu S. Erigeron breviscapus (Vant.) Hand-Mazz.: A Promising Natural Neuroprotective Agent for Alzheimer's Disease. Front Pharmacol 2022; 13:877872. [PMID: 35559239 PMCID: PMC9086453 DOI: 10.3389/fphar.2022.877872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease and is characterized by progressive cognitive dysfunction and memory loss in the elderly, which seriously affects the quality of their lives. Currently, the pathogenesis of AD remains unclear. Molecular biologists have proposed a variety of hypotheses, including the amyloid-β hypothesis, tau hyperphosphorylation hypothesis, cholinergic neuron injury, inflammation caused by an abnormal immune response, and gene mutation. Drugs based on these pathological studies, including cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists, have achieved a certain level of efficacy but are far from meeting clinical needs. In the recent years, some important advances have been made in the traditional Chinese medicine treatment of AD. Erigeron breviscapus (Vant.) Hand-Mazz. (EBHM) is an important medicinal plant distributed in Yunnan Province, China. Studies have shown that EBHM and its active ingredients have a variety of pharmacological effects with good therapeutic effects and wide application prospects for cognitive disability-related diseases. However, to our best knowledge, only few review articles have been published on the anti-AD effects of EBHM. Through a literature review, we identified the possible pathogenesis of AD, discussed the cultivation and phytochemistry of EBHM, and summarized the pharmacological mechanism of EBHM and its active ingredients in the treatment of AD to provide suggestions regarding anti-AD therapy as well as a broader insight into the therapeutic potential of EBHM.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Yuste-Checa P, Bracher A, Hartl FU. The chaperone Clusterin in neurodegeneration-friend or foe? Bioessays 2022; 44:e2100287. [PMID: 35521968 DOI: 10.1002/bies.202100287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/30/2022]
Abstract
Fibrillar protein aggregates are the pathological hallmark of a group of age-dependent neurodegenerative conditions, including Alzheimer's and Parkinson's disease. Aggregates of the microtubule-associated protein Tau are observed in Alzheimer's disease and primary tauopathies. Tau pathology propagates from cell to cell in a prion-like process that is likely subject to modulation by extracellular chaperones such as Clusterin. We recently reported that Clusterin delayed Tau fibril formation but enhanced the activity of Tau oligomers to seed aggregation of endogenous Tau in a cellular model. In contrast, Clusterin inhibited the propagation of α-Synuclein aggregates associated with Parkinson's disease. These findings raise the possibility of a mechanistic link between Clusterin upregulation observed in Alzheimer's disease and the progression of Tau pathology. Here we review the diverse functions of Clusterin in the pathogenesis of neurodegenerative diseases, focusing on evidence that Clusterin may act either as a suppressor or enhancer of pathology.
Collapse
Affiliation(s)
- Patricia Yuste-Checa
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Andreas Bracher
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| |
Collapse
|
11
|
Zhang X, Farrell JJ, Tong T, Hu J, Zhu C, Wang L, Mayeux R, Haines JL, Pericak‐Vance MA, Schellenberg GD, Lunetta KL, Farrer LA. Association of mitochondrial variants and haplogroups identified by whole exome sequencing with Alzheimer's disease. Alzheimers Dement 2022; 18:294-306. [PMID: 34152079 PMCID: PMC8764625 DOI: 10.1002/alz.12396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Findings regarding the association between mitochondrial DNA (mtDNA) variants and Alzheimer's disease (AD) are inconsistent. METHODS We developed a pipeline for accurate assembly and variant calling in mitochondrial genomes embedded within whole exome sequences (WES) from 10,831 participants from the Alzheimer's Disease Sequencing Project (ADSP). Association of AD risk was evaluated with each mtDNA variant and variants located in 1158 nuclear genes related to mitochondrial function using the SCORE test. Gene-based tests were performed using SKAT-O. RESULTS Analysis of 4220 mtDNA variants revealed study-wide significant association of AD with a rare MT-ND4L variant (rs28709356 C>T; minor allele frequency = 0.002; P = 7.3 × 10-5 ) as well as with MT-ND4L in a gene-based test (P = 6.71 × 10-5 ). Significant association was also observed with a MT-related nuclear gene, TAMM41, in a gene-based test (P = 2.7 × 10-5 ). The expression of TAMM41 was lower in AD cases than controls (P = .00046) or mild cognitive impairment cases (P = .03). DISCUSSION Significant findings in MT-ND4L and TAMM41 provide evidence for a role of mitochondria in AD.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Department of Medicine (Biomedical Genetics)Boston University School of Medicine72 East Concord StreetBostonMassachusetts02118USA
- Department of BiostatisticsBoston University School of Public Health801 Massachusetts Avenue 3rd FloorBostonMassachusetts02118USA
| | - John J. Farrell
- Department of Medicine (Biomedical Genetics)Boston University School of Medicine72 East Concord StreetBostonMassachusetts02118USA
| | - Tong Tong
- Department of Medicine (Biomedical Genetics)Boston University School of Medicine72 East Concord StreetBostonMassachusetts02118USA
| | - Junming Hu
- Department of Medicine (Biomedical Genetics)Boston University School of Medicine72 East Concord StreetBostonMassachusetts02118USA
| | - Congcong Zhu
- Department of Medicine (Biomedical Genetics)Boston University School of Medicine72 East Concord StreetBostonMassachusetts02118USA
| | | | - Li‐San Wang
- Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvania19104USA
| | - Richard Mayeux
- Department of NeurologyColumbia UniversityNew YorkNew York10032USA
| | - Jonathan L. Haines
- Department of Population and Quantitative Health Sciences Case Western Reserve UniversityClevelandOhio44106USA
| | | | - Gerard D. Schellenberg
- Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvania19104USA
| | - Kathryn L. Lunetta
- Department of BiostatisticsBoston University School of Public Health801 Massachusetts Avenue 3rd FloorBostonMassachusetts02118USA
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics)Boston University School of Medicine72 East Concord StreetBostonMassachusetts02118USA
- Department of BiostatisticsBoston University School of Public Health801 Massachusetts Avenue 3rd FloorBostonMassachusetts02118USA
- Department of NeurologyBoston University School of MedicineBostonMassachusetts02118USA
- Department of OphthalmologyBoston University School of MedicineBostonMassachusetts02118USA
- Department of EpidemiologyBoston University School of Public Health715 Albany StreetBostonMassachusetts02118USA
| |
Collapse
|
12
|
Rabaneda-Bueno R, Mena-Montes B, Torres-Castro S, Torres-Carrillo N, Torres-Carrillo NM. Advances in Genetics and Epigenetic Alterations in Alzheimer's Disease: A Notion for Therapeutic Treatment. Genes (Basel) 2021; 12:1959. [PMID: 34946908 PMCID: PMC8700838 DOI: 10.3390/genes12121959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a disabling neurodegenerative disorder that leads to long-term functional and cognitive impairment and greatly reduces life expectancy. Early genetic studies focused on tracking variations in genome-wide DNA sequences discovered several polymorphisms and novel susceptibility genes associated with AD. However, despite the numerous risk factors already identified, there is still no fully satisfactory explanation for the mechanisms underlying the onset of the disease. Also, as with other complex human diseases, the causes of low heritability are unclear. Epigenetic mechanisms, in which changes in gene expression do not depend on changes in genotype, have attracted considerable attention in recent years and are key to understanding the processes that influence age-related changes and various neurological diseases. With the recent use of massive sequencing techniques, methods for studying epigenome variations in AD have also evolved tremendously, allowing the discovery of differentially expressed disease traits under different conditions and experimental settings. This is important for understanding disease development and for unlocking new potential AD therapies. In this work, we outline the genomic and epigenomic components involved in the initiation and development of AD and identify potentially effective therapeutic targets for disease control.
Collapse
Affiliation(s)
- Rubén Rabaneda-Bueno
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, 37005 České Budějovice, Czech Republic
- School of Biological Sciences, James Clerk Maxwell Building, The King’s Buildings Campus, University of Edinburgh, Edinburgh EH9 3FD, UK
| | - Beatriz Mena-Montes
- Laboratorio de Biología del Envejecimiento, Departamento de Investigación Básica, Instituto Nacional de Geriatría, Mexico City 10200, Mexico;
| | - Sara Torres-Castro
- Departamento de Epidemiología Demográfica y Determinantes Sociales, Instituto Nacional de Geriatría, Mexico City 10200, Mexico;
| | - Norma Torres-Carrillo
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (N.T.-C.); (N.M.T.-C.)
| | - Nora Magdalena Torres-Carrillo
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (N.T.-C.); (N.M.T.-C.)
| |
Collapse
|
13
|
Muraoka S, Lin W, Takamatsu-Yukawa K, Hu J, Ikezu S, DeTure MA, Dickson DW, Emili A, Ikezu T. Enrichment of Phosphorylated Tau (Thr181) and Functionally Interacting Molecules in Chronic Traumatic Encephalopathy Brain-derived Extracellular Vesicles. Aging Dis 2021; 12:1376-1388. [PMID: 34527416 PMCID: PMC8407888 DOI: 10.14336/ad.2020.1007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic Traumatic Encephalopathy (CTE) is a tauopathy that affects individuals with a history of mild repetitive brain injury. The initial neuropathologic changes of CTE include perivascular deposition of phosphorylated microtubule-associated protein tau (p-tau). Extracellular vesicles (EVs) are known to carry pathogenic molecules, such as tau in Alzheimer's disease and CTE suggesting their contribution in pathogenesis. We therefore examined the protein composition of EVs separated from CTE and an age-matched control brain tissues by tandem mass tag -mass spectrometry. The reporter ion intensity was used to quantify the identified molecules. A total of 516 common proteins were identified among three sets of experiments. Weighted protein co-expression network analysis identified 18 unique modules of co-expressed proteins. Two modules were significantly correlated with total tau (t-tau) and p-tau protein in the isolated EVs and enriched in cellular components and biological processes for synaptic vesicle secretion and multivesicular body-plasma membrane fusion. The p-tau (Thr181) level is significantly higher in CTE EVs compared to control EVs and can distinguish the two groups with 73.6% accuracy. A combination of t-tau or p-tau (Thr181) with SNAP-25, PLXNA4 or UBA1, enhanced the accuracy to 96.3, 93.8 and 93.8%, respectively. Bioinformatic protein-protein interaction analysis revealed the functional interaction of SNAP-25 and PLXNA4 with tau, suggesting their interaction in CTE EVs. These data indicate the future application of identified EV proteins for monitoring the CTE risk assessments and understanding the EV-mediated disease progression mechanism.
Collapse
Affiliation(s)
- Satoshi Muraoka
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Weiwei Lin
- Department of Biochemistry, Boston University, Boston, MA, USA.
- Center for Network Systems Biology, Boston University, Boston, MA, USA.
| | - Kayo Takamatsu-Yukawa
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Jianqiao Hu
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Seiko Ikezu
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | | | | | - Andrew Emili
- Department of Biochemistry, Boston University, Boston, MA, USA.
- Center for Network Systems Biology, Boston University, Boston, MA, USA.
| | - Tsuneya Ikezu
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, USA.
- Department of Neurology and Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
14
|
The potential roles of genetic factors in predicting ageing-related cognitive change and Alzheimer's disease. Ageing Res Rev 2021; 70:101402. [PMID: 34242808 DOI: 10.1016/j.arr.2021.101402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a complex neurological disorder of uncertain aetiology, although substantial research has been conducted to explore important factors related to risk of onset and progression. Both lifestyle (e.g., complex mental stimulation, vascular health) and genetic factors (e.g., APOE, BDNF, PICALM, CLU, APP, PSEN1, PSEN2, and other genes) have been associated with AD risk. Despite more than thirty years of genetic research, much of the heritability of AD is not explained by measured loci. This suggests that the missing heritability of AD might be potentially related to rare variants, gene-environment and gene-gene interactions, and potentially epigenetic modulators. Moreover, while ageing is the most substantial factor risk for AD, there are limited longitudinal studies examining the association of genetic factors with decline in cognitive function due to ageing and the preclinical stages of this condition. This review summarises findings from currently available research on the genetic factors of ageing-related cognitive change and AD and suggests some future research directions.
Collapse
|
15
|
An artificial neural network approach integrating plasma proteomics and genetic data identifies PLXNA4 as a new susceptibility locus for pulmonary embolism. Sci Rep 2021; 11:14015. [PMID: 34234248 PMCID: PMC8263618 DOI: 10.1038/s41598-021-93390-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Venous thromboembolism is the third common cardiovascular disease and is composed of two entities, deep vein thrombosis (DVT) and its potential fatal form, pulmonary embolism (PE). While PE is observed in ~ 40% of patients with documented DVT, there is limited biomarkers that can help identifying patients at high PE risk. To fill this need, we implemented a two hidden-layers artificial neural networks (ANN) on 376 antibodies and 19 biological traits measured in the plasma of 1388 DVT patients, with or without PE, of the MARTHA study. We used the LIME algorithm to obtain a linear approximate of the resulting ANN prediction model. As MARTHA patients were typed for genotyping DNA arrays, a genome wide association study (GWAS) was conducted on the LIME estimate. Detected single nucleotide polymorphisms (SNPs) were tested for association with PE risk in MARTHA. Main findings were replicated in the EOVT study composed of 143 PE patients and 196 DVT only patients. The derived ANN model for PE achieved an accuracy of 0.89 and 0.79 in our training and testing sets, respectively. A GWAS on the LIME approximate identified a strong statistical association peak (rs1424597: p = 5.3 × 10-7) at the PLXNA4 locus. Homozygote carriers for the rs1424597-A allele were then more frequently observed in PE than in DVT patients from the MARTHA (2% vs. 0.4%, p = 0.005) and the EOVT (3% vs. 0%, p = 0.013) studies. In a sample of 112 COVID-19 patients known to have endotheliopathy leading to acute lung injury and an increased risk of PE, decreased PLXNA4 levels were associated (p = 0.025) with worsened respiratory function. Using an original integrated proteomics and genetics strategy, we identified PLXNA4 as a new susceptibility gene for PE whose exact role now needs to be further elucidated.
Collapse
|
16
|
Zhang L, Qi Z, Li J, Li M, Du X, Wang S, Zhou G, Xu B, Liu W, Xi S, Xu Z, Deng Y. Roles and Mechanisms of Axon-Guidance Molecules in Alzheimer's Disease. Mol Neurobiol 2021; 58:3290-3307. [PMID: 33675023 DOI: 10.1007/s12035-021-02311-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is characterized by progressive memory decline and cognitive dysfunctions. Although the causes of AD have not yet been established, many mechanisms have been proposed. Axon-guidance molecules play the roles in the occurrence and development of AD by participating in different mechanisms. Therefore, what roles do axon-guidance molecules play in AD? This study aimed at elucidating how axon-guidance molecules Netrins, Slits, Semaphorins, and Ephrins regulate the levels of Aβ, hyperphosphorylation of tau protein, Reelin, and other ways through different signaling pathways, in order to show the roles of axon-guidance molecules in the occurrence and development of AD. And it is hoped that this study can provide a theoretical basis and new perspectives in the search for new therapeutic targets for AD.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Zhipeng Qi
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Jiashuo Li
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Minghui Li
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Xianchao Du
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Shuang Wang
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Guoyu Zhou
- Department of Geriatric Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Shuhua Xi
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Zhaofa Xu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
17
|
Chung S, Yang J, Kim HJ, Hwang EM, Lee W, Suh K, Choi H, Mook-Jung I. Plexin-A4 mediates amyloid-β-induced tau pathology in Alzheimer's disease animal model. Prog Neurobiol 2021; 203:102075. [PMID: 34004220 DOI: 10.1016/j.pneurobio.2021.102075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/09/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022]
Abstract
Amyloid-β (Aβ) and tau are major pathological hallmarks of Alzheimer's disease (AD). Several studies have revealed that Aβ accelerates pathological tau transition and spreading during the disease progression, and that reducing tau can mitigate pathological features of AD. However, molecular links between Aβ and tau pathologies remain elusive. Here, we suggest a novel role for the plexin-A4 as an Aβ receptor that induces aggregated tau pathology. Plexin-A4, previously known as proteins involved in regulating axon guidance and synaptic plasticity, can bound to Aβ with co-receptor, neuropilin-2. Genetic downregulation of plexin-A4 in neurons was sufficient to prevent Aβ-induced activation of CDK5 and reduce tau hyperphosphorylation and aggregation, even in the presence of Aβ. In an AD mouse model that manifests both Aβ and tau pathologies, genetic downregulation of plexin-A4 in the hippocampus reduced tau pathology and ameliorated spatial memory impairment. Collectively, these results indicate that the plexin-A4 is capable of mediating Aβ-induced tau pathology in AD pathogenesis.
