1
|
Dunigan AI, Roseberry AG. Actions of feeding-related peptides on the mesolimbic dopamine system in regulation of natural and drug rewards. ADDICTION NEUROSCIENCE 2022; 2:100011. [PMID: 37220637 PMCID: PMC10201992 DOI: 10.1016/j.addicn.2022.100011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The mesolimbic dopamine system is the primary neural circuit mediating motivation, reinforcement, and reward-related behavior. The activity of this system and multiple behaviors controlled by it are affected by changes in feeding and body weight, such as fasting, food restriction, or the development of obesity. Multiple different peptides and hormones that have been implicated in the control of feeding and body weight interact with the mesolimbic dopamine system to regulate many different dopamine-dependent, reward-related behaviors. In this review, we summarize the effects of a selected set of feeding-related peptides and hormones acting within the ventral tegmental area and nucleus accumbens to alter feeding, as well as food, drug, and social reward.
Collapse
Affiliation(s)
- Anna I. Dunigan
- Department of Biology and Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Aaron G. Roseberry
- Department of Biology and Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
2
|
Countering impaired glucose homeostasis during catch-up growth with essential polyunsaturated fatty acids: is there a major role for improved insulin sensitivity? Nutr Diabetes 2021; 11:4. [PMID: 33414371 PMCID: PMC7791023 DOI: 10.1038/s41387-020-00143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 11/08/2022] Open
Abstract
Background/Objectives Catch-up growth, an important risk factor for later obesity and type 2 diabetes, is often characterized by a high rate of fat deposition associated with hyperinsulinemia and glucose intolerance. We tested here the hypothesis that refeeding on a high-fat diet rich in essential polyunsaturated fatty acids (ePUFA) improves glucose homeostasis primarily by enhancing insulin sensitivity in skeletal muscles and adipose tissues. Methods Rats were caloric restricted for 2 weeks followed by 1–2 weeks of isocaloric refeeding on either a low-fat (LF) diet, a high-fat (HF) diet based on animal fat and high in saturated and monounsaturated fatty acids (HF SMFA diet), or a HF diet based on vegetable oils (1:1 mixture of safflower and linseed oils) and rich in the essential fatty acids linoleic and α-linolenic acids (HF ePUFA diet). In addition to measuring body composition and a test of glucose tolerance, insulin sensitivity was assessed during hyperinsulinemic-euglycemic clamps at the whole-body level and in individual skeletal muscles and adipose tissue depots. Results Compared to animals refed the LF diet, those refed the HF-SMFA diet showed a higher rate of fat deposition, higher plasma insulin and glucose responses during the test of glucose tolerance, and markedly lower insulin-stimulated glucose utilization at the whole body level (by a-third to a-half) and in adipose tissue depots (by 2–5 folds) during insulin clamps. While refeeding on the ePUFA diet prevented the increases in fat mass and in plasma insulin and glucose, the results of insulin clamps revealed that insulin-stimulated glucose utilization was not increased in skeletal muscles and only marginally higher in adipose tissues and at the whole-body level. Conclusions These results suggest only a minor role for enhanced insulin sensitivity in the mechanisms by which diets high in ePUFA improves glucose homeostasis during catch-up growth.
Collapse
|
3
|
West KS, Roseberry AG. Neuropeptide-Y alters VTA dopamine neuron activity through both pre- and postsynaptic mechanisms. J Neurophysiol 2017; 118:625-633. [PMID: 28469002 DOI: 10.1152/jn.00879.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 11/22/2022] Open
Abstract
The mesocorticolimbic dopamine system, the brain's reward system, regulates many different behaviors including food intake, food reward, and feeding-related behaviors, and there is increasing evidence that hypothalamic feeding-related neuropeptides alter dopamine neuron activity to affect feeding. For example, neuropeptide-Y (NPY), a strong orexigenic hypothalamic neuropeptide, increases motivation for food when injected into the ventral tegmental area (VTA). How NPY affects the activity of VTA dopamine neurons to regulate feeding behavior is unknown, however. In these studies we have used whole cell patch-clamp electrophysiology in acute brain slices from mice to examine how NPY affects VTA dopamine neuron activity. NPY activated an outward current that exhibited characteristics of a G protein-coupled inwardly rectifying potassium channel current in ~60% of dopamine neurons tested. In addition to its direct effects on VTA dopamine neurons, NPY also decreased the amplitude and increased paired-pulse ratios of evoked excitatory postsynaptic currents in a subset of dopamine neurons, suggesting that NPY decreases glutamatergic transmission through a presynaptic mechanism. Interestingly, NPY also strongly inhibited evoked inhibitory postsynaptic currents onto dopamine neurons by a presynaptic mechanism. Overall these studies demonstrate that NPY utilizes multiple mechanisms to affect VTA dopamine neuron activity, and they provide an important advancement in our understanding of how NPY acts in the VTA to control feeding behavior.NEW & NOTEWORTHY Neuropeptide-Y (NPY) has been shown to act on mesolimbic dopamine circuits to increase motivated behaviors toward food, but it is unclear exactly how NPY causes these responses. Here, we demonstrate that NPY directly inhibited a subset of ventral tegmental area (VTA) dopamine neurons through the activation of G protein-coupled inwardly rectifying potassium currents, and it inhibited both excitatory postsynaptic currents and inhibitory postsynaptic currents onto subsets of dopamine neurons through a presynaptic mechanism. Thus NPY uses multiple mechanisms to dynamically control VTA dopamine neuron activity.
Collapse
Affiliation(s)
- Katherine Stuhrman West
- Department of Biology, Georgia State University, Atlanta, Georgia.,The Neuroscience Institute, Georgia State University, Atlanta, Georgia; and
| | - Aaron G Roseberry
- Department of Biology, Georgia State University, Atlanta, Georgia; .,The Neuroscience Institute, Georgia State University, Atlanta, Georgia; and.,The Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| |
Collapse
|
4
|
Singh RK, Kumar P, Mahalingam K. Molecular genetics of human obesity: A comprehensive review. C R Biol 2017; 340:87-108. [PMID: 28089486 DOI: 10.1016/j.crvi.2016.11.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 10/03/2016] [Accepted: 11/10/2016] [Indexed: 12/25/2022]
Abstract
Obesity and its related health complications is a major problem worldwide. Hypothalamus and their signalling molecules play a critical role in the intervening and coordination with energy balance and homeostasis. Genetic factors play a crucial role in determining an individual's predisposition to the weight gain and being obese. In the past few years, several genetic variants were identified as monogenic forms of human obesity having success over common polygenic forms. In the context of molecular genetics, genome-wide association studies (GWAS) approach and their findings signified a number of genetic variants predisposing to obesity. However, the last couple of years, it has also been noticed that alterations in the environmental and epigenetic factors are one of the key causes of obesity. Hence, this review might be helpful in the current scenario of molecular genetics of human obesity, obesity-related health complications (ORHC), and energy homeostasis. Future work based on the clinical discoveries may play a role in the molecular dissection of genetic approaches to find more obesity-susceptible gene loci.
Collapse
Affiliation(s)
- Rajan Kumar Singh
- Department of Bio-Medical Sciences, School of Biosciences and Technology, VIT University, 632014 Vellore, India
| | - Permendra Kumar
- Department of Bio-Medical Sciences, School of Biosciences and Technology, VIT University, 632014 Vellore, India
| | - Kulandaivelu Mahalingam
- Department of Bio-Medical Sciences, School of Biosciences and Technology, VIT University, 632014 Vellore, India.
| |
Collapse
|
5
|
Nagamori K, Ishibashi M, Shiraishi T, Oomura Y, Sasaki K. Effects of Leptin on Hypothalamic Arcuate Neurons in Wistar and Zucker Rats: An In Vitro Study. Exp Biol Med (Maywood) 2016; 228:1162-7. [PMID: 14610255 DOI: 10.1177/153537020322801010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Leptin, a product of the ob gene, decreases food intake and body weight in both Wistar and Zucker obese rats when administered centrally or peripherally. To examine whether these leptin effects might be mediated through a neuropeptide Y (NPY) signaling pathway in the medial part of the arcuate nucleus of the hypothalamus (vmARC), the effects of leptin on vmARC neurons in Wistar and Zucker obese rats were examined electrophysiologically using brain slice preparations. Bath application of leptin inhibited about 60% of the vmARC neurons recorded in slices from Wistar rats. Similar inhibitory effects of leptin on vmARC neurons were also observed under low-Ca2+, high-Mg2+ Ringer's solution. However, inhibitory effects were almost absent under Ringer's solution containing a protein kinase C inhibitor, chelerythrine chloride. In slices from Zucker obese rats, leptin inhibited only about 25% of the vmARC neurons recorded, and the proportion of neurons inhibited was significantly smaller for these rats than for Wistar rats. These results suggest that reductions in food intake and body weight induced by leptin in both Wistar and Zucker obese rats are partly mediated via inhibition of an NPY signaling pathway in the vmARC.
Collapse
Affiliation(s)
- Katsuhiko Nagamori
- Department of Bio-Information Engineering, Faculty of Engineering, Toyama University, Toyama 930-8555, Japan
| | | | | | | | | |
Collapse
|
6
|
Abstract
Initially implicated in the regulation of feeding, orexins/hypocretins are now acknowledged to play a major role in the control of a wide variety of biological processes, such as sleep, energy expenditure, pain, cardiovascular function and neuroendocrine regulation, a feature that makes them one of the most pleiotropic families of hypothalamic neuropeptides. While the orexigenic effect of orexins is well described, their central effects on energy expenditure and particularly on brown adipose tissue (BAT) thermogenesis are not totally unraveled. Better understanding of these actions and their possible interrelationship with other hypothalamic systems controlling thermogenesis, such as AMP-activated protein kinase (AMPK) and endoplasmic reticulum (ER) stress, will help to clarify the exact role and pathophysiological relevance of these neuropeptides have on energy balance.
