1
|
Castellanos-Molina A, Bretheau F, Boisvert A, Bélanger D, Lacroix S. Constitutive DAMPs in CNS injury: From preclinical insights to clinical perspectives. Brain Behav Immun 2024; 122:583-595. [PMID: 39222725 DOI: 10.1016/j.bbi.2024.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules released in tissues upon cellular damage and necrosis, acting to initiate sterile inflammation. Constitutive DAMPs (cDAMPs) have the particularity to be present within the intracellular compartments of healthy cells, where they exert diverse functions such as regulation of gene expression and cellular homeostasis. However, after injury to the central nervous system (CNS), cDAMPs are rapidly released by stressed, damaged or dying neuronal, glial and endothelial cells, and can trigger inflammation without undergoing structural modifications. Several cDAMPs have been described in the injured CNS, such as interleukin (IL)-1α, IL-33, nucleotides (e.g. ATP), and high-mobility group box protein 1. Once in the extracellular milieu, these molecules are recognized by the remaining surviving cells through specific DAMP-sensing receptors, thereby inducing a cascade of molecular events leading to the production and release of proinflammatory cytokines and chemokines, as well as cell adhesion molecules. The ensuing immune response is necessary to eliminate cellular debris caused by the injury, allowing for damage containment. However, seeing as some molecules associated with the inflammatory response are toxic to surviving resident CNS cells, secondary damage occurs, aggravating injury and exacerbating neurological and behavioral deficits. Thus, a better understanding of these cDAMPs, as well as their receptors and downstream signaling pathways, could lead to identification of novel therapeutic targets for treating CNS injuries such as SCI, TBI, and stroke. In this review, we summarize the recent literature on cDAMPs, their specific functions, and the therapeutic potential of interfering with cDAMPs or their signaling pathways.
Collapse
Affiliation(s)
- Adrian Castellanos-Molina
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Floriane Bretheau
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Ana Boisvert
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Dominic Bélanger
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Steve Lacroix
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
2
|
Reynolds RP, Fan RR, Tinajero A, Luo X, Huen SC, Fujikawa T, Lee S, Lemoff A, Mountjoy KG, Elmquist JK. Alpha-melanocyte-stimulating hormone contributes to an anti-inflammatory response to lipopolysaccharide. Mol Metab 2024; 87:101986. [PMID: 38992428 PMCID: PMC11362619 DOI: 10.1016/j.molmet.2024.101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
OBJECTIVE During infection, metabolism and immunity react dynamically to promote survival through mechanisms that remain unclear. Pro-opiomelanocortin (POMC) cleavage products are produced and released in the brain and in the pituitary gland. One POMC cleavage product, alpha-melanocyte-stimulating hormone (α-MSH), is known to regulate food intake and energy expenditure and has anti-inflammatory effects. However, it is not known whether α-MSH is required to regulate physiological anti-inflammatory responses. We recently developed a novel mouse model with a targeted mutation in Pomc (Pomctm1/tm1 mice) to block production of all α-MSH forms which are required to regulate metabolism. To test whether endogenous α-MSH is required to regulate immune responses, we compared acute bacterial lipopolysaccharide (LPS)-induced inflammation between Pomctm1/tm1 and wild-type Pomcwt/wt mice. METHODS We challenged 10- to 14-week-old male Pomctm1/tm1 and Pomcwt/wt mice with single i.p. injections of either saline or low-dose LPS (100 μg/kg) and monitored immune and metabolic responses. We used telemetry to measure core body temperature (Tb), ELISA to measure circulating cytokines, corticosterone and α-MSH, and metabolic chambers to measure body weight, food intake, activity, and respiration. We also developed a mass spectrometry method to measure three forms of α-MSH produced in the mouse hypothalamus and pituitary gland. RESULTS LPS induced an exaggerated immune response in Pomctm1/tm1 compared to Pomcwt/wt mice. Both groups of mice were hypoactive and hypothermic following LPS administration, but Pomctm1/tm1 mice were significantly more hypothermic compared to control mice injected with LPS. Pomctm1/tm1 mice also had reduced oxygen consumption and impaired metabolic responses to LPS compared to controls. Pomctm1/tm1 mice had increased levels of key proinflammatory cytokines at 2 h and 4 h post LPS injection compared to Pomcwt/wt mice. Lastly, Pomcwt/wt mice injected with LPS compared to saline had increased total α-MSH in circulation 2 h post injection. CONCLUSIONS Our data indicate endogenous α-MSH contributes to the inflammatory immune responses triggered by low-dose LPS administration and suggest that targeting the melanocortin system could be a potential therapeutic for the treatment of sepsis or inflammatory disease.
Collapse
Affiliation(s)
- R P Reynolds
- Department of Internal Medicine, Center for Hypothalamic Research, Dallas, TX, USA
| | - R R Fan
- Department of Internal Medicine, Center for Hypothalamic Research, Dallas, TX, USA
| | - A Tinajero
- Department of Internal Medicine, Center for Hypothalamic Research, Dallas, TX, USA
| | - X Luo
- Department of Biochemistry, Dallas, TX, USA
| | - S C Huen
- Department of Internal Medicine (Nephrology) and Pharmacology, Dallas, TX, USA
| | - T Fujikawa
- Department of Internal Medicine, Center for Hypothalamic Research, Dallas, TX, USA; The Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - S Lee
- Department of Internal Medicine, Center for Hypothalamic Research, Dallas, TX, USA
| | - A Lemoff
- Department of Biochemistry, Dallas, TX, USA
| | - K G Mountjoy
- Department of Molecular Medicine and Pathology, University of Auckland, Private Bag 92019, Auckland 1043, New Zealand
| | - J K Elmquist
- Department of Internal Medicine, Center for Hypothalamic Research, Dallas, TX, USA; The Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Eugenín J, Beltrán-Castillo S, Irribarra E, Pulgar-Sepúlveda R, Abarca N, von Bernhardi R. Microglial reactivity in brainstem chemosensory nuclei in response to hypercapnia. Front Physiol 2024; 15:1332355. [PMID: 38476146 PMCID: PMC10927973 DOI: 10.3389/fphys.2024.1332355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Microglia, the resident immune cells of the CNS, surveil, detect, and respond to various extracellular signals. Depending on the nature of these signals, an integrative microglial response can be triggered, resulting in a phenotypic transformation. Here, we evaluate whether hypercapnia modifies microglia phenotype in brainstem respiratory-related nuclei. Adult C57BL/6 inbred mice were exposed to 10% CO2 enriched air (hypercapnia), or pure air (control), for 10 or 30 min and immediately processed for immunohistochemistry to detect the ubiquitous microglia marker, ionized calcium binding adaptor molecule 1 (Iba1). Hypercapnia for thirty, but not 10 min reduced the Iba1 labeling percent coverage in the ventral respiratory column (VRC), raphe nucleus (RN), and nucleus tractus solitarius (NTS) and the number of primary branches in VRC. The morphological changes persisted, at least, for 60 min breathing air after the hypercapnic challenge. No significant changes were observed in Iba1+ cells in the spinal trigeminal nucleus (Sp5) and the hippocampus. In CF-1 outbred mice, 10% CO2 followed by 60 min of breathing air, resulted in the reduction of Iba1 labeling percent coverage and the number and length of primary branches in VRC, RN, and NTS. No morphological change was observed in Iba1+ cells in Sp5 and hippocampus. Double immunofluorescence revealed that prolonged hypercapnia increased the expression of CD86, an inflammatory marker for reactive state microglia, in Iba1+ cells in VRC, RN, and NTS, but not in Sp5 and hippocampus in CF-1 mice. By contrast, the expression of CD206, a marker of regulatory state microglia, persisted unmodified. In brainstem, but not in hippocampal microglia cultures, hypercapnia increased the level of IL1β, but not that of TGFβ measured by ELISA. Our results show that microglia from respiratory-related chemosensory nuclei, are reactive to prolonged hypercapnia acquiring an inflammatory-like phenotype.
Collapse
Affiliation(s)
- Jaime Eugenín
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Sebastián Beltrán-Castillo
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Estefanía Irribarra
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | | | - Nicolás Abarca
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Rommy von Bernhardi
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
4
|
Rasiah NP, Loewen SP, Bains JS. Windows into stress: a glimpse at emerging roles for CRH PVN neurons. Physiol Rev 2023; 103:1667-1691. [PMID: 36395349 DOI: 10.1152/physrev.00056.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The corticotropin-releasing hormone cells in the paraventricular nucleus of the hypothalamus (CRHPVN) control the slow endocrine response to stress. The synapses on these cells are exquisitely sensitive to acute stress, leveraging local signals to leave a lasting imprint on this system. Additionally, recent work indicates that these cells also play key roles in the control of distinct stress and survival behaviors. Here we review these observations and provide a perspective on the role of CRHPVN neurons as integrative and malleable hubs for behavioral, physiological, and endocrine responses to stress.
Collapse
Affiliation(s)
- Neilen P Rasiah
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Spencer P Loewen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jaideep S Bains
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Loh MK, Stickling C, Schrank S, Hanshaw M, Ritger AC, Dilosa N, Finlay J, Ferrara NC, Rosenkranz JA. Liposaccharide-induced sustained mild inflammation fragments social behavior and alters basolateral amygdala activity. Psychopharmacology (Berl) 2023; 240:647-671. [PMID: 36645464 DOI: 10.1007/s00213-023-06308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/02/2023] [Indexed: 01/17/2023]
Abstract
RATIONALE Conditions with sustained low-grade inflammation have high comorbidity with depression and anxiety and are associated with social withdrawal. The basolateral amygdala (BLA) is critical for affective and social behaviors and is sensitive to inflammatory challenges. Large systemic doses of lipopolysaccharide (LPS) initiate peripheral inflammation, increase BLA neuronal activity, and disrupt social and affective measures in rodents. However, LPS doses commonly used in behavioral studies are high enough to evoke sickness syndrome, which can confound interpretation of amygdala-associated behaviors. OBJECTIVES AND METHODS The objectives of this study were to find a LPS dose that triggers mild peripheral inflammation but not observable sickness syndrome in adult male rats, to test the effects of sustained mild inflammation on BLA and social behaviors. To accomplish this, we administered single doses of LPS (0-100 μg/kg, intraperitoneally) and measured open field behavior, or repeated LPS (5 μg/kg, 3 consecutive days), and measured BLA neuronal firing, social interaction, and elevated plus maze behavior. RESULTS Repeated low-dose LPS decreased BLA neuron firing rate but increased the total number of active BLA neurons. Repeated low-dose LPS also caused early disengagement during social bouts and less anogenital investigation and an overall pattern of heightened social caution associated with reduced gain of social familiarity over the course of a social session. CONCLUSIONS These results provide evidence for parallel shifts in social interaction and amygdala activity caused by prolonged mild inflammation. This effect of inflammation may contribute to social symptoms associated with comorbid depression and chronic inflammatory conditions.