Collapse
Affiliation(s)
- Sunwoo Chung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; SNU Dementia Research Center, Seoul National University College of Medicine, Seoul 03080, South Korea.
| | - Jinhee Yang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Biorchestra Co., Ltd., Techno 4-ro 17, Daejeon 34013, South Korea.
| | - Haeng Jun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; SNU Dementia Research Center, Seoul National University College of Medicine, Seoul 03080, South Korea.
| | - Eun Mi Hwang
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea.
| | - Wonik Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; SNU Dementia Research Center, Seoul National University College of Medicine, Seoul 03080, South Korea.
| | - Kyujin Suh
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; SNU Dementia Research Center, Seoul National University College of Medicine, Seoul 03080, South Korea.
| | - Hayoung Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; SNU Dementia Research Center, Seoul National University College of Medicine, Seoul 03080, South Korea.
| | - Inhee Mook-Jung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; SNU Dementia Research Center, Seoul National University College of Medicine, Seoul 03080, South Korea.
| |
Collapse
|
18
|
Carulli D, de Winter F, Verhaagen J. Semaphorins in Adult Nervous System Plasticity and Disease. Front Synaptic Neurosci 2021; 13:672891. [PMID: 34045951 PMCID: PMC8148045 DOI: 10.3389/fnsyn.2021.672891] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Semaphorins, originally discovered as guidance cues for developing axons, are involved in many processes that shape the nervous system during development, from neuronal proliferation and migration to neuritogenesis and synapse formation. Interestingly, the expression of many Semaphorins persists after development. For instance, Semaphorin 3A is a component of perineuronal nets, the extracellular matrix structures enwrapping certain types of neurons in the adult CNS, which contribute to the closure of the critical period for plasticity. Semaphorin 3G and 4C play a crucial role in the control of adult hippocampal connectivity and memory processes, and Semaphorin 5A and 7A regulate adult neurogenesis. This evidence points to a role of Semaphorins in the regulation of adult neuronal plasticity. In this review, we address the distribution of Semaphorins in the adult nervous system and we discuss their function in physiological and pathological processes.
Collapse
Affiliation(s)
- Daniela Carulli
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
- Department of Neuroscience Rita Levi-Montalcini and Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Fred de Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| |
Collapse
|
19
|
Kim SK, Roche MD, Fredericson M, Dragoo JL, Horton BH, Avins AL, Belanger HG, Ioannidis JPA, Abrams GD. A Genome-wide Association Study for Concussion Risk. Med Sci Sports Exerc 2021; 53:704-711. [PMID: 33017352 DOI: 10.1249/mss.0000000000002529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to screen the entire genome for genetic markers associated with risk for concussion. METHODS A genome-wide association analyses was performed using data from the Kaiser Permanente Research Bank and the UK Biobank. Concussion cases were identified based on electronic health records from the Kaiser Permanente Research Bank and the UK Biobank from individuals of European ancestry. Genome-wide association analyses from both cohorts were tested for concussion using a logistic regression model adjusting for sex, height, weight, and race/ethnicity using allele counts for single nucleotide polymorphisms. Previously identified genes within the literature were also tested for association with concussion. RESULTS There were a total of 4064 cases of concussion and 291,472 controls within the databases, with two single nucleotide polymorphisms demonstrating a genome-wide significant association with concussion. The first polymorphism, rs144663795 (P = 9.7 × 10-11; OR = 2.91 per allele copy), is located within the intron of SPATA5. Strong, deleterious mutations in SPATA5 cause intellectual disability, hearing loss, and vision loss. The second polymorphism, rs117985931 (P = 3.97 × 10-9; OR = 3.59 per allele copy), is located within PLXNA4. PLXNA4 plays a key role is axon outgrowth during neural development, and DNA variants in PLXNA4 are associated with risk for Alzheimer's disease. Previous investigations have identified five candidate genes that may be associated with concussion, but none showed a significant association in the current model (P < 0.05). CONCLUSION Two genetic markers were identified as potential risk factors for concussion and deserve further validation and investigation of molecular mechanisms.
Collapse
Affiliation(s)
- Stuart K Kim
- Department of Developmental Biology, Stanford University Medical School, Stanford, CA
| | - Megan D Roche
- Department Orthopaedic Surgery, Stanford University Medical Center, Stanford, CA
| | - Michael Fredericson
- Department Orthopaedic Surgery, Stanford University Medical Center, Stanford, CA
| | - Jason L Dragoo
- UCHealth Steadman Hawkins Clinic Denver-Surgery Center, Englewood, CO
| | - Brandon H Horton
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | - Andy L Avins
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | | | | | - Geoffrey D Abrams
- Department Orthopaedic Surgery, Stanford University Medical Center, Stanford, CA
| |
Collapse
|
20
|
Systematic analysis to identify transcriptome-wide dysregulation of Alzheimer's disease in genes and isoforms. Hum Genet 2020; 140:609-623. [PMID: 33140241 DOI: 10.1007/s00439-020-02230-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegeneration diseases caused by multiple factors. The mechanistic insight of AD remains limited. To disclose molecular mechanisms of AD, many studies have been proposed from transcriptome analyses. However, no analysis across multiple levels of transcription has been conducted to discover co-expression networks of AD. We performed gene-level and isoform-level analyses of RNA sequencing (RNA-seq) data from 544 brain tissues of AD patients, mild cognitive impaired (MCI) patients, and healthy controls. Gene and isoform levels of co-expression modules were constructed by RNA-seq data. The associations of modules with AD were evaluated by integrating cognitive scores of patients, Genome-wide association studies (GWAS), alternative splicing analysis, and dementia-related genes expressed in brain tissues. Totally, 29 co-expression modules were found with expressions significantly correlated with the cognitive scores. Among them, two isoform modules were enriched with AD-associated SNPs and genes whose mRNA splicing displayed significant alteration in relation to AD disease. These two modules were further found enriched with dementia-related genes expressed in four brain regions of 125 AD patients. Analyzing expressions of these two modules revealed expressions of 39 isoforms (corresponding to 35 genes) significantly correlated with cognitive scores of AD patients, in which 38 isoforms were significantly up-regulated in AD patients comparing to controls, and 33 isoforms (corresponding to 29 genes) were not reported as AD-related previously. Employing the co-expression modules and the drug-induced gene expression data from Connectivity Map (CMAP), 12 drugs were predicted as significant in restoring the gene expression of AD patients towards health, which include nine drugs reported for relieving AD. In comparison, four of the top 12 significant drugs were known for relieving AD if the drug prediction was performed by the genes expressed significantly different in AD and healthy controls. Analysis of multiple levels of the transcriptomic organization is useful in suggesting AD-related co-expression networks and discovering drugs.
Collapse
|
21
|
Jahan MS, Ito T, Ichihashi S, Masuda T, Bhuiyan MER, Takahashi I, Takamatsu H, Kumanogoh A, Tsuzuki T, Negishi T, Yukawa K. PlexinA1 deficiency in BALB/cAJ mice leads to excessive self-grooming and reduced prepulse inhibition. IBRO Rep 2020; 9:276-289. [PMID: 33163687 PMCID: PMC7607060 DOI: 10.1016/j.ibror.2020.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/20/2020] [Indexed: 11/17/2022] Open
Abstract
PlexinA1 (PlxnA1) is a transmembrane receptor for semaphorins, a large family of proteins that act as axonal guidance cues during nervous system development. However, there are limited studies on PlxnA1 function in neurobehavior. The present study examined if PlxnA1 deficiency leads to behavioral abnormalities in BALB/cAJ mice. PlxnA1 knockout (KO) mice were generated by homologous recombination and compared to wild type (WT) littermates on a comprehensive battery of behavioral tests, including open field assessment of spontaneous ambulation, state anxiety, and grooming, home cage grooming, the wire hang test of muscle strength, motor coordination on the rotarod task, working memory on the Y maze alternation task, cued and contextual fear conditioning, anxiety on the elevated plus maze, sociability to intruders, and sensory processing as measured by prepulse inhibition (PPI). Measures of motor performance, working memory, fear memory, and sociability did not differ significantly between genotypes, while PlxnA1 KO mice displayed excessive self-grooming, impaired PPI, and slightly lower anxiety. These results suggest a crucial role for PlxnA1 in the development and function of brain regions controlling self-grooming and sensory gating. PlxnA1 KO mice may be a valuable model to investigate the repetitive behaviors and information processing deficits characteristic of many neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Mst Sharifa Jahan
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Takuji Ito
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Sachika Ichihashi
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Takanobu Masuda
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | | | - Ikuko Takahashi
- Radioisotope Center, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Hyota Takamatsu
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Atsushi Kumanogoh
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Takamasa Tsuzuki
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Takayuki Negishi
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Kazunori Yukawa
- Department of Physiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
- Corresponding author.
| |
Collapse
|
22
|
Bis JC, Jian X, Kunkle BW, Chen Y, Hamilton-Nelson KL, Bush WS, Salerno WJ, Lancour D, Ma Y, Renton AE, Marcora E, Farrell JJ, Zhao Y, Qu L, Ahmad S, Amin N, Amouyel P, Beecham GW, Below JE, Campion D, Cantwell L, Charbonnier C, Chung J, Crane PK, Cruchaga C, Cupples LA, Dartigues JF, Debette S, Deleuze JF, Fulton L, Gabriel SB, Genin E, Gibbs RA, Goate A, Grenier-Boley B, Gupta N, Haines JL, Havulinna AS, Helisalmi S, Hiltunen M, Howrigan DP, Ikram MA, Kaprio J, Konrad J, Kuzma A, Lander ES, Lathrop M, Lehtimäki T, Lin H, Mattila K, Mayeux R, Muzny DM, Nasser W, Neale B, Nho K, Nicolas G, Patel D, Pericak-Vance MA, Perola M, Psaty BM, Quenez O, Rajabli F, Redon R, Reitz C, Remes AM, Salomaa V, Sarnowski C, Schmidt H, Schmidt M, Schmidt R, Soininen H, Thornton TA, Tosto G, Tzourio C, van der Lee SJ, van Duijn CM, Valladares O, Vardarajan B, Wang LS, Wang W, Wijsman E, Wilson RK, Witten D, Worley KC, Zhang X, Bellenguez C, Lambert JC, Kurki MI, Palotie A, Daly M, Boerwinkle E, Lunetta KL, Destefano AL, Dupuis J, Martin ER, Schellenberg GD, Seshadri S, Naj AC, Fornage M, Farrer LA. Whole exome sequencing study identifies novel rare and common Alzheimer's-Associated variants involved in immune response and transcriptional regulation. Mol Psychiatry 2020; 25:1859-1875. [PMID: 30108311 PMCID: PMC6375806 DOI: 10.1038/s41380-018-0112-7] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/01/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022]
Abstract
The Alzheimer's Disease Sequencing Project (ADSP) undertook whole exome sequencing in 5,740 late-onset Alzheimer disease (AD) cases and 5,096 cognitively normal controls primarily of European ancestry (EA), among whom 218 cases and 177 controls were Caribbean Hispanic (CH). An age-, sex- and APOE based risk score and family history were used to select cases most likely to harbor novel AD risk variants and controls least likely to develop AD by age 85 years. We tested ~1.5 million single nucleotide variants (SNVs) and 50,000 insertion-deletion polymorphisms (indels) for association to AD, using multiple models considering individual variants as well as gene-based tests aggregating rare, predicted functional, and loss of function variants. Sixteen single variants and 19 genes that met criteria for significant or suggestive associations after multiple-testing correction were evaluated for replication in four independent samples; three with whole exome sequencing (2,778 cases, 7,262 controls) and one with genome-wide genotyping imputed to the Haplotype Reference Consortium panel (9,343 cases, 11,527 controls). The top findings in the discovery sample were also followed-up in the ADSP whole-genome sequenced family-based dataset (197 members of 42 EA families and 501 members of 157 CH families). We identified novel and predicted functional genetic variants in genes previously associated with AD. We also detected associations in three novel genes: IGHG3 (p = 9.8 × 10-7), an immunoglobulin gene whose antibodies interact with β-amyloid, a long non-coding RNA AC099552.4 (p = 1.2 × 10-7), and a zinc-finger protein ZNF655 (gene-based p = 5.0 × 10-6). The latter two suggest an important role for transcriptional regulation in AD pathogenesis.
Collapse
Affiliation(s)
- Joshua C Bis
- Department of Medicine (General Internal Medicine), University of Washington, Seattle, WA, USA
| | - Xueqiu Jian
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Brian W Kunkle
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yuning Chen
- Departments of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Kara L Hamilton-Nelson
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - William S Bush
- Case Western Reserve University, Cleveland Heights, OH, USA
| | - William J Salerno
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Daniel Lancour
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Yiyi Ma
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Alan E Renton
- Department of Neuroscience and Ronald M Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edoardo Marcora
- Department of Neuroscience and Ronald M Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John J Farrell
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Yi Zhao
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Liming Qu
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shahzad Ahmad
- Erasmus University Medical Center, Rotterdam, Netherlands
| | - Najaf Amin
- Inserm, U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - Philippe Amouyel
- Inserm, U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Lille, U1167-Excellence Laboratory LabEx DISTALZ, Lille, France
| | - Gary W Beecham
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jennifer E Below
- Department of Medical Genetics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dominique Campion
- Department of Genetics and CNR-MAJ, Normandie Université, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
- Department of Research, Centre Hospitalier du Rouvray, Sotteville-lès-, Rouen, France
| | - Laura Cantwell
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Camille Charbonnier
- Department of Genetics and CNR-MAJ, Normandie Université, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Jaeyoon Chung
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Paul K Crane
- Department of Medicine (General Internal Medicine), University of Washington, Seattle, WA, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - L Adrienne Cupples
- Departments of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
| | - Jean-François Dartigues
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, F-33000, Bordeaux, France
| | - Stéphanie Debette
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, F-33000, Bordeaux, France
- Department of Neurology and Institute for Neurodegenerative Diseases, Bordeaux University Hospital, Memory Clinic, F-33000, Bordeaux, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, Institut François Jacob, Direction de le Recherche Fondamentale, CEA, Evry, France
| | - Lucinda Fulton
- McDonnell Genome Institute, Washington University, St. Louis, MO, USA
| | | | | | - Richard A Gibbs
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Alison Goate
- Department of Neuroscience and Ronald M Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin Grenier-Boley
- Inserm, U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - Namrata Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Aki S Havulinna
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - Seppo Helisalmi
- Institute of Clinical Medicine - Neurology and Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Daniel P Howrigan
- Program in Medical and Population Genetics and Genetic Analysis Platform, Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - M Arfan Ikram
- Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Jan Konrad
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Amanda Kuzma
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark Lathrop
- McGill University and Génome Québec Innovation Centre, Montréal, Canada
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Honghuang Lin
- Department of Medicine (Computational Biomedicine), Boston University School of Medicine, Boston, MA, USA
| | - Kari Mattila
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | | | - Donna M Muzny
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Waleed Nasser
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin Neale
- Program in Medical and Population Genetics and Genetic Analysis Platform, Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Kwangsik Nho
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gaël Nicolas
- Department of Genetics and CNR-MAJ, Normandie Université, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Devanshi Patel
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Markus Perola
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
- University of Tartu, Estonian Genome Center, Tartu, Estonia
| | - Bruce M Psaty
- Department of Medicine (General Internal Medicine), University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Olivier Quenez
- Department of Genetics and CNR-MAJ, Normandie Université, UNIROUEN, Inserm U1245 and Rouen University Hospital, F 76000, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Farid Rajabli
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Richard Redon
- Inserm, CNRS, Univ. Nantes, CHU Nantes, l'institut du thorax, Nantes, France
| | | | - Anne M Remes
- Institute of Clinical Medicine - Neurology and Department of Neurology, University of Eastern Finland, Kuopio, Finland
- Unit of Clinical Neuroscience, Neurology, University of Oulu and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Chloe Sarnowski
- Departments of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Helena Schmidt
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University of Graz, Graz, Austria
| | - Michael Schmidt
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Reinhold Schmidt
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University of Graz, Graz, Austria
| | - Hilkka Soininen
- Institute of Clinical Medicine - Neurology and Department of Neurology, University of Eastern Finland, Kuopio, Finland
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | | | | | - Christophe Tzourio
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, F-33000, Bordeaux, France
| | | | | | - Otto Valladares
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Li-San Wang
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Weixin Wang
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ellen Wijsman
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Richard K Wilson
- McDonnell Genome Institute, Washington University, St. Louis, MO, USA
| | - Daniela Witten
- Department of Statistics, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Kim C Worley
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Xiaoling Zhang
- Departments of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Celine Bellenguez
- Inserm, U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - Jean-Charles Lambert
- Inserm, U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - Mitja I Kurki
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics and Genetic Analysis Platform, Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics and Genetic Analysis Platform, Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Mark Daly
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kathryn L Lunetta
- Departments of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Anita L Destefano
- Departments of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Departments of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Josée Dupuis
- Departments of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Eden R Martin
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Sudha Seshadri
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Departments of Neurology, Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Adam C Naj
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lindsay A Farrer
- Departments of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA.
- Departments of Neurology, Boston University School of Medicine, Boston, MA, USA.
