1
|
Ivan VE, Tomàs-Cuesta DP, Esteves IM, Luczak A, Mohajerani M, McNaughton BL, Gruber AJ. Psilocybin reduces functional correlation and the encoding of spatial information by neurons in mouse retrosplenial cortex. Eur J Neurosci 2024; 60:6395-6407. [PMID: 39364682 DOI: 10.1111/ejn.16558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
Psychedelic drugs have profound effects on perception, cognition and mood. How psychedelics affect neural signaling to produce these effects remains poorly understood. We investigated the effect of the classic psychedelic psilocybin on neural activity patterns and spatial encoding in the retrosplenial cortex of head-fixed mice navigating on a treadmill. The place specificity of neurons to distinct locations along the belt was reduced by psilocybin. Moreover, the stability of place-related activity across trials decreased. Psilocybin also reduced the functional correlation among simultaneously recorded neurons. The 5-HT2AR (serotonin 2A receptor) antagonist ketanserin blocked these effects. These data are consistent with proposals that psychedelics increase the entropy of neural signaling and provide a potential neural mechanism contributing to disorientation frequently reported by humans after taking psychedelics.
Collapse
Affiliation(s)
- Victorita E Ivan
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - David P Tomàs-Cuesta
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Ingrid M Esteves
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Artur Luczak
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Majid Mohajerani
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Douglas Research Centre, Department of Psychiatry, McGill University, Montreal, Canada
| | - Bruce L McNaughton
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, California, USA
| | - Aaron J Gruber
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
2
|
Mindlin I, Herzog R, Belloli L, Manasova D, Monge-Asensio M, Vohryzek J, Escrichs A, Alnagger N, Núñez P, Gosseries O, Kringelbach ML, Deco G, Tagliazucchi E, Naccache L, Rohaut B, Sitt JD, Sanz Perl Y. Whole brain modelling for simulating pharmacological interventions on patients with disorders of consciousness. Commun Biol 2024; 7:1176. [PMID: 39300281 DOI: 10.1038/s42003-024-06852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Disorders of consciousness (DoC) represent a challenging and complex group of neurological conditions characterised by profound disturbances in consciousness. The current range of treatments for DoC is limited. This has sparked growing interest in developing new treatments, including the use of psychedelic drugs. Nevertheless, clinical investigations and the mechanisms behind them are methodologically and ethically constrained. To tackle these limitations, we combined biologically plausible whole-brain models with deep learning techniques to characterise the low-dimensional space of DoC patients. We investigated the effects of model pharmacological interventions by including the whole-brain dynamical consequences of the enhanced neuromodulatory level of different neurotransmitters, and providing geometrical interpretation in the low-dimensional space. Our findings show that serotonergic and opioid receptors effectively shifted the DoC models towards a dynamical behaviour associated with a healthier state, and that these improvements correlated with the mean density of the activated receptors throughout the brain. These findings mark an important step towards the development of treatments not only for DoC but also for a broader spectrum of brain diseases. Our method offers a promising avenue for exploring the therapeutic potential of pharmacological interventions within the ethical and methodological confines of clinical research.
Collapse
Affiliation(s)
- I Mindlin
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, 75013, France.
| | - R Herzog
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, 75013, France
| | - L Belloli
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, 75013, France
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ministry of Science, Technology and Innovation, Buenos Aires, Argentina
| | - D Manasova
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, 75013, France
- Université Paris Cité, Paris, France
| | - M Monge-Asensio
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - J Vohryzek
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - A Escrichs
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - N Alnagger
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du cerveau, CHU of Liège, Liège, Belgium
| | - P Núñez
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du cerveau, CHU of Liège, Liège, Belgium
| | - O Gosseries
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du cerveau, CHU of Liège, Liège, Belgium
| | - M L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - G Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - E Tagliazucchi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ministry of Science, Technology and Innovation, Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
| | - L Naccache
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, 75013, France
| | - B Rohaut
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, 75013, France
- APHP, Hôpital de la Pitié Salpêtrière, DMU Neurosciences, Neuro ICU, Sorbonne Université, Paris, France
| | - J D Sitt
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, 75013, France.
| | - Y Sanz Perl
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne Université, Paris, 75013, France.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ministry of Science, Technology and Innovation, Buenos Aires, Argentina.
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
3
|
Gattuso JJ, Wilson C, Hannan AJ, Renoir T. Psilocybin as a lead candidate molecule in preclinical therapeutic studies of psychiatric disorders: A systematic review. J Neurochem 2024; 168:1687-1720. [PMID: 38019032 DOI: 10.1111/jnc.16017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
Psilocybin is the main psychoactive compound found in hallucinogenic/magic mushrooms and can bind to both serotonergic and tropomyosin receptor kinase b (TrkB) receptors. Psilocybin has begun to show efficacy for a range of neuropsychiatric conditions, including treatment-resistant depression and anxiety disorders; however, neurobiological mechanisms are still being elucidated. Clinical research has found that psilocybin can alter functional connectivity patterns in human brains, which is often associated with therapeutic outcomes. However, preclinical research affords the opportunity to assess the potential cellular mechanisms by which psilocybin may exert its therapeutic effects. Preclinical rodent models can also facilitate a more tightly controlled experimental context and minimise placebo effects. Furthermore, where there is a rationale, preclinical researchers can investigate psilocybin administration in neuropsychiatric conditions that have not yet been researched clinically. As a result, we have systematically reviewed the knowledge base, identifying 82 preclinical studies which were screened based on specific criteria. This resulted in the exclusion of 44 articles, with 34 articles being included in the main review and another 2 articles included as Supporting Information materials. We found that psilocybin shows promise as a lead candidate molecule for treating a variety of neuropsychiatric conditions, albeit showing the most efficacy for depression. We discuss the experimental findings, and identify possible mechanisms whereby psilocybin could invoke therapeutic changes. Furthermore, we critically evaluate the between-study heterogeneity and possible future research avenues. Our review suggests that preclinical rodent models can provide valid and translatable tools for researching novel psilocybin-induced molecular and cellular mechanisms, and therapeutic outcomes.
Collapse
Affiliation(s)
- James J Gattuso
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Carey Wilson
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Pasquini L, Simon AJ, Gallen CL, Kettner H, Roseman L, Gazzaley A, Carhart-Harris RL, Timmermann C. Dynamic medial parietal and hippocampal deactivations under DMT relate to sympathetic output and altered sense of time, space, and the self. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580356. [PMID: 38464275 PMCID: PMC10925211 DOI: 10.1101/2024.02.14.580356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
N,N-Dimethyltryptamine (DMT) is a serotonergic psychedelic, known to rapidly induce short-lasting alterations in conscious experience, characterized by a profound and immersive sense of physical transcendence alongside rich and vivid auditory distortions and visual imagery. Multimodal neuroimaging data paired with dynamic analysis techniques offer a valuable approach for identifying unique signatures of brain activity - and linked autonomic physiology - naturally unfolding during the altered state of consciousness induced by DMT. We leveraged simultaneous fMRI and EKG data acquired in 14 healthy volunteers prior to, during, and after intravenous administration of DMT, and, separately, placebo. fMRI data was preprocessed to derive individual dynamic activity matrices, reflecting the similarity of brain activity in time, and community detection algorithms were applied on these matrices to identify brain activity substates; EKG data was used to derive continuous heart rate. We identified a brain substate occurring immediately after DMT injection, characterized by hippocampal and medial parietal deactivations and increased superior temporal lobe activity under DMT. Deactivations in the hippocampus and medial parietal cortex correlated with alterations in the usual sense of time, space and self-referential processes, reflecting a deconstruction of essential features of ordinary consciousness. Superior lobe activations instead correlated with audio/visual hallucinations and experience of "entities", reflecting the emergence of altered sensory experiences under DMT. Finally, increased heart rate under DMT correlated positively with hippocampus/medial parietal deactivation and the experience of "entities", and negatively with altered self-referential processes. These results suggest a chain of influence linking sympathetic regulation to hippocampal and medial parietal deactivations under DMT, which combined, may contribute to positive mental health outcomes related to self-referential processing following psychedelic administration.
Collapse
Affiliation(s)
- Lorenzo Pasquini
- Department of Neurology, Neuroscape, University of California, San Francisco, CA 94158
| | - Alexander J. Simon
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511
| | - Courtney L. Gallen
- Department of Neurology, Neuroscape, University of California, San Francisco, CA 94158
| | - Hannes Kettner
- Department of Neurology, Neuroscape, University of California, San Francisco, CA 94158
- DMT Research Group, Centre for Psychedelic Research, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK
| | - Leor Roseman
- DMT Research Group, Centre for Psychedelic Research, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK
- Department of Psychology, University of Exeter, UK
| | - Adam Gazzaley
- Department of Neurology, Neuroscape, University of California, San Francisco, CA 94158
- Department of Psychiatry, University of California, San Francisco, CA 94158
- Department of Physiology, University of California, San Francisco, CA 94158
| | - Robin L. Carhart-Harris
- Department of Neurology, Neuroscape, University of California, San Francisco, CA 94158
- DMT Research Group, Centre for Psychedelic Research, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK
- Department of Psychiatry, University of California, San Francisco, CA 94158
| | - Christopher Timmermann
- DMT Research Group, Centre for Psychedelic Research, Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, W12 0NN London, UK
| |
Collapse
|
5
|
Mograbi DC, Rodrigues R, Bienemann B, Huntley J. Brain Networks, Neurotransmitters and Psychedelics: Towards a Neurochemistry of Self-Awareness. Curr Neurol Neurosci Rep 2024; 24:323-340. [PMID: 38980658 PMCID: PMC11258181 DOI: 10.1007/s11910-024-01353-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE OF REVIEW Self-awareness can be defined as the capacity of becoming the object of one's own awareness and, increasingly, it has been the target of scientific inquiry. Self-awareness has important clinical implications, and a better understanding of the neurochemical basis of self-awareness may help clarifying causes and developing interventions for different psychopathological conditions. The current article explores the relationship between neurochemistry and self-awareness, with special attention to the effects of psychedelics. RECENT FINDINGS The functioning of self-related networks, such as the default-mode network and the salience network, and how these are influenced by different neurotransmitters is discussed. The impact of psychedelics on self-awareness is reviewed in relation to specific processes, such as interoception, body ownership, agency, metacognition, emotional regulation and autobiographical memory, within a framework based on predictive coding. Improved outcomes in emotional regulation and autobiographical memory have been observed in association with the use of psychedelics, suggesting higher-order self-awareness changes, which can be modulated by relaxation of priors and improved coping mechanisms linked to cognitive flexibility. Alterations in bodily self-awareness are less consistent, being potentially impacted by doses employed, differences in acute/long-term effects and the presence of clinical conditions. Future studies investigating the effects of different molecules in rebalancing connectivity between resting-state networks may lead to novel therapeutic approaches and the refinement of existing treatments.
Collapse
Affiliation(s)
- Daniel C Mograbi
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Rafael Rodrigues
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bheatrix Bienemann
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jonathan Huntley
- Division of Psychiatry, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| |
Collapse
|
6
|
Bagdasarian FA, Hansen HD, Chen J, Yoo CH, Placzek MS, Hooker JM, Wey HY. Acute Effects of Hallucinogens on Functional Connectivity: Psilocybin and Salvinorin-A. ACS Chem Neurosci 2024; 15:2654-2661. [PMID: 38916752 DOI: 10.1021/acschemneuro.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
The extent of changes in functional connectivity (FC) within functional networks as a common feature across hallucinogenic drug classes is under-explored. This work utilized fMRI to assess the dissociative hallucinogens Psilocybin, a classical serotonergic psychedelic, and Salvinorin-A, a kappa-opioid receptor (KOR) agonist, on resting-state FC in nonhuman primates. We highlight overlapping and differing influence of these substances on FC relative to the thalamus, claustrum, prefrontal cortex (PFC), default mode network (DMN), and DMN subcomponents. Analysis was conducted on a within-subject basis. Findings support the cortico-claustro-cortical network model for probing functional effects of hallucinogens regardless of serotonergic potential, with a potential key paradigm centered around the claustrum, PFC, anterior cingulate cortices (ACC), and angular gyrus relationship. Thalamo-cortical networks are implicated but appear dependent on 5-HT2AR activation. Acute desynchronization relative to the DMN for both drugs was also shown. Our findings provide a framework to understand broader mechanisms at which hallucinogens in differing classes may impact subjects regardless of the target receptor.
Collapse
Affiliation(s)
- Frederick A Bagdasarian
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129-2020, United States
| | - Hanne D Hansen
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129-2020, United States
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen DK-2100, Denmark
| | - Jingyuan Chen
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129-2020, United States
| | - Chi-Hyeon Yoo
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129-2020, United States
| | - Michael S Placzek
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129-2020, United States
| | - Jacob M Hooker
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129-2020, United States
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Center for the Neuroscience of Psychedelics, Charlestown, Massachusetts 02129, United States
| | - Hsiao-Ying Wey
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129-2020, United States
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Center for the Neuroscience of Psychedelics, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
7
|
Ramos L, Vicente SG. The effects of psilocybin on cognition and emotional processing in healthy adults and adults with depression: a systematic literature review. J Clin Exp Neuropsychol 2024; 46:393-421. [PMID: 38842300 DOI: 10.1080/13803395.2024.2363343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION Psilocybin, a naturally occurring serotonergic agonist in some mushroom species, has shown promise as a novel, fast-acting pharmacotherapy seeking to overcome the limitations of conventional first-line antidepressants. Studying psilocybin effects on cognition and emotional processing may help to clarify the mechanisms underlying the therapeutic potential of psilocybin and may also support studies with people suffering from depression. Thus, this review aims to provide a comprehensive overview of the current literature regarding the effects of psilocybin on these two key areas in both healthy and depressed populations. METHOD A systematic search was performed on 29 January 2024, in the PubMed, EBSCOhost, Web of Science and SCOPUS databases. After duplicates removal, study selection was conducted considering pre-specified criteria. Data extraction was then performed. The quality assessment of the studies was carried out using the Cochrane Collaboration tools for randomized (RoB 2.0) and non-randomized (ROBINS-I) controlled trials. RESULTS Twenty articles were included, with 18 targeting healthy adults and two adults with depression. Results point to impairments within attentional and inhibitory processes, and improvements in the domains of creativity and social cognition in healthy individuals. In the population with depression, only cognitive flexibility and emotional recognition were affected, both being enhanced. The comparison of outcomes from both populations proved limited. CONCLUSIONS Psilocybin acutely alters several cognitive domains, with a localized rather than global focus, in a dose- and time-dependent manner. However, the significant methodological constraints call for further research, in the context of depression and with standardized protocols, with longitudinal studies also imperative.
