1
|
Liu Y, Cheng Y, Chen T, Wang J, He J, Yan F, Yan L. Basal ganglia connectivity and network asymmetry in Parkinson's disease: A resting-state fMRI study. Brain Res 2025; 1856:149576. [PMID: 40113192 DOI: 10.1016/j.brainres.2025.149576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/03/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
This study investigates the impact of basal ganglia network asymmetry on motor function in Parkinson's Disease (PD). Using resting-state functional magnetic resonance imaging (rs-fMRI), functional connectivity and network asymmetry were analyzed in 15 non-demented PD patients and 15 healthy controls. Sixteen basal ganglia substructures, including the caudate, putamen, and globus pallidus, were selected for a unified analysis of variance framework to evaluate inter-hemispheric connectivity differences. After spatial preprocessing, regions of interest were defined, and time-series data were extracted for functional connectivity and network asymmetry analysis. The results revealed significant alterations in the functional connectivity of the caudate, putamen, and nucleus accumbens (NAc) in PD patients. Notably, the absence of intra-network asymmetry in the left NAc and bilateral amygdala correlated with motor dysfunction, likely due to overactivity of the inhibitory indirect pathway. Furthermore, pronounced asymmetry in the left putamen and right frontal gyrus suggested a compensatory neural mechanism supporting motor performance. These findings highlight the critical role of basal ganglia network asymmetry in the pathophysiology of PD. The identified asymmetry characteristics may serve as potential biomarkers for early diagnosis and disease progression monitoring, offering new directions for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Yan Liu
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China; College of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yu Cheng
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China; College of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Tianran Chen
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China; College of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jun Wang
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China; College of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jiajin He
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China; College of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Fuwu Yan
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China; College of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Lirong Yan
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China; College of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China; Department of Information, General Hospital of Central Theater Command, Wuhan 430070, China.
| |
Collapse
|
2
|
Zhang L, Han Y, Yan H, Zhang C, Li X, Liang J, Tang C, Wu W, Deng W, Xie G, Guo W. Decreased left brain specialization in bipolar disorder patients and its association with neurotransmitter and genetic profiles: A longitudinal study. Asian J Psychiatr 2025; 109:104539. [PMID: 40411979 DOI: 10.1016/j.ajp.2025.104539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/05/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
Brain specialization plays a crucial role in human behavior and cognition. Previous studies have suggested abnormal specialization in psychiatric disorders; however, the specialization patterns of bipolar disorder (BD) and the effects of medication on these changes remain unclear. According to Crow's hypothesis regarding the key role of language in the origin of psychoses, BD patients (BDPs) may exhibit abnormal language-related specialization. Here, we aimed to explore brain specialization alterations of BDPs before and after pharmacological treatment. The autonomy index, based on resting-state images, was used to assess brain specialization in 82 BDPs and 88 healthy controls (HCs). Among patients, 43 BDPs who underwent 3 months of pharmacological treatment completed the follow-up. Using autonomy index as input, support vector regression (SVR) analysis was conducted to predict treatment response. Additionally, we conducted cross-sample correlation analyses between autonomy index and genetic profiles or the densities of neurotransmitter receptors/transporters. At baseline, BDPs exhibited reduced autonomy index in the left middle temporal gyrus (MTG) relative to HCs. However, no significant alterations were observed following pharmacological treatment. Using autonomy index, the SVR model could predict treatment response for BDPs with a correlation coefficient of 0.705. Brain specialization patterns were correlated with six genes and neurotransmitters including dopaminergic (D1R, D2R, and DAT) and serotonergic (5-HT2A) transmission. In line with Crow's hypothesis, we found reduced brain specialization in a key node of the language network (LN) in BDPs. We also provided potential genetic and biological mechanisms underlying BD.
Collapse
Affiliation(s)
- Leyi Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yiding Han
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Department of Psychiatry, The Third People's Hospital of Foshan Foshan, Guangdong 528041, China
| | - Chunguo Zhang
- Department of Psychiatry, The Third People's Hospital of Foshan Foshan, Guangdong 528041, China
| | - Xiaoling Li
- Department of Psychiatry, The Third People's Hospital of Foshan Foshan, Guangdong 528041, China
| | - Jiaquan Liang
- Department of Psychiatry, The Third People's Hospital of Foshan Foshan, Guangdong 528041, China
| | - Chaohua Tang
- Department of Psychiatry, The Third People's Hospital of Foshan Foshan, Guangdong 528041, China
| | - Weibin Wu
- Department of Psychiatry, The Third People's Hospital of Foshan Foshan, Guangdong 528041, China
| | - Wen Deng
- Department of Psychiatry, The Third People's Hospital of Foshan Foshan, Guangdong 528041, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan Foshan, Guangdong 528041, China.
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
3
|
Wu X, Zhang K, Kuang N, Kong X, Cao M, Lian Z, Liu Y, Fan H, Yu G, Liu Z, Cheng W, Jia T, Sahakian BJ, Robbins TW, Feng J, Schumann G, Palaniyappan L, Zhang J. Developing brain asymmetry shapes cognitive and psychiatric outcomes in adolescence. Nat Commun 2025; 16:4480. [PMID: 40368909 DOI: 10.1038/s41467-025-59110-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 04/10/2025] [Indexed: 05/16/2025] Open
Abstract
Cerebral asymmetry, fundamental to various cognitive functions, is often disrupted in neuropsychiatric disorders. While brain growth has been extensively studied, the maturation of brain asymmetry in children and the factors influencing it in adolescence remain poorly understood. We analyze longitudinal data from 11,270 children aged 10-14 years in the Adolescent Brain Cognitive Development (ABCD) study. Our analysis maps the developmental trajectory of structural brain asymmetry. We identify significant age-related, modality-specific development patterns. These patterns link to crystallized intelligence and mental health problems, but with weak correlations. Genetically, structural asymmetry relates to synaptic processes and neuron projections, likely through asymmetric synaptic pruning. At the microstructural level, corpus callosum integrity emerged as a key factor modulating the developing asymmetry. Environmentally, favorable perinatal conditions were associated with prolonged corpus callosum development, which affected future asymmetry patterns and cognitive outcomes. These findings underscore the dynamic yet predictable interactions between brain asymmetry, its structural determinants, and cognitive and psychiatric outcomes during a pivotal developmental stage. Our results provide empirical support for the adaptive plasticity theory in cerebral asymmetry and offer insights into both cognitive maturation and potential risk for early-onset mental health problems.
Collapse
Affiliation(s)
- Xinran Wu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, PR China
| | - Kai Zhang
- School of Computer Science and Technology, East China Normal University, Shanghai, China
| | - Nanyu Kuang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Xiangzhen Kong
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Miao Cao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, PR China
| | - Zhengxu Lian
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, PR China
| | - Yu Liu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, PR China
| | - Huanxin Fan
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, PR China
| | - Gechang Yu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR
| | - Zhaowen Liu
- School of Computer Science of Northwestern Polytechnical University, Xi'an, Shanxi, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, PR China
| | - Tianye Jia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, PR China
| | - Barbara J Sahakian
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Trevor W Robbins
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Cambridge shire and Peterborough NHS Trust, Elizabeth House, Fulbourn Hospital, Cambridge, UK
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, PR China
- Shanghai Center for Mathematical Sciences, Shanghai, PR China
- Department of Computer Science, University of Warwick, Coventry, UK
- Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, PR China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, PR China
| | - Gunter Schumann
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
- PONS Centre, Charite Mental Health, Dept. of Psychiatry and Psychotherapie, CCM, Charite Universitaetsmedizin Berlin, Berlin, Germany
- The Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI, Fudan University, Shanghai, China
| | - Lena Palaniyappan
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Robarts Research Institute, University of Western Ontario, London, ON, Canada.
- Department of Medical Biophysica, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China.
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, PR China.
| |
Collapse
|
4
|
Xi F, Tu L, Zhou F, Zhou Y, Ma J, Peng Y. Automatic segmentation and quantitative analysis of brain CT volume in 2-year-olds using deep learning model. Front Neurol 2025; 16:1573060. [PMID: 40343184 PMCID: PMC12058743 DOI: 10.3389/fneur.2025.1573060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/03/2025] [Indexed: 05/11/2025] Open
Abstract
Objective Our research aims to develop an automated method for segmenting brain CT images in healthy 2-year-old children using the ResU-Net deep learning model. Building on this model, we aim to quantify the volumes of specific brain regions and establish a normative reference database for clinical and research applications. Methods In this retrospective study, we included 1,487 head CT scans of 2-year-old children showing normal radiological findings, which were divided into training (n = 1,041) and testing (n = 446) sets. We preprocessed the Brain CT images by resampling, intensity normalization, and skull stripping. Then, we trained the ResU-Net model on the training set and validated it on the testing set. In addition, we compared the performance of the ResU-Net model with different kernel sizes (3 × 3 × 3 and 1 × 3 × 3 convolution kernels) against the baseline model, which was the standard 3D U-Net. The performance of the model was evaluated using the Dice similarity score. Once the segmentation model was established, we derived the regional volume parameters. We then conducted statistical analyses to evaluate differences in brain volumes by sex and hemisphere, and performed a Spearman correlation analysis to assess the relationship between brain volume and age. Results The ResU-Net model we proposed achieved a Dice coefficient of 0.94 for the training set and 0.96 for the testing set, demonstrating robust segmentation performance. When comparing different models, ResU-Net (3,3,3) model achieved the highest Dice coefficient of 0.96 in the testing set, followed by ResU-Net (1,3,3) model with 0.92, and the baseline 3D U-Net with 0.88. Statistical analysis showed that the brain volume of males was significantly larger than that of females in all brain regions (p < 0.05), and age was positively correlated with the volume of each brain region. In addition, specific structural asymmetries were observed between the right and left hemispheres. Conclusion This study highlights the effectiveness of deep learning for automatic brain segmentation in pediatric CT imaging, providing a reliable reference for normative brain volumes in 2-year-old children. The findings may serve as a benchmark for clinical assessment and research, complementing existing MRI-based reference data and addressing the need for accessible, population-based standards in pediatric neuroimaging.
Collapse
Affiliation(s)
- Fengjun Xi
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liyun Tu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Feng Zhou
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Yanjie Zhou
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Jun Ma
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yun Peng
- Imaging Center, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Mundorf A, Lischke A, Peterburs J, Alexander N, Bonnekoh LM, Brosch K, Flinkenflügel K, Goltermann J, Hahn T, Jansen A, Meinert S, Nenadić I, Schürmeyer NN, Stein F, Straube B, Thiel K, Teutenberg L, Thomas-Odenthal F, Usemann P, Winter A, Dannlowski U, Kircher T, Ocklenburg S. Handedness in schizophrenia and affective disorders: a large-scale cross-disorder study. Eur Arch Psychiatry Clin Neurosci 2025; 275:767-783. [PMID: 38914850 PMCID: PMC11946993 DOI: 10.1007/s00406-024-01833-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024]
Abstract
While most people are right-handed, a minority are left-handed or mixed-handed. It has been suggested that mental and developmental disorders are associated with increased prevalence of left-handedness and mixed-handedness. However, substantial heterogeneity exists across disorders, indicating that not all disorders are associated with a considerable shift away from right-handedness. Increased frequencies in left- and mixed-handedness have also been associated with more severe clinical symptoms, indicating that symptom severity rather than diagnosis explains the high prevalence of non-right-handedness in mental disorders. To address this issue, the present study investigated the association between handedness and measures of stress reactivity, depression, mania, anxiety, and positive and negative symptoms in a large sample of 994 healthy controls and 1213 patients with DSM IV affective disorders, schizoaffective disorders, or schizophrenia. A series of complementary analyses revealed lower lateralization and a higher percentage of mixed-handedness in patients with major depression (14.9%) and schizophrenia (24.0%) compared to healthy controls (12%). For patients with schizophrenia, higher symptom severity was associated with an increasing tendency towards left-handedness. No associations were found for patients diagnosed with major depression, bipolar disorder, or schizoaffective disorder. In healthy controls, no association between hand preference and symptoms was evident. Taken together, these findings suggest that both diagnosis and symptom severity are relevant for the shift away from right-handedness in mental disorders like schizophrenia and major depression.
Collapse
Affiliation(s)
- Annakarina Mundorf
- ISM Institute of Systems Medicine & Department of Human Medicine, MSH Medical School Hamburg, Am Kaiserkai 1, 20457, Hamburg, Germany.
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Alexander Lischke
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany
- ICPP Institute for Clinical Psychology and Psychotherapy, MSH Medical School Hamburg, Hamburg, Germany
| | - Jutta Peterburs
- ISM Institute of Systems Medicine & Department of Human Medicine, MSH Medical School Hamburg, Am Kaiserkai 1, 20457, Hamburg, Germany
| | - Nina Alexander
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen, Germany
| | - Linda M Bonnekoh
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Münster, Münster, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen, Germany
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Glen Oaks, USA
| | - Kira Flinkenflügel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen, Germany
- Core-Facility Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen, Germany
| | | | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lea Teutenberg
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen, Germany
| | - Florian Thomas-Odenthal
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen, Germany
| | - Paula Usemann
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen, Germany
| | - Sebastian Ocklenburg
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany
- ICAN Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany
- Institute of Cognitive Neuroscience, Biopsychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
6
|
Oliveira FPM, Constantino CS, Costa DC. Interhemispheric cortical thickness asymmetry is an imaging biomarker of dementia type. Eur Radiol 2025:10.1007/s00330-025-11535-y. [PMID: 40155522 DOI: 10.1007/s00330-025-11535-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/11/2025] [Accepted: 02/20/2025] [Indexed: 04/01/2025]
Affiliation(s)
- Francisco P M Oliveira
- Nuclear Medicine-Radiopharmacology, Champalimaud Clinical Centre, Champalimaud Foundation, Lisbon, Portugal.
| | - Cláudia S Constantino
- Nuclear Medicine-Radiopharmacology, Champalimaud Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
| | - Durval C Costa
- Nuclear Medicine-Radiopharmacology, Champalimaud Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
7
|
Liu Y, Choi JY, Perrachione TK. Systematic bias in surface area asymmetry measurements from automatic cortical parcellations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645109. [PMID: 40196603 PMCID: PMC11974827 DOI: 10.1101/2025.03.25.645109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Anatomical asymmetry is a hallmark of the human brain and may reflect hemispheric differences in its functional organization. Widely used software like FreeSurfer can automate neuroanatomical measurements and facilitate studies of hemispheric asymmetry. However, patterns of surface area lateralization measured using FreeSurfer are curiously consistent across diverse samples. Here, we demonstrate systematic biases in these measurements obtained from the default processing pipeline. We compared surface area asymmetry measured from reconstructions of original brains vs. the same scans after flipping their left-right orientation. The default pipeline returned implausible asymmetry patterns between the original and flipped brains: Many structures were always left- or right-lateralized. Notably, these biases occur prominently in key speech and language regions. In contrast, manual labeling and curvature-based parcellations of key structures both yielded the expected reversals of left/right lateralization in flipped brains. We determined that these biases result from discrepancies in how regional labels are defined in the left vs. right hemisphere in the default cortical parcellation atlases. These biases are carried into individual parcellations because the FreeSurfer parcellation algorithm prioritizes vertex correspondence to the template atlas relative to individual neuroanatomical variation. We further demonstrate several straightforward, bias-free approaches to measuring surface area asymmetry, including using symmetric registration templates and parcellation atlases, vertex-wise analyses, and within-subject curvature-based parcellations. These results highlight theoretical concerns about using only the default processing stream to make inferences about population-level brain asymmetry and underscore the need for validating bias-free neuroanatomical measurements, particularly when studying regions where structural lateralization may underlie functional lateralization.
