1
|
Chatterjee B, Thakur SS. Valuable Contributions and Lessons Learned from Proteomics and Metabolomics Studies of COVID-19. J Proteome Res 2024; 23:4171-4187. [PMID: 39157976 DOI: 10.1021/acs.jproteome.4c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus infected more than 775,686,716 humans and was responsible for the death of more than 7,054,093 individuals. COVID-19 has taught us that the development of vaccines, repurposing of drugs, and understanding the mechanism of a disease can be done within a short time. The COVID-19 proteomics and metabolomics has contributed to its diagnosis, understanding of its progression, host-virus interaction, disease mechanism, and also in the search of suitable anti-COVID therapeutics. Mass spectrometry based proteomics was used to find the potential biomarkers of different stages of COVID-19 including severe and nonsevere cases in the blood serum. Notably, protein-protein interaction techniques to understand host-virus interactions were also significantly useful. The single-cell proteomics studies were carried out to ascertain the changes in immune cell composition and its activation in mild COVID-19 patients versus severe COVID-19 patients using whole-blood and peripheral-blood mononuclear cells. Modern technologies were helpful to deal with the pandemic; however, there is still scope for further development. Further, attempts were made to understand the protein-protein, metabolite-metabolite, and protein-metabolite interactomes, derived from proteins and metabolite fingerprints of COVID-19 patients by reanalysis of COVID-19 public mass spectrometry based proteomics and metabolomics studies. Further, some of these interactions were supported by the literature as validations in the COVID-19 studies.
Collapse
Affiliation(s)
| | - Suman S Thakur
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| |
Collapse
|
2
|
Carretero-Ledesma M, Aguilar-Guisado M, Berastegui-Cabrera J, Balsera-Manzanero M, Pachón J, Cordero E, Sánchez-Céspedes J. Antiviral activity of immunosuppressors alone and in combination against human adenovirus and cytomegalovirus. Int J Antimicrob Agents 2024; 63:107116. [PMID: 38401774 DOI: 10.1016/j.ijantimicag.2024.107116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
Human adenovirus (HAdV) and cytomegalovirus (HCMV) cause high morbidity and mortality in patients undergoing solid organ transplantation (SOT) and haematopoietic stem cell transplantation (HSCT). Immunosuppressors are used universally to prevent graft-vs-host disease in HSCT and graft rejection in SOT. The long-term use of these drugs is associated with a high risk of infection, but there is also evidence of their specific interference with viral infection. This study evaluated the antiviral activity of immunosuppressors commonly used in clinical practice in SOT and HSCT recipients in vitro to determine whether their use could be associated with reduced risk of HAdV and HCMV infection. Cyclophosphamide, tacrolimus, cyclosporine, mycophenolic acid, methotrexate, everolimus and sirolimus presented antiviral activity, with 50% inhibitory concentration (IC50) values at low micromolar and sub-micromolar concentrations. Mycophenolic acid and methotrexate showed the greatest antiviral effects against HAdV (IC50=0.05 µM and 0.3 µM, respectively) and HCMV (IC50=10.8 µM and 0.02 µM, respectively). The combination of tacrolimus and mycophenolic acid showed strong synergistic antiviral activity against both viruses, with combinatory indexes (CI50) of 0.02 and 0.25, respectively. Additionally, mycophenolic acid plus cyclosporine, and mycophenolic acid plus everolimus/sirolimus showed synergistic antiviral activity against HAdV (CI50=0.05 and 0.09, respectively), while methotrexate plus cyclosporine showed synergistic antiviral activity against HCMV (CI50=0.29). These results, showing antiviral activity in vitro against both HAdV and HCMV, at concentrations below the human Cmax values, may be relevant for the selection of specific immunosuppressant therapies in patients at risk of HAdV and HCMV infections.
Collapse
Affiliation(s)
- Marta Carretero-Ledesma
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Manuela Aguilar-Guisado
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Judith Berastegui-Cabrera
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - María Balsera-Manzanero
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Jerónimo Pachón
- Instituto de Biomedicina de Sevilla, Hospitales Universitarios Virgen del Rocío y Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Elisa Cordero
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Javier Sánchez-Céspedes
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Kim SK, Suebka S, Gin A, Nguyen PD, Tang Y, Su J, Goddard WA. Methotrexate Inhibits the Binding of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Receptor Binding Domain to the Host-Cell Angiotensin-Converting Enzyme-2 (ACE-2) Receptor. ACS Pharmacol Transl Sci 2024; 7:348-362. [PMID: 38357278 PMCID: PMC10863433 DOI: 10.1021/acsptsci.3c00197] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024]
Abstract
As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus mutates, finding effective drugs becomes more challenging. In this study, we use ultrasensitive frequency locked microtoroid optical resonators in combination with in silico screening to search for COVID-19 drugs that can stop the virus from attaching to the human angiotensin-converting enzyme 2 (hACE2) receptor in the lungs. We found 29 promising candidates that could block the binding site and selected four of them that were likely to bind very strongly. We tested three of these candidates using frequency locked optical whispering evanescent resonator (FLOWER), a label-free sensing method based on microtoroid resonators. FLOWER has previously been used for sensing single macromolecules. Here we show, for the first time, that FLOWER can provide accurate binding affinities and sense the inhibition effect of small molecule drug candidates without labels, which can be prohibitive in drug discovery. One of the candidates, methotrexate, showed binding to the spike protein 1.8 million times greater than that to the receptor binding domain (RBD) binding to hACE2, making it difficult for the virus to enter cells. We tested methotrexate against different variants of the SARS-CoV-2 virus and found that it is effective against all four of the tested variants. People taking methotrexate for other conditions have also shown protection against the original SARS-CoV-2 virus. Normally, it is assumed that methotrexate inhibits the replication and release of the virus. However, our findings suggest that it may also block the virus from entering cells. These studies additionally demonstrate the possibility of extracting candidate ligands from large databases, followed by direct receptor-ligand binding experiments on the best candidates using microtoroid resonators, thus creating a workflow that enables the rapid discovery of new drug candidates for a variety of applications.
Collapse
Affiliation(s)
- Soo-Kyung Kim
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| | - Sartanee Suebka
- Wyant
College of Optical Sciences, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Adley Gin
- Wyant
College of Optical Sciences, The University
of Arizona, Tucson, Arizona 85721, United States
- Department
of Biomedical Engineering, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Phuong-Diem Nguyen
- Department
of Biomedical Engineering, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Yisha Tang
- Department
of Biomedical Engineering, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Judith Su
- Wyant
College of Optical Sciences, The University
of Arizona, Tucson, Arizona 85721, United States
| | - William A. Goddard
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Fiori F, Cossu FL, Salis F, Carboni D, Stagi L, De Forni D, Poddesu B, Malfatti L, Khalel A, Salis A, Casula MF, Anedda R, Lori F, Innocenzi P. In Vitro Antiviral Activity of Hyperbranched Poly-L-Lysine Modified by L-Arginine against Different SARS-CoV-2 Variants. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3090. [PMID: 38132987 PMCID: PMC10745586 DOI: 10.3390/nano13243090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
The emergence of SARS-CoV-2 variants requires close monitoring to prevent the reoccurrence of a new pandemic in the near future. The Omicron variant, in particular, is one of the fastest-spreading viruses, showing a high ability to infect people and evade neutralization by antibodies elicited upon infection or vaccination. Therefore, the search for broad-spectrum antivirals that can inhibit the infectious capacity of SARS-CoV-2 is still the focus of intense research. In the present work, hyperbranched poly-L-lysine nanopolymers, which have shown an excellent ability to block the original strain of SARS-CoV-2 infection, were modified with L-arginine. A thermal reaction at 240 °C catalyzed by boric acid yielded Lys-Arg hyperbranched nanopolymers. The ability of these nanopolymers to inhibit viral replication were assessed for the original, Delta, and Omicron strains of SARS-CoV-2 together with their cytotoxicity. A reliable indication of the safety profile and effectiveness of the various polymeric compositions in inhibiting or suppressing viral infection was obtained by the evaluation of the therapeutic index in an in vitro prevention model. The hyperbranched L-arginine-modified nanopolymers exhibited a twelve-fold greater therapeutic index when tested with the original strain. The nanopolymers could also effectively limit the replication of the Omicron strain in a cell culture.
Collapse
Affiliation(s)
- Federico Fiori
- Laboratory of Materials Science and Nanotechnology (LMNT), CR-INSTM, Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (F.F.); (F.L.C.); (F.S.); (D.C.); (L.S.); (L.M.)
| | - Franca Lucia Cossu
- Laboratory of Materials Science and Nanotechnology (LMNT), CR-INSTM, Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (F.F.); (F.L.C.); (F.S.); (D.C.); (L.S.); (L.M.)
| | - Federica Salis
- Laboratory of Materials Science and Nanotechnology (LMNT), CR-INSTM, Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (F.F.); (F.L.C.); (F.S.); (D.C.); (L.S.); (L.M.)
| | - Davide Carboni
- Laboratory of Materials Science and Nanotechnology (LMNT), CR-INSTM, Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (F.F.); (F.L.C.); (F.S.); (D.C.); (L.S.); (L.M.)
| | - Luigi Stagi
- Laboratory of Materials Science and Nanotechnology (LMNT), CR-INSTM, Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (F.F.); (F.L.C.); (F.S.); (D.C.); (L.S.); (L.M.)
| | - Davide De Forni
- ViroStatics srl, Viale Umberto I, 46, 07100 Sassari, Italy; (D.D.F.); (B.P.); (F.L.)
| | - Barbara Poddesu
- ViroStatics srl, Viale Umberto I, 46, 07100 Sassari, Italy; (D.D.F.); (B.P.); (F.L.)
| | - Luca Malfatti
- Laboratory of Materials Science and Nanotechnology (LMNT), CR-INSTM, Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (F.F.); (F.L.C.); (F.S.); (D.C.); (L.S.); (L.M.)
| | - Abbas Khalel
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Andrea Salis
- Department of Chemical and Geolocial Sciences, University of Cagliari, Cittadella Universitaria SS 554 Bivio Sestu, 09042 Monserrato, Italy;
| | - Maria Francesca Casula
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo, 2, 09123 Cagliari, Italy
| | - Roberto Anedda
- Porto Conte Ricerche srl, Strada Provinciale S.P. 55, Loc. Tramariglio, 07041 Alghero, Italy;
| | - Franco Lori
- ViroStatics srl, Viale Umberto I, 46, 07100 Sassari, Italy; (D.D.F.); (B.P.); (F.L.)
| | - Plinio Innocenzi
- Laboratory of Materials Science and Nanotechnology (LMNT), CR-INSTM, Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (F.F.); (F.L.C.); (F.S.); (D.C.); (L.S.); (L.M.)
| |
Collapse
|
5
|
Kumar A, Hooda P, Puri A, Khatter R, S. Al-Dosari M, Sinha N, Parvez MK, Sehgal D. Methotrexate, an anti-inflammatory drug, inhibits Hepatitis E viral replication. J Enzyme Inhib Med Chem 2023; 38:2280500. [PMID: 37975328 PMCID: PMC11003484 DOI: 10.1080/14756366.2023.2280500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
Hepatitis E Virus (HEV) is a positively oriented RNA virus having a 7.2 kb genome. HEV consists of three open reading frames (ORF1-3). Of these, ORF1 codes for the enzymes Methyltransferase (Mtase), Papain-like cysteine protease (PCP), RNA helicase, and RNA-dependent RNA polymerase (RdRp). Unavailability of a vaccine or effective drug against HEV and considering the side effects associated with the off-label use of ribavirin (RBV) and pegylated interferons, an alternative approach is required by the modulation of specific enzymes to prevent the infection. HEV helicase is involved in unwinding the double-stranded RNA, RNA processing, transcriptional regulation, and pre-mRNA processing. Therefore, we screened FDA-approved compounds from the ZINC15 database against the modelled 3D structure of HEV helicase and found that methotrexate and compound A (Pubchem ID BTB07890) inhibit the NTPase and dsRNA unwinding activity leading to inhibition of HEV RNA replication. This may be further authenticated by in vivo study.