Collapse
Affiliation(s)
- Maxine K Loh
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Courtney Stickling
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Sean Schrank
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Discipline of Neuroscience, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, North Chicago, USA
| | - Madison Hanshaw
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Alexandra C Ritger
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Discipline of Neuroscience, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, North Chicago, USA
| | - Naijila Dilosa
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Joshua Finlay
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Nicole C Ferrara
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - J Amiel Rosenkranz
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA. .,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
6
|
Leonardo S, Fregni F. Association of inflammation and cognition in the elderly: A systematic review and meta-analysis. Front Aging Neurosci 2023; 15:1069439. [PMID: 36815174 PMCID: PMC9939705 DOI: 10.3389/fnagi.2023.1069439] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/05/2023] [Indexed: 02/09/2023] Open
Abstract
Background The development of mild cognitive impairment (MCI) and Alzheimer's disease (AD) may be associated with an inflammatory process. Inflammatory cytokines may be a surrogate for systemic inflammation leading to worsening neurological function. We aim to investigate the association between cognitive impairment and inflammation by pooling and analyzing the data from previously published studies. Methods We performed a systematic literature search on MEDLINE, PubMed, Embase, Web of Science, and Scopus for prospective longitudinal and cross-sectional studies evaluating the relationship between inflammation and cognitive functions. Results A total of 79 articles were included in our systematic review and meta-analysis. Pooled estimates from cross-sectional studies have demonstrated an increased level of C-reactive protein (CRP) [Hedges's g 0.35, 95% CI (0.16, 0.55), p < 0.05], IL-1β [0.94, 95% CI (-0.04, 1.92), p < 0.05], interleukin-6 (IL-6) [0.46, 95% CI (0.05, 0.88), p < 0.005], TNF alpha [0.22, 95% CI (-0.24, 0.68), p < 0.05], sTNFR-1 [0.74, 95% CI (0.46, 1.02), p < 0.05] in AD compared to controls. Similarly, higher levels of IL-1β [0.17, 95% CI (0.05, 0.28), p < 0.05], IL-6 [0.13, 95% CI (0.08, 0.18), p < 0.005], TNF alpha [0.28, 95% CI (0.07, 0.49), p < 0.05], sTNFR-1 [0.21, 95% CI (0.05, 0.48), p < 0.05] was also observed in MCI vs. control samples. The data from longitudinal studies suggested that levels of IL-6 significantly increased the risk of cognitive decline [OR = 1.34, 95% CI (1.13, 1.56)]. However, intermediate levels of IL-6 had no significant effect on the final clinical endpoint [OR = 1.06, 95% CI (0.8, 1.32)]. Conclusion The data from cross-sectional studies suggest a higher level of inflammatory cytokines in AD and MCI as compared to controls. Moreover, data from longitudinal studies suggest that the risk of cognitive deterioration may increase by high IL-6 levels. According to our analysis, CRP, antichymotrypsin (ACT), Albumin, and tumor necrosis factor (TNF) alpha may not be good surrogates for neurological degeneration over time.
Collapse
Affiliation(s)
- Sofia Leonardo
- Ph.D. Department, Universidad Francisco Marroquín, Guatemala City, Guatemala,*Correspondence: Sofia Leonardo,
| | - Felipe Fregni
- Center for Neuromodulation and Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
7
|
Miyata S. Glial functions in the blood-brain communication at the circumventricular organs. Front Neurosci 2022; 16:991779. [PMID: 36278020 PMCID: PMC9583022 DOI: 10.3389/fnins.2022.991779] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The circumventricular organs (CVOs) are located around the brain ventricles, lack a blood-brain barrier (BBB) and sense blood-derived molecules. This review discusses recent advances in the importance of CVO functions, especially glial cells transferring periphery inflammation signals to the brain. The CVOs show size-limited vascular permeability, allowing the passage of molecules with molecular weight <10,000. This indicates that the lack of an endothelial cell barrier does not mean the free movement of blood-derived molecules into the CVO parenchyma. Astrocytes and tanycytes constitute a dense barrier at the distal CVO subdivision, preventing the free diffusion of blood-derived molecules into neighboring brain regions. Tanycytes in the CVOs mediate communication between cerebrospinal fluid and brain parenchyma via transcytosis. Microglia and macrophages of the CVOs are essential for transmitting peripheral information to other brain regions via toll-like receptor 2 (TLR2). Inhibition of TLR2 signaling or depletion of microglia and macrophages in the brain eliminates TLR2-dependent inflammatory responses. In contrast to TLR2, astrocytes and tanycytes in the CVOs of the brain are crucial for initiating lipopolysaccharide (LPS)-induced inflammatory responses via TLR4. Depletion of microglia and macrophages augments LPS-induced fever and chronic sickness responses. Microglia and macrophages in the CVOs are continuously activated, even under normal physiological conditions, as they exhibit activated morphology and express the M1/M2 marker proteins. Moreover, the microglial proliferation occurs in various regions, such as the hypothalamus, medulla oblongata, and telencephalon, with a marked increase in the CVOs, due to low-dose LPS administration, and after high-dose LPS administration, proliferation is seen in most brain regions, except for the cerebral cortex and hippocampus. A transient increase in the microglial population is beneficial during LPS-induced inflammation for attenuating sickness response. Transient receptor potential receptor vanilloid 1 expressed in astrocytes and tanycytes of the CVOs is responsible for thermoregulation upon exposure to a warm environment less than 37°C. Alternatively, Nax expressed in astrocytes and tanycytes of the CVOs is crucial for maintaining body fluid homeostasis. Thus, recent findings indicate that glial cells in the brain CVOs are essential for initiating neuroinflammatory responses and maintaining body fluid and thermal homeostasis.
Collapse
|
8
|
The alarmin interleukin-1α triggers secondary degeneration through reactive astrocytes and endothelium after spinal cord injury. Nat Commun 2022; 13:5786. [PMID: 36184639 PMCID: PMC9527244 DOI: 10.1038/s41467-022-33463-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/16/2022] [Indexed: 01/18/2023] Open
Abstract
Spinal cord injury (SCI) triggers neuroinflammation, and subsequently secondary degeneration and oligodendrocyte (OL) death. We report that the alarmin interleukin (IL)-1α is produced by damaged microglia after SCI. Intra-cisterna magna injection of IL-1α in mice rapidly induces neutrophil infiltration and OL death throughout the spinal cord, mimicking the injury cascade seen in SCI sites. These effects are abolished through co-treatment with the IL-1R1 antagonist anakinra, as well as in IL-1R1-knockout mice which demonstrate enhanced locomotor recovery after SCI. Conditional restoration of IL-1R1 expression in astrocytes or endothelial cells (ECs), but not in OLs or microglia, restores IL-1α-induced effects, while astrocyte- or EC-specific Il1r1 deletion reduces OL loss. Conditioned medium derived from IL-1α-stimulated astrocytes results in toxicity for OLs; further, IL-1α-stimulated astrocytes generate reactive oxygen species (ROS), and blocking ROS production in IL-1α-treated or SCI mice prevented OL loss. Thus, after SCI, microglia release IL-1α, inducing astrocyte- and EC-mediated OL degeneration.
Collapse
|
9
|
Mota CM, Madden CJ. Neural circuits mediating circulating interleukin-1β-evoked fever in the absence of prostaglandin E2 production. Brain Behav Immun 2022; 103:109-121. [PMID: 35429606 PMCID: PMC9524517 DOI: 10.1016/j.bbi.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022] Open
Abstract
Infectious diseases and inflammatory conditions recruit the immune system to mount an appropriate acute response that includes the production of cytokines. Cytokines evoke neurally-mediated responses to fight pathogens, such as the recruitment of thermoeffectors, thereby increasing body temperature and leading to fever. Studies suggest that the cytokine interleukin-1β (IL-1β) depends upon cyclooxygenase (COX)-mediated prostaglandin E2 production for the induction of neural mechanisms to elicit fever. However, COX inhibitors do not eliminate IL-1β-induced fever, thus suggesting that COX-dependent and COX-independent mechanisms are recruited for increasing body temperature after peripheral administration of IL-1β. In the present study, we aimed to build a foundation for the neural circuit(s) controlling COX-independent, inflammatory fever by determining the involvement of brain areas that are critical for controlling the sympathetic outflow to brown adipose tissue (BAT) and the cutaneous vasculature. In anesthetized rats, pretreatment with indomethacin, a non-selective COX inhibitor, did not prevent BAT thermogenesis or cutaneous vasoconstriction (CVC) induced by intravenous IL-1β (2 µg/kg). BAT and cutaneous vasculature sympathetic premotor neurons in the rostral raphe pallidus area (rRPa) are required for IL-1β-evoked BAT thermogenesis and CVC, with or without pretreatment with indomethacin. Additionally, activation of glutamate receptors in the dorsomedial hypothalamus (DMH) is required for COX-independent, IL-1β-induced BAT thermogenesis. Therefore, our data suggests that COX-independent mechanisms elicit activation of neurons within the DMH and rRPa, which is sufficient to trigger and mount inflammatory fever. These data provide a foundation for elucidating the brain circuits responsible for COX-independent, IL-1β-elicited fevers.
Collapse
Affiliation(s)
| | - Christopher J. Madden
- Corresponding author at: Dept. of Neurological Surgery, Oregon Health & Science University, 3181 Sam Jackson Park Road, Portland, OR 97239, United States. (C.J. Madden)
| |
Collapse
|
10
|
Sekino N, Selim M, Shehadah A. Sepsis-associated brain injury: underlying mechanisms and potential therapeutic strategies for acute and long-term cognitive impairments. J Neuroinflammation 2022; 19:101. [PMID: 35488237 PMCID: PMC9051822 DOI: 10.1186/s12974-022-02464-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/14/2022] [Indexed: 12/29/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis causes cerebral dysfunction in the short and long term and induces disruption of the blood–brain barrier (BBB), neuroinflammation, hypoperfusion, and accumulation of amyloid β (Aβ) and tau protein in the brain. White matter changes and brain atrophy can be detected using brain imaging, but unfortunately, there is no specific treatment that directly addresses the underlying mechanisms of cognitive impairments in sepsis. Here, we review the underlying mechanisms of sepsis-associated brain injury, with a focus on BBB dysfunction and Aβ and tau protein accumulation in the brain. We also describe the neurological manifestations and imaging findings of sepsis-associated brain injury, and finally, we propose potential therapeutic strategies for acute and long-term cognitive impairments associated with sepsis. In the acute phase of sepsis, we suggest using antibiotics (such as rifampicin), targeting proinflammatory cytokines, and preventing ischemic injuries and hypoperfusion. In the late phase of sepsis, we suggest targeting neuroinflammation, BBB dysfunction, Aβ and tau protein phosphorylation, glycogen synthase kinase-3 beta (GSK3β), and the receptor for advanced glycation end products (RAGE). These proposed strategies are meant to bring new mechanism-based directions for future basic and clinical research aimed at preventing or ameliorating acute and long-term cognitive impairments in patients with sepsis.
Collapse
Affiliation(s)
- Nobufumi Sekino
- Department of Medicine, Translational Therapeutics Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Magdy Selim
- Department of Neurology, Stroke and Cerebrovascular Diseases Division, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS-641, Boston, MA, 02215, USA
| | - Amjad Shehadah
- Department of Neurology, Stroke and Cerebrovascular Diseases Division, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS-641, Boston, MA, 02215, USA.
| |
Collapse
|
11
|
El-Hakim Y, Bake S, Mani KK, Sohrabji F. Impact of intestinal disorders on central and peripheral nervous system diseases. Neurobiol Dis 2022; 165:105627. [PMID: 35032636 DOI: 10.1016/j.nbd.2022.105627] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/03/2022] [Accepted: 01/09/2022] [Indexed: 12/16/2022] Open
Abstract
Brain injuries and neurological diseases have a significant impact on the gut microbiome and the gut barrier. Reciprocally, gut disorders, such as Inflammatory Bowel Syndromes (IBS), can affect the development and pathology of neurodegenerative and neuropsychiatric diseases, although this aspect is less well studied and is the focus of this review. Inflammatory Bowel Syndrome (IBS) is a chronic and debilitating functional gastrointestinal disorder afflicting an estimated 9-23% of the world's population. A hallmark of this disease is leaky gut, a pathology in which the integrity of the gut blood barrier is compromised, causing gut contents such as immune cells and microbiota to enter the bloodstream leading to low-grade systemic inflammation. The increased levels of inflammation associated cytokines in circulation has the potential to affect all organs, including the brain. Although the brain is protected by the blood brain barrier, inflammation associated cytokines can damage the junctions in this barrier and allow brain infiltration of peripheral immune cells. Central inflammation in the brain is associated with various neurodegenerative disease such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and neuropsychiatric disorders, namely, depression, and anxiety. Neurodegenerative diseases are of particular concern due to the anticipated rise in the population of the elderly and consequently, the prevalence of these diseases. Additionally, depression and anxiety are the most common mental illnesses affecting roughly 18% of the American population. In this review, we will explore the mechanisms by which IBS can influence the risk and severity of neurological disease.