Collapse
Affiliation(s)
- Yinuo Liu
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, Massachusetts, USA
| | - Ja Young Choi
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
| | - Tyler K Perrachione
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Manelis A, Hu H, Miceli R, Satz S, Lau R, Iyengar S, Swartz HA. Lateral Ventricular Enlargement and Asymmetry and Myelin Content Imbalance in Individuals With Bipolar and Depressive Disorders: Clinical and Research Implications. Bipolar Disord 2025; 27:119-131. [PMID: 39981613 PMCID: PMC11950717 DOI: 10.1111/bdi.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/08/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND The link between ventricular enlargement and asymmetry with other indices of brain structure remains underexplored in individuals with bipolar (BD) and depressive (DD) disorders. Our study compared the lateral ventricular size, ventricular asymmetry, and cortical myelin content in individuals with BD versus those with DD versus healthy controls (HC). METHODS We obtained T1w and T2w images from 149 individuals (age = 27.7 (SD = 6.1) years, 78% female, BD = 38, DD = 57, HC = 54) using Magnetic Resonance Imaging (MRI). The BD group consisted of individuals with BD Type I (n = 11) and BD Type II (n = 27), while the DD group consisted of individuals with major depressive disorder (MDD, n = 38) and persistent depressive disorder (PDD, n = 19) Cortical myelin content was calculated using the T1w/T2w ratio. Elastic net regularized regression identified brain regions whose myelin content was associated with ventricular size and asymmetry. A post hoc linear regression examined how participants' diagnosis, illness duration, and current level of depression moderated the relationship between the size and asymmetry of the lateral ventricles and levels of cortical myelin in the selected brain regions. RESULTS Individuals with BD and DD had larger lateral ventricles than HC. Larger ventricles and lower asymmetry were observed in individuals with BD who had longer lifetime illness duration and more severe current depressive symptoms. A greater left asymmetry was observed in participants with DD than in those with BD (p < 0.01). Elastic net revealed that both ventricular enlargement and asymmetry were associated with altered myelin content in cingulate, frontal, and sensorimotor cortices. In BD, but not in other groups, ventricular enlargement was related to altered myelin content in the right insular regions. CONCLUSIONS Lateral ventricular enlargement and asymmetry are linked to myelin content imbalance, thus potentially leading to emotional and cognitive dysfunction in mood disorders.
Collapse
Affiliation(s)
- Anna Manelis
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Hang Hu
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Rachel Miceli
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Skye Satz
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Rachel Lau
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Satish Iyengar
- Department of StatisticsUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Holly A. Swartz
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
9
|
Li L, Du H, Li XY, Yu CM, Huang BB, Ma ZT, Li R. A study of brain function changes in patients with trigeminal neuralgia of different laterality based on rs-fMRI. J Oral Facial Pain Headache 2025; 39:148-156. [PMID: 40129433 PMCID: PMC11934743 DOI: 10.22514/jofph.2025.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/11/2024] [Indexed: 03/26/2025]
Abstract
BACKGROUND This study employed resting-state functional magnetic resonance imaging (rs-fMRI) to examine alterations in the brain's spontaneous activity during rest in patients with trigeminal neuralgia (TN) affecting different sides of the face. METHODS We included 30 cases each of right-sided TN (R_TN), left-sided TN (L_TN), and healthy controls (HC). We analyzed changes in amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) values between L_TN and R_TN groups in comparison to HC. We also explored relationships between disease duration, visual analog scale scores, and ALFF/ReHo values in significant brain regions. RESULTS Relative to HC, L_TN exhibited increased ALFF values in the left superior temporal gyrus and reduced values in the bilateral middle frontal gyrus. Elevated ReHo values were observed in the left cerebellar Crus2 region, while decreased values were identified in the bilateral middle frontal gyrus and left dorsolateral superior frontal gyrus. In R_TN, ALFF values increased in the left precentral gyrus and decreased in the right middle frontal gyrus; ReHo values remained unchanged. Correlation analysis indicated positive associations between disease duration and ALFF value of left superior temporal gyrus, as well as ReHo value of left cerebellar Crus2 region in L_TN. CONCLUSIONS This research indicated that both left and right TN patients exhibited changes in spontaneous brain activity during rest. These alterations predominantly occurred contralateral to the pain. These identified brain regions are implicated in pain perception, regulation, and emotional processing, suggesting their relevance to the modulation and adaptive changes of the human brain in response to trigeminal neuralgia.
Collapse
Affiliation(s)
- Li Li
- Department of Radiology, Xuzhou
Cancer Hospital, 221005 Xuzhou,
Jiangsu, China
| | - Hai Du
- Department of Radiology, Ordos
Central Hospital, 017000 Ordos, Inner
Mongolia, China
| | - Xin-Yi Li
- Department of Radiology, Jiangxi
Maternal and Child Health Hospital,
330006 Nanchang, Jiangxi, China
| | - Chen-Ming Yu
- Department of Clinical Medicine, Jining
Medical University, 272011 Jining,
Shandong, China
| | - Bing-Bing Huang
- Department of Clinical Medicine, Jining
Medical University, 272011 Jining,
Shandong, China
| | - Zi-Tang Ma
- Department of Radiology, Jining No. 1
People’s Hospital, 272011 Jining,
Shandong, China
| | - Rui Li
- Department of Radiology, Jining No. 1
People’s Hospital, 272011 Jining,
Shandong, China
| |
Collapse
|
10
|
Venkatesan S, Babajani-Feremi A, Patel K, Roper SN, Kalamangalam G. Amygdalar volume asymmetry informs laterality in temporal lobe epilepsy: MRI-SEEG study. Seizure 2025; 126:58-63. [PMID: 39933387 DOI: 10.1016/j.seizure.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/15/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
OBJECTIVE Amygdalar volumes are right-left asymmetric in normal humans. Asymmetric amygdalar hyperplasia is described in temporal lobe epilepsy (TLE), but has unclear lateralizing significance. In this study of TLE patients undergoing stereo-electroencephalography (SEEG) we examined the lateralizing value of amygdalar volume (AV) asymmetry, and its relationship to amygdalar involvement in seizures. METHODS Amygdalar volumes of 30 TLE patients without radiological hippocampal sclerosis undergoing SEEG were compared to those from a normative database. Devising a novel amygdalar (volume) asymmetry index (AAI), we correlated AAI to SEEG-ascertained TLE lateralization and amygdalar involvement in seizures. RESULTS At the group level, right AVs in right TLE (RTLE) and left AVs in left TLE (LTLE) were significantly higher than in controls (right difference: mean 226 mm3; left difference: mean 206 mm3). AAI was significantly higher than in RTLE and bitemporal epilepsy than in controls (16/17 patients; mean AAI difference 8.4 %) and significantly lower than in LTLE than in controls (8/9 patients; mean AAI difference -8.3 %). Amygdalar involvement in seizures correlated positively with absolute AAI (Spearman's ρ = 0.45, p < 0.05). CONCLUSIONS Significant deviation from physiological right-left AV asymmetry is almost universal in TLE and has robust lateralizing value. Relatively positive AAI is associated with RTLE or bitemporal epilepsy; relatively negative AAI is associated with LTLE. Larger AAI deviations are associated with a higher proportion of seizures with amygdalar involvement, suggesting a causal influence of seizures on amygdalar expansion in TLE.
Collapse
Affiliation(s)
- Subeikshanan Venkatesan
- Department of Neurology, University of Florida, Gainesville FL, USA; Wilder Center for Epilepsy Research, University of Florida, Gainesville FL, USA
| | - Abbas Babajani-Feremi
- Department of Neurology, University of Florida, Gainesville FL, USA; Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville FL, USA
| | - Kajal Patel
- Department of Neurology, University of Florida, Gainesville FL, USA; Wilder Center for Epilepsy Research, University of Florida, Gainesville FL, USA; Department of Neurology, Cleveland Clinic, Cleveland OH, USA
| | - Steven N Roper
- Department of Neurosurgery, University of Florida, Gainesville FL, USA
| | - Giridhar Kalamangalam
- Department of Neurology, University of Florida, Gainesville FL, USA; Wilder Center for Epilepsy Research, University of Florida, Gainesville FL, USA.
| |
Collapse
|
11
|
Silberfeld A, Roe JM, Ellegood J, Lerch JP, Qiu L, Kim Y, Lee JG, Hopkins WD, Grandjean J, Ou Y, Pourquié O. Left-Right Brain-Wide Asymmetry of Neuroanatomy in the Mouse Brain. Neuroimage 2025; 307:121017. [PMID: 39798830 DOI: 10.1016/j.neuroimage.2025.121017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/16/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025] Open
Abstract
Left-right asymmetry of the human brain is widespread through its anatomy and function. However, limited microscopic understanding of it exists, particularly for anatomical asymmetry where there are few well-established animal models. In humans, most brain regions show subtle, population-average regional asymmetries in thickness or surface area, alongside a macro-scale twisting called the cerebral petalia in which the right hemisphere protrudes past the left. Here, we ask whether neuroanatomical asymmetries can be observed in mice, leveraging 6 mouse neuroimaging cohorts from 5 different research groups (∼3,500 animals). We found an anterior-posterior pattern of volume asymmetry with anterior regions larger on the right and posterior regions larger on the left. This pattern appears driven by similar trends in surface area and positional asymmetries, with the results together indicating a small brain-wide twisting pattern, similar to the human cerebral petalia. Furthermore, the results show no apparent relationship to known functional asymmetries in mice, emphasizing the complexity of the structure-function relationship in brain asymmetry. Our results recapitulate and extend previous patterns of asymmetry from two published studies as well as capture well-established, bilateral male-female differences in the mouse brain as a positive control. By establishing a signature of anatomical brain asymmetry in mice, we aim to provide a foundation for future studies to probe the mechanistic underpinnings of brain asymmetry seen in humans - a feature of the brain with extremely limited understanding.
Collapse
Affiliation(s)
- Andrew Silberfeld
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - James M Roe
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
| | - Jacob Ellegood
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada; Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, The University of Toronto, Toronto, ON, Canada; Department of Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Preclinical Imaging, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Lily Qiu
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Jong Gwan Lee
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - William D Hopkins
- Department of Comparative Medicine & Michale E Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, United States
| | - Joanes Grandjean
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, Netherlands; Department for Medical Imaging, Radboud University Medical Center, PO Box 9101, Nijmegen, Netherlands
| | - Yangming Ou
- Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
12
|
Manns M, Juckel G, Freund N. The Balance in the Head: How Developmental Factors Explain Relationships Between Brain Asymmetries and Mental Diseases. Brain Sci 2025; 15:169. [PMID: 40002502 PMCID: PMC11852682 DOI: 10.3390/brainsci15020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/29/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Cerebral lateralisation is a core organising principle of the brain that is characterised by a complex pattern of hemispheric specialisations and interhemispheric interactions. In various mental disorders, functional and/or structural hemispheric asymmetries are changed compared to healthy controls, and these alterations may contribute to the primary symptoms and cognitive impairments of a specific disorder. Since multiple genetic and epigenetic factors influence both the pathogenesis of mental illness and the development of brain asymmetries, it is likely that the neural developmental pathways overlap or are even causally intertwined, although the timing, magnitude, and direction of interactions may vary depending on the specific disorder. However, the underlying developmental steps and neuronal mechanisms are still unclear. In this review article, we briefly summarise what we know about structural, functional, and developmental relationships and outline hypothetical connections, which could be investigated in appropriate animal models. Altered cerebral asymmetries may causally contribute to the development of the structural and/or functional features of a disorder, as neural mechanisms that trigger neuropathogenesis are embedded in the asymmetrical organisation of the developing brain. Therefore, the occurrence and severity of impairments in neural processing and cognition probably cannot be understood independently of the development of the lateralised organisation of intra- and interhemispheric neuronal networks. Conversely, impaired cellular processes can also hinder favourable asymmetry development and lead to cognitive deficits in particular.
Collapse
Affiliation(s)
- Martina Manns
- Research Division Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, 44809 Bochum, Germany;
| | - Georg Juckel
- Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, 44791 Bochum, Germany;
| | - Nadja Freund
- Research Division Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, 44809 Bochum, Germany;
| |
Collapse
|
13
|
Pu Y, Francks C, Kong XZ. Global brain asymmetry. Trends Cogn Sci 2025; 29:114-117. [PMID: 39567330 DOI: 10.1016/j.tics.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024]
Abstract
Lateralization is a defining characteristic of the human brain, often studied through localized approaches that focus on interhemispheric differences between homologous pairs of regions. It is also important to emphasize an integrative perspective of global brain asymmetry, in which hemispheric differences are understood through global patterns across the entire brain.
Collapse
Affiliation(s)
- Yi Pu
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Xiang-Zhen Kong
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China; The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China; Department of Psychiatry of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
14
|
Rivera-Olvera A, Houwing DJ, Ellegood J, Masifi S, Martina SL, Silberfeld A, Pourquie O, Lerch JP, Francks C, Homberg JR, van Heukelum S, Grandjean J. The universe is asymmetric, the mouse brain too. Mol Psychiatry 2025; 30:489-496. [PMID: 39107583 DOI: 10.1038/s41380-024-02687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 01/22/2025]
Abstract
Hemispheric brain asymmetry is a basic organizational principle of the human brain and has been implicated in various psychiatric conditions, including autism spectrum disorder. Brain asymmetry is not a uniquely human feature and is observed in other species such as the mouse. Yet, asymmetry patterns are generally nuanced, and substantial sample sizes are required to detect these patterns. In this pre-registered study, we use a mouse dataset from the Province of Ontario Neurodevelopmental Network, which comprises structural MRI data from over 2000 mice, including genetic models for autism spectrum disorder, to reveal the scope and magnitude of hemispheric asymmetry in the mouse. Our findings demonstrate the presence of robust hemispheric asymmetry in the mouse brain, such as larger right hemispheric volumes towards the anterior pole and larger left hemispheric volumes toward the posterior pole, opposite to what has been shown in humans. This suggests the existence of species-specific traits. Further clustering analysis identified distinct asymmetry patterns in autism spectrum disorder models, a phenomenon that is also seen in atypically developing participants. Our study shows potential for the use of mouse models to understand the biological bases of typical and atypical brain asymmetry but also warrants caution as asymmetry patterns seem to differ between humans and mice.