Collapse
Affiliation(s)
- Laura Ramos
- Faculty of Psychology and Educational Sciences, University of Porto, Porto, Portugal
| | - Selene G Vicente
- Faculty of Psychology and Educational Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
8
|
Lee HJ, Tsang VW, Chai BS, Lin MC, Howard A, Uy C, Elefante JO. Psilocybin's Potential Mechanisms in the Treatment of Depression: A Systematic Review. J Psychoactive Drugs 2024; 56:301-315. [PMID: 37385217 DOI: 10.1080/02791072.2023.2223195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/15/2023] [Indexed: 07/01/2023]
Abstract
Evidence suggests that psilocybin has therapeutic benefit for treating depression. However, there is little consensus regarding the mechanism by which psilocybin elicits antidepressant effects. This systematic review summarizes existing evidence. Ovid MEDLINE, EMBASE, psychINFO, and Web of Science were searched, for both human and animal studies, using a combination of MeSH Terms and free-text keywords in September 2021. No other mood disorders or psychiatric diagnoses were included. Original papers in English were included. The PRISMA framework was followed for the screening of papers. Two researchers screened the retrieved articles from the literature search, and a third researcher resolved any conflicts. Of 2,193 papers identified, 49 were selected for full-text review. 14 articles were included in the qualitative synthesis. Six supported psilocybin's mechanism of antidepressant action via changes to serotonin or glutamate receptor activity and three papers found an increase in synaptogenesis. Thirteen papers investigated changes in non-receptor or pathway-specific brain activity. Five papers found changes in functional connectivity or neurotransmission, most commonly in the hippocampus or prefrontal cortex. Several neuroreceptors, neurotransmitters, and brain areas are thought to be involved in psilocybin's ability to mitigate depressive symptoms. Psilocybin appears to alter cerebral blood flow to the amygdala and prefrontal cortex, but the evidence on changes in functional connectivity and specific receptor activity remains sparse. The lack of consensus between studies suggests that psilocybin's mechanism of action may involve a variety of pathways, demonstrating the need for more studies on psilocybin's mechanism of action as an antidepressant.
Collapse
Affiliation(s)
- Harrison J Lee
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Vivian Wl Tsang
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Brandon S Chai
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michelle Cq Lin
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Andrew Howard
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christopher Uy
- Department of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Julius O Elefante
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Murray CH, Frohlich J, Haggarty CJ, Tare I, Lee R, de Wit H. Neural complexity is increased after low doses of LSD, but not moderate to high doses of oral THC or methamphetamine. Neuropsychopharmacology 2024; 49:1120-1128. [PMID: 38287172 PMCID: PMC11109226 DOI: 10.1038/s41386-024-01809-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 01/31/2024]
Abstract
Neural complexity correlates with one's level of consciousness. During coma, anesthesia, and sleep, complexity is reduced. During altered states, including after lysergic acid diethylamide (LSD), complexity is increased. In the present analysis, we examined whether low doses of LSD (13 and 26 µg) were sufficient to increase neural complexity in the absence of altered states of consciousness. In addition, neural complexity was assessed after doses of two other drugs that significantly altered consciousness and mood: delta-9-tetrahydrocannabinol (THC; 7.5 and 15 mg) and methamphetamine (MA; 10 and 20 mg). In three separate studies (N = 73; 21, LSD; 23, THC; 29, MA), healthy volunteers received placebo or drug in a within-subjects design over three laboratory visits. During anticipated peak drug effects, resting state electroencephalography (EEG) recorded Limpel-Ziv complexity and spectral power. LSD, but not THC or MA, dose-dependently increased neural complexity. LSD also reduced delta and theta power. THC reduced, and MA increased, alpha power, primarily in frontal regions. Neural complexity was not associated with any subjective drug effect; however, LSD-induced reductions in delta and theta were associated with elation, and THC-induced reductions in alpha were associated with altered states. These data inform relationships between neural complexity, spectral power, and subjective states, demonstrating that increased neural complexity is not necessary or sufficient for altered states of consciousness. Future studies should address whether greater complexity after low doses of LSD is related to cognitive, behavioral, or therapeutic outcomes, and further examine the role of alpha desynchronization in mediating altered states of consciousness.
Collapse
Affiliation(s)
- Conor H Murray
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA.
- Department of Psychiatry and Biobehavioral Sciences, University of Los Angeles, California, 760 Westwood Plaza, Los Angeles, CA, 90024, USA.
| | - Joel Frohlich
- Institute for Neuromodulation and Neurotechnology, University of Tübingen, Otfried-Müller-Straße 45, 72076, Tübingen, Germany
- Institute for Advanced Consciousness Studies, Santa Monica, California; 2811 Wilshire Blvd # 510, Santa Monica, CA, 90403, USA
| | - Connor J Haggarty
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Ilaria Tare
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Royce Lee
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| |
Collapse
|
10
|
Lasch A, Schweikert T, Dora E, Kolb T, Schurig HL, Walther A. [Psilocybin-Assisted Treatment of Depression, Anxiety and Substance use Disorders: Neurobiological Basis and Clinical Application]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2024; 92:230-245. [PMID: 37207669 DOI: 10.1055/a-2046-5202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Successful therapy of mental disorders is very important in view of the high level of suffering of those affected. Since established pharmaceutical and psychotherapeutic approaches do not lead to the desired improvement in all cases, complementary or alternative treatment methods are intensively researched. Psilocybin-assisted psychotherapy seems particularly promising, and has been approved in the USA for larger clinical trials. Psilocybin belongs to the group of psychedelics and influences psychological experiences. In assisted therapy, psilocybin is administered in controlled doses under medical supervision to patients with different mental disorders. In the studies conducted so far, longer-term positive effects could be shown after just one or a few doses. In order to provide a better understanding of the potential therapeutic mechanisms, this article will first describe neurobiological and psychological effects of psilocybin. To better assess the potential of psilocybin-assisted psychotherapy for various disorders, clinical studies conducted so far with patients administered psilocybin are reviewed.
Collapse
Affiliation(s)
- Anna Lasch
- Biopsychologie, Technische Universität Dresden, Dresden, Germany
| | - Timo Schweikert
- Psychotherapie und Systemneurowissenschaften, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Eva Dora
- Biopsychologie, Technische Universität Dresden, Dresden, Germany
| | - Theresa Kolb
- Universitätsklinikum Carl Gustav Carus Dresden, Division Psychological and Social Medicine and Developmental Neuroscience, Dresden, Germany
| | - Hanne Lilian Schurig
- Universitätsklinikum Carl Gustav Carus Dresden, Division Psychological and Social Medicine and Developmental Neuroscience, Dresden, Germany
| | - Andreas Walther
- Klinische Psychologie und Psychotherapie, Universität Zürich Psychologisches Institut, Zurich, Switzerland
| |
Collapse
|
11
|
Souza AC, Souza BC, França A, Moradi M, Souza NC, Leão KE, Tort ABL, Leão RN, Lopes-Dos-Santos V, Ribeiro S. 5-MeO-DMT induces sleep-like LFP spectral signatures in the hippocampus and prefrontal cortex of awake rats. Sci Rep 2024; 14:11281. [PMID: 38760450 PMCID: PMC11101617 DOI: 10.1038/s41598-024-61474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a potent classical psychedelic known to induce changes in locomotion, behaviour, and sleep in rodents. However, there is limited knowledge regarding its acute neurophysiological effects. Local field potentials (LFPs) are commonly used as a proxy for neural activity, but previous studies investigating psychedelics have been hindered by confounding effects of behavioural changes and anaesthesia, which alter these signals. To address this gap, we investigated acute LFP changes in the hippocampus (HP) and medial prefrontal cortex (mPFC) of freely behaving rats, following 5-MeO-DMT administration. 5-MeO-DMT led to an increase of delta power and a decrease of theta power in the HP LFPs, which could not be accounted for by changes in locomotion. Furthermore, we observed a dose-dependent reduction in slow (20-50 Hz) and mid (50-100 Hz) gamma power, as well as in theta phase modulation, even after controlling for the effects of speed and theta power. State map analysis of the spectral profile of waking behaviour induced by 5-MeO-DMT revealed similarities to electrophysiological states observed during slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. Our findings suggest that the psychoactive effects of classical psychedelics are associated with the integration of waking behaviours with sleep-like spectral patterns in LFPs.
Collapse
Affiliation(s)
- Annie C Souza
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Psychology, Florida State University, Tallahassee, USA
| | - Bryan C Souza
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Arthur França
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Marzieh Moradi
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Neuroscience and Behavioural Sciences, School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Nicholy C Souza
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Katarina E Leão
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Adriano B L Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Richardson N Leão
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Vítor Lopes-Dos-Santos
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Sidarta Ribeiro
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.
- Center for Strategic Studies, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Vohryzek J, Cabral J, Timmermann C, Atasoy S, Roseman L, Nutt DJ, Carhart-Harris RL, Deco G, Kringelbach ML. The flattening of spacetime hierarchy of the N,N-dimethyltryptamine brain state is characterized by harmonic decomposition of spacetime (HADES) framework. Natl Sci Rev 2024; 11:nwae124. [PMID: 38778818 PMCID: PMC11110867 DOI: 10.1093/nsr/nwae124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 05/25/2024] Open
Abstract
The human brain is a complex system, whose activity exhibits flexible and continuous reorganization across space and time. The decomposition of whole-brain recordings into harmonic modes has revealed a repertoire of gradient-like activity patterns associated with distinct brain functions. However, the way these activity patterns are expressed over time with their changes in various brain states remains unclear. Here, we investigate healthy participants taking the serotonergic psychedelic N,N-dimethyltryptamine (DMT) with the Harmonic Decomposition of Spacetime (HADES) framework that can characterize how different harmonic modes defined in space are expressed over time. HADES demonstrates significant decreases in contributions across most low-frequency harmonic modes in the DMT-induced brain state. When normalizing the contributions by condition (DMT and non-DMT), we detect a decrease specifically in the second functional harmonic, which represents the uni- to transmodal functional hierarchy of the brain, supporting the leading hypothesis that functional hierarchy is changed in psychedelics. Moreover, HADES' dynamic spacetime measures of fractional occupancy, life time and latent space provide a precise description of the significant changes of the spacetime hierarchical organization of brain activity in the psychedelic state.
Collapse
Affiliation(s)
- Jakub Vohryzek
- Centre for Eudaimonia and Human Flourishing, Linacre College, Department of Psychiatry, University of Oxford, Oxford OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus 8000, Denmark
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona 08005, Spain
| | - Joana Cabral
- Centre for Eudaimonia and Human Flourishing, Linacre College, Department of Psychiatry, University of Oxford, Oxford OX3 9BX, UK
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
| | - Selen Atasoy
- Centre for Eudaimonia and Human Flourishing, Linacre College, Department of Psychiatry, University of Oxford, Oxford OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
| | - Robin L Carhart-Harris
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
- Departments of Neurology and Psychiatry, University of California San Francisco, San Francisco 94143, USA
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona 08005, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, Department of Psychiatry, University of Oxford, Oxford OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
13
|
Tolle HM, Farah JC, Mallaroni P, Mason NL, Ramaekers JG, Amico E. The unique neural signature of your trip: Functional connectome fingerprints of subjective psilocybin experience. Netw Neurosci 2024; 8:203-225. [PMID: 38562294 PMCID: PMC10898784 DOI: 10.1162/netn_a_00349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/23/2023] [Indexed: 04/04/2024] Open
Abstract
The emerging neuroscientific frontier of brain fingerprinting has recently established that human functional connectomes (FCs) exhibit fingerprint-like idiosyncratic features, which map onto heterogeneously distributed behavioral traits. Here, we harness brain-fingerprinting tools to extract FC features that predict subjective drug experience induced by the psychedelic psilocybin. Specifically, in neuroimaging data of healthy volunteers under the acute influence of psilocybin or a placebo, we show that, post psilocybin administration, FCs become more idiosyncratic owing to greater intersubject dissimilarity. Moreover, whereas in placebo subjects idiosyncratic features are primarily found in the frontoparietal network, in psilocybin subjects they concentrate in the default mode network (DMN). Crucially, isolating the latter revealed an FC pattern that predicts subjective psilocybin experience and is characterized by reduced within-DMN and DMN-limbic connectivity, as well as increased connectivity between the DMN and attentional systems. Overall, these results contribute to bridging the gap between psilocybin-mediated effects on brain and behavior, while demonstrating the value of a brain-fingerprinting approach to pharmacological neuroimaging.