Collapse
Affiliation(s)
- Johan Fernø
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; Department of Clinical Science, K. G. Jebsen Center for Diabetes Research, University of Bergen, N-5021 Bergen, Norway.
| | - Rosa Señarís
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) 15706, Spain
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) 15706, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, 14004 Córdoba, Spain; FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) 15706, Spain.
| |
Collapse
|
7
|
Poher AL, Veyrat-Durebex C, Altirriba J, Montet X, Colin DJ, Caillon A, Lyautey J, Rohner-Jeanrenaud F. Ectopic UCP1 Overexpression in White Adipose Tissue Improves Insulin Sensitivity in Lou/C Rats, a Model of Obesity Resistance. Diabetes 2015. [PMID: 26224884 DOI: 10.2337/db15-0210] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Brown adipose tissue (BAT), characterized by the presence of uncoupling protein 1 (UCP1), has been described as metabolically active in humans. Lou/C rats, originating from the Wistar strain, are resistant to obesity. We previously demonstrated that Lou/C animals express UCP1 in beige adipocytes in inguinal white adipose tissue (iWAT), suggesting a role of this protein in processes such as the control of body weight and the observed improved insulin sensitivity. A β3 adrenergic agonist was administered for 2 weeks in Wistar and Lou/C rats to activate UCP1 and delineate its metabolic impact. The treatment brought about decreases in fat mass and improvements in insulin sensitivity in both groups. In BAT, UCP1 expression increased similarly in response to the treatment in the two groups. However, the intervention induced the appearance of beige cells in iWAT, associated with a marked increase in UCP1 expression, in Lou/C rats only. This increase was correlated with a markedly enhanced glucose uptake measured during euglycemic-hyperinsulinemic clamps, suggesting a role of beige cells in this process. Activation of UCP1 in ectopic tissues, such as beige cells in iWAT, may be an interesting therapeutic approach to prevent body weight gain, decrease fat mass, and improve insulin sensitivity.
Collapse
Affiliation(s)
- Anne-Laure Poher
- Laboratory of Metabolism, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christelle Veyrat-Durebex
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jordi Altirriba
- Laboratory of Metabolism, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Xavier Montet
- Division of Radiology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Didier J Colin
- MicroPET/SPECT/CT Imaging Laboratory, Centre for BioMedical Imaging, University Hospital of Geneva, Geneva, Switzerland
| | - Aurélie Caillon
- Laboratory of Metabolism, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jacqueline Lyautey
- Laboratory of Metabolism, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Françoise Rohner-Jeanrenaud
- Laboratory of Metabolism, Division of Endocrinology, Diabetology, Hypertension and Nutrition, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Hallberg M. Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors. Med Res Rev 2015; 35:464-519. [PMID: 24894913 DOI: 10.1002/med.21323] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The proteolytic processing of neuropeptides has an important regulatory function and the peptide fragments resulting from the enzymatic degradation often exert essential physiological roles. The proteolytic processing generates, not only biologically inactive fragments, but also bioactive fragments that modulate or even counteract the response of their parent peptides. Frequently, these peptide fragments interact with receptors that are not recognized by the parent peptides. This review discusses tachykinins, opioid peptides, angiotensins, bradykinins, and neuropeptide Y that are present in the central nervous system and their processing to bioactive degradation products. These well-known neuropeptide systems have been selected since they provide illustrative examples that proteolytic degradation of parent peptides can lead to bioactive metabolites with different biological activities as compared to their parent peptides. For example, substance P, dynorphin A, angiotensin I and II, bradykinin, and neuropeptide Y are all degraded to bioactive fragments with pharmacological profiles that differ considerably from those of the parent peptides. The review discusses a selection of the large number of drug-like molecules that act as agonists or antagonists at receptors of neuropeptides. It focuses in particular on the efforts to identify selective drug-like agonists and antagonists mimicking the effects of the endogenous peptide fragments formed. As exemplified in this review, many common neuropeptides are degraded to a variety of smaller fragments but many of the fragments generated have not yet been examined in detail with regard to their potential biological activities. Since these bioactive fragments contain a small number of amino acid residues, they provide an ideal starting point for the development of drug-like substances with ability to mimic the effects of the degradation products. Thus, these substances could provide a rich source of new pharmaceuticals. However, as discussed herein relatively few examples have so far been disclosed of successful attempts to create bioavailable, drug-like agonists or antagonists, starting from the structure of endogenous peptide fragments and applying procedures relying on stepwise manipulations and simplifications of the peptide structures.
Collapse
Affiliation(s)
- Mathias Hallberg
- Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, Biomedical Center, Uppsala, Sweden
| |
Collapse
|
9
|
Rojas JM, Bruinstroop E, Printz RL, Alijagic-Boers A, Foppen E, Turney MK, George L, Beck-Sickinger AG, Kalsbeek A, Niswender KD. Central nervous system neuropeptide Y regulates mediators of hepatic phospholipid remodeling and very low-density lipoprotein triglyceride secretion via sympathetic innervation. Mol Metab 2015; 4:210-21. [PMID: 25737956 PMCID: PMC4338317 DOI: 10.1016/j.molmet.2015.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 12/29/2014] [Accepted: 01/09/2015] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Elevated very low-density lipoprotein (VLDL)-triglyceride (TG) secretion from the liver contributes to an atherogenic dyslipidemia that is associated with obesity, diabetes and the metabolic syndrome. Numerous models of obesity and diabetes are characterized by increased central nervous system (CNS) neuropeptide Y (NPY); in fact, a single intracerebroventricular (icv) administration of NPY in lean fasted rats elevates hepatic VLDL-TG secretion and does so, in large part, via signaling through the CNS NPY Y1 receptor. Thus, our overarching hypothesis is that elevated CNS NPY action contributes to dyslipidemia by activating central circuits that modulate liver lipid metabolism. METHODS Chow-fed Zucker fatty (ZF) rats were pair-fed by matching their caloric intake to that of lean controls and effects on body weight, plasma TG, and liver content of TG and phospholipid (PL) were compared to ad-libitum (ad-lib) fed ZF rats. Additionally, lean 4-h fasted rats with intact or disrupted hepatic sympathetic innervation were treated with icv NPY or NPY Y1 receptor agonist to identify novel hepatic mechanisms by which NPY promotes VLDL particle maturation and secretion. RESULTS Manipulation of plasma TG levels in obese ZF rats, through pair-feeding had no effect on liver TG content; however, hepatic PL content was substantially reduced and was tightly correlated with plasma TG levels. Treatment with icv NPY or a selective NPY Y1 receptor agonist in lean fasted rats robustly activated key hepatic regulatory proteins, stearoyl-CoA desaturase-1 (SCD-1), ADP-ribosylation factor-1 (ARF-1), and lipin-1, known to be involved in remodeling liver PL into TG for VLDL maturation and secretion. Lastly, we show that the effects of CNS NPY on key liporegulatory proteins are attenuated by hepatic sympathetic denervation. CONCLUSIONS These data support a model in which CNS NPY modulates mediators of hepatic PL remodeling and VLDL maturation to stimulate VLDL-TG secretion that is dependent on the Y1 receptor and sympathetic signaling to the liver.
Collapse
Key Words
- AGPAT, 1-acyl-glycerol-3-phosphate acyltransferase
- ARF-1, ADP-ribosylation factor-1
- ApoB, apolipoprotein B
- CNS, central nervous system
- Cyto, cytoplasmic
- DAG, diacylglycerol
- DGAT, diacylglycerol acyltransferase
- ER, endoplasmic reticulum
- FFA(s), free fatty acid(s)
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- HDAC-1, histone deacetylase-1
- Lipin-1
- NE, norepinephrine
- NPY Y1 receptor
- NPY, neuropeptide Y
- Nuc, nuclear
- PA, phosphatidic acid
- PAP-1, phosphatidic acid phosphatase-1
- PF, pair-fed
- PL, phospholipid
- PLD, phospholipase D
- POMC, proopiomelanocortin
- Phospholipid
- RPL13A, ribosomal protein L13a
- RT-PCR, real-time PCR
- SCD-1, stearoyl-CoA desaturase-1
- SNS, sympathetic nervous system
- Sham, sham-denervation
- Sx, sympathetic denervation
- Sympathetic denervation
- TG, triglyceride
- Triglyceride
- VLDL
- VLDL, very low-density lipoprotein
- Veh, vehicle
- ZF, Zucker fatty
- ad-lib, ad-libitum
- icv, intracerebroventricular
Collapse
Affiliation(s)
- Jennifer M. Rojas
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Eveline Bruinstroop
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Richard L. Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Aldijana Alijagic-Boers
- Department of Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Science, Amsterdam, The Netherlands
| | - Ewout Foppen
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Maxine K. Turney
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Leena George
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Annette G. Beck-Sickinger
- Institute of Biochemistry, Faculty of Bioscience, Pharmacy and Psychology, Leipzig University, Leipzig, Germany
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Science, Amsterdam, The Netherlands
| | - Kevin D. Niswender
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
10
|
Wellhauser L, Gojska NM, Belsham DD. Delineating the regulation of energy homeostasis using hypothalamic cell models. Front Neuroendocrinol 2015; 36:130-49. [PMID: 25223866 DOI: 10.1016/j.yfrne.2014.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/28/2014] [Accepted: 09/02/2014] [Indexed: 12/27/2022]
Abstract
Attesting to its intimate peripheral connections, hypothalamic neurons integrate nutritional and hormonal cues to effectively manage energy homeostasis according to the overall status of the system. Extensive progress in the identification of essential transcriptional and post-translational mechanisms regulating the controlled expression and actions of hypothalamic neuropeptides has been identified through the use of animal and cell models. This review will introduce the basic techniques of hypothalamic investigation both in vivo and in vitro and will briefly highlight the key advantages and challenges of their use. Further emphasis will be place on the use of immortalized models of hypothalamic neurons for in vitro study of feeding regulation, with a particular focus on cell lines proving themselves most fruitful in deciphering fundamental basics of NPY/AgRP, Proglucagon, and POMC neuropeptide function.