Collapse
Affiliation(s)
- Akash Kumar
- Department of Life Sciences, Virology lab, Shiv Nadar Institution of Eminence, Greater Noida, India
| | - Preeti Hooda
- Department of Life Sciences, Virology lab, Shiv Nadar Institution of Eminence, Greater Noida, India
| | - Anindita Puri
- Department of Life Sciences, Virology lab, Shiv Nadar Institution of Eminence, Greater Noida, India
| | - Radhika Khatter
- Department of Life Sciences, Virology lab, Shiv Nadar Institution of Eminence, Greater Noida, India
| | - Mohammed S. Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Neha Sinha
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Deepak Sehgal
- Department of Life Sciences, Virology lab, Shiv Nadar Institution of Eminence, Greater Noida, India
| |
Collapse
|
6
|
Fraser-Pitt D, Mercer DK, Francis ML, Toledo-Aparicio D, Smith DW, O'Neil DA. Cysteamine-mediated blockade of the glycine cleavage system modulates epithelial cell inflammatory and innate immune responses to viral infection. Biochem Biophys Res Commun 2023; 677:168-181. [PMID: 37597441 DOI: 10.1016/j.bbrc.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Transient blockade of glycine decarboxylase (GLDC) can restrict de novo pyrimidine synthesis, which is a well-described strategy for enhancing the host interferon response to viral infection and a target pathway for some licenced anti-inflammatory therapies. The aminothiol, cysteamine, is produced endogenously during the metabolism of coenzyme A, and is currently being investigated in a clinical trial as an intervention in community acquired pneumonia resulting from viral (influenza and SARS-CoV-2) and bacterial respiratory infection. Cysteamine is known to inhibit both bacterial and the eukaryotic host glycine cleavage systems via competitive inhibition of GLDC at concentrations, lower than those required for direct antimicrobial or antiviral activity. Here, we demonstrate for the first time that therapeutically achievable concentrations of cysteamine can inhibit glycine utilisation by epithelial cells and improve cell-mediated responses to infection with respiratory viruses, including human coronavirus 229E and Influenza A. Cysteamine reduces interleukin-6 (IL-6) and increases the interferon-λ (IFN-λ) response to viral challenge and in response to liposomal polyinosinic:polycytidylic acid (poly I:C) simulant of RNA viral infection.
Collapse
Affiliation(s)
- Douglas Fraser-Pitt
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom.
| | - Derry K Mercer
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom; Bioaster, LYON (headquarters) 40, Avenue Tony Garnier, 69007, Lyon, France
| | - Marie-Louise Francis
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom
| | - David Toledo-Aparicio
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom
| | - Daniel W Smith
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom
| | - Deborah A O'Neil
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom
| |
Collapse
|
7
|
Gasparello J, Marzaro G, Papi C, Gentili V, Rizzo R, Zurlo M, Scapoli C, Finotti A, Gambari R. Effects of Sulforaphane on SARS‑CoV‑2 infection and NF‑κB dependent expression of genes involved in the COVID‑19 'cytokine storm'. Int J Mol Med 2023; 52:76. [PMID: 37477130 PMCID: PMC10555481 DOI: 10.3892/ijmm.2023.5279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/09/2023] [Indexed: 07/22/2023] Open
Abstract
Since its spread at the beginning of 2020, the coronavirus disease 2019 (COVID‑19) pandemic represents one of the major health problems. Despite the approval, testing, and worldwide distribution of anti‑severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) vaccines, the development of specific antiviral agents targeting the SARS‑CoV‑2 life cycle with high efficiency, and/or interfering with the associated 'cytokine storm', is highly required. A recent study, conducted by the authors' group indicated that sulforaphane (SFN) inhibits the expression of IL‑6 and IL‑8 genes induced by the treatment of IB3‑1 bronchial cells with a recombinant spike protein of SARS‑CoV‑2. In the present study, the ability of SFN to inhibit SARS‑CoV‑2 replication and the expression of pro‑inflammatory genes encoding proteins of the COVID‑19 'cytokine storm' was evaluated. SARS‑CoV‑2 replication was assessed in bronchial epithelial Calu‑3 cells. Moreover, SARS‑CoV‑2 replication and expression of pro‑inflammatory genes was evaluated by reverse transcription quantitative droplet digital PCR. The effects on the expression levels of NF‑κB were assessed by western blotting. Molecular dynamics simulations of NF‑kB/SFN interactions were conducted with Gromacs 2021.1 software under the Martini 2 CG force field. Computational studies indicated that i) SFN was stably bound with the NF‑κB monomer; ii) a ternary NF‑kB/SFN/DNA complex was formed; iii) the SFN interacted with both the protein and the nucleic acid molecules modifying the binding mode of the latter, and impairing the full interaction between the NF‑κB protein and the DNA molecule. This finally stabilized the inactive complex. Molecular studies demonstrated that SFN i) inhibits the SARS‑CoV‑2 replication in infected Calu‑3 cells, decreasing the production of the N‑protein coding RNA sequences, ii) decreased NF‑κB content in SARS‑CoV‑2 infected cells and inhibited the expression of NF‑kB‑dependent IL‑1β and IL‑8 gene expression. The data obtained in the present study demonstrated inhibitory effects of SFN on the SARS‑CoV‑2 life cycle and on the expression levels of the pro‑inflammatory genes, sustaining the possible use of SFN in the management of patients with COVID‑19.
Collapse
Affiliation(s)
- Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, I-35131 Padova
| | - Chiara Papi
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara
| | - Valentina Gentili
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Roberta Rizzo
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Matteo Zurlo
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara
| | - Chiara Scapoli
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara
| |
Collapse
|
8
|
Damiani G, Amerio P, Bardazzi F, Carrera CG, Conti A, Cusano F, Dapavo P, DeSimone C, El Hachem M, Fabbrocini G, Gisondi P, Loconsole F, Micali G, Neri I, Parodi A, Piaserico S, Romanelli M, Stingeni L, Pigatto PDM. Real-World Experience of Methotrexate in the Treatment of Skin Diseases: an Italian Delphi Consensus. Dermatol Ther (Heidelb) 2023:10.1007/s13555-023-00930-2. [PMID: 37210684 DOI: 10.1007/s13555-023-00930-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/17/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND After decades of use, methotrexate displays an established safety and efficacy profile in both in-hospital and outpatient settings. Despite its widespread use, there is surprisingly little clinical evidence to guide daily practice with methotrexate in dermatology. OBJECTIVES To provide guidance for clinicians in daily practice for areas in which there is limited guidance. METHODS A Delphi consensus exercise on 23 statements was carried out on the use of methotrexate in dermatological routine settings. RESULTS Consensus was reached on statements that cover six main areas: (1) pre-screening exams and monitoring of therapy; (2) dosing and administration in patients naïve to methotrexate; (3) optimal strategy for patients in remission; (4) use of folic acid; (5) safety; and (6) predictors of toxicity and efficacy. Specific recommendations are provided for all 23 statements. CONCLUSIONS In order to optimize methotrexate efficacy, it is essential to optimize treatment using appropriate dosages, carrying out a rapid drug-based step-up on a treat-to-target strategy and preferably using the subcutaneous formulation. To manage safety aspects appropriately, it is essential to evaluate patients' risk factors and carry out proper monitoring during the course of treatment.
Collapse
Affiliation(s)
- Giovanni Damiani
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
- Clinical Dermatology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.
- Italian Center of Precisione Medicine and Chronic Inflammation, University of Milan, Milan, Italy.
- UOC Dermatology, Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi, 4, 20161, Milan, Italy.
| | - Paolo Amerio
- Dermatologic Clinic, Department of Medicine and Aging Science, University "G. d'Annunzio", Chieti-Pescara, Italy
| | - Federico Bardazzi
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Carlo G Carrera
- Fondazione Cà Granda IRCCS Maggiore Policlinico Hospital, Milan, Italy
| | - Andrea Conti
- Dermatology Unit, Ospedale Infermi di Rimini, AUSL Romagna, Rimini, Italy
| | | | - Paolo Dapavo
- Dermatology Clinic, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Clara DeSimone
- DermatologiaDipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - May El Hachem
- Dermatology Unit and Genodermatosis Research Unit, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Gabriella Fabbrocini
- Section of Dermatology- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Paolo Gisondi
- Department of Medicine, Section of Dermatology and Venereology, University of Verona, Verona, Italy
| | - Francesco Loconsole
- Department of Biomedical Sciences and Human Oncology, Section of Dermatology, University of Bari, Bari, Italy
| | | | - Iria Neri
- Dermatology, Sant'Orsola-Malpighi Polyclinic University Hospital-IRCCS, University of Bologna, Bologna, Italy
| | - Aurora Parodi
- Dermatology Clinic, DISSAL, Polyclinic Hospital San Martino-IRCCS, University of Genoa, Genoa, Italy
| | - Stefano Piaserico
- Dermatology Unit, Department of Medicine, University of Padua, Padua, Italy
| | | | - Luca Stingeni
- Section of Dermatology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Paolo D M Pigatto
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Clinical Dermatology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
9
|
Iaconis D, Caccuri F, Manelfi C, Talarico C, Bugatti A, Filippini F, Zani A, Novelli R, Kuzikov M, Ellinger B, Gribbon P, Riecken K, Esposito F, Corona A, Tramontano E, Beccari AR, Caruso A, Allegretti M. DHFR Inhibitors Display a Pleiotropic Anti-Viral Activity against SARS-CoV-2: Insights into the Mechanisms of Action. Viruses 2023; 15:v15051128. [PMID: 37243214 DOI: 10.3390/v15051128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
During the COVID-19 pandemic, drug repurposing represented an effective strategy to obtain quick answers to medical emergencies. Based on previous data on methotrexate (MTX), we evaluated the anti-viral activity of several DHFR inhibitors in two cell lines. We observed that this class of compounds showed a significant influence on the virus-induced cytopathic effect (CPE) partly attributed to the intrinsic anti-metabolic activity of these drugs, but also to a specific anti-viral function. To elucidate the molecular mechanisms, we took advantage of our EXSCALATE platform for in-silico molecular modelling and further validated the influence of these inhibitors on nsp13 and viral entry. Interestingly, pralatrexate and trimetrexate showed superior effects in counteracting the viral infection compared to other DHFR inhibitors. Our results indicate that their higher activity is due to their polypharmacological and pleiotropic profile. These compounds can thus potentially give a clinical advantage in the management of SARS-CoV-2 infection in patients already treated with this class of drugs.