Collapse
Affiliation(s)
- Hanna M. Tolle
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Juan Carlos Farah
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pablo Mallaroni
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Natasha L. Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Johannes G. Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Enrico Amico
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| |
Collapse
|
14
|
Singer B, Meling D, Hirsch-Hoffmann M, Michels L, Kometer M, Smigielski L, Dornbierer D, Seifritz E, Vollenweider FX, Scheidegger M. Psilocybin enhances insightfulness in meditation: a perspective on the global topology of brain imaging during meditation. Sci Rep 2024; 14:7211. [PMID: 38531905 PMCID: PMC10966054 DOI: 10.1038/s41598-024-55726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
In this study, for the first time, we explored a dataset of functional magnetic resonance images collected during focused attention and open monitoring meditation before and after a five-day psilocybin-assisted meditation retreat using a recently established approach, based on the Mapper algorithm from topological data analysis. After generating subject-specific maps for two groups (psilocybin vs. placebo, 18 subjects/group) of experienced meditators, organizational principles were uncovered using graph topological tools, including the optimal transport (OT) distance, a geometrically rich measure of similarity between brain activity patterns. This revealed characteristics of the topology (i.e. shape) in space (i.e. abstract space of voxels) and time dimension of whole-brain activity patterns during different styles of meditation and psilocybin-induced alterations. Most interestingly, we found that (psilocybin-induced) positive derealization, which fosters insightfulness specifically when accompanied by enhanced open-monitoring meditation, was linked to the OT distance between open-monitoring and resting state. Our findings suggest that enhanced meta-awareness through meditation practice in experienced meditators combined with potential psilocybin-induced positive alterations in perception mediate insightfulness. Together, these findings provide a novel perspective on meditation and psychedelics that may reveal potential novel brain markers for positive synergistic effects between mindfulness practices and psilocybin.
Collapse
Affiliation(s)
- Berit Singer
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland.
| | - Daniel Meling
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center - University of Freiburg, Freiburg, Germany
| | - Matthias Hirsch-Hoffmann
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
| | - Lars Michels
- Department of Neuroradiology, University Hospital Zurich, Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Michael Kometer
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
| | - Lukasz Smigielski
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
| | - Dario Dornbierer
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
| | - Franz X Vollenweider
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland.
| | - Milan Scheidegger
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
- Department of Neuroradiology, University Hospital Zurich, Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Vohryzek J, Cabral J, Lord LD, Fernandes HM, Roseman L, Nutt DJ, Carhart-Harris RL, Deco G, Kringelbach ML. Brain dynamics predictive of response to psilocybin for treatment-resistant depression. Brain Commun 2024; 6:fcae049. [PMID: 38515439 PMCID: PMC10957168 DOI: 10.1093/braincomms/fcae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/16/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Psilocybin therapy for depression has started to show promise, yet the underlying causal mechanisms are not currently known. Here, we leveraged the differential outcome in responders and non-responders to psilocybin (10 and 25 mg, 7 days apart) therapy for depression-to gain new insights into regions and networks implicated in the restoration of healthy brain dynamics. We used large-scale brain modelling to fit the spatiotemporal brain dynamics at rest in both responders and non-responders before treatment. Dynamic sensitivity analysis of systematic perturbation of these models enabled us to identify specific brain regions implicated in a transition from a depressive brain state to a healthy one. Binarizing the sample into treatment responders (>50% reduction in depressive symptoms) versus non-responders enabled us to identify a subset of regions implicated in this change. Interestingly, these regions correlate with in vivo density maps of serotonin receptors 5-hydroxytryptamine 2a and 5-hydroxytryptamine 1a, which psilocin, the active metabolite of psilocybin, has an appreciable affinity for, and where it acts as a full-to-partial agonist. Serotonergic transmission has long been associated with depression, and our findings provide causal mechanistic evidence for the role of brain regions in the recovery from depression via psilocybin.
Collapse
Affiliation(s)
- Jakub Vohryzek
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Joana Cabral
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, University of Minho, Portugal
| | - Louis-David Lord
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Henrique M Fernandes
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK
| | - Robin L Carhart-Harris
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK
- Psychedelics Division, Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| |
Collapse
|
16
|
Silverstein BH, Kolbman N, Nelson A, Liu T, Guzzo P, Gilligan J, Lee U, Mashour GA, Vanini G, Pal D. Psilocybin induces dose-dependent changes in functional network organization in rat cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579718. [PMID: 38405722 PMCID: PMC10888735 DOI: 10.1101/2024.02.09.579718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Psilocybin produces an altered state of consciousness in humans and is associated with complex spatiotemporal changes in brain networks. Given the emphasis on rodent models for mechanistic studies, there is a need for characterization of the effect of psilocybin on brain-wide network dynamics. Previous rodent studies of psychedelics, using electroencephalogram, have primarily been done with sparse electrode arrays that offered limited spatial resolution precluding network level analysis, and have been restricted to lower gamma frequencies. Therefore, in the study, we used electroencephalographic recordings from 27 sites (electrodes) across rat cortex (n=6 male, 6 female) to characterize the effect of psilocybin (0.1 mg/kg, 1 mg/kg, and 10 mg/kg delivered over an hour) on network organization as inferred through changes in node degree (index of network density) and connection strength (weighted phase-lag index). The removal of aperiodic component from the electroencephalogram localized the primary oscillatory changes to theta (4-10 Hz), medium gamma (70-110 Hz), and high gamma (110-150 Hz) bands, which were used for the network analysis. Additionally, we determined the concurrent changes in theta-gamma phase-amplitude coupling. We report that psilocybin, in a dose-dependent manner, 1) disrupted theta-gamma coupling [p<0.05], 2) increased frontal high gamma connectivity [p<0.05] and posterior theta connectivity [p≤0.049], and 3) increased frontal high gamma [p<0.05] and posterior theta [p≤0.046] network density. The medium gamma frontoparietal connectivity showed a nonlinear relationship with psilocybin dose. Our results suggest that high-frequency network organization, decoupled from local theta-phase, may be an important signature of psilocybin-induced non-ordinary state of consciousness.
Collapse
Affiliation(s)
- Brian H Silverstein
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Center for Consciousness Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nicholas Kolbman
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Center for Consciousness Science, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Amanda Nelson
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Tiecheng Liu
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Peter Guzzo
- Tryp Therapeutics, Kelowna, British Columbia, V1Y 7T2, Canada
| | - Jim Gilligan
- Tryp Therapeutics, Kelowna, British Columbia, V1Y 7T2, Canada
| | - UnCheol Lee
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Center for Consciousness Science, University of Michigan, Ann Arbor, Michigan 48109, USA
- Michigan Psychedelic Center, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - George A Mashour
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Center for Consciousness Science, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Michigan Psychedelic Center, University of Michigan, Ann Arbor, Michigan 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Giancarlo Vanini
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Center for Consciousness Science, University of Michigan, Ann Arbor, Michigan 48109, USA
- Michigan Psychedelic Center, University of Michigan, Ann Arbor, Michigan 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Dinesh Pal
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Center for Consciousness Science, University of Michigan, Ann Arbor, Michigan 48109, USA
- Michigan Psychedelic Center, University of Michigan, Ann Arbor, Michigan 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
17
|
Frautschi PC, Singh AP, Stowe NA, Yu JPJ. Multimodal Neuroimaging of the Effect of Serotonergic Psychedelics on the Brain. AJNR Am J Neuroradiol 2024; 45:ajnr.A8118. [PMID: 38360790 DOI: 10.3174/ajnr.a8118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/20/2023] [Indexed: 02/17/2024]
Abstract
The neurobiological mechanisms underpinning psychiatric disorders such as treatment-resistant major depression, post-traumatic stress disorder, and substance use disorders, remain unknown. Psychedelic compounds, such as psilocybin, lysergic acid diethylamide, and N,N-dimethyltryptamine, have emerged as potential therapies for these disorders because of their hypothesized ability to induce neuroplastic effects and alter functional networks in the brain. Yet, the mechanisms underpinning the neurobiological treatment response remain obscure. Quantitative neuroimaging is uniquely positioned to provide insight into the neurobiological mechanisms of these emerging therapies and quantify the patient treatment response. This review aims to synthesize our current state-of-the-art understanding of the functional changes occurring in the brain following psilocybin, lysergic acid diethylamide, or N,N-dimethyltryptamine administration in human participants with fMRI and PET. We further aim to disseminate our understanding of psychedelic compounds as they relate to neuroimaging with the goal of improved diagnostics and treatment of neuropsychiatric illness.
Collapse
Affiliation(s)
- Paloma C Frautschi
- Department of Radiology (P.C.F., A.P.S., J.-P.J.Y.), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ajay P Singh
- Department of Radiology (P.C.F., A.P.S., J.-P.J.Y.), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Graduate Program in Cellular and Molecular Biology (A.P.S., J.-P.J.Y.), University of Wisconsin-Madison, Madison, Wisconsin
| | - Nicholas A Stowe
- Neuroscience Training Program, Wisconsin Institutes for Medical Research (N.A.S., J.-P.J.Y.), University of Wisconsin-Madison, Madison, Wisconsin
| | - John-Paul J Yu
- Department of Radiology (P.C.F., A.P.S., J.-P.J.Y.), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Neuroscience Training Program, Wisconsin Institutes for Medical Research (N.A.S., J.-P.J.Y.), University of Wisconsin-Madison, Madison, Wisconsin
- Graduate Program in Cellular and Molecular Biology (A.P.S., J.-P.J.Y.), University of Wisconsin-Madison, Madison, Wisconsin
- Department of Biomedical Engineering (J.-P.J.Y.), University of Wisconsin-Madison, Madison, Wisconsin
- Department of Psychiatry (J.-P.J.Y.), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
18
|
Luppi AI, Girn M, Rosas FE, Timmermann C, Roseman L, Erritzoe D, Nutt DJ, Stamatakis EA, Spreng RN, Xing L, Huttner WB, Carhart-Harris RL. A role for the serotonin 2A receptor in the expansion and functioning of human transmodal cortex. Brain 2024; 147:56-80. [PMID: 37703310 DOI: 10.1093/brain/awad311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
Integrating independent but converging lines of research on brain function and neurodevelopment across scales, this article proposes that serotonin 2A receptor (5-HT2AR) signalling is an evolutionary and developmental driver and potent modulator of the macroscale functional organization of the human cerebral cortex. A wealth of evidence indicates that the anatomical and functional organization of the cortex follows a unimodal-to-transmodal gradient. Situated at the apex of this processing hierarchy-where it plays a central role in the integrative processes underpinning complex, human-defining cognition-the transmodal cortex has disproportionately expanded across human development and evolution. Notably, the adult human transmodal cortex is especially rich in 5-HT2AR expression and recent evidence suggests that, during early brain development, 5-HT2AR signalling on neural progenitor cells stimulates their proliferation-a critical process for evolutionarily-relevant cortical expansion. Drawing on multimodal neuroimaging and cross-species investigations, we argue that, by contributing to the expansion of the human cortex and being prevalent at the apex of its hierarchy in the adult brain, 5-HT2AR signalling plays a major role in both human cortical expansion and functioning. Owing to its unique excitatory and downstream cellular effects, neuronal 5-HT2AR agonism promotes neuroplasticity, learning and cognitive and psychological flexibility in a context-(hyper)sensitive manner with therapeutic potential. Overall, we delineate a dual role of 5-HT2ARs in enabling both the expansion and modulation of the human transmodal cortex.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, CB2 1SB, UK
- The Alan Turing Institute, London, NW1 2DB, UK
| | - Manesh Girn
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
| | - Fernando E Rosas
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
- Data Science Institute, Imperial College London, London, SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London, SW7 2AZ, UK
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David Erritzoe
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
| | - Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Robin L Carhart-Harris
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
19
|
Ivan VE, Tomàs-Cuesta DP, Esteves IM, Curic D, Mohajerani M, McNaughton BL, Davidsen J, Gruber AJ. The Nonclassic Psychedelic Ibogaine Disrupts Cognitive Maps. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:275-283. [PMID: 38298796 PMCID: PMC10829624 DOI: 10.1016/j.bpsgos.2023.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 02/02/2024] Open
Abstract
Background The ability of psychedelic compounds to profoundly alter mental function has been long known, but the underlying changes in cellular-level information encoding remain poorly understood. Methods We used two-photon microscopy to record from the retrosplenial cortex in head-fixed mice running on a treadmill before and after injection of the nonclassic psychedelic ibogaine (40 mg/kg intraperitoneally). Results We found that the cognitive map, formed by the representation of position encoded by ensembles of individual neurons in the retrosplenial cortex, was destabilized by ibogaine when mice had to infer position between tactile landmarks. This corresponded with increased neural activity rates, loss of correlation structure, and increased responses to cues. Ibogaine had surprisingly little effect on the size-frequency distribution of network activity events, suggesting that signal propagation within the retrosplenial cortex was largely unaffected. Conclusions Taken together, these data support proposals that compounds with psychedelic properties disrupt representations that are important for constraining neocortical activity, thereby increasing the entropy of neural signaling. Furthermore, the loss of expected position encoding between landmarks recapitulated effects of hippocampal impairment, suggesting that disruption of cognitive maps or other hippocampal processing may be a contributing mechanism of discoordinated neocortical activity in psychedelic states.