Collapse
Affiliation(s)
- Yumna El-Hakim
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan, TX, USA
| | - Shameena Bake
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan, TX, USA
| | - Kathiresh Kumar Mani
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan, TX, USA
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan, TX, USA.
| |
Collapse
|
12
|
Galea I. The blood-brain barrier in systemic infection and inflammation. Cell Mol Immunol 2021; 18:2489-2501. [PMID: 34594000 PMCID: PMC8481764 DOI: 10.1038/s41423-021-00757-x] [Citation(s) in RCA: 225] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023] Open
Abstract
The vascular blood-brain barrier is a highly regulated interface between the blood and brain. Its primary function is to protect central neurons while signaling the presence of systemic inflammation and infection to the brain to enable a protective sickness behavior response. With increasing degrees and duration of systemic inflammation, the vascular blood-brain barrier becomes more permeable to solutes, undergoes an increase in lymphocyte trafficking, and is infiltrated by innate immune cells; endothelial cell damage may occasionally occur. Perturbation of neuronal function results in the clinical features of encephalopathy. Here, the molecular and cellular anatomy of the vascular blood-brain barrier is reviewed, first in a healthy context and second in a systemic inflammatory context. Distinct from the molecular and cellular mediators of the blood-brain barrier's response to inflammation, several moderators influence the direction and magnitude at genetic, system, cellular and molecular levels. These include sex, genetic background, age, pre-existing brain pathology, systemic comorbidity, and gut dysbiosis. Further progress is required to define and measure mediators and moderators of the blood-brain barrier's response to systemic inflammation in order to explain the heterogeneity observed in animal and human studies.
Collapse
Affiliation(s)
- Ian Galea
- grid.5491.90000 0004 1936 9297Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD UK
| |
Collapse
|
13
|
Mittli D, Tukacs V, Micsonai A, Ravasz L, Kardos J, Juhász G, Kékesi KA. The Single-Cell Transcriptomic Analysis of Prefrontal Pyramidal Cells and Interneurons Reveals the Neuronal Expression of Genes Encoding Antimicrobial Peptides and Immune Proteins. Front Immunol 2021; 12:749433. [PMID: 34759929 PMCID: PMC8574171 DOI: 10.3389/fimmu.2021.749433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/06/2021] [Indexed: 12/30/2022] Open
Abstract
The investigation of the molecular background of direct communication of neurons and immune cells in the brain is an important issue for understanding physiological and pathological processes in the nervous system. Direct contacts between brain-infiltrating immune cells and neurons, and the neuromodulatory effect of immune cell-derived regulatory peptides are well established. Several aspects of the role of immune and glial cells in the direct neuro-immune communication are also well known; however, there remain many questions regarding the molecular details of signaling from neurons to immune cells. Thus, we report here on the neuronal expression of genes encoding antimicrobial and immunomodulatory peptides, as well as proteins of immune cell-specific activation and communication mechanisms. In the present study, we analyzed the single-cell sequencing data of our previous transcriptomic work, obtained from electrophysiologically identified pyramidal cells and interneurons of the murine prefrontal cortex. We filtered out the genes that may be associated with the direct communication between immune cells and neurons and examined their expression pattern in the neuronal transcriptome. The expression of some of these genes by cortical neurons has not yet been reported. The vast majority of antimicrobial (~53%) and immune cell protein (~94%) transcripts was identified in the transcriptome of the 84 cells, owing to the high sensitivity of ultra-deep sequencing. Several of the antimicrobial and immune process-related protein transcripts showed cell type-specific or enriched expression. Individual neurons transcribed only a fraction of the investigated genes with low copy numbers probably due to the bursting kinetics of gene expression; however, the comparison of our data with available transcriptomic datasets from immune cells and neurons suggests the functional relevance of the reported findings. Accordingly, we propose further experimental and in silico studies on the neuronal expression of immune system-related genes and the potential role of the encoded proteins in neuroimmunological processes.
Collapse
Affiliation(s)
- Dániel Mittli
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Vanda Tukacs
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - András Micsonai
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Lilla Ravasz
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Clinical Research Units (CRU) Hungary Ltd., Göd, Hungary
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gábor Juhász
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Clinical Research Units (CRU) Hungary Ltd., Göd, Hungary
- InnoScience Ltd., Mátranovák, Hungary
| | - Katalin Adrienna Kékesi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- InnoScience Ltd., Mátranovák, Hungary
- Department of Physiology and Neurobiology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
14
|
Gonçalves RA, De Felice FG. The crosstalk between brain and periphery: Implications for brain health and disease. Neuropharmacology 2021; 197:108728. [PMID: 34331960 DOI: 10.1016/j.neuropharm.2021.108728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022]
Abstract
Mounting evidence indicates that signaling molecules identified primarily in the peripheral circulation can affect cognitive function in physiological and pathological conditions, including in the development of several neurological diseases. However, considering the properties of the vascular blood-brain barrier (BBB), circulating lipophobic molecules would not be expected to cross this vascular structure. Thus, if and how peripheral lipophobic molecules, such as hormones and cytokines, reach the brain to exert their reported effects remains to be better established. In this review, we will discuss evidence for and against the ability of molecules in the circulation, such as insulin, cytokines, and irisin to reach the brain and mediate the crosstalk between peripheral tissues and the central nervous system (CNS). We hypothesize that in addition to entering the brain via receptor-mediated transcytosis, these circulating molecules can have their transport facilitated by extracellular vesicles or under pathological conditions when the BBB is disrupted. We also discuss the possibility that these circulating molecules access the brain by acting directly on circumventricular organs, which lack the BBB, by local synthesis in the choroid plexus, and via activation of afferent vagal nerves. Advancing the understanding of mechanisms implicated in the transport of blood-borne molecules to the CNS will help us elucidate the contribution of peripheral factors to brain health and disease, and will enable the development of minimally invasive strategies to deliver therapeutic drugs to the brain in neurological disorders.
Collapse
Affiliation(s)
- Rafaella A Gonçalves
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Fernanda G De Felice
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada; Department of Psychiatry, Queen's University, Kingston, ON K7L 3N6, Canada; D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, 22281-100, Brazil; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
15
|
Microglia activated by microbial neuraminidase contributes to ependymal cell death. Fluids Barriers CNS 2021; 18:15. [PMID: 33757539 PMCID: PMC7986511 DOI: 10.1186/s12987-021-00249-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/10/2021] [Indexed: 11/10/2022] Open
Abstract
The administration of microbial neuraminidase into the brain ventricular cavities of rodents represents a model of acute aseptic neuroinflammation. Ependymal cell death and hydrocephalus are unique features of this model. Here we demonstrate that activated microglia participates in ependymal cell death. Co-cultures of pure microglia with ependymal cells (both obtained from rats) were performed, and neuraminidase or lipopolysaccharide were used to activate microglia. Ependymal cell viability was unaltered in the absence of microglia or inflammatory stimulus (neuraminidase or lipopolysaccharide). The constitutive expression by ependymal cells of receptors for cytokines released by activated microglia, such as IL-1β, was demonstrated by qPCR. Besides, neuraminidase induced the overexpression of both receptors in ventricular wall explants. Finally, ependymal viability was evaluated in the presence of functional blocking antibodies against IL-1β and TNFα. In the co-culture setting, an IL-1β blocking antibody prevented ependymal cell death, while TNFα antibody did not. These results suggest that activated microglia are involved in the ependymal damage that occurs after the administration of neuraminidase in the ventricular cavities, and points to IL-1β as possible mediator of such effect. The relevance of these results lies in the fact that brain infections caused by neuraminidase-bearing pathogens are frequently associated to ependymal death and hydrocephalus.
Collapse
|
16
|
Shimada A, Hasegawa-Ishii S. Increased cytokine expression in the choroid plexus stroma and epithelium in response to endotoxin-induced systemic inflammation in mice. Toxicol Rep 2021; 8:520-528. [PMID: 33747797 PMCID: PMC7973137 DOI: 10.1016/j.toxrep.2021.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/24/2021] [Accepted: 03/06/2021] [Indexed: 01/04/2023] Open
Abstract
Brain response to systemic inflammation is initiated by IL-1β from choroid plexus macrophages. Choroid plexus stromal cells bear IL-1 receptors and participate in the immediate reaction to systemic inflammation. This reaction is followed by elevated gene expression of various cytokines in the choroid plexus stroma and epithelium. The choroid plexus immediate responses are relevant to understanding how sepsis-associated encephalopathy is initiated.
Sepsis-associated encephalopathy (SAE) is characterized as diffuse brain dysfunction in patients with excessive systemic inflammatory reaction to an infection. In our previous studies using a mouse model of SAE with intraperitoneal injection of lipopolysaccharide (LPS), tissue concentrations of various cytokines were elevated in the entire brain parenchyma 4 and 24 h following LPS administration. Cytokines elevated at 4 h were produced by the choroid plexus, leptomeninges and vascular endothelium, while those at 24 h were produced by astrocytes. Interleukin (IL)-1β did not increase in the concentration in the brain parenchyma during the period from 1 to 24 h following LPS. In the present study, we hypothesized that the intracranial cells that initially respond to systemic inflammation are situated in the choroid plexus and produce IL-1β to initiate cytokine-mediated reactions. We quantified the transcript levels of related cytokines within the choroid plexus and specified the choroid plexus cells that are involved in the immediate cytokine-mediated responses. Mice received LPS or saline by intraperitoneal injection. Four hours after treatments, the choroid plexuses were isolated and subjected to cytokine gene expression analyses using real-time reverse transcription-polymerase chain reaction. Another group of mice was fixed at 1, 4 and 24 h after treatments and the expression of cytokines and receptors was studied with double immunohistofluorescence staining. The transcript levels of IL-1β, CC-motif ligand (CCL)2, CXC-motif ligand (CXCL)1, CXCL2 and IL-6 in the choroid plexus were significantly increased in mice treated with LPS compared to saline control. The IL-1β expression was remarkable in choroid plexus macrophages at 1 and 4 h but not in the brain parenchyma. Choroid plexus stromal cells expressed IL-1 receptor type 1 (IL-1R1). The IL-1R1-bearing stromal cells produced CCL2, CXCL1, CXCL2 and IL-6 at 4 h. Choroid plexus epithelial cells expressed CXCR2, a common receptor for CXCL1 and CXCL2. Choroid plexus epithelial cells also expressed CCL2, CXCL1 and CXCL2 at 4 h, and IL-1R1-bearing stromal cells expressed CXCR2. Therefore, in response to systemic LPS injection, one of the intracranial reactions was initiated within the choroid plexus using IL-1β derived from macrophages. The choroid plexus stromal cells subsequently had elevated expression of CCL2, CXCL1, CXCL2 and IL-6. The choroid plexus epithelial cells also had elevated expression of CCL2, CXCL1 and CXCL2. The presence of receptors for these cytokines on both epithelial and stromal cells raised the possibility of reciprocal interactions between these cells. The results suggested that the immediate early responses exerted by the choroid plexus are relevant to understanding how SAE is initiated in clinical settings.
Collapse
Affiliation(s)
- Atsuyoshi Shimada
- Pathology Research Team, Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan
| | - Sanae Hasegawa-Ishii
- Pathology Research Team, Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan
| |
Collapse
|
17
|
Berens SC, Bird CM, Harrison NA. Minocycline differentially modulates human spatial memory systems. Neuropsychopharmacology 2020; 45:2162-2169. [PMID: 32839527 PMCID: PMC7784680 DOI: 10.1038/s41386-020-00811-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/26/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Microglia play a critical role in many processes fundamental to learning and memory in health and are implicated in Alzheimer's pathogenesis. Minocycline, a centrally-penetrant tetracycline antibiotic, inhibits microglial activation and enhances long-term potentiation, synaptic plasticity, neurogenesis and hippocampal-dependent spatial memory in rodents, leading to clinical trials in human neurodegenerative diseases. However, the effects of minocycline on human memory have not previously been investigated. Utilising a double-blind, randomised crossover study design, we recruited 20 healthy male participants (mean 24.6 ± 5.0 years) who were each tested in two experimental sessions: once after 3 days of Minocycline 150 mg (twice daily), and once 3 days of placebo (identical administration). During each session, all completed an fMRI task designed to tap boundary- and landmark-based navigation (thought to rely on hippocampal and striatal learning mechanisms respectively). Given the rodent literature, we hypothesised that minocycline would selectively modulate hippocampal learning. In line with this, minocycline biased use of boundary- compared to landmark-based information (t980 = 3.140, p = 0.002). However, though this marginally improved performance for boundary-based objects (t980 = 1.972, p = 0.049), it was outweighed by impaired landmark-based navigation (t980 = 6.374, p < 0.001) resulting in an overall performance decrease (t980 = 3.295, p = 0.001). Furthermore, against expectations, minocycline significantly reduced activity during memory encoding in the right caudate (t977 = 2.992, p = 0.003) and five other cortical regions, with no significant effect in the hippocampus. In summary, minocycline impaired human spatial memory performance, likely through disruption of striatal processing resulting in greater biasing towards reliance on boundary-based navigation.