Collapse
Affiliation(s)
- Daniela Iaconis
- EXSCALATE, Dompé Farmaceutici SpA, Via Tommaso De Amicis, 95, 80131 Napoli, Italy
| | - Francesca Caccuri
- Section of Microbiology Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Candida Manelfi
- EXSCALATE, Dompé Farmaceutici SpA, Via Tommaso De Amicis, 95, 80131 Napoli, Italy
| | - Carmine Talarico
- EXSCALATE, Dompé Farmaceutici SpA, Via Tommaso De Amicis, 95, 80131 Napoli, Italy
| | - Antonella Bugatti
- Section of Microbiology Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Federica Filippini
- Section of Microbiology Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alberto Zani
- Section of Microbiology Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Rubina Novelli
- Dompè Famaceutici SpA, Via Campo di Pile snc, 67100 L'Aquila, Italy
| | - Maria Kuzikov
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042 Monserrato (CA), Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042 Monserrato (CA), Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042 Monserrato (CA), Italy
| | | | - Arnaldo Caruso
- Section of Microbiology Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | | |
Collapse
|
10
|
Bugatti A, Filippini F, Messali S, Giovanetti M, Ravelli C, Zani A, Ciccozzi M, Caruso A, Caccuri F. The D405N Mutation in the Spike Protein of SARS-CoV-2 Omicron BA.5 Inhibits Spike/Integrins Interaction and Viral Infection of Human Lung Microvascular Endothelial Cells. Viruses 2023; 15:332. [PMID: 36851546 PMCID: PMC9962894 DOI: 10.3390/v15020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Severe COVID-19 is characterized by angiogenic features, such as intussusceptive angiogenesis, endothelialitis, and activation of procoagulant pathways. This pathological state can be ascribed to a direct SARS-CoV-2 infection of human lung ECs. Recently, we showed the capability of SARS-CoV-2 to infect ACE2-negative primary human lung microvascular endothelial cells (HL-mECs). This occurred through the interaction of an Arg-Gly-Asp (RGD) motif, endowed on the Spike protein at position 403-405, with αvβ3 integrin expressed on HL-mECs. HL-mEC infection promoted the remodeling of cells toward a pro-inflammatory and pro-angiogenic phenotype. The RGD motif is distinctive of SARS-CoV-2 Spike proteins up to the Omicron BA.1 subvariant. Suddenly, a dominant D405N mutation was expressed on the Spike of the most recently emerged Omicron BA.2, BA.4, and BA.5 subvariants. Here we demonstrate that the D405N mutation inhibits Omicron BA.5 infection of HL-mECs and their dysfunction because of the lack of Spike/integrins interaction. The key role of ECs in SARS-CoV-2 pathogenesis has been definitively proven. Evidence of mutations retrieving the capability of SARS-CoV-2 to infect HL-mECs highlights a new scenario for patients infected with the newly emerged SARS-CoV-2 Omicron subvariants, suggesting that they may display less severe disease manifestations than those observed with previous variants.
Collapse
Affiliation(s)
- Antonella Bugatti
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Federica Filippini
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Serena Messali
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Marta Giovanetti
- Laboratório de Flavivirus, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
- Department of Science and Technology for Humans and the Environment, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Cosetta Ravelli
- Section of General Pathology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alberto Zani
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Institute of Human Virology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
11
|
de Mariz E Miranda LS. The synergy between nucleotide biosynthesis inhibitors and antiviral nucleosides: New opportunities against viral infections? Arch Pharm (Weinheim) 2023; 356:e2200217. [PMID: 36122181 DOI: 10.1002/ardp.202200217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/04/2023]
Abstract
5'-Phosphorylated nucleoside derivatives are molecules that can be found in all living organisms and viruses. Over the last century, the development of structural analogs that could disrupt the transcription and translation of genetic information culminated in the development of clinically relevant anticancer and antiviral drugs. However, clinically effective broad-spectrum antiviral compounds or treatments are lacking. This viewpoint proposes that molecules that inhibit nucleotide biosynthesis may sensitize virus-infected cells toward direct-acting antiviral nucleosides. Such potentially synergistic combinations might allow the repurposing of drugs, leading to the development of new combination therapies.
Collapse
Affiliation(s)
- Leandro S de Mariz E Miranda
- Department of Organic Chemistry, Chemistry Institute, Biocatalysis and Organic Synthesis Group, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Avagyan H, Hakobyan S, Poghosyan A, Hakobyan L, Abroyan L, Karalova E, Avetisyan A, Sargsyan M, Baghdasaryan B, Bayramyan N, Avetyan D, Karalyan Z. Severe Acute Respiratory Syndrome Coronavirus-2 Delta Variant Study In Vitro and Vivo. Curr Issues Mol Biol 2022; 45:249-267. [PMID: 36661505 PMCID: PMC9857502 DOI: 10.3390/cimb45010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/12/2022] [Accepted: 12/18/2022] [Indexed: 01/04/2023] Open
Abstract
At the end of 2019, an outbreak of a new severe acute respiratory syndrome caused by a coronavirus occurred in Wuhan, China, after which the virus spread around the world. Here, we have described the adaptive capacity and pathogenesis of the SARS-CoV-2 Delta variant, which is widespread in Armenia, in vitro and vivo on Syrian hamsters. We have studied the changes in the SARS-CoV-2genome using viral RNA sequencing during virus adaptation in vitro and in vivo. Our findings revealed that SARS-CoV-2 in Syrian hamsters causes a short-term pulmonary form of the disease, the first symptoms appear within 48 h after infection, reach 5-7 days after infection, and begin to disappear by 7-9 days after infection. The virus induces pathogenesis in the blood and bone marrow, which generally corresponds to the manifestation of the inflammatory process. The pulmonary form of the disease passes faster than changes in blood cells and bone marrow. Our data show that hamster organs do not undergo significant pathological changes in the Delta variant of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Hranush Avagyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, 7 Hasratyan St, Yerevan 0014, Armenia
- Experimental Laboratory, Yerevan State Medical University, 2 Koryun St, Yerevan 0025, Armenia
| | - Sona Hakobyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, 7 Hasratyan St, Yerevan 0014, Armenia
| | - Arpine Poghosyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, 7 Hasratyan St, Yerevan 0014, Armenia
| | - Lina Hakobyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, 7 Hasratyan St, Yerevan 0014, Armenia
| | - Liana Abroyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, 7 Hasratyan St, Yerevan 0014, Armenia
| | - Elena Karalova
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, 7 Hasratyan St, Yerevan 0014, Armenia
- Experimental Laboratory, Yerevan State Medical University, 2 Koryun St, Yerevan 0025, Armenia
| | - Aida Avetisyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, 7 Hasratyan St, Yerevan 0014, Armenia
- Experimental Laboratory, Yerevan State Medical University, 2 Koryun St, Yerevan 0025, Armenia
| | - Mariam Sargsyan
- Department of Epidemiology and Parasitology, Armenian National Agrarian University, 74 Teryan St, Yerevan 0009, Armenia
| | - Bagrat Baghdasaryan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, 7 Hasratyan St, Yerevan 0014, Armenia
| | - Nane Bayramyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, 7 Hasratyan St, Yerevan 0014, Armenia
| | - Diana Avetyan
- Laboratory of Human Genomics and Immunomics, Institute of Molecular Biology of NAS RA, 7 Hasratyan St, Yerevan 0014, Armenia
| | - Zaven Karalyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, 7 Hasratyan St, Yerevan 0014, Armenia
- Department of Medical Biology, Yerevan State Medical University, 2 Koryun St, Yerevan 0025, Armenia
- Correspondence:
| |
Collapse
|
13
|
Chen YT, Chang YH, Pathak N, Tzou SC, Luo YC, Hsu YC, Li TN, Lee JY, Chen YC, Huang YW, Yang HJ, Hsu NY, Tsai HP, Chang TY, Hsu SC, Liu PC, Chin YF, Lin WC, Yang CM, Wu HL, Lee CY, Hsu HL, Liu YC, Chu JW, Wang LHC, Wang JY, Huang CH, Lin CH, Hsieh PS, Wu Lee YH, Hung YJ, Yang JM. Methotrexate inhibition of SARS-CoV-2 entry, infection and inflammation revealed by bioinformatics approach and a hamster model. Front Immunol 2022; 13:1080897. [PMID: 36618412 PMCID: PMC9811668 DOI: 10.3389/fimmu.2022.1080897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Background Drug repurposing is a fast and effective way to develop drugs for an emerging disease such as COVID-19. The main challenges of effective drug repurposing are the discoveries of the right therapeutic targets and the right drugs for combating the disease. Methods Here, we present a systematic repurposing approach, combining Homopharma and hierarchal systems biology networks (HiSBiN), to predict 327 therapeutic targets and 21,233 drug-target interactions of 1,592 FDA drugs for COVID-19. Among these multi-target drugs, eight candidates (along with pimozide and valsartan) were tested and methotrexate was identified to affect 14 therapeutic targets suppressing SARS-CoV-2 entry, viral replication, and COVID-19 pathologies. Through the use of in vitro (EC50 = 0.4 μM) and in vivo models, we show that methotrexate is able to inhibit COVID-19 via multiple mechanisms. Results Our in vitro studies illustrate that methotrexate can suppress SARS-CoV-2 entry and replication by targeting furin and DHFR of the host, respectively. Additionally, methotrexate inhibits all four SARS-CoV-2 variants of concern. In a Syrian hamster model for COVID-19, methotrexate reduced virus replication, inflammation in the infected lungs. By analysis of transcriptomic analysis of collected samples from hamster lung, we uncovered that neutrophil infiltration and the pathways of innate immune response, adaptive immune response and thrombosis are modulated in the treated animals. Conclusions We demonstrate that this systematic repurposing approach is potentially useful to identify pharmaceutical targets, multi-target drugs and regulated pathways for a complex disease. Our findings indicate that methotrexate is established as a promising drug against SARS-CoV-2 variants and can be used to treat lung damage and inflammation in COVID-19, warranting future evaluation in clinical trials.
Collapse
Affiliation(s)
- Yun-Ti Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Hsiu Chang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan,Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Nikhil Pathak
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Shey-Cherng Tzou
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan,Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan,Center for Intelligent Drug Systems and Smart Bio-Devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yong-Chun Luo
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yen-Chao Hsu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Tian-Neng Li
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Jung-Yu Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Cyun Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Wei Huang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hsin-Ju Yang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Nung-Yu Hsu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hui-Ping Tsai
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Tein-Yao Chang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan,Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Chen Hsu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Ping-Cheng Liu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yuan-Fan Chin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Chin Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chuen-Mi Yang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Hsueh-Ling Wu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Ying Lee
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Hui-Ling Hsu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan,Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Chun Liu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Jhih-Wei Chu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan,Center for Intelligent Drug Systems and Smart Bio-Devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Jann-Yuan Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Heng Huang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan,Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Hung Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan,Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan,Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Shiuan Hsieh
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yan-Hwa Wu Lee
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan,Center for Intelligent Drug Systems and Smart Bio-Devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Jen Hung
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan,Division of Endocrine and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan,*Correspondence: Yi-Jen Hung, ; Jinn-Moon Yang,
| | - Jinn-Moon Yang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan,Center for Intelligent Drug Systems and Smart Bio-Devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan,*Correspondence: Yi-Jen Hung, ; Jinn-Moon Yang,
| |
Collapse
|
14
|
Arumugam GS, Damodharan K, Doble M, Thennarasu S. Significant perspectives on various viral infections targeted antiviral drugs and vaccines including COVID-19 pandemicity. MOLECULAR BIOMEDICINE 2022; 3:21. [PMID: 35838929 PMCID: PMC9283561 DOI: 10.1186/s43556-022-00078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
A virus enters a living organism and recruits host metabolism to reproduce its own genome and proteins. The viral infections are intricate and cannot be completely removed through existing antiviral drugs. For example, the herpes, influenza, hepatitis and human immunodeficiency viruses are a few dreadful ones amongst them. Significant studies are needed to understand the viral entry and their growth in host cells to design effective antivirals. This review emphasizes the range of therapeutical antiviral drugs, inhibitors along with vaccines to fight against viral pathogens, especially for combating COVID-19. Moreover, we have provided the basic and in depth information about viral targets, drugs availability, their mechanisms of action, method of prevention of viral diseases and highlighted the significances of anticoagulants, convalescent plasma for COVID-19 treatment, scientific details of airborne transmission, characteristics of antiviral drug delivery using nanoparticles/carriers, nanoemulsions, nanogels, metal based nanoparticles, alike the future nanosystems through nanobubbles, nanofibers, nanodiamonds, nanotraps, nanorobots and eventually, the therapeutic applications of micro- and nanoparticulates, current status for clinical development against COVID-19 together with environmental implications of antivirals, gene therapy etc., which may be useful for repurposing and designing of novel antiviral drugs against various dreadful diseases, especially the SARS-CoV-2 and other associated variants.