Collapse
Affiliation(s)
- Victorita E. Ivan
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - David P. Tomàs-Cuesta
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Ingrid M. Esteves
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Davor Curic
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | - Majid Mohajerani
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Bruce L. McNaughton
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, California
| | - Joern Davidsen
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | - Aaron J. Gruber
- Canadian Center for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
20
|
Xing H, Wu Z, Chang Y, Ma M, Song Z, Liu Y, Dai H. Resting-State fMRI Study of Vigilance Under Circadian and Homeostatic Modulation Based on Fractional Amplitude of Low-Frequency Fluctuation and Regional Homogeneity in Humans Under Normal Entrained Conditions. J Magn Reson Imaging 2024; 59:211-222. [PMID: 37078514 DOI: 10.1002/jmri.28750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND How brain neural activity changes at multiple time points throughout the day and the neural mechanisms underlying time-dependent modulation of vigilance are less clear. PURPOSE To explore the effect of circadian rhythms and homeostasis on brain neural activity and the potential neural basis of time-dependent modulation of vigilance. STUDY TYPE Prospective. SUBJECTS A total of 30 healthy participants (22-27 years old). FIELD STRENGTH/SEQUENCE A 3.0 T, T1-weighted imaging, echo-planar functional MRI (fMRI). ASSESSMENT Six resting-state fMRI (rs-fMRI) scanning sessions were performed at fixed times (9:00 h, 13:00 h, 17:00 h, 21:00 h, 1:00 h, and 5:00 h) to investigate fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo) diurnal variation. The fALFF/ReHo and the result of the psychomotor vigilance task were used to assess local neural activity and vigilance. STATISTICAL TESTS One-way repeated measures analysis of variance (ANOVA) was used to assess changes in vigilance (P < 0.05) and neural activity in the whole brain (P < 0.001 at the voxel level and P < 0.01 at the cluster level, Gaussian random field [GRF] corrected). Correlation analysis was used to examine the relationship between neural activity and vigilance at all-time points of the day. RESULTS The fALFF/ReHo in the thalamus and some perceptual cortices tended to increase from 9:00 h to 13:00 h and from 21:00 h to 5:00 h, whereas the key nodes of the default mode network (DMN) tended to decrease from 21:00 h to 5:00 h. The vigilance tended to decrease from 21:00 h to 5:00 h. The fALFF/ReHo in the thalamus and some perceptual cortices was negatively correlated with vigilance at all-time points of the day, whereas the fALFF/ReHo in the key nodes of the DMN was positively correlated with vigilance. DATA CONCLUSION Neural activities in the thalamus and some perceptual cortices show similar trends throughout the day, whereas the key nodes of the DMN show roughly opposite trends. Notably, diurnal variation of the neural activity in these brain regions may be an adaptive or compensatory response to changes in vigilance. EVIDENCE LEVEL 1. TECHNICAL EFFICACY 1.
Collapse
Affiliation(s)
- Hanqi Xing
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Zhiwei Wu
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Yue Chang
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Mengya Ma
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Ziyang Song
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Yuanqing Liu
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Hui Dai
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
- Institute of Medical Imaging, Soochow University, Suzhou, Jiangsu Province, People's Republic of China
- Suzhou Key Laboratory of Intelligent Medicine and Equipment, Suzhou, Jiangsu Province, People's Republic of China
| |
Collapse
|
21
|
Villiger D, Trachsel M. With great power comes great vulnerability: an ethical analysis of psychedelics' therapeutic mechanisms proposed by the REBUS hypothesis. JOURNAL OF MEDICAL ETHICS 2023; 49:826-832. [PMID: 37045591 DOI: 10.1136/jme-2022-108816] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Psychedelics are experiencing a renaissance in mental healthcare. In recent years, more and more early phase trials on psychedelic-assisted therapy have been conducted, with promising results overall. However, ethical analyses of this rediscovered form of treatment remain rare. The present paper contributes to the ethical inquiry of psychedelic-assisted therapy by analysing the ethical implications of its therapeutic mechanisms proposed by the relaxed beliefs under psychedelics (REBUS) hypothesis. In short, the REBUS hypothesis states that psychedelics make rigid beliefs revisable by increasing the influence of bottom-up input. Put differently, patients become highly suggestible and sensitive to context during a psychedelic session, amplifying therapeutic influence and effects. Due to that, patients are more vulnerable in psychedelic-assisted therapy than in other therapeutic interventions; they lose control during a psychedelic session and become dependent on the therapeutic setting (including the therapist). This enhanced vulnerability is ethically relevant and has been exploited by some therapists in the past. Therefore, patients in current research settings and starting mainstream medical settings need to be well informed about psychedelics' mechanisms and their implications to give valid informed consent to treatment. Furthermore, other security measures are warranted to protect patients from the vulnerability coming with psychedelic-assisted therapy.
Collapse
Affiliation(s)
- Daniel Villiger
- Department of Philosophy, University of Zurich, Zurich, Switzerland
| | - Manuel Trachsel
- Clinical Ethics Unit of University Hospital Basel and Psychiatric University Clinics, Basel, Switzerland
| |
Collapse
|
22
|
Yang Y, Tang S, Wang X, Zhen Y, Zheng Y, Zheng H, Liu L, Zheng Z. Eigenmode-based approach reveals a decline in brain structure-function liberality across the human lifespan. Commun Biol 2023; 6:1128. [PMID: 37935762 PMCID: PMC10630517 DOI: 10.1038/s42003-023-05497-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
While brain function is supported and constrained by the underlying structure, the connectome-based link estimated by current approaches is either relatively moderate or accompanied by high model complexity, with the essential principles underlying structure-function coupling remaining elusive. Here, by proposing a mapping method based on network eigendecomposition, we present a concise and strong correspondence between structure and function. We show that the explanation of functional connectivity can be significantly improved by incorporating interactions between different structural eigenmodes. We also demonstrate the pronounced advantage of the present mapping in capturing individual-specific information with simple implementation. Applying our methodology to the human lifespan, we find that functional diversity decreases with age, with functional interactions increasingly dominated by the leading functional mode. We also find that structure-function liberality weakens with age, which is driven by the decreases in functional components that are less constrained by anatomy, while the magnitude of structure-aligned components is preserved. Overall, our work enhances the understanding of structure-function coupling from a collective, connectome-oriented perspective and promotes a more refined identification of functional portions relevant to human aging, holding great potential for mechanistic insights into individual differences associated with cognition, development, and neurological disorders.
Collapse
Affiliation(s)
- Yaqian Yang
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
| | - Shaoting Tang
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China.
- Institute of Artificial Intelligence, Beihang University, Beijing, China.
- State Key Lab of Software Development Environment (NLSDE), Beihang University, Beijing, China.
- Zhongguancun Laboratory, Beijing, China.
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China.
- PengCheng Laboratory, Shenzhen, China.
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China.
| | - Xin Wang
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China.
- Institute of Artificial Intelligence, Beihang University, Beijing, China.
- State Key Lab of Software Development Environment (NLSDE), Beihang University, Beijing, China.
- Zhongguancun Laboratory, Beijing, China.
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China.
- PengCheng Laboratory, Shenzhen, China.
| | - Yi Zhen
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
| | - Yi Zheng
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
| | - Hongwei Zheng
- Beijing Academy of Blockchain and Edge Computing (BABEC), Beijing, China
| | - Longzhao Liu
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- State Key Lab of Software Development Environment (NLSDE), Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
| | - Zhiming Zheng
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- State Key Lab of Software Development Environment (NLSDE), Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
| |
Collapse
|
23
|
Buchborn T, Kettner HS, Kärtner L, Meinhardt MW. The ego in psychedelic drug action - ego defenses, ego boundaries, and the therapeutic role of regression. Front Neurosci 2023; 17:1232459. [PMID: 37869510 PMCID: PMC10587586 DOI: 10.3389/fnins.2023.1232459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/18/2023] [Indexed: 10/24/2023] Open
Abstract
The ego is one of the most central psychological constructs in psychedelic research and a key factor in psychotherapy, including psychedelic-assisted forms of psychotherapy. Despite its centrality, the ego-construct remains ambiguous in the psychedelic literature. Therefore, we here review the theoretical background of the ego-construct with focus on its psychodynamic conceptualization. We discuss major functions of the ego including ego boundaries, defenses, and synthesis, and evaluate the role of the ego in psychedelic drug action. According to the psycholytic paradigm, psychedelics are capable of inducing regressed states of the ego that are less protected by the ego's usual defensive apparatus. In such states, core early life conflicts may emerge that have led to maladaptive ego patterns. We use the psychodynamic term character in this paper as a potential site of change and rearrangement; character being the chronic and habitual patterns the ego utilizes to adapt to the everyday challenges of life, including a preferred set of defenses. We argue that in order for psychedelic-assisted therapy to successfully induce lasting changes to the ego's habitual patterns, it must psycholytically permeate the characterological core of the habits. The primary working principle of psycholytic therapy therefore is not the state of transient ego regression alone, but rather the regressively favored emotional integration of those early life events that have shaped the foundation, development, and/or rigidification of a person's character - including his or her defense apparatus. Aiming for increased flexibility of habitual ego patterns, the psycholytic approach is generally compatible with other forms of psychedelic-assisted therapy, such as third wave cognitive behavioral approaches.
Collapse
Affiliation(s)
- Tobias Buchborn
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Hannes S. Kettner
- Centre for Psychedelic Research, Department of Medicine, Imperial College London, London, United Kingdom
- Psychedelics Division, Neuroscape, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Laura Kärtner
- Centre for Psychedelic Research, Department of Medicine, Imperial College London, London, United Kingdom
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Marcus W. Meinhardt
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
24
|
Song J, Lei T, Li Y, Zhou L, Yan W, Li H, Chen L. Dynamic alterations in the amplitude of low-frequency fluctuation in patients with cerebral small vessel disease. Front Mol Neurosci 2023; 16:1200756. [PMID: 37808469 PMCID: PMC10556663 DOI: 10.3389/fnmol.2023.1200756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Background and purpose Previous studies have focused on the changes of dynamic and static functional connections in cerebral small vessel disease (CSVD). However, the dynamic characteristics of local brain activity are poorly understood. The purpose of this study was to investigate the dynamic cerebral activity changes in patients with CSVD using the dynamic amplitude of low-frequency fluctuation (d-ALFF). Methods A total of 104 CSVD patients with cognitive impairment (CSVD-CI, n = 52) or normal cognition (CSVD-NC, n = 52) and 63 matched healthy controls (HCs) were included in this study. Every participant underwent magnetic resonance imaging scans and a battery of neuropsychological examinations. The dynamics of spontaneous brain activity were assessed using dynamic changes in the amplitude of low-frequency fluctuation (ALFF) with the sliding-window method. We used voxel-wise one-way analysis of variance (ANOVA) to compare dynamic ALFF variability among the three groups. Post-hoc t-tests were used to evaluate differences between each group pair. Finally, the brain regions with d-ALFF values with differences between CSVD subgroups were taken as regions of interest (ROI), and the d-ALFF values corresponding to the ROI were extracted for partial correlation analysis with memory. Results (1) There was no significant difference in age (p = 0.120), sex (p = 0.673) and education (p = 0.067) among CSVD-CI, CSVD-NC and HC groups, but there were significant differences Prevalence of hypertension and diabetes mellitus among the three groups (p < 10-3). There were significant differences in scores of several neuropsychological scales among the three groups (p < 10-3). (2) ANOVA and post-hoc t-test showed that there were dynamic abnormalities of spontaneous activity in several brain regions in three groups, mainly located in bilateral parahippocampal gyrus and bilateral hippocampus, bilateral insular and frontal lobes, and the static activity abnormalities in bilateral parahippocampal gyrus and bilateral hippocampal regions were observed at the same time, suggesting that bilateral parahippocampal gyrus and bilateral hippocampus may be the key brain regions for cognitive impairment caused by CSVD. (3) The correlation showed that d-ALFF in the bilateral insular was slightly correlated with the Mini-Mental State Examination (MMSE) score and disease progression rate. The d-ALFF value of the left postcentral gyrus was negatively correlated with the Clock Drawing Test (CDT) score (r = -0.416, p = 0.004), and the d-ALFF value of the right postcentral gyrus was negatively correlated with the Rey's Auditory Verbal Learning Test (RAVLT) word recognition (r = -0.320, p = 0.028). Conclusion There is a wide range of dynamic abnormalities of spontaneous brain activity in patients with CSVD, in which the abnormalities of this activity in specific brain regions are related to memory and execution or emotion.
Collapse
Affiliation(s)
- Jiarui Song
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Nuclear Medicine, Chongqing Liangjiang New District people’s Hospital, Chongqing, China
| | - Ting Lei
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yajun Li
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lijing Zhou
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Wei Yan
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Haiqing Li
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Li Chen
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
25
|
Sharma P, Nguyen QA, Matthews SJ, Carpenter E, Mathews DB, Patten CA, Hammond CJ. Psilocybin history, action and reaction: A narrative clinical review. J Psychopharmacol 2023; 37:849-865. [PMID: 37650489 DOI: 10.1177/02698811231190858] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Hallucinogenic mushrooms have been used in religious and cultural ceremonies for centuries. Of late, psilocybin, the psychoactive compound in hallucinogenic mushrooms, has received increased public interest as a novel drug for treating mood and substance use disorders (SUDs). In addition, in recent years, some states in the United States have legalized psilocybin for medical and recreational use. Given this, clinicians need to understand the potential benefits and risks related to using psilocybin for therapeutic purposes so that they can accurately advise patients. This expert narrative review summarizes the scientific basis and clinical evidence on the safety and efficacy of psilocybin-assisted therapy for treating psychiatric disorders and SUDs. The results of this review are structured as a more extensive discussion about psilocybin's history, putative mechanisms of action, and recent legislative changes to its legal status. There is modest evidence of psilocybin-assisted therapy for treating depression and anxiety disorders. In addition, early data suggest that psilocybin-assisted therapy may effectively reduce harmful drinking in patients with alcohol use disorders. The evidence further suggests psilocybin, when administered under supervision (psilocybin-assisted therapy), the side effects experienced are mild and transient. The occurrence of severe adverse events following psilocybin administration is uncommon. Still, a recent clinical trial found that individuals in the psilocybin arm had increased suicidal ideations and non-suicidal self-injurious behaviors. Given this, further investigation into the safety and efficacy of psilocybin-assisted therapy is warranted to determine which patient subgroups are most likely to benefit and which are most likely to experience adverse outcomes related to its use.