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
23
|
Zhang R, Wang J, Liu B, Wang W, Fan X, Zheng B, Yuan Q, Xue M, Xu F, Guo P, Chen Y. Differentially expressed lncRNAs, miRNAs and mRNAs with associated ceRNA networks in a mouse model of myocardial ischemia/reperfusion injury. Mol Med Rep 2020; 22:2487-2495. [PMID: 32705277 PMCID: PMC7411395 DOI: 10.3892/mmr.2020.11300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
Non‑coding RNAs, including long non‑coding RNAs (lncRNAs) and microRNAs (miRNAs/miRs), have significant regulatory effects on a number of biological processes in myocardial ischemia/reperfusion (I/R) injury, including cell differentiation, proliferation and apoptosis. In the present study, the expression levels of lncRNAs, miRNAs and mRNAs were evaluated in a mouse model of myocardial I/R injury. The potential functions of these differentially expressed genes were then analyzed via Gene Ontology and pathway analyses. Additionally, the interactions between lncRNA‑miRNA‑mRNA were predicted by constructing a competing endogenous RNA regulatory network. It was found that 14,366 lncRNAs, 151 miRNAs and 9,377 mRNAs were differentially expressed in mice hearts after I/R compared with the Sham group (fold change >2; P<0.05). The results indicated that these differentially expressed genes were involved in multiple molecular functions, including 'guanosine diphosphate binding', 'RNA polymerase II carboxy‑terminal domain kinase activity', 'TATA‑binding protein‑class protein binding', 'nicotinamide adenine dinucleotide binding' and 'protein phosphatase type 2A regulator activity'. The interactions between lncRNA‑miRNA‑mRNA, including five lncRNAs, 38 miRNAs and 196 mRNAs, were predicted, specifically Gm12040‑mmu‑miR‑125a‑5p‑decapping mRNA 1B, Rpl7l1‑ps1‑mmu‑miR‑124‑3p‑G protein‑coupled receptor 146, Gm11407‑mmu‑miR‑190a‑5p‑homeobox and leucine zipper encoding (HOMEZ), 1600029O15Rik‑mmu‑miR‑132‑3p‑HOMEZ and AK155692‑mmu‑miR‑1224‑3p‑activating transcription factor 6β. Collectively, these findings provided novel insights for future research on lncRNAs, miRNAs and mRNAs in myocardial I/R injury.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Emergency Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jiali Wang
- Department of Emergency Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Baoshan Liu
- Department of Emergency Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wenjun Wang
- Department of Emergency Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xinhui Fan
- Department of Emergency Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Boyuan Zheng
- Department of Emergency Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qiuhuan Yuan
- Department of Emergency Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Mengyang Xue
- Department of Emergency Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Feng Xu
- Department of Emergency Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ping Guo
- Department of Emergency Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yuguo Chen
- Department of Emergency Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
24
|
Arbeev KG, Bagley O, Ukraintseva SV, Wu D, Duan H, Kulminski AM, Stallard E, Christensen K, Lee JH, Thyagarajan B, Zmuda JM, Yashin AI. Genetics of physiological dysregulation: findings from the long life family study using joint models. Aging (Albany NY) 2020; 12:5920-5947. [PMID: 32235003 PMCID: PMC7185144 DOI: 10.18632/aging.102987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/24/2020] [Indexed: 12/16/2022]
Abstract
Recently, Mahalanobis distance (DM) was suggested as a statistical measure of physiological dysregulation in aging individuals. We constructed DM variants using sets of biomarkers collected at the two visits of the Long Life Family Study (LLFS) and performed joint analyses of longitudinal observations of DM and follow-up mortality in LLFS using joint models. We found that DM is significantly associated with mortality (hazard ratio per standard deviation: 1.31 [1.16, 1.48] to 2.22 [1.84, 2.67]) after controlling for age and other covariates. GWAS of random intercepts and slopes of DM estimated from joint models found a genome-wide significant SNP (rs12652543, p=7.2×10-9) in the TRIO gene associated with the slope of DM constructed from biomarkers declining in late life. Review of biological effects of genes corresponding to top SNPs from GWAS of DM slopes revealed that these genes are broadly involved in cancer prognosis and axon guidance/synapse function. Although axon growth is mainly observed during early development, the axon guidance genes can function in adults and contribute to maintenance of neural circuits and synaptic plasticity. Our results indicate that decline in axons' ability to maintain complex regulatory networks may potentially play an important role in the increase in physiological dysregulation during aging.
Collapse
Affiliation(s)
- Konstantin G Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham NC, 27708, USA
| | - Olivia Bagley
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham NC, 27708, USA
| | - Svetlana V Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham NC, 27708, USA
| | - Deqing Wu
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham NC, 27708, USA
| | - Hongzhe Duan
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham NC, 27708, USA
| | - Alexander M Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham NC, 27708, USA
| | - Eric Stallard
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham NC, 27708, USA
| | - Kaare Christensen
- Danish Aging Research Center, Department of Public Health, University of Southern Denmark 5000, Odense C, Denmark
| | - Joseph H Lee
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY 10032, USA.,G. H. Sergievsky Center, Columbia University, New York, NY 10032, USA.,Departments of Epidemiology and Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph M Zmuda
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Anatoliy I Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham NC, 27708, USA
| |
Collapse
|
25
|
Ikezu S, Ingraham Dixie KL, Koro L, Watanabe T, Kaibuchi K, Ikezu T. Tau-tubulin kinase 1 and amyloid-β peptide induce phosphorylation of collapsin response mediator protein-2 and enhance neurite degeneration in Alzheimer disease mouse models. Acta Neuropathol Commun 2020; 8:12. [PMID: 32019603 PMCID: PMC7001309 DOI: 10.1186/s40478-020-0890-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/30/2020] [Indexed: 11/23/2022] Open
Abstract
The accumulation of phosphorylated tau protein (pTau) in the entorhinal cortex (EC) is the earliest tau pathology in Alzheimer’s disease (AD). Tau tubulin kinase-1 (TTBK1) is a neuron-specific tau kinase and expressed in the EC and hippocampal regions in both human and mouse brains. Here we report that collapsin response mediator protein-2 (CRMP2), a critical mediator of growth cone collapse, is a new downstream target of TTBK1 and is accumulated in the EC region of early stage AD brains. TTBK1 transgenic mice show severe axonal degeneration in the perforant path, which is exacerbated by crossing with Tg2576 mice expressing Swedish familial AD mutant of amyloid precursor protein (APP). TTBK1 mice show accumulation of phosphorylated CRMP2 (pCRMP2), in the EC at 10 months of age, whereas age-matched APP/TTBK1 bigenic mice show pCRMP2 accumulation in both the EC and hippocampal regions. Amyloid-β peptide (Aβ) and TTBK1 suppress the kinetics of microtubule polymerization and TTBK1 reduces the neurite length of primary cultured neurons in Rho kinase-dependent manner in vitro. Silencing of TTBK1 or expression of dominant-negative Rho kinase demonstrates that Aβ induces CRMP2 phosphorylation at threonine 514 in a TTBK1-dependent manner, and TTBK1 enhances Aβ-induced CRMP2 phosphorylation in Rho kinase-dependent manner in vitro. Furthermore, TTBK1 expression induces pCRMP2 complex formation with pTau in vitro, which is enhanced upon Aβ stimulation in vitro. Finally, pCRMP2 forms a complex with pTau in the EC tissue of TTBK1 mice in vivo, which is exacerbated in both the EC and hippocampal tissues in APP/TTBK1 mice. These results suggest that TTBK1 and Aβ induce phosphorylation of CRMP2, which may be causative for the neurite degeneration and somal accumulation of pTau in the EC neurons, indicating critical involvement of TTBK1 and pCRMP2 in the early AD pathology.
Collapse
|
26
|
Traylor M, Amin Al Olama A, Lyytikäinen LP, Marini S, Chung J, Malik R, Dichgans M, Kähönen M, Lehtimäki T, Anderson CD, Raitakari OT, Markus HS. Influence of Genetic Variation in PDE3A on Endothelial Function and Stroke. Hypertension 2020; 75:365-371. [PMID: 31865795 PMCID: PMC7055937 DOI: 10.1161/hypertensionaha.119.13513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/16/2019] [Accepted: 11/27/2019] [Indexed: 11/16/2022]
Abstract
We aimed to characterize the genetics of endothelial function and how this influences risk for cardiovascular diseases such as ischemic stroke. We integrated genetic data from a study of ultrasound flow-mediated dilatation of brachial artery in adolescents from ALSPAC (Avon Longitudinal Study of Parents and Children; n=5214) with a study of ischemic stroke (MEGASTROKE: n=60 341 cases and 452 969 controls) to identify variants that confer risk of ischemic stroke through altered endothelial function. We identified a variant in PDE3A (Phosphodiesterase 3A), encoding phosphodiesterase 3A, which was associated with flow-mediated dilatation in adolescents (9-12 years of age; β[SE], 0.38 [0.070]; P=3.8×10-8) and confers risk of ischemic stroke (odds ratio, 1.04 [95% CI, 1.02-1.06]; P=5.2×10-6). Bayesian colocalization analyses showed the same underlying variation is likely to lead to both associations (posterior probability, 97%). The same variant was associated with flow-mediated dilatation in a second study in young adults (age, 24-27 years; β[SE], 0.47 [0.23]; P=0.047) but not in older adults (β[SE], -0.012 [0.13]; P=0.89). We conclude that a genetic variant in PDE3A influences endothelial function in early life and leads to increased risk of ischemic stroke. Subtle, measurable changes to the vasculature that are influenced by genetics also influence risk of ischemic stroke.
Collapse
Affiliation(s)
- Matthew Traylor
- From the Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, United Kingdom (M.T., A.A.A.O., H.S.M.)
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (M.T.)
| | - Ali Amin Al Olama
- From the Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, United Kingdom (M.T., A.A.A.O., H.S.M.)
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland (L.-P.L., T.L.)
- Department of Clinical Chemistry (L.-P.L., T.L.), Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Finland
| | - Sandro Marini
- Center for Genomic Medicine, Massachusetts General Hospital, Boston (S.M., J.C., C.D.A.)
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology (S.M., C.D.A.), Massachusetts General Hospital, Boston
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA (S.M., J.C., C.D.A.)
| | - Jaeyoon Chung
- Center for Genomic Medicine, Massachusetts General Hospital, Boston (S.M., J.C., C.D.A.)
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA (S.M., J.C., C.D.A.)
| | - Rainer Malik
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Germany (R.M., M.D.)
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Germany (R.M., M.D.)
- Munich Cluster for Systems Neurology, Germany (M.D.)
| | - Mika Kähönen
- Department of Clinical Physiology (M.K.), Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Finland
- Department of Clinical Physiology, Tampere University Hospital, Finland (M.K.)
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland (L.-P.L., T.L.)
- Department of Clinical Chemistry (L.-P.L., T.L.), Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Finland
| | - Christopher D. Anderson
- Center for Genomic Medicine, Massachusetts General Hospital, Boston (S.M., J.C., C.D.A.)
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology (S.M., C.D.A.), Massachusetts General Hospital, Boston
- Department of Neurology, McCance Center for Brain Health (C.D.A.), Massachusetts General Hospital, Boston
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA (S.M., J.C., C.D.A.)
| | - Olli T. Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Finland (O.T.R.)
- Research Centre of Applied and Preventative Cardiovascular Medicine, University of Turku, Finland (O.T.R.)
| | - Hugh S. Markus
- From the Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, United Kingdom (M.T., A.A.A.O., H.S.M.)
| |
Collapse
|
27
|
Wu PC, Fann MJ, Tran TT, Chen SC, Devina T, Cheng IHJ, Lien CC, Kao LS, Wang SJ, Fuh JL, Tzeng TT, Huang CY, Shiao YJ, Wong YH. Assessing the therapeutic potential of Graptopetalum paraguayense on Alzheimer's disease using patient iPSC-derived neurons. Sci Rep 2019; 9:19301. [PMID: 31848379 PMCID: PMC6917798 DOI: 10.1038/s41598-019-55614-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/13/2019] [Indexed: 12/26/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia and also one of the leading causes of death worldwide. However, the underlying mechanisms remain unclear, and currently there is no drug treatment that can prevent or cure AD. Here, we have applied the advantages of using induced pluripotent stem cell (iPSC)-derived neurons (iNs) from AD patients, which are able to offer human-specific drug responsiveness, in order to evaluate therapeutic candidates for AD. Using approach involving an inducible neurogenin-2 transgene, we have established a robust and reproducible protocol for differentiating human iPSCs into glutamatergic neurons. The AD-iN cultures that result have mature phenotypic and physiological properties, together with AD-like biochemical features that include extracellular β-amyloid (Aβ) accumulation and Tau protein phosphorylation. By screening using a gene set enrichment analysis (GSEA) approach, Graptopetalum paraguayense (GP) has been identified as a potential therapeutic agent for AD from among a range of Chinese herbal medicines. We found that administration of a GP extract caused a significantly reduction in the AD-associated phenotypes of the iNs, including decreased levels of extracellular Aβ40 and Aβ42, as well as reduced Tau protein phosphorylation at positions Ser214 and Ser396. Additionally, the effect of GP was more prominent in AD-iNs compared to non-diseased controls. These findings provide valuable information that suggests moving extracts of GP toward drug development, either for treating AD or as a health supplement to prevent AD. Furthermore, our human iN-based platform promises to be a useful strategy when it is used for AD drug discovery.
Collapse
Affiliation(s)
- Pei-Chun Wu
- Brain Research Center, National Yang-Ming University, Taipei, 11221, Taiwan (ROC)
| | - Ming-Ji Fann
- Brain Research Center, National Yang-Ming University, Taipei, 11221, Taiwan (ROC).,Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, 11221, Taiwan (ROC)
| | - Tu Thanh Tran
- Brain Research Center, National Yang-Ming University, Taipei, 11221, Taiwan (ROC)
| | - Shu-Cian Chen
- Brain Research Center, National Yang-Ming University, Taipei, 11221, Taiwan (ROC)
| | - Tania Devina
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan (ROC)
| | - Irene Han-Juo Cheng
- Brain Research Center, National Yang-Ming University, Taipei, 11221, Taiwan (ROC).,Institute of Brain Science, National Yang Ming University, Taipei, 11221, Taiwan (ROC)
| | - Cheng-Chang Lien
- Brain Research Center, National Yang-Ming University, Taipei, 11221, Taiwan (ROC).,Institute of Neuroscience, National Yang Ming University, Taipei, 11221, Taiwan (ROC)
| | - Lung-Sen Kao
- Brain Research Center, National Yang-Ming University, Taipei, 11221, Taiwan (ROC).,Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, 11221, Taiwan (ROC)
| | - Shuu-Jiun Wang
- Brain Research Center, National Yang-Ming University, Taipei, 11221, Taiwan (ROC).,Division of General Neurology, Neurological Institute, Taipei Veterans Hospital, Taipei, 11217, Taiwan (ROC)
| | - Jong-Ling Fuh
- Brain Research Center, National Yang-Ming University, Taipei, 11221, Taiwan (ROC).,Division of General Neurology, Neurological Institute, Taipei Veterans Hospital, Taipei, 11217, Taiwan (ROC)
| | - Tsai-Teng Tzeng
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, 11221, Taiwan (ROC)
| | - Chi-Ying Huang
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, 11221, Taiwan (ROC)
| | - Young-Ji Shiao
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, 11221, Taiwan (ROC). .,National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, 11221, Taiwan (ROC).
| | - Yu-Hui Wong
- Brain Research Center, National Yang-Ming University, Taipei, 11221, Taiwan (ROC).
| |
Collapse
|
28
|
Prata DP, Costa-Neves B, Cosme G, Vassos E. Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: A systematic review. J Psychiatr Res 2019; 114:178-207. [PMID: 31096178 DOI: 10.1016/j.jpsychires.2019.04.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To systematically review findings of GWAS in schizophrenia (SZ) and in bipolar disorder (BD); and to interpret findings, with a focus on identifying independent replications. METHOD PubMed search, selection and review of all independent GWAS in SZ or BD, published since March 2011, i.e. studies using non-overlapping samples within each article, between articles, and with those of the previous review (Li et al., 2012). RESULTS From the 22 GWAS included in this review, the genetic associations surviving standard GWAS-significance were for genetic markers in the regions of ACSL3/KCNE4, ADCY2, AMBRA1, ANK3, BRP44, DTL, FBLN1, HHAT, INTS7, LOC392301, LOC645434/NMBR, LOC729457, LRRFIP1, LSM1, MDM1, MHC, MIR2113/POU3F2, NDST3, NKAPL, ODZ4, PGBD1, RENBP, TRANK1, TSPAN18, TWIST2, UGT1A1/HJURP, WHSC1L1/FGFR1 and ZKSCAN4. All genes implicated across both reviews are discussed in terms of their function and implication in neuropsychiatry. CONCLUSION Taking all GWAS to date into account, AMBRA1, ANK3, ARNTL, CDH13, EFHD1 (albeit with different alleles), MHC, PLXNA2 and UGT1A1 have been implicated in either disorder in at least two reportedly non-overlapping samples. Additionally, evidence for a SZ/BD common genetic basis is most strongly supported by the implication of ANK3, NDST3, and PLXNA2.