Collapse
Affiliation(s)
| | - Danielle J Houwing
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, M5T 3H7, Canada
| | - Shang Masifi
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Stephany Ll Martina
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Andrew Silberfeld
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Olivier Pourquie
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, M5T 3H7, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, Oxfordshire, OX39DU, UK
| | - Clyde Francks
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Judith R Homberg
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Sabrina van Heukelum
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Joanes Grandjean
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands.
- Department for Medical Imaging, Radboud University Medical Center, PO Box 9101, Nijmegen, The Netherlands.
| |
Collapse
|
15
|
Sha Z, Francks C. Large-scale genetic mapping for human brain asymmetry. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:241-254. [PMID: 40074400 DOI: 10.1016/b978-0-443-15646-5.00029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Left-right asymmetry is an important aspect of human brain organization for functions including language and hand motor control, which can be altered in some psychiatric traits. The last 5 years have seen rapid advances in the identification of specific genes linked to variation in asymmetry of the human brain and/or handedness. These advances have been driven by a new generation of large-scale genome-wide association studies, carried out in samples ranging from roughly 16,000 to over 1.5 million participants. The implicated genes tend to be most active in the embryonic and fetal brain, consistent with early developmental patterning of brain asymmetry. Several of the genes encode components of microtubules or other microtubule-associated proteins. Microtubules are key elements of the internal cellular skeleton (cytoskeleton). A major challenge remains to understand how these genes affect, or even induce, the brain's left-right axis. Several of the implicated genes have also been associated with psychiatric or neurologic disorders, and polygenic dispositions to autism and schizophrenia have been associated with structural brain asymmetry. Knowledge of developmental mechanisms that lead to hemispheric specialization may ultimately help to define etiologic subtypes of brain disorders.
Collapse
Affiliation(s)
- Zhiqiang Sha
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Clyde Francks
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Department of Cognitive Neuroscience & Donders Community for Medical Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
16
|
Zhang C, Pu Y, Kong XZ. Latent dimensions of brain asymmetry. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:37-45. [PMID: 40074408 DOI: 10.1016/b978-0-443-15646-5.00027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Functional lateralization represents a fundamental aspect of brain organization, where certain cognitive functions are specialized in one hemisphere over the other. Deviations from typical patterns of lateralization often manifest in various brain disorders, such as autism spectrum disorder, schizophrenia, and dyslexia. However, despite its importance, uncovering the intrinsic properties of brain lateralization and its underlying structural basis remains challenging. On the one hand, functional lateralization has long been oversimplified, often reduced to a unidimensional perspective. For instance, individuals are sometimes labeled as left-brained or right-brained based on specific behavioral measures like handedness and language lateralization. Such a perspective disregards the nuanced subtypes of lateralization, each potentially attributed to distinct factors and associated with unique functional correlates. On the other hand, traditional studies of brain structural asymmetry have typically focused on localized analyses of homologous regions in the two hemispheres. This perspective fails to capture the inherent interplay between brain regions, resulting in an overly complex depiction of structural asymmetry. Such conceptual and methodological discrepancies between studies of functional lateralization and structural asymmetry pose significant obstacles to establishing meaningful links between them. To address this gap, a shift toward uncovering the dimensional structure of brain asymmetry has been proposed. This chapter introduces the concept of latent dimensions of brain asymmetry and provides an up-to-date overview of studies regarding dimensions of functional lateralization and structural asymmetry in the human brain. By transcending the traditional analysis and employing multivariate pattern techniques, these studies offer valuable insights into our understanding of the intricate organizational principles governing the human brain's lateralized functions.
Collapse
Affiliation(s)
- Chenghui Zhang
- Department of Psychology and Behavioral Sciences & The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
| | - Yi Pu
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Xiang-Zhen Kong
- Department of Psychology and Behavioral Sciences & The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China; Department of Psychiatry of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
17
|
Banjac S, Baciu M. Unveiling the hemispheric specialization of language: Organization and neuroplasticity. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:351-365. [PMID: 40074406 DOI: 10.1016/b978-0-443-15646-5.00008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The advancements in understanding hemispheric specialization of language (HSL) have been following two primary avenues: the development of neuroimaging techniques and the study of its reorganizations in patients with various neuropathologic conditions. Hence, the objectives of this chapter are twofold. First, to provide an overview of the key neuroimaging techniques employed to investigate HSL, along with the notable findings derived from them in the healthy population. Second, it focuses on the reorganization of HSL in physiologic (healthy aging) and pathologic (poststroke aphasia and temporal lobe epilepsy) conditions. The chapter emphasizes the importance of employing multimodal methodologies to comprehend the complex relationship between underlying HSL mechanisms affected by disease and resulting language impairments. Combining the neuroimaging techniques can help us understand how different characteristics of language networks combine into general mechanisms that support their plasticity. Nevertheless, it highlights the need for standardized HSL metrics, as the absence of such metrics poses challenges in synthesizing findings across studies. Additionally, while HSL findings are being accumulated, albeit multimodal, there is a lack of integration within a robust theoretical framework. In conclusion, there is a need for novel models acknowledging multimodal aspects of HSL while positioning it within the context of other cognitive functions.
Collapse
Affiliation(s)
- Sonja Banjac
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Monica Baciu
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LPNC, Grenoble, France.
| |
Collapse
|
18
|
Klepits P, Koschutnig K, Zussner T, Fink A. Changes in hippocampal volume and affective functioning after a moderate intensity running intervention. Brain Struct Funct 2024; 230:2. [PMID: 39670994 PMCID: PMC11645311 DOI: 10.1007/s00429-024-02885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/16/2024] [Indexed: 12/14/2024]
Abstract
This study examined the effects of a moderately intense seven-week running intervention on the hippocampal volume and depressive symptoms of young men (20-31 years of age) from the general population (N = 21). A within-subjects-design involving a two-week baseline period before the running intervention, and two subsequent intervention cycles was applied. At four time points of assessment (t1: start of the study; t2: end of baseline period/start of the intervention; t3: end of the first intervention cycle; t4: end of the 2nd intervention cycle/study end) magnetic resonance imaging was performed and symptoms related to depression were assessed employing the Center for Epidemiological Studies Depression (CES-D) Scale. The intervention resulted in a significant increase in the estimated maximum oxygen uptake (VO2max), measured with a standardized walking test (average increase from 42.07 ml*kg- 1*min- 1 to 46.07 ml*kg- 1*min- 1). The CES-D scores decreased significantly over the course of the running intervention (average decrease from 12.76 to 10.48 on a 20-point scale). Significant volumetric increases in the hippocampus were found, most notably after the first intervention cycle in the left (average increase from 613.41 mm³ to 620.55 mm³) and right hippocampal tail (average increase from 629.77 mm³ to 638.17 mm³). These findings provide new evidence regarding the temporal dynamics of hippocampal changes following engagement in physical activity.
Collapse
Affiliation(s)
| | - Karl Koschutnig
- University of Graz, Graz, Austria
- MRI-Lab Graz, Graz, Austria
| | - Thomas Zussner
- University of Graz, Graz, Austria
- MRI-Lab Graz, Graz, Austria
| | - Andreas Fink
- University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
19
|
Gimbel BA, Roediger DJ, Anthony ME, Ernst AM, Tuominen KA, Mueller BA, de Water E, Rockhold MN, Wozniak JR. Normative modeling of brain MRI data identifies small subcortical volumes and associations with cognitive function in youth with fetal alcohol spectrum disorder (FASD). Neuroimage Clin 2024; 45:103722. [PMID: 39652996 PMCID: PMC11681830 DOI: 10.1016/j.nicl.2024.103722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/19/2025]
Abstract
AIM To quantify regional subcortical brain volume anomalies in youth with fetal alcohol spectrum disorder (FASD), assess the relative sensitivity and specificity of abnormal volumes in FASD vs. a comparison group, and examine associations with cognitive function. METHOD Participants: 47 children with FASD and 39 typically-developing comparison participants, ages 8-17 years, who completed physical evaluations, cognitive and behavioral testing, and an MRI brain scan. A large normative MRI dataset that controlled for sex, age, and intracranial volume was used to quantify the developmental status of 7 bilateral subcortical regional volumes. Z-scores were calculated based on volumetric differences from the normative sample. T-tests compared subcortical volumes across groups. Percentages of atypical volumes are reported as are sensitivity and specificity in discriminating groups. Lastly, Pearson correlations examined the relationships between subcortical volumes and neurocognitive performance. RESULTS Participants with FASD demonstrated lower mean volumes across a majority of subcortical regions relative to the comparison group with prominent group differences in the bilateral hippocampi and bilateral caudate. More individuals with FASD (89%) had one or more abnormally small volume compared to 72% of the comparison group. The bilateral hippocampi, bilateral putamen, and right pallidum were most sensitive in discriminating those with FASD from the comparison group. Exploratory analyses revealed associations between subcortical volumes and cognitive functioning that differed across groups. CONCLUSION In this sample, youth with FASD had a greater number of atypically small subcortical volumes than individuals without FASD. Findings suggest MRI may have utility in identifying individuals with structural brain anomalies resulting from PAE.
Collapse
Affiliation(s)
- Blake A Gimbel
- The Ohio State University and Nationwide Children's Hospital, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
He Y, Hong Y, Wu Y. Spherical-deconvolution informed filtering of tractograms changes laterality of structural connectome. Neuroimage 2024; 303:120904. [PMID: 39476882 DOI: 10.1016/j.neuroimage.2024.120904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Diffusion MRI-driven tractography, a non-invasive technique that reveals how the brain is connected, is widely used in brain lateralization studies. To improve the accuracy of tractography in showing the underlying anatomy of the brain, various tractography filtering methods were applied to reduce false positives. Based on different algorithms, tractography filtering methods are able to identify the fibers most consistent with the original diffusion data while removing fibers that do not align with the original signals, ensuring the tractograms are as biologically accurate as possible. However, the impact of tractography filtering on the lateralization of the brain connectome remains unclear. This study aims to investigate the relationship between fiber filtering and laterality changes in brain structural connectivity. Three typical tracking algorithms were used to construct the raw tractography, and two popular fiber filtering methods(SIFT and SIFT2) were employed to filter the tractography across a range of parameters. Laterality indices were computed for six popular biological features, including four microstructural measures (AD, FA, RD, and T1/T2 ratio) and two structural features (fiber length and connectivity) for each brain region. The results revealed that tractography filtering may cause significant laterality changes in more than 10% of connections, up to 25% for probabilistic tracking, and deterministic tracking exhibited minimal laterality changes compared to probabilistic tracking, experiencing only about 6%. Except for tracking algorithms, different fiber filtering methods, along with the various biological features themselves, displayed more variable patterns of laterality change. In conclusion, this study provides valuable insights into the intricate relationship between fiber filtering and laterality changes in brain structural connectivity. These findings can be used to develop improved tractography filtering methods, ultimately leading to more robust and reliable measurements of brain asymmetry in lateralization studies.
Collapse
Affiliation(s)
- Yifei He
- School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Yoonmi Hong
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, USA.
| | - Ye Wu
- School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing, China.
| |
Collapse
|
21
|
Hamaoui J, Ocklenburg S, Segond H. Perinatal adversities as a common factor underlying the association between atypical laterality and neurodevelopmental disorders: A developmental perspective. Psychophysiology 2024; 61:e14676. [PMID: 39198978 PMCID: PMC11579235 DOI: 10.1111/psyp.14676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/15/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024]
Abstract
Several neurodevelopmental disorders are associated with a higher prevalence of atypical laterality (e.g., left-handedness). Both genetic and non-genetic factors play a role in this association, yet the underlying neurobiological mechanisms are largely unclear. Recent studies have found that stress, mediated by the hypothalamic-pituitary-adrenal (HPA) axis, could be linked to laterality development. These findings provide an opportunity to explore new theoretical perspectives on the association between atypical laterality and neurodevelopmental disorders. This article aims to provide a theoretical framework demonstrating how perinatal adversities could disrupt the typical developmental trajectories of both laterality and neurodevelopment, potentially impacting both the HPA axis and the vestibular system. Additionally, we argue that the relationship between atypical laterality and neurodevelopmental disorders cannot be understood by simply linking genetic and non-genetic factors to a diagnosis, but the developmental trajectories must be considered. Based on these ideas, several perspectives for future research are proposed.
Collapse
Affiliation(s)
- Jad Hamaoui
- Azrieli Research Center of Sainte‐Justine University HospitalMontrealQuebecCanada
- School of PsychoeducationUniversity of MontrealMontrealQuebecCanada
| | - Sebastian Ocklenburg
- Department of PsychologyMSH Medical School HamburgHamburgGermany
- ICAN Institute for Cognitive and Affective NeuroscienceMSH Medical School HamburgHamburgGermany
- Institute of Cognitive Neuroscience, Biopsychology, Faculty of PsychologyRuhr University BochumBochumGermany
| | - Hervé Segond
- Laboratoire de Psychologie des Cognitions, Department and faculty of PsychologyUniversity of StrasbourgStrasbourgFrance
| |
Collapse
|
22
|
Wan B, Saberi A, Paquola C, Schaare HL, Hettwer MD, Royer J, John A, Dorfschmidt L, Bayrak Ş, Bethlehem RAI, Eickhoff SB, Bernhardt BC, Valk SL. Microstructural asymmetry in the human cortex. Nat Commun 2024; 15:10124. [PMID: 39578424 PMCID: PMC11584796 DOI: 10.1038/s41467-024-54243-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024] Open
Abstract
The human cerebral cortex shows hemispheric asymmetry, yet the microstructural basis of this asymmetry remains incompletely understood. Here, we probe layer-specific microstructural asymmetry using one post-mortem male brain. Overall, anterior and posterior regions show leftward and rightward asymmetry respectively, but this pattern varies across cortical layers. A similar anterior-posterior pattern is observed using in vivo Human Connectome Project (N = 1101) T1w/T2w microstructural data, with average cortical asymmetry showing the strongest similarity with post-mortem-based asymmetry of layer III. Moreover, microstructural asymmetry is found to be heritable, varies as a function of age and sex, and corresponds to intrinsic functional asymmetry. We also observe a differential association of language and markers of mental health with microstructural asymmetry patterns at the individual level, illustrating a functional divergence between inferior-superior and anterior-posterior microstructural axes, possibly anchored in development. Last, we could show concordant evidence with alternative in vivo microstructural measures: magnetization transfer (N = 286) and quantitative T1 (N = 50). Together, our study highlights microstructural asymmetry in the human cortex and its functional and behavioral relevance.