Collapse
|
15
|
De Forni D, Poddesu B, Cugia G, Chafouleas J, Lisziewicz J, Lori F. Synergistic drug combinations designed to fully suppress SARS-CoV-2 in the lung of COVID-19 patients. PLoS One 2022; 17:e0276751. [PMID: 36355808 PMCID: PMC9648746 DOI: 10.1371/journal.pone.0276751] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/12/2022] [Indexed: 11/12/2022] Open
Abstract
Despite new antivirals are being approved against SARS-CoV-2 they suffer from significant constraints and are not indicated for hospitalized patients, who are left with few antiviral options. Repurposed drugs have previously shown controversial clinical results and it remains difficult to understand why certain trials delivered positive results and other trials failed. Our manuscript contributes to explaining the puzzle: this might have been caused by a suboptimal drug exposure and, consequently, an incomplete virus suppression, also because the drugs have mostly been used as add-on monotherapies. As with other viruses (e.g., HIV and HCV) identifying synergistic combinations among such drugs could overcome monotherapy-related limitations. In a cell culture model for SARS-CoV-2 infection the following stringent criteria were adopted to assess drug combinations: 1) identify robust, synergistic antiviral activity with no increase in cytotoxicity, 2) identify the lowest drug concentration inhibiting the virus by 100% (LIC100) and 3) understand whether the LIC100 could be reached in the lung at clinically indicated drug doses. Among several combinations tested, remdesivir with either azithromycin or ivermectin synergistically increased the antiviral activity with no increase in cytotoxicity, improving the therapeutic index and lowering the LIC100 of every one of the drugs to levels that are expected to be achievable and maintained in the lung for a therapeutically relevant period of time. These results are consistent with recent clinical observations showing that intensive care unit admission was significantly delayed by the combination of AZI and RDV, but not by RDV alone, and could have immediate implications for the treatment of hospitalized patients with COVID-19 as the proposed "drug cocktails" should have antiviral activity against present and future SARS-CoV-2 variants without significant overlapping toxicity, while minimizing the onset of drug resistance. Our results also provide a validated methodology to help sort out which combination of drugs are most likely to be efficacious in vivo, based on their in vitro activity, potential synergy and PK profiles.
Collapse
Affiliation(s)
| | | | | | | | - Julianna Lisziewicz
- Research Institute for Genetic and Human Therapy, Colorado Springs, CO, United States of America
| | - Franco Lori
- ViroStatics s.r.l., Tramariglio, Italy
- Research Institute for Genetic and Human Therapy, Colorado Springs, CO, United States of America
| |
Collapse
|
16
|
Patten J, Keiser PT, Morselli-Gysi D, Menichetti G, Mori H, Donahue CJ, Gan X, Valle ID, Geoghegan-Barek K, Anantpadma M, Boytz R, Berrigan JL, Stubbs SH, Ayazika T, O’Leary C, Jalloh S, Wagner F, Ayehunie S, Elledge SJ, Anderson D, Loscalzo J, Zitnik M, Gummuluru S, Namchuk MN, Barabási AL, Davey RA. Identification of potent inhibitors of SARS-CoV-2 infection by combined pharmacological evaluation and cellular network prioritization. iScience 2022; 25:104925. [PMID: 35992305 PMCID: PMC9374494 DOI: 10.1016/j.isci.2022.104925] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/08/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Pharmacologically active compounds with known biological targets were evaluated for inhibition of SARS-CoV-2 infection in cell and tissue models to help identify potent classes of active small molecules and to better understand host-virus interactions. We evaluated 6,710 clinical and preclinical compounds targeting 2,183 host proteins by immunocytofluorescence-based screening to identify SARS-CoV-2 infection inhibitors. Computationally integrating relationships between small molecule structure, dose-response antiviral activity, host target, and cell interactome produced cellular networks important for infection. This analysis revealed 389 small molecules with micromolar to low nanomolar activities, representing >12 scaffold classes and 813 host targets. Representatives were evaluated for mechanism of action in stable and primary human cell models with SARS-CoV-2 variants and MERS-CoV. One promising candidate, obatoclax, significantly reduced SARS-CoV-2 viral lung load in mice. Ultimately, this work establishes a rigorous approach for future pharmacological and computational identification of host factor dependencies and treatments for viral diseases.
Collapse
Affiliation(s)
- J.J. Patten
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - Patrick T. Keiser
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - Deisy Morselli-Gysi
- Network Science Institute, Northeastern University, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Giulia Menichetti
- Network Science Institute, Northeastern University, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hiroyuki Mori
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - Callie J. Donahue
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - Xiao Gan
- Network Science Institute, Northeastern University, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Italo do Valle
- Network Science Institute, Northeastern University, Boston, MA 02115, USA
| | - Kathleen Geoghegan-Barek
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - Manu Anantpadma
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - RuthMabel Boytz
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - Jacob L. Berrigan
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - Sarah H. Stubbs
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - Tess Ayazika
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - Colin O’Leary
- Department of Genetics, Program in Virology, Harvard Medical School, Division of Genetics, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Boston, MA, USA
| | - Sallieu Jalloh
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - Florence Wagner
- Center for the Development of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Stephen J. Elledge
- Department of Genetics, Program in Virology, Harvard Medical School, Division of Genetics, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Boston, MA, USA
| | - Deborah Anderson
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - Mark N. Namchuk
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Albert-László Barabási
- Network Science Institute, Northeastern University, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Network and Data Science, Central European University, Budapest 1051, Hungary
| | - Robert A. Davey
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| |
Collapse
|
17
|
Tufan E, Sivas GG, Gürel-Gökmen B, Yılmaz-Karaoğlu S, Ercan D, Özbeyli D, Şener G, Tunali-Akbay T. Inhibitory effect of whey protein concentrate on SARS-CoV-2-targeted furin activity and spike protein-ACE2 binding in methotrexate-induced lung damage. J Food Biochem 2022; 46:e14039. [PMID: 34981557 DOI: 10.1111/jfbc.14039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022]
Abstract
This study aims to investigate the effects of whey proteins on SARS CoV-2 in methotrexate-induced lung tissue damage in rats. To determine the possible effects, rats were divided into four groups as control, control + whey, methotrexate (20 mg/kg, i.p.) and methotrexate + whey. Whey protein concentrate (2 g/kg, oral gavage) was administered for 10 days. Cytokine levels were measured and protein electrophoresis was carried out in serum samples. Lipid peroxidation, nitric oxide and glutathione level, and superoxide dismutase and glutathione S transferase activities were determined in lung samples. Inhibition of SARS CoV-2-targeted lung furin activity and SARS CoV-2 spike protein-angiotensin converting enzyme binding with whey protein concentrate were also measured in each group. In conclusion, whey protein concentrate improved methotrexate-induced lung damage and inhibited lung furin activity targeting SARS-CoV-2 S1/S2 site cleavage and SARS CoV-2 spike protein-angiotensin converting enzyme binding. Whey proteins are potential protective candidates that inhibit SARS CoV-2-related interactions, even in methotrexate-induced lung injury. PRACTICAL APPLICATIONS: Whey proteins have anticarcinogenic, antihypertensive, antioxidant, antibacterial, antiviral, and immunomodulating properties due to the protein, bioactive peptide, and essential amino acid content. Methotrexate is a folate antagonist and inhibits cell proliferation and purine synthesis. The combined use of whey protein concentrate and methotrexate may be an alternative in the development of new strategies to the treatment approaches against COVID-19. In addition, according to the results of this study, it is thought that the protective effect of whey proteins in healthy conditions before encountering the SARS CoV-2 may be higher than those who have never used it.
Collapse
Affiliation(s)
- Elif Tufan
- Department of Basic Medical Sciences, Dentistry Faculty, Marmara University, İstanbul, Turkey
| | - Güzin Göksun Sivas
- Department of Basic Medical Sciences, Dentistry Faculty, Marmara University, İstanbul, Turkey
| | - Begüm Gürel-Gökmen
- Department of Basic Medical Sciences, Dentistry Faculty, Marmara University, İstanbul, Turkey
| | - Sümeyye Yılmaz-Karaoğlu
- Department of Basic Medical Sciences, Dentistry Faculty, Marmara University, İstanbul, Turkey
| | - Dursun Ercan
- Department of Basic Medical Sciences, Dentistry Faculty, Marmara University, İstanbul, Turkey
| | - Dilek Özbeyli
- Vocational School of Health Services, Marmara University, İstanbul, Turkey
| | - Göksel Şener
- Vocational School of Health Services, Fenerbahce University, İstanbul, Turkey
| | - Tuğba Tunali-Akbay
- Department of Basic Medical Sciences, Dentistry Faculty, Marmara University, İstanbul, Turkey
| |
Collapse
|
18
|
Caccuri F, Messali S, Bortolotti D, Di Silvestre D, De Palma A, Cattaneo C, Bertelli A, Zani A, Milanesi M, Giovanetti M, Campisi G, Gentili V, Bugatti A, Filippini F, Scaltriti E, Pongolini S, Tucci A, Fiorentini S, d’Ursi P, Ciccozzi M, Mauri P, Rizzo R, Caruso A. Competition for dominance within replicating quasispecies during prolonged SARS-CoV-2 infection in an immunocompromised host. Virus Evol 2022; 8:veac042. [PMID: 35706980 PMCID: PMC9129230 DOI: 10.1093/ve/veac042] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) emerge for their capability to better adapt to the human host aimed and enhance human-to-human transmission. Mutations in spike largely contributed to adaptation. Viral persistence is a prerequisite for intra-host virus evolution, and this likely occurred in immunocompromised patients who allow intra-host long-term viral replication. The underlying mechanism leading to the emergence of variants during viral persistence in the immunocompromised host is still unknown. Here, we show the existence of an ensemble of minor mutants in the early biological samples obtained from an immunocompromised patient and their dynamic interplay with the master mutant during a persistent and productive long-term infection. In particular, after 222 days of active viral replication, the original master mutant, named MB610, was replaced by a minor quasispecies (MB61222) expressing two critical mutations in spike, namely Q493K and N501T. Isolation of the two viruses allowed us to show that MB61222 entry into target cells occurred mainly by the fusion at the plasma membrane (PM), whereas endocytosis characterized the entry mechanism used by MB610. Interestingly, coinfection of two human cell lines of different origin with the SARS-CoV-2 isolates highlighted the early and dramatic predominance of MB61222 over MB610 replication. This finding may be explained by a faster replicative activity of MB61222 as compared to MB610 as well as by the capability of MB61222 to induce peculiar viral RNA-sensing mechanisms leading to an increased production of interferons (IFNs) and, in particular, of IFN-induced transmembrane protein 1 (IFITM1) and IFITM2. Indeed, it has been recently shown that IFITM2 is able to restrict SARS-CoV-2 entry occurring by endocytosis. In this regard, MB61222 may escape the antiviral activity of IFITMs by using the PM fusion pathway for entry into the target cell, whereas MB610 cannot escape this host antiviral response during MB61222 coinfection, since it has endocytosis as the main pathway of entry. Altogether, our data support the evidence of quasispecies fighting for host dominance by taking benefit from the cell machinery to restrict the productive infection of competitors in the viral ensemble. This finding may explain, at least in part, the extraordinary rapid worldwide turnover of VOCs that use the PM fusion pathway to enter into target cells over the original pandemic strain.