Collapse
Affiliation(s)
- Pravesh Sharma
- Department of Psychiatry and Psychology, Mayo Clinic Health System, Eau Claire, WI, USA
- Behavioral Health Research Program, Department of Psychology and Psychiatry Research, Mayo Clinic, Rochester, MN, USA
| | - Quang Anh Nguyen
- Behavioral Health Research Program, Department of Psychology and Psychiatry Research, Mayo Clinic, Rochester, MN, USA
| | - Sadie J Matthews
- Department of Psychology, University of Wisconsin (Eau Claire), Eau Claire, WI, USA
| | | | - Douglas B Mathews
- Department of Psychology, University of Wisconsin (Eau Claire), Eau Claire, WI, USA
| | - Christi A Patten
- Behavioral Health Research Program, Department of Psychology and Psychiatry Research, Mayo Clinic, Rochester, MN, USA
| | - Christopher J Hammond
- Division of Child and Adolescent Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Abu Raya M, Ogunyemi AO, Broder J, Carstensen VR, Illanes-Manrique M, Rankin KP. The neurobiology of openness as a personality trait. Front Neurol 2023; 14:1235345. [PMID: 37645602 PMCID: PMC10461810 DOI: 10.3389/fneur.2023.1235345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023] Open
Abstract
Openness is a multifaceted behavioral disposition that encompasses personal, interpersonal, and cultural dimensions. It has been suggested that the interindividual variability in openness as a personality trait is influenced by various environmental and genetic factors, as well as differences in brain functional and structural connectivity patterns along with their various associated cognitive processes. Alterations in degree of openness have been linked to several aspects of health and disease, being impacted by both physical and mental health, substance use, and neurologic conditions. This review aims to explore the current state of knowledge describing the neurobiological basis of openness and how individual differences in openness can manifest in brain health and disease.
Collapse
Affiliation(s)
- Maison Abu Raya
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco School of Medicine, San Francisco, CA, United States
| | - Adedoyin O. Ogunyemi
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
- Department of Community Health and Primary Care, University of Lagos, Lagos, Nigeria
| | - Jake Broder
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Veronica Rojas Carstensen
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Maryenela Illanes-Manrique
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurologicas, Lima, Peru
| | - Katherine P. Rankin
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco School of Medicine, San Francisco, CA, United States
| |
Collapse
|
27
|
Schoeller F. Primary states of consciousness: A review of historical and contemporary developments. Conscious Cogn 2023; 113:103536. [PMID: 37321024 DOI: 10.1016/j.concog.2023.103536] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
Primary states of consciousness are conceived as phylogenetically older states of consciousness as compared to secondary states governed by sociocultural inhibition. The historical development of the concept in psychiatry and neurobiology is reviewed, along with its relationship to theories of consciousness. We suggest that primary states of consciousness are characterized by a temporary breakdown of self-control accompanied by a merging of action, communication, and emotion (ACE fusion), ordinarily segregated in human adults. We examine the neurobiologic basis of this model, including its relation to the phenomenon of neural dedifferentiation, the loss of modularity during altered states of consciousness, and increased corticostriatal connectivity. By shedding light on the importance of primary states of consciousness, this article provides a novel perspective on the role of consciousness as a mechanism of differentiation and control. We discuss potential differentiators underlying a gradient from primary to secondary state of consciousness, suggesting changes in thalamocortical interactions and arousal function. We also propose a set of testable, neurobiologically plausible working hypotheses to account for their distinct phenomenological and neural signatures.
Collapse
Affiliation(s)
- Felix Schoeller
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States; Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
28
|
Tylš F, Vejmola Č, Koudelka V, Piorecká V, Kadeřábek L, Bochin M, Novák T, Kuchař M, Bendová Z, Brunovský M, Horáček J, Pálení ček T. Underlying pharmacological mechanisms of psilocin-induced broadband desynchronization and disconnection of EEG in rats. Front Neurosci 2023; 17:1152578. [PMID: 37425017 PMCID: PMC10325866 DOI: 10.3389/fnins.2023.1152578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Psilocybin is one of the most extensively studied psychedelic drugs with a broad therapeutic potential. Despite the fact that its psychoactivity is mainly attributed to the agonism at 5-HT2A receptors, it has high binding affinity also to 5-HT2C and 5-HT1A receptors and indirectly modulates the dopaminergic system. Psilocybin and its active metabolite psilocin, as well as other serotonergic psychedelics, induce broadband desynchronization and disconnection in EEG in humans as well as in animals. The contribution of serotonergic and dopaminergic mechanisms underlying these changes is not clear. The present study thus aims to elucidate the pharmacological mechanisms underlying psilocin-induced broadband desynchronization and disconnection in an animal model. Methods Selective antagonists of serotonin receptors (5-HT1A WAY100635, 5-HT2A MDL100907, 5-HT2C SB242084) and antipsychotics haloperidol, a D2 antagonist, and clozapine, a mixed D2 and 5-HT receptor antagonist, were used in order to clarify the underlying pharmacology. Results Psilocin-induced broadband decrease in the mean absolute EEG power was normalized by all antagonists and antipsychotics used within the frequency range 1-25 Hz; however, decreases in 25-40 Hz were influenced only by clozapine. Psilocin-induced decrease in global functional connectivity and, specifically, fronto-temporal disconnection were reversed by the 5-HT2A antagonist while other drugs had no effect. Discussion These findings suggest the involvement of all three serotonergic receptors studied as well as the role of dopaminergic mechanisms in power spectra/current density with only the 5-HT2A receptor being effective in both studied metrics. This opens an important discussion on the role of other than 5-HT2A-dependent mechanisms underlying the neurobiology of psychedelics.
Collapse
Affiliation(s)
- Filip Tylš
- Psychedelic Research Centre, National Institute of Mental Health, Klecany, Czechia
- 3rd Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Čestmír Vejmola
- Psychedelic Research Centre, National Institute of Mental Health, Klecany, Czechia
- 3rd Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Vlastimil Koudelka
- Psychedelic Research Centre, National Institute of Mental Health, Klecany, Czechia
| | - Václava Piorecká
- Psychedelic Research Centre, National Institute of Mental Health, Klecany, Czechia
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czechia
| | - Lukáš Kadeřábek
- Psychedelic Research Centre, National Institute of Mental Health, Klecany, Czechia
| | - Marcel Bochin
- Psychedelic Research Centre, National Institute of Mental Health, Klecany, Czechia
- 3rd Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Tomáš Novák
- Psychedelic Research Centre, National Institute of Mental Health, Klecany, Czechia
- 3rd Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Martin Kuchař
- Psychedelic Research Centre, National Institute of Mental Health, Klecany, Czechia
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Prague, Czechia
| | - Zdeňka Bendová
- Psychedelic Research Centre, National Institute of Mental Health, Klecany, Czechia
| | - Martin Brunovský
- Psychedelic Research Centre, National Institute of Mental Health, Klecany, Czechia
- 3rd Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Jiří Horáček
- Psychedelic Research Centre, National Institute of Mental Health, Klecany, Czechia
- 3rd Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Tomáš Pálení ček
- Psychedelic Research Centre, National Institute of Mental Health, Klecany, Czechia
- 3rd Faculty of Medicine, Charles University in Prague, Prague, Czechia
| |
Collapse
|
29
|
Adamska I, Finc K. Effect of LSD and music on the time-varying brain dynamics. Psychopharmacology (Berl) 2023:10.1007/s00213-023-06394-8. [PMID: 37291360 DOI: 10.1007/s00213-023-06394-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
RATIONALE Psychedelics are getting closer to being widely used in clinical treatment. Music is known as a key element of psychedelic-assisted therapy due to its psychological effects, specifically on the emotion, meaning-making, and sensory processing. However, there is still a lack of understanding in how psychedelics influence brain activity in experimental settings involving music listening. OBJECTIVES The main goal of our research was to investigate the effect of music, as a part of "setting," on the brain states dynamics after lysergic acid diethylamide (LSD) intake. METHODS We used an open dataset, where a group of 15 participants underwent two functional MRI scanning sessions under LSD and placebo influence. Every scanning session contained three runs: two resting-state runs separated by one run with music listening. We applied K-Means clustering to identify the repetitive patterns of brain activity, so-called brain states. For further analysis, we calculated states' dwell time, fractional occupancy and transition probability. RESULTS The interaction effect of music and psychedelics led to change in the time-varying brain activity of the task-positive state. LSD, regardless of the music, affected the dynamics of the state of combined activity of DMN, SOM, and VIS networks. Crucially, we observed that the music itself could potentially have a long-term influence on the resting-state, in particular on states involving task-positive networks. CONCLUSIONS This study indicates that music, as a crucial element of "setting," can potentially have an influence on the subject's resting-state during psychedelic experience. Further studies should replicate these results on a larger sample size.
Collapse
Affiliation(s)
- Iga Adamska
- Faculty of Philosophy and Social Sciences, Nicolaus Copernicus University, Toruń, Poland.
| | - Karolina Finc
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland.
| |
Collapse
|
30
|
Sodré ME, Wießner I, Irfan M, Schenck CH, Mota-Rolim SA. Awake or Sleeping? Maybe Both… A Review of Sleep-Related Dissociative States. J Clin Med 2023; 12:3876. [PMID: 37373570 DOI: 10.3390/jcm12123876] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 06/29/2023] Open
Abstract
Recent studies have begun to understand sleep not only as a whole-brain process but also as a complex local phenomenon controlled by specific neurotransmitters that act in different neural networks, which is called "local sleep". Moreover, the basic states of human consciousness-wakefulness, sleep onset (N1), light sleep (N2), deep sleep (N3), and rapid eye movement (REM) sleep-can concurrently appear, which may result in different sleep-related dissociative states. In this article, we classify these sleep-related dissociative states into physiological, pathological, and altered states of consciousness. Physiological states are daydreaming, lucid dreaming, and false awakenings. Pathological states include sleep paralysis, sleepwalking, and REM sleep behavior disorder. Altered states are hypnosis, anesthesia, and psychedelics. We review the neurophysiology and phenomenology of these sleep-related dissociative states of consciousness and update them with recent studies. We conclude that these sleep-related dissociative states have a significant basic and clinical impact since their study contributes to the understanding of consciousness and the proper treatment of neuropsychiatric diseases.
Collapse
Affiliation(s)
| | - Isabel Wießner
- Brain Institute, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Muna Irfan
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carlos H Schenck
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sergio A Mota-Rolim
- Brain Institute, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| |
Collapse
|
31
|
Singleton SP, Timmermann C, Luppi AI, Eckernäs E, Roseman L, Carhart-Harris RL, Kuceyeski A. Time-resolved network control analysis links reduced control energy under DMT with the serotonin 2a receptor, signal diversity, and subjective experience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540409. [PMID: 37214949 PMCID: PMC10197635 DOI: 10.1101/2023.05.11.540409] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Psychedelics offer a profound window into the functioning of the human brain and mind through their robust acute effects on perception, subjective experience, and brain activity patterns. In recent work using a receptor-informed network control theory framework, we demonstrated that the serotonergic psychedelics lysergic acid diethylamide (LSD) and psilocybin flatten the brain's control energy landscape in a manner that covaries with more dynamic and entropic brain activity. Contrary to LSD and psilocybin, whose effects last for hours, the serotonergic psychedelic N,N-dimethyltryptamine (DMT) rapidly induces a profoundly immersive altered state of consciousness lasting less than 20 minutes, allowing for the entirety of the drug experience to be captured during a single resting-state fMRI scan. Using network control theory, which quantifies the amount of input necessary to drive transitions between functional brain states, we integrate brain structure and function to map the energy trajectories of 14 individuals undergoing fMRI during DMT and placebo. Consistent with previous work, we find that global control energy is reduced following injection with DMT compared to placebo. We additionally show longitudinal trajectories of global control energy correlate with longitudinal trajectories of EEG signal diversity (a measure of entropy) and subjective ratings of drug intensity. We interrogate these same relationships on a regional level and find that the spatial patterns of DMT's effects on these metrics are correlated with serotonin 2a receptor density (obtained from separately acquired PET data). Using receptor distribution and pharmacokinetic information, we were able to successfully recapitulate the effects of DMT on global control energy trajectories, demonstrating a proof-of-concept for the use of control models in predicting pharmacological intervention effects on brain dynamics.
Collapse
Affiliation(s)
| | - Christopher Timmermann
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London, United Kingdom
| | | | - Emma Eckernäs
- Unit for Pharmacokinetics and Drug Metabolism, Department of Pharmacology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Leor Roseman
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London, United Kingdom
| | - Robin L. Carhart-Harris
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London, United Kingdom
- Psychedelics Division, Neuroscape, University of California San Francisco, USA
| | - Amy Kuceyeski
- Department of Computational Biology, Cornell University, Ithaca, USA
- Department of Radiology, Weill Cornell Medicine, New York, USA
| |
Collapse
|
32
|
Herzog R, Mediano PAM, Rosas FE, Lodder P, Carhart-Harris R, Perl YS, Tagliazucchi E, Cofre R. A whole-brain model of the neural entropy increase elicited by psychedelic drugs. Sci Rep 2023; 13:6244. [PMID: 37069186 PMCID: PMC10110594 DOI: 10.1038/s41598-023-32649-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/30/2023] [Indexed: 04/19/2023] Open
Abstract
Psychedelic drugs, including lysergic acid diethylamide (LSD) and other agonists of the serotonin 2A receptor (5HT2A-R), induce drastic changes in subjective experience, and provide a unique opportunity to study the neurobiological basis of consciousness. One of the most notable neurophysiological signatures of psychedelics, increased entropy in spontaneous neural activity, is thought to be of relevance to the psychedelic experience, mediating both acute alterations in consciousness and long-term effects. However, no clear mechanistic explanation for this entropy increase has been put forward so far. We sought to do this here by building upon a recent whole-brain model of serotonergic neuromodulation, to study the entropic effects of 5HT2A-R activation. Our results reproduce the overall entropy increase observed in previous experiments in vivo, providing the first model-based explanation for this phenomenon. We also found that entropy changes were not uniform across the brain: entropy increased in all regions, but the larger effect were localised in visuo-occipital regions. Interestingly, at the whole-brain level, this reconfiguration was not well explained by 5HT2A-R density, but related closely to the topological properties of the brain's anatomical connectivity. These results help us understand the mechanisms underlying the psychedelic state and, more generally, the pharmacological modulation of whole-brain activity.