Collapse
Grants
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity (IMPRS NeuroCom), Graduate Academy Leipzig, and Mitacs Globalink Research Award.
- German Ministry for Education and Research (BMBF) and the Max Planck Society
- National Science and Engineering Research Council of Canada (NSERC Discovery-1304413), Canadian Institutes of Health Research (FDN-154298, PJT-174995), SickKids Foundation (NI17-039), BrainCanada, FRQ-S, the Tier-2 Canada Research Chairs program, and Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL).
- Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) and Otto Hahn Award at Max Planck Society.
Collapse
Affiliation(s)
- Bin Wan
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity (IMPRS NeuroCom), Leipzig, Germany.
- Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of Leipzig, Leipzig, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany.
| | - Amin Saberi
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorfpital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Casey Paquola
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany
| | - H Lina Schaare
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany
| | - Meike D Hettwer
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorfpital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | - Jessica Royer
- McConnell Brain Imaging Centre, Montréal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
| | - Alexandra John
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany
| | - Lena Dorfschmidt
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Şeyma Bayrak
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany
| | | | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorfpital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montréal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
| | - Sofie L Valk
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorfpital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
23
|
Chen S, Yan J, Lock M, Wang T, Wang M, Wang L, Yuan L, Zhuang Q, Dong GH. Alterations of gray matter asymmetry in internet gaming disorder. Sci Rep 2024; 14:28282. [PMID: 39550457 PMCID: PMC11569135 DOI: 10.1038/s41598-024-79659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
Structural asymmetry is a subtle but pervasive property of the human brain, which has been found altered in various psychiatric and neurocognitive disorders. However, little is known regarding potential alterations of structural asymmetry underlying internet gaming disorder (IGD). Therefore, this study aimed to investigate the structural features of gray matter asymmetry in IGD. High-resolution structural magnetic resonance imaging data were collected from 104 individuals with IGD and 104 recreational game users (RGUs). We applied a whole-brain voxel-based asymmetry (VBA) approach to determine the asymmetrical aberrations of gray matter in relation to IGD. Furthermore, the local abnormalities of structural asymmetry were employed as features to examine the effect of classification using a support vector machine (SVM). The results indicated that individuals with IGD as compared to RGUs showed asymmetrical alterations of gray matter in the medial prefrontal cortex (mPFC), orbitofrontal cortex, precuneus, middle temporal gyrus, superior parietal lobule and inferior temporal gyrus, regions implicated in hedonic motivation, self-reflection, information integration and visuospatial attention processing. Moreover, these atypical asymmetrical features can distinguish IGD subjects from RGUs with high accuracy. These results suggested that disrupted structural asymmetry of motivational reward, visuospatial and default mode circuits might be potential biomarkers for identifying pathological gaming dependence. These findings extended our understanding of structural underpinnings of IGD and provided new insights for developing effective interventions to alleviate compulsive gaming usage.
Collapse
Affiliation(s)
- Shuaiyu Chen
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China
| | - Jin Yan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China
| | - Matthew Lock
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China
| | - Tongtong Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China
| | - Min Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China
| | - Lingxiao Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China
| | - LiXia Yuan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China
| | - Qian Zhuang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China.
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China.
| | - Guang-Heng Dong
- Department of Psychology, Yunnan Normal University, Kunming, Yunnan Province, China.
| |
Collapse
|
24
|
Houde F, Butler R, St-Onge E, Martel M, Thivierge V, Descoteaux M, Whittingstall K, Leonard G. Anatomical measurements and field modeling to assess transcranial magnetic stimulation motor and non-motor effects. Neurophysiol Clin 2024; 54:103011. [PMID: 39244826 DOI: 10.1016/j.neucli.2024.103011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
OBJECTIVE Explore how anatomical measurements and field modeling can be leveraged to improve investigations of transcranial magnetic stimulation (TMS) effects on both motor and non-motor TMS targets. METHODS TMS motor effects (targeting the primary motor cortex [M1]) were evaluated using the resting motor threshold (rMT), while TMS non-motor effects (targeting the superior temporal gyrus [STG]) were assessed using a pain memory task. Anatomical measurements included scalp-cortex distance (SCD) and cortical thickness (CT), whereas field modeling encompassed the magnitude of the electric field (E) induced by TMS. RESULTS Anatomical measurements and field modeling values differed significantly between M1 and STG. For TMS motor effects, rMT was correlated with SCD, CT, and E values at M1 (p < 0.05). No correlations were found between these metrics for the STG and TMS non-motor effects (pain memory; all p-values > 0.05). CONCLUSION Although anatomical measurements and field modeling are closely related to TMS motor effects, their relationship to non-motor effects - such as pain memory - appear to be much more tenuous and complex, highlighting the need for further advancement in our use of TMS and virtual lesion paradigms.
Collapse
Affiliation(s)
- Francis Houde
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada, J1H 5N4; Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada, J1H 5N4
| | - Russell Butler
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada, J1H 5N4
| | - Etienne St-Onge
- Department of Computer Science and Engineering, Université du Québec en Outaouais, Saint-Jérôme, QC, Canada, J7Z 0B7
| | - Marylie Martel
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada, J1H 5N4
| | - Véronique Thivierge
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada, J1H 5N4
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, QC, Canada, J1K 0A5
| | - Kevin Whittingstall
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada, J1H 5N4
| | - Guillaume Leonard
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada, J1H 5N4; School of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
25
|
Sun Z, Liu M, Zhao G, Zhang Z, Xu J, Song L, Zhang W, Wang S, Jia L, Wu Q, Wu Y, Wang H, Liu N, Su Q, Liu F. Causal relationships between cortical brain structural alterations and migraine subtypes: a bidirectional Mendelian randomization study of 2,347 neuroimaging phenotypes. J Headache Pain 2024; 25:186. [PMID: 39468451 PMCID: PMC11514853 DOI: 10.1186/s10194-024-01896-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/23/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Previous studies have shown that migraines are associated with brain structural changes. However, the causal relationships between these changes and migraine, as well as its subtypes, migraine with aura (MA) and migraine without aura (MO), remain largely unclear. METHODS We utilized genome-wide association study (GWAS) summary statistics from European cohorts for 2,347 cortical structural magnetic resonance imaging (MRI) phenotypes, derived from both T1-weighted and diffusion tensor imaging scans (n = 36,663), with migraine and its subtypes (n = 147,970-375,752). Cortical phenotypes included both macrostructural (e.g., cortical thickness, surface area) and microstructural (e.g., fractional anisotropy, mean diffusivity) features. Genetic correlations were first assessed to identify significant associations, followed by bidirectional Mendelian randomization (MR) analyses to determine causal relationships between these brain phenotypes and migraine, as well as its subtypes (MA and MO). Sensitivity analyses were applied to ensure the robustness of the results. RESULTS Genetic correlation analysis identified 510 significant associations between cortical structural phenotypes and migraine across 401 distinct traits. Forward MR analysis revealed nine significant causal effects of cortical structural changes on migraine risk. Specifically, increased cortical thickness and local gyrification index in specific cortical regions were associated with a decreased risk of overall migraine, MA, and MO, while intracellular volume fraction and orientation diffusion index in specific regions increased the risk of MA and MO. Reverse MR analysis demonstrated that MA causally increased mean diffusivity in the insular and frontal opercular cortex. Sensitivity analyses confirmed the robustness of these findings, with no evidence of horizontal pleiotropy or heterogeneity. CONCLUSION This study identifies causal relationships between cortical neuroimaging phenotypes and migraine, highlighting potential biomarkers for migraine diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
- Zuhao Sun
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Mengge Liu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Guoshu Zhao
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Zhihui Zhang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Jinglei Xu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Linlin Song
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Wanwan Zhang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Shaoying Wang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Linlin Jia
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Qian Wu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Yue Wu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Haolin Wang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Nannan Liu
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China.
- Brain Assessment & Intervention Laboratory, Tianjin Anding Hospital, Institute of Mental Health, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China.
| | - Qian Su
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin, 300060, China.
| | - Feng Liu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
26
|
Lee GY, Youn YA, Jang YH, Kim H, Lee JY, Lee YJ, Jung M, Lee HJ. Structural development and brain asymmetry in the fronto-limbic regions in preschool-aged children. Front Pediatr 2024; 12:1362409. [PMID: 39411282 PMCID: PMC11473423 DOI: 10.3389/fped.2024.1362409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024] Open
Abstract
Early-life experiences play a crucial role in the development of the fronto-limbic regions, influencing both macro- and microstructural changes in the brain. These alterations profoundly impact cognitive, social-emotional functions. Recently, early limbic structural alterations have been associated with numerous neurological and psychiatric morbidities. Although identifying normative developmental trajectories is essential for determining brain alterations, only a few studies have focused on examining the normative trajectories in the fronto-limbic regions during preschool-aged children. The aim of this study was to investigate the structural-developmental trajectory of the fronto-limbic regions using the cortical thickness, volume, and subcortical volume in 57 healthy and typical preschool-aged children between 1 and 5 years and examined the early lateralization patterns during the development of the fronto-limbic regions. Regarding brain lateralization, remarkable asymmetry was detected in the volume of thalamus and the cortical regions excluding the lateral orbitofrontal cortex in the fronto-limbic regions. This study of preschool-aged children may fill the knowledge gaps regarding the developmental patterns and hemispheric asymmetries of the fronto-limbic regions between newborns and adolescents.
Collapse
Affiliation(s)
- Gang Yi Lee
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Young-Ah Youn
- Department of Pediatrics, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong Hun Jang
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Hyuna Kim
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Joo Young Lee
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Young Jun Lee
- Department of Radiology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Minyoung Jung
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
- Division of Neonatology and Development Medicine, Hanyang University Hospital, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
27
|
Abuduaini Y, Chen W, Kong XZ. Handedness in Alzheimer's disease: A systematic review. Brain Res 2024; 1840:149131. [PMID: 39053686 DOI: 10.1016/j.brainres.2024.149131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/22/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Handedness has traditionally been employed as a proxy of brain lateralization in research. Alzheimer's disease (AD) manifests as a neurodegenerative disorder characterized by impairments across various neuropsychological functions, including visuospatial and language, many of which exhibit lateralization in the human brain. While previous studies have investigated the relationship between AD and handedness, findings have been inconsistent. This article aims to provide an up-to-date overview of studies investigating hand preference in AD and the subtypes, specifically early- and late-onset AD. Through a synthesis of these studies, we conclude that handedness currently lacks utility as a diagnostic biomarker for AD and its subtypes, and this is further supported by the meta-analytic results based on data from over 10,000 AD patients. We emphasize the necessity for future research endeavors, particularly those leveraging advanced neuroimaging techniques to explore the role of brain asymmetry in AD.
Collapse
Affiliation(s)
- Yilamujiang Abuduaini
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Psychiatry of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiang-Zhen Kong
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China; Department of Psychiatry of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
28
|
Polemiti E, Hese S, Schepanski K, Yuan J, Schumann G. How does the macroenvironment influence brain and behaviour-a review of current status and future perspectives. Mol Psychiatry 2024; 29:3268-3286. [PMID: 38658771 PMCID: PMC11449798 DOI: 10.1038/s41380-024-02557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
The environment influences brain and mental health, both detrimentally and beneficially. Existing research has emphasised the individual psychosocial 'microenvironment'. Less attention has been paid to 'macroenvironmental' challenges, including climate change, pollution, urbanicity, and socioeconomic disparity. Notably, the implications of climate and pollution on brain and mental health have only recently gained prominence. With the advent of large-scale big-data cohorts and an increasingly dense mapping of macroenvironmental parameters, we are now in a position to characterise the relation between macroenvironment, brain, and behaviour across different geographic and cultural locations globally. This review synthesises findings from recent epidemiological and neuroimaging studies, aiming to provide a comprehensive overview of the existing evidence between the macroenvironment and the structure and functions of the brain, with a particular emphasis on its implications for mental illness. We discuss putative underlying mechanisms and address the most common exposures of the macroenvironment. Finally, we identify critical areas for future research to enhance our understanding of the aetiology of mental illness and to inform effective interventions for healthier environments and mental health promotion.
Collapse
Affiliation(s)
- Elli Polemiti
- Centre of Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience CCM, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Sören Hese
- Institute of Geography, Friedrich Schiller University Jena, Jena, Germany
| | | | - Jiacan Yuan
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences & CMA-FDU Joint Laboratory of Marine Meteorology & IRDR-ICOE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Gunter Schumann
- Centre of Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience CCM, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Centre for Population Neuroscience and Stratified Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China.
| |
Collapse
|
29
|
Birari VS, Rabinowitch I. Asymmetry in synaptic connectivity balances redundancy and reachability in the Caenorhabditis elegans connectome. iScience 2024; 27:110713. [PMID: 39262801 PMCID: PMC11388161 DOI: 10.1016/j.isci.2024.110713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/26/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024] Open
Abstract
The brain is overall bilaterally symmetrical, but also exhibits considerable asymmetry. While symmetry may endow neural networks with robustness and resilience, asymmetry may enable parallel information processing and functional specialization. How is this tradeoff between symmetrical and asymmetrical brain architecture balanced? To address this, we focused on the Caenorhabditis elegans connectome, comprising 99 classes of bilaterally symmetrical neuron pairs. We found symmetry in the number of synaptic partners between neuron class members, but pronounced asymmetry in the identity of these synapses. We applied graph theoretical metrics for evaluating Redundancy, the selective reinforcement of specific neural paths by multiple alternative synaptic connections, and Reachability, the extent and diversity of synaptic connectivity of each neuron class. We found Redundancy and Reachability to be stochastically tunable by the level of network asymmetry, driving the C. elegans connectome to favor Redundancy over Reachability. These results elucidate fundamental relations between lateralized neural connectivity and function.