Collapse
Affiliation(s)
- Sam C Berens
- School of Psychology, University of Sussex, Falmer, BN1 9QH, UK
| | - Chris M Bird
- School of Psychology, University of Sussex, Falmer, BN1 9QH, UK
| | - Neil A Harrison
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, CF24 4HQ, UK.
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9RR, UK.
| |
Collapse
|
18
|
Aleksandrova NP, Klinnikova AA, Danilova GA. Cyclooxygenase and nitric oxide synthase pathways mediate the respiratory effects of TNF-α in rats. Respir Physiol Neurobiol 2020; 284:103567. [PMID: 33161117 DOI: 10.1016/j.resp.2020.103567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/23/2020] [Accepted: 10/25/2020] [Indexed: 01/22/2023]
Abstract
TNF-α is the key inflammatory cytokine. TNF-α receptors are expressed in brain stem regions involved in respiratory control and also in the carotid bodies, which are the sensory organs monitoring arterial blood O2. We hypothesised that the circulating tumour necrosis factor (TNF)-α may affect the lung ventilation and modulate the hypoxic ventilatory response via activation of cyclooxygenase (COX) and nitric oxide synthase (NOS) pathways. The aim of the current study was to compare the respiratory effects of TNF-α before and after pretreatment with diclofenac or L-NG-nitro arginine methyl ester (L-NAME) nonspecific inhibitors of COX and NOS, respectively. The hypoxic ventilatory response was measured in anaesthetised rats using rebreathing techniques. We found that TNF-α increased the lung ventilation in normoxia but decreased the ventilatory response to hypoxia. Pretreatment with each of these inhibitors reduced respiratory effects of TNF-α. We believe that activation of COX and NOS-related pathways and also "cross-talk" between them mediates the TNF-α respiratory effects and underlies the impact of inflammation on the respiratory function.
Collapse
Affiliation(s)
- Nina Pavlovna Aleksandrova
- Head of Laboratory of Respiratory Physiology, Pavlov Institute of Physiology of RAS, nab Makarova6, St.-Petersburg, Russian Federation.
| | - Anna Andreevna Klinnikova
- Researcher of Laboratory of Respiratory Physiology, Pavlov Institute of Physiology of RAS, nab Makarova6, St.-Petersburg, Russian Federation.
| | - Galina Anatolevna Danilova
- Researcher of Laboratory of Respiratory Physiology, Pavlov Institute of Physiology of RAS, nab Makarova6, St.-Petersburg, Russian Federation.
| |
Collapse
|
19
|
Böttcher M, Müller-Fielitz H, Sundaram SM, Gallet S, Neve V, Shionoya K, Zager A, Quan N, Liu X, Schmidt-Ullrich R, Haenold R, Wenzel J, Blomqvist A, Engblom D, Prevot V, Schwaninger M. NF-κB signaling in tanycytes mediates inflammation-induced anorexia. Mol Metab 2020; 39:101022. [PMID: 32446877 PMCID: PMC7292913 DOI: 10.1016/j.molmet.2020.101022] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Infections, cancer, and systemic inflammation elicit anorexia. Despite the medical significance of this phenomenon, the question of how peripheral inflammatory mediators affect the central regulation of food intake is incompletely understood. Therefore, we have investigated the sickness behavior induced by the prototypical inflammatory mediator IL-1β. METHODS IL-1β was injected intravenously. To interfere with IL-1β signaling, we deleted the essential modulator of NF-κB signaling (Nemo) in astrocytes and tanycytes. RESULTS Systemic IL-1β increased the activity of the transcription factor NF-κB in tanycytes of the mediobasal hypothalamus (MBH). By activating NF-κB signaling, IL-1β induced the expression of cyclooxygenase-2 (Cox-2) and stimulated the release of the anorexigenic prostaglandin E2 (PGE2) from tanycytes. When we deleted Nemo in astrocytes and tanycytes, the IL-1β-induced anorexia was alleviated whereas the fever response and lethargy response were unchanged. Similar results were obtained after the selective deletion of Nemo exclusively in tanycytes. CONCLUSIONS Tanycytes form the brain barrier that mediates the anorexic effect of systemic inflammation in the hypothalamus.
Collapse
Affiliation(s)
- Mareike Böttcher
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23562, Lübeck, Germany
| | - Helge Müller-Fielitz
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23562, Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Sivaraj M Sundaram
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23562, Lübeck, Germany
| | - Sarah Gallet
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, U1172, Lille, France; University of Lille, FHU 1000 days for Health, School of Medicine, U1172, Lille, France
| | - Vanessa Neve
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23562, Lübeck, Germany
| | - Kiseko Shionoya
- Department of Clinical and Experimental Medicine, Linköping University, S-581 85, Linköping, Sweden
| | - Adriano Zager
- Department of Clinical and Experimental Medicine, Linköping University, S-581 85, Linköping, Sweden
| | - Ning Quan
- Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Xiaoyu Liu
- Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Ruth Schmidt-Ullrich
- Department of Signal Transduction in Tumor Cells, Max-Delbrück-Center (MDC) for Molecular Medicine, 13125, Berlin, Germany
| | - Ronny Haenold
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), 07745, Jena, Germany; Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Jan Wenzel
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23562, Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Anders Blomqvist
- Department of Clinical and Experimental Medicine, Linköping University, S-581 85, Linköping, Sweden
| | - David Engblom
- Department of Clinical and Experimental Medicine, Linköping University, S-581 85, Linköping, Sweden
| | - Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, U1172, Lille, France; University of Lille, FHU 1000 days for Health, School of Medicine, U1172, Lille, France
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23562, Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany.
| |
Collapse
|
20
|
Lorea-Hernández JJ, Camacho-Hernández NP, Peña-Ortega F. Interleukin 1-beta but not the interleukin-1 receptor antagonist modulates inspiratory rhythm generation in vitro. Neurosci Lett 2020; 734:134934. [PMID: 32259558 DOI: 10.1016/j.neulet.2020.134934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 10/24/2022]
Abstract
Interleukin 1-beta (IL-1β) is a cytokine that modulates breathing when applied systemically or directly into the brain. IL-1β is expressed, along with its receptors, in IL-1β-sensitive respiratory-related circuits, which likely include the inspiratory rhythm generator (the preBötzinger complex, preBötC). Thus, considering that IL-1β might directly modulate preBötC function, we tested whether IL-1β and its endogenous antagonist IL1Ra modulate inspiratory rhythm generation in the brainstem slice preparation containing the preBötC. We found that IL-1β reduces, in a concentration-dependent manner, the amplitude of the fictive inspiratory rhythm generated by the preBötC, which is prevented by IL1Ra. Only a negligible effect on the rhythm frequency was observed at one of the concentrations tested (10 ng/mL). In sum, these findings indicate that IL-1β modulates respiratory rhythm generation. In contrast, IL1Ra did not produce a major effect but slightly increased burst amplitude regularity of the fictive respiratory rhythm. Our findings show that IL-1β modulates breathing by directly modulating the inspiratory rhythm generation. This modulation could contribute to the respiratory response to inflammation in health and disease.
Collapse
Affiliation(s)
- Jonathan Julio Lorea-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro, 76230, México
| | - Neira Polet Camacho-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro, 76230, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro, 76230, México.
| |
Collapse
|
21
|
Mastorakos P, McGavern D. The anatomy and immunology of vasculature in the central nervous system. Sci Immunol 2020; 4:4/37/eaav0492. [PMID: 31300479 DOI: 10.1126/sciimmunol.aav0492] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022]
Abstract
Barriers between circulation and the central nervous system (CNS) play a key role in the development and modulation of CNS immune responses. Structural variations in the vasculature traversing different anatomical regions within the CNS strongly influence where and how CNS immune responses first develop. Here, we provide an overview of cerebrovascular anatomy, focusing on the blood-CNS interface and how anatomical variations influence steady-state immunology in the compartment. We then discuss how CNS vasculature is affected by and influences the development of different pathophysiological states, such as CNS autoimmune disease, cerebrovascular injury, cerebral ischemia, and infection.
Collapse
Affiliation(s)
- Panagiotis Mastorakos
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Dorian McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
22
|
McCosh RB, Breen KM, Kauffman AS. Neural and endocrine mechanisms underlying stress-induced suppression of pulsatile LH secretion. Mol Cell Endocrinol 2019; 498:110579. [PMID: 31521706 PMCID: PMC6874223 DOI: 10.1016/j.mce.2019.110579] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/30/2019] [Accepted: 09/10/2019] [Indexed: 12/21/2022]
Abstract
Stress is well-known to inhibit a variety of reproductive processes, including the suppression of episodic Gonadotropin releasing hormone (GnRH) secretion, typically measured via downstream luteinizing hormone (LH) secretion. Since pulsatile secretion of GnRH and LH are necessary for proper reproductive function in both males and females, and stress is common for both human and animals, understanding the fundamental mechanisms by which stress impairs LH pulses is of critical importance. Activation of the hypothalamic-pituitary-adrenal axis, and its corresponding endocrine factors, is a key feature of the stress response, so dissecting the role of stress hormones, including corticotrophin releasing hormone (CRH) and corticosterone, in the inhibition of LH secretion has been one key research focus. However, some evidence suggests that these stress hormones alone are not sufficient for the full inhibition of LH caused by stress, implicating the additional involvement of other hormonal or neural signaling pathways in this process (including inputs from the brainstem, amygdala, parabrachial nucleus, and dorsomedial nucleus). Moreover, different stress types, such as metabolic stress (hypoglycemia), immune stress, and psychosocial stress, appear to suppress LH secretion via partially unique neural and endocrine pathways. The mechanisms underlying the suppression of LH pulses in these models offer interesting comparisons and contrasts, including the specific roles of amygdaloid nuclei and CRH receptor types. This review focuses on the most recent and emerging insights into endocrine and neural mechanisms responsible for the suppression of pulsatile LH secretion in mammals, and offers insights in important gaps in knowledge.
Collapse
Affiliation(s)
- Richard B McCosh
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0674, USA
| | - Kellie M Breen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0674, USA
| | - Alexander S Kauffman
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0674, USA.
| |
Collapse
|
23
|
Gauda EB, McLemore GL. Premature birth, homeostatic plasticity and respiratory consequences of inflammation. Respir Physiol Neurobiol 2019; 274:103337. [PMID: 31733340 DOI: 10.1016/j.resp.2019.103337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/11/2019] [Accepted: 11/10/2019] [Indexed: 12/23/2022]
Abstract
Infants who are born premature can have persistent apnea beyond term gestation, reemergence of apnea associated with inflammation during infancy, increased risk of sudden unexplained death, and sleep disorder breathing during infancy and childhood. The autonomic nervous system, particularly the central neural networks that control breathing and peripheral and central chemoreceptors and mechanoreceptors that modulate the activity of the central respiratory network, are rapidly developing during the last trimester (22-37 weeks gestation) of fetal life. With advances in neonatology, in well-resourced, developed countries, infants born as young as 23 weeks gestation can survive. Thus, a substantial part of maturation of central and peripheral systems that control breathing occurs ex-utero in infants born at the limit of viability. The balance of excitatory and inhibitory influences dictates the ultimate output from the central respiratory network. We propose in this review that simply being born early in the last trimester can trigger homeostatic plasticity within the respiratory network tipping the balance toward inhibition that persists in infancy. We discuss the intersection of premature birth, homeostatic plasticity and biological mechanisms leading to respiratory depression during inflammation in former premature infants.
