1
|
Rizzo R, Stamatelatou A, Heerschap A, Scheenen T, Kreis R. Simultaneous Concentration and T 2 Mapping of Brain Metabolites by Fast Multi-Echo Spectroscopic Imaging. NMR IN BIOMEDICINE 2025; 38:e5318. [PMID: 39781896 PMCID: PMC11713224 DOI: 10.1002/nbm.5318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025]
Abstract
The purpose of this study was to produce metabolite-specific T2 and concentration maps in a clinically compatible time frame. A multi-TE 2D MR spectroscopic imaging (MRSI) experiment (multi-echo single-shot MRSI [MESS-MRSI]) deployed truncated and partially sampled multi-echo trains from single scans and was combined with simultaneous multiparametric model fitting. It was tested in vivo for the brain in five healthy subjects. Cramér-Rao lower bounds (CRLB) were used as the measure of performance. The novel method was compared with (1) traditional multi-echo multi-shot (MEMS) MRSI and, as proof of concept, with (2) a truncated version of MEMS, which mimics the MESS acquisition (MESS-mocked) on the original fully sampled MEMS dataset. MESS-MRSI simultaneously yields concentration and T2 maps with a nominal voxel size of ~2 cm3 with a 16 × 16 FOV matrix in 7 min scan time. The estimated values not only align well with the equivalent mocked experiment but are also in good agreement with the traditional threefold longer MEMS acquisition. The MESS-MRSI scheme extends former findings for single-voxel MESS, with improvements in CRLB ranging from 17% to 45% for concentrations and 10% to 23% for T2s when compared to traditional MEMS. This finding suggests that concentrations and T2 times can be reliably estimated in a multi-echo spectroscopic imaging exam by trading off spectral resolution (for some of the acquired TEs) with a significant reduction in scan time, as long as (1) an appropriate bidimensional frequency-TE model is deployed and (2) one TE is sampled in full. Thus, high spectral resolution information can be injected to the partially sampled TEs during fitting by prior knowledge from the one fully sampled TE. Tissue-type and regional distributions of 16 metabolite concentrations align well with the literature, and T2 distributions for five major metabolites are described by region and tissue. The novel MRSI acquisition strategy, based on partially sampled single-shot multi-echo trains twinned to multiparametric fitting, is optimally suited to provide simultaneous 2D concentration and T2 maps in clinic-compatible scan times. MESS principles allow embedding advanced MRSI techniques to further improve speed, coverage, or resolution. Preliminary findings from a cohort of five subjects reveal correlations between T2 relaxation times and the relative fraction of gray/white matter, suggesting tissue-type-dependent microstructural changes.
Collapse
Affiliation(s)
- Rudy Rizzo
- MR Methodology, Department for Diagnostic and Interventional NeuroradiologyUniversity of BernBernSwitzerland
- Translational Imaging Center (TIC)Swiss Institute for Translational and Entrepreneurial Medicine (sitem‐insel)BernSwitzerland
- Department of RadiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Angeliki Stamatelatou
- Department of Medical ImagingRadboud University Medical CenterNijmegenThe Netherlands
| | - Arend Heerschap
- Department of Medical ImagingRadboud University Medical CenterNijmegenThe Netherlands
| | - Tom Scheenen
- Department of Medical ImagingRadboud University Medical CenterNijmegenThe Netherlands
| | - Roland Kreis
- MR Methodology, Department for Diagnostic and Interventional NeuroradiologyUniversity of BernBernSwitzerland
- Translational Imaging Center (TIC)Swiss Institute for Translational and Entrepreneurial Medicine (sitem‐insel)BernSwitzerland
- Institute of PsychologyUniversity of BernBernSwitzerland
| |
Collapse
|
2
|
Gao Y, Cai YC, Liu DY, Yu J, Wang J, Li M, Xu B, Wang T, Chen G, Northoff G, Bai R, Song XM. GABAergic inhibition in human hMT+ predicts visuo-spatial intelligence mediated through the frontal cortex. eLife 2024; 13:RP97545. [PMID: 39352734 PMCID: PMC11444681 DOI: 10.7554/elife.97545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
The prevailing opinion emphasizes fronto-parietal network (FPN) is key in mediating general fluid intelligence (gF). Meanwhile, recent studies show that human MT complex (hMT+), located at the occipito-temporal border and involved in 3D perception processing, also plays a key role in gF. However, the underlying mechanism is not clear, yet. To investigate this issue, our study targets visuo-spatial intelligence, which is considered to have high loading on gF. We use ultra-high field magnetic resonance spectroscopy (MRS) to measure GABA/Glu concentrations in hMT+ combining resting-state fMRI functional connectivity (FC), behavioral examinations including hMT+ perception suppression test and gF subtest in visuo-spatial component. Our findings show that both GABA in hMT+ and frontal-hMT+ functional connectivity significantly correlate with the performance of visuo-spatial intelligence. Further, serial mediation model demonstrates that the effect of hMT+ GABA on visuo-spatial gF is fully mediated by the hMT+ frontal FC. Together our findings highlight the importance in integrating sensory and frontal cortices in mediating the visuo-spatial component of general fluid intelligence.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-Chun Cai
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Dong-Yu Liu
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Juan Yu
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Jue Wang
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Bin Xu
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Tengfei Wang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Gang Chen
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Georg Northoff
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Hangzhou, China
| | - Ruiliang Bai
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, China
| | - Xue Mei Song
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Kubo H, Kenichi H, Hatano H, Fujitani S. Magnetic Resonance Spectroscopy Facilitates the Understanding of the Pathophysiology of Cerebellar Arteriovenous Malformations. Cureus 2024; 16:e68052. [PMID: 39347139 PMCID: PMC11436283 DOI: 10.7759/cureus.68052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Magnetic resonance spectroscopy (MRS) is a non-invasive imaging technique that facilitates the observation of tissue metabolism. It holds potential not only in research but also in clinical settings for understanding pathophysiology. This report presents the case of a 73-year-old woman with cerebellar arteriovenous malformation (AVM) in which MRS contributed to understanding the condition. Preoperative magnetic resonance imaging revealed T2/fluid-attenuated inversion recovery hyperintensity in the right cerebellar hemisphere. MRS of the same site showed an increase in lactate (Lac) and a decrease in N-acetylaspartate (NAA) levels. Through examination, she was diagnosed with a micro-AVM. Although transarterial embolization was performed on another day, completely occluding the shunt and treating the AVM, MRS showed a persistent decrease in NAA and elevated Lac levels and suggested that irreversible brain tissue damage had occurred due to the progression of venous congestion. The use of MRS in patients with suspected cerebellar AVMs allows for evaluating the degree of brain damage due to venous congestion, providing valuable insights for treatment decisions, in addition to evaluating treatment outcomes.
Collapse
Affiliation(s)
- Hiroaki Kubo
- Neurosurgery, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, JPN
| | - Hattori Kenichi
- Neurosurgery, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, JPN
| | - Hisashi Hatano
- Neurosurgery, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, JPN
| | - Shigeru Fujitani
- Neurosurgery, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, JPN
| |
Collapse
|
4
|
Jonuscheit M, Uhlemeyer C, Korzekwa B, Schouwink M, Öner-Sieben S, Ensenauer R, Roden M, Belgardt BF, Schrauwen-Hinderling VB. Post mortem analysis of hepatic volume and lipid content by magnetic resonance imaging and spectroscopy in fixed murine neonates. NMR IN BIOMEDICINE 2024; 37:e5140. [PMID: 38556731 DOI: 10.1002/nbm.5140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 04/02/2024]
Abstract
Maternal obesity and hyperglycemia are linked to an elevated risk for obesity, diabetes, and steatotic liver disease in the adult offspring. To establish and validate a noninvasive workflow for perinatal metabolic phenotyping, fixed neonates of common mouse strains were analyzed postmortem via magnetic resonance imaging (MRI)/magnetic resonance spectroscopy (MRS) to assess liver volume and hepatic lipid (HL) content. The key advantage of nondestructive MRI/MRS analysis is the possibility of further tissue analyses, such as immunohistochemistry, RNA extraction, and even proteomics, maximizing the data that can be gained per individual and therefore facilitating comprehensive correlation analyses. This study employed an MRI and 1H-MRS workflow to measure liver volume and HL content in 65 paraformaldehyde-fixed murine neonates at 11.7 T. Liver volume was obtained using semiautomatic segmentation of MRI acquired by a RARE sequence with 0.5-mm slice thickness. HL content was measured by a STEAM sequence, applied with and without water suppression. T1 and T2 relaxation times of lipids and water were measured for respective correction of signal intensity. The HL content, given as CH2/(CH2 + H2O), was calculated, and the intrasession repeatability of the method was tested. The established workflow yielded robust results with a variation of ~3% in repeated measurements for HL content determination. HL content measurements were further validated by correlation analysis with biochemically assessed triglyceride contents (R2 = 0.795) that were measured in littermates. In addition, image quality also allowed quantification of subcutaneous adipose tissue and stomach diameter. The highest HL content was measured in C57Bl/6N (4.2%) and the largest liver volume and stomach diameter in CBA (53.1 mm3 and 6.73 mm) and NMRI (51.4 mm3 and 5.96 mm) neonates, which also had the most subcutaneous adipose tissue. The observed effects were independent of sex and litter size. In conclusion, we have successfully tested and validated a robust MRI/MRS workflow that allows assessment of morphology and HL content and further enables paraformaldehyde-fixed tissue-compatible subsequent analyses in murine neonates.
Collapse
Affiliation(s)
- Marc Jonuscheit
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Celina Uhlemeyer
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Benedict Korzekwa
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Marten Schouwink
- University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Soner Öner-Sieben
- Institute of Child Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Regina Ensenauer
- Institute of Child Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Bengt-Frederik Belgardt
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Vascular and Islet Cell Biology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vera B Schrauwen-Hinderling
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
5
|
Marten LM, Krätzner R, Salomons GS, Fernandez Ojeda M, Dechent P, Gärtner J, Huppke P, Dreha-Kulaczewski S. Long term follow-up in GAMT deficiency - Correlation of therapy regimen, biochemical and in vivo brain proton MR spectroscopy data. Mol Genet Metab Rep 2024; 38:101053. [PMID: 38469086 PMCID: PMC10926185 DOI: 10.1016/j.ymgmr.2024.101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 03/13/2024] Open
Abstract
GAMT deficiency is a rare autosomal recessive disease within the group of cerebral creatine deficiency syndromes. Cerebral creatine depletion and accumulation of guanidinoacetate (GAA) lead to clinical presentation with intellectual disability, seizures, speech disturbances and movement disorders. Treatment consists of daily creatine supplementation to increase cerebral creatine, reduction of arginine intake and supplementation of ornithine for reduction of toxic GAA levels. This study represents the first long-term follow-up over a period of 14 years, with detailed clinical data, biochemical and multimodal neuroimaging findings. Developmental milestones, brain MRI, quantitative single voxel 1H magnetic resonance spectroscopy (MRS) and biochemical analyses were assessed. The results reveal insights into the dose dependent effects of creatine/ornithine supplementation and expand the phenotypic spectrum of GAMT deficiency. Of note, the creatine concentrations, which were regularly monitored over a long follow-up period, increased significantly over time, but did not reach age matched control ranges. Our patient is the second reported to show normal neurocognitive outcome after an initial delay, stressing the importance of early diagnosis and treatment initiation.
Collapse
Affiliation(s)
- Lara M. Marten
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Germany
| | - Ralph Krätzner
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Germany
| | - Gajja S. Salomons
- Amsterdam UMC location University of Amsterdam, Dept of Laboratory Medicine, Laboratory Genetic Metabolic Diseases and Dept of Pediatrics Emma Children's Hospital, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Matilde Fernandez Ojeda
- Amsterdam UMC location University of Amsterdam, Dept of Laboratory Medicine, Laboratory Genetic Metabolic Diseases and Dept of Pediatrics Emma Children's Hospital, Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Peter Dechent
- MR-Research in Neurosciences, Department of Cognitive Neurology, University Medical Center Goettingen, Germany
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Germany
| | - Peter Huppke
- Department of Neuropediatrics, Jena University Hospital, Germany
| | | |
Collapse
|
6
|
Yu M, Lin L, Xu K, Xu M, Ren J, Niu X, Gao X, Zhang M, Yang Z, Dang J, Tao Q, Han S, Wang W, Cheng J, Zhang Y. Changes in aspartate metabolism in the medial-prefrontal cortex of nicotine addicts based on J-edited magnetic resonance spectroscopy. Hum Brain Mapp 2023; 44:6429-6438. [PMID: 37909379 PMCID: PMC10681642 DOI: 10.1002/hbm.26519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/05/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
This study aims to explore the changes of the aspartate (Asp) level in the medial-prefrontal cortex (mPFC) of subjects with nicotine addiction (nicotine addicts [NAs]) using the J-edited 1 H MR spectroscopy (MRS), which may provide a positive imaging evidence for intervention of NA. From March to August 2022, 45 males aged 40-60 years old were recruited from Henan Province, including 21 in NA and 24 in nonsmoker groups. All subjects underwent routine magnetic resonance imaging (MRI) and J-edited MRS scans on a 3.0 T MRI scanner. The Asp level in mPFC was quantified with reference to the total creatine (Asp/Cr) and water (Aspwater-corr , with correction of the brain tissue composition) signals, respectively. Two-tailed independent samples t-test was used to analyze the differences in levels of Asp and other coquantified metabolites (including total N-acetylaspartate [tNAA], total cholinine [tCho], total creatine [tCr], and myo-Inositol [mI]) between the two groups. Finally, the correlations of the Asp level with clinical characteristic assessment scales were performed using the Spearman criteria. Compared with the control group (n = 22), NAs (n = 18) had higher levels of Asp (Asp/Cr: p = .005; Aspwater-corr : p = .004) in the mPFC, and the level of Asp was positively correlated with the daily smoking amount (Asp/Cr: p < .001; Aspwater-corr : p = .004). No significant correlation was found between the level of Asp and the years of nicotine use, Fagerstrom Nicotine Dependence (FTND), Russell Reason for Smoking Questionnaire (RRSQ), or Barratt Impulsivity Scale (BIS-11) score. The elevated Asp level was observed in mPFC of NAs in contrast to nonsmokers, and the Asp level was positively correlated with the amount of daily smoking, which suggests that nicotine addiction may result in elevated Asp metabolism in the human brain.
