1
|
Ru X, Chen S, Chen D, Shao Q, Shao W, Ye Q. Simulating the clinical manifestations and disease progression of human sepsis: A monobacterial injection approach for animal modeling. Virulence 2024; 15:2395835. [PMID: 39219264 PMCID: PMC11370922 DOI: 10.1080/21505594.2024.2395835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection, with great clinical heterogeneity, high morbidity, and high mortality. At the same time, there are many kinds of infection sources, the pathophysiology is very complex, and the pathogenesis has not been fully elucidated. An ideal animal model of sepsis can accurately simulate clinical sepsis and promote the development of sepsis-related pathogenesis, treatment methods, and prognosis. The existing sepsis model still uses the previous Sepsis 2.0 modelling standard, which has some problems, such as many kinds of infection sources, poor repeatability, inability to take into account single-factor studies, and large differences from clinical sepsis patients. To solve these problems, this study established a new animal model of sepsis. The model uses intravenous tail injection of a single bacterial strain, simplifying the complexity of multibacterial infection, and effectively solving the above problems.
Collapse
Affiliation(s)
- Xuanwen Ru
- Department of Clinical Laboratory, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Simiao Chen
- Department of Clinical Laboratory, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danlei Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingyi Shao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenxia Shao
- Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Ye
- Department of Clinical Laboratory, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Isildar B, Beydogan AB, Koyuturk E, Coskun Yazici ZM, Koyuturk M, Bolkent S. Effects of ∆-9 tetrahydrocannabinol on the small intestine altered by high fructose diet: A Histopathological study. Histochem Cell Biol 2024; 162:363-372. [PMID: 39110194 PMCID: PMC11393283 DOI: 10.1007/s00418-024-02311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/13/2024]
Abstract
The consumption of fructose is increasing day by day. Understanding the impact of increasing fructose consumption on the small intestine is crucial since the small intestine processes fructose into glucose. ∆9-Tetrahydrocannabinol (THC), a key cannabinoid, interacts with CB1 and CB2 receptors in the gastrointestinal tract, potentially mitigating inflammation. Therefore, this study aimed to investigate the effects of the high-fructose diet (HFD) on the jejunum of rats and the role of THC consumption in reversing these effects. Experiments were conducted on Sprague-Dawley rats, with the experimental groups as follows: control (C), HFD, THC, and HFD + THC. The HFD group received a 10% fructose solution in drinking water for 12 weeks. THC groups were administered 1.5 mg/kg/day of THC intraperitoneally for the last four weeks. Following sacrification, the jejunum was evaluated for mucus secretion capacity. IL-6, JNK, CB2 and PCNA expressions were assessed through immunohistochemical analysis and the ultrastructural alterations via transmission electron microscopy. The results showed that fructose consumption did not cause weight gain but triggered inflammation in the jejunum, disrupted the cell proliferation balance, and increased mucus secretion in rats. Conversely, THC treatment displayed suppressed inflammation and improved cell proliferation balance caused by HFD. Ultrastructural examinations showed that the zonula occludens structures deteriorated in the HFD group, along with desmosome shrinkage. Mitochondria were found to be increased due to THC application following HFD. In conclusion, the findings of this research reveal the therapeutic potential of THC in reversing HFD-related alterations and provide valuable insights for clinical application.
Collapse
Affiliation(s)
- Basak Isildar
- Department of Histology and Embryology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Alisa Bahar Beydogan
- Department of Medical Biology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ece Koyuturk
- Faculty of Medicine, Otto-Von-Guericke-Universität Magdeburg, Magdeburg, Germany.
| | - Zeynep Mine Coskun Yazici
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Demiroglu Bilim University, Istanbul, Turkey
| | - Meral Koyuturk
- Department of Histology and Embryology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Sema Bolkent
- Department of Medical Biology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey.
| |
Collapse
|
3
|
Roberts E, Charras A, Hahn G, Hedrich CM. An improved understanding of pediatric chronic nonbacterial osteomyelitis pathophysiology informs current and future treatment. J Bone Miner Res 2024; 39:1523-1538. [PMID: 39209330 PMCID: PMC11523093 DOI: 10.1093/jbmr/zjae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/24/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Chronic nonbacterial osteomyelitis (CNO) is an autoinflammatory bone disease that primarily affects children and young people. It can cause significant pain, reduced function, bone swelling, and even (vertebral body) fractures. Because of a limited understanding of its pathophysiology, the treatment of CNO remains empiric and is based on relatively small case series, expert opinion, and personal experience. Several studies have linked pathological NOD-kike receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome activation and the resulting imbalance between pro- and anti-inflammatory cytokine expression with CNO. This agrees with elevated pro-inflammatory (mostly) monocyte-derived protein signatures in the blood of CNO patients that may be used as future diagnostic and/or prognostic biomarkers. Recently, rare variants in the P2RX7 gene, encoding for an ATP-dependent transmembrane channel, were linked with increased NLRP3 inflammasome assembly and prolonged monocyte/macrophage survival in CNO. Although the exact molecular mechanisms remain unclear, this will inform future target-directed and individualized treatment. This manuscript reviews most recent developments and their impact on diagnostic and therapeutic strategies in CNO.
Collapse
Affiliation(s)
- Eve Roberts
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Amandine Charras
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Gabriele Hahn
- Department of Pediatric Radiology, University Children’s Hospital Basel UKBB, Basel, Switzerland
| | - Christian M Hedrich
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, United Kingdom
| |
Collapse
|
4
|
Wang X, Ren W, Wang P, Dong L, Du H, Li N, Liu G, Zhang R, Wang L, Sun T. Investigating the active components and mechanistic effects of Forsythia suspensa Leaf against RSV via the PI3K/Akt-NLRP3 pathway. Heliyon 2024; 10:e38285. [PMID: 39381093 PMCID: PMC11456894 DOI: 10.1016/j.heliyon.2024.e38285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
Background Pulmonary infections resulting from respiratory syncytial virus (RSV) continue to pose a significant threat to the well-being of infants and the elderly, but there is no safe, effective and specific treatment except symptomatic treatment. Forsythia Suspensa Leaf (FSL) is cold in nature and bitter in taste, and has the efficacy of clearing away heat and toxic materials. Previous research by our research group showed that the active components in FSL have the pharmacological effect of anti-RSV. Based on that, this study aims further to clarify the anti-RSV active components and mechanism of FSL. Methods Firstly, we established the BALB/c mouse model of RSV infection, assessed the in vivo anti-RSV efficacy, and determined the optimal dosage of FSL and its active components. Evaluation parameters included body weight changes, organ indices, lung tissue pathological sections, lung tissue viral load, and inflammatory factors. Additionally, we used RT-PCR, Western Blot and other molecular biology techniques to determine the expression changes of key factors such as Nrf2 and NLRP3 in PI3K/Akt-NLRP3 pathway, and revealed the anti-RSV mechanism of FSL and its active components. Results Pharmacodynamic experiments in animals showed that the FSL Low (0.4 g/kg·d), RosA Low (100 mg/kg·d) and Phillyrin Medium (100 mg/kg·d) groups could effectively improve the pathological conditions of mice with RSV pneumonia, such as weight loss, the level of pulmonary inflammatory factors and the increase of viral load. In addition, oral administration of Phillyrin at a dose of 100 mg/kg d to RSV-infected mice can effectively control the trend that the expression of Nrf2 protein decreases and the expression of NLRP3 protein increases in RSV pneumonia mice. Conclusion Phillyrin, the active component in FSL, can not only directly inhibit the replication of RSV, but also effectively control the inflammatory reaction caused by RSV infection and improve lung injury, which is expected to become a potential drug against RSV pneumonia.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Department of Clinical Pharmacy, Zhucheng People's Hospital, Weifang, Shandong Province, China
| | - Weilian Ren
- Department of Anesthesiology, Jinan Children's Hospital, Jinan, Shandong Province, China
| | - Ping Wang
- Shandong Academy of Chinese Medicine, Jinan, Shandong Province, China
| | - Li Dong
- Department of Clinical Pharmacy, Zhucheng People's Hospital, Weifang, Shandong Province, China
| | - Haitao Du
- Shandong Academy of Chinese Medicine, Jinan, Shandong Province, China
| | - Na Li
- Allcare Biomedical Development, Qingdao, Shandong Province, China
| | - Guixia Liu
- Shandong Academy of Chinese Medicine, Jinan, Shandong Province, China
| | - Ru Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Lin Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Tiefeng Sun
- Shandong Academy of Chinese Medicine, Jinan, Shandong Province, China
| |
Collapse
|
5
|
Fuchs B, Mert S, Kuhlmann C, Birt A, Hofmann D, Wiggenhauser PS, Giunta RE, Chavez MN, Nickelsen J, Schenck TL, Moellhoff N. In Vivo Biocompatibility of Synechococcus sp. PCC 7002-Integrated Scaffolds for Skin Regeneration. J Funct Biomater 2024; 15:295. [PMID: 39452593 PMCID: PMC11508603 DOI: 10.3390/jfb15100295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Cyanobacteria, commonly known as blue-green algae, are prevalent in freshwater systems and have gained interest for their potential in medical applications, particularly in skin regeneration. Among these, Synechococcus sp. strain PCC 7002 stands out because of its rapid proliferation and capacity to be genetically modified to produce growth factors. This study investigates the safety of Synechococcus sp. PCC 7002 when used in scaffolds for skin regeneration, focusing on systemic inflammatory responses in a murine model. We evaluated the following three groups: scaffolds colonized with genetically engineered bacteria producing hyaluronic acid, scaffolds with wild-type bacteria, and control scaffolds without bacteria. After seven days, we assessed systemic inflammation by measuring changes in cytokine profiles and lymphatic organ sizes. The results showed no significant differences in spleen, thymus, and lymph node weights, indicating a lack of overt systemic toxicity. Blood cytokine analysis revealed elevated levels of IL-6 and IL-1β in scaffolds with bacteria, suggesting a systemic inflammatory response, while TNF-α levels remained unaffected. Proteome profiling identified distinct cytokine patterns associated with bacterial colonization, including elevated inflammatory proteins and products, indicative of acute inflammation. Conversely, control scaffolds exhibited protein profiles suggestive of a rejection response, characterized by increased levels of cytokines involved in T and B cell activation. Our findings suggest that Synechococcus sp. PCC 7002 does not appear to cause significant systemic toxicity, supporting its potential use in biomedical applications. Further research is necessary to explore the long-term effects and clinical implications of these responses.
Collapse
Affiliation(s)
- Benedikt Fuchs
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (A.B.); (D.H.); (P.S.W.); (R.E.G.); (N.M.)
| | - Sinan Mert
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (A.B.); (D.H.); (P.S.W.); (R.E.G.); (N.M.)
| | - Constanze Kuhlmann
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (A.B.); (D.H.); (P.S.W.); (R.E.G.); (N.M.)
| | - Alexandra Birt
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (A.B.); (D.H.); (P.S.W.); (R.E.G.); (N.M.)
| | - Daniel Hofmann
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (A.B.); (D.H.); (P.S.W.); (R.E.G.); (N.M.)
| | - Paul Severin Wiggenhauser
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (A.B.); (D.H.); (P.S.W.); (R.E.G.); (N.M.)
| | - Riccardo E. Giunta
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (A.B.); (D.H.); (P.S.W.); (R.E.G.); (N.M.)
| | - Myra N. Chavez
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland;
| | - Jörg Nickelsen
- Molecular Plant Science, Department Biology I, LMU Munich, 80336 Munich, Germany;
| | | | - Nicholas Moellhoff
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (A.B.); (D.H.); (P.S.W.); (R.E.G.); (N.M.)
| |
Collapse
|
6
|
Zhao X, Wang M, Zhang Y, Zhang Y, Tang H, Yue H, Zhang L, Song D. Macrophages in the inflammatory response to endotoxic shock. Immun Inflamm Dis 2024; 12:e70027. [PMID: 39387442 PMCID: PMC11465138 DOI: 10.1002/iid3.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/24/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Endotoxic shock, particularly prevalent in intensive care units, represents a significant medical challenge. Endotoxin, upon invading the host, triggers intricate interactions with the innate immune system, particularly macrophages. This activation leads to the production of inflammatory mediators such as tumor necrosis factor-alpha, interleukin-6, and interleukin-1-beta, as well as aberrant activation of the nuclear factor-kappa-B and mitogen-activated protein kinase signaling pathways. OBJECTIVE This review delves into the intricate inflammatory cascades underpinning endotoxic shock, with a particular focus on the pivotal role of macrophages. It aims to elucidate the clinical implications of these processes and offer insights into potential therapeutic strategies. RESULTS Macrophages, central to immune regulation, manifest in two distinct subsets: M1 (classically activated subtype) macrophages and M2 (alternatively activated subtype) macrophages. The former exhibit an inflammatory phenotype, while the latter adopt an anti-inflammatory role. By modulating the inflammatory response in patients with endotoxic shock, these macrophages play a crucial role in restoring immune balance and facilitating recovery. CONCLUSION Macrophages undergo dynamic changes within the immune system, orchestrating essential processes for maintaining tissue homeostasis. A deeper comprehension of the mechanisms governing macrophage-mediated inflammation lays the groundwork for an anti-inflammatory, targeted approach to treating endotoxic shock. This understanding can significantly contribute to the development of more effective therapeutic interventions.