Collapse
Affiliation(s)
- Estelle B Gauda
- The Hospital for Sick Children, Division of Neonatology, Department of Pediatrics, University of Toronto, Toronto, Ontario, M5G 1X8, Canada.
| | - Gabrielle L McLemore
- Department of Biology, School of Computer, Mathematics and Natural Sciences (SCMNS), Morgan State University, Baltimore, MD, 21251, United States
| |
Collapse
|
24
|
Erb U, Schwerk C, Schroten H, Karremann M. Review of functional in vitro models of the blood-cerebrospinal fluid barrier in leukaemia research. J Neurosci Methods 2019; 329:108478. [PMID: 31669338 DOI: 10.1016/j.jneumeth.2019.108478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 11/15/2022]
Abstract
Acute lymphoblastic leukaemia represents the most common paediatric malignancy. Although survival rates approach up to 90% in children, investigation of leukaemic infiltration into the central nervous system (CNS) is essential due to the presence of ongoing fatal complications. Recent in vitro studies mostly employed models of the blood-brain barrier (BBB), as endothelial cells of the microvasculature represent the largest surface between the blood stream and the brain parenchyma. However, crossing the blood-cerebrospinal fluid barrier (BCSFB) within the choroid plexus (CP) has been shown to be a general capability of leukaemic blasts. Hence, in vitro models of the BCSFB to study leukaemic transmigration may be of major importance to understand the development of CNS leukaemia. This review will summarise available in vitro models of the BCSFB employed to study the cellular interactions with leukaemic blasts during cancer cell transmigration into the brain compartment across primary or immortal/immortalised BCSFB cells. It will also provide an outlook on prospective improvements in BCSFB in vitro models by developing barrier-on-a-chip models and brain organoids.
Collapse
Affiliation(s)
- Ulrike Erb
- Department of Pediatrics, Pediatric Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Christian Schwerk
- Department of Pediatrics, Pediatric Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Horst Schroten
- Department of Pediatrics, Pediatric Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Karremann
- Department of Pediatrics, Pediatric Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
25
|
Chaskiel L, Bristow AD, Bluthé RM, Dantzer R, Blomqvist A, Konsman JP. Interleukin-1 reduces food intake and body weight in rat by acting in the arcuate hypothalamus. Brain Behav Immun 2019; 81:560-573. [PMID: 31310797 DOI: 10.1016/j.bbi.2019.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022] Open
Abstract
A reduction in food intake is commonly observed after bacterial infection, a phenomenon that can be reproduced by peripheral administration of Gram-negative bacterial lipopolysaccharide (LPS) or interleukin-1beta (IL-1β), a pro-inflammatory cytokine released by LPS-activated macrophages. The arcuate nucleus of the hypothalamus (ARH) plays a major role in food intake regulation and expresses IL-1 type 1 receptor (IL-1R1) mRNA. In the present work, we tested the hypothesis that IL-1R1 expressing cells in the ARH mediate IL-1β and/or LPS-induced hypophagia in the rat. To do so, we developed an IL-1β-saporin conjugate, which eliminated IL-R1-expressing neurons in the hippocampus, and micro-injected it into the ARH prior to systemic IL-1β and LPS administration. ARH IL-1β-saporin injection resulted in loss of neuropeptide Y-containing cells and attenuated hypophagia and weight loss after intraperitoneal IL-1β, but not LPS, administration. In conclusion, the present study shows that ARH NPY-containing neurons express functional IL-1R1s that mediate peripheral IL-1β-, but not LPS-, induced hypophagia. Our present and previous findings indicate that the reduction of food intake after IL-1β and LPS are mediated by different neural pathways.
Collapse
Affiliation(s)
- Léa Chaskiel
- Psychoneuroimmunology, Nutrition and Genetics, UMR CNRS 5226-INRA 1286, University of Bordeaux, 33076 Bordeaux, France
| | - Adrian D Bristow
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Rose-Marie Bluthé
- Psychoneuroimmunology, Nutrition and Genetics, UMR CNRS 5226-INRA 1286, University of Bordeaux, 33076 Bordeaux, France
| | - Robert Dantzer
- Department of Symptom Research, MD Anderson Cancer Center, The University of Texas, Houston, TX 770030, USA
| | - Anders Blomqvist
- Division of Neurobiology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | - Jan Pieter Konsman
- UMR CNRS 5287 Aquitaine Institute for Integrative and Cognitive Neuroscience, University of Bordeaux, 33076 Bordeaux, France.
| |
Collapse
|
26
|
Barrientos RM, Brunton PJ, Lenz KM, Pyter L, Spencer SJ. Neuroimmunology of the female brain across the lifespan: Plasticity to psychopathology. Brain Behav Immun 2019; 79:39-55. [PMID: 30872093 PMCID: PMC6591071 DOI: 10.1016/j.bbi.2019.03.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/25/2019] [Accepted: 03/09/2019] [Indexed: 02/06/2023] Open
Abstract
The female brain is highly dynamic and can fundamentally remodel throughout the normal ovarian cycle as well as in critical life stages including perinatal development, pregnancy and old-age. As such, females are particularly vulnerable to infections, psychological disorders, certain cancers, and cognitive impairments. We will present the latest evidence on the female brain; how it develops through the neonatal period; how it changes through the ovarian cycle in normal individuals; how it adapts to pregnancy and postpartum; how it responds to illness and disease, particularly cancer; and, finally, how it is shaped by old age. Throughout, we will highlight female vulnerability to and resilience against disease and dysfunction in the face of environmental challenges.
Collapse
Affiliation(s)
- R M Barrientos
- Institute for Behavioral Medicine Research, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States; Department of Psychiatry and Behavioral Health, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States; Chronic Brain Injury Program, Discovery Themes Initiative, The Ohio State University, Columbus, OH 43210, United States
| | - P J Brunton
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland, UK; Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University School of Medicine, International Campus, Haining, Zhejiang 314400, PR China
| | - K M Lenz
- Institute for Behavioral Medicine Research, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States; Department of Psychology, Department of Neuroscience, The Ohio State University, Columbus, OH 43210, United States
| | - L Pyter
- Institute for Behavioral Medicine Research, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States; Department of Psychiatry and Behavioral Health, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States
| | - S J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic. 3083, Australia.
| |
Collapse
|
27
|
Tsyglakova M, McDaniel D, Hodes GE. Immune mechanisms of stress susceptibility and resilience: Lessons from animal models. Front Neuroendocrinol 2019; 54:100771. [PMID: 31325456 DOI: 10.1016/j.yfrne.2019.100771] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/17/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Abstract
Stress has an impact on the brain and the body. A growing literature demonstrates that feedback between the peripheral immune system and the brain contributes to individual differences in the behavioral response to stress. Here we examine preclinical literature to demonstrate a holistic vision of risk and resilience to stress. We identify a variety of cellular, cytokine and molecular mechanisms in adult animals that act in concert to produce a stress susceptible individual response. We discuss how cross talk between immune cells in the brain and in the periphery act together to increase permeability across the blood brain barrier or block it, resulting in susceptible or stress resilient phenotype. These preclinical studies have importance for understanding how individual differences in the immune response to stress may be contributing to mood related disorders such as depression, anxiety and posttraumatic stress disorders.
Collapse
Affiliation(s)
- Mariya Tsyglakova
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA, USA
| | - Dylan McDaniel
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Georgia E Hodes
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
28
|
Abstract
The innate immune system plays a critical role in the ethanol-induced neuroimmune response in the brain. Ethanol initiates the innate immune response via activation of the innate immune receptors Toll-like receptors (TLRs, e.g., TLR4, TLR3, TLR7) and NOD-like receptors (inflammasome NLRs) leading to a release of a plethora of chemokines and cytokines and development of the innate immune response. Cytokines and chemokines can have pro- or anti-inflammatory properties through which they regulate the immune response. In this chapter, we will focus on key cytokines (e.g., IL-1, IL-6, TNF-α) and chemokines (e.g., MCP-1/CCL2) that mediate the ethanol-induced neuroimmune responses. In this regard, we will use IL-1β, as an example cytokine, to discuss the neuromodulatory properties of cytokines on cellular properties and synaptic transmission. We will discuss their involvement through a set of evidence: (1) changes in gene and protein expression following ethanol exposure, (2) association of gene polymorphisms (humans) and alterations in gene expression (animal models) with increased alcohol intake, and (3) modulation of alcohol-related behaviors by transgenic or pharmacological manipulations of chemokine and cytokine systems. Over the last years, our understanding of the molecular mechanisms mediating cytokine- and chemokine-dependent regulation of immune responses has advanced tremendously, and we review evidence pointing to cytokines and chemokines serving as neuromodulators and regulators of neurotransmission.
Collapse
Affiliation(s)
- Marisa Roberto
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA.
| | - Reesha R Patel
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Michal Bajo
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
29
|
Pretreatment Cancer-Related Cognitive Impairment-Mechanisms and Outlook. Cancers (Basel) 2019; 11:cancers11050687. [PMID: 31100985 PMCID: PMC6562730 DOI: 10.3390/cancers11050687] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/06/2019] [Accepted: 05/14/2019] [Indexed: 12/25/2022] Open
Abstract
Cognitive changes are common in patients with active cancer and during its remission. This has largely been blamed on therapy-related toxicities and diagnosis-related stress, with little attention paid to the biological impact of cancer itself. A plethora of clinical studies demonstrates that cancer patients experience cognitive impairment during and after treatment. However, recent studies show that a significant portion of patients with non-central nervous system (CNS) tumors experience cognitive decline prior to treatment, suggesting a role for tumor-derived factors in modulating cognition and behavior. Cancer-related cognitive impairment (CRCI) negatively impacts a patient’s quality of life, reduces occupational and social functioning, and increases morbidity and mortality. Furthermore, patients with cancer cachexia frequently experience a stark neurocognitive decline, suggesting peripheral tumors exert an enduring toll on the brain during this chronic paraneoplastic syndrome. However, the scarcity of research on cognitive impairment in non-CNS cancers makes it difficult to isolate psychosocial, genetic, behavioral, and pathophysiological factors in CRCI. Furthermore, clinical models of CRCI are frequently confounded by complicated drug regimens that inherently affect neurocognitive processes. The severity of CRCI varies considerably amongst patients and highlights its multifactorial nature. Untangling the biological aspects of CRCI from genetic, psychosocial, and behavioral factors is non-trivial, yet vital in understanding the pathogenesis of CRCI and discovering means for therapeutic intervention. Recent evidence demonstrating the ability of peripheral tumors to alter CNS pathways in murine models is compelling, and it allows researchers to isolate the underlying biological mechanisms from the confounding psychosocial stressors found in the clinic. This review summarizes the state of the science of CRCI independent of treatment and focuses on biological mechanisms in which peripheral cancers modulate the CNS.
Collapse
|
30
|
Goldim MP, Danielski LG, Rodrigues JF, Joaquim L, Garbossa L, de Oliveira Junior AN, Metzker KLL, Giustina AD, Cardoso T, Barichello T, Petronilho F. Oxidative stress in the choroid plexus contributes to blood–cerebrospinal fluid barrier disruption during sepsis development. Microvasc Res 2019; 123:19-24. [DOI: 10.1016/j.mvr.2018.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/07/2018] [Accepted: 12/12/2018] [Indexed: 11/15/2022]
|
31
|
Langgartner D, Lowry CA, Reber SO. Old Friends, immunoregulation, and stress resilience. Pflugers Arch 2019; 471:237-269. [PMID: 30386921 PMCID: PMC6334733 DOI: 10.1007/s00424-018-2228-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/03/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
Abstract
There is a considerable body of evidence indicating that chronic adverse experience, especially chronic psychosocial stress/trauma, represents a major risk factor for the development of many somatic and affective disorders, including inflammatory bowel disease (IBD) and posttraumatic stress disorder (PTSD). However, the mechanisms underlying the development of chronic stress-associated disorders are still in large part unknown, and current treatment and prevention strategies lack efficacy and reliability. A greater understanding of mechanisms involved in the development and persistence of chronic stress-induced disorders may lead to novel approaches to prevention and treatment of these disorders. In this review, we provide evidence indicating that increases in immune (re-)activity and inflammation, potentially promoted by a reduced exposure to immunoregulatory microorganisms ("Old Friends") in today's modern society, may be causal factors in mediating the vulnerability to development and persistence of stress-related pathologies. Moreover, we discuss strategies to increase immunoregulatory processes and attenuate inflammation, as for instance contact with immunoregulatory Old Friends, which appears to be a promising strategy to promote stress resilience and to prevent/treat chronic stress-related disorders.