Collapse
Affiliation(s)
- Miaomiao Yu
- Department of Magnetic Resonance ImagingThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Liangjie Lin
- Clinical and Technical SupportPhilips HealthcareBeijingChina
| | - Ke Xu
- Department of Magnetic Resonance ImagingThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Man Xu
- Department of Magnetic Resonance ImagingThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jianxin Ren
- Department of Magnetic Resonance ImagingThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiaoyu Niu
- Department of Magnetic Resonance ImagingThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xinyu Gao
- Department of Magnetic Resonance ImagingThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Mengzhe Zhang
- Department of Magnetic Resonance ImagingThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhengui Yang
- Department of Magnetic Resonance ImagingThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jinghan Dang
- Department of Magnetic Resonance ImagingThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Qiuying Tao
- Department of Magnetic Resonance ImagingThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shaoqiang Han
- Department of Magnetic Resonance ImagingThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Weijian Wang
- Department of Magnetic Resonance ImagingThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jingliang Cheng
- Department of Magnetic Resonance ImagingThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yong Zhang
- Department of Magnetic Resonance ImagingThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
7
|
Juchem C, Swanberg KM, Prinsen H, Pelletier D. In vivo cortical glutathione response to oral fumarate therapy in relapsing-remitting multiple sclerosis: A single-arm open-label phase IV trial using 7-Tesla 1H MRS. Neuroimage Clin 2023; 39:103495. [PMID: 37651844 PMCID: PMC10480324 DOI: 10.1016/j.nicl.2023.103495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND This is an open-label, single-arm, single-center pilot study using 7-Tesla in vivo proton magnetic resonance spectroscopy (1H MRS) to measure brain cortical glutathione concentration at baseline before and during the use of oral fumarates as a disease-modifying therapy for multiple sclerosis. The primary endpoint of this research was the change in prefrontal cortex glutathione concentration relative to a therapy-naïve baseline after one year of oral fumarate therapy. METHODS Brain glutathione concentrations were examined by 1H MRS in single prefrontal and occipital cortex cubic voxels (2.5 × 2.5 × 2.5 cm3) before and during initiation of oral fumarate therapy (120 mg b.i.d. for 7 days and 240 mg b.i.d. thereafter). Additional measurements of related metabolites glutamate, glutamine, myoinositol, total N-acetyl aspartate, and total choline were also acquired in voxels centered on the same regions. Seven relapsing-remitting multiple sclerosis patients (4 f / 3 m, age range 28-50 years, mean age 40 years) naïve to fumarate therapy were scanned at pre-therapy baseline and after 1, 3, 6 and 12 months of therapy. A group of 8 healthy volunteers (4 f / 4 m, age range 33-48 years, mean age 41 years) was also scanned at baseline and Month 6 to characterize 1H-MRS measurement reproducibility over a comparable time frame. RESULTS In the multiple sclerosis cohort, general linear models demonstrated a significant positive linear relationship between prefrontal glutathione and time either linearly across all time points (+0.05 ± 0.02 mM/month, t(27) = 2.6, p = 0.02) or specifically for factor variable Month 12 (+0.6 ± 0.3 mM/12 months, t(24) = 2.2, p = 0.04) relative to baseline. No such effects of time on glutathione concentration were demonstrated in the occipital cortex or in the healthy volunteer group. Changes in occipital total choline were further observed in the multiple sclerosis cohort as well as prefrontal total choline and occipital glutamine and myoinositol in the control cohort throughout the study duration. CONCLUSIONS While the open-label single-arm pilot study design and abbreviated control series cannot support firm conclusions about the influence of oral fumarate therapy independent of test-retest factors or normal biological variation in a state of either health or disease, these results do justify further investigation at a larger scale into the potential relationship between prefrontal cortex glutathione increases and oral fumarate therapy in relapsing-remitting multiple sclerosis.
Collapse
Affiliation(s)
- Christoph Juchem
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States; Department of Biomedical Engineering, Columbia University Fu Foundation, School of Engineering and Applied Science, New York, NY, United States; Department of Radiology, Columbia University College of Physicians and Surgeons, New York, NY, United States.
| | - Kelley M Swanberg
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States; Department of Biomedical Engineering, Columbia University Fu Foundation, School of Engineering and Applied Science, New York, NY, United States
| | - Hetty Prinsen
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Daniel Pelletier
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States; Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| |
Collapse
|
8
|
Klietz M, Mahmoudi N, Maudsley AA, Sheriff S, Bronzlik P, Almohammad M, Nösel P, Wegner F, Höglinger GU, Lanfermann H, Ding XQ. Whole-Brain Magnetic Resonance Spectroscopy Reveals Distinct Alterations in Neurometabolic Profile in Progressive Supranuclear Palsy. Mov Disord 2023; 38:1503-1514. [PMID: 37289057 DOI: 10.1002/mds.29456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/16/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Progressive supranuclear palsy (PSP) is an atypical Parkinsonian syndrome characterized by supranuclear gaze palsy, early postural instability, and a frontal dysexecutive syndrome. Contrary to normal brain magnetic resonance imaging in Parkinson's disease (PD), PSP shows specific cerebral atrophy patterns and alterations, but these findings are not present in every patient, and it is still unclear if these signs are also detectable in early disease stages. OBJECTIVE The aim of the present study was to analyze the metabolic profile of patients with clinically diagnosed PSP in comparison with matched healthy volunteers and PD patients using whole-brain magnetic resonance spectroscopic imaging (wbMRSI). METHODS Thirty-nine healthy controls (HCs), 29 PD, and 22 PSP patients underwent wbMRSI. PSP and PD patients were matched for age and handedness with HCs. Clinical characterization was performed using the Movement Disorder Society Unified Parkinson's Disease Rating Scale, PSP rating scale, and DemTect (test for cognitive assessment). RESULTS In PSP patients a significant reduction in N-acetyl-aspartate (NAA) was detected in all brain lobes. Fractional volume of the cerebrospinal fluid significantly increased in PSP patients compared to PD and healthy volunteers. CONCLUSIONS In PSP much more neuronal degeneration and cerebral atrophy have been detected compared with PD. The most relevant alteration is the decrease in NAA in all lobes of the brain, which also showed a partial correlation with clinical symptoms. However, more studies are needed to confirm the additional value of wbMRSI in clinical practice. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Martin Klietz
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Nima Mahmoudi
- Department of Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Andrew A Maudsley
- Department of Radiology, University of Miami School of Medicine, Miami, Florida, USA
| | - Sulaiman Sheriff
- Department of Radiology, University of Miami School of Medicine, Miami, Florida, USA
| | - Paul Bronzlik
- Department of Neuroradiology, Hannover Medical School, Hannover, Germany
| | | | - Patrick Nösel
- Department of Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | | | - Xiao-Qi Ding
- Department of Neuroradiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Pasanta D, He JL, Ford T, Oeltzschner G, Lythgoe DJ, Puts NA. Functional MRS studies of GABA and glutamate/Glx - A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 144:104940. [PMID: 36332780 PMCID: PMC9846867 DOI: 10.1016/j.neubiorev.2022.104940] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/19/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
Abstract
Functional magnetic resonance spectroscopy (fMRS) can be used to investigate neurometabolic responses to external stimuli in-vivo, but findings are inconsistent. We performed a systematic review and meta-analysis on fMRS studies of the primary neurotransmitters Glutamate (Glu), Glx (Glutamate + Glutamine), and GABA. Data were extracted, grouped by metabolite, stimulus domain, and brain region, and analysed by determining standardized effect sizes. The quality of individual studies was rated. When results were analysed by metabolite type small to moderate effect sizes of 0.29-0.47 (p < 0.05) were observed for changes in Glu and Glx regardless of stimulus domain and brain region, but no significant effects were observed for GABA. Further analysis suggests that Glu, Glx and GABA responses differ by stimulus domain or task and vary depending on the time course of stimulation and data acquisition. Here, we establish effect sizes and directionality of GABA, Glu and Glx response in fMRS. This work highlights the importance of standardised reporting and minimal best practice for fMRS research.
Collapse
Affiliation(s)
- Duanghathai Pasanta
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom; Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jason L He
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom
| | - Talitha Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia; Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Georg Oeltzschner
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 700. N. Broadway, 21207 Baltimore, United States; Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N. Wolfe Street, 21205 Baltimore, United States
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom; MRC Centre for Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL London, United Kingdom.
| |
Collapse
|
10
|
Choi SH, Ryu YC, Chung JY. Baseline Correction of the Human 1H MRS(I) Spectrum Using T 2* Selective Differential Operators in the Frequency Domain. Metabolites 2022; 12:metabo12121257. [PMID: 36557294 PMCID: PMC9787948 DOI: 10.3390/metabo12121257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
The baseline distortion caused by water and fat signals is a crucial issue in the 1H MRS(I) study of the human brain. This paper suggests an effective and reliable preprocessing technique to calibrate the baseline distortion caused by the water and fat signals exhibited in the MRS spectral signal. For the preprocessing, we designed a T2* (or linewidth within the spectral signal) selective filter for the MRS(I) data based on differential filtering within the frequency domain. The number and types for the differential filtering were determined by comparing the T2* selectivity profile of each differential operator with the T2* profile of the metabolites to be suppressed within the MRS(I) data. In the performance evaluation of the proposed differential filtering, the simulation data for MRS spectral signals were used. Furthermore, the spectral signal of the human 1H MRSI data obtained by 2D free induction decay chemical shift imaging with a typical water suppression technique was also used in the performance evaluation. The absolute values of the average of the filtered dataset were quantitatively analyzed using the LCModel software. With the suggested T2* selective (not frequency selective) filtering technique, in the simulated MRS data, we removed the metabolites from the simulated MRS(I) spectral signal baseline distorted by the water and fat signal observed in the most frequency band. Moreover, in the obtained MRSI data, the quantitative analysis results for the metabolites of interest showed notable improvement in the uncertainty estimation accuracy, the CRLB (Cramer-Rao Lower Bound) levels.
Collapse
Affiliation(s)
- Sang-Han Choi
- Center for Neuroscience Imaging Research, IBS, N Center, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, Republic of Korea
| | - Yeun-Chul Ryu
- Department of Radiological Science, College of Health Science, Gachon University, 191 Hambangmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
- Correspondence: (Y.-C.R.); (J.-Y.C.); Tel.: +82-32-822-5361 (J.-Y.C.)
| | - Jun-Young Chung
- Department of Neuroscience, College of Medicine, Gachon University, 21, Namdong-daero 774 beon-gil, Namdong-gu, Incheon 21565, Republic of Korea
- Correspondence: (Y.-C.R.); (J.-Y.C.); Tel.: +82-32-822-5361 (J.-Y.C.)
| |
Collapse
|
11
|
Wong KM, Jepsen WM, Efthymiou S, Salpietro V, Sanchez-Castillo M, Yip J, Kriouile Y, Diegmann S, Dreha-Kulaczewski S, Altmüller J, Thiele H, Nürnberg P, Toosi MB, Akhondian J, Ghayoor Karimiani E, Hummel-Abmeier H, Huppke B, Houlden H, Gärtner J, Maroofian R, Huppke P. Mutations in TAF8 cause a neurodegenerative disorder. Brain 2022; 145:3022-3034. [PMID: 35759269 DOI: 10.1093/brain/awac154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/14/2022] [Accepted: 04/03/2022] [Indexed: 11/28/2024] Open
Abstract
TAF8 is part of the transcription factor II D complex, composed of the TATA-binding protein and 13 TATA-binding protein-associated factors (TAFs). Transcription factor II D is the first general transcription factor recruited at promoters to assemble the RNA polymerase II preinitiation complex. So far disorders related to variants in 5 of the 13 subunits of human transcription factor II D have been described. Recently, a child with a homozygous c.781-1G>A mutation in TAF8 has been reported. Here we describe seven further patients with mutations in TAF8 and thereby confirm the TAF8 related disorder. In two sibling patients, we identified two novel compound heterozygous TAF8 splice site mutations, c.45+4A > G and c.489G>A, which cause aberrant splicing as well as reduced expression and mislocalization of TAF8. In five further patients, the previously described c.781-1G > A mutation was present on both alleles. The clinical phenotype associated with the different TAF8 mutations is characterized by severe psychomotor retardation with almost absent development, feeding problems, microcephaly, growth retardation, spasticity and epilepsy. Cerebral imaging showed hypomyelination, a thin corpus callosum and brain atrophy. Moreover, repeated imaging in the sibling pair demonstrated progressive cerebral and cerebellar atrophy. Consistently, reduced N-acetylaspartate, a marker of neuronal viability, was observed on magnetic resonance spectroscopy. Further review of the literature shows that mutations causing a reduced expression of transcription factor II D subunits have an overlapping phenotype of microcephaly, developmental delay and intellectual disability. Although transcription factor II D plays an important role in RNA polymerase II transcription in all cells and tissues, the symptoms associated with such defects are almost exclusively neurological. This might indicate a specific vulnerability of neuronal tissue to widespread deregulation of gene expression as also seen in Rett syndrome or Cornelia de Lange syndrome.