Collapse
Affiliation(s)
- Xinjie Zhao
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
- School of MedicineXizang Minzu UniversityXianyangChina
| | - Mengjie Wang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
| | - Yanru Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
| | - Yiyi Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
| | - Haojie Tang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
| | - Hongyi Yue
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
| | - Li Zhang
- Affiliated Hospital of Xizang Minzu UniversityXianyangShaanxiChina
| | - Dan Song
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
| |
Collapse
|
7
|
Xia Q, Liu F, Zhou Y, Yang G, Li F, Liang T, Liu J, Li W, Huang Y, Zhu C. CD47-SIRPα signaling-inspired engineered monocytes for preventing the progression of atherosclerotic plaques. Mater Today Bio 2024; 28:101178. [PMID: 39211288 PMCID: PMC11357865 DOI: 10.1016/j.mtbio.2024.101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
The accumulation of foam cells in the subendothelial space of the vascular wall to form plaques is the real cause of atherosclerotic lesions. Conventional interventions, such as statins and anti-cytokine or anti-inflammatory therapies, suffer problems in terms of their short therapeutic outcomes and potential disruption of the immune system. The development of more efficient therapeutics to restrict the initial progression of plaques appears to be crucial for treating and preventing atherosclerosis. Decreasing foam cell formation by reversing the excessive phagocytosis of modified low-density lipoprotein (LDL) in macrophages is highly desirable. Here, we developed a strategy based on engineered monocytes to dynamically regulate lipid uptake by macrophages inspired by a CD47-SIRPα signaling-induced defect in the phagocytosis of lesional macrophages at the advanced stage of AS. Briefly, a complex called CD47p-GQDs-miR223, which is designed to interact with SIRPα, was synthesized to remodel monocytes by decreasing the uptake of oxidized LDL through the activation of CD47-SIRPα signaling. After injection, these monocytes compete for recruitment to atherosclerotic plaques, release gene drugs and mediate anti-inflammatory phenotypic remodeling of the aboriginal macrophages, effectively inhibiting the development of foam cells. Our strategy provides a new therapeutic for preventing the progression of atherosclerosis.
Collapse
Affiliation(s)
- Qing Xia
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yue Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Guanyuan Yang
- Department of Anatomy, State Key Laboratory of Trauma, Burn and Combined Injury, National and Regional Engineering Laboratory of Tissue Engineering, Third Military Medical University, Chongqing, 400038, China
| | - Fangzhou Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Tingting Liang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Wanling Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yaqing Huang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chuhong Zhu
- Department of Anatomy, State Key Laboratory of Trauma, Burn and Combined Injury, National and Regional Engineering Laboratory of Tissue Engineering, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
8
|
Haddaji A, Ouladlahsen A, Lkhider M, Tanouti IA, Abbadi I, Hilmi S, Bensghir R, Guessous F, Pineau P, Marhoum El Filali K, Ezzikouri S. Impact of IL-6 and IL-6r variants on HIV-1 susceptibility and progression to AIDS: a case-control study in a Moroccan population. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-20. [PMID: 38830242 DOI: 10.1080/15257770.2024.2359593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
Interleukin-6 (IL-6), a pro-inflammatory cytokine, is an important regulator of the inflammatory immune response. We aimed to assess the association of common single nucleotide polymorphisms (SNPs) in IL-6 (rs1800795 G > C, rs1800797 A > G) and interleukin-6 receptor (IL-6R) (rs2228145 A > C) genes with HIV-1 infection, AIDS progression, and response to treatment. In this case-control study involving 199 individuals living with HIV-1 and 200 HIV-uninfected controls, we conducted genotyping of IL-6/IL-6R SNPs using TaqMan real-time PCR assays. Soluble IL-6 levels were measured using ELISA. No associations were found between the investigated SNPs and HIV infection. However, a significant association was noted between the C-G and G-A haplotypes and susceptibility to HIV-1 infection. Additionally, a significant association was revealed between HIV-1 RNA viral loads and IL-6 SNP G > C in the post-treatment HIV group. Interestingly, we observed a significant association between the investigated SNPs and protection against progression to AIDS, namely the IL-6 G > A SNP in its recessive model and the IL-6R A > C SNP in its codominant and dominant models. Nevertheless, we found no significant differences between IL-6 levels and the different genotypes and alleles of the IL-6 gene either before or after combination antiretroviral therapy. IL-6 promoter haplotypes are associated with susceptibility to HIV-1 infection. Furthermore, IL-6 A > G and IL-6R A > C polymorphisms have been associated with protection against AIDS progression. Interestingly, the IL-6 G > C SNP may affect the response to treatment in people living with HIV-1.
Collapse
Affiliation(s)
- Asmaa Haddaji
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
- Laboratory of virology, oncology, biosciences, environment and new energies, Faculty of Sciences and Techniques of Mohammedia, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ahd Ouladlahsen
- Faculté de médecine et de pharmacie, Université Hassan II, Casablanca, Morocco
- Service des maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Mustapha Lkhider
- Laboratory of virology, oncology, biosciences, environment and new energies, Faculty of Sciences and Techniques of Mohammedia, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ikram-Allah Tanouti
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Islam Abbadi
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Soufiane Hilmi
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Rajaa Bensghir
- Service des maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Fadila Guessous
- Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
- Department of Microbiology, Immunology and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Pascal Pineau
- Unité "Organisation Nucléaire et Oncogenèse", INSERM U993, Institut Pasteur, Paris, France
| | - Kamal Marhoum El Filali
- Faculté de médecine et de pharmacie, Université Hassan II, Casablanca, Morocco
- Service des maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
9
|
da Silva Brito WA, Ravandeh M, Saadati F, Singer D, Dorsch AD, Schmidt A, Cecchini AL, Wende K, Bekeschus S. Sonicated polyethylene terephthalate nano- and micro-plastic-induced inflammation, oxidative stress, and autophagy in vitro. CHEMOSPHERE 2024; 355:141813. [PMID: 38575082 DOI: 10.1016/j.chemosphere.2024.141813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
The environmental presence of nano- and micro-plastic particles (NMPs) is suspected to have a negative impact on human health. Environmental NMPs are difficult to sample and use in life science research, while commercially available plastic particles are too morphologically uniform. Additionally, this NMPs exposure exhibited biological effects, including cell internalization, oxidative stress, inflammation, cellular adaptation, and genotoxicity. Therefore, developing new methods for producing heterogenous NMPs as observed in the environment is important as reference materials for research. Thus, we aimed to generate and characterize NMPs suspensions using a modified ultrasonic protocol and to investigate their biological effects after exposure to different human cell lines. To this end, we produced polyethylene terephthalate (PET) NMPs suspensions and characterized the particles by dynamic light scattering and scanning electron microscopy. Ultrasound treatment induced polymer degradation into smaller and heterogeneous PET NMPs shape fragments with similar surface chemistry before and after treatment. A polydisperse suspension of PET NMPs with 781 nm in average size and negative surface charge was generated. Then, the PET NMPs were cultured with two human cell lines, A549 (lung) and HaCaT (skin), addressing inhalation and topical exposure routes. Both cell lines interacted with and have taken up PET NMPs as quantified via cellular granularity assay. A549 but not HaCaT cell metabolism, viability, and cell death were affected by PET NMPs. In HaCaT keratinocytes, large PET NMPs provoked genotoxic effects. In both cell lines, PET NMPs exposure affected oxidative stress, cytokine release, and cell morphology, independently of concentration, which we could relate mechanistically to Nrf2 and autophagy activation. Collectively, we present a new PET NMP generation model suitable for studying the environmental and biological consequences of exposure to this polymer.
Collapse
Affiliation(s)
- Walison Augusto da Silva Brito
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina, 86047970, Brazil
| | - Mehdi Ravandeh
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Institute of Biological Information Processing-Bioelectronics (IBI3), Forschungszentrum Juelich, Wilhelm-Johnen-Str., 52428, Jülich, Germany
| | - Fariba Saadati
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Clinic and Policlinic for Dermatology and Venereology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany
| | - Debora Singer
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Clinic and Policlinic for Dermatology and Venereology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany
| | - Anna Daniela Dorsch
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Anke Schmidt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Alessandra Lourenço Cecchini
- Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina, 86047970, Brazil
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Clinic and Policlinic for Dermatology and Venereology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany.
| |
Collapse
|
10
|
Harrison SP, Baumgarten SF, Chollet ME, Stavik B, Bhattacharya A, Almaas R, Sullivan GJ. Parenteral nutrition emulsion inhibits CYP3A4 in an iPSC derived liver organoids testing platform. J Pediatr Gastroenterol Nutr 2024; 78:1047-1058. [PMID: 38529852 DOI: 10.1002/jpn3.12195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Abstract
OBJECTIVES Parenteral nutrition (PN) is used for patients of varying ages with intestinal failure to supplement calories. Premature newborns with low birth weight are at a high risk for developing PN associated liver disease (PNALD) including steatosis, cholestasis, and gallbladder sludge/stones. To optimize nutrition regimens, models are required to predict PNALD. METHODS We have exploited induced pluripotent stem cell derived liver organoids to provide a testing platform for PNALD. Liver organoids mimic the developing liver and contain the different hepatic cell types. The organoids have an early postnatal maturity making them a suitable model for premature newborns. To mimic PN treatment we used medium supplemented with either clinoleic (80% olive oil/20% soybean oil) or intralipid (100% soybean oil) for 7 days. RESULTS Homogenous HNF4a staining was found in all organoids and PN treatments caused accumulation of lipids in hepatocytes. Organoids exhibited a dose dependent decrease in CYP3A4 activity and expression of hepatocyte functional genes. The lipid emulsions did not affect overall organoid viability and glucose levels had no contributory effect to the observed results. CONCLUSIONS Liver organoids could be utilized as a potential screening platform for the development of new, less hepatotoxic PN solutions. Both lipid treatments caused hepatic lipid accumulation, a significant decrease in CYP3A4 activity and a decrease in the RNA levels of both CYP3A4 and CYP1A2 in a dose dependent manner. The presence of high glucose had no additive effect, while Clinoleic at high dose, caused significant upregulation of interleukin 6 and TLR4 expression.
Collapse
Affiliation(s)
- Sean P Harrison
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Saphira F Baumgarten
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub-Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Maria E Chollet
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Benedicte Stavik
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Anindita Bhattacharya
- Research, Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Runar Almaas
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gareth J Sullivan
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
11
|
Azimi B, Rasti A, Fusco A, Macchi T, Ricci C, Hosseinifard MA, Guazzelli L, Donnarumma G, Bagherzadeh R, Latifi M, Roy I, Danti S, Lazzeri A. Bacterial Cellulose Electrospun Fiber Mesh Coated with Chitin Nanofibrils for Eardrum Repair. Tissue Eng Part A 2024; 30:340-356. [PMID: 37962275 DOI: 10.1089/ten.tea.2023.0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
In this study, we develop a bio-based and bioactive nanofibrous patch based on bacterial cellulose (BC) and chitin nanofibrils (CNs) using an ionic liquid as a solvent for BC, aimed at tympanic membrane (TM) repair. Electrospun BC nanofiber meshes were produced via electrospinning, and surface-modified with CNs using electrospray. The rheology of the BC/ionic liquid system was investigated. The obtained CN/BC meshes underwent comprehensive morphological, physicochemical, and mechanical characterization. Cytotoxicity tests were conducted using L929 mouse fibroblasts, revealing a cell viability of 97.8%. In vivo tests on rabbit skin demonstrated that the patches were nonirritating. Furthermore, the CN/BC fiber meshes were tested in vitro using human dermal keratinocytes (HaCaT cells) and human umbilical vein endothelial cells as model cells for TM perforation healing. Both cell types demonstrated successful growth on these scaffolds. The presence of CNs resulted in improved indirect antimicrobial activity of the electrospun fiber meshes. HaCaT cells exhibited an upregulated mRNA expression at 6 and 24 h of key proinflammatory cytokines crucial for the wound healing process, indicating the potential benefits of CNs in the healing response. Overall, this study presents a natural and eco-sustainable fiber mesh with great promise for applications in TM repair, leveraging the synergistic effects of BC and CNs to possibly enhance tissue regeneration and healing. Impact statement Repair of tympanic membrane perforations following chronic otitis media is a main clinical issue in otologic surgery, where the underlying infection obstacles self-healing. To address this challenge, our study proposes a bio-based patch made of nanoscale carbohydrate materials (i.e., bacterial cellulose electrospun fibers and chitin nanofibrils) processed via green solvents. The scaffold is nonirritating in vivo, and cytocompatible with fibroblasts, endothelial cells, and keratinocytes. In epithelial cells, it stimulates the expression of the antimicrobial peptide human beta defensin 2, with a pathway of cytokine expression compatible with the wound healing process. Therefore, it could be applied with unsolved infective pathology.
Collapse
Affiliation(s)
- Bahareh Azimi
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | - Atefeh Rasti
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Alessandra Fusco
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Teresa Macchi
- Department of Translational Researches and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Claudio Ricci
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | | | | | - Giovanna Donnarumma
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Roohollah Bagherzadeh
- Institute for Advanced Textile Materials and Technologies (ATMT), Amirkabir University of Technology, Tehran, Iran
| | - Masoud Latifi
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ipsita Roy
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
12
|
Ju Z, Xu J, Tang K, Chen F. Structural modification based on the diclofenac scaffold: Achieving reduced colitis side effects through COX-2/NLRP3 selective inhibition. Eur J Med Chem 2024; 268:116257. [PMID: 38382390 DOI: 10.1016/j.ejmech.2024.116257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
COX-2/NLPR3-targeted therapy might be beneficial for the inflammation diseases. To discover novel anti-inflammatory compounds with favorable safety profiles, three new series of non-carboxylic diclofenac analogues bearing various ring systems, such as oxadiazoles 4a-4w, triazoles 6a-6m, and cyclic imides 7a and 7b, were synthesized. The synthesized analogues were evaluated for their inhibitory activity against COX-2 enzyme. Among them, compound 6k exhibited potent selective COX-2 inhibition (IC50 = 1.53 μM; selectivity ((IC50 (COX-1)/IC50(COX-2) = 17.19). Treatment with compound 6k effectively suppressed the NF-κB/NLRP3 signaling pathway, resulting in reduced expression of pro-inflammatory factors. The in vivo ulcerative colitis assay demonstrated that compound 6k significantly ameliorated histological damages and showed strong protection against DSS-induced acute colitis. The collected results indicated that compound 6k displays anti-inflammatory activity through COX-2/NLRP3 inhibition. Therefore, compound 6k represents a promising candidate for further development as a new lead compound with reduced colitis side effects.