Collapse
Affiliation(s)
- Diana P Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal; Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, SE5 8AF, UK; Instituto Universitário de Lisboa (ISCTE-IUL), Centro de Investigação e Intervenção Social, Lisboa, Portugal.
| | - Bernardo Costa-Neves
- Lisbon Medical School, University of Lisbon, Av. Professor Egas Moniz, 1649-028, Lisbon, Portugal; Centro Hospitalar Psiquiátrico de Lisboa, Av. do Brasil, 53 1749-002, Lisbon, Portugal
| | - Gonçalo Cosme
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, 16 De Crespigny Park, SE5 8AF, UK
| |
Collapse
|
29
|
Han Z, Xue W, Tao L, Zhu F. Identification of Key Long Non-Coding RNAs in the Pathology of Alzheimer’s Disease and their Functions Based on Genome-Wide Associations Study, Microarray, and RNA-seq Data. J Alzheimers Dis 2019; 68:339-355. [DOI: 10.3233/jad-181051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhijie Han
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, School of Medicine, Hangzhou Normal University, Hangzhou, P. R. China
| | - Feng Zhu
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| |
Collapse
|
30
|
Gil V, Del Río JA. Functions of Plexins/Neuropilins and Their Ligands during Hippocampal Development and Neurodegeneration. Cells 2019; 8:E206. [PMID: 30823454 PMCID: PMC6468495 DOI: 10.3390/cells8030206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 12/22/2022] Open
Abstract
There is emerging evidence that molecules, receptors, and signaling mechanisms involved in vascular development also play crucial roles during the development of the nervous system. Among others, specific semaphorins and their receptors (neuropilins and plexins) have, in recent years, attracted the attention of researchers due to their pleiotropy of functions. Their functions, mainly associated with control of the cellular cytoskeleton, include control of cell migration, cell morphology, and synapse remodeling. Here, we will focus on their roles in the hippocampal formation that plays a crucial role in memory and learning as it is a prime target during neurodegeneration.
Collapse
Affiliation(s)
- Vanessa Gil
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Parc Científic de Barcelona, 08028 Barcelona, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Spain.
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08028 Barcelona, Spain.
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain.
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Parc Científic de Barcelona, 08028 Barcelona, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, 08028 Barcelona, Spain.
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 08028 Barcelona, Spain.
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
31
|
Foster EM, Dangla-Valls A, Lovestone S, Ribe EM, Buckley NJ. Clusterin in Alzheimer's Disease: Mechanisms, Genetics, and Lessons From Other Pathologies. Front Neurosci 2019; 13:164. [PMID: 30872998 PMCID: PMC6403191 DOI: 10.3389/fnins.2019.00164] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/12/2019] [Indexed: 01/10/2023] Open
Abstract
Clusterin (CLU) or APOJ is a multifunctional glycoprotein that has been implicated in several physiological and pathological states, including Alzheimer's disease (AD). With a prominent extracellular chaperone function, additional roles have been discussed for clusterin, including lipid transport and immune modulation, and it is involved in pathways common to several diseases such as cell death and survival, oxidative stress, and proteotoxic stress. Although clusterin is normally a secreted protein, it has also been found intracellularly under certain stress conditions. Multiple hypotheses have been proposed regarding the origin of intracellular clusterin, including specific biogenic processes leading to alternative transcripts and protein isoforms, but these lines of research are incomplete and contradictory. Current consensus is that intracellular clusterin is most likely to have exited the secretory pathway at some point or to have re-entered the cell after secretion. Clusterin's relationship with amyloid beta (Aβ) has been of great interest to the AD field, including clusterin's apparent role in altering Aβ aggregation and/or clearance. Additionally, clusterin has been more recently identified as a mediator of Aβ toxicity, as evidenced by the neuroprotective effect of CLU knockdown and knockout in rodent and human iPSC-derived neurons. CLU is also the third most significant genetic risk factor for late onset AD and several variants have been identified in CLU. Although the exact contribution of these variants to altered AD risk is unclear, some have been linked to altered CLU expression at both mRNA and protein levels, altered cognitive and memory function, and altered brain structure. The apparent complexity of clusterin's biogenesis, the lack of clarity over the origin of the intracellular clusterin species, and the number of pathophysiological functions attributed to clusterin have all contributed to the challenge of understanding the role of clusterin in AD pathophysiology. Here, we highlight clusterin's relevance to AD by discussing the evidence linking clusterin to AD, as well as drawing parallels on how the role of clusterin in other diseases and pathways may help us understand its biological function(s) in association with AD.
Collapse
Affiliation(s)
| | | | | | | | - Noel J. Buckley
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
32
|
Comparison of methods for multivariate gene-based association tests for complex diseases using common variants. Eur J Hum Genet 2019; 27:811-823. [PMID: 30683923 PMCID: PMC6461986 DOI: 10.1038/s41431-018-0327-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 10/30/2018] [Accepted: 12/04/2018] [Indexed: 12/29/2022] Open
Abstract
Complex diseases are usually associated with multiple correlated phenotypes, and the analysis of composite scores or disease status may not fully capture the complexity (or multidimensionality). Joint analysis of multiple disease-related phenotypes in genetic tests could potentially increase power to detect association of a disease with common SNPs (or genes). Gene-based tests are designed to identify genes containing multiple risk variants that individually are weakly associated with a univariate trait. We combined three multivariate association tests (O'Brien method, TATES, and MultiPhen) with two gene-based association tests (GATES and VEGAS) and compared performance (type I error and power) of six multivariate gene-based methods using simulated data. Data (n = 2000) for genetic sequence and correlated phenotypes were simulated by varying causal variant proportions and phenotype correlations for various scenarios. These simulations showed that two multivariate association tests (TATES and MultiPhen, but not O'Brien) paired with VEGAS have inflated type I error in all scenarios, while the three multivariate association tests paired with GATES have correct type I error. MultiPhen paired with GATES has higher power than competing methods if the correlations among phenotypes are low (r < 0.57). We applied these gene-based association methods to a GWAS dataset from the Alzheimer's Disease Genetics Consortium containing three neuropathological traits related to Alzheimer disease (neuritic plaque, neurofibrillary tangles, and cerebral amyloid angiopathy) measured in 3500 autopsied brains. Gene-level significant evidence (P < 2.7 × 10-6) was identified in a region containing three contiguous genes (TRAPPC12, TRAPPC12-AS1, ADI1) using O'Brien and VEGAS. Gene-wide significant associations were not observed in univariate gene-based tests.
Collapse
|
33
|
Zhang X, Zhu C, Beecham G, Vardarajan BN, Ma Y, Lancour D, Farrell JJ, Chung J, Mayeux R, Haines JL, Schellenberg GD, Pericak-Vance MA, Lunetta KL, Farrer LA. A rare missense variant of CASP7 is associated with familial late-onset Alzheimer's disease. Alzheimers Dement 2019; 15:441-452. [PMID: 30503768 PMCID: PMC6408965 DOI: 10.1016/j.jalz.2018.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 10/04/2018] [Accepted: 10/11/2018] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The genetic architecture of Alzheimer's disease (AD) is only partially understood. METHODS We conducted an association study for AD using whole sequence data from 507 genetically enriched AD cases (i.e., cases having close relatives affected by AD) and 4917 cognitively healthy controls of European ancestry (EA) and 172 enriched cases and 179 controls of Caribbean Hispanic ancestry. Confirmation of top findings from stage 1 was sought in two family-based genome-wide association study data sets and in a whole genome-sequencing data set comprising members from 42 EA and 115 Caribbean Hispanic families. RESULTS We identified associations in EAs with variants in 12 novel loci. The most robust finding is a rare CASP7 missense variant (rs116437863; P = 2.44 × 10-10) which improved when combined with results from stage 2 data sets (P = 1.92 × 10-10). DISCUSSION Our study demonstrated that an enriched case design can strengthen genetic signals, thus allowing detection of associations that would otherwise be missed in a traditional case-control study.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Congcong Zhu
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Gary Beecham
- Hussman Institute of Human Genetics, University of Miami, Miami, FL, USA
| | | | - Yiyi Ma
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Daniel Lancour
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - John J Farrell
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Jaeyoon Chung
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Richard Mayeux
- Department of Neurology, Columbia University, New York, NY, USA
| | - Jonathan L Haines
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
34
|
Han Q, Sun YA, Zong Y, Chen C, Wang HF, Tan L. Common Variants in PLXNA4 and Correlation to CSF-related Phenotypes in Alzheimer's Disease. Front Neurosci 2018; 12:946. [PMID: 30618575 PMCID: PMC6305543 DOI: 10.3389/fnins.2018.00946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/29/2018] [Indexed: 01/21/2023] Open
Abstract
The Plexin-A 4 (PLXNA4) gene, has recently been identified in genome wide association studies (GWAS), as a novel genetic player associated with Alzheimer's disease (AD). Additionally, PLXNA4 genetic variations were also found to increase AD risk by tau pathology in vitro. However, the potential roles of PLXNA4 variants in the amyloid-β (Aβ) pathology, were not evaluated. Five targeted loci capturing the top common variations in PLXNA4, were extracted using tagger methods. Multiple linear regression models were used to explore whether these variations can affect the cerebrospinal fluid (CSF) (Aβ1−42, T-tau, and P-tau) phenotypes in the Alzheimer's disease Neuroimaging Initiative (ADNI) dataset. We detected that two loci (rs6467431, rs67468325) were significantly associated with CSF Aβ1−42 levels in the hybrid population (rs6467431: P = 0.01376, rs67468325: P = 0.006536) and the significance remained after false discovery rate (FDR) correction (rs6467431: Pc = 0.03441, rs67468325: Pc = 0.03268). In the subgroup analysis, we further confirmed the association of rs6467431 in the cognitively normal (CN) subgroup (P = 0.01904, Pc = 0.04761). Furthermore, rs6467431-A carriers and rs67468325-G carriers showed higher CSF Aβ1−42 levels than non-carriers. Nevertheless, we did not detect any significant relationships between the levels of T-tau, P-tau and these PLXNA4 loci. Our findings provided preliminary evidence that PLXNA4 variants can confer AD risk through modulating the Aβ deposition.
Collapse
Affiliation(s)
- Qiu Han
- Department of Neurology, Qingdao Clinical Medical School, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao, China.,Department of Neurology, The Affiliated Huaian Hosipital of Xuzhou Medical University, Huai'an, China
| | - Yong-An Sun
- Department of Neurology, Qingdao Clinical Medical School, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao, China.,Department of Neurology, First Affiliated Hospital of Kangda School, Nanjing Medical University, Lianyungang, China
| | - Yu Zong
- Department of Neurology, School of Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chun Chen
- Department of Neurology, Qingdao Clinical Medical School, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao, China.,Department of Neurology, Hongze Huai'an District People's Hospital, Huai'an, China
| | - Hui-Fu Wang
- Department of Neurology, School of Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Clinical Medical School, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao, China
| | | |
Collapse
|
35
|
Logue MW, Lancour D, Farrell J, Simkina I, Fallin MD, Lunetta KL, Farrer LA. Targeted Sequencing of Alzheimer Disease Genes in African Americans Implicates Novel Risk Variants. Front Neurosci 2018; 12:592. [PMID: 30210277 PMCID: PMC6119822 DOI: 10.3389/fnins.2018.00592] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/07/2018] [Indexed: 11/16/2022] Open
Abstract
The genetic architecture of late-onset Alzheimer disease (AD) in African Americans (AAs) differs from that in persons of European ancestry. In addition to APOE, genome-wide association studies (GWASs) of AD in AA samples have implicated ABCA7, COBL, and SLC10A2 as AA-AD risk genes. Previously, we identified by whole exome sequencing a small number of AA AD cases and subsequent genotyping in a large AA sample of AD cases and controls association of AD risk with a pair of rare missense variants in AKAP9. In this study, we performed targeted deep sequencing (including both introns and exons) of approximately 100 genes previously linked to AD or AD-related traits in an AA cohort of 489 AD cases and 472 controls to find novel AD risk variants. We observed association with an 11 base-pair frame-shift loss-of-function (LOF) variant in ABCA7 (rs567222111) for which the evidence was bolstered when combined with data from a replication AA cohort of 484 cases and 484 controls (OR = 2.42, p = 0.022). We also found association of AD with a rare 9 bp deletion (rs371245265) located very close to the AKAP9 transcription start site (rs371245265, OR = 10.75, p = 0.0053). The most significant findings were obtained with a rare protective variant in F5 (OR = 0.053, p = 6.40 × 10-5), a gene that was previously associated with a brain MRI measure of hippocampal atrophy, and two common variants in KIAA0196 (OR = 1.51, p<8.6 × 10-5). Gene-based tests of aggregated rare variants yielded several nominally significant associations with KANSL1, CNN2, and TRIM35. Although no associations passed multiple test correction, our study adds to a body of literature demonstrating the utility of examining sequence data from multiple ethnic populations for discovery of new and impactful risk variants. Larger sample sizes will be needed to generate well-powered epidemiological investigations of rare variation, and functional studies are essential for establishing the pathogenicity of variants identified by sequencing.
Collapse
Affiliation(s)
- Mark W. Logue
- National Center for Posttraumatic Stress Disorder (PTSD), United States Department of Veterans Affairs, Boston Healthcare System, Boston, MA, United States
- Department of Psychiatry, Boston University School of Medicine, Boston University, Boston, MA, United States
- Biomedical Genetics, Department of Medicine, Boston University School of Medicine, Boston University, Boston, MA, United States
- Department of Biostatistics, Boston University School of Public Health, Boston University, Boston, MA, United States
| | - Daniel Lancour
- Biomedical Genetics, Department of Medicine, Boston University School of Medicine, Boston University, Boston, MA, United States
| | - John Farrell
- Biomedical Genetics, Department of Medicine, Boston University School of Medicine, Boston University, Boston, MA, United States
| | - Irina Simkina
- Biomedical Genetics, Department of Medicine, Boston University School of Medicine, Boston University, Boston, MA, United States
| | - M. Daniele Fallin
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Kathryn L. Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston University, Boston, MA, United States
| | - Lindsay A. Farrer
- Biomedical Genetics, Department of Medicine, Boston University School of Medicine, Boston University, Boston, MA, United States
- Department of Biostatistics, Boston University School of Public Health, Boston University, Boston, MA, United States
- Departments of Neurology and Ophthalmology, Boston University School of Medicine, Boston University, Boston, MA, United States
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States
| |
Collapse
|
36
|
Drulis-Fajdasz D, Rakus D, Wiśniewski JR, McCubrey JA, Gizak A. Systematic analysis of GSK-3 signaling pathways in aging of cerebral tissue. Adv Biol Regul 2018; 69:35-42. [PMID: 29958836 DOI: 10.1016/j.jbior.2018.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a constitutively active kinase, involved in regulation of multiple physiological processes. In brain, changes in GSK-3 signaling are related to neurodegenerative issues, including Alzheimer's disease. Due to the wide range of GSK-3 cellular targets, a therapeutic use of the enzyme inhibitors entails significant risk of side effects. Thus, altering the ratio of specific pool of GSK-3 or specific substrates instead of changing the global activity of GSK-3 in brains might be a more appropriate strategy. This paper provides a comprehensive data on abundances of proteins involved in GSK-3 signaling in three regions of young and old mouse brains. It might help to identify novel protein targets with the highest therapeutic potential for treatment of age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- D Drulis-Fajdasz
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - D Rakus
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - J R Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - J A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA
| | - A Gizak
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland.
| |
Collapse
|
37
|
Kumar S, Yadav N, Pandey S, Thelma BK. Advances in the discovery of genetic risk factors for complex forms of neurodegenerative disorders: contemporary approaches, success, challenges and prospects. J Genet 2018. [DOI: 10.1007/s12041-018-0953-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Kumar S, Yadav N, Pandey S, Thelma BK. Advances in the discovery of genetic risk factors for complex forms of neurodegenerative disorders: contemporary approaches, success, challenges and prospects. J Genet 2018; 97:625-648. [PMID: 30027900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Neurodegenerative diseases constitute a large proportion of disorders in elderly, majority being sporadic in occurrence with ∼5-10% familial. A strong genetic component underlies the Mendelian forms but nongenetic factors together with genetic vulnerability contributes to the complex sporadic forms. Several gene discoveries in the familial forms have provided novel insights into the pathogenesis of neurodegeneration with implications for treatment. Conversely, findings from genetic dissection of the sporadic forms, despite large genomewide association studies and more recently whole exome and whole genome sequencing, have been limited. This review provides a concise account of the genetics that we know, the pathways that they implicate, the challenges that are faced and the prospects that are envisaged for the sporadic, complex forms of neurodegenerative diseases, taking four most common conditions, namely Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington disease as examples. Poor replication across studies, inability to establish genotype-phenotype correlations and the overall failure to predict risk and/or prevent disease in this group poses a continuing challenge. Among others, clinical heterogeneity emerges as the most important impediment warranting newer approaches. Advanced computational and system biology tools to analyse the big data are being generated and the alternate strategy such as subgrouping of case-control cohorts based on deep phenotyping using the principles of Ayurveda to overcome current limitation of phenotype heterogeneity seem to hold promise. However, at this point, with advances in discovery genomics and functional analysis of putative determinants with translation potential for the complex forms being minimal, stem cell therapies are being attempted as potential interventions. In this context, the possibility to generate patient derived induced pluripotent stem cells, mutant/gene/genome correction through CRISPR/Cas9 technology and repopulating the specific brain regions with corrected neurons, which may fulfil the dream of personalized medicine have been mentioned briefly. Understanding disease pathways/biology using this technology, with implications for development of novel therapeutics are optimistic expectations in the near future.