Collapse
Affiliation(s)
- Keit Men Wong
- Department of Neuropediatrics, Jena University Hospital, 07747 Jena, Germany
- Center for Rare Diseases, Jena University Hospital, 07747 Jena, Germany
| | - Wayne M Jepsen
- Translational Genomics Research Institute, Neurogenomics Division-Huentelman Lab, Phoenix, AZ 85004, USA
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Meredith Sanchez-Castillo
- Translational Genomics Research Institute, Neurogenomics Division-Huentelman Lab, Phoenix, AZ 85004, USA
| | - Janice Yip
- Department of Neuromuscular Disorders, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Yamna Kriouile
- Unit of Neuropediatrics and Neurometabolism, Pediatric Department 2, Rabat Children's Hospital, BP 6527 Rabat, Morocco
| | - Susann Diegmann
- Department of Pediatrics and Pediatric Neurology, University Medical Center Göttingen, 37075 Goettingen, Germany
| | - Steffi Dreha-Kulaczewski
- Department of Pediatrics and Pediatric Neurology, University Medical Center Göttingen, 37075 Goettingen, Germany
| | - Janine Altmüller
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Core Facility Genomics, Charitéplatz 1, 10117 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 10117 Berlin, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Mehran Beiraghi Toosi
- Department of Pediatric Neurology, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad 45785, Iran
| | - Javad Akhondian
- Department of Pediatric Neurology, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad 45785, Iran
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
- Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad 45785, Iran
| | - Hannah Hummel-Abmeier
- Department of Pediatrics and Pediatric Neurology, University Medical Center Göttingen, 37075 Goettingen, Germany
| | - Brenda Huppke
- Department of Neuropediatrics, Jena University Hospital, 07747 Jena, Germany
- Center for Rare Diseases, Jena University Hospital, 07747 Jena, Germany
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Jutta Gärtner
- Department of Pediatrics and Pediatric Neurology, University Medical Center Göttingen, 37075 Goettingen, Germany
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Peter Huppke
- Department of Neuropediatrics, Jena University Hospital, 07747 Jena, Germany
- Center for Rare Diseases, Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
12
|
Schmidt KA, Jones RB, Rios C, Corona Y, Berger PK, Plows JF, Alderete TL, Fogel J, Hampson H, Hartiala JA, Cai Z, Allayee H, Nayak KS, Sinatra FR, Harlan G, Pickering TA, Salvy SJ, Mack WJ, Kohli R, Goran MI. Clinical Intervention to Reduce Dietary Sugar Does Not Affect Liver Fat in Latino Youth, Regardless of PNPLA3 Genotype: A Randomized Controlled Trial. J Nutr 2022; 152:1655-1665. [PMID: 35218194 PMCID: PMC9258557 DOI: 10.1093/jn/nxac046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/11/2022] [Accepted: 02/22/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) among Latinos is partially attributed to a prevalent C>G polymorphism in the patatin-like phospholipase 3 (PNPLA3) gene. Cross-sectional analyses in Latino children showed the association between dietary sugar and liver fat was exacerbated by GG genotype. Pediatric feeding studies show extreme sugar restriction improves liver fat, but no prior trial has examined the impact of a clinical intervention or whether effects differ by PNPLA3 genotype. OBJECTIVES We aimed to test effects of a clinical intervention to reduce dietary sugar compared with standard dietary advice on change in liver fat, and secondary-endpoint changes in liver fibrosis, liver enzymes, and anthropometrics; and whether effects differ by PNPLA3 genotype (assessed retrospectively) in Latino youth with obesity (BMI ≥ 95th percentile). METHODS This parallel-design trial randomly assigned participants (n = 105; mean baseline liver fat: 12.7%; mean age: 14.8 y) to control or sugar reduction (goal of ≤10% of calories from free sugar) for 12 wk. Intervention participants met with a dietitian monthly and received delivery of bottled water. Changes in liver fat, by MRI, were assessed by intervention group via general linear models. RESULTS Mean free sugar intake decreased in intervention compared with control [11.5% to 7.3% compared with 13.9% to 10.7% (% energy), respectively; P = 0.02], but there were no significant effects on liver outcomes or anthropometrics (Pall > 0.10), and no PNPLA3 interactions (Pall > 0.10). In exploratory analyses, participants with whole-body fat mass (FM) reduction (mean ± SD: -1.9 ± 2.4 kg), irrespective of randomization, had significant reductions in liver fat compared with participants without FM reduction (median: -2.1%; IQR: -6.5% to -0.8% compared with 0.3%; IQR: -1.0% to 1.1%; P < 0.001). CONCLUSIONS In Latino youth with obesity, a dietitian-led sugar reduction intervention did not improve liver outcomes compared with control, regardless of PNPLA3 genotype. Results suggest FM reduction is important for liver fat reduction, confirming clinical recommendations of weight loss and a healthy diet for pediatric NAFLD.This trial was registered at clinicaltrials.gov as NCT02948647.
Collapse
Affiliation(s)
- Kelsey A Schmidt
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Roshonda B Jones
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Claudia Rios
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Yesica Corona
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Paige K Berger
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Jasmine F Plows
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Tanya L Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Jennifer Fogel
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Hailey Hampson
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, University of Southern California, Los Angeles, CA, USA
| | - Jaana A Hartiala
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Zhiheng Cai
- Department of Biochemistry & Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hooman Allayee
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry & Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Krishna S Nayak
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Frank R Sinatra
- Department of Pediatrics, University of Southern California, Los Angeles, CA, USA
| | - Gregory Harlan
- Department of Pediatrics, University of Southern California, Los Angeles, CA, USA
| | - Trevor A Pickering
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Sarah-Jeanne Salvy
- Cancer Research Center for Health Equity, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Wendy Jean Mack
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Rohit Kohli
- Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Division of Gastroenterology and Hepatology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Michael I Goran
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
13
|
Abstract
Abstract
Purpose
Gliomas, the most common primary brain tumours, have recently been re-classified incorporating molecular aspects with important clinical, prognostic, and predictive implications. Concurrently, the reprogramming of metabolism, altering intracellular and extracellular metabolites affecting gene expression, differentiation, and the tumour microenvironment, is increasingly being studied, and alterations in metabolic pathways are becoming hallmarks of cancer. Magnetic resonance spectroscopy (MRS) is a complementary, non-invasive technique capable of quantifying multiple metabolites. The aim of this review focuses on the methodology and analysis techniques in proton MRS (1H MRS), including a brief look at X-nuclei MRS, and on its perspectives for diagnostic and prognostic biomarkers in gliomas in both clinical practice and preclinical research.
Methods
PubMed literature research was performed cross-linking the following key words: glioma, MRS, brain, in-vivo, human, animal model, clinical, pre-clinical, techniques, sequences, 1H, X-nuclei, Artificial Intelligence (AI), hyperpolarization.
Results
We selected clinical works (n = 51), preclinical studies (n = 35) and AI MRS application papers (n = 15) published within the last two decades. The methodological papers (n = 62) were taken into account since the technique first description.
Conclusions
Given the development of treatments targeting specific cancer metabolic pathways, MRS could play a key role in allowing non-invasive assessment for patient diagnosis and stratification, predicting and monitoring treatment responses and prognosis. The characterization of gliomas through MRS will benefit of a wide synergy among scientists and clinicians of different specialties within the context of new translational competences. Head coils, MRI hardware and post-processing analysis progress, advances in research, experts’ consensus recommendations and specific professionalizing programs will make the technique increasingly trustworthy, responsive, accessible.
Collapse
|
14
|
Tomiyasu M, Harada M. In vivo Human MR Spectroscopy Using a Clinical Scanner: Development, Applications, and Future Prospects. Magn Reson Med Sci 2022; 21:235-252. [PMID: 35173095 PMCID: PMC9199975 DOI: 10.2463/mrms.rev.2021-0085] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
MR spectroscopy (MRS) is a unique and useful method for noninvasively evaluating biochemical metabolism in human organs and tissues, but its clinical dissemination has been slow and often limited to specialized institutions or hospitals with experts in MRS technology. The number of 3-T clinical MR scanners is now increasing, representing a major opportunity to promote the use of clinical MRS. In this review, we summarize the theoretical background and basic knowledge required to understand the results obtained with MRS and introduce the general consensus on the clinical utility of proton MRS in routine clinical practice. In addition, we present updates to the consensus guidelines on proton MRS published by the members of a working committee of the Japan Society of Magnetic Resonance in Medicine in 2013. Recent research into multinuclear MRS equipped in clinical MR scanners is explained with an eye toward future development. This article seeks to provide an overview of the current status of clinical MRS and to promote the understanding of when it can be useful. In the coming years, MRS-mediated biochemical evaluation is expected to become available for even routine clinical practice.
Collapse
Affiliation(s)
- Moyoko Tomiyasu
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology.,Department of Radiology, Kanagawa Children's Medical Center
| | - Masafumi Harada
- Department of Radiology and Radiation Oncology, Graduate School of Biomedical Sciences, Tokushima University
| |
Collapse
|
15
|
Belkić D, Belkić K. NMR spectroscopy at high magnetic fields: Derivative reconstructions of components from envelopes using encoded time signals. ADVANCES IN QUANTUM CHEMISTRY 2022. [DOI: 10.1016/bs.aiq.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Swanberg KM, Prinsen H, DeStefano K, Bailey M, Kurada AV, Pitt D, Fulbright RK, Juchem C. In vivo evidence of differential frontal cortex metabolic abnormalities in progressive and relapsing-remitting multiple sclerosis. NMR IN BIOMEDICINE 2021; 34:e4590. [PMID: 34318959 DOI: 10.1002/nbm.4590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 06/11/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
The pathophysiology of progressive multiple sclerosis remains elusive, significantly limiting available disease-modifying therapies. Proton MRS (1 H-MRS) enables in vivo measurement of small molecules implicated in multiple sclerosis, but its application to key metabolites glutamate, γ-aminobutyric acid (GABA), and glutathione has been sparse. We employed, at 7 T, a previously validated 1 H-MRS protocol to measure glutamate, GABA, and glutathione, as well as glutamine, N-acetyl aspartate, choline, and myoinositol, in the frontal cortex of individuals with relapsing-remitting (N = 26) or progressive (N = 21) multiple sclerosis or healthy control adults (N = 25) in a cross-sectional analysis. Only individuals with progressive multiple sclerosis demonstrated reduced glutamate (F2,65 = 3.424, p = 0.04; 12.40 ± 0.62 mM versus control 13.17 ± 0.95 mM, p = 0.03) but not glutamine (F2,65 = 0.352, p = 0.7; 4.71 ± 0.35 mM versus control 4.84 ± 0.42 mM), reduced GABA (F2,65 = 3.89, p = 0.03; 1.29 ± 0.23 mM versus control 1.47 ± 0.25 mM, p = 0.05), and possibly reduced glutathione (F2,65 = 0.352, p = 0.056; 2.23 ± 0.46 mM versus control 2.51 ± 0.48 mM, p < 0.1). As a group, multiple sclerosis patients demonstrated significant negative correlations between disease duration and glutamate or GABA (ρ = -0.4, p = 0.02) but not glutamine or glutathione. Alone, only relapsing-remitting multiple sclerosis patients exhibited a significant negative correlation between disease duration and GABA (ρ = -0.5, p = 0.03). Taken together, these results indicate that frontal cortex metabolism is differentially disturbed in progressive and relapsing-remitting multiple sclerosis.
Collapse
Affiliation(s)
- Kelley M Swanberg
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
- Department of Biomedical Engineering, Columbia University School of Engineering and Applied Science, New York, New York
| | - Hetty Prinsen
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Katherine DeStefano
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | - Mary Bailey
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | - Abhinav V Kurada
- Department of Biomedical Engineering, Columbia University School of Engineering and Applied Science, New York, New York
| | - David Pitt
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | - Robert K Fulbright
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Christoph Juchem
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
- Department of Biomedical Engineering, Columbia University School of Engineering and Applied Science, New York, New York
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
- Department of Radiology, Columbia University Medical Center, New York, New York
| |
Collapse
|
17
|
Liu DY, Ju X, Gao Y, Han JF, Li Z, Hu XW, Tan ZL, Northoff G, Song XM. From Molecular to Behavior: Higher Order Occipital Cortex in Major Depressive Disorder. Cereb Cortex 2021; 32:2129-2139. [PMID: 34613359 DOI: 10.1093/cercor/bhab343] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/14/2022] Open
Abstract
Medial prefrontal cortex (MPFC) and other regions like the occipital cortex (OC) exhibit abnormal neural activity in major depressive disorder (MDD). Their relationship to specific biochemical, psychophysical, and psychopathological changes remains unclear, though. For that purpose, we focus on a particular subregion in OC, namely middle temporal (MT) visual area that is known to mediate the perception of visual motion. Using high-field 7 T magnetic resonance imaging (MRI), including resting state functional MRI and proton magnetic resonance spectroscopy, the amplitude of low-frequency fluctuations (ALFF) of the blood oxygen level-dependent signal in MT, MT-seeded functional connectivity (FC), and gamma-aminobutyric acid (GABA) in MT were investigated. Applying the vision motion psychophysical task, the motion suppression index of subjects was also examined. We demonstrate significantly elevated neural variability (as measured by ALFF) in MT together with decreases in both MT GABA and motion suppression in our MDD sample. Unlike in healthy subjects, MT neural variability no longer modulates the relationship of MT GABA and motion suppression in MDD. MT also exhibits reduction in global inter-regional FC to MPFC in MDD. Finally, elevated MT ALFF relates to specifically retardation in behavior as measured by the Hamilton subscore. Together, MT provides a strong candidate for biomarker in MDD.
Collapse
Affiliation(s)
- Dong-Yu Liu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Xuan Ju
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Yuan Gao
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Jin-Fang Han
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Zhe Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Xi-Wen Hu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Zhong-Lin Tan
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Georg Northoff
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China.,University of Ottawa Institute of Mental Health Research, University of Ottawa; Ottawa, ON, K1Z 7K4, Canada
| | - Xue Mei Song
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
18
|
Brand T, van den Munckhof ICL, van der Graaf M, Schraa K, Dekker HM, Joosten LAB, Netea MG, Riksen NP, de Graaf J, Rutten JHW. Superficial vs Deep Subcutaneous Adipose Tissue: Sex-Specific Associations With Hepatic Steatosis and Metabolic Traits. J Clin Endocrinol Metab 2021; 106:e3881-e3889. [PMID: 34137897 PMCID: PMC8571813 DOI: 10.1210/clinem/dgab426] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 01/21/2023]
Abstract
CONTEXT Subcutaneous adipose tissue (SAT) is not homogeneous, as the fascia scarpa separates the deep SAT (dSAT) from the superficial SAT (sSAT). OBJECTIVE The aim of this study is to evaluate the sex-specific associations of sSAT and dSAT with hepatic steatosis and metabolic syndrome in overweight individuals. METHODS We recruited 285 individuals with a body mass index (BMI) greater than or equal to 27 and aged 55 to 81 years. Abdominal magnetic resonance imaging was performed around level L4 to L5 to measure visceral adipose tissue (VAT), dSAT, and sSAT volumes. The amount of hepatic fat was quantified by MR spectroscopy. RESULTS Men had significantly higher volumes of VAT (122.6 cm3 vs 98.7 cm3, P < .001) and had only half the volume of sSAT compared to women adjusted for BMI (50.3 cm3 in men vs 97.0 cm3 in women, P < .001). dSAT correlated significantly with hepatic fat content in univariate analysis (standardized β = .190, P < .05), while VAT correlated significantly with hepatic steatosis in a multivariate model, adjusted for age, alcohol use, and other abdominal fat compartments (standardized β = .184, P = .037). Moreover, dSAT in men correlated negatively with HDL cholesterol (standardized β = -0.165, P = .038) in multivariate analyses. In women with a BMI between 30 and 40, in a multivariate model adjusted for age, alcohol use, and other abdominal fat compartments, VAT correlated positively (standardized β = -.404, P = .003), and sSAT negatively (standardized β = -.300, P = .04) with hepatic fat content. CONCLUSION In men, dSAT is associated with hepatic steatosis and adverse metabolic traits, such as lower HDL cholesterol levels, whereas in women with obesity sSAT shows a beneficial relation with respect to hepatic fat content.