Collapse
Affiliation(s)
- Leigh Wellhauser
- Department of Physiology, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Nicole M Gojska
- Department of Physiology, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Denise D Belsham
- Departments of Physiology, Medicine and OB/GYN, University of Toronto, Toronto, Ontario M5G 1A8, Canada; Division of Cellular and Molecular Biology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
11
|
Thorp AA, Schlaich MP. Relevance of Sympathetic Nervous System Activation in Obesity and Metabolic Syndrome. J Diabetes Res 2015; 2015:341583. [PMID: 26064978 PMCID: PMC4430650 DOI: 10.1155/2015/341583] [Citation(s) in RCA: 253] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/30/2015] [Indexed: 01/29/2023] Open
Abstract
Sympathetic tone is well recognised as being implicit in cardiovascular control. It is less readily acknowledged that activation of the sympathetic nervous system is integral in energy homeostasis and can exert profound metabolic effects. Accumulating data from animal and human studies suggest that central sympathetic overactivity plays a pivotal role in the aetiology and complications of several metabolic conditions that can cluster to form the Metabolic Syndrome (MetS). Given the known augmented risk for type 2 diabetes, cardiovascular disease, and premature mortality associated with the MetS understanding the complex pathways underlying the metabolic derangements involved has become a priority. Many factors have been proposed to contribute to increased sympathetic nerve activity in metabolic abnormalities including obesity, impaired baroreflex sensitivity, hyperinsulinemia, and elevated adipokine levels. Furthermore there is mounting evidence to suggest that chronic sympathetic overactivity can potentiate two of the key metabolic alterations of the MetS, central obesity and insulin resistance. This review will discuss the regulatory role of the sympathetic nervous system in metabolic control and the proposed pathophysiology linking sympathetic overactivity to metabolic abnormalities. Pharmacological and device-based approaches that target central sympathetic drive will also be discussed as possible therapeutic options to improve metabolic control in at-risk patient cohorts.
Collapse
Affiliation(s)
- Alicia A. Thorp
- Neurovascular Hypertension and Kidney Disease Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Markus P. Schlaich
- Neurovascular Hypertension and Kidney Disease Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Department of Cardiovascular Medicine, Alfred Hospital, Melbourne, VIC 3004, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
- School of Medicine and Pharmacology, Royal Perth Hospital Unit, Faculty of Medicine, Dentistry & Health Sciences, The University of Western Australia, Level 3, MRF Building, Rear 50 Murray Street, Perth, WA 6000, Australia
- *Markus P. Schlaich:
| |
Collapse
|
12
|
Bruinstroop E, Fliers E, Kalsbeek A. Hypothalamic control of hepatic lipid metabolism via the autonomic nervous system. Best Pract Res Clin Endocrinol Metab 2014; 28:673-84. [PMID: 25256763 DOI: 10.1016/j.beem.2014.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Our body is well designed to store energy in times of nutrient excess, and release energy in times of food deprivation. This adaptation to the external environment is achieved by humoral factors and the autonomic nervous system. Claude Bernard, in the 19th century, showed the importance of the autonomic nervous system in the control of glucose metabolism. In the 20th century, the discovery of insulin and the development of techniques to measure hormone concentrations shifted the focus from the neural control of metabolism to the secretion of hormones, thus functionally "decapitating" the body. Just before the end of the 20th century, starting with the discovery of leptin in 1994, the control of energy metabolism went back to our heads. Since the start of 21st century, numerous studies have reported the involvement of hypothalamic pathways in the control of hepatic insulin sensitivity and glucose production. The autonomic nervous system is, therefore, acknowledged to be one of the important determinants of liver metabolism and a possible treatment target. In this chapter, we review research to date on the hypothalamic control of hepatic lipid metabolism.
Collapse
Affiliation(s)
- Eveline Bruinstroop
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Trevellin E, Scorzeto M, Olivieri M, Granzotto M, Valerio A, Tedesco L, Fabris R, Serra R, Quarta M, Reggiani C, Nisoli E, Vettor R. Exercise training induces mitochondrial biogenesis and glucose uptake in subcutaneous adipose tissue through eNOS-dependent mechanisms. Diabetes 2014; 63:2800-11. [PMID: 24622799 DOI: 10.2337/db13-1234] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Insulin resistance and obesity are associated with a reduction of mitochondrial content in various tissues of mammals. Moreover, a reduced nitric oxide (NO) bioavailability impairs several cellular functions, including mitochondrial biogenesis and insulin-stimulated glucose uptake, two important mechanisms of body adaptation in response to physical exercise. Although these mechanisms have been thoroughly investigated in skeletal muscle and heart, few studies have focused on the effects of exercise on mitochondria and glucose metabolism in adipose tissue. In this study, we compared the in vivo effects of chronic exercise in subcutaneous adipose tissue of wild-type (WT) and endothelial NO synthase (eNOS) knockout (eNOS(-/-)) mice after a swim training period. We then investigated the in vitro effects of NO on mouse 3T3-L1 and human subcutaneous adipose tissue-derived adipocytes after a chronic treatment with an NO donor: diethylenetriamine-NO (DETA-NO). We observed that swim training increases mitochondrial biogenesis, mitochondrial DNA content, and glucose uptake in subcutaneous adipose tissue of WT but not eNOS(-/-) mice. Furthermore, we observed that DETA-NO promotes mitochondrial biogenesis and elongation, glucose uptake, and GLUT4 translocation in cultured murine and human adipocytes. These results point to the crucial role of the eNOS-derived NO in the metabolic adaptation of subcutaneous adipose tissue to exercise training.
Collapse
Affiliation(s)
- Elisabetta Trevellin
- Internal Medicine 3, Endocrine-Metabolic Laboratory, Department of Medicine DIMED, University of Padua, Padua, Italy
| | - Michele Scorzeto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Massimiliano Olivieri
- Internal Medicine 3, Endocrine-Metabolic Laboratory, Department of Medicine DIMED, University of Padua, Padua, Italy
| | - Marnie Granzotto
- Internal Medicine 3, Endocrine-Metabolic Laboratory, Department of Medicine DIMED, University of Padua, Padua, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Laura Tedesco
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Roberto Fabris
- Internal Medicine 3, Endocrine-Metabolic Laboratory, Department of Medicine DIMED, University of Padua, Padua, Italy
| | - Roberto Serra
- Internal Medicine 3, Endocrine-Metabolic Laboratory, Department of Medicine DIMED, University of Padua, Padua, Italy
| | - Marco Quarta
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Roberto Vettor
- Internal Medicine 3, Endocrine-Metabolic Laboratory, Department of Medicine DIMED, University of Padua, Padua, Italy
| |
Collapse
|
14
|
Vettor R, Valerio A, Ragni M, Trevellin E, Granzotto M, Olivieri M, Tedesco L, Ruocco C, Fossati A, Fabris R, Serra R, Carruba MO, Nisoli E. Exercise training boosts eNOS-dependent mitochondrial biogenesis in mouse heart: role in adaptation of glucose metabolism. Am J Physiol Endocrinol Metab 2014; 306:E519-28. [PMID: 24381004 DOI: 10.1152/ajpendo.00617.2013] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Endurance exercise training increases cardiac energy metabolism through poorly understood mechanisms. Nitric oxide (NO) produced by endothelial NO synthase (eNOS) in cardiomyocytes contributes to cardiac adaptation. Here we demonstrate that the NO donor diethylenetriamine-NO (DETA-NO) activated mitochondrial biogenesis and function, as assessed by upregulated peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial transcription factor A (Tfam) expression, and by increased mitochondrial DNA content and citrate synthase activity in primary mouse cardiomyocytes. DETA-NO also induced mitochondrial biogenesis and function and enhanced both basal and insulin-stimulated glucose uptake in HL-1 cardiomyocytes. The DETA-NO-mediated effects were suppressed by either PGC-1α or Tfam small-interference RNA in HL-1 cardiomyocytes. Wild-type and eNOS(-/-) mice were subjected to 6 wk graduated swim training. We found that eNOS expression, mitochondrial biogenesis, mitochondrial volume density and number, and both basal and insulin-stimulated glucose uptake were increased in left ventricles of swim-trained wild-type mice. On the contrary, the genetic deletion of eNOS prevented all these adaptive phenomena. Our findings demonstrate that exercise training promotes eNOS-dependent mitochondrial biogenesis in heart, which behaves as an essential step in cardiac glucose transport.
Collapse
Affiliation(s)
- Roberto Vettor
- Internal Medicine Unit and Center for the Study and Integrated Treatment of Obesity, Department of Medicine, Padua University, Padua, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Improved leptin sensitivity as a potential candidate responsible for the spontaneous food restriction of the Lou/C rat. PLoS One 2013; 8:e73452. [PMID: 24039946 PMCID: PMC3765307 DOI: 10.1371/journal.pone.0073452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 07/23/2013] [Indexed: 12/18/2022] Open
Abstract
The Lou/C rat, an inbred strain of Wistar origin, was described as a model of resistance to age- and diet-induced obesity. Although such a resistance involves many metabolic parameters described in our previous studies, Lou/C rats also exhibit a spontaneous food restriction due to decreased food consumption during the nocturnal period. We then attempted to delineate the leptin sensitivity and mechanisms implicated in this strain, using different protocols of acute central and peripheral leptin administration. A first analysis of the meal patterns revealed that Lou/C rats eat smaller meals, without any change in meal number compared to age-matched Wistar animals. Although the expression of the recognized leptin transporters (leptin receptors and megalin) measured in the choroid plexus was normal in Lou/C rats, the decreased triglyceridemia observed in these animals is compatible with an increased leptin transport across the blood brain barrier. Improved hypothalamic leptin signaling in Lou/C rats was also suggested by the higher pSTAT3/STAT3 (signal transducer and activator of transcription 3) ratio observed following acute peripheral leptin administration, as well as by the lower hypothalamic mRNA expression of the suppressor of cytokine signaling 3 (SOCS3), known to downregulate leptin signaling. To conclude, spontaneous hypophagia of Lou/C rats appears to be related to improved leptin sensitivity. The main mechanism underlying such a phenomenon consists in improved leptin signaling through the Ob-Rb leptin receptor isoform, which seems to consequently lead to overexpression of brain-derived neurotrophic factor (BDNF) and thyrotropin-releasing hormone (TRH).