Collapse
Affiliation(s)
- Zhiran Ju
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Junde Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Keshuang Tang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fener Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China.
| |
Collapse
|
13
|
Jafri M, Li L, Liang B, Luo M. The Effect of Heparin and Other Exogenous Glycosaminoglycans (GAGs) in Reducing IL-1β-Induced Pro-Inflammatory Cytokine IL-8 and IL-6 mRNA Expression and the Potential Role for Reducing Inflammation. Pharmaceuticals (Basel) 2024; 17:371. [PMID: 38543157 PMCID: PMC10976005 DOI: 10.3390/ph17030371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 11/12/2024] Open
Abstract
Glycosaminoglycans (GAGs) are long linear polysaccharides found in every mammalian tissue. Previously thought only to be involved in cellular structure or hydration, GAGs are now known to be involved in cell signaling and protein modulation in cellular adhesion, growth, proliferation, and anti-coagulation. In this study, we showed that GAGs have an inhibitory effect on the IL-1β-stimulated mRNA expression of IL-6 and IL-8. Exogenous heparin (p < 0.0001), heparan (p < 0.0001), chondroitin (p < 0.049), dermatan (p < 0.0027), and hyaluronan (p < 0.0005) significantly reduced the IL-1β-induced IL-8 mRNA expression in HeLa cells. Exogenous heparin (p < 0.0001), heparan (p < 0.0001), and dermatan (p < 0.0027) also significantly reduced IL-1β-induced IL-6 mRNA expression in HeLa cells, but exogenous chondroitin and hyaluronan had no significant effect. The exogenous GAGs may reduce the transcription of these inflammatory cytokines through binding to TILRR, a co-receptor of IL-1R1, and block/reduce the interactions of TILRR with IL-1R1.
Collapse
Affiliation(s)
- Murtaza Jafri
- Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Lin Li
- National Microbiology Laboratory, Winnipeg, MB R3E 3R2, Canada; (L.L.); (B.L.)
| | - Binhua Liang
- National Microbiology Laboratory, Winnipeg, MB R3E 3R2, Canada; (L.L.); (B.L.)
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ma Luo
- National Microbiology Laboratory, Winnipeg, MB R3E 3R2, Canada; (L.L.); (B.L.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
14
|
Queiroz MAF, Brito WRDS, Pereira KAS, Pereira LMS, Amoras EDSG, Lima SS, Santos EFD, Costa FPD, Sarges KMLD, Cantanhede MHD, Brito MTFMD, Silva ALSD, Leite MDM, Viana MDNDSDA, Rodrigues FBB, Silva RD, Viana GMR, Chaves TDSS, Veríssimo ADOL, Carvalho MDS, Henriques DF, Silva CPD, Nunes JAL, Costa IB, Cayres-Vallinoto IMV, Brasil-Costa I, Quaresma JAS, Falcão LFM, Santos EJMD, Vallinoto ACR. Severe COVID-19 and long COVID are associated with high expression of STING, cGAS and IFN-α. Sci Rep 2024; 14:4974. [PMID: 38424312 PMCID: PMC10904751 DOI: 10.1038/s41598-024-55696-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
The cGAS-STING pathway appears to contribute to dysregulated inflammation during coronavirus disease 2019 (COVID-19); however, inflammatory factors related to long COVID are still being investigated. In the present study, we evaluated the association of cGAS and STING gene expression levels and plasma IFN-α, TNF-α and IL-6 levels with COVID-19 severity in acute infection and long COVID, based on analysis of blood samples from 148 individuals, 87 with acute COVID-19 and 61 in the post-COVID-19 period. Quantification of gene expression was performed by real-time PCR, and cytokine levels were quantified by ELISA and flow cytometry. In acute COVID-19, cGAS, STING, IFN-α, TNF-α, and IL-6 levels were higher in patients with severe disease than in those with nonsevere manifestations (p < 0.05). Long COVID was associated with elevated cGAS, STING and IFN-α levels (p < 0.05). Activation of the cGAS-STING pathway may contribute to an intense systemic inflammatory state in severe COVID-19 and, after infection resolution, induce an autoinflammatory disease in some tissues, resulting in long COVID.
Collapse
Affiliation(s)
- Maria Alice Freitas Queiroz
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.
| | - Wandrey Roberto Dos Santos Brito
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Keise Adrielle Santos Pereira
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Leonn Mendes Soares Pereira
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Sandra Souza Lima
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Erika Ferreira Dos Santos
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Flávia Póvoa da Costa
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Kevin Matheus Lima de Sarges
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Marcos Henrique Damasceno Cantanhede
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | | | - Mauro de Meira Leite
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Maria de Nazaré do Socorro de Almeida Viana
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Fabíola Brasil Barbosa Rodrigues
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Rosilene da Silva
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Giselle Maria Rachid Viana
- Laboratory of Basic Research On Malaria, Parasitology Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
| | - Tânia do Socorro Souza Chaves
- Laboratory of Basic Research On Malaria, Parasitology Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
- School of Medicine, Institute of Medical Sciences, Federal University of Pará, Belém, Pará, Brazil
| | | | | | - Daniele Freitas Henriques
- Arbovirology and Hemorrhagic Fevers Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
| | - Carla Pinheiro da Silva
- Arbovirology and Hemorrhagic Fevers Section, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
| | - Juliana Abreu Lima Nunes
- Laboratory of Immunology, Section of Virology, Instituto Evandro Chagas, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
| | - Iran Barros Costa
- Laboratory of Immunology, Section of Virology, Instituto Evandro Chagas, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua, Brazil
| | - Izaura Maria Vieira Cayres-Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Igor Brasil-Costa
- Laboratory of Immunology, Section of Virology, Instituto Evandro Chagas, Health and Environment Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Brazil
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua, Brazil
| | - Juarez Antônio Simões Quaresma
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua, Brazil
- Center of Biological and Health Sciences, University of the State of Pará, Belém, Brazil
| | | | - Eduardo José Melo Dos Santos
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Laboratory of Genetics of Complex Diseases, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- Graduate Program in Virology, Evandro Chagas Institute, Department of Science, Technology, Innovation and Strategic Health Inputs, Ministry of Health of Brazil, Ananindeua, Brazil
| |
Collapse
|
15
|
Sun J, Huang Y, Li X, Xu X, Cui X, Hao F, Ji Q, Chen C, Bao G, Liu Y. Characterization and immunological effect of outer membrane vesicles from Pasteurella multocida on macrophages. Appl Microbiol Biotechnol 2024; 108:238. [PMID: 38407600 PMCID: PMC10896778 DOI: 10.1007/s00253-024-13060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024]
Abstract
Pasteurella multocida is an important bacterial pathogen that can cause diseases in both animals and humans. Its elevated morbidity and mortality rates in animals result in substantial economic repercussions within the livestock industry. The prevention of diseases caused by P. multocida through immunization is impeded by the absence of a safe and effective vaccine. Outer membrane vesicles (OMVs) secreted from the outer membrane of Gram-negative bacteria are spherical vesicular structures that encompass an array of periplasmic components in conjunction with a diverse assortment of lipids and proteins. These vesicles can induce antibacterial immune responses within the host. P. multocida has been shown to produce OMVs. Nonetheless, the precise characteristics and immunomodulatory functions of P. multocida OMVs have not been fully elucidated. In this study, OMVs were isolated from P. multocida using an ultrafiltration concentration technique, and their morphology, protein constitution, and immunomodulatory properties in RAW264.7 cells were studied. Transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) revealed that the OMVs exhibited typical spherical and bilayered lipid vesicular architecture, exhibiting an average diameter of approximately 147.5 nm. The yield of OMVs was 2.6 × 1011 particles/mL. Proteomic analysis revealed a high abundance of membrane-associated proteins within P. multocida OMVs, with the capability to instigate the host's immune response. Furthermore, OMVs stimulated the proliferation and cellular uptake of macrophages and triggered the secretion of cytokines, such as TNF-ɑ, IL-1β, IL-6, IL-10, and TGF-β1. Consequently, our results indicated that OMVs from P. multocida could directly interact with macrophages and regulate their immune function in vitro. These results supported the prospective applicability of P. multocida OMVs as a platform in the context of vaccine development. KEY POINTS: • Preparation and characterization of P. multocida OMVs. • P. multocida OMVs possess a range of antigens and lipoproteins associated with the activation of the immune system. • P. multocida OMVs can activate the proliferation, internalization, and cytokine secretion of macrophages in vitro.
Collapse
Affiliation(s)
- Jiaying Sun
- College of Life Sciences, China Jiliang University, Zhejiang, 310018, Hangzhou, China
| | - Yee Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Xuefeng Li
- College of Life Sciences, China Jiliang University, Zhejiang, 310018, Hangzhou, China
| | - Xiangfei Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Xuemei Cui
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Fangjiao Hao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Quanan Ji
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Chun Chen
- College of Life Sciences, China Jiliang University, Zhejiang, 310018, Hangzhou, China
| | - Guolian Bao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China.
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China.
| |
Collapse
|
16
|
Yang K, Yi T. Tumor cell stemness in gastrointestinal cancer: regulation and targeted therapy. Front Mol Biosci 2024; 10:1297611. [PMID: 38455361 PMCID: PMC10918437 DOI: 10.3389/fmolb.2023.1297611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/14/2023] [Indexed: 03/09/2024] Open
Abstract
The cancer stem cells are a rare group of self-renewable cancer cells capable of the initiation, progression, metastasis and recurrence of tumors, and also a key contributor to the therapeutic resistance. Thus, understanding the molecular mechanism of tumor stemness regulation, especially in the gastrointestinal (GI) cancers, is of great importance for targeting CSC and designing novel therapeutic strategies. This review aims to elucidate current advancements in the understanding of CSC regulation, including CSC biomarkers, signaling pathways, and non-coding RNAs. We will also provide a comprehensive view on how the tumor microenvironment (TME) display an overall tumor-promoting effect, including the recruitment and impact of cancer-associated fibroblasts (CAFs), the establishment of an immunosuppressive milieu, and the induction of angiogenesis and hypoxia. Lastly, this review consolidates mainstream novel therapeutic interventions targeting CSC stemness regulation.
Collapse
Affiliation(s)
- Kangqi Yang
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tuo Yi
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Lacinski RA, Dziadowicz SA, Stewart A, Chaharbakhshi E, Akhter H, Pisquiy JJ, Victory JH, Hardham JB, Chew C, Prorock A, Bao Y, Sol-Church K, Hobbs GR, Klein E, Nalesnik MA, Hu G, de Oliveira A, Santiago SP, Lindsey BA. Nanosphere pharmacodynamics improves safety of immunostimulatory cytokine therapy. iScience 2024; 27:108836. [PMID: 38303687 PMCID: PMC10831265 DOI: 10.1016/j.isci.2024.108836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/04/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Systemic administration of interleukin (IL)-12 induces potent anti-tumor immune responses in preclinical cancer models through the systemic activation of effector immune cells and release of proinflammatory cytokines. IL-12-loaded PLGA nanospheres (IL12ns) are hypothesized to improve therapeutic efficacy and thwart unwanted side effects observed in previous human clinical trials. Through the investigation of peripheral blood and local tissue immune responses in healthy BALB/c mice, the immune-protective pharmacodynamics of IL12ns were suggested. Nanospheres increased pro-inflammatory plasma cytokines/chemokines (IFN-γ, IL-6, TNF-α, and CXCL10) without inducing maladaptive transcriptomic signatures in circulating peripheral immune cells. Gene expression profiling revealed activation of pro-inflammatory signaling pathways in systemic tissues, the likely source of these effector cytokines. These data support that nanosphere pharmacodynamics, including shielding IL-12 from circulating immune cells, depositing peripherally in systemic immune tissues, and then slowly eluting bioactive cytokine, thereafter, are essential to safe immunostimulatory therapy.
Collapse
Affiliation(s)
- Ryan A. Lacinski
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Sebastian A. Dziadowicz
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26505, USA
- Bioinformatics Core, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Amanda Stewart
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Edwin Chaharbakhshi
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Halima Akhter
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26505, USA
- Bioinformatics Core, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - John J. Pisquiy
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Jack H. Victory
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Joshua B. Hardham
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Claude Chew
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alyson Prorock
- Genome Analysis & Technology Core, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Yongde Bao
- Genome Analysis & Technology Core, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Katia Sol-Church
- Genome Analysis & Technology Core, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Gerald R. Hobbs
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Edwin Klein
- Division of Laboratory Animal Resources, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Michael A. Nalesnik
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26505, USA
- Bioinformatics Core, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Ana de Oliveira
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Stell P. Santiago
- Department of Pathology, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Brock A. Lindsey
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
18
|
Dong Y, Liu Y, Tang J, Du J, Zhuang X, Tan S, Yang Y, Yin D. Zhisou powder displays therapeutic effect on chronic bronchitis through inhibiting PI3K/Akt/HIF-1α/VEGFA signaling pathway and reprograming metabolic pathway of arachidonic acid. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117110. [PMID: 37673198 DOI: 10.1016/j.jep.2023.117110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/13/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhisou Powder (ZP), one of the most common prescriptions in traditional Chinese medicine, has been widely used in the treatment of acute or chronic bronchitis and chronic cough. The ZP was composed of Ziwan (Aster tataricus L. f.), Jiegeng (Platycodon grandiflorus (Jacq.) A. DC.), Jingjie (Nepeta cataria L.), Baibu (Stemona sessilifolia (Miq.) Miq.), Baiqian (Vincetoxicum glaucescens (Decne.) C. Y. Wu & D. Z. Li), Chenpi (Citrus × aurantium f. deliciosa (Ten.) M. Hiroe) and Gancao (Glycyrrhiza uralensis Fisch. ex DC.), with plant names among it checked with MPNS (http://mpns.kew.org). But until now, the key active components and targets of ZP, and related mechanism of ZP in the treatment of chronic bronchitis (CB) remain unclear. AIM OF THE STUDY This study combined UPLC-Q-Exactive-Orbitrap-MS, network pharmacology, metabonomics with experiment verification to explore potential mechanism of ZP in the treatment of CB. MATERIALS AND METHODS UPLC-Q-Exactive-Orbitrap-MS was performed to analyze the chemical components of ZP. The potentially effective components, attractive targets and critical signaling pathways of Zhisou Powder in the treatment of CB were screened by UPLC-Q-Exactive-Orbitrap-MS combined with network pharmacology. Additionally, the CB model rats induced by SO2 were used to evaluate the anti-chronic bronchitis activity of ZP in vivo. The pulmonary pathology was determined by hematoxylin-eosin staining. Meanwhile, PI3K/Akt/HIF-1α/VEGFA signaling pathway predicted from network pharmacology was verified by Western blot and RT-PCR. Lastly, the metabolic changes of arachidonic acid (AA) in ZP-treated rats were quantitatively analyzed by LC-MS targeted metabonomics, and the proteins expression involved in AA metabolic pathway were detected by immunohistochemistry, immunofluorescence and Western blot. RESULTS The main active components of ZP in the treatment of CB selected by network pharmacology and UPLC-Q-Exactive-Orbitrap-MS technology were quercetin, kaempferol, luteolin, galangin, isorhamnetin, naringenin, nobiletin, formononetin and so on. The core targets of these components were predicted to be TP53, TNF, IL-6, VEGFA, CASP3, IL-1β, JUN, PTGS2. Enrichment of KEGG pathway analysis found that PI3K/Akt/HIF-1α/VEGFA signaling pathway might play a key role in the treatment of CB with ZP. The in vivo study showed that ZP significantly improved the pathological changes of SO2-treated lung tissue and inhibited the activation of PI3K/Akt/HIF-1α/VEGFA signaling pathway. The changes of AA and its metabolites in vivo were studied by targeted metabonomics, and it showed that ZP could reprogram the disorder of AA metabolism which contributed to the treatment of CB with ZP. CONCLUSION ZP displayed good therapeutic effect on CB model rats through inhibiting PI3K/Akt/HIF-1α/VEGFA signaling pathway to exhibit anti-inflammatory effect and reprogramming disordered metabolic pathway of arachidonic acid.