Collapse
Affiliation(s)
- Sumeet Kumar
- Department of Genetics, University of Delhi South Campus, New Delhi 110 021, India.
| | | | | | | |
Collapse
|
39
|
Chung J, Wang X, Maruyama T, Ma Y, Zhang X, Mez J, Sherva R, Takeyama H, Lunetta KL, Farrer LA, Jun GR. Genome-wide association study of Alzheimer's disease endophenotypes at prediagnosis stages. Alzheimers Dement 2018; 14:623-633. [PMID: 29274321 PMCID: PMC5938137 DOI: 10.1016/j.jalz.2017.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/25/2017] [Accepted: 11/07/2017] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Genetic associations for endophenotypes of Alzheimer's disease (AD) in cognitive stages preceding AD have not been thoroughly evaluated. METHODS We conducted genome-wide association studies for AD-related endophenotypes including hippocampal volume, logical memory scores, and cerebrospinal fluid Aβ42 and total/phosphorylated tau in cognitively normal (CN), mild cognitive impairment, and AD dementia subjects from the Alzheimer's Disease Neuroimaging Initiative study. RESULTS In CN subjects, study-wide significant (P < 8.3 × 10-9) loci were identified for total tau near SRRM4 and C14orf79 and for hippocampal volume near MTUS1. In mild cognitive impairment subjects, study-wide significant association was found with single nucleotide polymorphisms (SNPs) near ZNF804B for logical memory test of delayed recall scores. We found consistent expression patterns of C14orf40 and MTUS1 in carriers with risk alleles of expression SNPs and in brains of AD patients, compared with in the noncarriers and in brains of controls. DISCUSSION Our findings for AD-related brain changes before AD provide insight about early AD-related biological processes.
Collapse
Affiliation(s)
- Jaeyoon Chung
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA; Department of Medicine (Biomedical Genetics), Boston University, Boston, MA, USA
| | - Xulong Wang
- Neurogenetics and Integrated Genomics, Andover Innovative Medicines (AiM) Institute, Eisai Inc, Andover, MA, USA
| | - Toru Maruyama
- Department of Life Science & Medical Bioscience, Waseda University, Tokyo, Japan; Computational Bio-Big Data Open Innovation Lab, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Yiyi Ma
- Department of Medicine (Biomedical Genetics), Boston University, Boston, MA, USA
| | - Xiaoling Zhang
- Department of Medicine (Biomedical Genetics), Boston University, Boston, MA, USA
| | - Jesse Mez
- Department of Neurology, Boston University, Boston, MA, USA
| | - Richard Sherva
- Department of Medicine (Biomedical Genetics), Boston University, Boston, MA, USA
| | - Haruko Takeyama
- Department of Life Science & Medical Bioscience, Waseda University, Tokyo, Japan; Computational Bio-Big Data Open Innovation Lab, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan; Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan
| | | | - Lindsay A Farrer
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA; Department of Medicine (Biomedical Genetics), Boston University, Boston, MA, USA; Department of Neurology, Boston University, Boston, MA, USA; Department of Biostatistics, Boston University, Boston, MA, USA; Department of Ophthalmology, Boston University, Boston, MA, USA; Department of Epidemiology, Boston University, Boston, MA, USA
| | - Gyungah R Jun
- Department of Medicine (Biomedical Genetics), Boston University, Boston, MA, USA; Neurogenetics and Integrated Genomics, Andover Innovative Medicines (AiM) Institute, Eisai Inc, Andover, MA, USA.
| |
Collapse
|
40
|
Lancour D, Naj A, Mayeux R, Haines JL, Pericak-Vance MA, Schellenberg GD, Crovella M, Farrer LA, Kasif S. One for all and all for One: Improving replication of genetic studies through network diffusion. PLoS Genet 2018; 14:e1007306. [PMID: 29684019 PMCID: PMC5933817 DOI: 10.1371/journal.pgen.1007306] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 05/03/2018] [Accepted: 03/11/2018] [Indexed: 12/31/2022] Open
Abstract
Improving accuracy in genetic studies would greatly accelerate understanding the genetic basis of complex diseases. One approach to achieve such an improvement for risk variants identified by the genome wide association study (GWAS) approach is to incorporate previously known biology when screening variants across the genome. We developed a simple approach for improving the prioritization of candidate disease genes that incorporates a network diffusion of scores from known disease genes using a protein network and a novel integration with GWAS risk scores, and tested this approach on a large Alzheimer disease (AD) GWAS dataset. Using a statistical bootstrap approach, we cross-validated the method and for the first time showed that a network approach improves the expected replication rates in GWAS studies. Several novel AD genes were predicted including CR2, SHARPIN, and PTPN2. Our re-prioritized results are enriched for established known AD-associated biological pathways including inflammation, immune response, and metabolism, whereas standard non-prioritized results were not. Our findings support a strategy of considering network information when investigating genetic risk factors. Integrating multiple types of -omics data is a rapidly growing research area due in part to the increasing amount of diverse and publicly accessible data. In this study, we demonstrated that integration of genetic association and protein interaction data using a network diffusion approach measurably improves reproducibility of top candidate genes. Application of this approach to Alzheimer disease (AD) using a large dataset assembled by the Alzheimer’s Disease Genetics Consortium identified several novel candidate AD genes that are supported by pre-existing knowledge of AD pathobiology. Our findings support a strategy of considering network information when investigating genetic risk factors. Finally, we developed a transparent and easy-to-use R package that can facilitate the extension of our methodology to other phenotypes for which genetic data are available.
Collapse
Affiliation(s)
- Daniel Lancour
- Bioinformatics Graduate Program, Boston University, Boston, Massachusetts, United States of America
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Adam Naj
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Richard Mayeux
- Department of Neurology and Sergievsky Center, Columbia University, New York, New York, United States of America
| | - Jonathan L. Haines
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Margaret A. Pericak-Vance
- Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Gerard D. Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mark Crovella
- Bioinformatics Graduate Program, Boston University, Boston, Massachusetts, United States of America
- Department of Computer Science, Boston University, Boston, Massachusetts, United States of America
| | - Lindsay A. Farrer
- Bioinformatics Graduate Program, Boston University, Boston, Massachusetts, United States of America
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| | - Simon Kasif
- Bioinformatics Graduate Program, Boston University, Boston, Massachusetts, United States of America
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
41
|
Abstract
Alzheimer's disease (AD), the main form of dementia in the elderly, is the most common progressive neurodegenerative disease characterized by rapidly progressive cognitive dysfunction and behavior impairment. AD exhibits a considerable heritability and great advances have been made in approaches to searching the genetic etiology of AD. In AD genetic studies, methods have developed from classic linkage-based and candidate-gene-based association studies to genome-wide association studies (GWAS) and next generation sequencing (NGS). The identification of new susceptibility genes has provided deeper insights to understand the mechanisms underlying AD. In addition to searching novel genes associated with AD in large samples, the NGS technologies can also be used to shed light on the 'black matter' discovery even in smaller samples. The shift in AD genetics between traditional studies and individual sequencing will allow biomaterials of each patient as the central unit of genetic studies. This review will cover genetic findings in AD and consequences of AD genetic findings. Firstly, we will discuss the discovery of mutations in APP, PSEN1, PSEN2, APOE, and ADAM10. Then we will summarize and evaluate the information obtained from GWAS of AD. Finally, we will outline the efforts to identify rare variants associated with AD using NGS.
Collapse
|
42
|
Verheijen J, Sleegers K. Understanding Alzheimer Disease at the Interface between Genetics and Transcriptomics. Trends Genet 2018; 34:434-447. [PMID: 29573818 DOI: 10.1016/j.tig.2018.02.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 12/21/2022]
Abstract
Over 25 genes are known to affect the risk of developing Alzheimer disease (AD), the most common neurodegenerative dementia. However, mechanistic insights and improved disease management remains limited, due to difficulties in determining the functional consequences of genetic associations. Transcriptomics is increasingly being used to corroborate or enhance interpretation of genetic discoveries. These approaches, which include second and third generation sequencing, single-cell sequencing, and bioinformatics, reveal allele-specific events connecting AD risk genes to expression profiles, and provide converging evidence of pathophysiological pathways underlying AD. Simultaneously, they highlight brain region- and cell-type-specific expression patterns, and alternative splicing events that affect the straightforward relation between a genetic variant and AD, re-emphasizing the need for an integrated approach of genetics and transcriptomics in understanding AD.
Collapse
Affiliation(s)
- Jan Verheijen
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, B-2610, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, B-2610, Belgium
| | - Kristel Sleegers
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, B-2610, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, B-2610, Belgium.
| |
Collapse
|
43
|
Ikezu T, Chen C, DeLeo AM, Zeldich E, Fallin MD, Kanaan NM, Lunetta KL, Abraham CR, Logue MW, Farrer LA. Tau Phosphorylation is Impacted by Rare AKAP9 Mutations Associated with Alzheimer Disease in African Americans. J Neuroimmune Pharmacol 2018. [PMID: 29516269 PMCID: PMC5928172 DOI: 10.1007/s11481-018-9781-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We studied the effect of two rare mutations (rs144662445 and rs149979685) in the A-kinase anchoring protein 9 (AKAP9) gene, previously associated with Alzheimer disease (AD) in African Americans (AA), on post-translational modifications of AD-related pathogenic molecules, amyloid precursor protein (APP) and microtubule-associated protein Tau using lymphoblastoid cell lines (LCLs) from 11 AA subjects with at least one AKAP9 mutation and 17 AA subjects lacking these mutations. LCLs were transduced by viral vectors expressing causative AD mutations in APP or human full-length wild type Tau. Cell lysates were analyzed for total APP, Aβ40, and total and T181 phospho-Tau (pTau). AKAP9 mutations had no effect on Aβ40/APP, but significantly increased pTau/Tau ratio in LCLs treated with phosphodiesterase-4 inhibitor rolipram, which activates protein kinase A. Proteomic analysis of Tau interactome revealed enrichment of RNA binding proteins and decrease of proteasomal molecules in rolipram-treated cells with AKAP9 mutations. This study shows the impact of rare functional AKAP9 mutations on Tau, a central mechanism of AD pathogenesis, in LCLs derived from AD and control subjects.
Collapse
Affiliation(s)
- Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Cidi Chen
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Annina M DeLeo
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ella Zeldich
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - M Daniele Fallin
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Carmela R Abraham
- Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA.,Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Mark W Logue
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, E200, 72 East Concord St., Boston, MA, 02118, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA.,The National Center for PTSD, Behavioral Science Division, VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Lindsay A Farrer
- Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA. .,Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA. .,Department of Medicine (Biomedical Genetics), Boston University School of Medicine, E200, 72 East Concord St., Boston, MA, 02118, USA. .,Department of Ophthalmology, Boston University School of Medicine, Boston, MA, 02118, USA. .,Department of Epidemiology, Boston University School of Public Health, Boston, MA, 02118, USA.
| |
Collapse
|
44
|
Sims R, van der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N, Jakobsdottir J, Kunkle BW, Boland A, Raybould R, Bis JC, Martin ER, Grenier-Boley B, Heilmann-Heimbach S, Chouraki V, Kuzma AB, Sleegers K, Vronskaya M, Ruiz A, Graham RR, Olaso R, Hoffmann P, Grove ML, Vardarajan BN, Hiltunen M, Nöthen MM, White CC, Hamilton-Nelson KL, Epelbaum J, Maier W, Choi SH, Beecham GW, Dulary C, Herms S, Smith AV, Funk CC, Derbois C, Forstner AJ, Ahmad S, Li H, Bacq D, Harold D, Satizabal CL, Valladares O, Squassina A, Thomas R, Brody JA, Qu L, Sánchez-Juan P, Morgan T, Wolters FJ, Zhao Y, Garcia FS, Denning N, Fornage M, Malamon J, Naranjo MCD, Majounie E, Mosley TH, Dombroski B, Wallon D, Lupton MK, Dupuis J, Whitehead P, Fratiglioni L, Medway C, Jian X, Mukherjee S, Keller L, Brown K, Lin H, Cantwell LB, Panza F, McGuinness B, Moreno-Grau S, Burgess JD, Solfrizzi V, Proitsi P, Adams HH, Allen M, Seripa D, Pastor P, Cupples LA, Price ND, Hannequin D, Frank-García A, Levy D, Chakrabarty P, Caffarra P, Giegling I, Beiser AS, Giedraitis V, Hampel H, Garcia ME, Wang X, Lannfelt L, Mecocci P, Eiriksdottir G, Crane PK, Pasquier F, Boccardi V, Henández I, Barber RC, Scherer M, Tarraga L, Adams PM, Leber M, Chen Y, Albert MS, Riedel-Heller S, Emilsson V, Beekly D, Braae A, Schmidt R, Blacker D, Masullo C, Schmidt H, Doody RS, Spalletta G, Longstreth WT, Fairchild TJ, Bossù P, Lopez OL, Frosch MP, Sacchinelli E, Ghetti B, Yang Q, Huebinger RM, Jessen F, Li S, Kamboh MI, Morris J, Sotolongo-Grau O, Katz MJ, Corcoran C, Dunstan M, Braddel A, Thomas C, Meggy A, Marshall R, Gerrish A, Chapman J, Aguilar M, Taylor S, Hill M, Fairén MD, Hodges A, Vellas B, Soininen H, Kloszewska I, Daniilidou M, Uphill J, Patel Y, Hughes JT, Lord J, Turton J, Hartmann AM, Cecchetti R, Fenoglio C, Serpente M, Arcaro M, Caltagirone C, Orfei MD, Ciaramella A, Pichler S, Mayhaus M, Gu W, Lleó A, Fortea J, Blesa R, Barber IS, Brookes K, Cupidi C, Maletta RG, Carrell D, Sorbi S, Moebus S, Urbano M, Pilotto A, Kornhuber J, Bosco P, Todd S, Craig D, Johnston J, Gill M, Lawlor B, Lynch A, Fox NC, Hardy J, Albin RL, Apostolova LG, Arnold SE, Asthana S, Atwood CS, Baldwin CT, Barnes LL, Barral S, Beach TG, Becker JT, Bigio EH, Bird TD, Boeve BF, Bowen JD, Boxer A, Burke JR, Burns JM, Buxbaum JD, Cairns NJ, Cao C, Carlson CS, Carlsson CM, Carney RM, Carrasquillo MM, Carroll SL, Diaz CC, Chui HC, Clark DG, Cribbs DH, Crocco EA, DeCarli C, Dick M, Duara R, Evans DA, Faber KM, Fallon KB, Fardo DW, Farlow MR, Ferris S, Foroud TM, Galasko DR, Gearing M, Geschwind DH, Gilbert JR, Graff-Radford NR, Green RC, Growdon JH, Hamilton RL, Harrell LE, Honig LS, Huentelman MJ, Hulette CM, Hyman BT, Jarvik GP, Abner E, Jin LW, Jun G, Karydas A, Kaye JA, Kim R, Kowall NW, Kramer JH, LaFerla FM, Lah JJ, Leverenz JB, Levey AI, Li G, Lieberman AP, Lunetta KL, Lyketsos CG, Marson DC, Martiniuk F, Mash DC, Masliah E, McCormick WC, McCurry SM, McDavid AN, McKee AC, Mesulam M, Miller BL, Miller CA, Miller JW, Morris JC, Murrell JR, Myers AJ, O'Bryant S, Olichney JM, Pankratz VS, Parisi JE, Paulson HL, Perry W, Peskind E, Pierce A, Poon WW, Potter H, Quinn JF, Raj A, Raskind M, Reisberg B, Reitz C, Ringman JM, Roberson ED, Rogaeva E, Rosen HJ, Rosenberg RN, Sager MA, Saykin AJ, Schneider JA, Schneider LS, Seeley WW, Smith AG, Sonnen JA, Spina S, Stern RA, Swerdlow RH, Tanzi RE, Thornton-Wells TA, Trojanowski JQ, Troncoso JC, Van Deerlin VM, Van Eldik LJ, Vinters HV, Vonsattel JP, Weintraub S, Welsh-Bohmer KA, Wilhelmsen KC, Williamson J, Wingo TS, Woltjer RL, Wright CB, Yu CE, Yu L, Garzia F, Golamaully F, Septier G, Engelborghs S, Vandenberghe R, De Deyn PP, Fernadez CM, Benito YA, Thonberg H, Forsell C, Lilius L, Kinhult-Stählbom A, Kilander L, Brundin R, Concari L, Helisalmi S, Koivisto AM, Haapasalo A, Dermecourt V, Fievet N, Hanon O, Dufouil C, Brice A, Ritchie K, Dubois B, Himali JJ, Keene CD, Tschanz J, Fitzpatrick AL, Kukull WA, Norton M, Aspelund T, Larson EB, Munger R, Rotter JI, Lipton RB, Bullido MJ, Hofman A, Montine TJ, Coto E, Boerwinkle E, Petersen RC, Alvarez V, Rivadeneira F, Reiman EM, Gallo M, O'Donnell CJ, Reisch JS, Bruni AC, Royall DR, Dichgans M, Sano M, Galimberti D, St George-Hyslop P, Scarpini E, Tsuang DW, Mancuso M, Bonuccelli U, Winslow AR, Daniele A, Wu CK, Peters O, Nacmias B, Riemenschneider M, Heun R, Brayne C, Rubinsztein DC, Bras J, Guerreiro R, Al-Chalabi A, Shaw CE, Collinge J, Mann D, Tsolaki M, Clarimón J, Sussams R, Lovestone S, O'Donovan MC, Owen MJ, Behrens TW, Mead S, Goate AM, Uitterlinden AG, Holmes C, Cruchaga C, Ingelsson M, Bennett DA, Powell J, Golde TE, Graff C, De Jager PL, Morgan K, Ertekin-Taner N, Combarros O, Psaty BM, Passmore P, Younkin SG, Berr C, Gudnason V, Rujescu D, Dickson DW, Dartigues JF, DeStefano AL, Ortega-Cubero S, Hakonarson H, Campion D, Boada M, Kauwe JK, Farrer LA, Van Broeckhoven C, Ikram MA, Jones L, Haines JL, Tzourio C, Launer LJ, Escott-Price V, Mayeux R, Deleuze JF, Amin N, Holmans PA, Pericak-Vance MA, Amouyel P, van Duijn CM, Ramirez A, Wang LS, Lambert JC, Seshadri S, Williams J, Schellenberg GD. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nat Genet 2017; 49:1373-1384. [PMID: 28714976 PMCID: PMC5669039 DOI: 10.1038/ng.3916] [Citation(s) in RCA: 658] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 06/16/2017] [Indexed: 02/02/2023]
Abstract
We identified rare coding variants associated with Alzheimer's disease in a three-stage case-control study of 85,133 subjects. In stage 1, we genotyped 34,174 samples using a whole-exome microarray. In stage 2, we tested associated variants (P < 1 × 10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, we used an additional 14,997 samples to test the most significant stage 2 associations (P < 5 × 10-8) using imputed genotypes. We observed three new genome-wide significant nonsynonymous variants associated with Alzheimer's disease: a protective variant in PLCG2 (rs72824905: p.Pro522Arg, P = 5.38 × 10-10, odds ratio (OR) = 0.68, minor allele frequency (MAF)cases = 0.0059, MAFcontrols = 0.0093), a risk variant in ABI3 (rs616338: p.Ser209Phe, P = 4.56 × 10-10, OR = 1.43, MAFcases = 0.011, MAFcontrols = 0.008), and a new genome-wide significant variant in TREM2 (rs143332484: p.Arg62His, P = 1.55 × 10-14, OR = 1.67, MAFcases = 0.0143, MAFcontrols = 0.0089), a known susceptibility gene for Alzheimer's disease. These protein-altering changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified risk genes in Alzheimer's disease. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Rebecca Sims
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Sven J van der Lee
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Adam C Naj
- Department of Biostatistics and Epidemiology/Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Céline Bellenguez
- INSERM, U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Lille, U1167-Excellence Laboratory LabEx DISTALZ, Lille, France
| | - Nandini Badarinarayan
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | | | - Brian W Kunkle
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, USA
| | - Anne Boland
- CEA/Institut de Génomique, Centre National de Génotypage, Evry, France
| | - Rachel Raybould
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Eden R Martin
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, USA
- Dr. John T. Macdonald Foundation, Department of Human Genetics, University of Miami, Miami, Florida, USA
| | - Benjamin Grenier-Boley
- INSERM, U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Lille, U1167-Excellence Laboratory LabEx DISTALZ, Lille, France
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life &Brain Center, University of Bonn, Bonn, Germany
| | - Vincent Chouraki
- Boston University School of Medicine, Boston, Massachusetts, USA
- Framingham Heart Study, Framingham, Massachusetts, USA
| | - Amanda B Kuzma
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kristel Sleegers
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium
- Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Maria Vronskaya
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Agustin Ruiz
- Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Robert R Graham
- Immunology Biomarkers Group, Genentech, South San Francisco, California, USA
| | - Robert Olaso
- CEA/Institut de Génomique, Centre National de Génotypage, Evry, France
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life &Brain Center, University of Bonn, Bonn, Germany
- Division of Medical Genetics, University Hospital and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Megan L Grove