Collapse
Affiliation(s)
- Rubén Herzog
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Pje Harrington 287, 2360103, Valparaíso, Chile.
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, SW7 2DD, UK
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Fernando E Rosas
- Department of Informatics, University of Sussex, Brighton, BN1 9RH, UK
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, SW7 2DD, UK
- Centre for Complexity Science, Imperial College London, London, SW7 2AZ, UK
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, OX3 9BX, UK
| | - Paul Lodder
- Informatics Institute, University of Amsterdam, P.O. Box 94323, 1090 GH, Amsterdam, The Netherlands
| | - Robin Carhart-Harris
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, SW7 2DD, UK
- Psychedelics Division, Neuroscape, University of California San Francisco, San Francisco, CA, USA
| | - Yonatan Sanz Perl
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Universidad de San Andres, Buenos Aires, Argentina
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Enzo Tagliazucchi
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Rodrigo Cofre
- CIMFAV-Ingemat, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso, Chile
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France
| |
Collapse
|
33
|
Gattuso JJ, Perkins D, Ruffell S, Lawrence AJ, Hoyer D, Jacobson LH, Timmermann C, Castle D, Rossell SL, Downey LA, Pagni BA, Galvão-Coelho NL, Nutt D, Sarris J. Default Mode Network Modulation by Psychedelics: A Systematic Review. Int J Neuropsychopharmacol 2023; 26:155-188. [PMID: 36272145 PMCID: PMC10032309 DOI: 10.1093/ijnp/pyac074] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Psychedelics are a unique class of drug that commonly produce vivid hallucinations as well as profound psychological and mystical experiences. A grouping of interconnected brain regions characterized by increased temporal coherence at rest have been termed the Default Mode Network (DMN). The DMN has been the focus of numerous studies assessing its role in self-referencing, mind wandering, and autobiographical memories. Altered connectivity in the DMN has been associated with a range of neuropsychiatric conditions such as depression, anxiety, post-traumatic stress disorder, attention deficit hyperactive disorder, schizophrenia, and obsessive-compulsive disorder. To date, several studies have investigated how psychedelics modulate this network, but no comprehensive review, to our knowledge, has critically evaluated how major classical psychedelic agents-lysergic acid diethylamide, psilocybin, and ayahuasca-modulate the DMN. Here we present a systematic review of the knowledge base. Across psychedelics there is consistent acute disruption in resting state connectivity within the DMN and increased functional connectivity between canonical resting-state networks. Various models have been proposed to explain the cognitive mechanisms of psychedelics, and in one model DMN modulation is a central axiom. Although the DMN is consistently implicated in psychedelic studies, it is unclear how central the DMN is to the therapeutic potential of classical psychedelic agents. This article aims to provide the field with a comprehensive overview that can propel future research in such a way as to elucidate the neurocognitive mechanisms of psychedelics.
Collapse
Affiliation(s)
- James J Gattuso
- MDHS, University of Melbourne, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Daniel Perkins
- Psychae Institute, Melbourne, Victoria, Australia
- MDHS, University of Melbourne, Parkville, Victoria, Australia
- School of Social and Political Science, University of Melbourne, Australia
- Centre for Mental Health, Swinburne University, Hawthorn, Victoria, Australia
| | - Simon Ruffell
- The Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
| | - Andrew J Lawrence
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Daniel Hoyer
- MDHS, University of Melbourne, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, California, USA
| | - Laura H Jacobson
- MDHS, University of Melbourne, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | | | - David Castle
- Department of Psychiatry, University of Toronto, Canada
| | - Susan L Rossell
- Centre for Mental Health, Swinburne University, Hawthorn, Victoria, Australia
| | - Luke A Downey
- Centre for Human Psychopharmacology, Swinburne University, Hawthorn, Victoria, Australia
| | - Broc A Pagni
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| | - Nicole L Galvão-Coelho
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Brazil
- NICM Health Research Institute, Western Sydney University, Westmead, New South Wales, Australia
| | - David Nutt
- Centre for Psychedelic Research, Division of Psychiatry, Imperial College London, UK
| | - Jerome Sarris
- Psychae Institute, Melbourne, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, New South Wales, Australia
| |
Collapse
|
34
|
Carhart-Harris RL, Chandaria S, Erritzoe DE, Gazzaley A, Girn M, Kettner H, Mediano PAM, Nutt DJ, Rosas FE, Roseman L, Timmermann C, Weiss B, Zeifman RJ, Friston KJ. Canalization and plasticity in psychopathology. Neuropharmacology 2023; 226:109398. [PMID: 36584883 DOI: 10.1016/j.neuropharm.2022.109398] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
This theoretical article revives a classical bridging construct, canalization, to describe a new model of a general factor of psychopathology. To achieve this, we have distinguished between two types of plasticity, an early one that we call 'TEMP' for 'Temperature or Entropy Mediated Plasticity', and another, we call 'canalization', which is close to Hebbian plasticity. These two forms of plasticity can be most easily distinguished by their relationship to 'precision' or inverse variance; TEMP relates to increased model variance or decreased precision, whereas the opposite is true for canalization. TEMP also subsumes increased learning rate, (Ising) temperature and entropy. Dictionary definitions of 'plasticity' describe it as the property of being easily shaped or molded; TEMP is the better match for this. Importantly, we propose that 'pathological' phenotypes develop via mechanisms of canalization or increased model precision, as a defensive response to adversity and associated distress or dysphoria. Our model states that canalization entrenches in psychopathology, narrowing the phenotypic state-space as the agent develops expertise in their pathology. We suggest that TEMP - combined with gently guiding psychological support - can counter canalization. We address questions of whether and when canalization is adaptive versus maladaptive, furnish our model with references to basic and human neuroscience, and offer concrete experiments and measures to test its main hypotheses and implications. This article is part of the Special Issue on "National Institutes of Health Psilocybin Research Speaker Series".
Collapse
Affiliation(s)
- R L Carhart-Harris
- Psychedelics Division - Neuroscape, Department of Neurology, University of California, San Francisco, USA; Centre for Psychedelic Research, Imperial College London, UK.
| | - S Chandaria
- Centre for Psychedelic Research, Imperial College London, UK; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK; Institute of Philosophy, School of Advanced Study, University of London, UK
| | - D E Erritzoe
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - A Gazzaley
- Psychedelics Division - Neuroscape, Department of Neurology, University of California, San Francisco, USA
| | - M Girn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - H Kettner
- Psychedelics Division - Neuroscape, Department of Neurology, University of California, San Francisco, USA; Centre for Psychedelic Research, Imperial College London, UK
| | - P A M Mediano
- Department of Computing, Imperial College London, London, UK; Department of Psychology, University of Cambridge, UK
| | - D J Nutt
- Centre for Psychedelic Research, Imperial College London, UK
| | - F E Rosas
- Centre for Psychedelic Research, Imperial College London, UK; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK; Department of Informatics, University of Sussex, UK; Centre for Complexity Science, Imperial College London, UK
| | - L Roseman
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - C Timmermann
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - B Weiss
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - R J Zeifman
- Centre for Psychedelic Research, Imperial College London, UK; NYU Langone Center for Psychedelic Medicine, NYU Grossman School of Medicine, USA
| | - K J Friston
- Wellcome Centre for Human Neuroimaging, University College London, UK
| |
Collapse
|
35
|
Wulff AB, Nichols CD, Thompson SM. Preclinical perspectives on the mechanisms underlying the therapeutic actions of psilocybin in psychiatric disorders. Neuropharmacology 2023; 231:109504. [PMID: 36921889 DOI: 10.1016/j.neuropharm.2023.109504] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/14/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023]
Abstract
Psychedelic compounds have shown extraordinary potential in treating a wide range of neuropsychiatric disorders. Psilocybin, for example, has now been shown in several clinical trials to induce a rapid (within days) and persistent (3-12 months) improvement in human treatment-resistant depression and other neuropsychiatric conditions. Here we review the preclinical models and experimental approaches that have been used to study the neurobiological actions of psychedelic drugs. We further summarize the insights these studies have provided into the possible mechanisms underlying the induction of their therapeutic actions, including the receptors to which psychedelics bind and the second messenger signaling cascades that they activate. We also discuss potential biological processes that psychedelics may alter to produce the lasting amelioration of symptoms, including improvements in synaptic structure and function and suppression of inflammation. Improved mechanistic understanding of psychedelic drug actions will aid in the advancement of these promising new medicines.
Collapse
Affiliation(s)
- Andreas B Wulff
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Charles D Nichols
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Scott M Thompson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
36
|
Fagerholm ED, Dezhina Z, Moran RJ, Turkheimer FE, Leech R. A primer on entropy in neuroscience. Neurosci Biobehav Rev 2023; 146:105070. [PMID: 36736445 DOI: 10.1016/j.neubiorev.2023.105070] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Entropy is not just a property of a system - it is a property of a system and an observer. Specifically, entropy is a measure of the amount of hidden information in a system that arises due to an observer's limitations. Here we provide an account of entropy from first principles in statistical mechanics with the aid of toy models of neural systems. Specifically, we describe the distinction between micro and macrostates in the context of simplified binary-state neurons and the characteristics of entropy required to capture an associated measure of hidden information. We discuss the origin of the mathematical form of entropy via the indistinguishable re-arrangements of discrete-state neurons and show the way in which the arguments are extended into a phase space description for continuous large-scale neural systems. Finally, we show the ways in which limitations in neuroimaging resolution, as represented by coarse graining operations in phase space, lead to an increase in entropy in time as per the second law of thermodynamics. It is our hope that this primer will support the increasing number of studies that use entropy as a way of characterising neuroimaging timeseries and of making inferences about brain states.
Collapse
Affiliation(s)
- Erik D Fagerholm
- Department of Neuroimaging, King's College London, United Kingdom.
| | - Zalina Dezhina
- Department of Neuroimaging, King's College London, United Kingdom
| | - Rosalyn J Moran
- Department of Neuroimaging, King's College London, United Kingdom
| | | | - Robert Leech
- Department of Neuroimaging, King's College London, United Kingdom
| |
Collapse
|
37
|
Orłowski P, Bola M. Sensory modality defines the relation between EEG Lempel-Ziv diversity and meaningfulness of a stimulus. Sci Rep 2023; 13:3453. [PMID: 36859725 PMCID: PMC9977735 DOI: 10.1038/s41598-023-30639-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/27/2023] [Indexed: 03/03/2023] Open
Abstract
Diversity of brain activity is a robust neural correlate of global states of consciousness. It has been proposed that diversity measures specifically reflect the temporal variability of conscious experience. Previous studies supported this hypothesis by showing that perception of meaningful visual stimuli causes richer, more-variable experiences than perception of meaningless stimuli, and this is reflected in greater brain signal diversity. To investigate whether this relation is consistent across sensory modalities, to participants we presented three versions of naturalistic visual and auditory stimuli (videos and audiobooks) that varied in the amount of meaning (original, scrambled, and noise), while recording electroencephalographic signals. We report three main findings. First, greater meaningfulness of visual stimuli was related to higher Lempel-Ziv diversity of EEG signals, but the opposite effect was found in the auditory modality. Second, visual perception was related to generally higher EEG diversity than auditory perception. Third, perception of meaningful visual stimuli and auditory stimuli respectively resulted in higher and lower EEG diversity in comparison to the resting state. In conclusion, the signal diversity of continuous brain signals depends on the stimulated sensory modality, therefore it is not a generic index of the variability of conscious experience.
Collapse
Affiliation(s)
- Paweł Orłowski
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Michał Bola
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| |
Collapse
|
38
|
A complex systems perspective on psychedelic brain action. Trends Cogn Sci 2023; 27:433-445. [PMID: 36740518 DOI: 10.1016/j.tics.2023.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 02/05/2023]
Abstract
Recent findings suggesting the potential transdiagnostic efficacy of psychedelic-assisted therapy have fostered the need to deepen our understanding of psychedelic brain action. Functional neuroimaging investigations have found that psychedelics reduce the functional segregation of large-scale brain networks. However, beyond this general trend, findings have been largely inconsistent. We argue here that a perspective based on complexity science that foregrounds the distributed, interactional, and dynamic nature of brain function may render these inconsistencies intelligible. We propose that psychedelics induce a mode of brain function that is more dynamically flexible, diverse, integrated, and tuned for information sharing, consistent with greater criticality. This 'meta' perspective has the potential to unify past findings and guide intuitions toward compelling mechanistic models.