Collapse
Affiliation(s)
- Yahui Dong
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, 230012, China
| | - Yang Liu
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, 230012, China
| | - Jie Tang
- College of Biotechnology, Hefei Technology College, Heifei, 238000, China
| | - Jiahui Du
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, 230012, China
| | - Xuzhen Zhuang
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, 230012, China
| | - Song Tan
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, 230012, China
| | - Ye Yang
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230031, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230021, China.
| | - Dengke Yin
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230031, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230021, China.
| |
Collapse
|
19
|
Kim A, Downer MA, Berry CE, Valencia C, Fazilat AZ, Griffin M. Investigating Immunomodulatory Biomaterials for Preventing the Foreign Body Response. Bioengineering (Basel) 2023; 10:1411. [PMID: 38136002 PMCID: PMC10741225 DOI: 10.3390/bioengineering10121411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
Implantable biomaterials represent the forefront of regenerative medicine, providing platforms and vessels for delivering a creative range of therapeutic benefits in diverse disease contexts. However, the chronic damage resulting from implant rejection tends to outweigh the intended healing benefits, presenting a considerable challenge when implementing treatment-based biomaterials. In response to implant rejection, proinflammatory macrophages and activated fibroblasts contribute to a synergistically destructive process of uncontrolled inflammation and excessive fibrosis. Understanding the complex biomaterial-host cell interactions that occur within the tissue microenvironment is crucial for the development of therapeutic biomaterials that promote tissue integration and minimize the foreign body response. Recent modifications of specific material properties enhance the immunomodulatory capabilities of the biomaterial and actively aid in taming the immune response by tuning interactions with the surrounding microenvironment either directly or indirectly. By incorporating modifications that amplify anti-inflammatory and pro-regenerative mechanisms, biomaterials can be optimized to maximize their healing benefits in harmony with the host immune system.
Collapse
Affiliation(s)
| | | | | | | | | | - Michelle Griffin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.K.); (M.A.D.); (C.E.B.); (A.Z.F.)
| |
Collapse
|
20
|
Sun W, Li E, Mao X, Zhang Y, Wei Q, Huang Z, Wan A, Zou Y. The oligosaccharides of Xiasangju alleviates dextran sulfate sodium-induced colitis in mice by inhibiting inflammation. PLoS One 2023; 18:e0295324. [PMID: 38060482 PMCID: PMC10703232 DOI: 10.1371/journal.pone.0295324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Xiasangju (XSJ) is a traditional Chinese herbal formula consisted of Prunella spica, Mulberry leaf and Chrysanthemi indici flos, which can be used to treat fever, headache and ulcer. To explore the effects of oligosaccharides from XSJ (OX) on colitis, we used dextran sulfate sodium (DSS) to establish colitis mouse models. After administration of OX with different doses on the control and colitis mice, we measured their body weights, disease activity indexes (DAI), lengths and histopathologic changes of colons, spleen indexes. The inflammatory cytokines and oxidative stress-related factors in serum, and the intestinal microbial community in feces were also detected. We found that colitis mice with oral administration of OX showed higher body weights and lower levels of DAI and spleen index. Tissue damages induced by DSS were also alleviated by OX treatment. The colitis mice with OX treatment exhibited lower levels of AST, ALT, BUN, CR, MDA and a down-regulated expression of IL-6 and IL-1β, while the activity of SOD was up-regulated. Furthermore, OX improved the relative abundance of gut microbiota and restored the proportions of Bacteroidetes and Muribaculaceae. We found that oligosaccharides from XSJ alleviated the symptoms of colitis mice through its inhibitory effects on inflammation and oxidative stress, and also regulated the composition of intestinal flora, which indicates a beneficial role for patients with colitis.
Collapse
Affiliation(s)
- Weiguang Sun
- Guangzhou Baiyunshan Xingqun Pharmaceutical Co., Ltd, Guangzhou, 510288, China
| | - Erna Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Xin Mao
- Guangzhou Baiyunshan Xingqun Pharmaceutical Co., Ltd, Guangzhou, 510288, China
| | - Yulin Zhang
- Guangzhou Baiyunshan Xingqun Pharmaceutical Co., Ltd, Guangzhou, 510288, China
| | - Quxing Wei
- Guangzhou Baiyunshan Xingqun Pharmaceutical Co., Ltd, Guangzhou, 510288, China
| | - Zhiyun Huang
- Guangzhou Baiyunshan Xingqun Pharmaceutical Co., Ltd, Guangzhou, 510288, China
| | - Anfeng Wan
- Guangzhou Baiyunshan Xingqun Pharmaceutical Co., Ltd, Guangzhou, 510288, China
| | - Yuxiao Zou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| |
Collapse
|
21
|
Liu Z, Huang X, Guo HY, Zhang LW, Quan YS, Chen FE, Shen QK, Quan ZS. Design, synthesis fusidic acid derivatives alleviate acute lung injury via inhibiting MAPK/NF-κB/NLRP3 pathway. Eur J Med Chem 2023; 259:115697. [PMID: 37544187 DOI: 10.1016/j.ejmech.2023.115697] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
Acute lung injury (ALI) refers to a series of lung lesions resulting from multiple lung injuries, even leading to morbidity and death, abundant previous reports have showed that anti-inflammatory as a key to treatment of ALI. Fusidic acid (FA) as an antibiotic has significant anti-bacterial activity and anti-inflammatory effects. In this study, we designed and synthesized 34 FA derivatives to identify new anti-inflammatory drugs. The anti-inflammatory activities of the derivatives were screened using lipopolysaccharide (LPS)-induced RAW264.7 cells to evaluate the anti-inflammatory activity of the compounds, we measured nitric oxide (NO) and interleukin-6 (IL-6). Most of compounds showed inhibitory effects on inflammatory NO and IL-6 in LPS-induced RAW264.7 cells. Based on the screening results, compound a1 showed the strongest anti-inflammatory activity. Compared with FA, the inhibition rate NO and IL-6 of compound a1 increased 3.08 and 2.09 times at 10 μM, respectively. We further measured a1 inhibited inflammatory factor NO (IC50 = 3.26 ± 0.42 μM), IL-6 (IC50 = 1.85 ± 0.21 μM) and TNF-α (IC50 = 3.88 ± 0.55 μM). We also demonstrated that a1 markedly inhibits the expression of certain immune-related cytotoxic factors, including cyclooxygenase-2 (COX-2) and inducible nitric-oxide synthase (iNOS). In vivo results indicate that a1 can reduce lung inflammation and NO, IL-6, TNF-α, COX-2 and iNOS in LPS-induced ALI mice. On the one hand, we demonstrated a1 inhibits the mitogen-activated protein kinase (MAPK) signaling pathway by down-regulating the phosphorylation of p38 MAPK, c-Jun N-terminal kinase (c-JNK) and extracellular signal-regulated kinase (ERK). Moreover, a1 also suppressing the phosphorylation of inhibitory NF-κB inhibitor α (IκBα) inhibits the activation of the nuclear factor-κB (NF-κB) signaling pathway. On the other hand, we demonstrated a1 also role in anti-inflammatory by inhibits nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome and further inhibits Caspase-1 and inflammatory factor interleukin-1β (IL-1β). In conclusion, our study demonstrates that a1 has an anti-inflammatory effect and alleviates ALI by regulating inflammatory mediators and suppressing the MAPK, NF-κB and NLRP3 inflammasome signaling pathways.
Collapse
Affiliation(s)
- Zheng Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Lu-Wen Zhang
- Department of Functional Science, College of Medicine, Yanbian University, Yanji, Jilin, 133002, China
| | - Yin-Sheng Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Fen-Er Chen
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.
| |
Collapse
|
22
|
Ciryam P, Gerzanich V, Simard JM. Interleukin-6 in Traumatic Brain Injury: A Janus-Faced Player in Damage and Repair. J Neurotrauma 2023; 40:2249-2269. [PMID: 37166354 PMCID: PMC10649197 DOI: 10.1089/neu.2023.0135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Traumatic brain injury (TBI) is a common and often devastating illness, with wide-ranging public health implications. In addition to the primary injury, victims of TBI are at risk for secondary neurological injury by numerous mechanisms. Current treatments are limited and do not target the profound immune response associated with injury. This immune response reflects a convergence of peripheral and central nervous system-resident immune cells whose interaction is mediated in part by a disruption in the blood-brain barrier (BBB). The diverse family of cytokines helps to govern this communication and among these, Interleukin (IL)-6 is a notable player in the immune response to acute neurological injury. It is also a well-established pharmacological target in a variety of other disease contexts. In TBI, elevated IL-6 levels are associated with worse outcomes, but the role of IL-6 in response to injury is double-edged. IL-6 promotes neurogenesis and wound healing in animal models of TBI, but it may also contribute to disruptions in the BBB and the progression of cerebral edema. Here, we review IL-6 biology in the context of TBI, with an eye to clarifying its controversial role and understanding its potential as a target for modulating the immune response in this disease.
Collapse
Affiliation(s)
- Prajwal Ciryam
- Shock Trauma Neurocritical Care, Program in Trauma, R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Feng M, Luo F, Wu H, Chen Y, Zuo J, Weng X, Chen G, Zhong J. Network Pharmacology Analysis and Machine-Learning Models Confirmed the Ability of YiShen HuoXue Decoction to Alleviate Renal Fibrosis by Inhibiting Pyroptosis. Drug Des Devel Ther 2023; 17:3169-3192. [PMID: 37900883 PMCID: PMC10612518 DOI: 10.2147/dddt.s420135] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/07/2023] [Indexed: 10/31/2023] Open
Abstract
Purpose YiShen HuoXue decoction (YSHXD) is a formulation that has been used clinically for the treatment of renal fibrosis (RF) for many years. We aimed to clarify therapeutic effects of YSHXD against RF and potential pharmacological mechanisms. Materials and Methods We used network pharmacology analysis and machine-learning to screen the core components and core targets of YSHXD against RF, followed by molecular docking and molecular dynamics simulations to confirm the reliability of the results. Finally, we validated the network pharmacology analysis experimentally in HK-2 cells and a rat model of RF established by unilateral ureteral ligation (UUO). Results Quercetin, kaempferol, luteolin, beta-sitosterol, wogonin, stigmasterol, isorhamnetin, baicalein, and dihydrotanshinlactone progesterone were identified as the main active components of YSHXD in the treatment of unilateral ureteral ligation-induced RF, with IL-6, IL1β, TNF, AR, and PTGS2 as core target proteins. Molecular docking and molecular dynamics simulations further confirmed the relationship between compounds and target proteins. The potential molecular mechanism of YSHXD predicted by network pharmacology analysis was confirmed in HK-2 cells and UUO rats. YSHXD downregulated NLRP3, ASC, NF-κBp65, Caspase-1, GSDMD, PTGS2, IL-1β, IL-6, IL-18, TNF-α, α-SMA and upregulated HGF, effectively alleviating the RF process. Conclusion YSHXD exerts important anti-inflammatory and anti-cellular inflammatory necrosis effects by inhibiting the NLRP3/caspase-1/GSDMD-mediated pyroptosis pathway, indicating that YSHXD represents a new strategy and complementary approach to RF therapy.
Collapse
Affiliation(s)
- MinChao Feng
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nannig, People’s Republic of China
| | - Fang Luo
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nannig, People’s Republic of China
| | - HuiMin Wu
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nannig, People’s Republic of China
| | - Yushan Chen
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nannig, People’s Republic of China
| | - Jinjin Zuo
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nannig, People’s Republic of China
| | - Xueying Weng
- The First Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nannig, People’s Republic of China
| | - Guozhong Chen
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, People’s Republic of China
| | - Jian Zhong
- Department of Nephrology, the First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, People’s Republic of China
| |
Collapse
|
24
|
Santalla Méndez R, Rodgers Furones A, Classens R, Fedorova K, Haverdil M, Canela Capdevila M, van Duffelen A, Spruijt CG, Vermeulen M, Ter Beest M, van Spriel AB, Querol Cano L. Galectin-9 interacts with Vamp-3 to regulate cytokine secretion in dendritic cells. Cell Mol Life Sci 2023; 80:306. [PMID: 37755527 PMCID: PMC10533640 DOI: 10.1007/s00018-023-04954-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/20/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Intracellular vesicle transport is essential for cellular homeostasis and is partially mediated by SNARE proteins. Endosomal trafficking to the plasma membrane ensures cytokine secretion in dendritic cells (DCs) and the initiation of immune responses. Despite its critical importance, the specific molecular components that regulate DC cytokine secretion are poorly characterised. Galectin-9, a ß-galactoside-binding protein, has emerged as a novel cellular modulator although its exact intracellular roles in regulating (immune) cell homeostasis and vesicle transport are virtually unknown. We investigated galectin-9 function in primary human DCs and report that galectin-9 is essential for intracellular cytokine trafficking to the cell surface. Galectin-9-depleted DCs accumulate cytokine-containing vesicles in the Golgi complex that eventually undergo lysosomal degradation. We observed galectin-9 to molecularly interact with Vamp-3 using immunoprecipitation-mass-spectrometry and identified galectin-9 was required for rerouting Vamp-3-containing endosomes upon DC activation as the underlying mechanism. Overall, this study identifies galectin-9 as a necessary mechanistic component for intracellular trafficking. This may impact our general understanding of vesicle transport and sheds new light into the multiple roles galectins play in governing cell function.