Collapse
Affiliation(s)
- Varun Sanjay Birari
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Ithai Rabinowitch
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| |
Collapse
|
30
|
Mundorf A, Deneke L, Ocklenburg S. Hemispheric asymmetries in borderline personality disorder: a systematic review. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01888-8. [PMID: 39261314 DOI: 10.1007/s00406-024-01888-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
Borderline personality disorder (BPD) is characterized by increased mood reactivity and affective instability. Since core structures involved in emotion processing, such as the amygdala, demonstrate strong lateralization, BPD is an interesting target for laterality research. So far, a systematic integration of findings on lateralization in BPD is missing. Therefore, we systematically reviewed studies published until February 2024 in PubMed, Web of Science, and PsycInfo databases that measured hemispheric asymmetries and behavioral lateralization in patients with BPD. Inclusion criteria were (a) diagnosis of BPD and (b) results on hemispheric or behavioral asymmetries. Specifically for neuroimaging studies, hemispheres need to be assessed separately. Review articles and studies with disorders other than BPD were excluded. Risk of bias was assessed with the Newcastle Ottawa Scale for non-randomized, non-comparative intervention studies. A total of 21 studies met the inclusion criteria. Thirteen studies investigated structural hemispheric asymmetries, five functional hemispheric asymmetries, two examined handedness, and one studied hemispheric asymmetry in visuospatial attention. Overall, studies examining structural asymmetries in BPD report bilateral volume reduction in the amygdala and hippocampus but a right-sided reduction in the orbitofrontal cortex. For functional lateralization, asymmetrical de/activation patterns in the default mode network in BPD and reduced right-frontal asymmetry were evident. Also, studies indicate a trend towards increased non-right-handedness in BPD. Risk factors for BPD, such as childhood abuse, may play a crucial role in the development of structural and functional alterations. However, the generalization of results may be limited by small sample sizes and varying study designs.
Collapse
Affiliation(s)
- Annakarina Mundorf
- ISM Institute for Systems Medicine, Department of Human Medicine, MSH Medical School Hamburg, Am Kaiserkai 1, Hamburg, 20457, Germany.
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Lisa Deneke
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
| | - Sebastian Ocklenburg
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
- ICAN Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Hamburg, Germany
- Institute of Cognitive Neuroscience, Biopsychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
31
|
Hnilicova P, Grendar M, Turcanova Koprusakova M, Trancikova Kralova A, Harsanyiova J, Krssak M, Just I, Misovicova N, Hikkelova M, Grossmann J, Spalek P, Meciarova I, Kurca E, Zilka N, Zelenak K, Bogner W, Kolisek M. Brain of miyoshi myopathy/dysferlinopathy patients presents with structural and metabolic anomalies. Sci Rep 2024; 14:19267. [PMID: 39164335 PMCID: PMC11336102 DOI: 10.1038/s41598-024-69966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Miyoshi myopathy/dysferlinopathy (MMD) is a rare muscle disease caused by DYSF gene mutations. Apart from skeletal muscles, DYSF is also expressed in the brain. However, the impact of MMD-causing DYSF variants on brain structure and function remains unexplored. To investigate this, we utilized magnetic resonance (MR) modalities (MR volumetry and 31P MR spectroscopy) in a family with seven children, four of whom have the illness. The MMD siblings showed distinct differences from healthy controls: (1) a significant (p < 0.001) right-sided volume asymmetry (+ 232 mm3) of the inferior lateral ventricles; and (2) a significant (p < 0.001) decrease in [Mg2+], along with a modified energy metabolism profile and altered membrane turnover in the hippocampus and motor and premotor cortices. The patients' [Mg2+], energy metabolism, and membrane turnover measures returned to those of healthy relatives after a month of 400 mg/day magnesium supplementation. This work is the first to describe anatomical and functional abnormalities characteristic of neurodegeneration in the MMD brain. Therefore, we call for further examination of brain functions in larger cohorts of MMD patients and testing of magnesium supplementation, which has proven to be an effective corrective approach in our study.
Collapse
Affiliation(s)
- Petra Hnilicova
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovakia
| | - Marian Grendar
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovakia
| | - Monika Turcanova Koprusakova
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Alzbeta Trancikova Kralova
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovakia
| | - Jana Harsanyiova
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovakia
| | - Martin Krssak
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field MR Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Ivica Just
- Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | | | | | - Jan Grossmann
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Peter Spalek
- Center for Neuromuscular Disease, Clinic of Neurology, University Hospital Bratislava, Slovak Medical University in Bratislava, Pazitkova 4, 83303, Bratislava, Slovakia
| | - Iveta Meciarova
- Department of Pathology, Unilabs Slovensko Patologia s.r.o., Ruzinovska 6, 82606, Bratislava, Slovakia
| | - Egon Kurca
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 5779/9, 84510, Bratislava, Slovakia
| | - Kamil Zelenak
- Clinic of Radiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Wolfgang Bogner
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field MR Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Martin Kolisek
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovakia.
| |
Collapse
|
32
|
Saltoun K, Yeo BTT, Paul L, Diedrichsen J, Bzdok D. Longitudinal changes in brain asymmetry track lifestyle and disease. RESEARCH SQUARE 2024:rs.3.rs-4798448. [PMID: 39149493 PMCID: PMC11326383 DOI: 10.21203/rs.3.rs-4798448/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Human beings may have evolved the largest asymmetries of brain organization in the animal kingdom. Hemispheric left-vs-right specialization is especially pronounced in our species-unique capacities. Yet, brain asymmetry features appear to be strongly shaped by non-genetic influences. We hence charted the largest longitudinal brain-imaging adult resource, yielding evidence that brain asymmetry changes continuously in a manner suggestive of neural plasticity. In the UK Biobank population cohort, we demonstrate that asymmetry changes show robust associations across 959 distinct phenotypic variables spanning 11 categories. We also find that changes in brain asymmetry over years co-occur with changes among specific lifestyle markers. Finally, we reveal relevance of brain asymmetry changes to major disease categories across thousands of medical diagnoses. Our results challenge the tacit assumption that asymmetrical neural systems are highly conserved throughout adulthood.
Collapse
Affiliation(s)
- Karin Saltoun
- The Neuro - Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre, Department of Biomedical Engineering, Faculty of Medicine, School of Computer Science, McGill University, Montreal, Canada
- Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - B T Thomas Yeo
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Lynn Paul
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jorn Diedrichsen
- Western Institute of Neuroscience, Western University, London, Ontario, Canada
| | - Danilo Bzdok
- The Neuro - Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre, Department of Biomedical Engineering, Faculty of Medicine, School of Computer Science, McGill University, Montreal, Canada
- Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| |
Collapse
|
33
|
Kurth F, Schijven D, van den Heuvel OA, Hoogman M, van Rooij D, Stein DJ, Buitelaar JK, Bölte S, Auzias G, Kushki A, Venkatasubramanian G, Rubia K, Bollmann S, Isaksson J, Jaspers‐Fayer F, Marsh R, Batistuzzo MC, Arnold PD, Bressan RA, Stewart SE, Gruner P, Sorensen L, Pan PM, Silk TJ, Gur RC, Cubillo AI, Haavik J, O'Gorman Tuura RL, Hartman CA, Calvo R, McGrath J, Calderoni S, Jackowski A, Chantiluke KC, Satterthwaite TD, Busatto GF, Nigg JT, Gur RE, Retico A, Tosetti M, Gallagher L, Szeszko PR, Neufeld J, Ortiz AE, Ghisleni C, Lazaro L, Hoekstra PJ, Anagnostou E, Hoekstra L, Simpson B, Plessen JK, Deruelle C, Soreni N, James A, Narayanaswamy J, Reddy JY, Fitzgerald J, Bellgrove MA, Salum GA, Janssen J, Muratori F, Vila M, Giral MG, Ameis SH, Bosco P, Remnélius KL, Huyser C, Pariente JC, Jalbrzikowski M, Rosa PG, O'Hearn KM, Ehrlich S, Mollon J, Zugman A, Christakou A, Arango C, Fisher SE, Kong X, Franke B, Medland SE, Thomopoulos SI, Jahanshad N, Glahn DC, Thompson PM, Francks C, Luders E. Large-scale analysis of structural brain asymmetries during neurodevelopment: Associations with age and sex in 4265 children and adolescents. Hum Brain Mapp 2024; 45:e26754. [PMID: 39046031 PMCID: PMC11267452 DOI: 10.1002/hbm.26754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/29/2024] [Accepted: 05/23/2024] [Indexed: 07/25/2024] Open
Abstract
Only a small number of studies have assessed structural differences between the two hemispheres during childhood and adolescence. However, the existing findings lack consistency or are restricted to a particular brain region, a specific brain feature, or a relatively narrow age range. Here, we investigated associations between brain asymmetry and age as well as sex in one of the largest pediatric samples to date (n = 4265), aged 1-18 years, scanned at 69 sites participating in the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) consortium. Our study revealed that significant brain asymmetries already exist in childhood, but their magnitude and direction depend on the brain region examined and the morphometric measurement used (cortical volume or thickness, regional surface area, or subcortical volume). With respect to effects of age, some asymmetries became weaker over time while others became stronger; sometimes they even reversed direction. With respect to sex differences, the total number of regions exhibiting significant asymmetries was larger in females than in males, while the total number of measurements indicating significant asymmetries was larger in males (as we obtained more than one measurement per cortical region). The magnitude of the significant asymmetries was also greater in males. However, effect sizes for both age effects and sex differences were small. Taken together, these findings suggest that cerebral asymmetries are an inherent organizational pattern of the brain that manifests early in life. Overall, brain asymmetry appears to be relatively stable throughout childhood and adolescence, with some differential effects in males and females.
Collapse
Affiliation(s)
- F. Kurth
- School of PsychologyUniversity of AucklandAucklandNew Zealand
- Institute of Diagnostic and Interventional Radiology, Jena University HospitalJenaGermany
| | - D. Schijven
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - O. A. van den Heuvel
- Department of PsychiatryAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - M. Hoogman
- Department of PsychiatryRadboud University Medical CenterNijmegenThe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - D. van Rooij
- Donders Institute for Brain, Cognition and Behavior, Department of Cognitive NeuroscienceRadboud University Medical CenterNijmegenThe Netherlands
| | - D. J. Stein
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - J. K. Buitelaar
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Cognitive NeuroscienceRadboudumcNijmegenThe Netherlands
| | - S. Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's HealthKarolinska Institutet & Stockholm Health Care Services, Region StockholmStockholmSweden
- Curtin Autism Research Group, Curtin School of Allied HealthCurtin UniversityPerthAustralia
| | - G. Auzias
- Institut de neurosciences de la Timone UMR 7289, Aix‐Marseille Université & CNRSMarseilleFrance
| | - A. Kushki
- Holland Bloorview Kids Rehabilitation Hospital, Institute for Biomedical EngineeringUniversity of TorontoTorontoCanada
| | - G. Venkatasubramanian
- National Institute of Mental Health and Neuro Sciences (NIMHANS)BengaluruIndia
- Department of Psychiatry, Temerty Faculty of MedicineUniversity of TorontoTorontoCanada
| | - K. Rubia
- Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - S. Bollmann
- School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneAustralia
| | - J. Isaksson
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's HealthKarolinska Institutet & Stockholm Health Care Services, Region StockholmStockholmSweden
- Child and Adolescent Psychiatry Unit, Department of Medical SciencesUppsala UniversityUppsalaSweden
| | - F. Jaspers‐Fayer
- BC Children's Research Institute and the University of British ColumbiaVancouverCanada
| | - R. Marsh
- Department of PsychiatryColumbia University Irving Medical Center and the New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - M. C. Batistuzzo
- Department & Institute of PsychiatryUniversity of Sao Paulo, Medical SchoolSao PauloBrazil
- Department of Methods and Techniques in PsychologyPontifical Catholic UniversitySao PauloBrazil
| | - P. D. Arnold
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain InstituteUniversity of CalgaryCalgaryCanada
| | - R. A. Bressan
- Federal University of São PauloSão PauloBrazil
- Instituto Ame Sua MenteSão PauloBrazil
| | - S. E. Stewart
- British Columbia Children's Hospital, British Columbia Mental Health and Substance Use ServicesUniversity of British ColumbiaVancouverCanada
| | - P. Gruner
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
| | - L. Sorensen
- Department of Biological and Medical PsychologyUniversity of BergenBergenNorway
| | - P. M. Pan
- Laboratório de Neurociências Integrativas (LINC), Departamento de PsiquiatriaUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
- Instituto Nacional de siquiatria do Desenvolvimento (INPD)São PauloBrazil
| | - T. J. Silk
- Centre for Social and Early Emotional Development and School of PsychologyDeakin UniversityGeelongAustralia
- Murdoch Children's Research InstituteMelbourneAustralia
| | - R. C. Gur
- Department of Psychiatry, Section on Neurodevelopment and Psychosis and the Lifespan Brain Institute, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - A. I. Cubillo
- Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - J. Haavik
- Department of BiomedicineUniversity of BergenBergenNorway
- Division of PsychiatryHaukeland University HospitalBergenNorway
| | - R. L. O'Gorman Tuura
- Center for MR Research, University Children's Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - C. A. Hartman
- Interdisciplinary Center Psychopathology and Emotion Regulation, Department of Psychiatry, University of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - R. Calvo
- Department of Child and Adolescent Psychiatry and Psychology, Neuroscience InstituteHospital ClinicBarcelonaSpain
- School of MedicineUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM)BarcelonaSpain
- Institute d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - J. McGrath
- Department of PsychiatryTrinity College DublinDublinIreland
| | - S. Calderoni
- IRCCS Stella Maris FoundationPisaItaly
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - A. Jackowski
- Department of PsychiatryUNIFESPSão PauloBrazil
- Department of EducationICT and Learning, Østfold University CollegeHaldenNorway
| | - K. C. Chantiluke
- Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - T. D. Satterthwaite
- Department of Psychiatry, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Lifespan Brain InstituteUniversity of Pennsylvania & Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Center for Biomedical Image Computing and Analytics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - G. F. Busatto
- Department of Psychiatry, Faculty of MedicineUniversity of São PauloSão PauloBrazil
| | - J. T. Nigg
- Department of Psychiatry and Center for ADHD ResearchOregon Health & Science UniversityPortlandOregonUSA
| | - R. E. Gur
- Department of Psychiatry, The Penn‐CHOP Lifespan Brain InstituteUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - A. Retico