Collapse
|
16
|
Vats P, Singh VK, Singh SN, Singh SB. High altitude induced anorexia: Effect of changes in leptin and oxidative stress levels. Nutr Neurosci 2013; 10:243-9. [DOI: 10.1080/10284150701722299] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Olza J, Gil-Campos M, Leis R, Rupérez AI, Tojo R, Cañete R, Gil A, Aguilera CM. Influence of variants in the NPY gene on obesity and metabolic syndrome features in Spanish children. Peptides 2013; 45:22-7. [PMID: 23624317 DOI: 10.1016/j.peptides.2013.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 12/15/2022]
Abstract
Variants in the neuropeptide Y (NPY) gene have been associated with obesity and its traits. The objective of the present study was to evaluate the association of single nucleotide polymorphisms (SNPs) in the NPY gene with obesity, metabolic syndrome features, and inflammatory and cardiovascular disease (CVD) risk biomarkers in Spanish children. We recruited 292 obese children and 242 normal-body mass index (BMI) children. Height, weight, BMI, waist circumference, clinical and metabolic markers, adipokines, and inflammatory (PCR, IL-6, IL-8 and TNF-α) and CVD risk biomarkers (MPO, MMP-9, sE-selectin, sVCAM, sICAM, and PAI-1) were analyzed. Seven SNPs in the NPY gene were genotyped. The results of our study indicate that anthropometric measurements, clinical and metabolic markers, adipokines (leptin and resistin), and inflammatory and CVD risk biomarkers were generally elevated in the obese group. The exceptions to this finding included cholesterol, HDL-c, and adiponectin, which were lower in the obese group, and glucose, LDL-c, and MMP-9, which did not differ between the groups. Both rs16147 and rs16131 were associated with the risk of obesity, and the latter was also associated with insulin resistance, triacylglycerols, leptin, and HDL-c. Thus, we confirm the association of rs16147 with obesity, and we demonstrate for the first time the association of rs16131 with obesity and its possible impact on the early onset of metabolic syndrome features, mainly triacylglycerols, in children.
Collapse
Affiliation(s)
- Josune Olza
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, University of Granada, Center of Biomedical Research, Laboratory 123, Avenida del Conocimiento s/n, 18016 Armilla, Granada, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Marcelino H, Veyrat-Durebex C, Summermatter S, Sarafian D, Miles-Chan J, Arsenijevic D, Zani F, Montani JP, Seydoux J, Solinas G, Rohner-Jeanrenaud F, Dulloo AG. A role for adipose tissue de novo lipogenesis in glucose homeostasis during catch-up growth: a Randle cycle favoring fat storage. Diabetes 2013; 62:362-72. [PMID: 22961086 PMCID: PMC3554390 DOI: 10.2337/db12-0255] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Catch-up growth, a risk factor for type 2 diabetes, is characterized by hyperinsulinemia and accelerated body fat recovery. Using a rat model of semistarvation-refeeding that exhibits catch-up fat, we previously reported that during refeeding on a low-fat diet, glucose tolerance is normal but insulin-dependent glucose utilization is decreased in skeletal muscle and increased in adipose tissue, where de novo lipogenic capacity is concomitantly enhanced. Here we report that isocaloric refeeding on a high-fat (HF) diet blunts the enhanced in vivo insulin-dependent glucose utilization for de novo lipogenesis (DNL) in adipose tissue. These are shown to be early events of catch-up growth that are independent of hyperphagia and precede the development of overt adipocyte hypertrophy, adipose tissue inflammation, or defective insulin signaling. These results suggest a role for enhanced DNL as a glucose sink in regulating glycemia during catch-up growth, which is blunted by exposure to an HF diet, thereby contributing, together with skeletal muscle insulin resistance, to the development of glucose intolerance. Our findings are presented as an extension of the Randle cycle hypothesis, whereby the suppression of DNL constitutes a mechanism by which dietary lipids antagonize glucose utilization for storage as triglycerides in adipose tissue, thereby impairing glucose homeostasis during catch-up growth.
Collapse
Affiliation(s)
- Helena Marcelino
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | | | - Serge Summermatter
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Delphine Sarafian
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Jennifer Miles-Chan
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Denis Arsenijevic
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Fabio Zani
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Jean-Pierre Montani
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Josiane Seydoux
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Giovanni Solinas
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | | | - Abdul G. Dulloo
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
- Corresponding author: Abdul G. Dulloo,
| |
Collapse
|
19
|
Rojas JM, Stafford JM, Saadat S, Printz RL, Beck-Sickinger AG, Niswender KD. Central nervous system neuropeptide Y signaling via the Y1 receptor partially dissociates feeding behavior from lipoprotein metabolism in lean rats. Am J Physiol Endocrinol Metab 2012; 303:E1479-88. [PMID: 23074243 PMCID: PMC3532466 DOI: 10.1152/ajpendo.00351.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Elevated plasma triglyceride (TG) levels contribute to an atherogenic dyslipidemia that is associated with obesity, diabetes, and metabolic syndrome. Numerous models of obesity are characterized by increased central nervous system (CNS) neuropeptide Y (NPY) tone that contributes to excess food intake and obesity. Previously, we demonstrated that intracerebroventricular (icv) administration of NPY in lean fasted rats also elevates hepatic production of very low-density lipoprotein (VLDL)-TG. Thus, we hypothesize that elevated CNS NPY action contributes to not only the pathogenesis of obesity but also dyslipidemia. Here, we sought to determine whether the effects of NPY on feeding and/or obesity are dissociable from effects on hepatic VLDL-TG secretion. Pair-fed, icv NPY-treated, chow-fed Long-Evans rats develop hypertriglyceridemia in the absence of increased food intake and body fat accumulation compared with vehicle-treated controls. We then modulated CNS NPY signaling by icv injection of selective NPY receptor agonists and found that Y1, Y2, Y4, and Y5 receptor agonists all induced hyperphagia in lean, ad libitum chow-fed Long-Evans rats, with the Y2 receptor agonist having the most pronounced effect. Next, we found that at equipotent doses for food intake NPY Y1 receptor agonist had the most robust effect on VLDL-TG secretion, a Y2 receptor agonist had a modest effect, and no effect was observed for Y4 and Y5 receptor agonists. These findings, using selective agonists, suggest the possibility that the effect of CNS NPY signaling on hepatic VLDL-TG secretion may be relatively dissociable from effects on feeding behavior via the Y1 receptor.
Collapse
|
20
|
Chen H, Saad S, Sandow SL, Bertrand PP. Cigarette smoking and brain regulation of energy homeostasis. Front Pharmacol 2012; 3:147. [PMID: 22848202 PMCID: PMC3404499 DOI: 10.3389/fphar.2012.00147] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/09/2012] [Indexed: 12/16/2022] Open
Abstract
Cigarette smoking is an addictive behavior, and is the primary cause of cardiovascular and pulmonary disease, and cancer (among other diseases). Cigarette smoke contains thousands of components that may affect caloric intake and energy expenditure, although nicotine is the major addictive substance present, and has the best described actions. Nicotine exposure from cigarette smoke can change brain feeding regulation to reduce appetite via both energy homeostatic and reward mechanisms, causing a negative energy state which is characterized by reduced energy intake and increased energy expenditure that are linked to low body weight. These findings have led to the public perception that smoking is associated with weight loss. However, its effects at reducing abdominal fat mass (a predisposing factor for glucose intolerance and insulin resistance) are marginal, and its promotion of lean body mass loss in animal studies suggests a limited potential for treatment in obesity. Smoking during pregnancy puts pressure on the mother's metabolic system and is a significant contributor to adverse pregnancy outcomes. Smoking is a predictor of future risk for respiratory dysfunction, social behavioral problems, cardiovascular disease, obesity, and type-2 diabetes. Catch-up growth is normally observed in children exposed to intrauterine smoke, which has been linked to subsequent childhood obesity. Nicotine can have a profound impact on the developing fetal brain, via its ability to rapidly and fully pass the placenta. In animal studies this has been linked with abnormal hypothalamic gene expression of appetite regulators such as downregulation of NPY and POMC in the arcuate nucleus of the hypothalamus. Maternal smoking or nicotine replacement leads to unhealthy eating habits (such as junk food addiction) and other behavioral disorders in the offspring.
Collapse
Affiliation(s)
- Hui Chen
- Faculty of Science, School of Medical and Molecular Biosciences, University of TechnologySydney, NSW, Australia
- Faculty of Medicine, Department of Pharmacology, School of Medical Sciences, University of New South WalesSydney, NSW, Australia
| | - Sonia Saad
- Renal Research Group, Kolling Institute, University of SydneySydney, NSW, Australia
| | - Shaun L. Sandow
- Faculty of Medicine, Department of Physiology, School of Medical Sciences, University of New South WalesSydney, NSW, Australia
| | - Paul P. Bertrand
- Faculty of Medicine, Department of Physiology, School of Medical Sciences, University of New South WalesSydney, NSW, Australia
| |
Collapse
|
21
|
Deblon N, Bourgoin L, Veyrat-Durebex C, Peyrou M, Vinciguerra M, Caillon A, Maeder C, Fournier M, Montet X, Rohner-Jeanrenaud F, Foti M. Chronic mTOR inhibition by rapamycin induces muscle insulin resistance despite weight loss in rats. Br J Pharmacol 2012; 165:2325-40. [PMID: 22014210 DOI: 10.1111/j.1476-5381.2011.01716.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE mTOR inhibitors are currently used as immunosuppressants in transplanted patients and as promising anti-cancer agents. However, new-onset diabetes is a frequent complication occurring in patients treated with mTOR inhibitors such as rapamycin (Sirolimus). Here, we investigated the mechanisms associated with the diabetogenic effects of chronic Sirolimus administration in rats and in in vitro cell cultures. EXPERIMENTAL APPROACH Sirolimus was administered to rats fed either a standard or high-fat diet for 21 days. Metabolic parameters were measured in vivo and in ex vivo tissues. Insulin sensitivity was assessed by glucose tolerance tests and euglycaemic hyperinsulinaemic clamps. Rapamycin effects on glucose metabolism and insulin signalling were further evaluated in cultured myotubes. KEY RESULTS Sirolimus induced a decrease in food intake and concomitant weight loss. It also induced specific fat mass loss that was independent of changes in food intake. Despite these beneficial effects, Sirolimus-treated rats were glucose intolerant, hyperinsulinaemic and hyperglycaemic, but not hyperlipidaemic. The euglycaemic hyperinsulinaemic clamp measurements showed skeletal muscle is a major site of Sirolimus-induced insulin resistance. At the molecular level, long-term Sirolimus administration attenuated glucose uptake and metabolism in skeletal muscle by preventing full insulin-induced Akt activation and altering the expression and translocation of glucose transporters to the plasma membrane. In rats fed a high-fat diet, these metabolic defects were exacerbated, although Sirolimus-treated animals were protected from diet-induced obesity. CONCLUSIONS AND IMPLICATIONS Taken together, our data demonstrate that the diabetogenic effect of chronic rapamycin administration is due to an impaired insulin action on glucose metabolism in skeletal muscles.