Collapse
Affiliation(s)
- Rui Santalla Méndez
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA, Nijmegen, The Netherlands
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Andrea Rodgers Furones
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA, Nijmegen, The Netherlands
| | - René Classens
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Kristina Fedorova
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Manon Haverdil
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Marta Canela Capdevila
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Anne van Duffelen
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Cornelia G Spruijt
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, 6525 GA, Nijmegen, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, 6525 GA, Nijmegen, The Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Martin Ter Beest
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Annemiek B van Spriel
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Laia Querol Cano
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
25
|
Jin J, Xue M, Tang Y, Zhang L, Hu P, Hu Y, Cai D, Luo X, Sun MA. Effects of Zinc Source and Level on the Intestinal Immunity of Xueshan Chickens under Heat Stress. Animals (Basel) 2023; 13:3025. [PMID: 37835631 PMCID: PMC10571984 DOI: 10.3390/ani13193025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Heat stress can cause intestinal inflammation, impaired barrier integrity, and decreased immunity in poultry. While zinc is known to mitigate the adverse effects of heat stress, how the dietary supplementation of different sources and levels of it can improve the heat stress capacity of Chinese landraces remains unclear. This study investigated Xueshan chickens, which are an important local breed in China. The effects of different levels of ZnS and Zn-Prot M on their intestinal immune function under heat stress were compared. We found that different levels of ZnS and Zn-Prot M could effectively reduce the secretion level of IL-6 in the serum, and 60 mg/kg was optimal. Compared with ZnS, Zn-Prot M significantly increased duodenal villus height and VH/CD ratio, thus Zn-Prot M was more effective than ZnS. Both ZnS and Zn-Prot M significantly down-regulated TNF-α, IL-1β, and MyD88 in 102-day-old duodenum, and IL-1β, IL-6, and NFKBIA in jejunum and ileum at 74, 88, and 102 days old, with 60 mg/kg Zn-Prot M determined as optimal. In conclusion, our study demonstrates that Zn-Prot M is superior to ZnS in improving intestinal immunity in Xueshan chickens, and 60 mg/kg is the optimal addition dose.
Collapse
Affiliation(s)
- Jian Jin
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.J.); (Y.T.); (L.Z.)
| | - Mengxiao Xue
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (M.X.); (P.H.); (Y.H.); (D.C.)
| | - Yuchen Tang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.J.); (Y.T.); (L.Z.)
| | - Liangliang Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.J.); (Y.T.); (L.Z.)
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (M.X.); (P.H.); (Y.H.); (D.C.)
| | - Yun Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (M.X.); (P.H.); (Y.H.); (D.C.)
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (M.X.); (P.H.); (Y.H.); (D.C.)
| | - Xugang Luo
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (M.X.); (P.H.); (Y.H.); (D.C.)
| | - Ming-an Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.J.); (Y.T.); (L.Z.)
- Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
26
|
Rodrigues M, Barbosa RI, Neves LMS, Kuriki HU, Gonçalves ECD, Santos ARS, Dutra RC, Marcolino AM. Therapeutic ultrasound ameliorates hyperalgesia and edema on CFA-induced persistent inflammatory response in mice. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ELSEVIER) 2023; 73:626-634. [PMID: 36075468 PMCID: PMC10533980 DOI: 10.1016/j.bjane.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The present study investigated the effects of pulsed and continuous ultrasound (USP and USC) in edema and hyperalgesia after chronic inflammatory process induced by Complete Freund's Adjuvant-CFA and analyzing the relationship of the application frequency of ultrasound, in pro- and anti-inflammatory cytokine production. METHODS Forty-five animals were divided into 9 groups; all animals from groups 2 to 9 were subjected to a persistent inflammation model induced by CFA in mice. We report the effects and the underlying action mechanisms of USP and USC in the animals which were irradiated two, three or five times a week on the left hind paw. The analyses performed in this study were: evaluation of hind paw edema through the plethysmometer, evaluation of thermal hyperalgesia through withdrawal test using a water container at 44.5°C (± 0.5°C), and the plantar region of the left paw which was removed for analysis of cytokines. RESULTS Our results showed that USP and USC consistently reduced paw edema, and pulsed ultrasound showed a higher significant effect than the continuous mode. Moreover, groups with irradiation frequency of five times a week presented an inhibition of the edema, and groups with frequency of three or two times a week reduced mainly hyperalgesia, in comparison with the control group. The beneficial effects of the US then seem to be associated with upregulation of anti- and pro-inflammatory mediators, such as IL-10 and IL-6, respectively. CONCLUSION This study provided evidence that ultrasound constitutes an important non-pharmacological intervention for the management of inflammatory and pain states.
Collapse
Affiliation(s)
- Mariana Rodrigues
- Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Ciências da Reabilitação, Departamento de Ciências da Saúde, Laboratório de Avaliação e Reabilitação do Aparelho Locomotor, Araranguá, SC, Brazil
| | - Rafael I Barbosa
- Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Ciências da Reabilitação, Departamento de Ciências da Saúde, Laboratório de Avaliação e Reabilitação do Aparelho Locomotor, Araranguá, SC, Brazil
| | - Lais M S Neves
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Ciências da Saúde, Programa de Pós-Graduação em Reabilitação e Desempenho Funcional, Ribeirão Preto, SP, Brazil
| | - Heloyse U Kuriki
- Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Ciências da Reabilitação, Departamento de Ciências da Saúde, Laboratório de Avaliação e Reabilitação do Aparelho Locomotor, Araranguá, SC, Brazil
| | - Elaine C D Gonçalves
- Universidade Federal de Santa Catarina, Centro Araranguá, Departamento de Ciências da Saúde, Laboratório de Autoimunidade e Imunofarmacologia, Araranguá, SC, Brazil
| | - Adair R S Santos
- Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Departamento de Ciências Fisiológicas, Laboratório de Neurobiologia da Dor e Inflamação, Florianópolis, SC, Brazil
| | - Rafael C Dutra
- Universidade Federal de Santa Catarina, Centro Araranguá, Departamento de Ciências da Saúde, Laboratório de Autoimunidade e Imunofarmacologia, Araranguá, SC, Brazil
| | - Alexandre M Marcolino
- Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Ciências da Reabilitação, Departamento de Ciências da Saúde, Laboratório de Avaliação e Reabilitação do Aparelho Locomotor, Araranguá, SC, Brazil.
| |
Collapse
|
27
|
Frans MT, Kuipers EM, Bianchi F, van den Bogaart G. Unveiling the impact of GOLM1/GP73 on cytokine production in cancer and infectious disease. Immunol Cell Biol 2023; 101:727-734. [PMID: 37332154 DOI: 10.1111/imcb.12664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/20/2023]
Abstract
The Golgi membrane protein GOLM1/GP73/GOLPH2 has been found to impact cytokine production in both infectious disease and cancer. In viral infections, GOLM1 levels are increased, and this lowers the production of type I interferons and other inflammatory cytokines. However, elevated GOLM1 expression levels due to mutations are linked to a higher production of interleukin (IL)-6 during Candida infections, potentially explaining an increased susceptibility to candidemia in individuals carrying these mutations. In cancer, the protease Furin produces a soluble form of GOLM1 that has oncogenic properties by promoting the production of the chemokine CCL2 and suppressing the production of inflammatory cytokines such as IL-12 and interferon gamma. This review will focus on the role of GOLM1 in cytokine production, highlighting how it can both promote and inhibit cytokine production. It is crucial to understand this in order to effectively target GOLM1 for therapeutic purposes in diseases associated with abnormal cytokine production, including cancer and infectious disease.
Collapse
Affiliation(s)
- Myrthe T Frans
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Ella M Kuipers
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Frans Bianchi
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
28
|
Peralta S, Grenier JK, Webb SM, Miller AD, Miranda IC, Parker JSL. Transcriptomic signatures of feline chronic gingivostomatitis are influenced by upregulated IL6. Sci Rep 2023; 13:13437. [PMID: 37596310 PMCID: PMC10439118 DOI: 10.1038/s41598-023-40679-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/16/2023] [Indexed: 08/20/2023] Open
Abstract
Feline chronic gingivostomatitis (FCGS) is a relatively common and debilitating disease characterized by bilateral inflammation and ulceration of the caudal oral mucosa, alveolar and buccal mucosa, and varying degrees of periodontal disease. The etiopathogenesis of FCGS remains unresolved. In this study, we performed bulk RNA-seq molecular profiling of affected tissues derived from a cohort of client-owned cats with FCGS compared to tissues from unaffected animals, to identify candidate genes and pathways that can help guide future exploration of novel clinical solutions. We complemented transcriptomic findings with immunohistochemistry and in situ hybridization assays to better understand the biological significance of the results and performed RNA-seq validation of biologically relevant differentially expressed genes using qPCR assays to demonstrate technical reproducibility. Transcriptomic profiles of oral mucosal tissues in cats with FCGS are enriched with immune- and inflammation-related genes and pathways that appear to be largely influenced by IL6, and include NFKB, JAK/STAT, IL-17 and IFN type I and II signaling, offering new opportunities to develop novel clinical applications based on a more rational understanding of the disease.
Collapse
Affiliation(s)
- Santiago Peralta
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
- Clinical Programs Center, College of Veterinary Medicine, Cornell University, Box 31, Ithaca, NY, 14853, USA.
| | - Jennifer K Grenier
- Transcriptional Regulation and Expression Facility, Biotechnology Resource Center, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Suzin M Webb
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Andrew D Miller
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Ileana C Miranda
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, and The Rockefeller University, New York, NY, 10065, USA
| | - John S L Parker
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
29
|
Peng Q, Duan N, Wang X, Wang W. The potential roles of cigarette smoke-induced extracellular vesicles in oral leukoplakia. Eur J Med Res 2023; 28:250. [PMID: 37481562 PMCID: PMC10362576 DOI: 10.1186/s40001-023-01217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/08/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND The onset of oral leukoplakia (OLK), the most common oral lesion with a high risk of malignant transformation, is closely associated with the exposure of cigarette smoke. Cigarette smoke is a complicated mixture of more than 4500 different chemicals including various oxidants and free radical, which contributes to the onset of immune and inflammatory response or even carcinogenesis. Recent studies have proved that the exposure of cigarette smoke leads to the onset and aggravation of many diseases via significantly changed the production and components of extracellular vesicles. The extracellular vesicles are membrane-enclosed nanosized particles secreted by diverse cells and involved in cell-cell communication because of their ability to deliver a number of bioactive molecules including proteins, lipids, DNAs and RNAs. Getting insight into the mechanisms of extracellular vesicles in regulating OLK upon cigarette smoke stimulation contributes to unravel the pathophysiology of OLK in-depth. However, evidence done on the role of extracellular vesicles in cigarette smoke-induced OLK is still in its infancy. MATERIALS AND METHODS Relevant literatures on cigarette smoke, oral leukoplakia and extracellular vesicles were searched in PubMed database. CONCLUSIONS In this review, we summarize the recent findings about the function of extracellular vesicles in the pathogenesis of cigarette smoke-induced diseases, and to infer their potential utilizations as diagnostic biomarkers, prognostic evaluation, and therapeutic targets of OLK in the future.
Collapse
Affiliation(s)
- Qiao Peng
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Ning Duan
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Xiang Wang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| | - Wenmei Wang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| |
Collapse
|
30
|
Sitompul SI, Pikir BS, Kencono Wungu CD, Supandi SK, Sinta ME. Analysis of the Effects of IL-6 -572 C/G, CRP -757 A/G, and CRP -717 T/C Gene Polymorphisms; IL-6 Levels; and CRP Levels on Chronic Periodontitis in Coronary Artery Disease in Indonesia. Genes (Basel) 2023; 14:genes14051073. [PMID: 37239434 DOI: 10.3390/genes14051073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Interleukin 6 (IL-6) and C-Reactive Protein (CRP) play an important role in chronic periodontitis with coronary artery disease (CAD). Genetic factors can affect a person's risk of CAD, which affects one-third of the population. This study investigated the role of IL-6 -572 C/G, CRP -757 A/G, and CRP -717 T/C gene polymorphisms. IL-6 and CRP levels on the severity of periodontitis in CAD in Indonesia were also evaluated. This case-control study was conducted with mild and moderate-severe chronic periodontitis groups. A path analysis test was conducted with Smart PLS with a 95% confidence interval to determine the significant variable for chronic periodontitis. Our study revealed that the effects of IL-6 -572 C/G, CRP -757 A/G, and CRP -717 T/C gene polymorphisms on IL-6 levels and CRP levels were not significant. IL-6 and CRP levels were not significantly different between the two groups. We found that IL-6 levels had a significant effect on CRP levels in periodontitis patients with CAD (path coefficient 0.322, p = 0.003). IL-6 -572 C/G, CRP -757 A/G, and CRP -717 T/C gene polymorphisms had no effect on the severity of chronic periodontitis in CAD patients in the Indonesian population. We also observed no apparent effects of the influence of gene polymorphisms in IL-6 -572 C/G, CRP -757 A/G, and CRP -717 T/C genes. Although the IL-6 and CRP levels were not significantly different between the two groups, IL-6 levels affected CRP levels in periodontitis patients with CAD.