- School of Public Health, Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Badri N Vardarajan
- Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, New York, USA
- Gertrude H. Sergievsky Center, Columbia University, New York, New York, USA
- Department of Neurology, Columbia University, New York, New York, USA
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life &Brain Center, University of Bonn, Bonn, Germany
| | - Charles C White
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - Jacques Epelbaum
- UMR 894, Center for Psychiatry and Neuroscience, INSERM, Université Paris Descartes, Paris, France
| | - Wolfgang Maier
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Seung-Hoan Choi
- Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Gary W Beecham
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, USA
- Dr. John T. Macdonald Foundation, Department of Human Genetics, University of Miami, Miami, Florida, USA
| | - Cécile Dulary
- CEA/Institut de Génomique, Centre National de Génotypage, Evry, France
| | - Stefan Herms
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life &Brain Center, University of Bonn, Bonn, Germany
- Division of Medical Genetics, University Hospital and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Cory C Funk
- Institute for Systems Biology, Seattle, Washington, USA
| | - Céline Derbois
- CEA/Institut de Génomique, Centre National de Génotypage, Evry, France
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life &Brain Center, University of Bonn, Bonn, Germany
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Hongdong Li
- Institute for Systems Biology, Seattle, Washington, USA
| | - Delphine Bacq
- CEA/Institut de Génomique, Centre National de Génotypage, Evry, France
| | - Denise Harold
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Claudia L Satizabal
- Boston University School of Medicine, Boston, Massachusetts, USA
- Framingham Heart Study, Framingham, Massachusetts, USA
| | - Otto Valladares
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alessio Squassina
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Rhodri Thomas
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Liming Qu
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Pascual Sánchez-Juan
- Neurology Service and CIBERNED, 'Marqués de Valdecilla' University Hospital (University of Cantabria and IFIMAV), Santander, Spain
| | - Taniesha Morgan
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Frank J Wolters
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Yi Zhao
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Nicola Denning
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - John Malamon
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Elisa Majounie
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Thomas H Mosley
- Departments of Medicine, Geriatrics, Gerontology and Neurology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Beth Dombroski
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - David Wallon
- Centre Hospitalier du Rouvray, Sotteville les Rouen, France
- INSERM U1079, Rouen University, IRIB, Normandy University, Rouen, France
| | - Michelle K Lupton
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Patrice Whitehead
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, USA
| | - Laura Fratiglioni
- Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Christopher Medway
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Xueqiu Jian
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | | | - Lina Keller
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Kristelle Brown
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Honghuang Lin
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Laura B Cantwell
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Francesco Panza
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Bernadette McGuinness
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK
| | - Sonia Moreno-Grau
- Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Jeremy D Burgess
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Vincenzo Solfrizzi
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari Aldo Moro, Bari, Italy
| | - Petra Proitsi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Hieab H Adams
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Davide Seripa
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Pau Pastor
- Section of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - L Adrienne Cupples
- Framingham Heart Study, Framingham, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | | | - Didier Hannequin
- INSERM U1079, Rouen University, IRIB, Normandy University, Rouen, France
- Department of Neurology, Rouen University Hospital, Rouen, France
| | - Ana Frank-García
- Department of Neurology, University Hospital La Paz, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital la Paz (IdiPAZ), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Levy
- Boston University School of Medicine, Boston, Massachusetts, USA
- Framingham Heart Study, Framingham, Massachusetts, USA
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Paramita Chakrabarty
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, Florida, USA
| | - Paolo Caffarra
- Department of Neuroscience, University of Parma, Parma, Italy
- Center for Cognitive Disorders AUSL, Parma, Italy
| | - Ina Giegling
- Department of Psychiatry, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Alexa S Beiser
- Framingham Heart Study, Framingham, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | | | - Harald Hampel
- AXA Research Fund and UPMC Chair, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A) and Institut du Cerveau et de la Moelle Épinière (ICM), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Melissa E Garcia
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, Maryland, USA
| | - Xue Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Lars Lannfelt
- Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Patrizia Mecocci
- Section of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | | | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Florence Pasquier
- Centre Hospitalier Universitaire de Lille, Epidemiology and Public Health Department, Lille, France
- INSERM UMRS 1171, CNR-Maj, Lille, France
| | - Virginia Boccardi
- Section of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Isabel Henández
- Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Robert C Barber
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Martin Scherer
- Department of Primary Medical Care, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Lluis Tarraga
- Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Perrie M Adams
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Markus Leber
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Yuning Chen
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Marilyn S Albert
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Steffi Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Leipzig, Germany
| | - Valur Emilsson
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| | - Duane Beekly
- National Alzheimer's Coordinating Center, University of Washington, Seattle, Washington, USA
| | - Anne Braae
- Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, UK
| | - Reinhold Schmidt
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University Graz, Graz, Austria
| | - Deborah Blacker
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Carlo Masullo
- Department of Neurology, Catholic University of Rome, Rome, Italy
| | - Helena Schmidt
- Institute of Molecular Biology and Biochemistry, Medical University Graz, Graz, Austria
| | - Rachelle S Doody
- Alzheimer's Disease and Memory Disorders Center, Baylor College of Medicine, Houston, Texas, USA
| | - Gianfranco Spalletta
- Experimental Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Department of Clinical and Behavioural Neurology, Rome, Italy
| | - W T Longstreth
- Department of Neurology, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Thomas J Fairchild
- Office of Strategy and Measurement, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Paola Bossù
- Experimental Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Department of Clinical and Behavioural Neurology, Rome, Italy
| | - Oscar L Lopez
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew P Frosch
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Eleonora Sacchinelli
- Experimental Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Department of Clinical and Behavioural Neurology, Rome, Italy
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Ryan M Huebinger
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Shuo Li
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - M Ilyas Kamboh
- Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John Morris
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
- Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Oscar Sotolongo-Grau
- Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - Mindy J Katz
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Chris Corcoran
- Department of Mathematics and Statistics, Utah State University, Logan, Utah, USA
| | - Melanie Dunstan
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Amy Braddel
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Charlene Thomas
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Alun Meggy
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Rachel Marshall
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Amy Gerrish
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Jade Chapman
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Miquel Aguilar
- Fundació per la Recerca Biomèdica i Social Mútua Terrassa, Terrassa, Barcelona, Spain
- Memory Unit, Department of Neurology, Hospital Universitario Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Sarah Taylor
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Matt Hill
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Mònica Díez Fairén
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Fundació per la Recerca Biomèdica i Social Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Angela Hodges
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Bruno Vellas
- INSERM U558, University of Toulouse, Toulouse, France
| | - Hilkka Soininen
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Iwona Kloszewska
- Elderly and Psychiatric Disorders Department, Medical University of Lodz, Lodz, Poland
| | - Makrina Daniilidou
- Department of Health Sciences, Psychiatry for the Elderly, University of Leicester, Leicester, UK
| | - James Uphill
- Department of Neurodegenerative Disease, MRC Prion Unit, UCL Institute of Neurology, London, UK
| | - Yogen Patel
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joseph T Hughes
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jenny Lord
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - James Turton
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Annette M Hartmann
- Department of Psychiatry, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Roberta Cecchetti
- Section of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Chiara Fenoglio
- Department of Pathophysiology and Transplantation, University of Milan, Fondazione Ca' Granda, IRCCS Ospedale Policlinico, Milan, Italy
| | - Maria Serpente
- Department of Pathophysiology and Transplantation, University of Milan, Fondazione Ca' Granda, IRCCS Ospedale Policlinico, Milan, Italy
| | - Marina Arcaro
- Department of Pathophysiology and Transplantation, University of Milan, Fondazione Ca' Granda, IRCCS Ospedale Policlinico, Milan, Italy
| | - Carlo Caltagirone
- Experimental Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Department of Clinical and Behavioural Neurology, Rome, Italy
| | - Maria Donata Orfei
- Experimental Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Department of Clinical and Behavioural Neurology, Rome, Italy
| | - Antonio Ciaramella
- Experimental Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Department of Clinical and Behavioural Neurology, Rome, Italy
| | - Sabrina Pichler
- Department of Psychiatry and Psychotherapy, University Hospital, Saarland, Germany
| | - Manuel Mayhaus
- Department of Psychiatry and Psychotherapy, University Hospital, Saarland, Germany
| | - Wei Gu
- Department of Psychiatry and Psychotherapy, University Hospital, Saarland, Germany
| | - Alberto Lleó
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Juan Fortea
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Rafael Blesa
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Imelda S Barber
- Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, UK
| | - Keeley Brookes
- Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, UK
| | - Chiara Cupidi
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | | | - David Carrell
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Sandro Sorbi
- NEUROFARBA (Department of Neuroscience, Psychology, Drug Research and Child Health), University of Florence, Florence, Italy
- IRCCS 'Don Carlo Gnocchi', Florence, Italy
| | - Susanne Moebus
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Maria Urbano
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Alberto Pilotto
- Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Paolo Bosco
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Associazione Oasi Maria Santissima Srl, Troina, Italy
| | - Stephen Todd
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK
| | - David Craig
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK
| | - Janet Johnston
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK
| | - Michael Gill
- Mercers Institute for Research on Aging, St. James Hospital and Trinity College, Dublin, Ireland
| | - Brian Lawlor
- Mercers Institute for Research on Aging, St. James Hospital and Trinity College, Dublin, Ireland
| | - Aoibhinn Lynch
- Mercers Institute for Research on Aging, St. James Hospital and Trinity College, Dublin, Ireland
| | - Nick C Fox
- Department of Molecular Neuroscience, UCL, Institute of Neurology, London, UK
| | - John Hardy
- Department of Molecular Neuroscience, UCL, Institute of Neurology, London, UK
| | - Roger L Albin
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- Geriatric Research, Education and Clinical Center (GRECC), VA Ann Arbor Healthcare System (VAAAHS), Ann Arbor, Michigan, USA
- Michigan Alzheimer Disease Center, Ann Arbor, Michigan, USA
| | - Liana G Apostolova
- Indiana Alzheimer's Disease Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana, USA
- Department of Neurology, Indiana University, Indianapolis, Indiana, USA
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, USA
| | - Steven E Arnold
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sanjay Asthana
- Geriatric Research, Education and Clinical Center (GRECC), University of Wisconsin, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin Alzheimer's Disease Research Center, Madison, Wisconsin, USA
| | - Craig S Atwood
- Geriatric Research, Education and Clinical Center (GRECC), University of Wisconsin, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin Alzheimer's Disease Research Center, Madison, Wisconsin, USA
| | - Clinton T Baldwin
- Department of Medicine (Genetics Program), Boston University, Boston, Massachusetts, USA
| | - Lisa L Barnes
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, Illinois, USA
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Sandra Barral
- Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, New York, USA
- Gertrude H. Sergievsky Center, Columbia University, New York, New York, USA
- Department of Neurology, Columbia University, New York, New York, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Phoenix, Arizona, USA
| | - James T Becker
- Departments of Psychiatry, Neurology, and Psychology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Eileen H Bigio
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Thomas D Bird
- Department of Neurology, University of Washington, Seattle, Washington, USA
- VA Puget Sound Health Care System/GRECC, Seattle, Washington, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Adam Boxer
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - James R Burke
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Jeffrey M Burns
- University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Joseph D Buxbaum
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, USA
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, USA
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA
| | - Nigel J Cairns
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri, USA
| | - Chuanhai Cao
- USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, Florida, USA
| | - Chris S Carlson
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Cynthia M Carlsson
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin Alzheimer's Disease Research Center, Madison, Wisconsin, USA
| | - Regina M Carney
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | | | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Carolina Ceballos Diaz
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, Florida, USA
| | - Helena C Chui
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - David G Clark
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Neurology, Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | - David H Cribbs
- Department of Neurology, University of California, Irvine, Irvine, California, USA
| | - Elizabeth A Crocco
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Charles DeCarli
- Department of Neurology, University of California, Davis, Sacramento, California, USA
| | - Malcolm Dick
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, California, USA
| | - Ranjan Duara
- Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, Florida, USA
| | - Denis A Evans
- Rush Institute for Healthy Aging, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Kelley M Faber
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana, USA
| | - Kenneth B Fallon
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David W Fardo
- Sanders-Brown Center on Aging, Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Martin R Farlow
- Department of Neurology, Indiana University, Indianapolis, Indiana, USA
| | - Steven Ferris
- Department of Psychiatry, New York University, New York, New York, USA
| | - Tatiana M Foroud
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana, USA
| | - Douglas R Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
- Emory Alzheimer's Disease Center, Emory University, Atlanta, Georgia, USA
| | - Daniel H Geschwind
- Neurogenetics Program, University of California, Los Angeles, Los Angeles, California, USA
| | - John R Gilbert
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, USA
- Dr. John T. Macdonald Foundation, Department of Human Genetics, University of Miami, Miami, Florida, USA
| | - Neill R Graff-Radford
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Robert C Green
- Division of Genetics, Department of Medicine and Partners Center for Personalized Genetic Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - John H Growdon
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Ronald L Hamilton
- Department of Pathology (Neuropathology), University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lindy E Harrell
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lawrence S Honig
- Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, New York, USA
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | | | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Gail P Jarvik
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Department of Medicine (Medical Genetics), University of Washington, Seattle, Washington, USA
| | - Erin Abner
- Sanders-Brown Center on Aging, College of Public Health, Department of Epidemiology, University of Kentucky, Lexington, Kentucky, USA
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| | - Gyungah Jun
- Department of Medicine (Genetics Program), Boston University, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University, Boston, Massachusetts, USA
- Department of Ophthalmology, Boston University, Boston, Massachusetts, USA
| | - Anna Karydas
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Jeffrey A Kaye
- Department of Neurology, Oregon Health &Science University, Portland, Oregon, USA
- Department of Neurology, Portland Veterans Affairs Medical Center, Portland, Oregon, USA
| | - Ronald Kim
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, California, USA
| | - Neil W Kowall
- Department of Neurology, Boston University, Boston, Massachusetts, USA
- Department of Pathology, Boston University, Boston, Massachusetts, USA
| | - Joel H Kramer
- Department of Neuropsychology, University of California, San Francisco, San Francisco, California, USA
| | - Frank M LaFerla
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California, USA
| | - James J Lah
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - James B Leverenz
- Cleveland Clinic Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, Ohio, USA
| | - Allan I Levey
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - Ge Li
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
- VA Puget Sound Health Care System/GRECC, Seattle, Washington, USA
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University, Boston, Massachusetts, USA
| | | | - Daniel C Marson
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Frank Martiniuk