- Pisa DivisionNational Institute for Nuclear Physics (INFN)PisaItaly
| | | | - L. Gallagher
- Department of PsychiatryTrinity College DublinDublinIreland
- The Hospital for Sick childrenTorontoCanada
- The Centre for Addiction and Mental Health TorontoTorontoCanada
- Department of PsychiatryUniversity of TorontoTorontoCanada
| | - P. R. Szeszko
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mental Illness Research, Education and Clinical Center (MIRECC)James J. Peters VA Medical CenterNew YorkNew YorkUSA
| | - J. Neufeld
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's HealthKarolinska Institutet & Stockholm Health Care Services, Region StockholmStockholmSweden
- Swedish Collegium for Advanced Study (SCAS)UppsalaSweden
| | - A. E. Ortiz
- Department of Child and Adolescent Psychiatry and Psychology, Neuroscience InstituteHospital ClinicBarcelonaSpain
- Institute d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - C. Ghisleni
- Center for MR Research, University Children's Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - L. Lazaro
- Department of Child and Adolescent Psychiatry and Psychology, Neuroscience InstituteHospital ClinicBarcelonaSpain
- School of MedicineUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM)BarcelonaSpain
- Institute d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - P. J. Hoekstra
- Department of Child and Adolescent Psychiatry & Accare Child Study CenterUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - E. Anagnostou
- Holland Bloorview Kids Rehabilitation Hospital, Department of Pediatrics, Temetry School of MedicineUniversity of TorontoTorontoCanada
| | - L. Hoekstra
- Karakter University Center for Child and Adolescent PsychiatryNijmegenThe Netherlands
- Donders Center for Cognitive NeuroimagingNijmegenThe Netherlands
- Radboud University Medical CenterNijmegenThe Netherlands
| | - B. Simpson
- New York State Psychiatric Institute/CUIMCNew YorkNew YorkUSA
| | - J. K. Plessen
- Division of Child and Adolescent Psychiatry, Department of PsychiatryUniversity Hospital LausanneLausanneSwitzerland
| | - C. Deruelle
- Institut de neurosciences de la Timone UMR 7289, Aix‐Marseille Université & CNRSMarseilleFrance
| | - N. Soreni
- Pediatric OCD Consultation ClinicSJHHamiltonCanada
- Department of Psychiatry and Behavioral Neurosciences and Offord Child StudiesMcMaster UniversityHamiltonCanada
| | - A. James
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - J. Narayanaswamy
- National Institute of Mental Health and Neuro Sciences (NIMHANS)BengaluruIndia
| | - J. Y. Reddy
- National Institute of Mental Health and Neuro Sciences (NIMHANS)BengaluruIndia
| | | | - M. A. Bellgrove
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityMelbourneAustralia
| | - G. A. Salum
- Graduate Program of Psychiatry and Behavioral SciencesUniversidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto AlegrePorto AlegreBrazil
- Child Mind InstituteNew YorkNew YorkUSA
| | - J. Janssen
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental HealthHospital General Universitario Gregorio Marañón, IiSGM, CIBERSAMMadridSpain
| | | | - M. Vila
- Department of Child and Adolescent Psychiatry and Psychology, Neuroscience InstituteHospital ClinicBarcelonaSpain
| | - M. Garcia Giral
- Department of Child and Adolescent Psychiatry and Psychology, Neuroscience InstituteHospital ClinicBarcelonaSpain
| | - S. H. Ameis
- Campbell Family Mental Health Research InstituteCentre for Addiction and Mental HealthTorontoCanada
- Temerty Faculty of Medicine, Department of PsychiatryUniversity of TorontoTorontoCanada
| | - P. Bosco
- IRCCS Stella Maris FoundationPisaItaly
| | - K. Lundin Remnélius
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's HealthKarolinska Institutet & Stockholm Health Care Services, Region StockholmStockholmSweden
| | - C. Huyser
- Academic Center Child and Youth PsychiatryLevvelAmsterdamThe Netherlands
- Department of Child and Adolescent PsychiatryAmsterdamUMCAmsterdamThe Netherlands
| | - J. C. Pariente
- Magnetic Resonance Image Core FacilityInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - M. Jalbrzikowski
- Department of Psychiatry and Behavioral SciencesBoston Children's HospitalBostonMassachusettsUSA
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
| | - P. G. Rosa
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de Sao PauloSao PauloBrazil
| | - K. M. O'Hearn
- Atrium Health Wake Forest Baptist Medical CenterWinston‐SalemNorth CarolinaUSA
| | - S. Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences & Department of Child and Adolescent PsychiatryFaculty of Medicine, TU DresdenDresdenGermany
| | - J. Mollon
- Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - A. Zugman
- National Institutes of Health/National Institute of Mental HealthBethesdaMarylandUSA
| | - A. Christakou
- Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language SciencesUniversity of ReadingReadingUK
| | - C. Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, School of MedicineUniversidad Complutense, CIBERSAMMadridSpain
| | - S. E. Fisher
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - X. Kong
- Department of Psychology and Behavioral SciencesZhejiang UniversityHangzhouChina
- Department of Psychiatry of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - B. Franke
- Department of PsychiatryRadboud University Medical CenterNijmegenThe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - S. E. Medland
- QIMR Berghofer Medical Research InstituteHerstonAustralia
| | - S. I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - N. Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - D. C. Glahn
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's HospitalBostonMassachusettsUSA
| | - P. M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - C. Francks
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - E. Luders
- School of PsychologyUniversity of AucklandAucklandNew Zealand
- Swedish Collegium for Advanced Study (SCAS)UppsalaSweden
- Department of Women's and Children's HealthUppsala UniversityUppsalaSweden
- Laboratory of Neuro Imaging, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
34
|
Lu H, Li J. MRI-informed machine learning-driven brain age models for classifying mild cognitive impairment converters. J Cent Nerv Syst Dis 2024; 16:11795735241266556. [PMID: 39049837 PMCID: PMC11268046 DOI: 10.1177/11795735241266556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/02/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Brain age model, including estimated brain age and brain-predicted age difference (brain-PAD), has shown great potentials for serving as imaging markers for monitoring normal ageing, as well as for identifying the individuals in the pre-diagnostic phase of neurodegenerative diseases. PURPOSE This study aimed to investigate the brain age models in normal ageing and mild cognitive impairments (MCI) converters and their values in classifying MCI conversion. METHODS Pre-trained brain age model was constructed using the structural magnetic resonance imaging (MRI) data from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) project (N = 609). The tested brain age model was built using the baseline, 1-year and 3-year follow-up MRI data from normal ageing (NA) adults (n = 32) and MCI converters (n = 22) drew from the Open Access Series of Imaging Studies (OASIS-2). The quantitative measures of morphometry included total intracranial volume (TIV), gray matter volume (GMV) and cortical thickness. Brain age models were calculated based on the individual's morphometric features using the support vector machine (SVM) algorithm. RESULTS With comparable chronological age, MCI converters showed significant increased TIV-based (Baseline: P = 0.021; 1-year follow-up: P = 0.037; 3-year follow-up: P = 0.001) and left GMV-based brain age than NA adults at all time points. Higher brain-PAD scores were associated with worse global cognition. Acceptable classification performance of TIV-based (AUC = 0.698) and left GMV-based brain age (AUC = 0.703) was found, which could differentiate the MCI converters from NA adults at the baseline. CONCLUSIONS This is the first demonstration that MRI-informed brain age models exhibit feature-specific patterns. The greater GMV-based brain age observed in MCI converters may provide new evidence for identifying the individuals at the early stage of neurodegeneration. Our findings added value to existing quantitative imaging markers and might help to improve disease monitoring and accelerate personalized treatments in clinical practice.
Collapse
Affiliation(s)
- Hanna Lu
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Li
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
35
|
Ocklenburg S, Mundorf A, Gerrits R, Karlsson EM, Papadatou-Pastou M, Vingerhoets G. Clinical implications of brain asymmetries. Nat Rev Neurol 2024; 20:383-394. [PMID: 38783057 DOI: 10.1038/s41582-024-00974-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
No two human brains are alike, and with the rise of precision medicine in neurology, we are seeing an increased emphasis on understanding the individual variability in brain structure and function that renders every brain unique. Functional and structural brain asymmetries are a fundamental principle of brain organization, and recent research suggests substantial individual variability in these asymmetries that needs to be considered in clinical practice. In this Review, we provide an overview of brain asymmetries, variations in such asymmetries and their relevance in the clinical context. We review recent findings on brain asymmetries in neuropsychiatric and neurodevelopmental disorders, as well as in specific learning disabilities, with an emphasis on large-scale database studies and meta-analyses. We also highlight the relevance of asymmetries for disease symptom onset in neurodegenerative diseases and their implications for lateralized treatments, including brain stimulation. We conclude that alterations in brain asymmetry are not sufficiently specific to act as diagnostic biomarkers but can serve as meaningful symptom or treatment response biomarkers in certain contexts. On the basis of these insights, we provide several recommendations for neurological clinical practice.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany.
- ICAN Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany.
- Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| | - Annakarina Mundorf
- ISM Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Division of Cognitive Neuroscience, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robin Gerrits
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Emma M Karlsson
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Marietta Papadatou-Pastou
- National and Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Guy Vingerhoets
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| |
Collapse
|
36
|
Fırat Z, Er F, Noyan H, Ekinci G, Üçok A, Uluğ AM, Aktekin B. Discriminant analysis using MRI asymmetry indices and cognitive scores of women with temporal lobe epilepsy or schizophrenia. Neuroradiology 2024; 66:1083-1092. [PMID: 38416211 DOI: 10.1007/s00234-024-03317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
PURPOSE This study aims to assess the diagnostic power of brain asymmetry indices and neuropsychological tests for differentiating mesial temporal lobe epilepsy (MTLE) and schizophrenia (SCZ). METHODS We studied a total of 39 women including 13 MTLE, 13 SCZ, and 13 healthy individuals (HC). A neuropsychological test battery (NPT) was administered and scored by an experienced neuropsychologist, and NeuroQuant (CorTechs Labs Inc., San Diego, California) software was used to calculate brain asymmetry indices (ASI) for 71 different anatomical regions of all participants based on their 3D T1 MR imaging scans. RESULTS Asymmetry indices measured from 10 regions showed statistically significant differences between the three groups. In this study, a multi-class linear discriminant analysis (LDA) model was built based on a total of fifteen variables composed of the most five significantly informative NPT scores and ten significant asymmetry indices, and the model achieved an accuracy of 87.2%. In pairwise classification, the accuracy for distinguishing MTLE from either SCZ or HC was 94.8%, while the accuracy for distinguishing SCZ from either MTLE or HC was 92.3%. CONCLUSION The ability to differentiate MTLE from SCZ using neuroradiological and neuropsychological biomarkers, even within a limited patient cohort, could make a substantial contribution to research in larger patient groups using different machine learning techniques.
Collapse
Affiliation(s)
- Zeynep Fırat
- Department of Radiology, Yeditepe University Hospitals, Kosuyolu, 34718, Istanbul, Turkey.
| | - Füsun Er
- Department of Information Systems Engineering, Piri Reis University, Istanbul, Turkey
| | - Handan Noyan
- Faculty of Social Sciences, Department of Psychology, Beykoz University, 34810, Istanbul, Turkey
| | - Gazanfer Ekinci
- Department of Radiology, Yeditepe University Hospitals, Kosuyolu, 34718, Istanbul, Turkey
| | - Alp Üçok
- Istanbul Faculty of Medicine, Department of Psychiatry, Istanbul University, 34134, Istanbul, Turkey
| | - Aziz M Uluğ
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
- CorTechs Labs Inc, San Diego, CA, USA
| | - Berrin Aktekin
- Department of Neurology, Yeditepe University Hospitals, Kosuyolu, 34718, Istanbul, Turkey
| |
Collapse
|
37
|
Vallejo-Azar MN, Arenaza B, Elizalde Acevedo B, Alba-Ferrara L, Samengo I, Bendersky M, Gonzalez PN. Hemispheric asymmetries in cortical grey matter of gyri and sulci in modern human populations from South America. J Anat 2024; 244:815-830. [PMID: 38183319 PMCID: PMC11021627 DOI: 10.1111/joa.14001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024] Open
Abstract
Structural asymmetries of brain regions associated with lateralised functions have been extensively studied. However, there are fewer morphometric analyses of asymmetries of the gyri and sulci of the entire cortex. The current study assessed cortical asymmetries in a sample of healthy adults (N = 175) from an admixed population from South America. Grey matter volume and surface area of 66 gyri and sulci were quantified on T1 magnetic resonance images. The departure from zero of the differences between left and right hemispheres (L-R), a measure of directional asymmetry (DA), the variance of L-R, and an index of fluctuating asymmetry (FA) were evaluated for each region. Significant departures from perfect symmetry were found for most cortical gyri and sulci. Regions showed leftward asymmetry at the population level in the frontal lobe and superior lateral parts of the parietal lobe. Rightward asymmetry was found in the inferior parietal, occipital, frontopolar, and orbital regions, and the cingulate (anterior, middle, and posterior-ventral). Despite this general pattern, several sulci showed the opposite DA compared to the neighbouring gyri, which remarks the need to consider the neurobiological differences in gyral and sulcal development in the study of structural asymmetries. The results also confirm the absence of DA in most parts of the inferior frontal gyrus and the precentral region. This study contributes with data on populations underrepresented in the databases used in neurosciences. Among its findings, there is agreement with previous results obtained in populations of different ancestry and some discrepancies in the middle frontal and medial parietal regions. A significant DA not reported previously was found for the volume of long and short insular gyri and the central sulcus of the insula, frontomarginal, transverse frontopolar, paracentral, and middle and posterior parts of the cingulate gyrus and sulcus, gyrus rectus, occipital pole, and olfactory sulcus, as well as for the volume and area of the transverse collateral sulcus and suborbital sulcus. Also, several parcels displayed significant variability in the left-right differences, which can be partially attributable to developmental instability, a source of FA. Moreover, a few gyri and sulci displayed ideal FA with non-significant departures from perfect symmetry, such as subcentral and posterior cingulate gyri and sulci, inferior frontal and fusiform gyri, and the calcarine, transverse collateral, precentral, and orbital sulci. Overall, these results show that asymmetries are ubiquitous in the cerebral cortex.