Collapse
Affiliation(s)
- Tessa Brand
- Department of Internal Medicine, Division of Vascular Medicine 463, Radboud University Medical Center, HB Nijmegen, the Netherlands
| | | | - Marinette van der Graaf
- Department of Medical Imaging, Radboud University Medical Center, HB Nijmegen, the Netherlands
| | - Kiki Schraa
- Department of Internal Medicine, Division of Vascular Medicine 463, Radboud University Medical Center, HB Nijmegen, the Netherlands
| | - Helena Maria Dekker
- Department of Medical Imaging, Radboud University Medical Center, HB Nijmegen, the Netherlands
| | - Leonardus Antonius Bernardus Joosten
- Department of Internal Medicine, Division of Vascular Medicine 463, Radboud University Medical Center, HB Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai Gheorghe Netea
- Department of Internal Medicine, Division of Vascular Medicine 463, Radboud University Medical Center, HB Nijmegen, the Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Niels Peter Riksen
- Department of Internal Medicine, Division of Vascular Medicine 463, Radboud University Medical Center, HB Nijmegen, the Netherlands
| | - Jacqueline de Graaf
- Department of Internal Medicine, Division of Vascular Medicine 463, Radboud University Medical Center, HB Nijmegen, the Netherlands
| | - Joseph Henricus Wilhelmus Rutten
- Department of Internal Medicine, Division of Vascular Medicine 463, Radboud University Medical Center, HB Nijmegen, the Netherlands
- Correspondence: J. H. W. Rutten, MD, PhD, Department of Internal Medicine (463), Radboudumc Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
19
|
Zhang Z, Karasan E, Gopalan K, Liu C, Lustig M. DiSpect: Displacement spectrum imaging of flow and tissue perfusion using spin-labeling and stimulated echoes. Magn Reson Med 2021; 86:2468-2481. [PMID: 34096098 DOI: 10.1002/mrm.28882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE We propose a new method, displacement spectrum (DiSpect) imaging, for probing in vivo complex tissue dynamics such as motion, flow, diffusion, and perfusion. Based on stimulated echoes and image phase, our flexible approach enables observations of the spin dynamics over short (milliseconds) to long (seconds) evolution times. METHODS The DiSpect method is a Fourier-encoded variant of displacement encoding with stimulated echoes, which encodes bulk displacement of spins that occurs between tagging and imaging in the image phase. However, this method fails to capture partial volume effects as well as blood flow. The DiSpect variant mitigates this by performing multiple scans with increasing displacement-encoding steps. Fourier analysis can then resolve the multidimensional spectrum of displacements that spins exhibit over the mixing time. In addition, repeated imaging following tagging can capture dynamic displacement spectra with increasing mixing times. RESULTS We demonstrate properties of DiSpect MRI using flow phantom experiments as well as in vivo brain scans. Specifically, the ability of DiSpect to perform retrospective vessel-selective perfusion imaging at multiple mixing times is highlighted. CONCLUSION The DiSpect variant is a new tool in the arsenal of MRI techniques for probing complex tissue dynamics. The flexibility and the rich information it provides open the possibility of alternative ways to quantitatively measure numerous complex spin dynamics, such as flow and perfusion within a single exam.
Collapse
Affiliation(s)
- Zhiyong Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California, USA
| | - Ekin Karasan
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California, USA
| | - Karthik Gopalan
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California, USA
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California, USA.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, USA
| | - Michael Lustig
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
20
|
Pasanta D, Htun KT, Pan J, Tungjai M, Kaewjaeng S, Kim H, Kaewkhao J, Kothan S. Magnetic Resonance Spectroscopy of Hepatic Fat from Fundamental to Clinical Applications. Diagnostics (Basel) 2021; 11:842. [PMID: 34067193 PMCID: PMC8151733 DOI: 10.3390/diagnostics11050842] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
The number of individuals suffering from fatty liver is increasing worldwide, leading to interest in the noninvasive study of liver fat. Magnetic resonance spectroscopy (MRS) is a powerful tool that allows direct quantification of metabolites in tissue or areas of interest. MRS has been applied in both research and clinical studies to assess liver fat noninvasively in vivo. MRS has also demonstrated excellent performance in liver fat assessment with high sensitivity and specificity compared to biopsy and other imaging modalities. Because of these qualities, MRS has been generally accepted as the reference standard for the noninvasive measurement of liver steatosis. MRS is an evolving technique with high potential as a diagnostic tool in the clinical setting. This review aims to provide a brief overview of the MRS principle for liver fat assessment and its application, and to summarize the current state of MRS study in comparison to other techniques.
Collapse
Affiliation(s)
- Duanghathai Pasanta
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (D.P.); (K.T.H.); (J.P.); (M.T.); (S.K.)
| | - Khin Thandar Htun
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (D.P.); (K.T.H.); (J.P.); (M.T.); (S.K.)
| | - Jie Pan
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (D.P.); (K.T.H.); (J.P.); (M.T.); (S.K.)
- Shandong Provincial Key Laboratory of Animal Resistant Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Montree Tungjai
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (D.P.); (K.T.H.); (J.P.); (M.T.); (S.K.)
| | - Siriprapa Kaewjaeng
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (D.P.); (K.T.H.); (J.P.); (M.T.); (S.K.)
| | - Hongjoo Kim
- Department of Physics, Kyungpook National University, Daegu 41566, Korea;
| | - Jakrapong Kaewkhao
- Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000, Thailand;
| | - Suchart Kothan
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (D.P.); (K.T.H.); (J.P.); (M.T.); (S.K.)
| |
Collapse
|
21
|
Genovese G, Marjańska M, Auerbach EJ, Cherif LY, Ronen I, Lehéricy S, Branzoli F. In vivo diffusion-weighted MRS using semi-LASER in the human brain at 3 T: Methodological aspects and clinical feasibility. NMR IN BIOMEDICINE 2021; 34:e4206. [PMID: 31930768 PMCID: PMC7354897 DOI: 10.1002/nbm.4206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/18/2019] [Accepted: 10/07/2019] [Indexed: 05/08/2023]
Abstract
Diffusion-weighted (DW-) MRS investigates non-invasively microstructural properties of tissue by probing metabolite diffusion in vivo. Despite the growing interest in DW-MRS for clinical applications, little has been published on the reproducibility of this technique. In this study, we explored the optimization of a single-voxel DW-semi-LASER sequence for clinical applications at 3 T, and evaluated the reproducibility of the method under different experimental conditions. DW-MRS measurements were carried out in 10 healthy participants and repeated across three sessions. Metabolite apparent diffusion coefficients (ADCs) were calculated from mono-exponential fits (ADCexp ) up to b = 3300 s/mm2 , and from the diffusional kurtosis approach (ADCK ) up to b = 7300 s/mm2 . The inter-subject variabilities of ADCs of N-acetylaspartate + N-acetylaspartylglutamate (tNAA), creatine + phosphocreatine, choline containing compounds, and myo-inositol were calculated in the posterior cingulate cortex (PCC) and in the corona radiata (CR). We explored the effect of physiological motion on the DW-MRS signal and the importance of cardiac gating and peak thresholding to account for signal amplitude fluctuations. Additionally, we investigated the dependence of the intra-subject variability on the acquisition scheme using a bootstrapping resampling method. Coefficients of variation were lower in PCC than CR, likely due to the different sensitivities to motion artifacts of the two regions. Finally, we computed coefficients of repeatability for ADCexp and performed power calculations needed for designing clinical studies. The power calculation for ADCexp of tNAA showed that in the PCC seven subjects per group are sufficient to detect a difference of 5% between two groups with an acquisition time of 4 min, suggesting that ADCexp of tNAA is a suitable marker for disease-related intracellular alteration even in small case-control studies. In the CR, further work is needed to evaluate the voxel size and location that minimize the motion artifacts and variability of the ADC measurements.
Collapse
Affiliation(s)
- Guglielmo Genovese
- Centre de NeuroImagerie de Recherche (CENIR), Institut du Cerveau et de la Moelle épinère (ICM), F-75013, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, F-75013, Paris, France
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Edward J. Auerbach
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Lydia Yahia Cherif
- Centre de NeuroImagerie de Recherche (CENIR), Institut du Cerveau et de la Moelle épinère (ICM), F-75013, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, F-75013, Paris, France
| | - Itamar Ronen
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stéphane Lehéricy
- Centre de NeuroImagerie de Recherche (CENIR), Institut du Cerveau et de la Moelle épinère (ICM), F-75013, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, F-75013, Paris, France
| | - Francesca Branzoli
- Centre de NeuroImagerie de Recherche (CENIR), Institut du Cerveau et de la Moelle épinère (ICM), F-75013, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, F-75013, Paris, France
- Corresponding author: Francesca Branzoli, Ph.D., Institut du cerveau et de la moelle épinière (ICM), Hôpital Pitié-Salpetrière, 47 boulevard de l’Hôpital, CS 21414, 75646 Paris Cedex 13, Phone number: +33 (0)1 57 27 46 46, Fax: +33 (0)1 45 83 19 28,
| |
Collapse
|
22
|
Weinberg BD, Kuruva M, Shim H, Mullins ME. Clinical Applications of Magnetic Resonance Spectroscopy in Brain Tumors: From Diagnosis to Treatment. Radiol Clin North Am 2021; 59:349-362. [PMID: 33926682 PMCID: PMC8272438 DOI: 10.1016/j.rcl.2021.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Magnetic resonance spectroscopy (MRS) is a valuable tool for imaging brain tumors, primarily as an adjunct to conventional imaging and clinical presentation. MRS is useful in initial diagnosis of brain tumors, helping differentiate tumors from possible mimics such as metastatic disease, lymphoma, demyelination, and infection, as well as in the subsequent follow-up of patients after resection and chemoradiation. Unfortunately, the spectroscopic appearance of many pathologies can overlap, and ultimately follow-up or biopsy may be required to make a definitive diagnosis. Future developments may continue to increase the value of MRS for initial diagnosis, treatment planning, and early detection of recurrence.
Collapse
Affiliation(s)
- Brent D Weinberg
- Radiology and Imaging Sciences, Emory University, 1364 Clifton Road Northeast BG20, Atlanta, GA 30322, USA.
| | - Manohar Kuruva
- Radiology and Imaging Sciences, Emory University, 1364 Clifton Road Northeast BG20, Atlanta, GA 30322, USA
| | - Hyunsuk Shim
- Radiation Oncology, Emory University, 1365 Clifton Road Northeast, Atlanta, GA 30322, USA
| | - Mark E Mullins
- Radiology and Imaging Sciences, Emory University, 1364 Clifton Road Northeast BG20, Atlanta, GA 30322, USA
| |
Collapse
|
23
|
Tkáč I, Deelchand D, Dreher W, Hetherington H, Kreis R, Kumaragamage C, Považan M, Spielman DM, Strasser B, de Graaf RA. Water and lipid suppression techniques for advanced 1 H MRS and MRSI of the human brain: Experts' consensus recommendations. NMR IN BIOMEDICINE 2021; 34:e4459. [PMID: 33327042 PMCID: PMC8569948 DOI: 10.1002/nbm.4459] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 11/23/2020] [Indexed: 05/09/2023]
Abstract
The neurochemical information provided by proton magnetic resonance spectroscopy (MRS) or MR spectroscopic imaging (MRSI) can be severely compromised if strong signals originating from brain water and extracranial lipids are not properly suppressed. The authors of this paper present an overview of advanced water/lipid-suppression techniques and describe their advantages and disadvantages. Moreover, they provide recommendations for choosing the most appropriate techniques for proper use. Methods of water signal handling are primarily focused on the VAPOR technique and on MRS without water suppression (metabolite cycling). The section on lipid-suppression methods in MRSI is divided into three parts. First, lipid-suppression techniques that can be implemented on most clinical MR scanners (volume preselection, outer-volume suppression, selective lipid suppression) are described. Second, lipid-suppression techniques utilizing the combination of k-space filtering, high spatial resolutions and lipid regularization are presented. Finally, three promising new lipid-suppression techniques, which require special hardware (a multi-channel transmit system for dynamic B1+ shimming, a dedicated second-order gradient system or an outer volume crusher coil) are introduced.
Collapse
Affiliation(s)
- Ivan Tkáč
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Dinesh Deelchand
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Wolfgang Dreher
- Department of Chemistry, In vivo-MR Group, University Bremen, Bremen, Germany
| | - Hoby Hetherington
- Department of Radiology Magnetic Resonance Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Roland Kreis
- Departments of Radiology and Biomedical Research, University Bern, Bern, Switzerland
| | - Chathura Kumaragamage
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Michal Považan
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel M. Spielman
- Department of Radiology, Stanford University, Stanford, California, CA, USA
| | - Bernhard Strasser
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Boston, MA, USA
| | - Robin A. de Graaf
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
24
|
Spontaneous and deliberate creative cognition during and after psilocybin exposure. Transl Psychiatry 2021; 11:209. [PMID: 33833225 PMCID: PMC8032715 DOI: 10.1038/s41398-021-01335-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023] Open
Abstract
Creativity is an essential cognitive ability linked to all areas of our everyday functioning. Thus, finding a way to enhance it is of broad interest. A large number of anecdotal reports suggest that the consumption of psychedelic drugs can enhance creative thinking; however, scientific evidence is lacking. Following a double-blind, placebo-controlled, parallel-group design, we demonstrated that psilocybin (0.17 mg/kg) induced a time- and construct-related differentiation of effects on creative thinking. Acutely, psilocybin increased ratings of (spontaneous) creative insights, while decreasing (deliberate) task-based creativity. Seven days after psilocybin, number of novel ideas increased. Furthermore, we utilized an ultrahigh field multimodal brain imaging approach, and found that acute and persisting effects were predicted by within- and between-network connectivity of the default mode network. Findings add some support to historical claims that psychedelics can influence aspects of the creative process, potentially indicating them as a tool to investigate creativity and subsequent underlying neural mechanisms. Trial NL6007; psilocybin as a tool for enhanced cognitive flexibility; https://www.trialregister.nl/trial/6007 .