- Department of Medicine-Pulmonary, New York University, New York, New York, USA
| | - Deborah C Mash
- Department of Neurology, University of Miami, Miami, Florida, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
- Department of Pathology, University of California, San Diego, La Jolla, California, USA
| | - Wayne C McCormick
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Susan M McCurry
- School of Nursing Northwest Research Group on Aging, University of Washington, Seattle, Washington, USA
| | - Andrew N McDavid
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ann C McKee
- Department of Neurology, Boston University, Boston, Massachusetts, USA
- Department of Pathology, Boston University, Boston, Massachusetts, USA
| | - Marsel Mesulam
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bruce L Miller
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Carol A Miller
- Department of Pathology, University of Southern California, Los Angeles, California, USA
| | - Joshua W Miller
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| | - John C Morris
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri, USA
- Department of Neurology, Washington University, St. Louis, Missouri, USA
| | - Jill R Murrell
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana, USA
| | - Amanda J Myers
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Sid O'Bryant
- Internal Medicine, Division of Geriatrics, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - John M Olichney
- Department of Neurology, University of California, Davis, Sacramento, California, USA
| | - Vernon S Pankratz
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Joseph E Parisi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Alzheimer Disease Center, Ann Arbor, Michigan, USA
| | - William Perry
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, USA
| | - Elaine Peskind
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Aimee Pierce
- Department of Neurology, University of California, Irvine, Irvine, California, USA
| | - Wayne W Poon
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, California, USA
| | - Huntington Potter
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Joseph F Quinn
- Department of Neurology, Oregon Health &Science University, Portland, Oregon, USA
- Department of Neurology, Portland Veterans Affairs Medical Center, Portland, Oregon, USA
| | - Ashok Raj
- USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, Florida, USA
| | - Murray Raskind
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Barry Reisberg
- Department of Psychiatry, New York University, New York, New York, USA
- Alzheimer's Disease Center, New York University, New York, New York, USA
| | - Christiane Reitz
- Gertrude H. Sergievsky Center, Columbia University, New York, New York, USA
- Department of Neurology, Columbia University, New York, New York, USA
- Department of Epidemiology, Columbia University, New York, New York, USA
| | - John M Ringman
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| | - Erik D Roberson
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
| | - Howard J Rosen
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Roger N Rosenberg
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mark A Sager
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Andrew J Saykin
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana, USA
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, USA
| | - Julie A Schneider
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, Illinois, USA
| | - Lon S Schneider
- Department of Neurology, University of Southern California, Los Angeles, California, USA
- Department of Psychiatry, University of Southern California, Los Angeles, California, USA
| | - William W Seeley
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Amanda G Smith
- USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, Florida, USA
| | - Joshua A Sonnen
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Salvatore Spina
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Robert A Stern
- Department of Neurology, Boston University, Boston, Massachusetts, USA
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Rudolph E Tanzi
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Tricia A Thornton-Wells
- Translational Medicine, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Vivianna M Van Deerlin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky, USA
| | - Harry V Vinters
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Jean Paul Vonsattel
- Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Pathology, Columbia University, New York, New York, USA
| | - Sandra Weintraub
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kathleen A Welsh-Bohmer
- Department of Medicine, Duke University, Durham, North Carolina, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA
| | - Kirk C Wilhelmsen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer Williamson
- Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, New York, USA
| | - Thomas S Wingo
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - Randall L Woltjer
- Department of Pathology, Oregon Health &Science University, Portland, Oregon, USA
| | - Clinton B Wright
- Evelyn F. McKnight Brain Institute, Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Chang-En Yu
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Lei Yu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Fabienne Garzia
- CEA/Institut de Génomique, Centre National de Génotypage, Evry, France
| | - Feroze Golamaully
- CEA/Institut de Génomique, Centre National de Génotypage, Evry, France
| | - Gislain Septier
- CEA/Institut de Génomique, Centre National de Génotypage, Evry, France
| | - Sebastien Engelborghs
- Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp, Antwerp, Belgium
| | - Rik Vandenberghe
- Department of Neurology and Memory Clinic, Hospital Network Antwerp, Antwerp, Belgium
- Laboratory for Cognitive Neurology, Department of Neurology, University of Leuven, Leuven, Belgium
| | - Peter P De Deyn
- Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp, Antwerp, Belgium
| | - Carmen Muñoz Fernadez
- Department of Immunology, Hospital Universitario Doctor Negrín, Las Palmas de Gran Canaria, Spain
| | - Yoland Aladro Benito
- Department of Immunology, Hospital Universitario Doctor Negrín, Las Palmas de Gran Canaria, Spain
| | - Hakan Thonberg
- Department of Geriatric Medicine, Genetics Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, KIADRC, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte Forsell
- Department of Geriatric Medicine, Genetics Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, KIADRC, Karolinska Institutet, Stockholm, Sweden
| | - Lena Lilius
- Department of Geriatric Medicine, Genetics Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, KIADRC, Karolinska Institutet, Stockholm, Sweden
| | - Anne Kinhult-Stählbom
- Department of Geriatric Medicine, Genetics Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, KIADRC, Karolinska Institutet, Stockholm, Sweden
| | - Lena Kilander
- Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | - RoseMarie Brundin
- Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Letizia Concari
- Department of Neuroscience, University of Parma, Parma, Italy
- Center for Cognitive Disorders AUSL, Parma, Italy
| | - Seppo Helisalmi
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, Kuopio, Finland
| | - Anne Maria Koivisto
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, Kuopio, Finland
| | - Annakaisa Haapasalo
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, Kuopio, Finland
| | - Vincent Dermecourt
- CHU Lille, Memory Center of Lille (Centre Mémoire de Ressources et de Recherche), Lille, France
| | - Nathalie Fievet
- INSERM, U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Lille, U1167-Excellence Laboratory LabEx DISTALZ, Lille, France
- University Paris Descartes, EA 4468, AP-HP, Hôpital Broca, Geriatrics Department, Paris, France
| | - Olivier Hanon
- University Paris Descartes, EA 4468, AP-HP, Hôpital Broca, Geriatrics Department, Paris, France
| | - Carole Dufouil
- University of Bordeaux, Neuroepidemiology, Bordeaux, France
- INSERM, Neuroepidemiology, UMR 897, Bordeaux, France
| | - Alexis Brice
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMRS 1127, Institut du Cerveau et de la Moelle Épinière, Paris, France
- AP-HP, Department of Genetics, Pitié-Salpêtrière Hospital, Paris, France
| | - Karen Ritchie
- INSERM U1061, La Colombière Hospital, Montpellier, France
| | - Bruno Dubois
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France
- Institut des Neurosciences Translationnelles de Paris (IHU-A-ICM), Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France
- INSERM, CNRS, UMRS 975, Institut du Cerveau et de la Moelle Épinière (ICM), Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France
| | | | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - JoAnn Tschanz
- Department of Mathematics and Statistics, Utah State University, Logan, Utah, USA
| | - Annette L Fitzpatrick
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Family Medicine, University of Washington, Seattle, Washington, USA
| | - Walter A Kukull
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Maria Norton
- Department of Mathematics and Statistics, Utah State University, Logan, Utah, USA
| | - Thor Aspelund
- Icelandic Heart Association, Kopavogur, Iceland
- Centre for Public Health, University of Iceland, Reykjavik, Iceland
| | - Eric B Larson
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Group Health Research Institute, Group Health, Seattle, Washington, USA
| | - Ron Munger
- Department of Mathematics and Statistics, Utah State University, Logan, Utah, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Richard B Lipton
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - María J Bullido
- Instituto de Investigación Sanitaria Hospital la Paz (IdiPAZ), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Thomas J Montine
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Eliecer Coto
- Molecular Genetics Laboratory-Hospital, University of Central Asturias, Oviedo, Spain
| | - Eric Boerwinkle
- School of Public Health, Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | | | - Victoria Alvarez
- Molecular Genetics Laboratory-Hospital, University of Central Asturias, Oviedo, Spain
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
- Netherlands Consortium on Health Aging and National Genomics Initiative, Leiden, the Netherlands
| | - Eric M Reiman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
- Arizona Alzheimer's Consortium, Phoenix, Arizona, USA
- Banner Alzheimer's Institute, Phoenix, Arizona, USA
- Department of Psychiatry, University of Arizona, Phoenix, Arizona, USA
| | - Maura Gallo
- Regional Neurogenetic Centre (CRN), ASP Catanzaro, Lamezia Terme, Italy
| | | | - Joan S Reisch
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Donald R Royall
- Departments of Psychiatry, Medicine, and Family and Community Medicine and South Texas Veterans Health Administration Geriatric Research Education and Clinical Center (GRECC), University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Mary Sano
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA
| | - Daniela Galimberti
- Department of Pathophysiology and Transplantation, University of Milan, Fondazione Ca' Granda, IRCCS Ospedale Policlinico, Milan, Italy
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Elio Scarpini
- Department of Pathophysiology and Transplantation, University of Milan, Fondazione Ca' Granda, IRCCS Ospedale Policlinico, Milan, Italy
| | - Debby W Tsuang
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
- VA Puget Sound Health Care System/GRECC, Seattle, Washington, USA
| | - Michelangelo Mancuso
- Department of Experimental and Clinical Medicine, Neurological Institute, University of Pisa, Pisa, Italy
| | - Ubaldo Bonuccelli
- Department of Experimental and Clinical Medicine, Neurological Institute, University of Pisa, Pisa, Italy
| | - Ashley R Winslow
- PharmaTherapeutics Clinical Research, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, USA
| | - Antonio Daniele
- Institute of Neurology, Catholic University of Sacred Hearth, Rome, Italy
| | - Chuang-Kuo Wu
- Departments of Neurology, Pharmacology, and Neuroscience, Texas Tech University Health Science Center, Lubbock, Texas, USA
| | - Oliver Peters
- Department of Psychiatry, Charité University Medicine, Berlin, Germany
| | - Benedetta Nacmias
- NEUROFARBA (Department of Neuroscience, Psychology, Drug Research and Child Health), University of Florence, Florence, Italy
- IRCCS 'Don Carlo Gnocchi', Florence, Italy
| | | | - Reinhard Heun
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Carol Brayne
- Institute of Public Health, University of Cambridge, Cambridge, UK
| | - David C Rubinsztein
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Jose Bras
- Department of Molecular Neuroscience, UCL, Institute of Neurology, London, UK
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Rita Guerreiro
- Department of Molecular Neuroscience, UCL, Institute of Neurology, London, UK
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Ammar Al-Chalabi
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Christopher E Shaw
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - John Collinge
- Department of Neurodegenerative Disease, MRC Prion Unit, UCL Institute of Neurology, London, UK
| | - David Mann
- Institute of Brain, Behaviour and Mental Health, Clinical and Cognitive Neuroscience Research Group, University of Manchester, Manchester, UK
| | - Magda Tsolaki
- 3rd Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jordi Clarimón
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Rebecca Sussams
- Division of Clinical Neurosciences, School of Medicine, University of Southampton, Southampton, UK
| | | | - Michael C O'Donovan
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Timothy W Behrens
- Immunology Biomarkers Group, Genentech, South San Francisco, California, USA
| | - Simon Mead
- Department of Neurodegenerative Disease, MRC Prion Unit, UCL Institute of Neurology, London, UK
| | - Alison M Goate
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, USA
| | - Andre G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Neurodegenerative Disease, MRC Prion Unit, UCL Institute of Neurology, London, UK
- Department of Pathophysiology and Transplantation, University of Milan, Fondazione Ca' Granda, IRCCS Ospedale Policlinico, Milan, Italy
| | - Clive Holmes
- VA Puget Sound Health Care System/GRECC, Seattle, Washington, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
- Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Martin Ingelsson
- Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | - David A Bennett
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - John Powell
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Todd E Golde
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, University of Florida, Gainesville, Florida, USA
- Florida Alzheimer's Disease Research Center, Gainesville, Florida, USA
| | - Caroline Graff
- Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, KIADRC, Karolinska Institutet, Stockholm, Sweden
| | - Philip L De Jager
- Center for Translational and Systems Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - Kevin Morgan
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Nilufer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Onofre Combarros
- Neurology Service and CIBERNED, 'Marqués de Valdecilla' University Hospital (University of Cantabria and IFIMAV), Santander, Spain
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Health Services, University of Washington, Seattle, Washington, USA
| | - Peter Passmore
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK
| | - Steven G Younkin
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Claudine Berr
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France
- Memory Research and Resources Center, CMRR of Montpellier, Department of Neurology, Hospital Gui de Chauliac, Montpellier, France
- Department of Neurology, Montpellier University, Montpellier, France
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Dan Rujescu
- Department of Psychiatry, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Anita L DeStefano
- Framingham Heart Study, Framingham, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Sara Ortega-Cubero
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Neurogenetics Laboratory, Division of Neurosciences, Centre for Applied Medical Research, University of Navarra School of Medicine, Pamplona, Spain
- Department of Neurology, Complejo Asistencial Universitario de Palencia, Palencia, Spain
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Dominique Campion
- Centre Hospitalier du Rouvray, Sotteville les Rouen, France
- INSERM U1079, Rouen University, IRIB, Normandy University, Rouen, France
| | - Merce Boada
- Research Center and Memory Clinic of Fundació ACE, Institut Català de Neurociències Aplicades, Barcelona, Spain
| | - John Keoni Kauwe
- Departments of Biology and Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Lindsay A Farrer
- Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Medicine (Genetics Program), Boston University, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University, Boston, Massachusetts, USA
- Department of Ophthalmology, Boston University, Boston, Massachusetts, USA
- Department of Neurology, Boston University, Boston, Massachusetts, USA
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium
- Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Lesley Jones
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Jonathan L Haines
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Christophe Tzourio
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMRS 1127, Institut du Cerveau et de la Moelle Épinière, Paris, France
- University of Bordeaux, Neuroepidemiology, UMR 897, Bordeaux, France
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, Maryland, USA
| | - Valentina Escott-Price
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Richard Mayeux
- Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, New York, USA
- Gertrude H. Sergievsky Center, Columbia University, New York, New York, USA
- Department of Neurology, Columbia University, New York, New York, USA
| | | | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Peter A Holmans
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, USA
- Dr. John T. Macdonald Foundation, Department of Human Genetics, University of Miami, Miami, Florida, USA
| | - Philippe Amouyel
- INSERM, U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Lille, U1167-Excellence Laboratory LabEx DISTALZ, Lille, France
- Centre Hospitalier Universitaire de Lille, Epidemiology and Public Health Department, Lille, France
| | | | - Alfredo Ramirez
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Li-San Wang
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jean-Charles Lambert
- INSERM, U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Lille, U1167-Excellence Laboratory LabEx DISTALZ, Lille, France
| | - Sudha Seshadri
- Boston University School of Medicine, Boston, Massachusetts, USA
- Framingham Heart Study, Framingham, Massachusetts, USA
| | - Julie Williams
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Gerard D Schellenberg
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
45
|
Jun GR, Chung J, Mez J, Barber R, Beecham GW, Bennett DA, Buxbaum JD, Byrd GS, Carrasquillo MM, Crane PK, Cruchaga C, De Jager P, Ertekin-Taner N, Evans D, Fallin MD, Foroud TM, Friedland RP, Goate AM, Graff-Radford NR, Hendrie H, Hall KS, Hamilton-Nelson KL, Inzelberg R, Kamboh MI, Kauwe JSK, Kukull WA, Kunkle BW, Kuwano R, Larson EB, Logue MW, Manly JJ, Martin ER, Montine TJ, Mukherjee S, Naj A, Reiman EM, Reitz C, Sherva R, St George-Hyslop PH, Thornton T, Younkin SG, Vardarajan BN, Wang LS, Wendlund JR, Winslow AR, Haines J, Mayeux R, Pericak-Vance MA, Schellenberg G, Lunetta KL, Farrer LA. Transethnic genome-wide scan identifies novel Alzheimer's disease loci. Alzheimers Dement 2017; 13:727-738. [PMID: 28183528 PMCID: PMC5496797 DOI: 10.1016/j.jalz.2016.12.012] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/28/2016] [Accepted: 12/28/2016] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Genetic loci for Alzheimer's disease (AD) have been identified in whites of European ancestry, but the genetic architecture of AD among other populations is less understood. METHODS We conducted a transethnic genome-wide association study (GWAS) for late-onset AD in Stage 1 sample including whites of European Ancestry, African-Americans, Japanese, and Israeli-Arabs assembled by the Alzheimer's Disease Genetics Consortium. Suggestive results from Stage 1 from novel loci were followed up using summarized results in the International Genomics Alzheimer's Project GWAS dataset. RESULTS Genome-wide significant (GWS) associations in single-nucleotide polymorphism (SNP)-based tests (P < 5 × 10-8) were identified for SNPs in PFDN1/HBEGF, USP6NL/ECHDC3, and BZRAP1-AS1 and for the interaction of the (apolipoprotein E) APOE ε4 allele with NFIC SNP. We also obtained GWS evidence (P < 2.7 × 10-6) for gene-based association in the total sample with a novel locus, TPBG (P = 1.8 × 10-6). DISCUSSION Our findings highlight the value of transethnic studies for identifying novel AD susceptibility loci.