Collapse
Affiliation(s)
- Mariana N Vallejo-Azar
- Estudios en Neurociencias y Sistemas Complejos, ENyS (CONICET, Universidad Nacional Arturo Jauretche, Hospital El Cruce), Florencio Varela, Argentina
| | - Bautista Arenaza
- Department of Medical Physics and Instituto Balseiro, Centro Atómico Bariloche, CONICET, Bariloche, Argentina
| | - Bautista Elizalde Acevedo
- Estudios en Neurociencias y Sistemas Complejos, ENyS (CONICET, Universidad Nacional Arturo Jauretche, Hospital El Cruce), Florencio Varela, Argentina
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Bariloche, Argentina
| | - Lucía Alba-Ferrara
- Estudios en Neurociencias y Sistemas Complejos, ENyS (CONICET, Universidad Nacional Arturo Jauretche, Hospital El Cruce), Florencio Varela, Argentina
| | - Inés Samengo
- Department of Medical Physics and Instituto Balseiro, Centro Atómico Bariloche, CONICET, Bariloche, Argentina
| | - Mariana Bendersky
- Estudios en Neurociencias y Sistemas Complejos, ENyS (CONICET, Universidad Nacional Arturo Jauretche, Hospital El Cruce), Florencio Varela, Argentina
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula N Gonzalez
- Estudios en Neurociencias y Sistemas Complejos, ENyS (CONICET, Universidad Nacional Arturo Jauretche, Hospital El Cruce), Florencio Varela, Argentina
| |
Collapse
|
38
|
Karakasli AA, Ozkan E, Karacam Dogan M, Cap D, Karaosmanoglu A, Karahan S, Zorlu N, Saka E, Ayhan Y. Clinical predictors of Alzheimer's disease-like brain atrophy in individuals with memory complaints. Brain Behav 2024; 14:e3506. [PMID: 38688882 PMCID: PMC11061206 DOI: 10.1002/brb3.3506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024] Open
Abstract
OBJECTIVES The definition and assessment methods for subjective cognitive decline (SCD) vary among studies. We aimed to investigate which features or assessment methods of SCD best predict Alzheimer's disease (AD)-related structural atrophy patterns. METHODS We assessed 104 individuals aged 55+ with memory complaints but normal cognitive screening. Our research questions were as follows: To improve the prediction of AD related morphological changes, (1) Would the use of a standardized cognitive screening scale be beneficial? (2) Is conducting a thorough neuropsychological evaluation necessary instead of relying solely on cognitive screening tests? (3) Should we apply SCD-plus research criteria, and if so, which criterion would be the most effective? (4) Is it necessary to consider medical and psychiatric comorbidities, vitamin deficiencies, vascular burden on MRI, and family history? We utilized Freesurfer to analyze cortical thickness and regional brain volume meta-scores linked to AD or predicting its development. We employed multiple linear regression models for each variable, with morphology as the dependent variable. RESULTS AD-like morphology was associated with subjective complaints in males, individuals with advanced age, and higher education. Later age of onset for complaints, complaints specifically related to memory, excessive deep white matter vascular lesions, and using medications that have negative implications for cognitive health (according to the Beers criteria) were predictive of AD-related morphology. The subjective cognitive memory questionnaire scores were found to be a better predictor of reduced volumes than a single-question assessment. It is important to note that not all SCD-plus criteria were evaluated in this study, particularly the APOE genotype, amyloid, and tau status, due to resource limitations. CONCLUSIONS The detection of AD-related structural changes is impacted by demographics and assessment methods. Standardizing SCD assessment methods can enhance predictive accuracy.
Collapse
Affiliation(s)
| | - Esra Ozkan
- Research Center for Translational Medicine, Koç UniversityİstanbulTurkey
| | | | - Duygu Cap
- Department of PsychologyUfuk UniversityAnkaraTurkey
| | - Ayca Karaosmanoglu
- Department of RadiologyHacettepe University Faculty of MedicineAnkaraTurkey
| | - Sevilay Karahan
- Department of BiostatisticsHacettepe University Faculty of MedicineAnkaraTurkey
| | - Nabi Zorlu
- Department of Psychiatryİzmir Katip Çelebi University Faculty of MedicineİzmirTurkey
| | - Esen Saka
- Department of NeurologyHacettepe University Faculty of MedicineAnkaraTurkey
| | - Yavuz Ayhan
- Department of PsychiatryHacettepe University Faculty of MedicineAnkaraTurkey
| |
Collapse
|
39
|
Gurlek Celik N, Akman B. Analysis of sphenoid sinus and ethmoid sinus volume and asymmetry by sex: A 3D-CT study. Surg Radiol Anat 2024; 46:551-558. [PMID: 38321355 DOI: 10.1007/s00276-024-03319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/31/2024] [Indexed: 02/08/2024]
Abstract
PURPOSE To measure the volume of the sphenoid and ethmoid sinuses and to analyse the asymmetry index values by age/gender. METHODS Three-dimensional (3D) Computed Tomography (CT) images of 150 individuals (75 females, 75 males) of both sexes between the ages of 18-75 were included in our study. Sphenoid and ethmoid sinus volumes were measured using the 3D Slicer software package on these images, and the asymmetry index was calculated. RESULTS In our study, mean sphenoid sinus volume (female right: 4264.4 mm3, left: 3787.1 mm3; male right: 5201.1 mm3, left: 4818.2 mm3) and ethmoid sinus volume (female right: 3365.1 mm3, left: 3321.2 mm3; male right: 3440.9 mm3, left: 3459.5 mm3) were measured in males and females. Left sphenoid sinus values of males were statistically higher than females (p = 0.036). No statistically significant relationship existed between age, sinus volumes, and asymmetry index (p > 0.05). A statistically weak positive correlation existed between males' left sphenoid and ethmoid sinus volume (rho = 0.288; p = 0.012). There was no statistical relationship between asymmetry index in the whole group (p > 0.05). A statistically weak negative correlation was found between sphenoid and ethmoid sinus asymmetry index in males (rho=-0.352; p = 0.002). There was no statistical relationship between asymmetry index in females (p > 0.05). CONCLUSION Knowing paranasal sinus morphology, morphometry, and asymmetry index value will be significant for preoperative and postoperative periods.
Collapse
Affiliation(s)
- Nihal Gurlek Celik
- Department of Anatomy, Faculty of Medicine, Amasya University, Amasya, 05100, Turkey.
| | - Burcu Akman
- Department of Radiology, Faculty of Medicine, Amasya University, Amasya, 05100, Turkey
| |
Collapse
|
40
|
Ocklenburg S, Guo ZV. Cross-hemispheric communication: Insights on lateralized brain functions. Neuron 2024; 112:1222-1234. [PMID: 38458199 DOI: 10.1016/j.neuron.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/13/2023] [Accepted: 02/12/2024] [Indexed: 03/10/2024]
Abstract
On the surface, the two hemispheres of vertebrate brains look almost perfectly symmetrical, but several motor, sensory, and cognitive systems show a deeply lateralized organization. Importantly, the two hemispheres are connected by various commissures, white matter tracts that cross the brain's midline and enable cross-hemispheric communication. Cross-hemispheric communication has been suggested to play an important role in the emergence of lateralized brain functions. Here, we review current advances in understanding cross-hemispheric communication that have been made using modern neuroscientific tools in rodents and other model species, such as genetic labeling, large-scale recordings of neuronal activity, spatiotemporally precise perturbation, and quantitative behavior analyses. These findings suggest that the emergence of lateralized brain functions cannot be fully explained by largely static factors such as genetic variation and differences in structural brain asymmetries. In addition, learning-dependent asymmetric interactions between the left and right hemispheres shape lateralized brain functions.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany; ICAN Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany; Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| | - Zengcai V Guo
- School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
41
|
Eyamu J, Kim WS, Kim K, Lee KH, Kim JU. Prefrontal intra-individual ERP variability and its asymmetry: exploring its biomarker potential in mild cognitive impairment. Alzheimers Res Ther 2024; 16:83. [PMID: 38615028 PMCID: PMC11015694 DOI: 10.1186/s13195-024-01452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND The worldwide trend of demographic aging highlights the progress made in healthcare, albeit with health challenges like Alzheimer's Disease (AD), prevalent in individuals aged 65 and above. Its early detection at the mild cognitive impairment (MCI) stage is crucial. Event-related potentials (ERPs) obtained by averaging EEG segments responded to repeated events are vital for cognitive impairment research. Consequently, examining intra-trial ERP variability is vital for comprehending fluctuations within psychophysiological processes of interest. This study aimed to investigate cognitive deficiencies and instability in MCI using ERP variability and its asymmetry from a prefrontal two-channel EEG device. METHODS In this study, ERP variability for both target and non-target responses was examined using the response variance curve (RVC) in a sample comprising 481 participants with MCI and 1,043 age-matched healthy individuals. The participants engaged in auditory selective attention tasks. Cognitive decline was assessed using the Seoul Neuropsychological Screening Battery (SNSB) and the Mini-Mental State Examination (MMSE). The research employed various statistical methods, including independent t-tests, and univariate and multiple logistic regression analyses. These analyses were conducted to investigate group differences and explore the relationships between neuropsychological test results, ERP variability and its asymmetry measures, and the prevalence of MCI. RESULTS Our results showed that patients with MCI exhibited unstable cognitive processing, characterized by increased ERP variability compared to cognitively normal (CN) adults. Multiple logistic regression analyses confirmed the association between ERP variability in the target and non-target responses with MCI prevalence, independent of demographic and neuropsychological factors. DISCUSSION The unstable cognitive processing in the MCI group compared to the CN individuals implies abnormal neurological changes and reduced and (or) unstable attentional maintenance during cognitive processing. Consequently, utilizing ERP variability measures from a portable EEG device could serve as a valuable addition to the conventional ERP measures of latency and amplitude. This approach holds significant promise for identifying mild cognitive deficits and neural alterations in individuals with MCI.
Collapse
Affiliation(s)
- Joel Eyamu
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
- KM Convergence Science, University of Science and Technology, Daejeon, South Korea
| | - Wuon-Shik Kim
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Kahye Kim
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Kun Ho Lee
- Gwangju Alzheimer's Disease and Related Dementias (GARD) Cohort Research Center, Chosun University, Gwangju, South Korea
- Department of Biomedical Science, Chosun University, Gwangju, South Korea
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Jaeuk U Kim
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea.
- KM Convergence Science, University of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
42
|
Wang G, Jiang N, Ma Y, Suo D, Liu T, Funahashi S, Yan T. Using a deep generation network reveals neuroanatomical specificity in hemispheres. PATTERNS (NEW YORK, N.Y.) 2024; 5:100930. [PMID: 38645770 PMCID: PMC11026975 DOI: 10.1016/j.patter.2024.100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 04/23/2024]
Abstract
Asymmetry is an important property of brain organization, but its nature is still poorly understood. Capturing the neuroanatomical components specific to each hemisphere facilitates the understanding of the establishment of brain asymmetry. Since deep generative networks (DGNs) have powerful inference and recovery capabilities, we use one hemisphere to predict the opposite hemisphere by training the DGNs, which automatically fit the built-in dependencies between the left and right hemispheres. After training, the reconstructed images approximate the homologous components in the hemisphere. We use the difference between the actual and reconstructed hemispheres to measure hemisphere-specific components due to asymmetric expression of environmental and genetic factors. The results show that our model is biologically plausible and that our proposed metric of hemispheric specialization is reliable, representing a wide range of individual variation. Together, this work provides promising tools for exploring brain asymmetry and new insights into self-supervised DGNs for representing the brain.
Collapse
Affiliation(s)
- Gongshu Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ning Jiang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yunxiao Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Dingjie Suo
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Tiantian Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Shintaro Funahashi
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- Department of Cognitive and Behavioral Sciences, Graduate School of Human and Environmental Science, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Kokoro Research Center, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tianyi Yan
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
43
|
Kopal J, Kumar K, Shafighi K, Saltoun K, Modenato C, Moreau CA, Huguet G, Jean-Louis M, Martin CO, Saci Z, Younis N, Douard E, Jizi K, Beauchamp-Chatel A, Kushan L, Silva AI, van den Bree MBM, Linden DEJ, Owen MJ, Hall J, Lippé S, Draganski B, Sønderby IE, Andreassen OA, Glahn DC, Thompson PM, Bearden CE, Zatorre R, Jacquemont S, Bzdok D. Using rare genetic mutations to revisit structural brain asymmetry. Nat Commun 2024; 15:2639. [PMID: 38531844 PMCID: PMC10966068 DOI: 10.1038/s41467-024-46784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Asymmetry between the left and right hemisphere is a key feature of brain organization. Hemispheric functional specialization underlies some of the most advanced human-defining cognitive operations, such as articulated language, perspective taking, or rapid detection of facial cues. Yet, genetic investigations into brain asymmetry have mostly relied on common variants, which typically exert small effects on brain-related phenotypes. Here, we leverage rare genomic deletions and duplications to study how genetic alterations reverberate in human brain and behavior. We designed a pattern-learning approach to dissect the impact of eight high-effect-size copy number variations (CNVs) on brain asymmetry in a multi-site cohort of 552 CNV carriers and 290 non-carriers. Isolated multivariate brain asymmetry patterns spotlighted regions typically thought to subserve lateralized functions, including language, hearing, as well as visual, face and word recognition. Planum temporale asymmetry emerged as especially susceptible to deletions and duplications of specific gene sets. Targeted analysis of common variants through genome-wide association study (GWAS) consolidated partly diverging genetic influences on the right versus left planum temporale structure. In conclusion, our gene-brain-behavior data fusion highlights the consequences of genetically controlled brain lateralization on uniquely human cognitive capacities.
Collapse
Affiliation(s)
- Jakub Kopal
- Mila - Québec Artificial Intelligence Institute, Montréal, QC, Canada
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Canada
| | - Kuldeep Kumar
- Centre de recherche CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Kimia Shafighi
- Mila - Québec Artificial Intelligence Institute, Montréal, QC, Canada
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Canada
| | - Karin Saltoun
- Mila - Québec Artificial Intelligence Institute, Montréal, QC, Canada
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Canada
| | - Claudia Modenato
- LREN - Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Clara A Moreau
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Guillaume Huguet
- Centre de recherche CHU Sainte-Justine, Montréal, Quebec, Canada
| | | | | | - Zohra Saci
- Centre de recherche CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Nadine Younis
- Centre de recherche CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Elise Douard
- Centre de recherche CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Khadije Jizi
- Centre de recherche CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Alexis Beauchamp-Chatel
- Institut universitaire en santé mentale de Montréal, University of Montréal, Montréal, Canada
- Department of Psychiatry, University of Montreal, Montréal, Canada
| | - Leila Kushan
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles, USA
| | - Ana I Silva
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Marianne B M van den Bree
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
| | - David E J Linden
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Sarah Lippé
- Centre de recherche CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Bogdan Draganski
- LREN - Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Neurology Department, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ida E Sønderby
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles, USA
| | - Robert Zatorre
- International Laboratory for Brain, Music and Sound Research, Montreal, QC, Canada
- TheNeuro - Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Sébastien Jacquemont
- Centre de recherche CHU Sainte-Justine, Montréal, Quebec, Canada
- Department of Pediatrics, University of Montréal, Montréal, Quebec, Canada
| | - Danilo Bzdok
- Mila - Québec Artificial Intelligence Institute, Montréal, QC, Canada.
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Canada.