Collapse
Affiliation(s)
- Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, P.le Spedali Civili, 1, Brescia 25123, Italy
| | - Serena Messali
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, P.le Spedali Civili, 1, Brescia 25123, Italy
| | - Daria Bortolotti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari, 46, Ferrara 44121, Italy
| | - Dario Di Silvestre
- Proteomic and Metabolomic Laboratory, Institute of Biomedical Technologies, National Research Council (ITB-CNR), Via Fratelli Cervi, 201, Segrate 20054, Italy
| | - Antonella De Palma
- Proteomic and Metabolomic Laboratory, Institute of Biomedical Technologies, National Research Council (ITB-CNR), Via Fratelli Cervi, 201, Segrate 20054, Italy
| | - Chiara Cattaneo
- Department of Hematology, ASST Spedali Civili di Brescia, P.le Spedali Civili, 1, Brescia 25123, Italy
| | - Anna Bertelli
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, P.le Spedali Civili, 1, Brescia 25123, Italy
| | - Alberto Zani
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, P.le Spedali Civili, 1, Brescia 25123, Italy
| | - Maria Milanesi
- Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, V.le Europa, 11, Brescia 25123, Italy
| | - Marta Giovanetti
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, Brazil
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Giovanni Campisi
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, P.le Spedali Civili, 1, Brescia 25123, Italy
| | - Valentina Gentili
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari, 46, Ferrara 44121, Italy
| | - Antonella Bugatti
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, P.le Spedali Civili, 1, Brescia 25123, Italy
| | - Federica Filippini
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, P.le Spedali Civili, 1, Brescia 25123, Italy
| | - Erika Scaltriti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, Str. dei Mercati, 13a, Parma 43126, Italy
| | - Stefano Pongolini
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, Str. dei Mercati, 13a, Parma 43126, Italy
| | - Alessandra Tucci
- Department of Hematology, ASST Spedali Civili di Brescia, P.le Spedali Civili, 1, Brescia 25123, Italy
| | - Simona Fiorentini
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, P.le Spedali Civili, 1, Brescia 25123, Italy
| | - Pasqualina d’Ursi
- Institute of Technologies in Biomedicine, National Research Council, Via Fratelli Cervi, 201, Segrate 20054, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Via Álvaro del Portillo, 21, Rome 00128, Italy
| | - Pierluigi Mauri
- Proteomic and Metabolomic Laboratory, Institute of Biomedical Technologies, National Research Council (ITB-CNR), Via Fratelli Cervi, 201, Segrate 20054, Italy
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari, 46, Ferrara 44121, Italy
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, P.le Spedali Civili, 1, Brescia 25123, Italy
| |
Collapse
|
19
|
Stegmann KM, Dickmanns A, Heinen N, Blaurock C, Karrasch T, Breithaupt A, Klopfleisch R, Uhlig N, Eberlein V, Issmail L, Herrmann ST, Schreieck A, Peelen E, Kohlhof H, Sadeghi B, Riek A, Speakman JR, Groß U, Görlich D, Vitt D, Müller T, Grunwald T, Pfaender S, Balkema-Buschmann A, Dobbelstein M. Inhibitors of dihydroorotate dehydrogenase cooperate with Molnupiravir and N4-hydroxycytidine to suppress SARS-CoV-2 replication. iScience 2022; 25:104293. [PMID: 35492218 PMCID: PMC9035612 DOI: 10.1016/j.isci.2022.104293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/29/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
The nucleoside analog N4-hydroxycytidine (NHC) is the active metabolite of the prodrug molnupiravir, which has been approved for the treatment of COVID-19. SARS-CoV-2 incorporates NHC into its RNA, resulting in defective virus genomes. Likewise, inhibitors of dihydroorotate dehydrogenase (DHODH) reduce virus yield upon infection, by suppressing the cellular synthesis of pyrimidines. Here, we show that NHC and DHODH inhibitors strongly synergize in the inhibition of SARS-CoV-2 replication in vitro. We propose that the lack of available pyrimidine nucleotides upon DHODH inhibition increases the incorporation of NHC into nascent viral RNA. This concept is supported by the rescue of virus replication upon addition of pyrimidine nucleosides to the media. DHODH inhibitors increased the antiviral efficiency of molnupiravir not only in organoids of human lung, but also in Syrian Gold hamsters and in K18-hACE2 mice. Combining molnupiravir with DHODH inhibitors may thus improve available therapy options for COVID-19. Molnupiravir and DHODH inhibitors are approved drugs, facilitating clinical testing The combination may allow lower drug doses to decrease possible toxic effects Inhibitors of nucleotide biosynthesis may boost antiviral nucleoside analogs
Collapse
Affiliation(s)
- Kim M Stegmann
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Antje Dickmanns
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Natalie Heinen
- Department of Molecular and Medical Virology, Ruhr University Bochum, Germany
| | - Claudia Blaurock
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Tim Karrasch
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Angele Breithaupt
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | | | - Nadja Uhlig
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Valentina Eberlein
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Leila Issmail
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Simon T Herrmann
- Department of Molecular Biochemistry, Ruhr University Bochum, Germany
| | | | | | | | - Balal Sadeghi
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| | - Alexander Riek
- Friedrich-Loeffler-Institut, Institute of Animal Welfare and Animal Husbandry, Celle, Germany
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Uwe Groß
- Institute of Medical Microbiology and Virology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Germany
| | - Dirk Görlich
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Thorsten Müller
- Department of Molecular Biochemistry, Ruhr University Bochum, Germany.,Institute of Psychiatric Phenomics and Genomics (IPPG), Organoid laboratory, University Hospital, LMU Munich, Germany
| | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr University Bochum, Germany
| | - Anne Balkema-Buschmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
20
|
Bugatti A, Filippini F, Bardelli M, Zani A, Chiodelli P, Messali S, Caruso A, Caccuri F. SARS-CoV-2 Infects Human ACE2-Negative Endothelial Cells through an αvβ3 Integrin-Mediated Endocytosis Even in the Presence of Vaccine-Elicited Neutralizing Antibodies. Viruses 2022; 14:v14040705. [PMID: 35458435 PMCID: PMC9032829 DOI: 10.3390/v14040705] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Integrins represent a gateway of entry for many viruses and the Arg-Gly-Asp (RGD) motif is the smallest sequence necessary for proteins to bind integrins. All Severe Acute Respiratory Syndrome Virus type 2 (SARS-CoV-2) lineages own an RGD motif (aa 403–405) in their receptor binding domain (RBD). We recently showed that SARS-CoV-2 gains access into primary human lung microvascular endothelial cells (HL-mECs) lacking Angiotensin-converting enzyme 2 (ACE2) expression through this conserved RGD motif. Following its entry, SARS-CoV-2 remodels cell phenotype and promotes angiogenesis in the absence of productive viral replication. Here, we highlight the αvβ3 integrin as the main molecule responsible for SARS-CoV-2 infection of HL-mECs via a clathrin-dependent endocytosis. Indeed, pretreatment of virus with αvβ3 integrin or pretreatment of cells with a monoclonal antibody against αvβ3 integrin was found to inhibit SARS-CoV-2 entry into HL-mECs. Surprisingly, the anti-Spike antibodies evoked by vaccination were neither able to impair Spike/integrin interaction nor to prevent SARS-CoV-2 entry into HL-mECs. Our data highlight the RGD motif in the Spike protein as a functional constraint aimed to maintain the interaction of the viral envelope with integrins. At the same time, our evidences call for the need of intervention strategies aimed to neutralize the SARS-CoV-2 integrin-mediated infection of ACE2-negative cells in the vaccine era.
Collapse
Affiliation(s)
- Antonella Bugatti
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.B.); (F.F.); (M.B.); (A.Z.); (S.M.); (A.C.)
| | - Federica Filippini
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.B.); (F.F.); (M.B.); (A.Z.); (S.M.); (A.C.)
| | - Marta Bardelli
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.B.); (F.F.); (M.B.); (A.Z.); (S.M.); (A.C.)
| | - Alberto Zani
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.B.); (F.F.); (M.B.); (A.Z.); (S.M.); (A.C.)
| | - Paola Chiodelli
- Section of General Pathology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Serena Messali
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.B.); (F.F.); (M.B.); (A.Z.); (S.M.); (A.C.)
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.B.); (F.F.); (M.B.); (A.Z.); (S.M.); (A.C.)
| | - Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.B.); (F.F.); (M.B.); (A.Z.); (S.M.); (A.C.)
- Correspondence:
| |
Collapse
|
21
|
Analyzing COVID-19 Medical Papers Using Artificial Intelligence: Insights for Researchers and Medical Professionals. BIG DATA AND COGNITIVE COMPUTING 2022. [DOI: 10.3390/bdcc6010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Since the beginning of the COVID-19 pandemic almost two years ago, there have been more than 700,000 scientific papers published on the subject. An individual researcher cannot possibly get acquainted with such a huge text corpus and, therefore, some help from artificial intelligence (AI) is highly needed. We propose the AI-based tool to help researchers navigate the medical papers collections in a meaningful way and extract some knowledge from scientific COVID-19 papers. The main idea of our approach is to get as much semi-structured information from text corpus as possible, using named entity recognition (NER) with a model called PubMedBERT and Text Analytics for Health service, then store the data into NoSQL database for further fast processing and insights generation. Additionally, the contexts in which the entities were used (neutral or negative) are determined. Application of NLP and text-based emotion detection (TBED) methods to COVID-19 text corpus allows us to gain insights on important issues of diagnosis and treatment (such as changes in medical treatment over time, joint treatment strategies using several medications, and the connection between signs and symptoms of coronavirus, etc.).
Collapse
|
22
|
Arora H, Boothby-Shoemaker W, Braunberger T, Lim HW, Veenstra J. Safety of conventional immunosuppressive therapies for patients with dermatological conditions and coronavirus disease 2019: A review of current evidence. J Dermatol 2021; 49:317-329. [PMID: 34962304 DOI: 10.1111/1346-8138.16182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022]
Abstract
The effect of coronavirus disease 2019 (COVID-19) on patients receiving conventional immunosuppressive (IS) therapy has yet to be fully determined; however, research on using IS therapy for treating COVID-19 in acutely ill patients is increasing. While some believe that IS therapy may be protective, others argue that these agents may make patients more susceptible to COVID-19 infection and morbidity and advocate for a more cautious, individualized approach to determining continuation, reduction, or discontinuation of therapy. In this review, we aim to provide an overview of COVID-19 risk in dermatological patients who are receiving conventional IS therapies, including mycophenolate mofetil, methotrexate, cyclosporine, azathioprine, apremilast, JAK inhibitors, and systemic steroids. Additionally, we provide recommendations for management of these medications for dermatological patients during the COVID-19 pandemic. Treatment of dermatological disease during the COVID-19 pandemic should involve shared decision-making between the patient and provider, with consideration of each patient's comorbidities and the severity of the patient's dermatological disease.