Collapse
Affiliation(s)
- N Deblon
- Department of Internal Medicine, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Veyrat-Durebex C, Deblon N, Caillon A, Andrew R, Altirriba J, Odermatt A, Rohner-Jeanrenaud F. Central glucocorticoid administration promotes weight gain and increased 11β-hydroxysteroid dehydrogenase type 1 expression in white adipose tissue. PLoS One 2012; 7:e34002. [PMID: 22479501 PMCID: PMC3316512 DOI: 10.1371/journal.pone.0034002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 02/24/2012] [Indexed: 01/03/2023] Open
Abstract
Glucocorticoids (GCs) are involved in multiple metabolic processes, including the regulation of insulin sensitivity and adipogenesis. Their action partly depends on their intracellular activation by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). We previously demonstrated that central GC administration promotes hyperphagia, body weight gain, hyperinsulinemia and marked insulin resistance at the level of skeletal muscles. Similar dysfunctions have been reported to occur upon specific overexpression of 11β-HSD1 in adipose tissue. The aim of the present study was therefore to determine whether the effects of central GC infusion may enhance local GC activation in white adipose tissue. Male Wistar and Sprague Dawley (SD) rats were intracerebroventricularly infused with GCs for 2 to 3 days. Body weight, food intake and metabolic parameters were measured, and expression of enzymes regulating 11β-HSD1, as well as that of genes regulated by GCs, were quantified. Central GC administration induced a significant increase in body weight gain and in 11β-HSD1 and resistin expression in adipose tissue. A decrease 11β-HSD1 expression was noticed in the liver of SD rats, as a partial compensatory mechanism. Such effects of GCs are centrally elicited. This model of icv dexamethasone infusion thus appears to be a valuable acute model, that helps delineating the initial metabolic defects occurring in obesity. An impaired downregulation of intracellular GC activation in adipose tissue may be important for the development of insulin resistance.
Collapse
Affiliation(s)
- Christelle Veyrat-Durebex
- Laboratory of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
23
|
Deblon N, Veyrat-Durebex C, Bourgoin L, Caillon A, Bussier AL, Petrosino S, Piscitelli F, Legros JJ, Geenen V, Foti M, Wahli W, Di Marzo V, Rohner-Jeanrenaud F. Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats. PLoS One 2011; 6:e25565. [PMID: 21980491 PMCID: PMC3181274 DOI: 10.1371/journal.pone.0025565] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 09/06/2011] [Indexed: 12/18/2022] Open
Abstract
Apart from its role during labor and lactation, oxytocin is involved in several other functions. Interestingly, oxytocin- and oxytocin receptor-deficient mice develop late-onset obesity with normal food intake, suggesting that the hormone might exert a series of beneficial metabolic effects. This was recently confirmed by data showing that central oxytocin infusion causes weight loss in diet-induced obese mice. The aim of the present study was to unravel the mechanisms underlying such beneficial effects of oxytocin. Chronic central oxytocin infusion was carried out in high fat diet-induced obese rats. Its impact on body weight, lipid metabolism and insulin sensitivity was determined. We observed a dose-dependent decrease in body weight gain, increased adipose tissue lipolysis and fatty acid β-oxidation, as well as reduced glucose intolerance and insulin resistance. The additional observation that plasma oxytocin levels increased upon central infusion suggested that the hormone might affect adipose tissue metabolism by direct action. This was demonstrated using in vitro, ex vivo, as well as in vivo experiments. With regard to its mechanism of action in adipose tissue, oxytocin increased the expression of stearoyl-coenzyme A desaturase 1, as well as the tissue content of the phospholipid precursor, N-oleoyl-phosphatidylethanolamine, the biosynthetic precursor of the oleic acid-derived PPAR-alpha activator, oleoylethanolamide. Because PPAR-alpha regulates fatty acid β-oxidation, we hypothesized that this transcription factor might mediate the oxytocin effects. This was substantiated by the observation that, in contrast to its effects in wild-type mice, oxytocin infusion failed to induce weight loss and fat oxidation in PPAR-alpha-deficient animals. Altogether, these results suggest that oxytocin administration could represent a promising therapeutic approach for the treatment of human obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Nicolas Deblon
- Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christelle Veyrat-Durebex
- Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lucie Bourgoin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aurélie Caillon
- Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anne-Lise Bussier
- Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stefania Petrosino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Naples, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Naples, Italy
| | - Jean-Jacques Legros
- Centre Hospitalier Régional de la Citadelle, University of Liege, Liege, Belgium
| | - Vincent Geenen
- Centre of Immunology, University of Liege, CHU B-23, Liege, Belgium
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Walter Wahli
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of Lausanne, Lausanne, Switzerland
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Naples, Italy
| | - Françoise Rohner-Jeanrenaud
- Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
24
|
Veyrat-Durebex C, Poher AL, Caillon A, Montet X, Rohner-Jeanrenaud F. Alterations in lipid metabolism and thermogenesis with emergence of brown adipocytes in white adipose tissue in diet-induced obesity-resistant Lou/C rats. Am J Physiol Endocrinol Metab 2011; 300:E1146-57. [PMID: 21406614 DOI: 10.1152/ajpendo.00575.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies describe the Lou/C rat as a model of resistance to age- and diet-induced obesity and suggest a preferential channeling of nutrients toward utilization rather than storage under standard feeding conditions. The purpose of the present study was to evaluate lipid metabolism of Lou/C and Wistar rats under a high-fat (HF) diet. Four-month-old male Lou/C and Wistar animals were submitted to a 40% HF diet for 5-9 wk. Evolution of food intake, body weight, and body composition, hormonal parameters, and expression of key transcription factors and enzymes involved in lipid metabolism were determined. Wistar rats developed obesity after 5 wk of HF diet, as previously described. Among the various parameters measured, accumulation of intraperitoneal fat was particularly evident in HF-fed Wistar rats. In these animals, thermogenesis was, however, stimulated as a likely compensatory mechanism against the development of obesity. On the contrary, Lou/C animals failed to develop obesity under such a diet, and intraperitoneal fat, not including epididymal and retroperitoneal fat depots, was virtually absent. Enzyme measurements confirmed lipid utilization rather than storage, which was accompanied by the striking emergence of uncoupling protein-1, characteristic of brown adipocytes, in white adipose tissue, particularly in the subcutaneous depot.
Collapse
Affiliation(s)
- Christelle Veyrat-Durebex
- Laboratory of Metabolism, Department of Internal Medicine, University of Geneva, Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
25
|
Cho SJ, Lee JS, Mathias ED, Chang C, Hickey GJ, Lkhagvadorj S, Anderson LL. Intracerebroventricular and intravenous administration of growth hormone secretagogue L-692,585, somatostatin, neuropeptide Y and galanin in pig: dose-dependent effects on growth hormone secretion. Comp Biochem Physiol C Toxicol Pharmacol 2010; 151:412-9. [PMID: 20074661 DOI: 10.1016/j.cbpc.2010.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 01/05/2010] [Accepted: 01/07/2010] [Indexed: 11/23/2022]
Abstract
Central regulation of growth hormone (GH) secretion by the GH secretagogue, L-692,585 (585), was determined in Yorkshire barrows (40-45kg BW) with intracerebroventricular (icv) stainless steel cannulas placed by stereotaxic coordinates and indwelling external jugular vein (iv) cannulas for injecting 585 or saline during 3h serial blood sampling. Dose-dependent effects of 585 were determined by icv injections of saline vehicle, 3, 10, and 30microg/kg BW by once daily increment. A switchback study of iv and icv 585 treatment determined central and peripheral regulation of GH secretion by the secretagogue at 30microg/kg BW. When administered icv, 585 increased GH concentration in a dose-dependent manner, with a return to baseline by 60min. GH secretion was attenuated by increased numbers of icv 585 injections (p<0.05); however, it was not affected by increased numbers of iv 585 injections. Icv administration of somatostatin (SRIF) decreased (p<0.05) GH secretion compared with saline-treated controls, and decreased (p<0.05) peak GH response when given in combination with 585 as compared with 585 alone. Porcine galanin (pGAL) modestly increased (p<0.05) GH levels compared with saline controls, but when given icv in combination with 585 peak GH response was lower (p<0.05) compared with 585 alone. Porcine neuropeptide Y (pNPY) administered icv was without effect on GH levels compared with saline controls and decreased (p<0.05) peak GH response when given in combination with 585 as compared with 585 alone. The pharmacological actions by icv administration indicate that the GH secretagogue and neuropeptides act at the level of both porcine pituitary and hypothalamus.
Collapse
Affiliation(s)
- S-J Cho
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Nogueiras R, López M, Diéguez C. Regulation of lipid metabolism by energy availability: a role for the central nervous system. Obes Rev 2010; 11:185-201. [PMID: 19845870 DOI: 10.1111/j.1467-789x.2009.00669.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The central nervous system (CNS) is crucial in the regulation of energy homeostasis. Many neuroanatomical studies have shown that the white adipose tissue (WAT) is innervated by the sympathetic nervous system, which plays a critical role in adipocyte lipid metabolism. Therefore, there are currently numerous reports indicating that signals from the CNS control the amount of fat by modulating the storage or oxidation of fatty acids. Importantly, some CNS pathways regulate adipocyte metabolism independently of food intake, suggesting that some signals possess alternative mechanisms to regulate energy homeostasis. In this review, we mainly focus on how neuronal circuits within the hypothalamus, such as leptin- ghrelin-and resistin-responsive neurons, as well as melanocortins, neuropeptide Y, and the cannabinoid system exert their actions on lipid metabolism in peripheral tissues such as WAT, liver or muscle. Dissecting the complicated interactions between peripheral signals and neuronal circuits regulating lipid metabolism might open new avenues for the development of new therapies preventing and treating obesity and its associated cardiometabolic sequelae.