Collapse
|
25
|
High temporal resolution functional magnetic resonance spectroscopy in the mouse upon visual stimulation. Neuroimage 2021; 234:117973. [PMID: 33762216 DOI: 10.1016/j.neuroimage.2021.117973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/18/2022] Open
Abstract
Functional magnetic resonance spectroscopy (fMRS) quantifies metabolic variations upon presentation of a stimulus and can therefore provide complementary information compared to activity inferred from functional magnetic resonance imaging (fMRI). Improving the temporal resolution of fMRS can be beneficial to clinical applications where detailed information on metabolism can assist the characterization of brain function in healthy and sick populations as well as for neuroscience applications where information on the nature of the underlying activity could be potentially gained. Furthermore, fMRS with higher temporal resolution could benefit basic studies on animal models of disease and for investigating brain function in general. However, to date, fMRS has been limited to sustained periods of activation which risk adaptation and other undesirable effects. Here, we performed fMRS experiments in the mouse with high temporal resolution (12 s), and show the feasibility of such an approach for reliably quantifying metabolic variations upon activation. We detected metabolic variations in the superior colliculus of mice subjected to visual stimulation delivered in a block paradigm at 9.4 T. A robust modulation of glutamate is observed on the average time course, on the difference spectra and on the concentration distributions during active and recovery periods. A general linear model is used for the statistical analysis, and for exploring the nature of the modulation. Changes in NAAG, PCr and Cr levels were also detected. A control experiment with no stimulation reveals potential metabolic signal "drifts" that are not correlated with the functional activity, which should be taken into account when analyzing fMRS data in general. Our findings are promising for future applications of fMRS.
Collapse
|
26
|
Gizak A, Diegmann S, Dreha-Kulaczewski S, Wiśniewski J, Duda P, Ohlenbusch A, Huppke B, Henneke M, Höhne W, Altmüller J, Thiele H, Nürnberg P, Rakus D, Gärtner J, Huppke P. A novel remitting leukodystrophy associated with a variant in FBP2. Brain Commun 2021; 3:fcab036. [PMID: 33977262 PMCID: PMC8097510 DOI: 10.1093/braincomms/fcab036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 11/14/2022] Open
Abstract
Leukodystrophies are genetic disorders of cerebral white matter that almost exclusively have a progressive disease course. We became aware of three members of a family with a disorder characterized by a sudden loss of all previously acquired abilities around 1 year of age followed by almost complete recovery within 2 years. Cerebral MRI and myelin sensitive imaging showed a pronounced demyelination that progressed for several months despite signs of clinical improvement and was followed by remyelination. Exome sequencing did not-identify any mutations in known leukodystrophy genes but revealed a heterozygous variant in the FBP2 gene, c.343G>A, p. Val115Met, shared by the affected family members. Cerebral MRI of other family members demonstrated similar white matter abnormalities in all carriers of the variant in FBP2. The FBP2 gene codes for muscle fructose 1,6-bisphosphatase, an enzyme involved in gluconeogenesis that is highly expressed in brain tissue. Biochemical analysis showed that the variant has a dominant negative effect on enzymatic activity, substrate affinity, cooperativity and thermal stability. Moreover, it also affects the non-canonical functions of muscle fructose 1,6-bisphosphatase involved in mitochondrial protection and regulation of several nuclear processes. In patients’ fibroblasts, muscle fructose 1,6-bisphosphatase shows no colocalization with mitochondria and nuclei leading to increased reactive oxygen species production and a disturbed mitochondrial network. In conclusion, the results of this study indicate that the variant in FBP2 disturbs cerebral energy metabolism and is associated with a novel remitting leukodystrophy.
Collapse
Affiliation(s)
- Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335 Wrocław, Poland
| | - Susann Diegmann
- Department of Pediatrics and Pediatric Neurology, University Medical Center Göttingen, Georg August University, 37075 Göttingen, Germany
| | - Steffi Dreha-Kulaczewski
- Department of Pediatrics and Pediatric Neurology, University Medical Center Göttingen, Georg August University, 37075 Göttingen, Germany
| | - Janusz Wiśniewski
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335 Wrocław, Poland
| | - Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335 Wrocław, Poland
| | - Andreas Ohlenbusch
- Department of Pediatrics and Pediatric Neurology, University Medical Center Göttingen, Georg August University, 37075 Göttingen, Germany
| | - Brenda Huppke
- Department of Pediatrics and Pediatric Neurology, University Medical Center Göttingen, Georg August University, 37075 Göttingen, Germany.,Department of Neuropediatrics, Jena University Hospital, 07747 Jena, Germany
| | - Marco Henneke
- Department of Pediatrics and Pediatric Neurology, University Medical Center Göttingen, Georg August University, 37075 Göttingen, Germany
| | - Wolfgang Höhne
- Cologne Center for Genomics (CCG) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335 Wrocław, Poland
| | - Jutta Gärtner
- Department of Pediatrics and Pediatric Neurology, University Medical Center Göttingen, Georg August University, 37075 Göttingen, Germany
| | - Peter Huppke
- Department of Pediatrics and Pediatric Neurology, University Medical Center Göttingen, Georg August University, 37075 Göttingen, Germany.,Department of Neuropediatrics, Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
27
|
Kim D, Cauley SF, Nayak KS, Leahy RM, Haldar JP. Region-optimized virtual (ROVir) coils: Localization and/or suppression of spatial regions using sensor-domain beamforming. Magn Reson Med 2021; 86:197-212. [PMID: 33594732 PMCID: PMC8248187 DOI: 10.1002/mrm.28706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 11/11/2022]
Abstract
PURPOSE In many MRI scenarios, magnetization is often excited from spatial regions that are not of immediate interest. Excitation of uninteresting magnetization can complicate the design of efficient imaging methods, leading to either artifacts or acquisitions that are longer than necessary. While there are many hardware- and sequence-based approaches for suppressing unwanted magnetization, this paper approaches this longstanding problem from a different and complementary angle, using beamforming to suppress signals from unwanted regions without modifying the acquisition hardware or pulse sequence. Unlike existing beamforming approaches, we use a spatially invariant sensor-domain approach that can be applied directly to raw data to facilitate image reconstruction. THEORY AND METHODS We use beamforming to linearly mix a set of original coils into a set of region-optimized virtual (ROVir) coils. ROVir coils optimize a signal-to-interference ratio metric, are easily calculated using simple generalized eigenvalue decomposition methods, and provide coil compression. RESULTS ROVir coils were compared against existing coil-compression methods, and were demonstrated to have substantially better signal suppression capabilities. In addition, examples were provided in a variety of different application contexts (including brain MRI, vocal tract MRI, and cardiac MRI; accelerated Cartesian and non-Cartesian imaging; and outer volume suppression) that demonstrate the strong potential of this kind of approach. CONCLUSION The beamforming-based ROVir framework is simple to implement, has promising capabilities to suppress unwanted MRI signal, and is compatible with and complementary to existing signal suppression methods. We believe that this general approach could prove useful across a wide range of different MRI applications.
Collapse
Affiliation(s)
- Daeun Kim
- Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, USA.,Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Stephen F Cauley
- Deparment of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Krishna S Nayak
- Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, USA.,Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Richard M Leahy
- Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, USA.,Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Justin P Haldar
- Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, USA.,Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
28
|
Rothe M, Wessel C, Cames S, Szendroedi J, Burkart V, Hwang JH, Roden M. In vivo absolute quantification of hepatic γ-ATP concentration in mice using 31 P MRS at 11.7 T. NMR IN BIOMEDICINE 2021; 34:e4422. [PMID: 33025629 DOI: 10.1002/nbm.4422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Measurement of ATP concentrations and synthesis in humans indicated abnormal hepatic energy metabolism in obesity, non-alcoholic fatty liver disease (NAFLD) and Type 2 diabetes. Further mechanistic studies on energy metabolism require the detailed phenotyping of specific mouse models. Thus, this study aimed to establish and evaluate a robust and fast single voxel 31 P MRS method to quantify hepatic γ-ATP concentrations at 11.7 T in three mouse models with different insulin sensitivities and liver fat contents (72-week-old C57BL/6 control mice, 72-week-old insulin resistant sterol regulatory-element binding protein-1c overexpressing (SREBP-1c+ ) mice and 10-12-week-old prediabetic non-obese diabetic (NOD) mice). Absolute quantification was performed by employing an external reference and a matching replacement ATP phantom with 3D image selected in vivo spectroscopy 31 P MRS. This single voxel 31 P MRS method non-invasively quantified hepatic γ-ATP within 17 min and the repeatability tests provided a coefficient of variation of 7.8 ± 1.1%. The mean hepatic γ-ATP concentrations were markedly lower in SREBP-1c+ mice (1.14 ± 0.10 mM) than in C57BL/6 mice (2.15 ± 0.13 mM; p < 0.0002) and NOD mice (1.78 ± 0.13 mM; p < 0.006, one-way ANOVA test). In conclusion, this method allows us to rapidly and precisely measure hepatic γ-ATP concentrations, and thereby to non-invasively detect abnormal hepatic energy metabolism in mice with different degrees of insulin resistance and NAFLD. Thus, this 31 P MRS will also be useful for future mechanistic as well as therapeutic translational studies in other murine models.
Collapse
Affiliation(s)
- Maik Rothe
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Corinna Wessel
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Sandra Cames
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Jong-Hee Hwang
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
29
|
Fernandes CC, Lanz B, Chen C, Morris PG, Salmon CG. Investigating the regional effect of the chemical shift displacement artefact on the J-modulated lactate signal at ultra high-field. NMR IN BIOMEDICINE 2021; 34:e4440. [PMID: 33140530 PMCID: PMC11475734 DOI: 10.1002/nbm.4440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
The present work aims to show the applicability of an analytical model for the optimisation of the STEAM sequence timing parameters for lactate detection at ultra high-field. The effects of the chemical shift displacement artefact on the J-modulated signal for a weakly-coupled spin system were considered in the three applied directions of field gradients and the product operator formalism was used to obtain expressions for the signal modulation in each compartment of the excited volume. The validity of this model was demonstrated experimentally at 7 T in a phantom and acquisitions with optimised parameters were performed on a healthy volunteer. The spectra acquired with TE = 144 ms with the optimised mixing time and TE = 288 ms showed easily detectable lactate peaks in the normal human brain. Additionally, the acquisition with the longer TE resulted in a spectrum with less lipid/macromolecular contamination. The simulations shown here demonstrated that the proposed analytical model is suitable for correctly predicting the resulting lactate signal. With the optimised parameters, it was possible to use a simple sequence with sufficient signal-to-noise ratio to reliably distinguish lactate from overlapping resonances in a healthy brain.
Collapse
Affiliation(s)
- Carolina C. Fernandes
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamNottinghamshireNG7 2RDUnited Kingdom
| | - Bernard Lanz
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamNottinghamshireNG7 2RDUnited Kingdom
| | - Chen Chen
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamNottinghamshireNG7 2RDUnited Kingdom
| | - Peter G. Morris
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamNottinghamshireNG7 2RDUnited Kingdom
| | - Carlos G. Salmon
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamNottinghamshireNG7 2RDUnited Kingdom
- Department of PhysicsUniversity of Sao PauloRiberao PretoSao PauloBrazil
| |
Collapse
|
30
|
Henigsberg N, Savić A, Radoš M, Radoš M, Šarac H, Šečić A, Bajs Janović M, Foro T, Ozretić D, Erdeljić Turk V, Hrabač P, Kalember P. Choline elevation in amygdala region at recovery indicates longer survival without depressive episode: a magnetic resonance spectroscopy study. Psychopharmacology (Berl) 2021; 238:1303-1314. [PMID: 31482202 PMCID: PMC8062352 DOI: 10.1007/s00213-019-05303-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 06/11/2019] [Indexed: 02/02/2023]
Abstract
RATIONALE Depression, with variable longitudinal patterns, recurs in one third of patients. We lack useful predictors of its course/outcome, and proton magnetic resonance spectroscopy (1H-MRS) of brain metabolites is an underused research modality in finding outcome correlates. OBJECTIVES To determine if brain metabolite levels/changes in the amygdala region observed early in the recovery phase indicate depression recurrence risk in patients receiving maintenance therapy. METHODS Forty-eight patients on stable-dose antidepressant (AD) maintenance therapy were analyzed from recovery onset until (i) recurrence of depression or (ii) start of AD discontinuation. Two 1H-MRS scans (6 months apart) were performed with a focus on amygdala at the beginning of recovery. N-acetylaspartate (NAA), choline-containing metabolites (Cho), and Glx (glutamine/glutamate and GABA) were evaluated with regard to time without recurrence, and risks were assessed by Cox proportional hazard modeling. RESULTS Twenty patients had depression recurrence, and 23 patients reached AD discontinuation. General linear model repeated measures analysis displayed three-way interaction of measurement time, metabolite level, and recurrence on maintenance therapy, in a multivariate test, Wilks' lambda = 0.857, F(2,40) = 3.348, p = 0.045. Cho levels at the beginning of recovery and subsequent changes convey the highest risk for earlier recurrence. Patients experiencing higher amygdala Cho after recovery are at a significantly lower risk for depression recurrence (hazard ratio = 0.32; 95% confidence interval 0.13-0.77). CONCLUSION Cho levels/changes in the amygdala early in the recovery phase correlate with clinical outcome. In the absence of major NAA fluctuations, changes in Cho and Glx may suggest a shift towards reduction in (previously increased) glutamatergic neurotransmission. Investigation of a larger sample with greater sampling frequency is needed to confirm the possible predictive role of metabolite changes in the amygdala region early in the recovery phase.
Collapse
Affiliation(s)
- Neven Henigsberg
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000, Zagreb, Croatia
- University Psychiatric Hospital Vrapče, Zagreb, Croatia
- Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Aleksandar Savić
- University Psychiatric Hospital Vrapče, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marko Radoš
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
- University Hospital Centre Zagreb, Zagreb, Croatia
| | - Milan Radoš
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Helena Šarac
- Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
- University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ana Šečić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000, Zagreb, Croatia
- University Hospital Centre 'Sestre Milosrdnice', Zagreb, Croatia
| | - Maja Bajs Janović
- Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
- University Hospital Centre Zagreb, Zagreb, Croatia
| | - Tamara Foro
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - David Ozretić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
- University Hospital Centre Zagreb, Zagreb, Croatia
| | - Viktorija Erdeljić Turk
- Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
- University Hospital Centre Zagreb, Zagreb, Croatia
| | - Pero Hrabač
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
- "Andrija Štampar" School of Public Health, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Petra Kalember
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000, Zagreb, Croatia.
- Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia.