Collapse
Affiliation(s)
- Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
- Department of Physical Medicine & Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Denver Veterans Affairs Medical Center (VAMC), Denver, CO, 80220, USA
- Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO, 80220, USA
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany.
| |
Collapse
|
32
|
Liu X, Nemeth DP, McKim DB, Zhu L, DiSabato DJ, Berdysz O, Gorantla G, Oliver B, Witcher KG, Wang Y, Negray CE, Vegesna RS, Sheridan JF, Godbout JP, Robson MJ, Blakely RD, Popovich PG, Bilbo SD, Quan N. Cell-Type-Specific Interleukin 1 Receptor 1 Signaling in the Brain Regulates Distinct Neuroimmune Activities. Immunity 2019; 50:317-333.e6. [PMID: 30683620 DOI: 10.1016/j.immuni.2018.12.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/21/2018] [Accepted: 12/10/2018] [Indexed: 01/13/2023]
Abstract
Interleukin-1 (IL-1) signaling is important for multiple potentially pathogenic processes in the central nervous system (CNS), but the cell-type-specific roles of IL-1 signaling are unclear. We used a genetic knockin reporter system in mice to track and reciprocally delete or express IL-1 receptor 1 (IL-1R1) in specific cell types, including endothelial cells, ventricular cells, peripheral myeloid cells, microglia, astrocytes, and neurons. We found that endothelial IL-1R1 was necessary and sufficient for mediating sickness behavior and drove leukocyte recruitment to the CNS and impaired neurogenesis, whereas ventricular IL-1R1 was critical for monocyte recruitment to the CNS. Although microglia did not express IL-1R1, IL-1 stimulation of endothelial cells led to the induction of IL-1 in microglia. Together, these findings describe the structure and functions of the brain's IL-1R1-expressing system and lay a foundation for the dissection and identification of IL-1R1 signaling pathways in the pathogenesis of CNS diseases.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel P Nemeth
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel B McKim
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Department of Animal Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ling Zhu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Damon J DiSabato
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Olimpia Berdysz
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Gowthami Gorantla
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Braedan Oliver
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kristina G Witcher
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Yufen Wang
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | - Christina E Negray
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Rekha S Vegesna
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - John F Sheridan
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Jonathan P Godbout
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew J Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Phillip G Popovich
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Staci D Bilbo
- Pediatrics and Neuroscience, Harvard Medical School, Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, MA 02126, USA
| | - Ning Quan
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
33
|
Acute transient cognitive dysfunction and acute brain injury induced by systemic inflammation occur by dissociable IL-1-dependent mechanisms. Mol Psychiatry 2019; 24:1533-1548. [PMID: 29875474 PMCID: PMC6510649 DOI: 10.1038/s41380-018-0075-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 02/12/2018] [Accepted: 04/03/2018] [Indexed: 01/06/2023]
Abstract
Systemic inflammation can impair cognition with relevance to dementia, delirium and post-operative cognitive dysfunction. Episodes of delirium also contribute to rates of long-term cognitive decline, implying that these acute events induce injury. Whether systemic inflammation-induced acute dysfunction and acute brain injury occur by overlapping or discrete mechanisms remains unexplored. Here we show that systemic inflammation, induced by bacterial LPS, produces both working-memory deficits and acute brain injury in the degenerating brain and that these occur by dissociable IL-1-dependent processes. In normal C57BL/6 mice, LPS (100 µg/kg) did not affect working memory but impaired long-term memory consolidation. However prior hippocampal synaptic loss left mice selectively vulnerable to LPS-induced working memory deficits. Systemically administered IL-1 receptor antagonist (IL-1RA) was protective against, and systemic IL-1β replicated, these working memory deficits. Dexamethasone abolished systemic cytokine synthesis and was protective against working memory deficits, without blocking brain IL-1β synthesis. Direct application of IL-1β to ex vivo hippocampal slices induced non-synaptic depolarisation and irreversible loss of membrane potential in CA1 neurons from diseased animals and systemic LPS increased apoptosis in the degenerating brain, in an IL-1RI-dependent fashion. The data suggest that LPS induces working memory dysfunction via circulating IL-1β but direct hippocampal action of IL-1β causes neuronal dysfunction and may drive neuronal death. The data suggest that acute systemic inflammation produces both reversible cognitive deficits, resembling delirium, and acute brain injury contributing to long-term cognitive impairment but that these events are mechanistically dissociable. These data have significant implications for management of cognitive dysfunction during acute illness.
Collapse
|
34
|
Gorjao R, Dos Santos CMM, Serdan TDA, Diniz VLS, Alba-Loureiro TC, Cury-Boaventura MF, Hatanaka E, Levada-Pires AC, Sato FT, Pithon-Curi TC, Fernandes LC, Curi R, Hirabara SM. New insights on the regulation of cancer cachexia by N-3 polyunsaturated fatty acids. Pharmacol Ther 2018; 196:117-134. [PMID: 30521881 DOI: 10.1016/j.pharmthera.2018.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer cachexia is a multifactorial syndrome that develops during malignant tumor growth. Changes in plasma levels of several hormones and inflammatory factors result in an intense catabolic state, decreased activity of anabolic pathways, anorexia, and marked weight loss, leading to cachexia development and/or accentuation. Inflammatory mediators appear to be related to the control of a highly regulated process of muscle protein degradation that accelerates the process of cachexia. Several mediators have been postulated to participate in this process, including TNF-α, myostatin, and activated protein degradation pathways. Some interventional therapies have been proposed, including nutritional (dietary, omega-3 fatty acid supplementation), hormonal (insulin), pharmacological (clenbuterol), and nonpharmacological (physical exercise) therapies. Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid, are recognized for their anti-inflammatory properties and have been used in therapeutic approaches to treat or attenuate cancer cachexia. In this review, we discuss recent findings on cellular and molecular mechanisms involved in inflammation in the cancer cachexia syndrome and the effectiveness of n-3 PUFAs to attenuate or prevent cancer cachexia.
Collapse
Affiliation(s)
- Renata Gorjao
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | | | | | | | | | | | - Elaine Hatanaka
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | | | - Fábio Takeo Sato
- Institute of Biology, State University of Campinas, Campinas, Brazil; School of Biomedical Sciences, Monash University, Melbourne, Australia
| | | | | | - Rui Curi
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil; Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Sandro Massao Hirabara
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil; Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
35
|
Nessaibia I, Fouache A, Lobaccaro JMA, Tahraoui A, Trousson A, Souidi M. Stress as an immunomodulator: liver X receptors maybe the answer. Inflammopharmacology 2018; 27:15-25. [PMID: 30467620 DOI: 10.1007/s10787-018-0546-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/03/2018] [Indexed: 02/07/2023]
Abstract
Stress is a reflex response, both psychological and physiological, of the body to a difficult situation that requires adaptation. Stress is at the intersection of the objective event and the subjective event. The physiological mechanisms involved in chronic stress are numerous and can contribute to a wide variety of disorders, in all systems including the immune system. Stress modifies the Th1/Th2 balance via the HPA axis and a set of immune mediators. This will make the body more vulnerable to external infections in a scientific way while others claim the opposite, stress could be considered immune stimulatory. The development of synthetic LXR ligands such as T0901317 and GW3965 as well as an understanding of the direct involvement of these receptors in the regulation of proopiomelanocortin (POMC) gene expression and indirectly by producing a variety of cytokines in a stressor response, will open in the near future new therapeutic methods against the undesirable effects of stress on the behavior of the immune system.
Collapse
Affiliation(s)
- Issam Nessaibia
- CNRS UMR 6293, Laboratory GReD, INSERM U 1103, Clermont Auvergne University, 28 Place Henri Dunant, 63000, Clermont-Ferrand, France.
- Laboratory of Applied Neuro-Endocrinology, Department of Biology, Badji-Mokhtar University, Annaba, Algeria.
| | - Allan Fouache
- CNRS UMR 6293, Laboratory GReD, INSERM U 1103, Clermont Auvergne University, 28 Place Henri Dunant, 63000, Clermont-Ferrand, France
| | - Jean-Marc A Lobaccaro
- CNRS UMR 6293, Laboratory GReD, INSERM U 1103, Clermont Auvergne University, 28 Place Henri Dunant, 63000, Clermont-Ferrand, France
| | - Abdelkrim Tahraoui
- Laboratory of Applied Neuro-Endocrinology, Department of Biology, Badji-Mokhtar University, Annaba, Algeria
| | - Amalia Trousson
- CNRS UMR 6293, Laboratory GReD, INSERM U 1103, Clermont Auvergne University, 28 Place Henri Dunant, 63000, Clermont-Ferrand, France
| | - Maâmar Souidi
- Institut de radioprotection et de sûreté nucléaire, Direction de la radioprotection de l'homme, IRSN, Fontenay-aux-Roses Cedex, France
| |
Collapse
|
36
|
Peña-Ortega F. Clinical and experimental aspects of breathing modulation by inflammation. Auton Neurosci 2018; 216:72-86. [PMID: 30503161 DOI: 10.1016/j.autneu.2018.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022]
Abstract
Neuroinflammation is produced by local or systemic alterations and mediated mainly by glia, affecting the activity of various neural circuits including those involved in breathing rhythm generation and control. Several pathological conditions, such as sudden infant death syndrome, obstructive sleep apnea and asthma exert an inflammatory influence on breathing-related circuits. Consequently breathing (both resting and ventilatory responses to physiological challenges), is affected; e.g., responses to hypoxia and hypercapnia are compromised. Moreover, inflammation can induce long-lasting changes in breathing and affect adaptive plasticity; e.g., hypoxic acclimatization or long-term facilitation. Mediators of the influences of inflammation on breathing are most likely proinflammatory molecules such as cytokines and prostaglandins. The focus of this review is to summarize the available information concerning the modulation of the breathing function by inflammation and the cellular and molecular aspects of this process. I will consider: 1) some clinical and experimental conditions in which inflammation influences breathing; 2) the variety of experimental approaches used to understand this inflammatory modulation; 3) the likely cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México.
| |
Collapse
|
37
|
Duan L, Zhang XD, Miao WY, Sun YJ, Xiong G, Wu Q, Li G, Yang P, Yu H, Li H, Wang Y, Zhang M, Hu LY, Tong X, Zhou WH, Yu X. PDGFRβ Cells Rapidly Relay Inflammatory Signal from the Circulatory System to Neurons via Chemokine CCL2. Neuron 2018; 100:183-200.e8. [PMID: 30269986 DOI: 10.1016/j.neuron.2018.08.030] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/30/2018] [Accepted: 08/20/2018] [Indexed: 01/19/2023]
Abstract
Acute infection, if not kept in check, can lead to systemic inflammatory responses in the brain. Here, we show that within 2 hr of systemic inflammation, PDGFRβ mural cells of blood vessels rapidly secrete chemokine CCL2, which in turn increases total neuronal excitability by promoting excitatory synaptic transmission in glutamatergic neurons of multiple brain regions. By single-cell RNA sequencing, we identified Col1a1 and Rgs5 subgroups of PDGFRβ cells as the main source of CCL2. Lipopolysaccharide (LPS)- or Poly(I:C)-treated pericyte culture medium induced similar effects in a CCL2-dependent manner. Importantly, in Pdgfrb-Cre;Ccl2fl/fl mice, LPS-induced increase in excitatory synaptic transmission was significantly attenuated. These results demonstrate in vivo that PDGFRβ cells function as initial sensors of external insults by secreting CCL2, which relays the signal to the central nervous system. Through their gateway position in the brain, PDGFRβ cells are ideally positioned to respond rapidly to environmental changes and to coordinate responses.