Collapse
Affiliation(s)
- R Nogueiras
- Department of Physiology, School of Medicine-Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | | | | |
Collapse
|
27
|
Tiesjema B, la Fleur SE, Luijendijk MCM, Adan RAH. Sustained NPY overexpression in the PVN results in obesity via temporarily increasing food intake. Obesity (Silver Spring) 2009; 17:1448-50. [PMID: 19553928 DOI: 10.1038/oby.2008.670] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Increasing neuropeptide Y (NPY) signaling in the paraventricular nucleus (PVN) by recombinant adeno-associated virus (rAAV)-mediated overexpression of NPY in rats, results in hyperphagia and obesity in rats. To determine the importance of hyperphagia in the observed obesity phenotype, we pair-fed a group of AAV-NPY-injected rats to AAV-control-injected rats and compared parameters of energy balance to ad libitum fed AAV-NPY-injected rats. For 3 weeks, AAV-NPY-injected rats, received the same amount of food as ad libitum-fed rats injected with control rAAV They did not gain more body weight than these controls. When allowed access to food ad libitum, these AAV-NPY-injected rats increased food intake, which subsequently decreased when rats reached the same body weight as AAV-NPY-injected rats that were fed ad libitum for the entire study. These data indicate that overexpression of NPY in the PVN results in obesity by increasing food intake until a certain body weight is achieved.
Collapse
Affiliation(s)
- Birgitte Tiesjema
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
28
|
Veyrat-Durebex C, Montet X, Vinciguerra M, Gjinovci A, Meda P, Foti M, Rohner-Jeanrenaud F. The Lou/C rat: a model of spontaneous food restriction associated with improved insulin sensitivity and decreased lipid storage in adipose tissue. Am J Physiol Endocrinol Metab 2009; 296:E1120-32. [PMID: 19208855 DOI: 10.1152/ajpendo.90592.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The inbred Lou/C rat, originating from the Wistar strain, has been described as a model of resistance to diet-induced obesity, but little is known about its metabolism. Since this knowledge could provide some clues about the etiology of obesity/insulin resistance, this study aimed at characterizing glucose and lipid metabolism in Lou/C vs. Wistar rats. This was achieved by performing glucose and insulin tolerance tests, euglycemic hyperinsulinemic clamps, and characterization of intracellular insulin signaling in skeletal muscle. Substrate-induced insulin secretion was evaluated using perfused pancreas and isolated islets. Finally, body fat composition and the expression of various factors involved in lipid metabolism were determined. Body weight and caloric intake were lower in Lou/C than in Wistar rats, whereas food efficiency was similar. Improved glucose tolerance of Lou/C rats was not related to increased insulin output but was related to improved insulin sensitivity/responsiveness in the liver and in skeletal muscles. In the latter tissue, this was accompanied by improved insulin signaling, as suggested by higher activation of the insulin receptor and of the Akt/protein kinase B pathway. Fat deposition was markedly lower in Lou/C than in Wistar rats, especially in visceral adipose tissue. In the inguinal adipose depot, expression of uncoupling protein-1 was detected in Lou/C but not in Wistar rats, in keeping with a higher expression of peroxisome proliferator-activated receptor-gamma coactivator-1 in these animals. The Lou/C rat is a valuable model of spontaneous food restriction with associated improved insulin sensitivity. Independently from its reduced caloric intake, it also exhibits a preferential channeling of nutrients toward utilization rather than storage.
Collapse
|
29
|
Anastasiou OE, Yavropoulou MP, Kesisoglou I, Kotsa K, Yovos JG. Intracerebroventricular infusion of neuropeptide Y modulates VIP secretion in the fasting conscious dog. Neuropeptides 2009; 43:41-6. [PMID: 19058848 DOI: 10.1016/j.npep.2008.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 10/01/2008] [Accepted: 10/28/2008] [Indexed: 11/18/2022]
Abstract
Intracerebroventricular (icv) injection of neuropeptide Y (NPY), which is a widely-distributed neurotransmitter, into the paraventricular nuclear area has been shown previously to increase secretion of insulin and glucagon from the pancreatic islets. Vasoactive intestinal polypeptide (VIP) is a 28-amino-acid peptide that is associated with the mobilisation of energy during situations of energy depletion, such as fasting and exercise. VIP has also been reported to alter insulin and glucagon levels in a glucose-dependent manner. The aim of this study was to determine whether icv infusion of NPY affected VIP secretion in dogs. Intracerebroventricular injections (0.5 ml) were administered through a stereotactic apparatus to six healthy dogs. This prototype epicranial apparatus was positioned surgically to allow the easy and exact localisation of the third ventricle for infusion or sampling. Doses of 5, 10, and 25 microg NPY, dissolved in artificial cerebrospinal fluid (aCSF), were infused for a total of 30 min using a Harvard infusion pump. For control experiments, aCSF alone was injected. Blood samples were taken 15 min before icv injection (basal), immediately after injection, and at 5, 10, 15, 30, 45, 60, 90, and 120 min after, to determine the levels of glucose, insulin, glucagon, and VIP. Intracerebroventricular infusion of NPY resulted in a short-term increase in VIP secretion, followed by a more gradual and lengthier decrease in VIP levels. The secretion of insulin and glucagon increased significantly with all three doses of NPY. Intracerebroventricular infusion of NPY increased secretion of insulin and glucagon from the pancreas. The rapid change in the levels of VIP suggested the possibility of neural regulation by NPY.
Collapse
Affiliation(s)
- O E Anastasiou
- Division of Endocrinology and Metabolism, Aristotle University of Thessaloniki, AHEPA Univ. Hospital, S. Kyriakidi 1, 54636 Thessaloniki, Greece.
| | | | | | | | | |
Collapse
|
30
|
Woods SC, D'Alessio DA. Central control of body weight and appetite. J Clin Endocrinol Metab 2008; 93:S37-50. [PMID: 18987269 PMCID: PMC2585760 DOI: 10.1210/jc.2008-1630] [Citation(s) in RCA: 302] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 09/08/2008] [Indexed: 12/14/2022]
Abstract
CONTEXT Energy balance is critical for survival and health, and control of food intake is an integral part of this process. This report reviews hormonal signals that influence food intake and their clinical applications. EVIDENCE ACQUISITION A relatively novel insight is that satiation signals that control meal size and adiposity signals that signify the amount of body fat are distinct and interact in the hypothalamus and elsewhere to control energy homeostasis. This review focuses upon recent literature addressing the integration of satiation and adiposity signals and therapeutic implications for treatment of obesity. EVIDENCE SYNTHESIS During meals, signals such as cholecystokinin arise primarily from the GI tract to cause satiation and meal termination; signals secreted in proportion to body fat such as insulin and leptin interact with satiation signals and provide effective regulation by dictating meal size to amounts that are appropriate for body fatness, or stored energy. Although satiation and adiposity signals are myriad and redundant and reduce food intake, there are few known orexigenic signals; thus, initiation of meals is not subject to the degree of homeostatic regulation that cessation of eating is. There are now drugs available that act through receptors for satiation factors and which cause weight loss, demonstrating that this system is amenable to manipulation for therapeutic goals. CONCLUSIONS Although progress on effective medical therapies for obesity has been relatively slow in coming, advances in understanding the central regulation of food intake may ultimately be turned into useful treatment options.
Collapse
Affiliation(s)
- Stephen C Woods
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH 45237, USA.
| | | |
Collapse
|
31
|
Cline MA, Mathews DS. Anoretic effects of neuropeptide FF are mediated via central mu and kappa subtypes of opioid receptors and receptor ligands. Gen Comp Endocrinol 2008; 159:125-9. [PMID: 18823989 DOI: 10.1016/j.ygcen.2008.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/01/2008] [Accepted: 09/09/2008] [Indexed: 10/21/2022]
Abstract
Recently, we demonstrated that neuropeptide FF (NPFF) causes anorexigenic effects in chicks that were associated with the hypothalamus. The present study was designed to better understand some of the central mechanisms that mediate these effects. Co-injection of NPFF and beta-funaltrexamine (FNA, a mu opioid receptor antagonist) did not suppress food intake more than when NPFF and FNA were injected alone. However, co-injection of NPFF and ICI-174,864 (ICI, a delta opioid receptor antagonist) caused a greater reduction in food intake than when NPFF and ICI were injected alone. Co-injection of NPFF and nor-binaltorphimine (BNI, a kappa opioid receptor antagonist) did not cause a greater suppression of food intake than when NPFF and BNI were injected alone. Hyperphagia induced by neuropeptide Y and beta-endorphin (both ligands of opioid receptors) was reversed by NPFF. These results suggest that NPFF-induced satiety has a relationship with mu and kappa but not delta subtypes of opioid receptors, and since NPFF does not bind opioid receptors itself NPFF-associated satiety is likely mediated by effects on opioid receptor ligands such as NPY and beta-endorphin. Thus, NPFF induced satiety may be mediated via modulation of the chick's innate opioid-associated orexigenic system.