Collapse
|
39
|
Luppi AI, Vohryzek J, Kringelbach ML, Mediano PAM, Craig MM, Adapa R, Carhart-Harris RL, Roseman L, Pappas I, Peattie ARD, Manktelow AE, Sahakian BJ, Finoia P, Williams GB, Allanson J, Pickard JD, Menon DK, Atasoy S, Stamatakis EA. Distributed harmonic patterns of structure-function dependence orchestrate human consciousness. Commun Biol 2023; 6:117. [PMID: 36709401 PMCID: PMC9884288 DOI: 10.1038/s42003-023-04474-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/11/2023] [Indexed: 01/29/2023] Open
Abstract
A central question in neuroscience is how consciousness arises from the dynamic interplay of brain structure and function. Here we decompose functional MRI signals from pathological and pharmacologically-induced perturbations of consciousness into distributed patterns of structure-function dependence across scales: the harmonic modes of the human structural connectome. We show that structure-function coupling is a generalisable indicator of consciousness that is under bi-directional neuromodulatory control. We find increased structure-function coupling across scales during loss of consciousness, whether due to anaesthesia or brain injury, capable of discriminating between behaviourally indistinguishable sub-categories of brain-injured patients, tracking the presence of covert consciousness. The opposite harmonic signature characterises the altered state induced by LSD or ketamine, reflecting psychedelic-induced decoupling of brain function from structure and correlating with physiological and subjective scores. Overall, connectome harmonic decomposition reveals how neuromodulation and the network architecture of the human connectome jointly shape consciousness and distributed functional activation across scales.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, CB2 1SB, UK.
| | - Jakub Vohryzek
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, 08005, Spain
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Computing, Imperial College London, London, W12 0NN, UK
| | - Michael M Craig
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Ram Adapa
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, W12 0NN, UK
- Psychedelics Division - Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Leor Roseman
- Center for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, W12 0NN, UK
| | - Ioannis Pappas
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Alexander R D Peattie
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Anne E Manktelow
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Barbara J Sahakian
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Psychiatry, MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Paola Finoia
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Guy B Williams
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Judith Allanson
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - John D Pickard
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - David K Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Selen Atasoy
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
40
|
Schizophrenia and psychedelic state: Dysconnection versus hyper-connection. A perspective on two different models of psychosis stemming from dysfunctional integration processes. Mol Psychiatry 2023; 28:59-67. [PMID: 35931756 DOI: 10.1038/s41380-022-01721-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 01/07/2023]
Abstract
Psychotic symptoms are a cross-sectional dimension affecting multiple diagnostic categories, despite schizophrenia represents the prototype of psychoses. Initially, dopamine was considered the most involved molecule in the neurobiology of schizophrenia. Over the next years, several biological factors were added to the discussion helping to constitute the concept of schizophrenia as a disease marked by a deficit of functional integration, contributing to the formulation of the Dysconnection Hypothesis in 1995. Nowadays the notion of dysconnection persists in the conceptualization of schizophrenia enriched by neuroimaging findings which corroborate the hypothesis. At the same time, in recent years, psychedelics received a lot of attention by the scientific community and astonishing findings emerged about the rearrangement of brain networks under the effect of these compounds. Specifically, a global decrease in functional connectivity was found, highlighting the disintegration of preserved and functional circuits and an increase of overall connectivity in the brain. The aim of this paper is to compare the biological bases of dysconnection in schizophrenia with the alterations of neuronal cyto-architecture induced by psychedelics and the consequent state of cerebral hyper-connection. These two models of psychosis, despite diametrically opposed, imply a substantial deficit of integration of neural signaling reached through two opposite paths.
Collapse
|
41
|
Vohryzek J, Cabral J, Castaldo F, Sanz-Perl Y, Lord LD, Fernandes HM, Litvak V, Kringelbach ML, Deco G. Dynamic sensitivity analysis: Defining personalised strategies to drive brain state transitions via whole brain modelling. Comput Struct Biotechnol J 2022; 21:335-345. [PMID: 36582443 PMCID: PMC9792354 DOI: 10.1016/j.csbj.2022.11.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Traditionally, in neuroimaging, model-free analyses are used to find significant differences between brain states via signal detection theory. Depending on the a priori assumptions about the underlying data, different spatio-temporal features can be analysed. Alternatively, model-based techniques infer features from the data and compare significance from model parameters. However, to assess transitions from one brain state to another remains a challenge in current paradigms. Here, we introduce a "Dynamic Sensitivity Analysis" framework that quantifies transitions between brain states in terms of stimulation ability to rebalance spatio-temporal brain activity towards a target state such as healthy brain dynamics. In practice, it means building a whole-brain model fitted to the spatio-temporal description of brain dynamics, and applying systematic stimulations in-silico to assess the optimal strategy to drive brain dynamics towards a target state. Further, we show how Dynamic Sensitivity Analysis extends to various brain stimulation paradigms, ultimately contributing to improving the efficacy of personalised clinical interventions.
Collapse
Key Words
- Brain State
- Brain stimulation
- Deep Brain Stimulation, DBS
- Magnetic Resonance Imaging, MRI
- Non-Invasive Brain Stimulations, NIBS
- Position Emission Tomography, PET
- Probability Metastable Substates, PMS
- Spatio-temporal dynamics
- Transcranial Magnetic Stimulation, TMS
- Transition Probability Matrix, TPM
- Whole-brain models
- diffusion Magnetic Resonance Imaging, dMRI
- dynamic Functional Connectivity, dFC
- functional Magnetic Resonance Imaging, fMRI
- static Functional Connectivity, sFC
- transcranial Alternating Current Stimulation, tACS
- transcranial Direct Stimulation, tDCS
- transcranial Electric Stimulation, tES
- transcranial Random Noise Stimulation, tRNS
Collapse
Affiliation(s)
- Jakub Vohryzek
- Centre for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK
| | - Joana Cabral
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Francesca Castaldo
- Wellcome Centre for Human Neuroimaging, University College London, Queen Square Institute of Neurology, London, UK
| | - Yonatan Sanz-Perl
- Centre for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Louis-David Lord
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK
| | - Henrique M. Fernandes
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK
- Centre for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Vladimir Litvak
- Wellcome Centre for Human Neuroimaging, University College London, Queen Square Institute of Neurology, London, UK
| | - Morten L. Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK
- Centre for Music in the Brain, Aarhus University, Aarhus, Denmark
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Gustavo Deco
- Centre for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
42
|
Olsen AS, Lykkebo-Valløe A, Ozenne B, Madsen MK, Stenbæk DS, Armand S, Mørup M, Ganz M, Knudsen GM, Fisher PM. Psilocybin modulation of time-varying functional connectivity is associated with plasma psilocin and subjective effects. Neuroimage 2022; 264:119716. [PMID: 36341951 DOI: 10.1016/j.neuroimage.2022.119716] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 10/11/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Psilocin, the neuroactive metabolite of psilocybin, is a serotonergic psychedelic that induces an acute altered state of consciousness, evokes lasting changes in mood and personality in healthy individuals, and has potential as an antidepressant treatment. Examining the acute effects of psilocin on resting-state time-varying functional connectivity implicates network-level connectivity motifs that may underlie acute and lasting behavioral and clinical effects. AIM Evaluate the association between resting-state time-varying functional connectivity (tvFC) characteristics and plasma psilocin level (PPL) and subjective drug intensity (SDI) before and right after intake of a psychedelic dose of psilocybin in healthy humans. METHODS Fifteen healthy individuals completed the study. Before and at multiple time points after psilocybin intake, we acquired 10-minute resting-state blood-oxygen-level-dependent functional magnetic resonance imaging scans. Leading Eigenvector Dynamics Analysis (LEiDA) and diametrical clustering were applied to estimate discrete, sequentially active brain states. We evaluated associations between the fractional occurrence of brain states during a scan session and PPL and SDI using linear mixed-effects models. We examined associations between brain state dwell time and PPL and SDI using frailty Cox proportional hazards survival analysis. RESULTS Fractional occurrences for two brain states characterized by lateral frontoparietal and medial fronto-parietal-cingulate coherence were statistically significantly negatively associated with PPL and SDI. Dwell time for these brain states was negatively associated with SDI and, to a lesser extent, PPL. Conversely, fractional occurrence and dwell time of a fully connected brain state partly associated with motion was positively associated with PPL and SDI. CONCLUSION Our findings suggest that the acute perceptual psychedelic effects induced by psilocybin may stem from drug-level associated decreases in the occurrence and duration of lateral and medial frontoparietal connectivity motifs. We apply and argue for a modified approach to modeling eigenvectors produced by LEiDA that more fully acknowledges their underlying structure. Together these findings contribute to a more comprehensive neurobiological framework underlying acute effects of serotonergic psychedelics.
Collapse
Affiliation(s)
- Anders S Olsen
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Applied Mathematics and Computer Science, DTU Compute, Kgs. Lyngby, Denmark
| | - Anders Lykkebo-Valløe
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Brice Ozenne
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Martin K Madsen
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Dea S Stenbæk
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Sophia Armand
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Morten Mørup
- Department of Applied Mathematics and Computer Science, DTU Compute, Kgs. Lyngby, Denmark
| | - Melanie Ganz
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Patrick M Fisher
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
43
|
Cooper AC, Ventura B, Northoff G. Beyond the veil of duality-topographic reorganization model of meditation. Neurosci Conscious 2022; 2022:niac013. [PMID: 36237370 PMCID: PMC9552929 DOI: 10.1093/nc/niac013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 11/14/2022] Open
Abstract
Meditation can exert a profound impact on our mental life, with proficient practitioners often reporting an experience free of boundaries between a separate self and the environment, suggesting an explicit experience of "nondual awareness." What are the neural correlates of such experiences and how do they relate to the idea of nondual awareness itself? In order to unravel the effects that meditation has on the brain's spatial topography, we review functional magnetic resonance imaging brain findings from studies specific to an array of meditation types and meditator experience levels. We also review findings from studies that directly probe the interaction between meditation and the experience of the self. The main results are (i) decreased posterior default mode network (DMN) activity, (ii) increased central executive network (CEN) activity, (iii) decreased connectivity within posterior DMN as well as between posterior and anterior DMN, (iv) increased connectivity within the anterior DMN and CEN, and (v) significantly impacted connectivity between the DMN and CEN (likely a nonlinear phenomenon). Together, these suggest a profound organizational shift of the brain's spatial topography in advanced meditators-we therefore propose a topographic reorganization model of meditation (TRoM). One core component of the TRoM is that the topographic reorganization of DMN and CEN is related to a decrease in the mental-self-processing along with a synchronization with the more nondual layers of self-processing, notably interoceptive and exteroceptive-self-processing. This reorganization of the functionality of both brain and self-processing can result in the explicit experience of nondual awareness. In conclusion, this review provides insight into the profound neural effects of advanced meditation and proposes a result-driven unifying model (TRoM) aimed at identifying the inextricably tied objective (neural) and subjective (experiential) effects of meditation.
Collapse
Affiliation(s)
- Austin Clinton Cooper
- Integrated Program of Neuroscience, Room 302, Irving Ludmer Building, 1033 Pine Avenue W., McGill University, Montreal, QC H3A 1A1, Canada
| | - Bianca Ventura
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
- Mental Health Center, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
44
|
Singleton SP, Luppi AI, Carhart-Harris RL, Cruzat J, Roseman L, Nutt DJ, Deco G, Kringelbach ML, Stamatakis EA, Kuceyeski A. Receptor-informed network control theory links LSD and psilocybin to a flattening of the brain's control energy landscape. Nat Commun 2022; 13:5812. [PMID: 36192411 PMCID: PMC9530221 DOI: 10.1038/s41467-022-33578-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Psychedelics including lysergic acid diethylamide (LSD) and psilocybin temporarily alter subjective experience through their neurochemical effects. Serotonin 2a (5-HT2a) receptor agonism by these compounds is associated with more diverse (entropic) brain activity. We postulate that this increase in entropy may arise in part from a flattening of the brain's control energy landscape, which can be observed using network control theory to quantify the energy required to transition between recurrent brain states. Using brain states derived from existing functional magnetic resonance imaging (fMRI) datasets, we show that LSD and psilocybin reduce control energy required for brain state transitions compared to placebo. Furthermore, across individuals, reduction in control energy correlates with more frequent state transitions and increased entropy of brain state dynamics. Through network control analysis that incorporates the spatial distribution of 5-HT2a receptors (obtained from publicly available positron emission tomography (PET) data under non-drug conditions), we demonstrate an association between the 5-HT2a receptor and reduced control energy. Our findings provide evidence that 5-HT2a receptor agonist compounds allow for more facile state transitions and more temporally diverse brain activity. More broadly, we demonstrate that receptor-informed network control theory can model the impact of neuropharmacological manipulation on brain activity dynamics.
Collapse
Affiliation(s)
- S Parker Singleton
- Department of Computational Biology, Cornell University, Ithaca, NY, USA.
| | - Andrea I Luppi
- Division of Anesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK
- Psychedelics Division, Neuroscape, University of California San Francisco, San Francisco, CA, USA
| | - Josephine Cruzat
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, Spain
| | - Leor Roseman
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK
| | - David J Nutt
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, Clayton, VIC, Australia
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center of Music in the Brain (MIB), Clinical Medicine, Aarhus University, Aarhus, Denmark
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
| | - Emmanuel A Stamatakis
- Division of Anesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Amy Kuceyeski
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
45
|
Stoliker D, Egan GF, Friston KJ, Razi A. Neural Mechanisms and Psychology of Psychedelic Ego Dissolution. Pharmacol Rev 2022; 74:876-917. [PMID: 36786290 DOI: 10.1124/pharmrev.121.000508] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022] Open
Abstract
Neuroimaging studies of psychedelics have advanced our understanding of hierarchical brain organization and the mechanisms underlying their subjective and therapeutic effects. The primary mechanism of action of classic psychedelics is binding to serotonergic 5-HT2A receptors. Agonist activity at these receptors leads to neuromodulatory changes in synaptic efficacy that can have a profound effect on hierarchical message-passing in the brain. Here, we review the cognitive and neuroimaging evidence for the effects of psychedelics: in particular, their influence on selfhood and subject-object boundaries-known as ego dissolution-surmised to underwrite their subjective and therapeutic effects. Agonism of 5-HT2A receptors, located at the apex of the cortical hierarchy, may have a particularly powerful effect on sentience and consciousness. These effects can endure well after the pharmacological half-life, suggesting that psychedelics may have effects on neural plasticity that may play a role in their therapeutic efficacy. Psychologically, this may be accompanied by a disarming of ego resistance that increases the repertoire of perceptual hypotheses and affords alternate pathways for thought and behavior, including those that undergird selfhood. We consider the interaction between serotonergic neuromodulation and sentience through the lens of hierarchical predictive coding, which speaks to the value of psychedelics in understanding how we make sense of the world and specific predictions about effective connectivity in cortical hierarchies that can be tested using functional neuroimaging. SIGNIFICANCE STATEMENT: Classic psychedelics bind to serotonergic 5-HT2A receptors. Their agonist activity at these receptors leads to neuromodulatory changes in synaptic efficacy, resulting in a profound effect on information processing in the brain. Here, we synthesize an abundance of brain imaging research with pharmacological and psychological interpretations informed by the framework of predictive coding. Moreover, predictive coding is suggested to offer more sophisticated interpretations of neuroimaging findings by bridging the role between the 5-HT2A receptors and large-scale brain networks.