Collapse
Affiliation(s)
- Lihui Duan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Di Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wan-Ying Miao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun-Jun Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guoliang Xiong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuzi Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guangying Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ping Yang
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Hang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Humingzhu Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yue Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Min Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li-Yuan Hu
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiaoping Tong
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen-Hao Zhou
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
38
|
Abstract
Fever is a common symptom of infectious and inflammatory disease. It is well-established that prostaglandin E2 is the final mediator of fever, which by binding to its EP3 receptor subtype in the preoptic hypothalamus initiates thermogenesis. Here, we review the different hypotheses on how the presence of peripherally released pyrogenic substances can be signaled to the brain to elicit fever. We conclude that there is unequivocal evidence for a humoral signaling pathway by which proinflammatory cytokines, through their binding to receptors on brain endothelial cells, evoke fever by eliciting prostaglandin E2 synthesis in these cells. The evidence for a role for other signaling routes for fever, such as signaling via circumventricular organs and peripheral nerves, as well as transfer into the brain of peripherally synthesized prostaglandin E2 are yet far from conclusive. We also review the efferent limb of the pyrogenic pathways. We conclude that it is well established that prostaglandin E2 binding in the preoptic hypothalamus produces fever by disinhibition of presympathetic neurons in the brain stem, but there is yet little understanding of the mechanisms by which factors such as nutritional status and ambient temperature shape the response to the peripheral immune challenge.
Collapse
Affiliation(s)
- Anders Blomqvist
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health, Linköping University, Linköping, Sweden
| | - David Engblom
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health, Linköping University, Linköping, Sweden
| |
Collapse
|
39
|
Savitz J, Harrison NA. Interoception and Inflammation in Psychiatric Disorders. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:514-524. [PMID: 29884282 PMCID: PMC5995132 DOI: 10.1016/j.bpsc.2017.12.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/28/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
Abstract
Despite a historical focus on neurally mediated interoceptive signaling mechanisms, humoral (and even cellular) signals also play an important role in communicating bodily physiological state to the brain. These signaling pathways can perturb neuronal structure, chemistry, and function, leading to discrete changes in behavior. They are also increasingly implicated in the pathophysiology of psychiatric disorders. The importance of these humoral signaling pathways is perhaps most powerfully illustrated in the context of infection and inflammation. Here we provide an overview of how interaction of immune activation of neural and humoral interoceptive mechanisms mediates discrete changes in brain and behavior and highlight how activation of these pathways at specific points in neural development may predispose to psychiatric disorder. As our mechanistic understanding of these interoceptive pathways continues to emerge, it is revealing novel therapeutic targets, potentially heralding an exciting new era of immunotherapies in psychiatry.
Collapse
Affiliation(s)
- Jonathan Savitz
- Laureate Institute for Brain Research, the University of Tulsa, Tulsa, Oklahoma; Oxley College of Health Sciences, the University of Tulsa, Tulsa, Oklahoma
| | - Neil A Harrison
- Clinical Imaging Sciences Centre, Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom; Sackler Centre for Consciousness Science, University of Sussex, Brighton, United Kingdom; Sussex Partnership NHS Foundation Trust, Brighton, United Kingdom.
| |
Collapse
|
40
|
Gabriel Knoll J, Krasnow SM, Marks DL. Interleukin-1β signaling in fenestrated capillaries is sufficient to trigger sickness responses in mice. J Neuroinflammation 2017; 14:219. [PMID: 29121947 PMCID: PMC5680784 DOI: 10.1186/s12974-017-0990-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/30/2017] [Indexed: 11/13/2023] Open
Abstract
BACKGROUND The physiological and behavioral symptoms of sickness, including fever, anorexia, behavioral depression, and weight loss can be both beneficial and detrimental. These sickness responses are triggered by pro-inflammatory cytokines acting on cells within the brain. Previous research demonstrates that the febrile response to peripheral insults depends upon prostaglandin production by vascular endothelial cells, but the mechanisms and specific cell type(s) responsible for other sickness responses remain unknown. The purpose of the present study was to identify which cells within the brain are required for sickness responses triggered by central nervous system inflammation. METHODS Intracerebroventricular (ICV) administration of 10 ng of the potent pro-inflammatory cytokine interleukin-1β (IL-1β) was used as an experimental model of central nervous system cytokine production. We examined which cells respond to IL-1β in vivo via fluorescent immunohistochemistry. Using multiple transgenic mouse lines expressing Cre recombinase under the control of cell-specific promoters, we eliminated IL-1β signaling from different populations of cells. Food consumption, body weight, movement, and temperature were recorded in adult male mice and analyzed by two-factor ANOVA to determine where IL-1β signaling is essential for sickness responses. RESULTS Endothelial cells, microglia, ependymal cells, and astrocytes exhibit nuclear translocation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) in response to IL-1β. Interfering with IL-1β signaling in microglia, endothelial cells within the parenchyma of the brain, or both did not affect sickness responses. Only mice that lacked IL-1β signaling in all endothelium including fenestrated capillaries lacked sickness responses. CONCLUSIONS These experiments show that IL-1β-induced sickness responses depend on intact IL-1β signaling in blood vessels and suggest that fenestrated capillaries act as a critical signaling relay between the immune and nervous systems. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- J. Gabriel Knoll
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Mail Code L481 3181 SW Sam Jackson Park Rd, Portland, OR 97239 USA
| | - Stephanie M. Krasnow
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Mail Code L481 3181 SW Sam Jackson Park Rd, Portland, OR 97239 USA
| | - Daniel L. Marks
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Mail Code L481 3181 SW Sam Jackson Park Rd, Portland, OR 97239 USA
| |
Collapse
|
41
|
The effect of melatonin from slow-release implants on basic and TLR-4-mediated gene expression of inflammatory cytokines and their receptors in the choroid plexus in ewes. Res Vet Sci 2017; 113:50-55. [PMID: 28889016 DOI: 10.1016/j.rvsc.2017.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/06/2017] [Accepted: 09/03/2017] [Indexed: 12/18/2022]
Abstract
The present study concerns the effect of melatonin from slow-release implants on the expression of genes coding interleukin-1β (Il1B), inerleukin-6 (Il6), tumour necrosis factor α (Tnf) and their receptors: IL-1 receptor type I (Il1r1) and type II (Il1r2), IL-6 receptor (Il6r) and signal transducer (Il6st), TNFα receptor type I (Tnfrsf1a) and II (Tnfrsf1b) and retinoid-related orphan receptor α (RorA) and Rev.-erbα in the ovine choroid plexus (CP) under basal and lipopolysaccharide (LPS)-challenged conditions. Studies were performed on four groups: 1) sham-implanted and placebo-treated, 2) melatonin-implanted (Melovine, 18mg) and placebo-treated, 3) sham-implanted and LPS-treated (400ng/kg of body weight) and 4) melatonin-implanted and LPS-treated. Under basal conditions, we observed weak expression of Tnf, low expression of Il1B, Il6 and Il1r2 and intermediate expression of other cytokines receptors. LPS treatment induced (P≤0.05) expression in all cytokines and their receptors, except Il6r 3h after the administration. Melatonin attenuated (P≤0.05) LPS-induced up-regulation of Il6 but had no effect on other cytokines and their receptors and up-regulated (P≤0.05) Rev.-erbα expression under basal conditions. This indicates that melatonin from slow-release implants suppresses TLR4-mediated Il6 expression in the ovine CP via a mechanism likely involving clock genes.
Collapse
|
42
|
Kaufmann FN, Costa AP, Ghisleni G, Diaz AP, Rodrigues ALS, Peluffo H, Kaster MP. NLRP3 inflammasome-driven pathways in depression: Clinical and preclinical findings. Brain Behav Immun 2017; 64:367-383. [PMID: 28263786 DOI: 10.1016/j.bbi.2017.03.002] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/13/2017] [Accepted: 03/01/2017] [Indexed: 12/12/2022] Open
Abstract
Over the past three decades, an intricate interaction between immune activation, release of pro-inflammatory cytokines and changes in brain circuits related to mood and behavior has been described. Despite extensive efforts, questions regarding when inflammation becomes detrimental or how we can target the immune system to develop new therapeutic strategies for the treatment of psychiatric disorders remain unresolved. In this context, novel aspects of the neuroinflammatory process activated in response to stressful challenges have recently been documented in major depressive disorder (MDD). The Nod-like receptor pyrin containing 3 inflammasome (NLRP3) is an intracellular multiprotein complex responsible for a number of innate immune processes associated with infection, inflammation and autoimmunity. Recent data have demonstrated that NLRP3 activation appears to bridge the gap between immune activation and metabolic danger signals or stress exposure, which are key factors in the pathogenesis of psychiatric disorders. In this review, we discuss both preclinical and clinical evidence that links the assembly of the NLRP3 complex and the subsequent proteolysis and release of the pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) in chronic stress models and patients with MDD. Importantly, we also focus on the therapeutic potential of targeting the NLRP3 inflammasome complex to improve stress resilience and depressive symptoms.
Collapse
Affiliation(s)
- Fernanda N Kaufmann
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Ana Paula Costa
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Gabriele Ghisleni
- Department of Life and Health Sciences, Catholic University of Pelotas, Rio Grande do Sul, Brazil
| | - Alexandre P Diaz
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Santa Catarina, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Hugo Peluffo
- Neuroinflammation and Gene Therapy Lab., Institut Pasteur de Montevideo, Uruguay; Dept. Histology and Embryology, Faculty of Medicine, UDELAR, Uruguay
| | - Manuella P Kaster
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
43
|
Ribeiro A, Mayer C, Wilson C, Martin R, MacFarlane P. Intratracheal LPS administration attenuates the acute hypoxic ventilatory response: Role of brainstem IL-1β receptors. Respir Physiol Neurobiol 2017; 242:45-51. [DOI: 10.1016/j.resp.2017.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 01/01/2023]
|
44
|
Krasnow SM, Knoll JG, Verghese SC, Levasseur PR, Marks DL. Amplification and propagation of interleukin-1β signaling by murine brain endothelial and glial cells. J Neuroinflammation 2017; 14:133. [PMID: 28668091 PMCID: PMC5494131 DOI: 10.1186/s12974-017-0908-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/25/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND During acute infections and chronic illnesses, the pro-inflammatory cytokine interleukin-1β (IL-1β) acts within the brain to elicit metabolic derangements and sickness behaviors. It is unknown which cells in the brain are the proximal targets for IL-1β with respect to the generation of these illness responses. We performed a series of in vitro experiments to (1) investigate which brain cell populations exhibit inflammatory responses to IL-1β and (2) examine the interactions between different IL-1β-responsive cell types in various co-culture combinations. METHODS We treated primary cultures of murine brain microvessel endothelial cells (BMEC), astrocytes, and microglia with PBS or IL-1β, and then performed qPCR to measure inflammatory gene expression or immunocytochemistry to evaluate nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. To evaluate whether astrocytes and/or BMEC propagate inflammatory signals to microglia, we exposed microglia to astrocyte-conditioned media and co-cultured endothelial cells and glia in transwells. Treatment groups were compared by Student's t tests or by ANOVA followed by Bonferroni-corrected t tests. RESULTS IL-1β increased inflammatory gene expression and NF-κB activation in primary murine-mixed glia, enriched astrocyte, and BMEC cultures. Although IL-1β elicited minimal changes in inflammatory gene expression and did not induce the nuclear translocation of NF-κB in isolated microglia, these cells were more robustly activated by IL-1β when co-cultured with astrocytes and/or BMEC. We observed a polarized endothelial response to IL-1β, because the application of IL-1β to the abluminal endothelial surface produced a more complex microglial inflammatory response than that which occurred following luminal IL-1β exposure. CONCLUSIONS Inflammatory signals are detected, amplified, and propagated through the CNS via a sequential and reverberating signaling cascade involving communication between brain endothelial cells and glia. We propose that the brain's innate immune response differs depending upon which side of the blood-brain barrier the inflammatory stimulus arises, thus allowing the brain to respond differently to central vs. peripheral inflammatory insults.