- Polyclinic Neuron, Zagreb, Croatia.
| |
Collapse
|
31
|
|
32
|
Kumaragamage C, De Feyter HM, Brown P, McIntyre S, Nixon TW, de Graaf RA. ECLIPSE utilizing gradient-modulated offset-independent adiabaticity (GOIA) pulses for highly selective human brain proton MRSI. NMR IN BIOMEDICINE 2021; 34:e4415. [PMID: 33001485 PMCID: PMC9472321 DOI: 10.1002/nbm.4415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/16/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
A multitude of extracranial lipid suppression methods exist for proton MRSI acquisitions. Popular and emerging lipid suppression methods each have their inherent set of advantages and disadvantages related to the achievable level of lipid suppression, RF power deposition, insensitivity to B1+ field and lipid T1 heterogeneity, brain coverage, spatial selectivity, chemical shift displacement (CSD) errors and the reliability of spectroscopic data spanning the observed 0.9-4.7 ppm band. The utility of elliptical localization with pulsed second order fields (ECLIPSE) was previously demonstrated with a greater than 100-fold in extracranial lipid suppression and low power requirements utilizing 3 kHz bandwidth AFP pulses. Like all gradient-based localization methods, ECLIPSE is sensitive to CSD errors, resulting in a modified metabolic profile in edge-of-ROI voxels. In this work, ECLIPSE is extended with 15 kHz bandwidth second order gradient-modulated RF pulses based on the gradient offset-independent adiabaticity (GOIA) algorithm to greatly reduce CSD and improve spatial selectivity. An adiabatic double spin-echo ECLIPSE inner volume selection (TE = 45 ms) MRSI method and an ECLIPSE outer volume suppression (TE = 3.2 ms) FID-MRSI method were implemented. Both GOIA-ECLIPSE MRSI sequences provided artifact-free metabolite spectra in vivo, with a greater than 100-fold in lipid suppression and less than 2.6 mm in-plane CSD and less than 3.3 mm transition width for edge-of-ROI voxels, representing an ~5-fold improvement compared with the parent, nongradient-modulated method. Despite the 5-fold larger bandwidth, GOIA-ECLIPSE only required a 1.9-fold increase in RF power. The highly robust lipid suppression combined with low CSD and sharp ROI edge transitions make GOIA-ECLIPSE an attractive alternative to commonly employed lipid suppression methods. Furthermore, the low RF power deposition demonstrates that GOIA-ECLIPSE is very well suited for high field (≥3 T) MRSI applications.
Collapse
Affiliation(s)
- Chathura Kumaragamage
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Henk M. De Feyter
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Peter Brown
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Scott McIntyre
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Terence W. Nixon
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Robin A. de Graaf
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
33
|
Sarawagi A, Soni ND, Patel AB. Glutamate and GABA Homeostasis and Neurometabolism in Major Depressive Disorder. Front Psychiatry 2021; 12:637863. [PMID: 33986699 PMCID: PMC8110820 DOI: 10.3389/fpsyt.2021.637863] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Major depressive disorder (MDD) is a leading cause of distress, disability, and suicides. As per the latest WHO report, MDD affects more than 260 million people worldwide. Despite decades of research, the underlying etiology of depression is not fully understood. Glutamate and γ-aminobutyric acid (GABA) are the major excitatory and inhibitory neurotransmitters, respectively, in the matured central nervous system. Imbalance in the levels of these neurotransmitters has been implicated in different neurological and psychiatric disorders including MDD. 1H nuclear magnetic resonance (NMR) spectroscopy is a powerful non-invasive method to study neurometabolites homeostasis in vivo. Additionally, 13C-NMR spectroscopy together with an intravenous administration of non-radioactive 13C-labeled glucose or acetate provides a measure of neural functions. In this review, we provide an overview of NMR-based measurements of glutamate and GABA homeostasis, neurometabolic activity, and neurotransmitter cycling in MDD. Finally, we highlight the impact of recent advancements in treatment strategies against a depressive disorder that target glutamate and GABA pathways in the brain.
Collapse
Affiliation(s)
- Ajay Sarawagi
- NMR Microimaging and Spectroscopy, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Narayan Datt Soni
- NMR Microimaging and Spectroscopy, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Anant Bahadur Patel
- NMR Microimaging and Spectroscopy, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
34
|
Reduction of higher-order occipital GABA and impaired visual perception in acute major depressive disorder. Mol Psychiatry 2021; 26:6747-6755. [PMID: 33863994 PMCID: PMC8760062 DOI: 10.1038/s41380-021-01090-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 11/08/2022]
Abstract
Major depressive disorder (MDD) is a complex state-dependent psychiatric illness for which biomarkers linking psychophysical, biochemical, and psychopathological changes remain yet elusive, though. Earlier studies demonstrate reduced GABA in lower-order occipital cortex in acute MDD leaving open its validity and significance for higher-order visual perception, though. The goal of our study is to fill that gap by combining psychophysical investigation of visual perception with measurement of GABA concentration in middle temporal visual area (hMT+) in acute depressed MDD. Psychophysically, we observe a highly specific deficit in visual surround motion suppression in a large sample of acute MDD subjects which, importantly, correlates with symptom severity. Both visual deficit and its relation to symptom severity are replicated in the smaller MDD sample that received MRS. Using high-field 7T proton Magnetic resonance spectroscopy (1H-MRS), acute MDD subjects exhibit decreased GABA concentration in visual MT+ which, unlike in healthy subjects, no longer correlates with their visual motion performance, i.e., impaired SI. In sum, our combined psychophysical-biochemical study demonstrates an important role of reduced occipital GABA for altered visual perception and psychopathological symptoms in acute MDD. Bridging the gap from the biochemical level of occipital GABA over visual-perceptual changes to psychopathological symptoms, our findings point to the importance of the occipital cortex in acute depressed MDD including its role as candidate biomarker.
Collapse
|
35
|
Mason NL, Theunissen EL, Hutten NR, Tse DH, Toennes SW, Jansen JF, Stiers P, Ramaekers JG. Reduced responsiveness of the reward system is associated with tolerance to cannabis impairment in chronic users. Addict Biol 2021; 26:e12870. [PMID: 31865628 PMCID: PMC7757162 DOI: 10.1111/adb.12870] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Cannabis is the most commonly used illicit drug in the world. However, because of a changing legal landscape and rising interest in therapeutic utility, there is an increasing trend in (long‐term) use and possibly cannabis impairment. Importantly, a growing body of evidence suggests that regular cannabis users develop tolerance to the impairing, as well as the rewarding, effects of the drug. However, the neuroadaptations that may underlie cannabis tolerance remain unclear. Therefore, this double‐blind, randomized, placebo‐controlled, cross‐over study assessed the acute influence of cannabis on the brain and behavioral outcomes in two distinct cannabis user groups. Twelve occasional and 12 chronic cannabis users received acute doses of cannabis (300‐μg/kg delta‐9‐tetrahydrocannabinol) and placebo and underwent ultrahigh field functional magnetic resonance imaging and magnetic resonance spectroscopy. In occasional users, cannabis induced significant neurometabolic alterations in reward circuitry, namely, decrements in functional connectivity and increments in striatal glutamate concentrations, which were associated with increases in subjective high and decreases in performance on a sustained attention task. Such changes were absent in chronic users. The finding that cannabis altered circuitry and distorted behavior in occasional, but not chronic users, suggests reduced responsiveness of the reward circuitry to cannabis intoxication in chronic users. Taken together, the results suggest a pharmacodynamic mechanism for the development of tolerance to cannabis impairment, of which is important to understand in the context of the long‐term therapeutic use of cannabis‐based medications, as well as in the context of public health and safety of cannabis use when performing day‐to‐day operations.
Collapse
Affiliation(s)
- Natasha L. Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience Maastricht University Maastricht The Netherlands
| | - Eef L. Theunissen
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience Maastricht University Maastricht The Netherlands
| | - Nadia R.P.W. Hutten
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience Maastricht University Maastricht The Netherlands
| | - Desmond H.Y. Tse
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience Maastricht University Maastricht The Netherlands
| | - Stefan W. Toennes
- Institute of Legal Medicine University of Frankfurt Frankfurt/Main Germany
| | - Jacobus F.A. Jansen
- Department of Radiology and Nuclear Medicine Maastricht University Medical Center+ (MUMC+) Maastricht The Netherlands
- School for Mental Health and Neuroscience Maastricht University Medical Center Maastricht The Netherlands
| | - Peter Stiers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience Maastricht University Maastricht The Netherlands
| | - Johannes G. Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience Maastricht University Maastricht The Netherlands
| |
Collapse
|
36
|
Mallikourti V, Cheung SM, Gagliardi T, Senn N, Masannat Y, McGoldrick T, Sharma R, Heys SD, He J. Phased-array combination of 2D MRS for lipid composition quantification in patients with breast cancer. Sci Rep 2020; 10:20041. [PMID: 33208767 PMCID: PMC7676263 DOI: 10.1038/s41598-020-74397-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Lipid composition in breast cancer, a central marker of disease progression, can be non-invasively quantified using 2D MRS method of double quantum filtered correlation spectroscopy (DQF-COSY). The low signal to noise ratio (SNR), arising from signal retention of only 25% and depleted lipids within tumour, demands improvement approaches beyond signal averaging for clinically viable applications. We therefore adapted and examined combination algorithms, designed for 1D MRS, for 2D MRS with both internal and external references. Lipid composition spectra were acquired from 17 breast tumour specimens, 15 healthy female volunteers and 25 patients with breast cancer on a clinical 3 T MRI scanner. Whitened singular value decomposition (WSVD) with internal reference yielded maximal SNR with an improvement of 53.3% (40.3-106.9%) in specimens, 84.4 ± 40.6% in volunteers, 96.9 ± 54.2% in peritumoural adipose tissue and 52.4% (25.1-108.0%) in tumours in vivo. Non-uniformity, as variance of improvement across peaks, was low at 21.1% (13.7-28.1%) in specimens, 5.5% (4.2-7.2%) in volunteers, 6.1% (5.0-9.0%) in peritumoural tissue, and 20.7% (17.4-31.7%) in tumours in vivo. The bias (slope) in improvement ranged from - 1.08 to 0.21%/ppm along the diagonal directions. WSVD is therefore the optimal algorithm for lipid composition spectra with highest SNR uniformly across peaks, reducing acquisition time by up to 70% in patients, enabling clinical applications.
Collapse
Affiliation(s)
- Vasiliki Mallikourti
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, UK.
| | - Sai Man Cheung
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, UK
| | - Tanja Gagliardi
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, UK
- Department of Radiology, Royal Marsden Hospital, London, UK
| | - Nicholas Senn
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, UK
| | | | | | - Ravi Sharma
- Department of Oncology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Steven D Heys
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, UK
- Breast Unit, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Jiabao He
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
37
|
Mason NL, Kuypers KPC, Müller F, Reckweg J, Tse DHY, Toennes SW, Hutten NRPW, Jansen JFA, Stiers P, Feilding A, Ramaekers JG. Me, myself, bye: regional alterations in glutamate and the experience of ego dissolution with psilocybin. Neuropsychopharmacology 2020; 45:2003-2011. [PMID: 32446245 PMCID: PMC7547711 DOI: 10.1038/s41386-020-0718-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/14/2020] [Indexed: 01/21/2023]
Abstract
There is growing interest in the therapeutic utility of psychedelic substances, like psilocybin, for disorders characterized by distortions of the self-experience, like depression. Accumulating preclinical evidence emphasizes the role of the glutamate system in the acute action of the drug on brain and behavior; however this has never been tested in humans. Following a double-blind, placebo-controlled, parallel group design, we utilized an ultra-high field multimodal brain imaging approach and demonstrated that psilocybin (0.17 mg/kg) induced region-dependent alterations in glutamate, which predicted distortions in the subjective experience of one's self (ego dissolution). Whereas higher levels of medial prefrontal cortical glutamate were associated with negatively experienced ego dissolution, lower levels in hippocampal glutamate were associated with positively experienced ego dissolution. Such findings provide further insights into the underlying neurobiological mechanisms of the psychedelic, as well as the baseline, state. Importantly, they may also provide a neurochemical basis for therapeutic effects as witnessed in ongoing clinical trials.
Collapse
Affiliation(s)
- N L Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands.
| | - K P C Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - F Müller
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - J Reckweg
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - D H Y Tse
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - S W Toennes
- Institute of Legal Medicine, University of Frankfurt, Kennedyallee 104, D-60596, Frankfurt/Main, Germany
| | - N R P W Hutten
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - J F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+ (MUMC+), Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, the Netherlands
| | - P Stiers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - A Feilding
- The Beckley Foundation, Beckley Park, Oxford, OX3 9SY, UK
| | - J G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands.
| |
Collapse
|
38
|
Roumans KHM, Lindeboom L, Veeraiah P, Remie CME, Phielix E, Havekes B, Bruls YMH, Brouwers MCGJ, Ståhlman M, Alssema M, Peters HPF, de Mutsert R, Staels B, Taskinen MR, Borén J, Schrauwen P, Schrauwen-Hinderling VB. Hepatic saturated fatty acid fraction is associated with de novo lipogenesis and hepatic insulin resistance. Nat Commun 2020; 11:1891. [PMID: 32312974 PMCID: PMC7170906 DOI: 10.1038/s41467-020-15684-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/20/2020] [Indexed: 01/08/2023] Open
Abstract
Hepatic steatosis is associated with poor cardiometabolic health, with de novo lipogenesis (DNL) contributing to hepatic steatosis and subsequent insulin resistance. Hepatic saturated fatty acids (SFA) may be a marker of DNL and are suggested to be most detrimental in contributing to insulin resistance. Here, we show in a cross-sectional study design (ClinicalTrials.gov ID: NCT03211299) that we are able to distinguish the fractions of hepatic SFA, mono- and polyunsaturated fatty acids in healthy and metabolically compromised volunteers using proton magnetic resonance spectroscopy (1H-MRS). DNL is positively associated with SFA fraction and is elevated in patients with non-alcoholic fatty liver and type 2 diabetes. Intriguingly, SFA fraction shows a strong, negative correlation with hepatic insulin sensitivity. Our results show that the hepatic lipid composition, as determined by our 1H-MRS methodology, is a measure of DNL and suggest that specifically the SFA fraction may hamper hepatic insulin sensitivity. Hepatic steatosis is associated with poor cardiometabolic health, with de novo lipogenesis (DNL) contributing to hepatic steatosis and subsequent insulin resistance. Here, the authors use 1H-MRS methodology to show hepatic SFA fraction is a measure of DNL and specifically may hamper hepatic insulin sensitivity.