- TheNeuro - Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
44
|
Vanutelli ME, Grigis C, Lucchiari C. Breathing Right… or Left! The Effects of Unilateral Nostril Breathing on Psychological and Cognitive Wellbeing: A Pilot Study. Brain Sci 2024; 14:302. [PMID: 38671954 PMCID: PMC11048276 DOI: 10.3390/brainsci14040302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The impact of controlled breathing on cognitive and affective processing has been recognized since ancient times, giving rise to multiple practices aimed at achieving different psychophysical states, mostly related to mental clarity and focus, stress reduction, and relaxation. Previous scientific research explored the effects of forced unilateral nostril breathing (UNB) on brain activity and emotional and cognitive functions. Some evidence concluded that it had a contralateral effect, while other studies presented controversial results, making it difficult to come to an unambiguous interpretation. Also, a few studies specifically addressed wellbeing. In the present study, we invited a pilot sample of 20 participants to take part in an 8-day training program for breathing, and each person was assigned to either a unilateral right nostril (URNB) or left nostril breathing condition (ULNB). Then, each day, we assessed the participants' wellbeing indices using their moods and mind wandering scales. The results revealed that, after the daily practice, both groups reported improved wellbeing perception. However, the effect was specifically related to the nostril involved. URNB produced more benefits in terms of stress reduction and relaxation, while ULNB significantly and increasingly reduced mind-wandering occurrences over time. Our results suggest that UNB can be effectively used to increase wellbeing in the general population. Additionally, they support the idea that understanding the effects of unilateral breathing on wellbeing and cognition requires a complex interpretive model with multiple brain networks to address bottom-up and top-down processes.
Collapse
Affiliation(s)
- Maria Elide Vanutelli
- Department of Philosophy “Piero Martinetti”, Università degli Studi di Milano, 20122 Milan, Italy; (M.E.V.); (C.G.)
- Department of Psychology, University of Milano-Bicocca, 20126 Milan, Italy
| | - Chiara Grigis
- Department of Philosophy “Piero Martinetti”, Università degli Studi di Milano, 20122 Milan, Italy; (M.E.V.); (C.G.)
| | - Claudio Lucchiari
- Department of Philosophy “Piero Martinetti”, Università degli Studi di Milano, 20122 Milan, Italy; (M.E.V.); (C.G.)
| |
Collapse
|
45
|
Shi Y, Cui D, Sun F, OuYang Z, Dou R, Jiao Q, Cao W, Yu G. Exploring sexual dimorphism in basal forebrain volume changes during aging and neurodegenerative diseases. iScience 2024; 27:109041. [PMID: 38361626 PMCID: PMC10867643 DOI: 10.1016/j.isci.2024.109041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/15/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Patients with neurodegenerative diseases exhibit diminished basal forebrain (BF) volume compared to healthy individuals. However, it's uncertain whether this difference is consistent between sexes. It has been reported that BF volume moderately atrophies during aging, but the effect of sex on BF volume changes during the normal aging process remains unclear. In the cross-sectional study, we observed a significant reduction in BF volume in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD) compared to Healthy Controls (HCs), especially in the Ch4 subregion. Notably, significant differences in BF volume between MCI and HCs were observed solely in the female group. Additionally, we identified asymmetrical atrophy in the left and right Ch4 subregions in female patients with AD. In the longitudinal analysis, we found that aging seemed to have a minimal impact on BF volume in males. Our study highlights the importance of considering sex as a research variable in brain science.
Collapse
Affiliation(s)
- Yajun Shi
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’ an, Shandong 271000, China
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’ an, Shandong 271016, China
| | - Dong Cui
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’ an, Shandong 271000, China
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’ an, Shandong 271016, China
| | - Fengzhu Sun
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’ an, Shandong 271000, China
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’ an, Shandong 271016, China
| | - Zhen OuYang
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’ an, Shandong 271016, China
- Department of Radiology, Taian Municipal Hospital, Tai’ an, Shandong 271000, China
| | - Ruhai Dou
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’ an, Shandong 271000, China
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’ an, Shandong 271016, China
| | - Qing Jiao
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’ an, Shandong 271000, China
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’ an, Shandong 271016, China
| | - Weifang Cao
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’ an, Shandong 271000, China
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’ an, Shandong 271016, China
| | - Guanghui Yu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’ an, Shandong 271000, China
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’ an, Shandong 271016, China
| |
Collapse
|
46
|
Abdolmaleky HM, Nohesara S, Thiagalingam S. Epigenome Defines Aberrant Brain Laterality in Major Mental Illnesses. Brain Sci 2024; 14:261. [PMID: 38539649 PMCID: PMC10968810 DOI: 10.3390/brainsci14030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 11/03/2024] Open
Abstract
Brain-hemisphere asymmetry/laterality is a well-conserved biological feature of normal brain development. Several lines of evidence, confirmed by the meta-analysis of different studies, support the disruption of brain laterality in mental illnesses such as schizophrenia (SCZ), bipolar disorder (BD), attention-deficit/hyperactivity disorder (ADHD), obsessive compulsive disorder (OCD), and autism. Furthermore, as abnormal brain lateralization in the planum temporale (a critical structure in auditory language processing) has been reported in patients with SCZ, it has been considered a major cause for the onset of auditory verbal hallucinations. Interestingly, the peripheral counterparts of abnormal brain laterality in mental illness, particularly in SCZ, have also been shown in several structures of the human body. For instance, the fingerprints of patients with SCZ exhibit aberrant asymmetry, and while their hair whorl rotation is random, 95% of the general population exhibit a clockwise rotation. In this work, we present a comprehensive literature review of brain laterality disturbances in mental illnesses such as SCZ, BD, ADHD, and OCD, followed by a systematic review of the epigenetic factors that may be involved in the disruption of brain lateralization in mental health disorders. We will conclude with a discussion on whether existing non-pharmacological therapies such as rTMS and ECT may be used to influence the altered functional asymmetry of the right and left hemispheres of the brain, along with their epigenetic and corresponding gene-expression patterns.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Surgery, Nutrition/Metabolism Laboratory, BIDMC, Harvard Medical School, Boston, MA 02215, USA
| | - Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
47
|
Saha C, Figley CR, Lithgow B, Fitzgerald PB, Koski L, Mansouri B, Anssari N, Wang X, Moussavi Z. Can Brain Volume-Driven Characteristic Features Predict the Response of Alzheimer's Patients to Repetitive Transcranial Magnetic Stimulation? A Pilot Study. Brain Sci 2024; 14:226. [PMID: 38539615 PMCID: PMC10968477 DOI: 10.3390/brainsci14030226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 11/11/2024] Open
Abstract
This study is a post-hoc examination of baseline MRI data from a clinical trial investigating the efficacy of repetitive transcranial magnetic stimulation (rTMS) as a treatment for patients with mild-moderate Alzheimer's disease (AD). Herein, we investigated whether the analysis of baseline MRI data could predict the response of patients to rTMS treatment. Whole-brain T1-weighted MRI scans of 75 participants collected at baseline were analyzed. The analyses were run on the gray matter (GM) and white matter (WM) of the left and right dorsolateral prefrontal cortex (DLPFC), as that was the rTMS application site. The primary outcome measure was the Alzheimer's disease assessment scale-cognitive subscale (ADAS-Cog). The response to treatment was determined based on ADAS-Cog scores and secondary outcome measures. The analysis of covariance showed that responders to active treatment had a significantly lower baseline GM volume in the right DLPFC and a higher GM asymmetry index in the DLPFC region compared to those in non-responders. Logistic regression with a repeated five-fold cross-validated analysis using the MRI-driven features of the initial 75 participants provided a mean accuracy of 0.69 and an area under the receiver operating characteristic curve of 0.74 for separating responders and non-responders. The results suggest that GM volume or asymmetry in the target area of active rTMS treatment (DLPFC region in this study) may be a weak predictor of rTMS treatment efficacy. These results need more data to draw more robust conclusions.
Collapse
Affiliation(s)
- Chandan Saha
- Biomedical Engineering Program, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Chase R. Figley
- Department of Radiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Brian Lithgow
- Biomedical Engineering Program, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
- Department of Psychiatry (MAPRC), Monash University, Melbourne VIC 3004, Australia
| | - Paul B. Fitzgerald
- Department of Psychiatry (MAPRC), Monash University, Melbourne VIC 3004, Australia
| | - Lisa Koski
- Department of Psychology, Faculty of Science, McGill University, Montreal, QC H3A 1G1, Canada
| | - Behzad Mansouri
- Brain, Vision and Concussion Clinic-iScope, Winnipeg, MB R2M 2X9, Canada
| | - Neda Anssari
- Brain, Vision and Concussion Clinic-iScope, Winnipeg, MB R2M 2X9, Canada
| | - Xikui Wang
- Warren Center for Actuarial Studies and Research, University of Manitoba, Winnipeg, MB R3T 5V4, Canada
| | - Zahra Moussavi
- Biomedical Engineering Program, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| |
Collapse
|
48
|
Peterson M, Floris DL, Nielsen JA. Parsing Brain Network Specialization: A Replication and Expansion of Wang et al. (2014). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580153. [PMID: 38405819 PMCID: PMC10888742 DOI: 10.1101/2024.02.13.580153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
One organizing principle of the human brain is hemispheric specialization, or the dominance of a specific function or cognitive process in one hemisphere or the other. Previously, Wang et al. (2014) identified networks putatively associated with language and attention as being specialized to the left and right hemispheres, respectively; and a dual-specialization of the executive control network. However, it remains unknown which networks are specialized when specialization is examined within individuals using a higher resolution parcellation, as well as which connections are contributing the most to a given network's specialization. In the present study, we estimated network specialization across three datasets using the autonomy index and a novel method of deconstructing network specialization. After examining the reliability of these methods as implemented on an individual level, we addressed two hypotheses. First, we hypothesized that the most specialized networks would include those associated with language, visuospatial attention, and executive control. Second, we hypothesized that within-network contributions to specialization would follow a within-between network gradient or a specialization gradient. We found that the majority of networks exhibited greater within-hemisphere connectivity than between-hemisphere connectivity. Among the most specialized networks were networks associated with language, attention, and executive control. Additionally, we found that the greatest network contributions were within-network, followed by those from specialized networks.
Collapse
Affiliation(s)
- Madeline Peterson
- Department of Psychology, Brigham Young University, Provo, UT, 84602, USA
| | - Dorothea L Floris
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Jared A Nielsen
- Department of Psychology, Brigham Young University, Provo, UT, 84602, USA
- Neuroscience Center, Brigham Young University, Provo, UT, 84604, USA
| |
Collapse
|
49
|
Korbmacher M, van der Meer D, Beck D, de Lange AMG, Eikefjord E, Lundervold A, Andreassen OA, Westlye LT, Maximov II. Brain asymmetries from mid- to late life and hemispheric brain age. Nat Commun 2024; 15:956. [PMID: 38302499 PMCID: PMC10834516 DOI: 10.1038/s41467-024-45282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
The human brain demonstrates structural and functional asymmetries which have implications for ageing and mental and neurological disease development. We used a set of magnetic resonance imaging (MRI) metrics derived from structural and diffusion MRI data in N=48,040 UK Biobank participants to evaluate age-related differences in brain asymmetry. Most regional grey and white matter metrics presented asymmetry, which were higher later in life. Informed by these results, we conducted hemispheric brain age (HBA) predictions from left/right multimodal MRI metrics. HBA was concordant to conventional brain age predictions, using metrics from both hemispheres, but offers a supplemental general marker of brain asymmetry when setting left/right HBA into relationship with each other. In contrast to WM brain asymmetries, left/right discrepancies in HBA are lower at higher ages. Our findings outline various sex-specific differences, particularly important for brain age estimates, and the value of further investigating the role of brain asymmetries in brain ageing and disease development.
Collapse
Affiliation(s)
- Max Korbmacher
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway.
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway.
- Mohn Medical Imaging and Visualization Centre (MMIV), Bergen, Norway.
| | - Dennis van der Meer
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Dani Beck
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ann-Marie G de Lange
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Eli Eikefjord
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre (MMIV), Bergen, Norway
| | - Arvid Lundervold
- Mohn Medical Imaging and Visualization Centre (MMIV), Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ole A Andreassen
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ivan I Maximov
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway.
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
50
|
Chen YC, Tiego J, Segal A, Chopra S, Holmes A, Suo C, Pang JC, Fornito A, Aquino KM. A multiscale characterization of cortical shape asymmetries in early psychosis. Brain Commun 2024; 6:fcae015. [PMID: 38347944 PMCID: PMC10859637 DOI: 10.1093/braincomms/fcae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/29/2023] [Accepted: 01/19/2024] [Indexed: 02/15/2024] Open
Abstract
Psychosis has often been linked to abnormal cortical asymmetry, but prior results have been inconsistent. Here, we applied a novel spectral shape analysis to characterize cortical shape asymmetries in patients with early psychosis across different spatial scales. We used the Human Connectome Project for Early Psychosis dataset (aged 16-35), comprising 56 healthy controls (37 males, 19 females) and 112 patients with early psychosis (68 males, 44 females). We quantified shape variations of each hemisphere over different spatial frequencies and applied a general linear model to compare differences between healthy controls and patients with early psychosis. We further used canonical correlation analysis to examine associations between shape asymmetries and clinical symptoms. Cortical shape asymmetries, spanning wavelengths from about 22 to 75 mm, were significantly different between healthy controls and patients with early psychosis (Cohen's d = 0.28-0.51), with patients showing greater asymmetry in cortical shape than controls. A single canonical mode linked the asymmetry measures to symptoms (canonical correlation analysis r = 0.45), such that higher cortical asymmetry was correlated with more severe excitement symptoms and less severe emotional distress. Significant group differences in the asymmetries of traditional morphological measures of cortical thickness, surface area, and gyrification, at either global or regional levels, were not identified. Cortical shape asymmetries are more sensitive than other morphological asymmetries in capturing abnormalities in patients with early psychosis. These abnormalities are expressed at coarse spatial scales and are correlated with specific symptom domains.
Collapse
Affiliation(s)
- Yu-Chi Chen
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Monash Data Futures Institute, Monash University, Melbourne 3800, Australia
- Brain and Mind Centre, University of Sydney, Sydney 2050, Australia
- Brain Dynamic Centre, Westmead Institute for Medical Research, University of Sydney, Sydney 2145, Australia
| | - Jeggan Tiego
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
| | - Ashlea Segal
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Department of Psychology, Yale University, New Haven, CT 06511, USA
| | - Sidhant Chopra
- Department of Psychology, Yale University, New Haven, CT 06511, USA
| | - Alexander Holmes
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
| | - Chao Suo
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- BrainPark, School of Psychological Sciences, Monash University, Melbourne 3800, Australia
| | - James C Pang
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
| | - Alex Fornito
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
| | - Kevin M Aquino
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
- School of Physics, University of Sydney, Sydney 2050, Australia
- Center of Excellence for Integrative Brain Function, University of Sydney, Sydney 2050, Australia
- BrainKey Inc, San Francisco, CA 94103, USA
| |
Collapse
|