Collapse
Affiliation(s)
- Sanggap Indra Sitompul
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
- Medical Staff Group of Cardiology, Doris Sylvanus Hospital, Palangka Raya 73111, Indonesia
| | - Budi Susetyo Pikir
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Citrawati Dyah Kencono Wungu
- Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Shafira Kurnia Supandi
- Department of Periodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | | |
Collapse
|
31
|
Haddaji A, Ouladlahsen A, Lkhider M, Bensghir R, Jebbar S, Hilmi S, Abbadi I, Sodqi M, Marih L, Pineau P, El Filali KM, Ezzikouri S. Impact of the first-line antiretroviral therapy on soluble markers of inflammation in cohort of human immunodeficiency virus type 1 in Moroccan patients: a prospective study. Arch Microbiol 2023; 205:223. [PMID: 37154966 DOI: 10.1007/s00203-023-03574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/04/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Chronic inflammation and immune activation are a hallmark of HIV-1 infection. In this study, we assessed inflammation biomarkers in a cohort of people living with HIV-1 (PLWH) before and after long-term suppressive combined antiretroviral therapy (cART). A single-center prospective cohort study was conducted to assess inflammatory biomarkers in 86 cART-naive PLWH and after receiving suppressive cART and 50 uninfected controls. Tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and soluble CD14 (sCD14) were measured using enzyme-linked immunosorbent assay (ELISA). No significant difference was found in IL-6 levels between cART-naïve PLWH and controls (p = 0.753). In contrast, TNF-α level showed a significant difference between cART naïve-PLWH and controls (p = 0.019). Interestingly, IL-6 and TNF-α levels were significantly decreased in PLWH after cART (p < 0.0001). The sCD14 showed no significant difference between cART-naïve patients and controls (p = 0.839) and similar levels were observed in pre- and post-treatment (p = 0.719). Our results highlight the critical importance of early treatment to reduce inflammation and its consequences during HIV infection.
Collapse
Affiliation(s)
- Asmaa Haddaji
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1, Place Louis Pasteur, 20360, Casablanca, Morocco
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques of Mohammedia, Hassan II University of Casablanca, Mohammedia, Morocco
| | - Ahd Ouladlahsen
- Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco
- Service Des Maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Mustapha Lkhider
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques of Mohammedia, Hassan II University of Casablanca, Mohammedia, Morocco
| | - Rajaa Bensghir
- Service Des Maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Sanaa Jebbar
- Service Des Maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Soufiane Hilmi
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1, Place Louis Pasteur, 20360, Casablanca, Morocco
| | - Islam Abbadi
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1, Place Louis Pasteur, 20360, Casablanca, Morocco
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques of Mohammedia, Hassan II University of Casablanca, Mohammedia, Morocco
| | - Mustapha Sodqi
- Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco
- Service Des Maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Latifa Marih
- Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco
- Service Des Maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Pascal Pineau
- Unité "Organisation Nucléaire et Oncogenèse", INSERM U993, Institut Pasteur, Paris, France
| | - Kamal Marhoum El Filali
- Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco
- Service Des Maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1, Place Louis Pasteur, 20360, Casablanca, Morocco.
| |
Collapse
|
32
|
Peralta S, Grenier JK, Webb SM, Miller AD, Miranda IC, Parker JSL. Transcriptomic signatures of feline chronic gingivostomatitis are influenced by upregulated IL6. RESEARCH SQUARE 2023:rs.3.rs-2852140. [PMID: 37205490 PMCID: PMC10187381 DOI: 10.21203/rs.3.rs-2852140/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Feline chronic gingivostomatitis (FCGS) is a relatively common and debilitating disease characterized by bilateral inflammation and ulceration of the caudal oral mucosa, alveolar and buccal mucosa, and varying degrees of periodontal disease. The etiopathogenesis of FCGS remains unresolved. In this study, we performed bulk RNA-seq molecular profiling of affected tissues derived from a cohort of client-owned cats with FCGS compared to tissues from unaffected animals, to identify candidate genes and pathways that can help guide future exploration of novel clinical solutions. We complemented transcriptomic findings with immunohistochemistry and in situ hybridization assays to better understand the biological significance of the results and performed RNA-seq validation of selected differentially expressed genes using qPCR assays to demonstrate technical reproducibility. Transcriptomic profiles of oral mucosal tissues in cats with FCGS are enriched with immune- and inflammation-related genes and pathways that appear to be largely influenced by IL6 , and include NFKB, JAK/STAT, IL-17 and IFN type I and II signaling, offering new opportunities to develop novel clinical applications based on a more rational understanding of the disease.
Collapse
Affiliation(s)
| | | | | | | | - Ileana C Miranda
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, The Rockefeller University
| | | |
Collapse
|
33
|
Silva MAP, Braz LG, Braz JRC, Braz MG. Modulation of gene expression and inflammation but not DNA damage after sevoflurane anesthesia. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023. [PMID: 37000683 DOI: 10.1002/em.22539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
This study assessed, for the first time, the expression of the genes hOGG1, TP53, and IL-6 in leukocytes by real-time quantitative polymerase chain reaction in surgical patients before (baseline), during (2 h of anesthesia) and 1 day after sevoflurane anesthesia. Additionally, DNA damage was detected by the comet assay, serum interleukin (IL)-6 was detected by flow cytometry, and differential leukocyte counting was also performed. TP53 and hOGG1 expression was downregulated on the day after anesthesia compared to before anesthesia. However, IL-6 expression did not change, and no DNA damage induction was observed during or after anesthesia. At the systemic level, mild neutrophilia and an increase in IL-6 levels occurred after anesthesia. Our findings suggest that sevoflurane anesthesia downregulates gene expression (hOGG1 and TP53) and contributes to an inflammatory status (increased systemic IL-6 and mild neutrophilia) but is not associated with DNA damage in patients without comorbidities who undergo minor elective surgery.
Collapse
Affiliation(s)
- Mariane A P Silva
- GENOTOX Laboratory, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Leandro G Braz
- GENOTOX Laboratory, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - José Reinaldo C Braz
- GENOTOX Laboratory, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Mariana G Braz
- GENOTOX Laboratory, Botucatu Medical School, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| |
Collapse
|
34
|
Liu M, Lu S, Yang C, Zhang D, Zhu J, Yin J, Zhao H, Yang B, Kuang H. Maternal exposure to a glyphosate-based herbicide impairs placental development through endoplasmic reticulum stress in mice. Food Chem Toxicol 2023; 173:113640. [PMID: 36724846 DOI: 10.1016/j.fct.2023.113640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
Glyphosate-based herbicides (GBHs) are the most widely used agrochemicals worldwide, increasing the risk of their occurrence in the environment. This study aimed to explore effects and mechanisms of GBH exposure on placental development in vivo during pregnancy in mice. Pregnant mice received GBH by gavage at 0, 5, and 50 mg⋅kg-1⋅day-1 doses from gestational day (GD) 1 to GD 13 and were sacrificed on GD 13 or GD19. Our data indicated that GBH administration significantly increased the number of resorbed fetuses, reduced the weight of fetuses and placentas, and inhibited placental growth, as evident from decreased placental total area and spongiotrophoblast area on GD 19. GBH treatment also inhibited proliferation and induced apoptosis of placenta via upregulation of Bax, cleaved caspase-3 and -12 expression, and downregulation of B cell lymphoma (Bcl)-2 expression. Further study showed that GBH exposure significantly increased expression levels of glucose-regulated protein 78 (GRP78), protein kinase RNA-like endoplasmic reticulum kinase (PERK), and C/EBP homologous protein (CHOP) mRNAs and proteins and triggered oxidative stress in placenta on GD 13 and GD 19. In conclusion, our findings suggest that maternal exposure to GBH can impair placental development through the endoplasmic reticulum stress-mediated activation of GRP78/PERK/CHOP signaling pathway in mice.
Collapse
Affiliation(s)
- Mengling Liu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Nursing School of Jiujiang University, Jiujiang, Jiangxi, 332000, PR China.
| | - Siying Lu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Chuanzhen Yang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Dalei Zhang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Jun Zhu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Jiting Yin
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Hongru Zhao
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Bei Yang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Haibin Kuang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
35
|
Fan D, Hou J, Yang J, Zhao Z, Fang Q, Wu X. Predictive value of serum interleukin-6 to determine surgical drainage of deep neck space infection in adults. Eur Arch Otorhinolaryngol 2023; 280:1403-1410. [PMID: 36208332 DOI: 10.1007/s00405-022-07683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/28/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE The aim of this study was to determine whether interleukin-6 (IL-6) could be used as a predictor for surgical drainage in deep neck space infection (DNSI). METHODS A retrospective study was conducted to analyze 69 adult patients newly diagnosed as DNSI from January 2017 to December 2021 at a single center. The patients were treated with either surgical drainage or not. The following clinical data including age, gender, maximum diameter of abscess (MDA), laboratory data, therapeutic modalities, comorbidities, duration of hospitalization and complications were collected and evaluated. RESULTS Patients in drained group had significantly elevated MDA, IL-6, procalcitonin, C-reactive protein and neutrophil to lymphocyte ratio compared to patients in non-drained group (all P < 0.01). Significant predictors for surgical drainage were IL-6 and MDA as independent factors, with the optimum cutoff values of 52.5 pg/mL and 14.4 mm, respectively. Moreover, the IL-6 had a wider area under the curve than MDA for prediction of surgical drainage in DNSI. CONCLUSIONS IL-6 as a promising predictor of the need for surgical drainage can be effectively used for routine assessment in the early stage of DNSI to determine the optimal treatments.
Collapse
Affiliation(s)
- Dachuan Fan
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei, 230601, Anhui, China.
| | - Jinxiao Hou
- Department of Hematology, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Jianming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei, 230601, Anhui, China
| | - Zhentao Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei, 230601, Anhui, China
| | - Qi Fang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei, 230601, Anhui, China
| | - Xiaoman Wu
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei, 230601, Anhui, China
| |
Collapse
|
36
|
Du X, Cui X, Sun X, Li H, Xu K, Fu X. Platycodin D-Induced Immunotoxicity in RAW 264.7 Macrophages via Oxidative Stress-Mediated Apoptosis. Nat Prod Commun 2023. [DOI: 10.1177/1934578x221150366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Platycodin D (PD) is a naturally occurring, biologically active triterpenoid saponin isolated from a medicinal food homology plant called Platycodon grandiflorus (Jacq.) A. DC. It is involved in the processing of various biological activities. While investigating the anti-inflammatory property of PD using lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophage cells, we unexpectedly found that PD exhibited toxicity to RAW 264.7 cells. In this study, the toxic effect of PD on RAW 264.7 cells was systematically evaluated for the first time. The results showed that PD (12.5−200 µM) significantly reduced cell viability and inhibited cell proliferation in a dose-dependent manner. At a concentration of 20 µM, PD significantly increased lactate dehydrogenase activity and the mRNA and protein expression of Bax, p53, Casp3, IL-1β, and TNF-α. Interestingly, PD (0.8−20 µM) inhibited the expression of inflammatory cytokines in LPS-stimulated RAW 264.7 cells. PD (20 µM) also significantly increased reactive oxygen species (ROS) levels and the expression of oxidative stress-related genes and proteins. This study revealed that PD exhibited immunotoxicity to RAW 264.7 cells, with possible mechanisms including oxidative stress-mediated apoptosis resulting in activation of the mitochondrial apoptosis pathway and dysregulated expression of inflammatory cytokines. This study evaluated the impact of PD on immunity and provided guidelines for its future biological application.
Collapse
Affiliation(s)
- Xinying Du
- Marine Traditional Chinese Medicine Research Center, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong University of Traditional Chinese Medicine, Qingdao Academy of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine's Deep Development and Industrialization, Qingdao, China
| | - Xinhai Cui
- Marine Traditional Chinese Medicine Research Center, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaowen Sun
- Marine Traditional Chinese Medicine Research Center, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui Li
- Marine Traditional Chinese Medicine Research Center, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong University of Traditional Chinese Medicine, Qingdao Academy of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine's Deep Development and Industrialization, Qingdao, China
| | - Kuo Xu
- Marine Traditional Chinese Medicine Research Center, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong University of Traditional Chinese Medicine, Qingdao Academy of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine's Deep Development and Industrialization, Qingdao, China
| | - Xianjun Fu
- Marine Traditional Chinese Medicine Research Center, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong University of Traditional Chinese Medicine, Qingdao Academy of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine's Deep Development and Industrialization, Qingdao, China
| |
Collapse
|
37
|
Shen S, Yang W, Li L, Zhu Y, Yang Y, Ni H, Jiang Z, Zheng M. In vitro fermentation of seaweed polysaccharides and tea polyphenol blends by human intestinal flora and their effects on intestinal inflammation. Food Funct 2023; 14:1133-1147. [PMID: 36594623 DOI: 10.1039/d2fo03390a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A combination of polysaccharides and tea polyphenols can enhance immune activity synergistically, depending on the type and structure of polysaccharides, but the mechanism remains unknown. This study is aimed to investigate the regulating effects of different seaweed polysaccharide (ι-carrageenan, agarose) and tea polyphenol blends on intestinal flora and intestinal inflammation using an in vitro ascending-transverse-descending colon fermentation system and RAW264.7 cell model. The results showed that seaweed polysaccharides in the presence of tea polyphenol were almost completely degraded at transverse colon fermentation for 36 h. Agarose significantly enhanced the butyric acid production content by increasing the abundance of Lachnospiraceae, whereas agarose and tea polyphenol blends did not have a synergistic effect. On the contrary, ι-carrageenan and tea polyphenol blends synergistically increased the abundance of beneficial bacteria (e.g., Bacteroidetes and Bifidobacterium) and promoted the production of short-chain fatty acids (SCFAs), such as isobutyric acid. Such changes tended to alter the impacts of different seaweed polysaccharides and tea polyphenol blends on intestinal inflammation. Among them, ι-carrageenan and tea polyphenol blends were the most effective in inhibiting lipopolysaccharide-induced NO, ROS, IL-6, and TNF-α production in RAW264.7 cells, indicating the alleviated intestinal inflammation. The results suggest that the seaweed polysaccharide and tea polyphenol blends have prebiotic potential and can benefit intestinal health.