Collapse
Affiliation(s)
- Harleen Arora
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Wyatt Boothby-Shoemaker
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan, USA.,College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | | | - Henry W Lim
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Jesse Veenstra
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan, USA
| |
Collapse
|
23
|
Groza V, Udrescu M, Bozdog A, Udrescu L. Drug Repurposing Using Modularity Clustering in Drug-Drug Similarity Networks Based on Drug-Gene Interactions. Pharmaceutics 2021; 13:2117. [PMID: 34959398 PMCID: PMC8709282 DOI: 10.3390/pharmaceutics13122117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
Drug repurposing is a valuable alternative to traditional drug design based on the assumption that medicines have multiple functions. Computer-based techniques use ever-growing drug databases to uncover new drug repurposing hints, which require further validation with in vitro and in vivo experiments. Indeed, such a scientific undertaking can be particularly effective in the case of rare diseases (resources for developing new drugs are scarce) and new diseases such as COVID-19 (designing new drugs require too much time). This paper introduces a new, completely automated computational drug repurposing pipeline based on drug-gene interaction data. We obtained drug-gene interaction data from an earlier version of DrugBank, built a drug-gene interaction network, and projected it as a drug-drug similarity network (DDSN). We then clustered DDSN by optimizing modularity resolution, used the ATC codes distribution within each cluster to identify potential drug repurposing candidates, and verified repurposing hints with the latest DrugBank ATC codes. Finally, using the best modularity resolution found with our method, we applied our pipeline to the latest DrugBank drug-gene interaction data to generate a comprehensive drug repurposing hint list.
Collapse
Affiliation(s)
- Vlad Groza
- Department of Computer and Information Technology, University Politehnica of Timişoara, 300223 Timişoara, Romania; (V.G.); (A.B.)
| | - Mihai Udrescu
- Department of Computer and Information Technology, University Politehnica of Timişoara, 300223 Timişoara, Romania; (V.G.); (A.B.)
| | - Alexandru Bozdog
- Department of Computer and Information Technology, University Politehnica of Timişoara, 300223 Timişoara, Romania; (V.G.); (A.B.)
| | - Lucreţia Udrescu
- Department I—Drug Analysis, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 300041 Timişoara, Romania;
| |
Collapse
|
24
|
Zhou B, Li S, Ye J, Liu Y, Hu L, Tang Y, Wu Z, Zhang P. Immunopathological events surrounding IL-6 and IFN-α: A bridge for anti-lupus erythematosus drugs used to treat COVID-19. Int Immunopharmacol 2021; 101:108254. [PMID: 34710657 PMCID: PMC8527889 DOI: 10.1016/j.intimp.2021.108254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/26/2021] [Accepted: 10/08/2021] [Indexed: 01/11/2023]
Abstract
With the outbreak and rapid spread of COVID-19, the world health situation is unprecedentedly severe. Systemic lupus erythematosus (SLE) is a common autoimmune disease, which can cause multiple organ damage. Numerous studies have shown that immune factors have important roles in the pathogenesis of both COVID-19 and SLE. In the early stages of COVID-19 and SLE pathogenesis, IFN-α expression is frequently increased, which aggravates the virus infection and promotes SLE development. In addition, increased IL-6 levels, caused by different mechanisms, are observed in the peripheral blood of patients with severe COVID-19 and SLE, stimulating a series of immune cascades that lead to a cytokine storm, as well as causing B cell hyperfunction and production of numerous of antibodies, aggravating both COVID-19 and SLE. In this review, we explore the background immunopathological mechanisms in COVID-19 and SLE and analyze the advantages and disadvantages of commonly used SLE drugs for patients with COVID-19, to optimize treatment plans for patients with SLE who develop COVID-19.
Collapse
Affiliation(s)
- Bangyi Zhou
- Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, People’s Republic of China,Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou 510282, Guangdong, People’s Republic of China
| | - Siying Li
- School of Traditional Chinese Medicine, Southern Medical University, People’s Republic of China
| | - Jujian Ye
- Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, People’s Republic of China,Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou 510282, Guangdong, People’s Republic of China
| | - Yi Liu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, People’s Republic of China
| | - Longtai Hu
- School of Traditional Chinese Medicine, Southern Medical University, People’s Republic of China
| | - Yan Tang
- Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, People’s Republic of China
| | - Zhijian Wu
- Department of Cardiology, Boai Hospital of Zhongshan, Southern Medical University, People’s Republic of China,Corresponding authors
| | - Peidong Zhang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou 510282, Guangdong, People’s Republic of China,Corresponding authors
| |
Collapse
|
25
|
Liu X, Huuskonen S, Laitinen T, Redchuk T, Bogacheva M, Salokas K, Pöhner I, Öhman T, Tonduru AK, Hassinen A, Gawriyski L, Keskitalo S, Vartiainen MK, Pietiäinen V, Poso A, Varjosalo M. SARS-CoV-2-host proteome interactions for antiviral drug discovery. Mol Syst Biol 2021; 17:e10396. [PMID: 34709727 PMCID: PMC8552907 DOI: 10.15252/msb.202110396] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
Treatment options for COVID-19, caused by SARS-CoV-2, remain limited. Understanding viral pathogenesis at the molecular level is critical to develop effective therapy. Some recent studies have explored SARS-CoV-2-host interactomes and provided great resources for understanding viral replication. However, host proteins that functionally associate with SARS-CoV-2 are localized in the corresponding subnetwork within the comprehensive human interactome. Therefore, constructing a downstream network including all potential viral receptors, host cell proteases, and cofactors is necessary and should be used as an additional criterion for the validation of critical host machineries used for viral processing. This study applied both affinity purification mass spectrometry (AP-MS) and the complementary proximity-based labeling MS method (BioID-MS) on 29 viral ORFs and 18 host proteins with potential roles in viral replication to map the interactions relevant to viral processing. The analysis yields a list of 693 hub proteins sharing interactions with both viral baits and host baits and revealed their biological significance for SARS-CoV-2. Those hub proteins then served as a rational resource for drug repurposing via a virtual screening approach. The overall process resulted in the suggested repurposing of 59 compounds for 15 protein targets. Furthermore, antiviral effects of some candidate drugs were observed in vitro validation using image-based drug screen with infectious SARS-CoV-2. In addition, our results suggest that the antiviral activity of methotrexate could be associated with its inhibitory effect on specific protein-protein interactions.
Collapse
Affiliation(s)
- Xiaonan Liu
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Sini Huuskonen
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Tuomo Laitinen
- School of PharmacyUniversity of Eastern FinlandKuopioFinland
| | - Taras Redchuk
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Mariia Bogacheva
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
- Institute for Molecular Medicine FinlandUniversity of HelsinkiHelsinkiFinland
- Department of VirologyUniversity of HelsinkiHelsinkiFinland
| | - Kari Salokas
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Ina Pöhner
- School of PharmacyUniversity of Eastern FinlandKuopioFinland
| | - Tiina Öhman
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | | | - Antti Hassinen
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
- Institute for Molecular Medicine FinlandUniversity of HelsinkiHelsinkiFinland
| | - Lisa Gawriyski
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Salla Keskitalo
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Maria K Vartiainen
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Vilja Pietiäinen
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
- Institute for Molecular Medicine FinlandUniversity of HelsinkiHelsinkiFinland
| | - Antti Poso
- School of PharmacyUniversity of Eastern FinlandKuopioFinland
- Department of Internal Medicine VIIIUniversity Hospital TübingenTübingenGermany
| | - Markku Varjosalo
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
26
|
Ganjei Z, Faraji Dana H, Ebrahimi-Dehkordi S, Alidoust F, Bahmani K. Methotrexate as a safe immunosuppressive agent during the COVID-19 pandemic. Int Immunopharmacol 2021; 101:108324. [PMID: 34731780 PMCID: PMC8556580 DOI: 10.1016/j.intimp.2021.108324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023]
Abstract
Background During the ongoing COVID-19 pandemic, immunocompromised patients are at a higher risk of severe infection, since the immune system has an important role in defeating this disease. This study compares the severity of COVID-19 in patients taking methotrexate with the severity of their family members’ illness as patients with normal immune system function. Methods A total of 35 participants, including 14 patients taking methotrexate and 21 patients with normal immune function, entered this study, and the indicators of COVID-19 severity were compared between these two groups. Results The case group, who were on methotrexate therapy, had significantly less severe COVID-19 based on their symptoms, including fever (p = 0.000) and cough and dyspnea (p = 0.01) as well as in terms of COVID-19 severity indicators such as pulmonary involvement (p = 0.001), ferritin level (p = 0.001), white blood cell count (p = 0.008) and CRP level (p = 0.006), compared to the control group. There was a significant correlation between taking methotrexate and lower severity in COVID-19 disease. Conclusion The present findings demonstrated that methotrexate does not predispose patients to severe COVID-19; on the contrary, patients taking methotrexate may experience a milder disease, possibly due to their reduced severe inflammatory reactions as a result of inhibited TNFα, lowered IL6, and increased T regulatory cells. According to these findings, methotrexate appears to be a suitable treatment option for patients who need immunosuppressive medications during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Zakiye Ganjei
- Department of Dermatology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hoorvash Faraji Dana
- Clinical Toxicology Fellowship, Emergency Department, Alborz University of Medical Science, Karaj, Iran
| | | | - Fereshte Alidoust
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Kiumars Bahmani
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Science, Tehran, Iran.
| |
Collapse
|
27
|
Lee CC, Hsieh CC, Ko WC. Molnupiravir-A Novel Oral Anti-SARS-CoV-2 Agent. Antibiotics (Basel) 2021; 10:antibiotics10111294. [PMID: 34827232 PMCID: PMC8614993 DOI: 10.3390/antibiotics10111294] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
Since December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly resulted in a global pandemic with approximately 4 million deaths. Effective oral antiviral agents are urgently needed to treat coronavirus disease-2019 (COVID-19), block SARS-CoV-2 transmission, and prevent progression to severe illness. Molnupiravir (formerly EIDD-2801), a prodrug of beta-d-N4-hydroxycytidine (EIDD-1931) and an inhibitor of RNA-dependent RNA polymerase, possesses significant activity against SARS-CoV-2. Its prophylactic efficacy has been evidenced in a ferret model. Two phase-I trials (NCT04392219 and NCT04746183) have demonstrated that oral molnupiravir is safe and well-tolerated at therapeutic doses. After five-days of oral molnupiravir therapy, satisfactory efficacies, assessed by eliminating nasopharyngeal virus in patients with early and mild COVID-19, were disclosed in two phase-II trials (NCT04405739 and NCT 04405570). Two phase-II/III trials, NCT04575597 and NCT04575584, with estimated enrollments of 1850 and 304 cases, respectively, are ongoing. The NCT04575597 recently released that molnupiravir significantly reduced the risk of hospitalization or death in adults experiencing mild or moderate COVID-19. To benefit individual and public health, clinical applications of molnupiravir to promptly treat COVID-19 patients and prevent SARS-CoV-2 transmission may be expected.