Collapse
Affiliation(s)
- Kay H M Roumans
- Department of Nutrition and Movement Sciences, Maastricht University, P.O. BOX 616, 6200 MD, Maastricht, The Netherlands
| | - Lucas Lindeboom
- Department of Nutrition and Movement Sciences, Maastricht University, P.O. BOX 616, 6200 MD, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P.O. BOX 5800, 6202 AZ, Maastricht, The Netherlands
| | - Pandichelvam Veeraiah
- Department of Nutrition and Movement Sciences, Maastricht University, P.O. BOX 616, 6200 MD, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P.O. BOX 5800, 6202 AZ, Maastricht, The Netherlands
| | - Carlijn M E Remie
- Department of Nutrition and Movement Sciences, Maastricht University, P.O. BOX 616, 6200 MD, Maastricht, The Netherlands
| | - Esther Phielix
- Department of Nutrition and Movement Sciences, Maastricht University, P.O. BOX 616, 6200 MD, Maastricht, The Netherlands
| | - Bas Havekes
- Department of Internal Medicine, Division of Endocrinology and Metabolic Disease, Maastricht University Medical Center, P.O. BOX 5800, 6202 AZ, Maastricht, The Netherlands
| | - Yvonne M H Bruls
- Department of Nutrition and Movement Sciences, Maastricht University, P.O. BOX 616, 6200 MD, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P.O. BOX 5800, 6202 AZ, Maastricht, The Netherlands
| | - Martijn C G J Brouwers
- Department of Internal Medicine, Division of Endocrinology and Metabolic Disease, Maastricht University Medical Center, P.O. BOX 5800, 6202 AZ, Maastricht, The Netherlands
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine, University of Gothenburg, and Sahlgrenska University Hospital, P.O. Box 428, 40530, Gothenburg, Sweden
| | - Marjan Alssema
- Unilever Food Innovation Center, Plantage 14, 6708, WJ, Wageningen, The Netherlands
| | - Harry P F Peters
- Unilever Food Innovation Center, Plantage 14, 6708, WJ, Wageningen, The Netherlands
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, P.O. box 9600, 2300 RC, Leiden, The Netherlands
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000, Lille, France
| | - Marja-Riitta Taskinen
- Research Program, Unit Clinical and Molecular Metabolism, University of Helsinki, P.O box 63 (Haartmaninkatu 8), 00014, Helsinki, Finland
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, and Sahlgrenska University Hospital, P.O. Box 428, 40530, Gothenburg, Sweden
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, Maastricht University, P.O. BOX 616, 6200 MD, Maastricht, The Netherlands
| | - Vera B Schrauwen-Hinderling
- Department of Nutrition and Movement Sciences, Maastricht University, P.O. BOX 616, 6200 MD, Maastricht, The Netherlands. .,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P.O. BOX 5800, 6202 AZ, Maastricht, The Netherlands.
| |
Collapse
|
39
|
Mason NL, Theunissen EL, Hutten NRPW, Tse DHY, Toennes SW, Stiers P, Ramaekers JG. Cannabis induced increase in striatal glutamate associated with loss of functional corticostriatal connectivity. Eur Neuropsychopharmacol 2019; 29:247-256. [PMID: 30553697 DOI: 10.1016/j.euroneuro.2018.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/28/2018] [Accepted: 12/01/2018] [Indexed: 12/22/2022]
Abstract
Cannabis is the most commonly used illicit drug and is known to alter state of consciousness and impair neurocognitive function. However, the mechanisms underlying these effects have yet to be fully elucidated. Rodent studies suggest that Δ9-tetrahydrocannabinol (THC) activates dopaminergic neurons in the limbic system, subsequently enhancing dopamine, which is implicated in the rewarding effects of cannabis. Additional evidence suggests that THC may act indirectly on dopamine firing by modulating GABA and glutamate release. This double-blind, placebo-controlled study assessed the acute influence of two doses of THC on brain kinetics of glutamate, GABA, and dopamine, in relation to behavioral outcomes, by using magnetic resonance spectroscopy and functional magnetic resonance imaging. Twenty occasional cannabis users received acute doses of cannabis (300 µg/kg THC) and placebo, in one of two dose regimes (full dose and divided dose), during two separate testing days. Administration of THC increased striatal glutamate concentrations, and dopamine as indicated by a reduction in functional connectivity (FC) between the nucleus accumbens (NAc) and cortical areas. Alterations in glutamate and FC were dose dependent and evident in the full dose group where THC serum concentrations exceeded 2 ng/ml at T-max. Average glutamate changes correlated strongly with FC alterations. Additionally, THC induced changes in FC correlated with feelings of subjective high and decreased performance on an attention task. Taken together, this suggests that THC elicits subjective and cognitive alterations via increased striatal dopaminergic activity and loss of corticostriatal connectivity, which is associated with an increase in striatal glutamate.
Collapse
Affiliation(s)
- Natasha L Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Eef L Theunissen
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Nadia R P W Hutten
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Desmond H Y Tse
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Stefan W Toennes
- Institute of Legal Medicine, University of Frankfurt, Kennedyallee 104, D-60596, Frankfurt/Main, Germany
| | - Peter Stiers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
40
|
Kumaragamage C, De Feyter HM, Brown P, McIntyre S, Nixon TW, de Graaf RA. Robust outer volume suppression utilizing elliptical pulsed second order fields (ECLIPSE) for human brain proton MRSI. Magn Reson Med 2019; 83:1539-1552. [PMID: 31742799 DOI: 10.1002/mrm.28047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE The robust and reliable utilization of proton magnetic resonance spectroscopic imaging (MRSI) at high fields is hampered by several key technical difficulties, including contamination from extracranial lipids. To that end, this work presents novel lipid suppression sequences for proton MRSI in the human brain utilizing elliptical localization with pulsed second-order fields (ECLIPSE). METHODS Two lipid suppression methods were implemented with the ECLIPSE gradient insert. One method is a variable power, 4-pulse sequence optimized to achieve outer volume suppression (OVS) and compared against a standard, 8-slice OVS method. The second ECLIPSE method is implemented as an inversion recovery (IR) sequence with elliptical inner volume selection (IVS) and compared against a global IR method. RESULTS The ECLIPSE-OVS sequence provided a 116-fold mean lipid suppression (range, 104-134), whereas an optimized 8-slice OVS sequence achieved 15-fold suppression (range, 13-18). Furthermore, the superior ECLIPSE-OVS suppression was achieved at 30% of the radiofrequency (RF) power required by 8-slice OVS. The ECLIPSE-based IR sequence suppressed skull lipids by 155-fold (range, 122-257), compared to 16-fold suppression (range, 14-19) achieved with IR. CONCLUSION OVS and IVS executed with ECLIPSE provide robust and effective lipid suppression at reduced RF power with high immunity to variations in B1 and T1 .
Collapse
Affiliation(s)
- Chathura Kumaragamage
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut
| | - Henk M De Feyter
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut
| | - Peter Brown
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut
| | - Scott McIntyre
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut
| | - Terence W Nixon
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut
| | - Robin A de Graaf
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut.,Department of Biomedical Engineering, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
41
|
Singh J, Suh EH, Sharma G, Khemtong C, Sherry AD, Kovacs Z. Probing carbohydrate metabolism using hyperpolarized 13 C-labeled molecules. NMR IN BIOMEDICINE 2019; 32:e4018. [PMID: 30474153 PMCID: PMC6579721 DOI: 10.1002/nbm.4018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/03/2018] [Accepted: 08/11/2018] [Indexed: 05/05/2023]
Abstract
Glycolysis is a fundamental metabolic process in all organisms. Anomalies in glucose metabolism are linked to various pathological conditions. In particular, elevated aerobic glycolysis is a characteristic feature of rapidly growing cells. Glycolysis and the closely related pentose phosphate pathway can be monitored in real time by hyperpolarized 13 C-labeled metabolic substrates such as 13 C-enriched, deuterated D-glucose derivatives, [2-13 C]-D-fructose, [2-13 C] dihydroxyacetone, [1-13 C]-D-glycerate, [1-13 C]-D-glucono-δ-lactone and [1-13 C] pyruvate in healthy and diseased tissues. Elevated glycolysis in tumors (the Warburg effect) was also successfully imaged using hyperpolarized [U-13 C6 , U-2 H7 ]-D-glucose, while the size of the preexisting lactate pool can be measured by 13 C MRS and/or MRI with hyperpolarized [1-13 C]pyruvate. This review summarizes the application of various hyperpolarized 13 C-labeled metabolites to the real-time monitoring of glycolysis and related metabolic processes in normal and diseased tissues.
Collapse
Affiliation(s)
- Jaspal Singh
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eul Hyun Suh
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gaurav Sharma
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chalermchai Khemtong
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - A. Dean Sherry
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Zoltan Kovacs
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
42
|
Wilson M, Andronesi O, Barker PB, Bartha R, Bizzi A, Bolan PJ, Brindle KM, Choi IY, Cudalbu C, Dydak U, Emir UE, Gonzalez RG, Gruber S, Gruetter R, Gupta RK, Heerschap A, Henning A, Hetherington HP, Huppi PS, Hurd RE, Kantarci K, Kauppinen RA, Klomp DWJ, Kreis R, Kruiskamp MJ, Leach MO, Lin AP, Luijten PR, Marjańska M, Maudsley AA, Meyerhoff DJ, Mountford CE, Mullins PG, Murdoch JB, Nelson SJ, Noeske R, Öz G, Pan JW, Peet AC, Poptani H, Posse S, Ratai EM, Salibi N, Scheenen TWJ, Smith ICP, Soher BJ, Tkáč I, Vigneron DB, Howe FA. Methodological consensus on clinical proton MRS of the brain: Review and recommendations. Magn Reson Med 2019; 82:527-550. [PMID: 30919510 PMCID: PMC7179569 DOI: 10.1002/mrm.27742] [Citation(s) in RCA: 272] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/01/2019] [Accepted: 02/25/2019] [Indexed: 12/14/2022]
Abstract
Proton MRS (1 H MRS) provides noninvasive, quantitative metabolite profiles of tissue and has been shown to aid the clinical management of several brain diseases. Although most modern clinical MR scanners support MRS capabilities, routine use is largely restricted to specialized centers with good access to MR research support. Widespread adoption has been slow for several reasons, and technical challenges toward obtaining reliable good-quality results have been identified as a contributing factor. Considerable progress has been made by the research community to address many of these challenges, and in this paper a consensus is presented on deficiencies in widely available MRS methodology and validated improvements that are currently in routine use at several clinical research institutions. In particular, the localization error for the PRESS localization sequence was found to be unacceptably high at 3 T, and use of the semi-adiabatic localization by adiabatic selective refocusing sequence is a recommended solution. Incorporation of simulated metabolite basis sets into analysis routines is recommended for reliably capturing the full spectral detail available from short TE acquisitions. In addition, the importance of achieving a highly homogenous static magnetic field (B0 ) in the acquisition region is emphasized, and the limitations of current methods and hardware are discussed. Most recommendations require only software improvements, greatly enhancing the capabilities of clinical MRS on existing hardware. Implementation of these recommendations should strengthen current clinical applications and advance progress toward developing and validating new MRS biomarkers for clinical use.
Collapse
Affiliation(s)
- Martin Wilson
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, England
| | - Ovidiu Andronesi
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Peter B Barker
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert Bartha
- Robarts Research Institute, University of Western Ontario, London, Canada
| | - Alberto Bizzi
- U.O. Neuroradiologia, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Patrick J Bolan
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Kevin M Brindle
- Department of Biochemistry, University of Cambridge, Cambridge, England
| | - In-Young Choi
- Department of Neurology, Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Cristina Cudalbu
- Center for Biomedical Imaging, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, Indiana
| | - Uzay E Emir
- School of Health Sciences, Purdue University, West Lafayette, Indiana
| | - Ramon G Gonzalez
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stephan Gruber
- High Field MR Center, Department of Biomedical imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, Center for Biomedical Imaging, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Rakesh K Gupta
- Fortis Memorial Research Institute, Gurugram, Haryana, India
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anke Henning
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | | | - Petra S Huppi
- Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Ralph E Hurd
- Stanford Radiological Sciences Lab, Stanford, California
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Risto A Kauppinen
- School of Psychological Science, University of Bristol, Bristol, England
| | | | - Roland Kreis
- Departments of Radiology and Biomedical Research, University of Bern, Bern, Switzerland
| | | | - Martin O Leach
- CRUK Cancer Imaging Centre, Institute of Cancer Research and Royal Marsden Hospital, London, England
| | - Alexander P Lin
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Harvard University Medical School, Boston, Massachusetts
| | | | - Małgorzata Marjańska
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | | | - Dieter J Meyerhoff
- DVA Medical Center and Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | | | - Paul G Mullins
- Bangor Imaging Unit, School of Psychology, Bangor University, Bangor, Wales
| | | | - Sarah J Nelson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | | | - Gülin Öz
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Julie W Pan
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew C Peet
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England
| | - Harish Poptani
- Centre for Preclinical Imaging, Institute of Translational Medicine, University of Liverpool, Liverpool, England
| | - Stefan Posse
- Department of Neurology, University of New Mexico, Albuquerque, New Mexico
| | - Eva-Maria Ratai
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nouha Salibi
- MR R&D, Siemens Healthineers, Malvern, Pennsylvania
| | - Tom W J Scheenen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Brian J Soher
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Ivan Tkáč
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Franklyn A Howe
- Molecular and Clinical Sciences, St George's University of London, London, England
| |
Collapse
|
43
|
Fardanesh R, Marino MA, Avendano D, Leithner D, Pinker K, Thakur SB. Proton MR spectroscopy in the breast: Technical innovations and clinical applications. J Magn Reson Imaging 2019; 50:1033-1046. [PMID: 30848037 DOI: 10.1002/jmri.26700] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/20/2019] [Indexed: 01/27/2023] Open
Abstract
Proton magnetic resonance spectroscopy (MRS) is a promising noninvasive diagnostic technique for investigation of breast cancer metabolism. Spectroscopic imaging data may be obtained following contrast-enhanced MRI by applying the point-resolved spectroscopy sequence (PRESS) or the stimulated echo acquisition mode (STEAM) sequence from the MR voxel encompassing the breast lesion. Total choline signal (tCho) measured in vivo using either a qualitative or quantitative approach has been used as a diagnostic test in the workup of malignant breast lesions. In addition to tCho metabolites, other relevant metabolites, including multiple lipids, can be detected and monitored. MRS has been heavily investigated as an adjunct to morphologic and dynamic MRI to improve diagnostic accuracy in breast cancer, obviating unnecessary benign biopsies. Besides its use in the staging of breast cancer, other promising applications have been recently investigated, including the assessment of treatment response and therapy monitoring. This review provides guidance on spectroscopic acquisition and quantification methods and highlights current and evolving clinical applications of proton MRS. Level of Evidence 5 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2019.