Collapse
Affiliation(s)
- Shiqi Shen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China.
| | - Wenqin Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China.
| | - Lijun Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Yuanfan Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China.,Xiamen Ocean Vocational College, Xiamen 361100, Fujian, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Mingjing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| |
Collapse
|
38
|
Hong Q, Shang X, Wu Y, Nie Z, He B. Potential Targets and Mechanisms of Bitter Almond-Licorice for COVID-19 Treatment Based on Network Pharmacology and Molecular Docking. Curr Pharm Des 2023; 29:2655-2667. [PMID: 38018195 PMCID: PMC10788922 DOI: 10.2174/0113816128265009231102063840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND The outbreak of Corona Virus Disease 2019 (COVID-19) has resulted in millions of infections and raised global attention. Bitter almonds and licorice are both Traditional Chinese Medicines (TCM), often used in combination to treat lung diseases. Several prescriptions in the guidelines for the diagnosis and treatment of coronavirus disease 2019 (trial version ninth) contained bitter almond-licorice, which was effective in the treatment of COVID-19. However, the active ingredients, drug targets and therapeutic mechanisms of bitter almonds-licorice for the treatment of COVID-19 remain to be elucidated. METHODS The active ingredients and targets were derived from the Traditional Chinese Medicine Systems Pharmacology (TCMSP). Meanwhile, targets associated with COVID-19 were obtained from the GeneCards database, PharmGkb database and DrugBank database. Then, the potential targets of bitter almond-licorice against COVID-19 were screened out. Protein-protein interaction (PPI) networks and core targets were analyzed through the String database and Cytoscape software. In addition, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed based on potential targets using R statistical software. Finally, molecular docking was used to validate the binding of the active ingredients to the core targets. RESULTS The results of the TCMSP database showed that the bitter almond-licorice had 89 active components against COVID-19, involving 102 targets. PPI network and core target analysis indicated that IL-6, TNF, MAPK1, and IL1B were the key targets against COVID-19. In addition, GO and KEGG enrichment analysis showed that the bitter almond-licorice were involved in various biological processes through inflammation-related pathways such as TNF signaling pathway and IL-17 signaling pathway. Finally, molecular docking approaches confirmed the affinity between the active components of the bitter almond-licorice and the therapeutic targets. CONCLUSION The bitter almond-licorice could be used to treat COVID-19 by inhibiting inflammatory responses and regulating cellular stress. This work is based on data mining and molecular docking, and the findings need to be interpreted with caution.
Collapse
Affiliation(s)
- Qiwei Hong
- Department of Laboratory Medicine, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xinyue Shang
- Department of Laboratory Medicine, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanan Wu
- Department of Laboratory Medicine, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhenlin Nie
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
39
|
Marazziti D, Palermo S, Arone A, Massa L, Parra E, Simoncini M, Martucci L, Beatino MF, Pozza A. Obsessive-Compulsive Disorder, PANDAS, and Tourette Syndrome: Immuno-inflammatory Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:275-300. [PMID: 36949315 DOI: 10.1007/978-981-19-7376-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
In the last years, much focus has been given to the possible role of inflammatory and immunologic alterations in the pathophysiology of obsessive-compulsive disorder (OCD) and some related conditions, such as pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection (PANDAS) and Tourette syndrome (TS). Although the matter is intriguing, the available data are still controversial and/or limited. Therefore, the aim of this chapter was at reviewing and commenting on the literature on possible dysfunctions of inflammatory and immune system processes in OCD, PANDAS, and TS.This narrative review was carried out through searching PubMed and Google Scholar for English language papers from January 1985 to December 31, 2021.The data gathered up to now would suggest that the mechanisms involved might be heterogeneous according to the age of the patients and the disorder examined. Indeed, PANDAS seem more related to infections triggering autoimmunity not necessarily following group A beta-hemolytic streptococcal (GABHS) infection, as supposed in the past. Autoimmunity seems also important in TS, if coupled with an individual vulnerability that can be genetic and/or environmental. The data in adult OCD, albeit scattered and sometimes obtained in small samples of patients, would indicate that immune system and inflammatory processes are involved in the pathophysiology of the disorder. However, it is still unclear to conclude whether they are primary or secondary phenomena.In conclusion, taken together, the current findings pave that way towards novel and promising domains to explore the pathophysiology of OCD and related disorders, as well towards the development of innovative therapeutic strategy beyond current pharmacological paradigms.
Collapse
Affiliation(s)
- Donatella Marazziti
- Dipartimento di Medicina Clinica e Sperimentale, Section of Psychiatry, University of Pisa, Pisa, Italy.
- Saint Camillus International University of Health and Medical Sciences - UniCamillus, Rome, Italy.
| | - Stefania Palermo
- Dipartimento di Medicina Clinica e Sperimentale, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Alessandro Arone
- Dipartimento di Medicina Clinica e Sperimentale, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Lucia Massa
- Dipartimento di Medicina Clinica e Sperimentale, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Elisabetta Parra
- Dipartimento di Medicina Clinica e Sperimentale, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Marly Simoncini
- Dipartimento di Medicina Clinica e Sperimentale, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Lucia Martucci
- Dipartimento di Medicina Clinica e Sperimentale, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Maria Francesca Beatino
- Dipartimento di Medicina Clinica e Sperimentale, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Andrea Pozza
- Dipartimento di Scienze Mediche, Chirurgiche e Neuroscienze, University of Siena, Siena, Italy
| |
Collapse
|
40
|
Lohova E, Pilmane M. Expression of MUC-2, MUC-6, NAPE-PLD, IL-6 and IL-13 in Healthy and Metaplastic Bronchial Epithelium. Diseases 2022; 11:diseases11010005. [PMID: 36648870 PMCID: PMC9844475 DOI: 10.3390/diseases11010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Background: The normal tissue structure of the respiratory system is necessary to provide adequate protection of the airways and lungs. Prolonged exposure to trigger factors can result in adaptive mechanism activation and lead to the development of chronic pulmonary diseases or even dysplastic changes. Materials and methods: Respiratory system material with a pseudostratified ciliated epithelium was obtained from 12 patients (aged 16 to 95), and material with a stratified squamosa epithelium was obtained from six patients (aged 23 to 93). Routine staining was performed, and an immunohistochemistry was conducted for MUC-2, MUC-6, NAPE-PLD, IL-6 and IL-13. Results: Inflammatory processes were not detected in any of the specimens. A number of correlations were identified, with the most important being a strong positive correlation for IL-13 between the alveolar epithelium and alveolar macrophages and a strong positive correlation for IL-6 between the alveolar epithelium and alveolar macrophages in the stratified squamous epithelium group. We also detected a statistically significant difference in IL-6 in alveolar macrophages. Conclusions: There were no signs of dysplastic changes in either group. Increased secretion of IL-13 in the stratified squamous epithelium group shows its involvement in metaplastic changes in the bronchial epithelium. The secretion of atypical factors by hyaline cartilage demonstrates its plasticity and adaptability.
Collapse
|
41
|
Jaiswal A, Bell J, DeFilippis EM, Kransdorf EP, Patel J, Kobashigawa JA, Kittleson MM, Baran DA. Assessment and management of allosensitization following heart transplant in adults. J Heart Lung Transplant 2022; 42:423-432. [PMID: 36702686 DOI: 10.1016/j.healun.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Immunological injury to the allograft, specifically by antibodies to de novo donor specific human leukocyte antigen (dnDSA) and antibody mediated injury and rejection are the major limitations to graft survival after heart transplantation (HT). As such, our approach to allosensitization remains limited by the inability of contemporaneous immunoassays to unravel pathogenic potential of dnDSA. Additionally, the role of dnDSA is continuously evaluated with emerging methods to detect rejection. Moreover, the timing and frequency of dnDSA monitoring for early detection and risk mitigation as well as management of dnDSA remain challenging. A strategic approach to dnDSA employs diagnostic assays to determine relevant antibodies in conjunction with clinical presentation and injury/rejection of allograft to tailor therapeutics. In this review, we aim to outline contemporary knowledge involving detection, monitoring and management of dnDSA after HT. Subsequently, we propose a diagnostic and therapeutic approach that may mitigate morbidity and mortality while balancing adverse reactions from pharmacotherapy.
Collapse
Affiliation(s)
- Abhishek Jaiswal
- Hartford HealthCare Heart and Vascular Institute, Hartford Hospital, Hartford, Connecticut.
| | - Jennifer Bell
- Hartford HealthCare Heart and Vascular Institute, Hartford Hospital, Hartford, Connecticut
| | - Ersilia M DeFilippis
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Evan P Kransdorf
- Division of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jignesh Patel
- Division of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jon A Kobashigawa
- Division of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Michelle M Kittleson
- Division of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - David A Baran
- Cleveland Clinic, Heart, Vascular and Thoracic Institute, Advanced Heart Failure Program, Weston, Florida
| |
Collapse
|
42
|
Wang X, Tang G, Liu Y, Zhang L, Chen B, Han Y, Fu Z, Wang L, Hu G, Ma Q, Sheng S, Wang J, Hu X, Shao S. The role of IL-6 in coronavirus, especially in COVID-19. Front Pharmacol 2022; 13:1033674. [PMID: 36506506 PMCID: PMC9727200 DOI: 10.3389/fphar.2022.1033674] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infects both people and animals and may cause significant respiratory problems, including lung illness: Corona Virus Disease 2019 (COVID-19). Swabs taken from the throat and nose of people who have the illness or are suspected of having it have shown this pathogenic virus. When SARS-CoV-2 infects the upper and lower respiratory tracts, it may induce moderate to severe respiratory symptoms, as well as the release of pro-inflammatory cytokines including interleukin 6 (IL-6). COVID-19-induced reduction of IL-6 in an inflammatory state may have a hitherto undiscovered therapeutic impact. Many inflammatory disorders, including viral infections, has been found to be regulated by IL-6. In individuals with COVID-19, one of the primary inflammatory agents that causes inflammatory storm is IL-6. It promotes the inflammatory response of virus infection, including the virus infection caused by SARS-CoV-2, and provides a new diagnostic and therapeutic strategy. In this review article, we highlighted the functions of IL-6 in the coronavirus, especially in COVID-19, showing that IL-6 activation plays an important function in the progression of coronavirus and is a rational therapeutic goal for inflammation aimed at coronavirus.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Guozheng Tang
- Department of Orthopaedics, Lu’an Hospital of Anhui Medical University, Lu’an, Anhui, China
| | - Yuchen Liu
- Department of Otolaryngology, Head and Neck Surgery, The First Affifiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lizhi Zhang
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yanxun Han
- Department of Otolaryngology, Head and Neck Surgery, The First Affifiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ziyue Fu
- Second Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Liuning Wang
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Guangzhi Hu
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Qing Ma
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Shuyan Sheng
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Jianpeng Wang
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Xinyang Hu
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Song Shao
- Department of Orthopaedics, Lu’an Hospital of Anhui Medical University, Lu’an, Anhui, China,*Correspondence: Song Shao,
| |
Collapse
|
43
|
Gao X, Fang D, Liang Y, Deng X, Chen N, Zeng M, Luo M. Circular RNAs as emerging regulators in COVID-19 pathogenesis and progression. Front Immunol 2022; 13:980231. [PMID: 36439162 PMCID: PMC9681929 DOI: 10.3389/fimmu.2022.980231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), an infectious acute respiratory disease caused by a newly emerging RNA virus, is a still-growing pandemic that has caused more than 6 million deaths globally and has seriously threatened the lives and health of people across the world. Currently, several drugs have been used in the clinical treatment of COVID-19, such as small molecules, neutralizing antibodies, and monoclonal antibodies. In addition, several vaccines have been used to prevent the spread of the pandemic, such as adenovirus vector vaccines, inactivated vaccines, recombinant subunit vaccines, and nucleic acid vaccines. However, the efficacy of vaccines and the onset of adverse reactions vary among individuals. Accumulating evidence has demonstrated that circular RNAs (circRNAs) are crucial regulators of viral infections and antiviral immune responses and are heavily involved in COVID-19 pathologies. During novel coronavirus infection, circRNAs not only directly affect the transcription process and interfere with viral replication but also indirectly regulate biological processes, including virus-host receptor binding and the immune response. Consequently, understanding the expression and function of circRNAs during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection will provide novel insights into the development of circRNA-based methods. In this review, we summarize recent progress on the roles and underlying mechanisms of circRNAs that regulate the inflammatory response, viral replication, immune evasion, and cytokines induced by SARS-CoV-2 infection, and thus highlighting the diagnostic and therapeutic challenges in the treatment of COVID-19 and future research directions.
Collapse
Affiliation(s)
- Xiaojun Gao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Dan Fang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Liang
- College of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xin Deng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ni Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Min Zeng
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Mao Luo
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
44
|
Agoston DV, McCullough J, Aniceto R, Lin IH, Kamnaksh A, Eklund M, Graves WM, Dunbar C, Engall J, Schneider EB, Leonessa F, Duckworth JL. Blood-Based Biomarkers of Repetitive, Subconcussive Blast Overpressure Exposure in the Training Environment: A Pilot Study. Neurotrauma Rep 2022; 3:479-490. [PMID: 36337080 PMCID: PMC9634979 DOI: 10.1089/neur.2022.0029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Because of their unknown long-term effects, repeated mild traumatic brain injuries (TBIs), including the low, subconcussive ones, represent a specific challenge to healthcare systems. It has been hypothesized that they can have a cumulative effect, and they may cause molecular changes that can lead to chronic degenerative processes. Military personnel are especially vulnerable to consequences of subconcussive TBIs because their training involves repeated exposures to mild explosive blasts. In this pilot study, we collected blood samples at baseline, 6 h, 24 h, 72 h, 2 weeks, and 3 months after heavy weapons training from students and instructors who were exposed to repeated subconcussive blasts. Samples were analyzed using the reverse and forward phase protein microarray platforms. We detected elevated serum levels of glial fibrillary acidic protein, ubiquitin C-terminal hydrolase L1 (UCH-L1), nicotinic alpha 7 subunit (CHRNA7), occludin (OCLN), claudin-5 (CLDN5), matrix metalloprotease 9 (MMP9), and intereukin-6 (IL-6). Importantly, serum levels of most of the tested protein biomarkers were the highest at 3 months after exposures. We also detected elevated autoantibody titers of proteins related to vascular and neuroglia-specific proteins at 3 months after exposures as compared to baseline levels. These findings suggest that repeated exposures to subconcussive blasts can induce molecular changes indicating not only neuron and glia damage, but also vascular changes and inflammation that are detectable for at least 3 months after exposures whereas elevated titers of autoantibodies against vascular and neuroglia-specific proteins can indicate an autoimmune process.