Collapse
Affiliation(s)
- Gyungah R Jun
- Neurogenetics and Integrated Genomics, Andover Innovative Medicines Institute, Eisai Inc, Andover, MA, USA; Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine, Boston, MA, USA
| | - Jaeyoon Chung
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine, Boston, MA, USA
| | - Jesse Mez
- Department of Neurology, Boston University Schools of Medicine, Boston, MA, USA
| | - Robert Barber
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Gary W Beecham
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - David A Bennett
- Department of Neurological Sciences and Rush Alzheimer's Disease Center, Chicago, IL, USA
| | - Joseph D Buxbaum
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, USA; Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA; Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | - Goldie S Byrd
- Department of Biology, North Carolina A&T State University, Greensboro, NC, USA
| | | | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Carlos Cruchaga
- Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University School of Medicine, St Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Philip De Jager
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Department of Neurology & Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | | | - Denis Evans
- Rush Institute for Healthy Aging, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - M Danielle Fallin
- Department of Mental Health, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tatiana M Foroud
- Department of Medical & Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | | | - Alison M Goate
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, USA
| | | | - Hugh Hendrie
- Department of Psychiatry, Indiana University, Indianapolis, IN, USA; Regenstrief Institute, Inc, Indianapolis, IN, USA
| | - Kathleen S Hall
- Regenstrief Institute, Inc, Indianapolis, IN, USA; Department of Medicine, Indiana University, Indianapolis, IN, USA
| | | | - Rivka Inzelberg
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - M Ilyas Kamboh
- University of Pittsburgh Alzheimer's Disease Research Center and Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - John S K Kauwe
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Walter A Kukull
- Department of Epidemiology, University of Washington, Seattle, WA, USA; National Alzheimer's Coordinating Center, University of Washington, Seattle, WA, USA
| | - Brian W Kunkle
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Ryozo Kuwano
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Eric B Larson
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA; Group Health, Group Health Research Institute, Seattle, WA, USA
| | - Mark W Logue
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine, Boston, MA, USA; Department of Neurological Sciences and Rush Alzheimer's Disease Center, Chicago, IL, USA; National Center for PTSD, Behavioral Science Division, Boston VA Healthcare System, Boston, MA, USA
| | - Jennifer J Manly
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Eden R Martin
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | | | | | - Adam Naj
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eric M Reiman
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA; Department of Psychiatry, University of Arizona, Phoenix, AZ, USA; Banner Alzheimer's Institute, Phoenix, AZ, USA; Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Christiane Reitz
- The Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; The Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA; The Department of Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Richard Sherva
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine, Boston, MA, USA
| | - Peter H St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada; Cambridge Institute for Medical Research and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Timothy Thornton
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Badri N Vardarajan
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; The Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Li-San Wang
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Jens R Wendlund
- PharmaTherapeutics Clinical Research, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Ashley R Winslow
- PharmaTherapeutics Clinical Research, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Jonathan Haines
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Richard Mayeux
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA; The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; The Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; The Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA; The Department of Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | | | - Kathryn L Lunetta
- Department of Biostatistics, Boston University Schools of Public Health, Boston, MA, USA
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University Schools of Medicine, Boston, MA, USA; Department of Neurology, Boston University Schools of Medicine, Boston, MA, USA; Department of Biostatistics, Boston University Schools of Public Health, Boston, MA, USA; Department of Ophthalmology, Boston University Schools of Medicine, Boston, MA, USA; Department of Epidemiology, Boston University Schools of Public Health, Boston, MA, USA.
| |
Collapse
|
46
|
Li J, Zhang Q, Chen F, Meng X, Liu W, Chen D, Yan J, Kim S, Wang L, Feng W, Saykin AJ, Liang H, Shen L. Genome-wide association and interaction studies of CSF T-tau/Aβ 42 ratio in ADNI cohort. Neurobiol Aging 2017. [PMID: 28641921 DOI: 10.1016/j.neurobiolaging.2017.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The pathogenic relevance in Alzheimer's disease (AD) presents a decrease of cerebrospinal fluid amyloid-ß42 (Aß42) burden and an increase in cerebrospinal fluid total tau (T-tau) levels. In this work, we performed genome-wide association study (GWAS) and genome-wide interaction study of T-tau/Aß42 ratio as an AD imaging quantitative trait on 843 subjects and 563,980 single-nucleotide polymorphisms (SNPs) in ADNI cohort. We aim to identify not only SNPs with significant main effects but also SNPs with interaction effects to help explain "missing heritability". Linear regression method was used to detect SNP-SNP interactions among SNPs with uncorrected p-value ≤0.01 from the GWAS. Age, gender, and diagnosis were considered as covariates in both studies. The GWAS results replicated the previously reported AD-related genes APOE, APOC1, and TOMM40, as well as identified 14 novel genes, which showed genome-wide statistical significance. Genome-wide interaction study revealed 7 pairs of SNPs meeting the cell-size criteria and with bonferroni-corrected p-value ≤0.05. As we expect, these interaction pairs all had marginal main effects but explained a relatively high-level variance of T-tau/Aß42, demonstrating their potential association with AD pathology.
Collapse
Affiliation(s)
- Jin Li
- College of Automation, Harbin Engineering University, Harbin, China
| | - Qiushi Zhang
- College of Automation, Harbin Engineering University, Harbin, China; College of Information Engineering, Northeast Dianli University, Jilin, China
| | - Feng Chen
- College of Automation, Harbin Engineering University, Harbin, China
| | - Xianglian Meng
- College of Automation, Harbin Engineering University, Harbin, China
| | - Wenjie Liu
- College of Automation, Harbin Engineering University, Harbin, China
| | - Dandan Chen
- College of Automation, Harbin Engineering University, Harbin, China; College of Information Engineering, Northeast Dianli University, Jilin, China
| | - Jingwen Yan
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA; Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indianapolis, IN, USA
| | - Sungeun Kim
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lei Wang
- College of Automation, Harbin Engineering University, Harbin, China
| | - Weixing Feng
- College of Automation, Harbin Engineering University, Harbin, China
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hong Liang
- College of Automation, Harbin Engineering University, Harbin, China.
| | - Li Shen
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA; Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indianapolis, IN, USA.
| | | |
Collapse
|
47
|
Hensley K, Kursula P. Collapsin Response Mediator Protein-2 (CRMP2) is a Plausible Etiological Factor and Potential Therapeutic Target in Alzheimer's Disease: Comparison and Contrast with Microtubule-Associated Protein Tau. J Alzheimers Dis 2017; 53:1-14. [PMID: 27079722 PMCID: PMC4942723 DOI: 10.3233/jad-160076] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer’s disease (AD) has long been viewed as a pathology that must be caused either by aberrant amyloid-β protein precursor (AβPP) processing, dysfunctional tau protein processing, or a combination of these two factors. This is a reasonable assumption because amyloid-β peptide (Aβ) accumulation and tau hyperphosphorylation are the defining histological features in AD, and because AβPP and tau mutations can cause AD in humans or AD-like features in animal models. Nonetheless, other protein players are emerging that one can argue are significant etiological players in subsets of AD and potentially novel, druggable targets. In particular, the microtubule-associated protein CRMP2 (collapsin response mediator protein-2) bears striking analogies to tau and is similarly relevant to AD. Like tau, CRMP2 dynamically regulates microtubule stability; it is acted upon by the same kinases; collects similarly in neurofibrillary tangles (NFTs); and when sequestered in NFTs, complexes with critical synapse-stabilizing factors. Additionally, CRMP2 is becoming recognized as an important adaptor protein involved in vesicle trafficking, amyloidogenesis and autophagy, in ways that tau is not. This review systematically compares the biology of CRMP2 to that of tau in the context of AD and explores the hypothesis that CRMP2 is an etiologically significant protein in AD and participates in pathways that can be rationally engaged for therapeutic benefit.
Collapse
Affiliation(s)
- Kenneth Hensley
- Department of Pathology, University of Toledo Health Science Campus, Toledo, OH, USA
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
48
|
Moloney EB, Hobo B, De Winter F, Verhaagen J. Expression of a Mutant SEMA3A Protein with Diminished Signalling Capacity Does Not Alter ALS-Related Motor Decline, or Confer Changes in NMJ Plasticity after BotoxA-Induced Paralysis of Male Gastrocnemic Muscle. PLoS One 2017; 12:e0170314. [PMID: 28103314 PMCID: PMC5245795 DOI: 10.1371/journal.pone.0170314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 01/02/2017] [Indexed: 12/12/2022] Open
Abstract
Terminal Schwann cells (TSCs) are specialized cells that envelop the motor nerve terminal, and play a role in the maintenance and regeneration of neuromuscular junctions (NMJs). The chemorepulsive protein semaphorin 3A (SEMA3A) is selectively up-regulated in TSCs on fast-fatigable muscle fibers following experimental denervation of the muscle (BotoxA-induced paralysis or crush injury to the sciatic nerve) or in the motor neuron disease amyotrophic lateral sclerosis (ALS). Re-expression of SEMA3A in this subset of TSCs is thought to play a role in the selective plasticity of nerve terminals as observed in ALS and following BotoxA-induced paralysis. Using a mouse model expressing a mutant SEMA3A with diminished signaling capacity, we studied the influence of SEMA3A signaling at the NMJ with two denervation paradigms; a motor neuron disease model (the G93A-hSOD1 ALS mouse line) and an injury model (BotoxA-induced paralysis). ALS mice that either expressed 1 or 2 mutant SEMA3A alleles demonstrated no difference in ALS-induced decline in motor behavior. We also investigated the effects of BotoxA-induced paralysis on the sprouting capacity of NMJs in the K108N-SEMA3A mutant mouse, and observed no change in the differential neuronal plasticity found at NMJs on fast-fatigable or slow muscle fibers due to the presence of the SEMA3A mutant protein. Our data may be explained by the residual repulsive activity of the mutant SEMA3A, or it may imply that SEMA3A alone is not a key component of the molecular signature affecting NMJ plasticity in ALS or BotoxA-induced paralysis. Interestingly, we did observe a sex difference in motor neuron sprouting behavior after BotoxA-induced paralysis in WT mice which we speculate may be an important factor in the sex dimorphic differences seen in ALS.
Collapse
Affiliation(s)
- Elizabeth B. Moloney
- Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Science, Amsterdam, The Netherlands
| | - Barbara Hobo
- Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Science, Amsterdam, The Netherlands
| | - Fred De Winter
- Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Science, Amsterdam, The Netherlands
- Department of Neurosurgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Joost Verhaagen
- Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Science, Amsterdam, The Netherlands
- Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
49
|
Kang SS, Kurti A, Wojtas A, Baker KE, Liu CC, Kanekiyo T, Deming Y, Cruchaga C, Estus S, Bu G, Fryer JD. Identification of plexin A4 as a novel clusterin receptor links two Alzheimer's disease risk genes. Hum Mol Genet 2016; 25:3467-3475. [PMID: 27378688 PMCID: PMC5179943 DOI: 10.1093/hmg/ddw188] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/24/2016] [Accepted: 06/14/2016] [Indexed: 01/30/2023] Open
Abstract
Although abundant genetic and biochemical evidence strongly links Clusterin (CLU) to Alzheimer disease (AD) pathogenesis, the receptor for CLU within the adult brain is currently unknown. Using unbiased approaches, we identified Plexin A4 (PLXNA4) as a novel, high-affinity receptor for CLU in the adult brain. PLXNA4 protein expression was high in brain with much lower levels in peripheral organs. CLU protein levels were significantly elevated in the cerebrospinal fluid (CSF) of Plxna4-/- mice and, in humans, CSF levels of CLU were also associated with PLXNA4 genotype. Human AD brains had significantly increased the levels of CLU protein but decreased levels of PLXNA4 by ∼50%. To determine whether PLXNA4 levels influenced cognition, we analyzed the behaviour of Plxna4+/+, Plxna4+/-, and Plxna4-/- mice. In comparison to WT controls, both Plxna4+/- and Plxna4-/- mice were hyperactive in the open field assay while Plxna4-/- mice displayed a hyper-exploratory (low-anxiety phenotype) in the elevated plus maze. Importantly, both Plxna4+/- and Plxna4-/- mice displayed prominent deficits in learning and memory in the contextual fear-conditioning paradigm. Thus, even a 50% reduction in the level of PLXNA4 is sufficient to cause memory impairments, raising the possibility that memory problems seen in AD patients could be due to reductions in the level of PLXNA4. Both CLU and PLXNA4 have been genetically associated with AD risk and our data thus provide a direct relationship between two AD risk genes. Our data suggest that increasing the levels of PLXNA4 or targeting CLU-PLXNA4 interactions may have therapeutic value in AD.
Collapse
Affiliation(s)
- Silvia S Kang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, SA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, SA
| | - Aleksandra Wojtas
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, SA.,Neurobiology of Disease Graduate Program, Mayo Clinic College of Medicine, Jacksonville, FL
| | - Kelsey E Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, SA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, SA
| | | | - Yuetiva Deming
- Department of Psychiatry and Hope Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry and Hope Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven Estus
- Sanders-Brown Center on Aging, Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, SA.,Neurobiology of Disease Graduate Program, Mayo Clinic College of Medicine, Jacksonville, FL
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, SA .,Neurobiology of Disease Graduate Program, Mayo Clinic College of Medicine, Jacksonville, FL
| |
Collapse
|
50
|
Wang H, Sun FR, Tan L, Wang HF, Zhang W, Wang ZX, Jiang T, Yu JT, Tan L. Association study of the PLXNA4 gene with the risk of Alzheimer's disease. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:108. [PMID: 27127761 DOI: 10.21037/atm.2016.03.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The Plexin-A 4 (PLXNA4) gene has recently been recognized as a functional candidate gene of late-onset Alzheimer's disease (LOAD). The single nucleotide polymorphism (SNP) rs13232207 of PLXNA4 gene has been reported to be associated with Alzheimer's disease (AD) in Japanese cohorts. We sought to clarify whether this novel locus gains the same effect in northern Han Chinese. METHODS To investigate the relationship between SNP rs13232207 and AD sufferers, a case-control study of unrelated individuals was conducted with a total sample size of 2,318 subjects (978 cases and 1,340 age and gender matched healthy controls) in a Northern Han Chinese population. SPSS 22.0 was applied for the statistical process. RESULTS No significant difference in polymorphic distribution of rs13232207 was observed on LOAD risk independently under dominant (P=0.057), additive (P=0.233) or recessive model (P=0.392). In terms of interaction with apolipoprotein E (APOE), there is also no positive interaction in dominant (P=0.438), additive (P=0.055) or recessive model (P=0.095). CONCLUSIONS Replication of association between the PLXNA4 rs13232207 and AD in a Han ethnic group indicates that this link is not the result of chance.
Collapse
Affiliation(s)
- Hui Wang
- 1 Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao 266000, China ; 2 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266000, China ; 3 College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266000, China ; 4 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao 266000, China ; 5 Department of Emergency, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China ; 6 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China ; 7 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Fu-Rong Sun
- 1 Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao 266000, China ; 2 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266000, China ; 3 College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266000, China ; 4 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao 266000, China ; 5 Department of Emergency, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China ; 6 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China ; 7 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Lin Tan
- 1 Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao 266000, China ; 2 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266000, China ; 3 College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266000, China ; 4 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao 266000, China ; 5 Department of Emergency, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China ; 6 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China ; 7 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Hui-Fu Wang
- 1 Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao 266000, China ; 2 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266000, China ; 3 College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266000, China ; 4 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao 266000, China ; 5 Department of Emergency, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China ; 6 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China ; 7 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Wei Zhang
- 1 Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao 266000, China ; 2 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266000, China ; 3 College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266000, China ; 4 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao 266000, China ; 5 Department of Emergency, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China ; 6 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China ; 7 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Zi-Xuan Wang
- 1 Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao 266000, China ; 2 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266000, China ; 3 College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266000, China ; 4 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao 266000, China ; 5 Department of Emergency, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China ; 6 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China ; 7 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Teng Jiang
- 1 Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao 266000, China ; 2 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266000, China ; 3 College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266000, China ; 4 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao 266000, China ; 5 Department of Emergency, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China ; 6 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China ; 7 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Jin-Tai Yu
- 1 Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao 266000, China ; 2 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266000, China ; 3 College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266000, China ; 4 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao 266000, China ; 5 Department of Emergency, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China ; 6 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China ; 7 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Lan Tan
- 1 Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao 266000, China ; 2 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266000, China ; 3 College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266000, China ; 4 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao 266000, China ; 5 Department of Emergency, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China ; 6 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China ; 7 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|