Collapse
Affiliation(s)
- Reza Fardanesh
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Maria Adele Marino
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Biomedical Sciences and Morphologic and Functional Imaging, Policlinico Universitario G. Martino, University of Messina, Italy
| | - Daly Avendano
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Doris Leithner
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Katja Pinker
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - Sunitha B Thakur
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
44
|
Downes DP, Collins JHP, Lama B, Zeng H, Nguyen T, Keller G, Febo M, Long JR. Characterization of Brain Metabolism by Nuclear Magnetic Resonance. Chemphyschem 2019; 20:216-230. [PMID: 30536696 PMCID: PMC6501841 DOI: 10.1002/cphc.201800917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/26/2018] [Indexed: 12/15/2022]
Abstract
The noninvasive, quantitative ability of nuclear magnetic resonance (NMR) spectroscopy to characterize small molecule metabolites has long been recognized as a major strength of its application in biology. Numerous techniques exist for characterizing metabolism in living, excised, or extracted tissue, with a particular focus on 1 H-based methods due to the high sensitivity and natural abundance of protons. With the increasing use of high magnetic fields, the utility of in vivo 1 H magnetic resonance spectroscopy (MRS) has markedly improved for measuring specific metabolite concentrations in biological tissues. Higher fields, coupled with recent developments in hyperpolarization, also enable techniques for complimenting 1 H measurements with spectroscopy of other nuclei, such as 31 P and 13 C, and for combining measurements of metabolite pools with metabolic flux measurements. We compare ex vivo and in vivo methods for studying metabolism in the brain using NMR and highlight insights gained through using higher magnetic fields, the advent of dissolution dynamic nuclear polarization, and combining in vivo MRS and ex vivo NMR approaches.
Collapse
Affiliation(s)
- Daniel P Downes
- Department of Biochemistry and Molecular Biology and McKnight Brain Institute, University of Florida, Box 100245, Gainesville, FL, 32610-0245, United States
| | - James H P Collins
- National High Magnetic Field Laboratory and Biology and McKnight Brain Institute, University of Florida, Box 100015, Gainesville, FL, 32610-0015, United States
| | - Bimala Lama
- Department of Chemistry and Biochemistry, University of Colorado Boulder, 215 UCB, Boulder, CO, 80309-0215, United States
| | - Huadong Zeng
- National High Magnetic Field Laboratory and Biology and McKnight Brain Institute, University of Florida, Box 100015, Gainesville, FL, 32610-0015, United States
| | - Tan Nguyen
- Department of Biochemistry and Molecular Biology and McKnight Brain Institute, University of Florida, Box 100245, Gainesville, FL, 32610-0245, United States
| | - Gabrielle Keller
- Department of Biochemistry and Molecular Biology and McKnight Brain Institute, University of Florida, Box 100245, Gainesville, FL, 32610-0245, United States
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Box 100256, Gainesville, FL, 32610-0256, United States
| | - Joanna R Long
- Department of Biochemistry and Molecular Biology and McKnight Brain Institute, University of Florida, Box 100245, Gainesville, FL, 32610-0245, United States
- National High Magnetic Field Laboratory and Biology and McKnight Brain Institute, University of Florida, Box 100015, Gainesville, FL, 32610-0015, United States
| |
Collapse
|
45
|
Regional Metabolite Concentrations in Aging Human Brain: Comparison of Short-TE Whole Brain MR Spectroscopic Imaging and Single Voxel Spectroscopy at 3T. Clin Neuroradiol 2019; 30:251-261. [PMID: 30659340 DOI: 10.1007/s00062-018-00757-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/31/2018] [Indexed: 10/27/2022]
Abstract
PURPOSE The aim of this study was to compare a recently established whole brain MR spectroscopic imaging (wbMRSI) technique using spin-echo planar spectroscopic imaging (EPSI) acquisition and the Metabolic Imaging and Data Analysis System (MIDAS) software package with single voxel spectroscopy (SVS) technique and LCModel analysis for determination of relative metabolite concentrations in aging human brain. METHODS A total of 59 healthy subjects aged 20-70 years (n ≥ 5 per age decade for each gender) underwent a wbEPSI scan and 3 SVS scans of a 4 ml voxel volume located in the right basal ganglia, occipital grey matter and parietal white matter. Concentration ratios to total creatine (tCr) for N‑acetylaspartate (NAA/tCr), total choline (tCho/tCr), glutamine (Gln/tCr), glutamate (Glu/tCr) and myoinositol (mI/tCr) were obtained both from EPSI and SVS acquisitions with either LCModel or MIDAS. In addition, an aqueous phantom containing known metabolite concentrations was also measured. RESULTS Metabolite concentrations obtained with wbMRSI and SVS were comparable and consistent with those reported previously. Decreases of NAA/tCr and increases of line width with age were found with both techniques, while the results obtained from EPSI acquisition revealed generally narrower line widths and smaller Cramer-Rao lower bounds than those from SVS data. CONCLUSION The wbMRSI could be used to estimate metabolites in vivo and in vitro with the same reliability as using SVS, with the main advantage being the ability to determine metabolite concentrations in multiple brain structure simultaneously in vivo. It is expected to be widely used in clinical diagnostics and neuroscience.
Collapse
|
46
|
Wong D, Schranz AL, Bartha R. Optimized in vivo brain glutamate measurement using long-echo-time semi-LASER at 7 T. NMR IN BIOMEDICINE 2018; 31:e4002. [PMID: 30144183 DOI: 10.1002/nbm.4002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
A short echo time (TE ) is commonly used for brain glutamate measurement by 1 H MRS to minimize drawbacks of long TE such as signal modulation due to J evolution and T2 relaxation. However, J coupling causes the spectral patterns of glutamate to change with TE , and the shortest achievable TE may not produce the optimal glutamate measurement. The purpose of this study was to determine the optimal TE for glutamate measurement at 7 T using semi-LASER (localization by adiabatic selective refocusing). Time-domain simulations were performed to model the TE dependence of glutamate signal energy, a measure of glutamate signal strength, and were verified against measurements made in the human sensorimotor cortex (five subjects, 2 × 2 × 2 cm3 voxel, 16 averages) on a 7 T MRI scanner. Simulations showed a local maximum of glutamate signal energy at TE = 107 ms. In vivo, TE = 105 ms produced a low Cramér-Rao lower bound of 6.5 ± 2.0% across subjects, indicating high-quality fits of the prior knowledge model to in vivo data. TE = 105 ms also produced the greatest glutamate signal energy with the smallest inter-subject glutamate-to-creatine ratio (Glu/Cr) coefficient of variation (CV), 4.6%. Using these CVs, we performed sample size calculations to estimate the number of participants per group required to detect a 10% change in Glu/Cr between two groups with 95% confidence. 13 were required at TE = 45 ms, the shortest achievable echo time on our 7 T MRI scanner, while only 5 were required at TE = 105 ms, indicating greater statistical power. These results indicate that TE = 105 ms is optimum for in vivo glutamate measurement at 7 T with semi-LASER. Using long TE decreases power deposition by allowing lower maximum RF pulse amplitudes in conjunction with longer RF pulses. Importantly, long TE minimizes macromolecule contributions, eliminating the requirement for acquisition of separate macromolecule spectra or macromolecule fitting techniques, which add additional scan time or bias the estimated glutamate fit.
Collapse
Affiliation(s)
- Dickson Wong
- Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, ON, Canada
| | - Amy L Schranz
- Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, ON, Canada
| | - Robert Bartha
- Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
47
|
Coe PO, Williams SR, Morris DM, Parkin E, Harvie M, Renehan AG, O'Reilly DA. Development of MR quantified pancreatic fat deposition as a cancer risk biomarker. Pancreatology 2018; 18:429-437. [PMID: 29655566 DOI: 10.1016/j.pan.2018.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/22/2018] [Accepted: 04/02/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Excess body adiposity is associated with increased risk of pancreatic cancer, and in animal models excess intra-pancreatic fat is a driver of pancreatic carcinogenesis. Within a programme to evaluate pancreatic fat and PC risk in humans, we assessed whether MR-quantified pancreatic fat fraction (PFF) was 'fit for purpose' as an imaging biomarker. METHODS We determined PFF using MR spectroscopy (MRS) and MR chemical shift imaging (CS-MR), in two groups. In Group I, we determined accuracy of MR-derived PFF with histological digital fat quantification in 12 patients undergoing pancreatic resection. In a second study, we assessed reproducibility in 15 volunteers (Group IIa), and extended to 43 volunteers (Group IIa & IIb) to relate PFF with MR-derived hepatic fat fraction (HFF), body mass index (BMI), and waist circumference (WC) using linear regression models. We assessed intra- and inter-observer, and between imaging modality levels of agreement using Bland-Altman plots. RESULTS In Group I patients, we found strong levels of agreement between MRS and CS-MR derived PFF and digitally quantified fat on histology (rho: 0.781 and 0.672 respectively). In Group IIa, there was poor reproducibility in initial assessments. We refined our protocols to account for 3D dimensionality of the pancreas, and found substantially improved intra-observer agreements. In Group II, HFF and WC were significantly correlated with PFF (p values < 0.05). INTERPRETATION Both CS-MR and MRS (after accounting for pancreatic 3D dimensionality) were 'fit for purpose' to determine PFF and might add information on cancer prediction independent from measures of general body adiposity.
Collapse
Affiliation(s)
- Peter O Coe
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.
| | - Steve R Williams
- Centre for Imaging Science, School of Health Sciences, Faculty of Biology, Medicine and Health, and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - David M Morris
- Centre for Imaging Science, School of Health Sciences, Faculty of Biology, Medicine and Health, and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK; Edinburgh Imaging, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - Ed Parkin
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Michelle Harvie
- Prevent Breast Cancer Research Unit, Manchester University NHS Foundation Trust, Manchester, UK
| | - Andrew G Renehan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Derek A O'Reilly
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK; Department of HepatoPancreaticoBiliary Surgery, Manchester University Hospital Trust and Manchester Academic Health Sciences Centre, Manchester, UK
| |
Collapse
|
48
|
Li L, Li N, An L, Shen J. A novel approach to probing in vivo metabolite relaxation: Linear quantification of spatially modulated magnetization. Magn Reson Med 2018; 79:2491-2499. [PMID: 28940581 PMCID: PMC5821591 DOI: 10.1002/mrm.26941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/16/2017] [Accepted: 08/31/2017] [Indexed: 11/08/2022]
Abstract
PURPOSE Conventional sequences for metabolite transverse relaxation quantification all generally measure signal changes at different echo times (TEs). However, quantification results obtained via these conventional methods can be very different and are highly dependent on the type of sequence being applied. TE-dependent effects such as diffusion, macromolecule baseline, and J-coupling modulation contribute significantly to these differences. Here, we propose a novel technique-multiple flip angle pulse-driven ratio of longitudinal steady states (MARzss)-for preparing magnetization with T2 /T1 weighting. Using premeasured T1 values, T2 values for metabolites can thereby be determined. The measurement procedure does not require varying TE and is TE independent; T2 , diffusion, and J-coupling effects induced by the readout sequence are cancelled. METHOD Longitudinal steady states at different flip angles were prepared with trains of radio frequency pulses interspersed with field gradients. The resulting spatially modulated longitudinal magnetization was acquired with a PRESS readout module. A new linear equation for quantification of MARzss was derived from Bloch equations. RESULTS By implementing this readout-independent method, T2 measurement of brain metabolites at 7T was demonstrated through Bloch simulations, phantom, and in vivo experiments. CONCLUSIONS The proposed MARzss technique can be used to largely avoid multi-TE associated interference, including diffusion, macromolecules, and J modulation. This MARzss technology, which is uniquely insensitive to readout sequence type and TE, is a promising technique for more accurately probing in vivo metabolite relaxation. Magn Reson Med 79:2491-2499, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Linqing Li
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Ningzhi Li
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Li An
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun Shen
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
49
|
Gerhalter T, Carlier PG, Marty B. Acute changes in extracellular volume fraction in skeletal muscle monitored by 23Na NMR spectroscopy. Physiol Rep 2018; 5:5/16/e13380. [PMID: 28867674 PMCID: PMC5582265 DOI: 10.14814/phy2.13380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/20/2017] [Accepted: 07/14/2017] [Indexed: 11/24/2022] Open
Abstract
In this article, we induced acute changes in extracellular volume fraction in skeletal muscle tissue and compared the sensitivity of a standard 1H T2 imaging method with different 23Na‐NMR spectroscopy parameters within acquisition times compatible with clinical investigations. First, we analyzed the effect of a short ischemia on the sodium distribution in the skeletal muscle. Then, the lower leg of 21 healthy volunteers was scanned under different vascular filling conditions (vascular draining, filling, and normal condition) expected to modify exclusively the extracellular volume. The first experiment showed no change in the total sodium content during a 15 min ischemia, but the intracellular weighted 23Na signal slowly decreased. For the second part, significant variations of total sodium content, sodium distribution, and T1 and T2∗ of 23Na signal were observed between different vascular filling conditions. The measured sodium distribution correlates significantly with sodium T1 and with the short and long T2∗ fractions. In contrast, significant changes in the proton T2w signal were observed only in three muscles. Altogether, the mean T2w signal intensity of all muscles as well as their mean T2 did not vary significantly with the extracellular volume changes. In conclusion, at the expense of giving up spatial resolution, the proposed 23Na spectroscopic method proved to be more sensitive than standard 1H T2 approach to monitor acute extracellular compartment changes within muscle tissue.
Collapse
Affiliation(s)
- Teresa Gerhalter
- Institute of Myology, NMR Laboratory, Paris, France .,CEA, DRF, IBFJ, MIRCen, NMR Laboratory, Paris, France
| | - Pierre G Carlier
- Institute of Myology, NMR Laboratory, Paris, France.,CEA, DRF, IBFJ, MIRCen, NMR Laboratory, Paris, France
| | - Benjamin Marty
- Institute of Myology, NMR Laboratory, Paris, France.,CEA, DRF, IBFJ, MIRCen, NMR Laboratory, Paris, France
| |
Collapse
|
50
|
[Technique of proton and phosphorous MR spectroscopy]. Radiologe 2018; 57:428-437. [PMID: 28331946 DOI: 10.1007/s00117-017-0240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
CLINICAL/METHODICAL ISSUE Magnetic resonance spectroscopy (MRS) is an important non-invasive method that can reveal the concentration and spatial distribution of particular biochemically relevant tissue metabolites. STANDARD RADIOLOGICAL METHODS Proton MRS is routinely applicable in the clinical setting providing good quality results even with a moderate magnetic field strength of 1.5 T. Relative values of metabolite concentrations are mostly used for the assessment of metabolic disorders. METHODICAL INNOVATIONS Absolute quantification of metabolites can be achieved by means of internal or external reference scans. Phosphorous MRS extends the range of detectable molecules to energy and cell membrane metabolism. PERFORMANCE The lower detection limit of metabolite concentrations is in the range of some mmol/kg. Depending on the magnetic field strength, MRS enables a spatial resolution of a few milliliters. ACHIEVEMENTS The use of phosphorous MRS is considerably limited because higher field strengths of at least 3.0 T and additional expensive hardware for signal processing are required.
Collapse
|