Collapse
Affiliation(s)
- Ching-Chi Lee
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Chih-Chia Hsieh
- Department of Emergency Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: ; Tel.: +886-6-2353535 (ext. 3596); Fax: +886-6-2752038
| |
Collapse
|
28
|
Doxycycline Inhibition of a Pseudotyped Virus Transduction Does Not Translate to Inhibition of SARS-CoV-2 Infectivity. Viruses 2021; 13:v13091745. [PMID: 34578326 PMCID: PMC8473150 DOI: 10.3390/v13091745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/20/2022] Open
Abstract
The rapid spread of the pandemic caused by the SARS-CoV-2 virus has created an unusual situation, with rapid searches for compounds to interfere with the biological processes exploited by the virus. Doxycycline, with its pleiotropic effects, including anti-viral activity, has been proposed as a therapeutic candidate for COVID-19 and about twenty clinical trials have started since the beginning of the pandemic. To gain information on the activity of doxycycline against SARS-CoV-2 infection and clarify some of the conflicting clinical data published, we designed in vitro binding tests and infection studies with a pseudotyped virus expressing the spike protein, as well as a clinically isolated SARS-CoV-2 strain. Doxycycline inhibited the transduction of the pseudotyped virus in Vero E6 and HEK-293 T cells stably expressing human receptor angiotensin-converting enzyme 2 but did not affect the entry and replication of SARS-CoV-2. Although this conclusion is apparently disappointing, it is paradigmatic of an experimental approach aimed at developing an integrated multidisciplinary platform which can shed light on the mechanisms of action of potential anti-COVID-19 compounds. To avoid wasting precious time and resources, we believe very stringent experimental criteria are needed in the preclinical phase, including infectivity studies with clinically isolated SARS-CoV-2, before moving on to (futile) clinical trials.
Collapse
|
29
|
Rizzo S, Savastano MC, Bortolotti D, Savastano A, Gambini G, Caccuri F, Gentili V, Rizzo R. COVID-19 Ocular Prophylaxis: The Potential Role of Ozonated-Oils in Liposome Eyedrop Gel. Transl Vis Sci Technol 2021; 10:7. [PMID: 34351367 PMCID: PMC8354035 DOI: 10.1167/tvst.10.9.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose To assess whether ozonated-oil in liposome eyedrop gel (OED) could be used to prevent the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection in an in vitro infection model. Methods First, we tested the efficacy of OED on in vitro cell regeneration and dry eye resolution in human corneal epithelial cells (hCE-2). Second, we assessed the in vitro anti-SARS-CoV-2 infection efficacy of OED using Vero E6 cells. Tissues were examined to assess different parameters: morphology, histology, and mRNA expression at 24 hours after treatment. Results OED could restore 50% of the scratch in the monolayer of hCE-2 cells in vitro compared with the 25% obtained with phosphate-buffered saline solution (PBS). At 24 hours after treatment with OED, the number of microvilli and the mucin network were restored, as observed using scanning electron microscopy. In Vero E6 cells infected with a primary SARS-CoV-2 strain and treated with OED two times/day, viral replication was found to be inhibited, with a 70-fold reduction observed at 72 hours after infection compared with that under the untreated and PBS-treated conditions. Conclusions SARS-CoV-2 transmission through the ocular surface should not be ignored. Although the prevalence of coronavirus disease 2019 conjunctivitis infection is low, the need for a barrier to prevent possible viral infection is warranted. OED treatment may prevent the risk of SARS-CoV-2 infection after 72 hours of twice-daily applications. Translational Relevance Dry eye condition might be a risk factor for SARS-CoV-2 infection and OED treatment may have a preventive role.
Collapse
Affiliation(s)
- Stanislao Rizzo
- Unit of Ophthalmology, "Fondazione Policlinico A Gemelli IRCCS," Rome, Italy.,"Università Cattolica Sacro Cuore", Rome, Italy.,Consiglio Nazionale delle Ricerche (CNR), Istituto di Neuroscienze, Pisa, Italy
| | - Maria Cristina Savastano
- Unit of Ophthalmology, "Fondazione Policlinico A Gemelli IRCCS," Rome, Italy.,"Università Cattolica Sacro Cuore", Rome, Italy
| | - Daria Bortolotti
- University of Ferrara, Department of Chemical, Pharmaceutical and Agricultural Sciences, Ferrara, Italy
| | - Alfonso Savastano
- Unit of Ophthalmology, "Fondazione Policlinico A Gemelli IRCCS," Rome, Italy.,"Università Cattolica Sacro Cuore", Rome, Italy
| | - Gloria Gambini
- Unit of Ophthalmology, "Fondazione Policlinico A Gemelli IRCCS," Rome, Italy.,"Università Cattolica Sacro Cuore", Rome, Italy
| | - Francesca Caccuri
- Department of Microbiology and Virology, "Spedali Civili," Brescia, Italy
| | - Valentina Gentili
- University of Ferrara, Department of Chemical, Pharmaceutical and Agricultural Sciences, Ferrara, Italy
| | - Roberta Rizzo
- University of Ferrara, Department of Chemical, Pharmaceutical and Agricultural Sciences, Ferrara, Italy
| |
Collapse
|
30
|
Frohman EM, Villemarette-Pittman NR, Rodriguez A, Glanzman R, Rugheimer S, Komogortsev O, Zamvil SS, Cruz RA, Varkey TC, Frohman AN, Frohman AR, Parsons MS, Konkle EH, Frohman TC. Application of an evidence-based, out-patient treatment strategy for COVID-19: Multidisciplinary medical practice principles to prevent severe disease. J Neurol Sci 2021; 426:117463. [PMID: 33971376 PMCID: PMC8055502 DOI: 10.1016/j.jns.2021.117463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/10/2022]
Abstract
The COVID-19 pandemic has devastated individuals, families, and institutions throughout the world. Despite the breakneck speed of vaccine development, the human population remains at risk of further devastation. The decision to not become vaccinated, the protracted rollout of available vaccine, vaccine failure, mutational forms of the SARS virus, which may exhibit mounting resistance to our molecular strike at only one form of the viral family, and the rapid ability of the virus(es) to hitch a ride on our global transportation systems, means that we are will likely continue to confront an invisible, yet devastating foe. The enemy targets one of our human physiology's most important and vulnerable life-preserving body tissues, our broncho-alveolar gas exchange apparatus. Notwithstanding the fear and the fury of this microbe's potential to raise existential questions across the entire spectrum of human endeavor, the application of an early treatment intervention initiative may represent a crucial tool in our defensive strategy. This strategy is driven by evidence-based medical practice principles, those not likely to become antiquated, given the molecular diversity and mutational evolution of this very clever "world traveler".
Collapse
Affiliation(s)
- Elliot M Frohman
- Laboratory of Neuroimmunology, Professor Lawrence Steinman, Stanford University School of Medicine, United States of America.
| | | | - Adriana Rodriguez
- Department of Emergency Medicine, Cook Children's Medical Center, Ft. Worth, TX, United States of America
| | - Robert Glanzman
- Clene Nanomedicine, Inc., Salt Lake City, UT 84121, United States of America.
| | - Sarah Rugheimer
- Department of Physics, University Oxford, Oxford OX1 3PU, UK.
| | - Oleg Komogortsev
- Department of Computer Sciences, Texas State University, San Marcos, TX, United States of America.
| | - Scott S Zamvil
- Department of Neurology and Program in Immunology, University of California San Francisco, San Francisco, CA, United States of America.
| | - Roberto Alejandro Cruz
- Department of Neurology, Doctor's Health at Renaissance Health Neurology Institute, United States of America; Department of Neurology, University of Texas Rio Grande Valley School of Medicine, United States of America.
| | - Thomas C Varkey
- Dell Medical School, University of Texas at Austin, United States of America.
| | | | | | - Matthew S Parsons
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, United States of America; Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States of America.
| | | | - Teresa C Frohman
- Laboratory of Neuroimmunology, Professor Lawrence Steinman, Stanford University School of Medicine, United States of America.
| |
Collapse
|
31
|
Caccuri F, Bugatti A, Zani A, De Palma A, Di Silvestre D, Manocha E, Filippini F, Messali S, Chiodelli P, Campisi G, Fiorentini S, Facchetti F, Mauri P, Caruso A. SARS-CoV-2 Infection Remodels the Phenotype and Promotes Angiogenesis of Primary Human Lung Endothelial Cells. Microorganisms 2021; 9:1438. [PMID: 34361874 PMCID: PMC8305478 DOI: 10.3390/microorganisms9071438] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2-associated acute respiratory distress syndrome (ARDS) and acute lung injury are life-threatening manifestations of severe viral infection. The pathogenic mechanisms that lead to respiratory complications, such as endothelialitis, intussusceptive angiogenesis, and vascular leakage remain unclear. In this study, by using an immunofluorescence assay and in situ RNA-hybridization, we demonstrate the capability of SARS-CoV-2 to infect human primary lung microvascular endothelial cells (HL-mECs) in the absence of cytopathic effects and release of infectious particles. Preliminary data point to the role of integrins in SARS-CoV-2 entry into HL-mECs in the absence of detectable ACE2 expression. Following infection, HL-mECs were found to release a plethora of pro-inflammatory and pro-angiogenic molecules, as assessed by microarray analyses. This conditioned microenvironment stimulated HL-mECs to acquire an angiogenic phenotype. Proteome analysis confirmed a remodeling of SARS-CoV-2-infected HL-mECs to inflammatory and angiogenic responses and highlighted the expression of antiviral molecules as annexin A6 and MX1. These results support the hypothesis of a direct role of SARS-CoV-2-infected HL-mECs in sustaining vascular dysfunction during the early phases of infection. The construction of virus-host interactomes will be instrumental to identify potential therapeutic targets for COVID-19 aimed to inhibit HL-mEC-sustained inflammation and angiogenesis upon SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia Medical School, 25123 Brescia, Italy; (A.B.); (A.Z.); (E.M.); (F.F.); (S.M.); (G.C.); (S.F.)
| | - Antonella Bugatti
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia Medical School, 25123 Brescia, Italy; (A.B.); (A.Z.); (E.M.); (F.F.); (S.M.); (G.C.); (S.F.)
| | - Alberto Zani
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia Medical School, 25123 Brescia, Italy; (A.B.); (A.Z.); (E.M.); (F.F.); (S.M.); (G.C.); (S.F.)
| | - Antonella De Palma
- Proteomic and Metabolomic Laboratory, Institute of Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, Italy; (A.D.P.); (D.D.S.); (P.M.)
| | - Dario Di Silvestre
- Proteomic and Metabolomic Laboratory, Institute of Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, Italy; (A.D.P.); (D.D.S.); (P.M.)
| | - Ekta Manocha
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia Medical School, 25123 Brescia, Italy; (A.B.); (A.Z.); (E.M.); (F.F.); (S.M.); (G.C.); (S.F.)
| | - Federica Filippini
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia Medical School, 25123 Brescia, Italy; (A.B.); (A.Z.); (E.M.); (F.F.); (S.M.); (G.C.); (S.F.)
| | - Serena Messali
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia Medical School, 25123 Brescia, Italy; (A.B.); (A.Z.); (E.M.); (F.F.); (S.M.); (G.C.); (S.F.)
| | - Paola Chiodelli
- Section of General Pathology, Department of Molecular and Translational Medicine, University of Brescia Medical School, 25123 Brescia, Italy;
| | - Giovanni Campisi
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia Medical School, 25123 Brescia, Italy; (A.B.); (A.Z.); (E.M.); (F.F.); (S.M.); (G.C.); (S.F.)
| | - Simona Fiorentini
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia Medical School, 25123 Brescia, Italy; (A.B.); (A.Z.); (E.M.); (F.F.); (S.M.); (G.C.); (S.F.)
| | - Fabio Facchetti
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia Medical School, 25123 Brescia, Italy;
| | - Pierluigi Mauri
- Proteomic and Metabolomic Laboratory, Institute of Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, Italy; (A.D.P.); (D.D.S.); (P.M.)