Collapse
Affiliation(s)
- Stephanie M Krasnow
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - J Gabriel Knoll
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Santhosh Chakkaramakkil Verghese
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Peter R Levasseur
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Daniel L Marks
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, 97239, USA. .,Oregon Health & Science University, Mail Code L481, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA.
| |
Collapse
|
45
|
Hutson LW, Lebonville CL, Jones ME, Fuchs RA, Lysle DT. Interleukin-1 signaling in the basolateral amygdala is necessary for heroin-conditioned immunosuppression. Brain Behav Immun 2017; 62:171-179. [PMID: 28131792 PMCID: PMC5828772 DOI: 10.1016/j.bbi.2017.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/14/2017] [Accepted: 01/23/2017] [Indexed: 12/22/2022] Open
Abstract
Heroin administration suppresses the production of inducible nitric oxide (NO), as indicated by changes in splenic inducible nitric oxide synthase (iNOS) and plasma nitrate/nitrite. Since NO is a measure of host defense against infection and disease, this provides evidence that heroin can increase susceptibility to pathogens by directly interacting with the immune system. Previous research in our laboratory has demonstrated that these immunosuppressive effects of heroin can also be conditioned to environmental stimuli by repeatedly pairing heroin administration with a unique environmental context. Re-exposure to a previously drug-paired context elicits immunosuppressive effects similar to heroin administration alone. In addition, our laboratory has reported that the basolateral amygdala (BLA) and medial nucleus accumbens shell (mNAcS) are critical neural substrates that mediate this conditioned effect. However, our understanding of the contributing mechanisms within these brain regions is limited. It is known that the cytokine interleukin-1 (IL-1) plays an important role in learning and memory. In fact, our laboratory has demonstrated that inhibition of IL-1β expression in the dorsal hippocampus (DH) prior to re-exposure to a heroin-paired context prevents the suppression of measures of NO production. Therefore, the present studies sought to further investigate the role of IL-1 in heroin-conditioned immunosuppression. Blockade of IL-1 signaling in the BLA, but not in the caudate putamen or mNAcS, using IL-1 receptor antagonist (IL-1Ra) attenuated heroin-conditioned immunosuppression of NO production as measured by plasma nitrate/nitrite and iNOS mRNA expression in spleen tissue. Taken together, these findings suggest that IL-1 signaling in the BLA is necessary for the expression of heroin-conditioned immunosuppression of NO production and may be a target for interventions that normalize immune function in heroin users and patient populations exposed to opiate regimens.
Collapse
Affiliation(s)
- Lee W Hutson
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, Chapel Hill, NC, USA
| | - Christina L Lebonville
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, Chapel Hill, NC, USA
| | - Meghan E Jones
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, Chapel Hill, NC, USA
| | - Rita A Fuchs
- Washington State University, College of Veterinary Medicine, Department of Integrative Physiology and Neuroscience, Pullman, WA, USA
| | - Donald T Lysle
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, Chapel Hill, NC, USA.
| |
Collapse
|
46
|
Varatharaj A, Galea I. The blood-brain barrier in systemic inflammation. Brain Behav Immun 2017; 60:1-12. [PMID: 26995317 DOI: 10.1016/j.bbi.2016.03.010] [Citation(s) in RCA: 707] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/06/2016] [Accepted: 03/15/2016] [Indexed: 12/22/2022] Open
Abstract
The blood-brain barrier (BBB) plays a key role in maintaining the specialized microenvironment of the central nervous system (CNS), and enabling communication with the systemic compartment. BBB changes occur in several CNS pathologies. Here, we review disruptive and non-disruptive BBB changes in systemic infections and other forms of systemic inflammation, and how these changes may affect CNS function in health and disease. We first describe the structure and function of the BBB, and outline the techniques used to study the BBB in vitro, and in animal and human settings. We then summarise the evidence from a range of models linking BBB changes with systemic inflammation, and the underlying mechanisms. The clinical relevance of these BBB changes during systemic inflammation are discussed in the context of clinically-apparent syndromes such as sickness behaviour, delirium, and septic encephalopathy, as well as neurological conditions such as Alzheimer's disease and multiple sclerosis. We review emerging evidence for two novel concepts: (1) a heightened sensitivity of the diseased, versus healthy, BBB to systemic inflammation, and (2) the contribution of BBB changes induced by systemic inflammation to progression of the primary disease process.
Collapse
Affiliation(s)
- Aravinthan Varatharaj
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Mailpoint 806, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, United Kingdom.
| | - Ian Galea
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Mailpoint 806, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, United Kingdom.
| |
Collapse
|
47
|
Weber MD, Godbout JP, Sheridan JF. Repeated Social Defeat, Neuroinflammation, and Behavior: Monocytes Carry the Signal. Neuropsychopharmacology 2017; 42:46-61. [PMID: 27319971 PMCID: PMC5143478 DOI: 10.1038/npp.2016.102] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/28/2016] [Accepted: 05/27/2016] [Indexed: 02/06/2023]
Abstract
Mounting evidence indicates that proinflammatory signaling in the brain affects mood, cognition, and behavior and is linked with the etiology of psychiatric disorders, including anxiety and depression. The purpose of this review is to focus on stress-induced bidirectional communication pathways between the central nervous system (CNS) and peripheral immune system that converge to promote a heightened neuroinflammatory environment. These communication pathways involve sympathetic outflow from the brain to the peripheral immune system that biases hematopoietic stem cells to differentiate into a glucocorticoid-resistant and primed myeloid lineage immune cell. In conjunction, microglia-dependent neuroinflammatory events promote myeloid cell trafficking to the brain that reinforces stress-related behavior, and is argued to play a role in stress-related psychiatric disorders. We will discuss evidence implicating a key role for endothelial cells that comprise the blood-brain barrier in propagating peripheral-to-central immune communication. We will also discuss novel neuron-to-glia communication pathways involving endogenous danger signals that have recently been argued to facilitate neuroinflammation under various conditions, including stress. These findings help elucidate the complex communication that occurs in response to stress and highlight novel therapeutic targets against the development of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Michael D Weber
- Division of Biosciences, The Ohio State University, Columbus, OH, USA,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA,Division of Biosciences, The Ohio State University, 223 IBMR Building, 305 W 12th Avenue, 460 Medical Center Drive, Columbus, OH 43210, USA, Tel: 614-293-3392, Fax: 614-292-6087, E-mail:
| | - Jonathan P Godbout
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA,Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - John F Sheridan
- Division of Biosciences, The Ohio State University, Columbus, OH, USA,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
48
|
Abstract
Systemic inflammation rapidly impairs mood, motivation, and cognition inducing a stereotyped cluster of symptoms collectively known as "sickness behaviors." When inflammation is severe or chronic, these behavioral changes can appear indistinguishable from major depressive disorder (MDD). Human and rodent neuroimaging combined with experimental inflammatory challenges has clarified the neural circuitry associated with many of the key features of inflammation-induced-sickness behavior, and in so doing revealed often-remarkable commonalities with circuit abnormalities observed in MDD. This review aims to provide the first synthesis of this work illustrating areas of convergence and divergence with the MDD literature as well as highlighting areas for future study.
Collapse
Affiliation(s)
- Neil A Harrison
- Department of Neuroscience, Brighton & Sussex Medical School, University of Sussex, Brighton, BN1 9RR, UK.
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, BN1 9RR, UK.
- Sussex Partnership NHS Foundation Trust, Swandean, West Sussex, BN13 3E, UK.
| |
Collapse
|
49
|
Sandrof MA, Emerich DF, Thanos CG. Primary Choroid Plexus Tissue for Use in Cellular Therapy. Methods Mol Biol 2017; 1479:237-249. [PMID: 27738941 DOI: 10.1007/978-1-4939-6364-5_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The choroid plexus (CP) has been explored as a cellular therapeutic due to its broad-ranging secretome and demonstrated longevity in a variety of encapsulation modalities. While the CP organ is normally involved in disease repair processes in the brain, the range of indications that could potentially be ameliorated with exogenous CP therapy is widespread, including diseases of the central nervous system, hearing loss, chronic wounds, and others. The CP can be isolated from animal sources and digested into a highly purified epithelial culture that can withstand encapsulation and transplantation. Its epithelium can adapt to different microenvironments, and depending on culture conditions, can be manipulated into various three-dimensional configurations with distinct gene expression profiles. The cocktail of proteins secreted by the CP can be harvested in culture, and purified forms of these extracts have been evaluated in topical applications to treat poorly healing wounds. When encapsulated, the epithelial clusters can be maintained for extended durations in vitro with minimal impact on potency. A treatment for Parkinson's disease utilizing encapsulated porcine CP has been developed and is currently being evaluated in a Phase I clinical trial. The current chapter serves to summarize recent experience with CP factor delivery, and provides a description of the relevant materials and methods employed in these studies.
Collapse
Affiliation(s)
- M A Sandrof
- Cytosolv, Inc., 117 Chapman Street, Suite 107, Providence, RI, 02905, USA
| | | | - Chris G Thanos
- Cytosolv, Inc., 117 Chapman Street, Suite 107, Providence, RI, 02905, USA.
| |
Collapse
|
50
|
Calderón-Garcidueñas L, Maronpot RR, Torres-Jardon R, Henríquez-Roldán C, Schoonhoven R, Acuña-Ayala H, Villarreal-Calderón A, Nakamura J, Fernando R, Reed W, Azzarelli B, Swenberg JA. DNA Damage in Nasal and Brain Tissues of Canines Exposed to Air Pollutants Is Associated with Evidence of Chronic Brain Inflammation and Neurodegeneration. Toxicol Pathol 2016; 31:524-38. [PMID: 14692621 DOI: 10.1080/01926230390226645] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute, subchronic, or chronic exposures to particulate matter (PM) and pollutant gases affect people in urban areas and those exposed to fires, disasters, and wars. Respiratory tract inflammation, production of mediators of inflammation capable of reaching the brain, systemic circulation of PM, and disruption of the nasal respiratory and olfactory barriers are likely in these populations. DNA damage is crucial in aging and in age-associated diseases such as Alzheimer's disease. We evaluated apurinic/apyrimidinic (AP) sites in nasal and brain genomic DNA, and explored by immunohistochemistry the expression of nuclear factor NF κB p65, inducible nitric oxide synthase (iNOS), cyclo-oxygenase 2 (COX2), metallothionein I and II, apolipoprotein E, amyloid precursor protein (APP), and beta-amyloid1-42 in healthy dogs naturally exposed to urban pollution in Mexico City. Nickel (Ni) and vanadium (V) were measured by inductively coupled plasma mass spectrometry (ICP-MS). Forty mongrel dogs, ages 7 days—10 years were studied (14 controls from Tlaxcala and 26 exposed to urban pollution in South West Metropolitan Mexico City (SWMMC)). Nasal respiratory and olfactory epithelium were found to be early pollutant targets. Olfactory bulb and hippocampal AP sites were significantly higher in exposed than in control age matched animals. Ni and V were present in a gradient from olfactory mucosa > olfactory bulb > frontal cortex. Exposed dogs had (a) nuclear neuronal NF κB p65, (b) endothelial, glial and neuronal iNOS, (c) endothelial and glial COX2, (d) ApoE in neuronal, glial and vascular cells, and (e) APP and β amyloid1-42 in neurons, diffuse plaques (the earliest at age 11 months), and in subarachnoid blood vessels. Increased AP sites and the inflammatory and stress protein brain responses were early and significant in dogs exposed to urban pollution. Oil combustion PM-associated metals Ni and V were detected in the brain. There was an acceleration of Alzheimer's-type pathology in dogs chronically exposed to air pollutants. Respiratory tract inflammation and deteriorating olfactory and respiratory barriers may play a role in the observed neuropathology. These data suggest that Alzheimer's disease may be the sequela of air pollutant exposures and the resulting systemic inflammation.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- Environmental Pathology Program, University of North Carolina at Chapel Hill, North Carolina 27599-7310, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|