Collapse
Affiliation(s)
- Devon Stoliker
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Gary F Egan
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Karl J Friston
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Adeel Razi
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| |
Collapse
|
46
|
Cruzat J, Perl YS, Escrichs A, Vohryzek J, Timmermann C, Roseman L, Luppi AI, Ibañez A, Nutt D, Carhart-Harris R, Tagliazucchi E, Deco G, Kringelbach ML. Effects of classic psychedelic drugs on turbulent signatures in brain dynamics. Netw Neurosci 2022; 6:1104-1124. [PMID: 38800462 PMCID: PMC11117113 DOI: 10.1162/netn_a_00250] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/06/2022] [Indexed: 05/29/2024] Open
Abstract
Psychedelic drugs show promise as safe and effective treatments for neuropsychiatric disorders, yet their mechanisms of action are not fully understood. A fundamental hypothesis is that psychedelics work by dose-dependently changing the functional hierarchy of brain dynamics, but it is unclear whether different psychedelics act similarly. Here, we investigated the changes in the brain's functional hierarchy associated with two different psychedelics (LSD and psilocybin). Using a novel turbulence framework, we were able to determine the vorticity, that is, the local level of synchronization, that allowed us to extend the standard global time-based measure of metastability to become a local-based measure of both space and time. This framework produced detailed signatures of turbulence-based hierarchical change for each psychedelic drug, revealing consistent and discriminate effects on a higher level network, that is, the default mode network. Overall, our findings directly support a prior hypothesis that psychedelics modulate (i.e., "compress") the functional hierarchy and provide a quantification of these changes for two different psychedelics. Implications for therapeutic applications of psychedelics are discussed.
Collapse
Affiliation(s)
- Josephine Cruzat
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
| | - Yonatan Sanz Perl
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Jakub Vohryzek
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
| | - Christopher Timmermann
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Leor Roseman
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Andrea I. Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, United Kingdom
- The Alan Turing Institute, London, United Kingdom
| | - Agustin Ibañez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, and CONICET, Buenos Aires, Argentina
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, USA, and Trinity College Dublin (TCD), Dublin, Ireland
| | - David Nutt
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Robin Carhart-Harris
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, United Kingdom
- Psychedelics Division–Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile
- Physics Department, University of Buenos Aires, and Buenos Aires Physics Institute, Buenos Aires, Argentina
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Institució Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Morten L. Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Denmark
| |
Collapse
|
47
|
Pouyan N, Halvaei Khankahdani Z, Younesi Sisi F, Lee Y, Rosenblat JD, Teopiz KM, Lui LMW, Subramaniapillai M, Lin K, Nasri F, Rodrigues N, Gill H, Lipsitz O, Cao B, Ho R, Castle D, McIntyre RS. A Research Domain Criteria (RDoC)-Guided Dashboard to Review Psilocybin Target Domains: A Systematic Review. CNS Drugs 2022; 36:1031-1047. [PMID: 36097251 PMCID: PMC9550777 DOI: 10.1007/s40263-022-00944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/17/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Preliminary results from randomized controlled studies as well as identified molecular, cellular, and circuit targets of select psychedelics (e.g., psilocybin) suggest that their effects are transdiagnostic. In this review, we exploit the Research Domain Criteria (RDoC) transdiagnostic framework, to synthesize extant literature on psilocybin. OBJECTIVE We aimed to identify RDoC-based effects of psilocybin and vistas for future mechanistic and interventional research. METHODS A systematic search in electronic databases (i.e., PubMed, Scopus, PsycINFO, and Web of Science) performed in January and February 2021 identified English articles published between 1990 and 2020 reporting the effects of psilocybin on mental health measures. Data from included articles were retrieved and organized according to the RDoC bio-behavioral matrix and its constituent six main domains, namely: positive valence systems, negative valence systems, cognitive systems, social processes, sensorimotor systems, and arousal and regulatory systems. RESULTS The preponderance of research with psilocybin has differentially reported beneficial effects on positive valence systems, negative valence system, and social process domains. The data from the included studies support both short-term (23 assessments) and long-term (15 assessments) beneficial effects of psilocybin on the positive valence systems. While 12 of the extracted outcome measures suggest that psilocybin use is associated with increases in the "fear" construct of the negative valence systems domain, 19 findings show no significant effects on this construct, and seven parameters show lowered levels of the "sustained threat" construct in the long term. Thirty-four outcome measures revealed short-term alterations in the social systems' construct namely, "perception and understanding of self," and "social communications" as well as enhancements in "perception and understanding of others" and "affiliation and attachment". The majority of findings related to the cognitive systems' domain reported dyscognitive effects. There have been relatively few studies reporting outcomes of psilocybin on the remaining RDoC domains. Moreover, seven of the included studies suggest the transdiagnostic effects of psilocybin. The dashboard characterization of RDoC outcomes with psilocybin suggests beneficial effects in the measures of reward, threat, and arousal, as well as general social systems. CONCLUSIONS Psilocybin possesses a multi-domain effectiveness. The field would benefit from highly rigorous proof-of-mechanism research to assess the effects of psilocybin using the RDoC framework. The combined effect of psilocybin with psychosocial interventions with RDoC-based outcomes is a priority therapeutic vista.
Collapse
Affiliation(s)
- Niloufar Pouyan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital, Zurich, Switzerland.
- Program in Biomedical Sciences (PIBS), University of Michigan, 1135 Catherine Street, Box 5619, 2960 Taubman Health Science Library, Ann Arbor, MI, 48109-5619, USA.
- Aracell Zist Darou Pharmaceutical, Tehran, Iran.
| | - Zahra Halvaei Khankahdani
- Faculty of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran
- Bayer Pharmaceuticals, Tehran, Iran
| | - Farnaz Younesi Sisi
- Faculty of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran
- Yaadmaan Institute for Brain, Cognition and Memory Studies, Tehran, Iran
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Kayla M Teopiz
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
| | - Leanna M W Lui
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | | | - Kangguang Lin
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Flora Nasri
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
| | - Nelson Rodrigues
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
| | - Hartej Gill
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Orly Lipsitz
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
| | - Bing Cao
- School of Psychology and Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, People's Republic of China
| | - Roger Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Castle
- Department of Psychiatry, Centre for Complex Interventions, Centre for Addictions and Mental Health, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, Toronto, ON, Canada
| |
Collapse
|
48
|
Yang Y, Zhao R, Zhang F, Bai R, Li S, Cui R, Liu S, Xu J. Dynamic changes of amplitude of low-frequency in systemic lupus erythematosus patients with cognitive impairment. Front Neurosci 2022; 16:929383. [PMID: 36081656 PMCID: PMC9447953 DOI: 10.3389/fnins.2022.929383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022] Open
Abstract
Background Cognitive dysfunction (CI) is frequently reported in patients with systemic lupus erythematosus (SLE), but the identification and assessment of SLE-related CI remain challenging. Previous studies have focused on changes in static brain activity, and no studies have investigated the characteristics of dynamic brain activity in SLE patients with CI. Objects We calculated the dynamic amplitude of low-frequency fluctuation (dALFF) by combining the ALFF with a sliding window method to assess the temporal variability of brain functional activity in SLE patients with and without CI. Methods Thirty-eight SLE with CI, thirty-eight SLE without CI, and thirty-eight healthy controls (HCs) were recruited. By comparing static ALFF (sALFF) and dALFF among the three groups, changes in brain activity intensity and its temporal variability were assessed in patients with SLE with or without CI. Spearman correlation coefficients were calculated between the brain function indicator and Mini-mental State Examination (MMSE) scores of SLE with CI. Results Subjects among the three groups exhibited significant sALFF differences in the right parahippocampal gyrus, left caudate nucleus, right putamen, and left cuneus. Compared to the SLE without CI, the right parahippocampal gyrus exhibited higher sALFF in the SLE with CI group. Compared to the HCs, the left caudate nucleus exhibited increased sALFF in the SLE with CI group. Participants in the three groups exhibited significant dALFF variability in the right parahippocampal gyrus, right lingual gyrus, and bilateral inferior occipital gyrus. Compared to the HCs, the right lingual gyrus exhibited reduced dALFF in the SLE without CI group. Compared to the HCs, the right parahippocampal gyrus exhibited increased dALFF, left calcarine fissure, and the surrounding cortex exhibited reduced dALFF in the SLE with CI group. There was no significant correlation between the MMSE score, sALFF, and dALFF in the SLE with CI group. Conclusion SLE patients with CI have abnormal brain activity intensity and stability. By analyzing the dynamics of intrinsic brain activity, it provides a new idea for evaluating SLE-related CI. However, more research and validation with multiple metrics are needed to determine the link between the severity of cognitive impairment (CI) and brain activity in patients with SLE.
Collapse
Affiliation(s)
- Yifan Yang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruotong Zhao
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fengrui Zhang
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ru Bai
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shu Li
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruomei Cui
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shuang Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jian Xu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Jian Xu,
| |
Collapse
|
49
|
Shine JM, O’Callaghan C, Walpola IC, Wainstein G, Taylor N, Aru J, Huebner B, John YJ. Understanding the effects of serotonin in the brain through its role in the gastrointestinal tract. Brain 2022; 145:2967-2981. [DOI: 10.1093/brain/awac256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
The neuromodulatory arousal system imbues the nervous system with the flexibility and robustness required to facilitate adaptive behaviour. While there are well-understood mechanisms linking dopamine, noradrenaline and acetylcholine to distinct behavioural states, similar conclusions have not been as readily available for serotonin. Fascinatingly, despite clear links between serotonergic function and cognitive capacities as diverse as reward processing, exploration, and the psychedelic experience, over 95% of the serotonin in the body is released in the gastrointestinal tract, where it controls digestive muscle contractions (peristalsis). Here, we argue that framing neural serotonin as a rostral extension of the gastrointestinal serotonergic system dissolves much of the mystery associated with the central serotonergic system. Specifically, we outline that central serotonin activity mimics the effects of a digestion/satiety circuit mediated by hypothalamic control over descending serotonergic nuclei in the brainstem. We review commonalities and differences between these two circuits, with a focus on the heterogeneous expression of different classes of serotonin receptors in the brain. Much in the way that serotonin-induced peristalsis facilitates the work of digestion, serotonergic influences over cognition can be reframed as performing the work of cognition. Extending this analogy, we argue that the central serotonergic system allows the brain to arbitrate between different cognitive modes as a function of serotonergic tone: low activity facilitates cognitive automaticity, whereas higher activity helps to identify flexible solutions to problems, particularly if and when the initial responses fail. This perspective sheds light on otherwise disparate capacities mediated by serotonin, and also helps to understand why there are such pervasive links between serotonergic pathology and the symptoms of psychiatric disorders.
Collapse
Affiliation(s)
| | | | - Ishan C Walpola
- Prince of Wales Hospital , Randwick, New South Wales , Australia
| | | | | | - Jaan Aru
- University of Tartu , Tartu , Estonia
| | | | | |
Collapse
|
50
|
Alachkar A. Aromatic patterns: Tryptophan aromaticity as a catalyst for the emergence of life and rise of consciousness. Phys Life Rev 2022; 42:93-114. [PMID: 35905538 DOI: 10.1016/j.plrev.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
Sunlight held the key to the origin of life on Earth. The earliest life forms, cyanobacteria, captured the sunlight to generate energy through photosynthesis. Life on Earth evolved in accordance with the circadian rhythms tied to sensitivity to sunlight patterns. A unique feature of cyanobacterial photosynthetic proteins and circadian rhythms' molecules, and later of nearly all photon-sensing molecules throughout evolution, is that the aromatic amino acid tryptophan (Trp) resides at the center of light-harvesting active sites. In this perspective, I review the literature and integrate evidence from different scientific fields to explore the role Trp plays in photon-sensing capabilities of living organisms through its resonance delocalization of π-electrons. The observations presented here are the product of apparently unrelated phenomena throughout evolution, but nevertheless share consistent patterns of photon-sensing by Trp-containing and Trp-derived molecules. I posit the unique capacity to transfer electrons during photosynthesis in the earliest life forms is conferred to Trp due to its aromaticity. I propose this ability evolved to assume more complex functions, serving as a host for mechanisms underlying mental aptitudes - a concept which provides a theoretical basis for defining the neural correlates of consciousness. The argument made here is that Trp aromaticity may have allowed for the inception of the mechanistic building blocks used to fabricate complexity in higher forms of life. More specifically, Trp aromatic non-locality may have acted as a catalyst for the emergence of consciousness by instigating long-range synchronization and stabilizing the large-scale coherence of neural networks, which mediate functional brain activity. The concepts proposed in this perspective provide a conceptual foundation that invites further interdisciplinary dialogue aimed at examining and defining the role of aromaticity (beyond Trp) in the emergence of life and consciousness.
Collapse
Affiliation(s)
- Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA; UC Irvine Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, CA 92697, USA; Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|