Collapse
MESH Headings
- Animals
- Anorexia/chemically induced
- Chickens
- Eating/drug effects
- Female
- Ligands
- Male
- Naltrexone/administration & dosage
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/administration & dosage
- Narcotic Antagonists/pharmacology
- Oligopeptides/administration & dosage
- Oligopeptides/pharmacology
- Random Allocation
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- Mark A Cline
- Department of Biology, P.O. Box 6931, Radford University, Radford, VA 24142, USA.
| | | |
Collapse
|
32
|
Nogueiras R, Veyrat-Durebex C, Suchanek PM, Klein M, Tschöp J, Caldwell C, Woods SC, Wittmann G, Watanabe M, Liposits Z, Fekete C, Reizes O, Rohner-Jeanrenaud F, Tschöp MH. Peripheral, but not central, CB1 antagonism provides food intake-independent metabolic benefits in diet-induced obese rats. Diabetes 2008; 57:2977-91. [PMID: 18716045 PMCID: PMC2570394 DOI: 10.2337/db08-0161] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Blockade of the CB1 receptor is one of the promising strategies for the treatment of obesity. Although antagonists suppress food intake and reduce body weight, the role of central versus peripheral CB1 activation on weight loss and related metabolic parameters remains to be elucidated. We therefore specifically assessed and compared the respective potential relevance of central nervous system (CNS) versus peripheral CB1 receptors in the regulation of energy homeostasis and lipid and glucose metabolism in diet-induced obese (DIO) rats. RESEARCH DESIGN AND METHODS Both lean and DIO rats were used for our experiments. The expression of key enzymes involved in lipid metabolism was measured by real-time PCR, and euglycemic-hyperinsulinemic clamps were used for insulin sensitivity and glucose metabolism studies. RESULTS Specific CNS-CB1 blockade decreased body weight and food intake but, independent of those effects, had no beneficial influence on peripheral lipid and glucose metabolism. Peripheral treatment with CB1 antagonist (Rimonabant) also reduced food intake and body weight but, in addition, independently triggered lipid mobilization pathways in white adipose tissue and cellular glucose uptake. Insulin sensitivity and skeletal muscle glucose uptake were enhanced, while hepatic glucose production was decreased during peripheral infusion of the CB1 antagonist. However, these effects depended on the antagonist-elicited reduction of food intake. CONCLUSIONS Several relevant metabolic processes appear to independently benefit from peripheral blockade of CB1, while CNS-CB1 blockade alone predominantly affects food intake and body weight.
Collapse
Affiliation(s)
- Ruben Nogueiras
- Department of Psychiatry, Obesity Research Centre, Genome Research Institute, University of Cincinnati, Cincinnati, Ohio, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mullins D, Adham N, Hesk D, Wu Y, Kelly J, Huang Y, Guzzi M, Zhang X, McCombie S, Stamford A, Parker E. Identification and characterization of pseudoirreversible nonpeptide antagonists of the neuropeptide Y Y5 receptor and development of a novel Y5-selective radioligand. Eur J Pharmacol 2008; 601:1-7. [PMID: 18976648 DOI: 10.1016/j.ejphar.2008.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/24/2008] [Accepted: 10/09/2008] [Indexed: 11/24/2022]
Abstract
The neuropeptide Y (NPY) Y(5) receptor is believed to be involved in the central regulation of appetite. Thus, antagonists of this receptor have been pursued as potential therapeutic agents for the treatment of obesity. A novel series of potent and selective phenylamide or biaryl urea NPY Y(5) receptor antagonists was identified. Four representative compounds from this series, SCH 208639 (N-[4-[(1,1-dimethylbutyl)thio]phenyl]-2,2-dimethylpropanamide), SCH 430765 (N-[[[3'-fluoro[1,1'-biphenyl]-4-yl]amino]carbonyl]-N-methyl-1-(methylsulfonyl)-4-piperidinamine), SCH 488106 (N-[[[3',5'-difluoro[1,1'-biphenyl]-4-yl]amino]carbonyl]-N-methyl-1-[(5-methyl-3-pyridinyl)carbonyl]-4-piperidinamine) and SCH 500946 (N-[[[5-(3,5-difluorophenyl)-2-pyrazinyl]amino]carbonyl]-N-methyl-1-(methylsulfonyl)-4-piperidinamine), behaved as competitive antagonists in radioligand binding assays, but displayed apparently insurmountable antagonism in a cell-based functional assay. The apparently insurmountable antagonism was due to slow receptor dissociation rates rather than covalent binding, because the antagonists' effects could be reduced by extensive washing of cells after antagonist exposure. A novel radioligand, [(35)S]SCH 500946, was also developed and used to characterize the interaction of these antagonists with the NPY Y(5) receptor. [(35)S]SCH 500946 had high affinity for the NPY Y(5) receptor (K(d)=0.29 nM), and the binding kinetics (k(on) 4.414 x 10(7) M(-)(1) min(-1); k(off) 0.009816 min(-1)) confirmed that the compound slowly dissociates from the receptor. In a competition binding assay, NPY failed to displace [(35)S]SCH 500946 completely, indicating that the binding sites for NPY and [(35)S]SCH 500946 are not identical. These data indicate that the apparent insurmountable antagonism of these NPY Y(5) receptor antagonists is attributable both to slow receptor dissociation rates and to binding at a site distinct from NPY.
Collapse
Affiliation(s)
- Deborra Mullins
- Department of Neurobiology, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
NPY L7P polymorphism and metabolic diseases. ACTA ACUST UNITED AC 2008; 149:51-5. [DOI: 10.1016/j.regpep.2007.08.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 08/22/2007] [Indexed: 11/18/2022]
|
35
|
Ruohonen ST, Pesonen U, Moritz N, Kaipio K, Röyttä M, Koulu M, Savontaus E. Transgenic mice overexpressing neuropeptide Y in noradrenergic neurons: a novel model of increased adiposity and impaired glucose tolerance. Diabetes 2008; 57:1517-25. [PMID: 18276767 DOI: 10.2337/db07-0722] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE A functional polymorphism leucine 7 proline in the human neuropeptide Y (NPY) gene leading to increased NPY release from sympathetic nerves is associated with traits of metabolic syndrome. Although hypothalamic NPY neurons play an established role in promoting positive energy balance, the role of NPY colocalized with norepinephrine in sympathetic nervous system and brain noradrenergic neurons remains obscure. RESEARCH DESIGN AND METHODS To clarify the role of NPY in noradrenergic neurons, we generated a transgenic mouse overexpressing NPY under dopamine-beta-hydroxylase promoter and characterized the metabolic phenotype of the OE-NPY(DbetaH) mouse. RESULTS NPY levels are increased by 1.3-fold in adrenal glands and 1.8-fold in the brainstem but not in the hypothalamus in OE-NPY(DbetaH) mice. They display increased white adipose tissue mass and cellularity and liver triglyceride accumulation without hyperphagia or increased body weight. Hyperinsulinemia and impaired glucose tolerance develop by the age of 6 months in the OE-NPY(DbetaH) mice. Furthermore, circulating ghrelin is significantly increased in comparison with wild-type mice. CONCLUSIONS The present study shows that even a moderate increase in NPY levels in noradrenergic neurons leads to disturbances in glucose and lipid metabolism. The OE-NPY(DbetaH) mouse is an interesting new model to investigate the pathophysiology of some key components of the cluster of abnormalities characterizing the metabolic syndrome.
Collapse
Affiliation(s)
- Suvi T Ruohonen
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
36
|
Stafford JM, Yu F, Printz R, Hasty AH, Swift LL, Niswender KD. Central nervous system neuropeptide Y signaling modulates VLDL triglyceride secretion. Diabetes 2008; 57:1482-90. [PMID: 18332095 PMCID: PMC3968924 DOI: 10.2337/db07-1702] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Elevated triglyceride (TG) is the major plasma lipid abnormality in obese and diabetic patients and contributes to cardiovascular morbidity in these disorders. We sought to identify novel mechanisms leading to hypertriglyceridemia. Resistance to negative feedback signals from adipose tissue in key central nervous system (CNS) energy homeostatic circuits contributes to the development of obesity. Because triglycerides both represent the largest energy depot in the body and are elevated in both the plasma and adipose in obesity and diabetes, we hypothesized that the same neural circuits that regulate energy balance also regulate the secretion of TGs into plasma. RESEARCH DESIGN AND METHODS In normal fasting rats, the TG secretion rate was estimated by serial blood sampling after intravascular tyloxapol pretreatment. Neuropeptide Y (NPY) signaling in the CNS was modulated by intracerebroventricular injection of NPY, receptor antagonist, and receptor agonist. RESULTS A single intracerebroventricular injection of NPY increased TG secretion by 2.5-fold in the absence of food intake, and this was determined to be VLDL by fast performance liquid chromatography (FPLC). This effect was recapitulated by activating NPY signaling in downstream neurons with an NPY-Y5 receptor agonist. An NPY-Y1 receptor antagonist decreased the elevated TGs in the form of VLDL secretion rate by 50% compared with vehicle. Increased TG secretion was due to increased secretion of VLDL particles, rather than secretion of larger particles, because apolipoprotein B100 was elevated in FPLC fractions corresponding to VLDL. CONCLUSIONS We find that a key neuropeptide system involved in energy homeostasis in the CNS exerts control over VLDL-TG secretion into the bloodstream.
Collapse
Affiliation(s)
- John M Stafford
- Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
37
|
Nogueiras R, Wiedmer P, Perez-Tilve D, Veyrat-Durebex C, Keogh JM, Sutton GM, Pfluger PT, Castaneda TR, Neschen S, Hofmann SM, Howles PN, Morgan DA, Benoit SC, Szanto I, Schrott B, Schürmann A, Joost HG, Hammond C, Hui DY, Woods SC, Rahmouni K, Butler AA, Farooqi IS, O’Rahilly S, Rohner-Jeanrenaud F, Tschöp MH. The central melanocortin system directly controls peripheral lipid metabolism. J Clin Invest 2008; 117:3475-88. [PMID: 17885689 PMCID: PMC1978426 DOI: 10.1172/jci31743] [Citation(s) in RCA: 306] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 07/30/2007] [Indexed: 12/21/2022] Open
Abstract
Disruptions of the melanocortin signaling system have been linked to obesity. We investigated a possible role of the central nervous melanocortin system (CNS-Mcr) in the control of adiposity through effects on nutrient partitioning and cellular lipid metabolism independent of nutrient intake. We report that pharmacological inhibition of melanocortin receptors (Mcr) in rats and genetic disruption of Mc4r in mice directly and potently promoted lipid uptake, triglyceride synthesis, and fat accumulation in white adipose tissue (WAT), while increased CNS-Mcr signaling triggered lipid mobilization. These effects were independent of food intake and preceded changes in adiposity. In addition, decreased CNS-Mcr signaling promoted increased insulin sensitivity and glucose uptake in WAT while decreasing glucose utilization in muscle and brown adipose tissue. Such CNS control of peripheral nutrient partitioning depended on sympathetic nervous system function and was enhanced by synergistic effects on liver triglyceride synthesis. Our findings offer an explanation for enhanced adiposity resulting from decreased melanocortin signaling, even in the absence of hyperphagia, and are consistent with feeding-independent changes in substrate utilization as reflected by respiratory quotient, which is increased with chronic Mcr blockade in rodents and in humans with loss-of-function mutations in MC4R. We also reveal molecular underpinnings for direct control of the CNS-Mcr over lipid metabolism. These results suggest ways to design more efficient pharmacological methods for controlling adiposity.