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia Medical School, 25123 Brescia, Italy; (A.B.); (A.Z.); (E.M.); (F.F.); (S.M.); (G.C.); (S.F.)
| |
Collapse
|
32
|
Biomedical Text Link Prediction for Drug Discovery: A Case Study with COVID-19. Pharmaceutics 2021; 13:pharmaceutics13060794. [PMID: 34073456 PMCID: PMC8230210 DOI: 10.3390/pharmaceutics13060794] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/19/2021] [Indexed: 01/03/2023] Open
Abstract
Link prediction in artificial intelligence is used to identify missing links or derive future relationships that can occur in complex networks. A link prediction model was developed using the complex heterogeneous biomedical knowledge graph, SemNet, to predict missing links in biomedical literature for drug discovery. A web application visualized knowledge graph embeddings and link prediction results using TransE, CompleX, and RotatE based methods. The link prediction model achieved up to 0.44 hits@10 on the entity prediction tasks. The recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as COVID-19, served as a case study to demonstrate the efficacy of link prediction modeling for drug discovery. The link prediction algorithm guided identification and ranking of repurposed drug candidates for SARS-CoV-2 primarily by text mining biomedical literature from previous coronaviruses, including SARS and middle east respiratory syndrome (MERS). Repurposed drugs included potential primary SARS-CoV-2 treatment, adjunctive therapies, or therapeutics to treat side effects. The link prediction accuracy for nodes ranked highly for SARS coronavirus was 0.875 as calculated by human in the loop validation on existing COVID-19 specific data sets. Drug classes predicted as highly ranked include anti-inflammatory, nucleoside analogs, protease inhibitors, antimalarials, envelope proteins, and glycoproteins. Examples of highly ranked predicted links to SARS-CoV-2: human leukocyte interferon, recombinant interferon-gamma, cyclosporine, antiviral therapy, zidovudine, chloroquine, vaccination, methotrexate, artemisinin, alkaloids, glycyrrhizic acid, quinine, flavonoids, amprenavir, suramin, complement system proteins, fluoroquinolones, bone marrow transplantation, albuterol, ciprofloxacin, quinolone antibacterial agents, and hydroxymethylglutaryl-CoA reductase inhibitors. Approximately 40% of identified drugs were not previously connected to SARS, such as edetic acid or biotin. In summary, link prediction can effectively suggest repurposed drugs for emergent diseases.
Collapse
|
33
|
Renz A, Widerspick L, Dräger A. Genome-Scale Metabolic Model of Infection with SARS-CoV-2 Mutants Confirms Guanylate Kinase as Robust Potential Antiviral Target. Genes (Basel) 2021; 12:796. [PMID: 34073716 PMCID: PMC8225150 DOI: 10.3390/genes12060796] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022] Open
Abstract
The current SARS-CoV-2 pandemic is still threatening humankind. Despite first successes in vaccine development and approval, no antiviral treatment is available for COVID-19 patients. The success is further tarnished by the emergence and spreading of mutation variants of SARS-CoV-2, for which some vaccines have lower efficacy. This highlights the urgent need for antiviral therapies even more. This article describes how the genome-scale metabolic model (GEM) of the host-virus interaction of human alveolar macrophages and SARS-CoV-2 was refined by incorporating the latest information about the virus's structural proteins and the mutant variants B.1.1.7, B.1.351, B.1.28, B.1.427/B.1.429, and B.1.617. We confirmed the initially identified guanylate kinase as a potential antiviral target with this refined model and identified further potential targets from the purine and pyrimidine metabolism. The model was further extended by incorporating the virus' lipid requirements. This opened new perspectives for potential antiviral targets in the altered lipid metabolism. Especially the phosphatidylcholine biosynthesis seems to play a pivotal role in viral replication. The guanylate kinase is even a robust target in all investigated mutation variants currently spreading worldwide. These new insights can guide laboratory experiments for the validation of identified potential antiviral targets. Only the combination of vaccines and antiviral therapies will effectively defeat this ongoing pandemic.
Collapse
Affiliation(s)
- Alina Renz
- Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany;
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
| | - Lina Widerspick
- Bernhard Nocht Institute for Tropical Medicine, Virus Immunology, 20359 Hamburg, Germany;
| | - Andreas Dräger
- Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany;
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
34
|
Kumar S, Singh B, Kumari P, Kumar PV, Agnihotri G, Khan S, Kant Beuria T, Syed GH, Dixit A. Identification of multipotent drugs for COVID-19 therapeutics with the evaluation of their SARS-CoV2 inhibitory activity. Comput Struct Biotechnol J 2021; 19:1998-2017. [PMID: 33841751 PMCID: PMC8025584 DOI: 10.1016/j.csbj.2021.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022] Open
Abstract
The SARS-CoV2 is a highly contagious pathogen that causes COVID-19 disease. It has affected millions of people globally with an average lethality of ~3%. There is an urgent need of drugs for the treatment of COVID-19. In the current studies, we have used bioinformatics techniques to screen the FDA approved drugs against nine SARS-CoV2 proteins to identify drugs for repurposing. Additionally, we analyzed if the identified molecules can also affect the human proteins whose expression in lung changed during SARS-CoV2 infection. Targeting such genes may also be a beneficial strategy to curb disease manifestation. We have identified 74 molecules that can bind to various SARS-CoV2 and human host proteins. We experimentally validated our in-silico predictions using vero E6 cells infected with SARS-CoV2 virus. Interestingly, many of our predicted molecules viz. capreomycin, celecoxib, mefloquine, montelukast, and nebivolol showed good activity (IC50) against SARS-CoV2. We hope that these studies may help in the development of new therapeutic options for the treatment of COVID-19.
Collapse
Affiliation(s)
- Sugandh Kumar
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
| | - Bharati Singh
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
| | - Pratima Kumari
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, Haryana 121001, India
| | - Preethy V. Kumar
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
| | - Geetanjali Agnihotri
- School of Chemical Technology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
| | - Shaheerah Khan
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, Haryana 121001, India
| | - Tushar Kant Beuria
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Gulam Hussain Syed
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Anshuman Dixit
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
| |
Collapse
|
35
|
Borbone N, Piccialli G, Roviello GN, Oliviero G. Nucleoside Analogs and Nucleoside Precursors as Drugs in the Fight against SARS-CoV-2 and Other Coronaviruses. Molecules 2021; 26:986. [PMID: 33668428 PMCID: PMC7918729 DOI: 10.3390/molecules26040986] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 01/18/2023] Open
Abstract
Coronaviruses (CoVs) are positive-sense RNA enveloped viruses, members of the family Coronaviridae, that cause infections in a broad range of mammals including humans. Several CoV species lead to mild upper respiratory infections typically associated with common colds. However, three human CoV (HCoV) species: Severe Acute Respiratory Syndrome (SARS)-CoV-1, Middle East Respiratory Syndrome (MERS)-CoV, and SARS-CoV-2, are responsible for severe respiratory diseases at the origin of two recent epidemics (SARS and MERS), and of the current COronaVIrus Disease 19 (COVID-19), respectively. The easily transmissible SARS-CoV-2, emerging at the end of 2019 in China, spread rapidly worldwide, leading the World Health Organization (WHO) to declare COVID-19 a pandemic. While the world waits for mass vaccination, there is an urgent need for effective drugs as short-term weapons to combat the SARS-CoV-2 infection. In this context, the drug repurposing approach is a strategy able to guarantee positive results rapidly. In this regard, it is well known that several nucleoside-mimicking analogs and nucleoside precursors may inhibit the growth of viruses providing effective therapies for several viral diseases, including HCoV infections. Therefore, this review will focus on synthetic nucleosides and nucleoside precursors active against different HCoV species, paying great attention to SARS-CoV-2. This work covers progress made in anti-CoV therapy with nucleoside derivatives and provides insight into their main mechanisms of action.
Collapse
Affiliation(s)
- Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (N.B.); (G.P.)
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (N.B.); (G.P.)
| | | | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy;
| |
Collapse
|
36
|
Caruso A, Caccuri F, Bugatti A, Zani A, Vanoni M, Bonfanti P, Cazzaniga ME, Perno CF, Messa C, Alberghina L. Methotrexate inhibits SARS-CoV-2 virus replication "in vitro". J Med Virol 2020; 93:1780-1785. [PMID: 32926453 PMCID: PMC7891346 DOI: 10.1002/jmv.26512] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/31/2022]
Abstract
In early 2020 the new respiratory syndrome COVID‐19 (caused by the zoonotic SARS‐CoV‐2 virus) spread like a pandemic, starting from Wuhan, China, causing severe economic depression. Despite some advances in drug treatments of medical complications in the later stages of the disease, the pandemic's death toll is tragic, as no vaccine or specific antiviral treatment is currently available. By using a systems approach, we identify the host‐encoded pathway, which provides ribonucleotides to viral RNA synthesis, as a possible target. We show that methotrexate, an FDA‐approved inhibitor of purine biosynthesis, potently inhibits viral RNA replication, viral protein synthesis, and virus release. The effective antiviral methotrexate concentrations are similar to those used for established human therapies using the same drug. Methotrexate should be most effective in patients at the earliest appearance of symptoms to effectively prevent viral replication, diffusion of the infection, and possibly fatal complications. The COVID‐19 pandemic caused by the SARS‐CoV‐2 virus is a global public health threat causing over 800000 deaths, millions of infected people, and severe economic depression. No vaccine or specific antiviral treatments are currently available. By inhibiting the host‐encoded pathway, which provides ribonucleotides to viral RNA synthesis, the FDA‐approved drug methotrexate efficiently blocks SARS‐CoV‐2 replication.
Collapse
Affiliation(s)
- Arnaldo Caruso
- Department of Molecular and Translational Medicine, Section of Microbiology and Virology, University of Brescia Medical School, Brescia, Italy
| | - Francesca Caccuri
- Department of Molecular and Translational Medicine, Section of Microbiology and Virology, University of Brescia Medical School, Brescia, Italy
| | - Antonella Bugatti
- Department of Molecular and Translational Medicine, Section of Microbiology and Virology, University of Brescia Medical School, Brescia, Italy
| | - Alberto Zani
- Department of Molecular and Translational Medicine, Section of Microbiology and Virology, University of Brescia Medical School, Brescia, Italy
| | - Marco Vanoni
- Department of Biotechnology and Biosciences, ISBE.IT-SYSBIO/Centre of Systems Biology, University of Milano Bicocca, Milano, Italy
| | - Paolo Bonfanti
- School of Medicine and Surgery, University of Milano Bicocca, Milano, Italy.,Clinic of Infectious Diseases-ASST Monza, Monza, Italy
| | - Marina E Cazzaniga
- School of Medicine and Surgery, University of Milano Bicocca, Milano, Italy.,ASST Monza, Phase 1 Research Unit, Monza, Italy
| | | | - Cristina Messa
- School of Medicine and Surgery, University of Milano Bicocca, Milano, Italy.,Tecnomed Foundation, Milan, Italy
| | - Lilia Alberghina
- Department of Biotechnology and Biosciences, ISBE.IT-SYSBIO/Centre of Systems Biology, University of Milano Bicocca, Milano, Italy
| |
Collapse
|