Collapse
Affiliation(s)
- Denes V. Agoston
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA.,Address correspondence to: Denes V. Agoston, MD, PhD, Department of Anatomy, Physiology, and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Building B, Room 2036, Bethesda, MD 20814, USA.
| | - Jesse McCullough
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Roxanne Aniceto
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - I-Hsuan Lin
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Alaa Kamnaksh
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Michael Eklund
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Wallace M. Graves
- NeuroTactical Research Team, Marine Corps Base Camp Pendleton, Camp Pendleton, California, USA.,Department of Neurology, Uniformed Services University, Bethesda, Maryland, USA
| | - Cyrus Dunbar
- NeuroTactical Research Team, Marine Corps Base Camp Pendleton, Camp Pendleton, California, USA.,Department of Neurology, Uniformed Services University, Bethesda, Maryland, USA
| | - James Engall
- NeuroTactical Research Team, Marine Corps Base Camp Pendleton, Camp Pendleton, California, USA.,Department of Neurology, Uniformed Services University, Bethesda, Maryland, USA
| | - Eric B. Schneider
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Fabio Leonessa
- Department of Neurology, Uniformed Services University, Bethesda, Maryland, USA
| | - Josh L. Duckworth
- NeuroTactical Research Team, Marine Corps Base Camp Pendleton, Camp Pendleton, California, USA.,Department of Neurology, Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
45
|
Koivunotko E, Snirvi J, Merivaara A, Harjumäki R, Rautiainen S, Kelloniemi M, Kuismanen K, Miettinen S, Yliperttula M, Koivuniemi R. Angiogenic Potential of Human Adipose-Derived Mesenchymal Stromal Cells in Nanofibrillated Cellulose Hydrogel. Biomedicines 2022; 10:2584. [PMID: 36289846 PMCID: PMC9599553 DOI: 10.3390/biomedicines10102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Adipose-derived mesenchymal stromal cells (ASCs) hold great potential for cellular therapies by having immunomodulatory behavior and tissue regenerative properties. Due to the capability of ASCs to differentiate into endothelial cells (ECs) and other angiogenic cell types, such as pericytes, ASCs are a highly valuable source for stimulating angiogenesis. However, cellular therapies in tissue engineering have faced challenges in poor survival of the cells after transplantation, which is why a protective biomaterial scaffold is required. In this work, we studied the potential of nanofibrillated cellulose (NFC) hydrogel to be utilized as a suitable matrix for three-dimensional (3D) cell culturing of human-derived ASCs (hASCs) and studied their angiogenic properties and differentiation potential in ECs and pericytes. In addition, we tested the effect of hASC-conditioned medium and stimulation with angiopoietin-1 (Ang-1) on human umbilical vein endothelial cells (HUVECs) to induce blood vessel-type tube formation in NFC hydrogel. The hASCs were successfully 3D cell cultured in NFC hydrogel as they formed spheroids and had high cell viability with angiogenic features. Most importantly, they showed angiogenic potential by having pericyte-like characteristics when differentiated in EC medium, and their conditioned medium improved HUVEC viability and tube formation, which recalls the active paracrine properties. This study recommends NFC hydrogel for future use as an animal-free biomaterial scaffold for hASCs in therapeutic angiogenesis and other cell therapy purposes.
Collapse
Affiliation(s)
- Elle Koivunotko
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Jasmi Snirvi
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Arto Merivaara
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Riina Harjumäki
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Swarna Rautiainen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Minna Kelloniemi
- Department of Plastic and Reconstructive Surgery, Tampere University Hospital, 33520 Tampere, Finland
| | - Kirsi Kuismanen
- Department of Obstetrics and Gynecology, Tampere University Hospital, 33520 Tampere, Finland
| | - Susanna Miettinen
- Faculty of Medicine and Health Technologies, University of Tampere, 33520 Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, 33520 Tampere, Finland
| | - Marjo Yliperttula
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| | - Raili Koivuniemi
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland
| |
Collapse
|
46
|
Paris O, Mennechet FJD, Kremer EJ. Human innate lymphoid cell activation by adenoviruses is modified by host defense proteins and neutralizing antibodies. Front Immunol 2022; 13:975910. [PMID: 36275713 PMCID: PMC9579290 DOI: 10.3389/fimmu.2022.975910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Innate lymphoid cells (ILCs), the complements of diverse CD4 T helper cells, help maintain tissue homeostasis by providing a link between innate and adaptive immune responses. While pioneering studies over the last decade have advanced our understanding how ILCs influence adaptive immune responses to pathogens, far less is known about whether the adaptive immune response feeds back into an ILC response. In this study, we isolated ILCs from blood of healthy donors, fine-tuned culture conditions, and then directly challenged them with human adenoviruses (HAdVs), with HAdVs and host defense proteins (HDPs) or neutralizing antibodies (NAbs), to mimic interactions in a host with pre-existing immunity. Additionally, we developed an ex vivo approach to identify how bystander ILCs respond to the uptake of HAdVs ± neutralizing antibodies by monocyte-derived dendritic cells. We show that ILCs take up HAdVs, which induces phenotypic maturation and cytokine secretion. Moreover, NAbs and HDPs complexes modified the cytokine profile generated by ILCs, consistent with a feedback loop for host antiviral responses and potential to impact adenovirus-based vaccine efficacy.
Collapse
|
47
|
Harris SM, Bakulski KM, Dou J, Houskamp E, Scheeres EC, Schellenboom E, Harlow O, Loch-Caruso R, Boldenow E. The trichloroethylene metabolite S-(1,2-dichlorovinyl)-l-cysteine inhibits lipopolysaccharide-induced inflammation transcriptomic pathways and cytokine secretion in a macrophage cell model. Toxicol In Vitro 2022; 84:105429. [PMID: 35811015 PMCID: PMC10353343 DOI: 10.1016/j.tiv.2022.105429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/16/2022] [Accepted: 07/02/2022] [Indexed: 10/17/2022]
Abstract
Studies have shown that the trichloroethylene metabolite S-(1,2-dichlorovinyl)-l-cysteine (DCVC) inhibits cytokine secretion in pathogen stimulated fetal membrane tissue but little is known about the mechanism for these effects, including which cell types or transcriptomic pathways are impacted. Macrophages play a critical role in fetal membrane immune responses during infection. We tested the hypothesis that DCVC inhibits lipopolysaccharide (LPS) stimulated inflammation pathways in macrophage-like THP-1 cells. We treated THP-1 cells for 24 h then treated with 1, 5, or 10 μM DCVC for 24 h. After a 4 h incubation with lipopolysaccharide (LPS), we collected RNA and cell media. We performed transcriptomic analysis using RNA sequencing for 5 μM DCVC treatments and quantified cytokine release (IL-1β, IL-6, and TNF-α) for 1, 5 and 10 μM DCVC treatments. RNA sequencing analysis revealed 1399 differentially expressed genes (FDR < 0.05 and log 2 fold change magnitude>2.5) in cells co-treated with DCVC and LPS compared to LPS alone. For example, TNF had a log2(fold-change) = -3.5 with the addition of DCVC. Pathways downregulated (adjusted p-value<0.05) in DCVC+LPS treatments versus LPS-only treatments included: "acute inflammatory response", "production of molecular mediator of immune response" and "phagocytosis". LPS increased IL-1β, IL-6, and TNF-α levels in culture media (p < 0.001), but this was inhibited by co-treatment with DCVC (p < 0.001 for LPS vs. LPS + DCVC treatments). Our results demonstrate that DCVC suppresses inflammatory responses in macrophages.
Collapse
Affiliation(s)
- Sean M Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029, USA.
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029, USA.
| | - John Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029, USA.
| | - Ethan Houskamp
- Department of Biology, Calvin University, Grand Rapids, MI 49546-4402, USA.
| | - Eleanor C Scheeres
- Department of Biology, Calvin University, Grand Rapids, MI 49546-4402, USA.
| | - Emily Schellenboom
- Department of Biology, Calvin University, Grand Rapids, MI 49546-4402, USA.
| | - Olivia Harlow
- Department of Biology, Calvin University, Grand Rapids, MI 49546-4402, USA; Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029, USA.
| | - Erica Boldenow
- Department of Biology, Calvin University, Grand Rapids, MI 49546-4402, USA.
| |
Collapse
|
48
|
Abstract
PURPOSE OF THE REVIEW Antibody-mediated rejection (AMR) is the leading cause of kidney graft loss. Very few treatment options are available to the clinician to counter this disease process. In this review we describe the available therapeutics and the novel approaches that are being currently developed. RECENT FINDINGS AMR treatment requires a multidrug approach. Imlifidase, a new immunoglobulin G cleaving agent, may prove to be the perfect replacement of apheresis. New complement blockers other than eculizumab are in development in order to block acute kidney damage in the delicate phase following antibody removal. Plasma cell depletion is being explored in chronic AMR: studies are in progress with daratumumab and felzartamab. Interleukin 6 inhibition is generating enthusiasm in the chronic setting with preliminary encouraging results. SUMMARY In acute AMR, the clinicians will have to remove the antibodies, avoid rebound and block specific damage effectors. In chronic AMR they will need to reduce the inflammatory response induced by donor specific antibodies. New drugs are available and transplant physicians are starting to develop effective multidrug strategies to counter the complex disease mechanisms. Safety of these drugs needs to be further explored especially when used together with other potent immunosuppressive drugs.
Collapse
Affiliation(s)
- Paolo Malvezzi
- University Grenoble Alpes - CHU Grenoble Alpes - Service de Néphrologie, Dialyse, Aphérèses et Transplantation, Grenoble, France
| |
Collapse
|
49
|
Li Z, Xia Z, Yu Y, Cai L, Jian W, Wang T, Xue W, Wang X, Wang B, Zhang P, Yao W, Zhang C, Wang C. A pyroptosis-associated signature plays a role in prognosis prediction in clear cell renal cell carcinoma. BMC Med Genomics 2022; 15:204. [PMID: 36163033 PMCID: PMC9513884 DOI: 10.1186/s12920-022-01339-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 08/24/2022] [Indexed: 12/24/2022] Open
Abstract
Background Approximately 90% of renal malignancies are RCCs (renal cell carcinomas), and the primary subtype in histology is ccRCC (clear cell RCC). In recent years, pyroptosis has been considered a kind of inflammation-related programmed cell death that participates in the invasion, metastasis, and proliferation of tumour cells, thereby influencing tumour prognosis. Nonetheless, the expression level of pyroptosis-associated genes in RCCs and their relationship with prognosis remain obscure. Results In our research, 44 regulators of pyroptosis that were differentially expressed between normal kidney and ccRCC tissues were identified. ccRCC cases were categorized into 2 subgroups according to prognostic-related DEGs (differentially expressed genes), and there was a significant difference in OS (overall survival) between them. The prognostic value of pyroptosis-associated genes was assessed as a signature based on a cohort from TCGA (The Cancer Genome Atlas). Following Cox regression with DEGs and LASSO (least absolute shrinkage and selection operator), a 6-gene signature was established, and all ccRCC cases in the cohort from TCGA were categorized into an LR (low-risk) or HR (high-risk) group (P < 0.001). In combination with clinical features, risk scores were considered a predictive factor of OS in ccRCC. KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO (Gene Ontology) analyses suggest increased immunity and enrichment of genes related to immunity in the HR group. Conclusions Our findings indicate that genes related to pyroptosis have an important role in tumour immunity and may be used to predict the prognosis of ccRCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01339-0.
Collapse
Affiliation(s)
- Zhiyuan Li
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhinan Xia
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yipeng Yu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Licheng Cai
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Wengang Jian
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Tengda Wang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Wei Xue
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xingyuan Wang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Bowen Wang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Peng Zhang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Wenhao Yao
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China. .,Department of Urology, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu City, 322000, China.
| | - Chunyang Wang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
50
|
A Water-Soluble Polysaccharide from the Fibrous Root of Anemarrhena asphodeloides Bge. and Its Immune Enhancement Effect in Vivo and in Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8723119. [PMID: 36124017 PMCID: PMC9482487 DOI: 10.1155/2022/8723119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/08/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022]
Abstract
Background The fibrous roots of Anemarrhena asphodeloides Bge. (FRAAB) are byproducts of the rhizome of Anemarrhena asphodeloides. Some studies have revealed secondary metabolic small molecules in FRAAB, but there are few reports on the polysaccharides of FRAAB (PFRAAB). Aim of the Study. The present study aimed to investigate the preliminary characterization and underlying mechanism of immune stimulation of PFRAAB. Materials and Methods The crude polysaccharide of FRAAB was obtained by hot water extraction and alcohol precipitation, and PFRAAB was purified by a diethylaminoethyl-52 (DEAE-52) cellulose chromatographic column and graphene dialysis membrane. The preliminary characterization of PFRAAB was studied by ultraviolet (UV) scanning and Fourier Transform Infrared Reflection (FTIR). The molecular weight and composition of PFRAAB were analysed by high-performance gel permeation chromatography (HPGPC) and high-performance liquid chromatography (HPLC), respectively. The immune stimulation of PFRAAB was investigated by using cyclophosphamide- (CCP-) treated mice and RAW264.7 cells. Results A water-soluble PFRAAB was obtained with a molecular weight of 115 kDa and was mainly composed of arabinose (ara), galactose (gal), glucose (glc), and mannose (man). Compared with CCP-induced mice, PFRAAB significantly (p < 0.05 or p < 0.01) increased the spleen and thymus index, ameliorated injury to the spleen and thymus, and evaluated immunoglobulin levels. In addition, PFRAAB also increased the secretion of nitric oxide (NO), interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α), and IL-6 in RAW264.7 cells and upregulated the expression of toll-like receptor 4 (TLR4), Myd88, nuclear factor kappa-B (NF-κB) P65, p–NF–κB P65, IKB-α, and p-IKB-α. Conclusion PFRAAB possesses immune stimulation activity and can be used as a potential resource for immune-enhancing drugs. Our present study provides a scientific basis for the comprehensive development of Anemarrhena asphodeloides medicinal plant resources.
Collapse
|