Collapse
Affiliation(s)
- Ruben Nogueiras
- Obesity Research Center, Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
University Departments of Medicine and Clinical Biochemistry, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
Center of Arteriosclerosis Studies, Department of Pathology, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Eli Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, USA
| | - Petra Wiedmer
- Obesity Research Center, Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
University Departments of Medicine and Clinical Biochemistry, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
Center of Arteriosclerosis Studies, Department of Pathology, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Eli Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, USA
| | - Diego Perez-Tilve
- Obesity Research Center, Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
University Departments of Medicine and Clinical Biochemistry, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
Center of Arteriosclerosis Studies, Department of Pathology, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Eli Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, USA
| | - Christelle Veyrat-Durebex
- Obesity Research Center, Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
University Departments of Medicine and Clinical Biochemistry, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
Center of Arteriosclerosis Studies, Department of Pathology, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Eli Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, USA
| | - Julia M. Keogh
- Obesity Research Center, Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
University Departments of Medicine and Clinical Biochemistry, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
Center of Arteriosclerosis Studies, Department of Pathology, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Eli Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, USA
| | - Gregory M. Sutton
- Obesity Research Center, Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
University Departments of Medicine and Clinical Biochemistry, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
Center of Arteriosclerosis Studies, Department of Pathology, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Eli Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, USA
| | - Paul T. Pfluger
- Obesity Research Center, Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
University Departments of Medicine and Clinical Biochemistry, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
Center of Arteriosclerosis Studies, Department of Pathology, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Eli Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, USA
| | - Tamara R. Castaneda
- Obesity Research Center, Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
University Departments of Medicine and Clinical Biochemistry, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
Center of Arteriosclerosis Studies, Department of Pathology, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Eli Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, USA
| | - Susanne Neschen
- Obesity Research Center, Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
University Departments of Medicine and Clinical Biochemistry, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
Center of Arteriosclerosis Studies, Department of Pathology, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Eli Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, USA
| | - Susanna M. Hofmann
- Obesity Research Center, Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
University Departments of Medicine and Clinical Biochemistry, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
Center of Arteriosclerosis Studies, Department of Pathology, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Eli Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, USA
| | - Philip N. Howles
- Obesity Research Center, Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
University Departments of Medicine and Clinical Biochemistry, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
Center of Arteriosclerosis Studies, Department of Pathology, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Eli Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, USA
| | - Donald A. Morgan
- Obesity Research Center, Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
University Departments of Medicine and Clinical Biochemistry, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
Center of Arteriosclerosis Studies, Department of Pathology, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Eli Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, USA
| | - Stephen C. Benoit
- Obesity Research Center, Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
University Departments of Medicine and Clinical Biochemistry, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
Center of Arteriosclerosis Studies, Department of Pathology, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Eli Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, USA
| | - Ildiko Szanto
- Obesity Research Center, Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
University Departments of Medicine and Clinical Biochemistry, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
Center of Arteriosclerosis Studies, Department of Pathology, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Eli Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, USA
| | - Brigitte Schrott
- Obesity Research Center, Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
University Departments of Medicine and Clinical Biochemistry, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
Center of Arteriosclerosis Studies, Department of Pathology, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Eli Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, USA
| | - Annette Schürmann
- Obesity Research Center, Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
University Departments of Medicine and Clinical Biochemistry, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
Center of Arteriosclerosis Studies, Department of Pathology, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Eli Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, USA
| | - Hans-Georg Joost
- Obesity Research Center, Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
University Departments of Medicine and Clinical Biochemistry, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
Center of Arteriosclerosis Studies, Department of Pathology, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Eli Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, USA
| | - Craig Hammond
- Obesity Research Center, Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
University Departments of Medicine and Clinical Biochemistry, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
Center of Arteriosclerosis Studies, Department of Pathology, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Eli Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, USA
| | - David Y. Hui
- Obesity Research Center, Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
University Departments of Medicine and Clinical Biochemistry, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
Center of Arteriosclerosis Studies, Department of Pathology, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Eli Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, USA
| | - Stephen C. Woods
- Obesity Research Center, Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
University Departments of Medicine and Clinical Biochemistry, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
Center of Arteriosclerosis Studies, Department of Pathology, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Eli Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, USA
| | - Kamal Rahmouni
- Obesity Research Center, Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
University Departments of Medicine and Clinical Biochemistry, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
Center of Arteriosclerosis Studies, Department of Pathology, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Eli Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, USA
| | - Andrew A. Butler
- Obesity Research Center, Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
University Departments of Medicine and Clinical Biochemistry, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
Center of Arteriosclerosis Studies, Department of Pathology, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Eli Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, USA
| | - I. Sadaf Farooqi
- Obesity Research Center, Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
University Departments of Medicine and Clinical Biochemistry, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
Center of Arteriosclerosis Studies, Department of Pathology, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Eli Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, USA
| | - Stephen O’Rahilly
- Obesity Research Center, Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
University Departments of Medicine and Clinical Biochemistry, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
Center of Arteriosclerosis Studies, Department of Pathology, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Eli Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, USA
| | - Françoise Rohner-Jeanrenaud
- Obesity Research Center, Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
University Departments of Medicine and Clinical Biochemistry, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
Center of Arteriosclerosis Studies, Department of Pathology, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Eli Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, USA
| | - Matthias H. Tschöp
- Obesity Research Center, Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
University Departments of Medicine and Clinical Biochemistry, Addenbrooke’s Hospital, Cambridge, United Kingdom.
Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
Center of Arteriosclerosis Studies, Department of Pathology, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Eli Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, USA
| |
Collapse
|
38
|
Tiesjema B, la Fleur SE, Luijendijk MCM, Brans MAD, Lin EJD, During MJ, Adan RA. Viral mediated neuropeptide Y expression in the rat paraventricular nucleus results in obesity. Obesity (Silver Spring) 2007; 15:2424-35. [PMID: 17925468 DOI: 10.1038/oby.2007.288] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Chronic central administration of neuropeptide Y (NPY) has dramatic effects on energy balance; however, the exact role of the hypothalamic paraventricular nucleus (PVN) in this is unknown. The aim of this study was to further unravel the contribution of NPY signaling in the PVN to energy balance. RESEARCH METHODS AND PROCEDURES Recombinant adeno-associated viral particles containing NPY (rAAV-NPY) were injected in the rat brain with coordinates targeted at the PVN. For three weeks, body weight, food intake, endocrine parameters, body temperature, and locomotor activity were measured. Furthermore, effects on insulin sensitivity and expression of NPY, agouti-related protein (AgRP), and pro-opiomelanocortin in the arcuate nucleus were studied. RESULTS Food intake was increased specifically in the light period, and dark phase body temperature and locomotor activity were reduced. This resulted in obesity characterized by increased fat mass; elevated plasma insulin, leptin, and adiponectin; decreased AgRP expression in the arcuate nucleus; and decreased insulin sensitivity; whereas plasma corticosterone was unaffected. DISCUSSION These data suggest that increased NPY expression targeted at the PVN is sufficient to induce obesity. Interestingly, plasma concentrations of leptin and insulin were elevated before a rise in food intake, which suggests that NPY in the PVN influences leptin and insulin secretion independently from food intake. This strengthens the role of the PVN in regulation of energy balance by NPY.
Collapse
Affiliation(s)
- Birgitte Tiesjema
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
39
|
Simpson RC, Patti AL, Matuszewski BK. Determination of a Selective Neuropeptide Y5 Receptor Antagonist in Human Plasma and Urine by HPLC with Tandem Mass Spectrometric Detection. J LIQ CHROMATOGR R T 2007. [DOI: 10.1080/10826070500416668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Richard C. Simpson
- a Department of Drug Metabolism , Merck Research Laboratories , West Point, Pennsylvania, USA
| | - Adrienne L. Patti
- a Department of Drug Metabolism , Merck Research Laboratories , West Point, Pennsylvania, USA
| | - Bogdan K. Matuszewski
- a Department of Drug Metabolism , Merck Research Laboratories , West Point, Pennsylvania, USA
| |
Collapse
|
40
|
Chen H, Hansen MJ, Jones JE, Vlahos R, Bozinovski S, Anderson GP, Morris MJ. Regulation of hypothalamic NPY by diet and smoking. Peptides 2007; 28:384-9. [PMID: 17207894 DOI: 10.1016/j.peptides.2006.07.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 07/27/2006] [Indexed: 10/23/2022]
Abstract
Appetite is regulated by a number of hypothalamic neuropeptides including neuropeptide Y (NPY), a powerful feeding stimulator that responds to feeding status, and drugs such as nicotine and cannabis. There is debate regarding the extent of the influence of obesity on hypothalamic NPY. We measured hypothalamic NPY in male Sprague-Dawley rats after short or long term exposure to cafeteria-style high fat diet (32% energy as fat) or laboratory chow (12% fat). Caloric intake and body weight were increased in the high fat diet group, and brown fat and white fat masses were significantly increased after 2 weeks. Hypothalamic NPY concentration was only significantly decreased after long term consumption of the high fat diet. Nicotine decreases food intake and body weight, with conflicting effects on hypothalamic NPY reported. Body weight, plasma hormones and brain NPY were investigated in male Balb/c mice exposed to cigarette smoke for 4 days, 4 and 12 weeks. Food intake was significantly decreased by smoke exposure (2.32+/-0.03g/24h versus 2.71+/-0.04g/24h in control mice (non-smoke exposed) at 12 weeks). Relative to control mice, smoke exposure led to greater weight loss, while pair-feeding the equivalent amount of chow caused an intermediate weight loss. Chronic smoke exposure, but not pair-feeding, was associated with decreased hypothalamic NPY concentration, suggesting an inhibitory effect of cigarette smoking on brain NPY levels. Thus, consumption of a high fat diet and smoke exposure reprogram hypothalamic NPY. Reduced NPY may contribute to the anorexic effect of smoke exposure.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pharmacology, The University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
41
|
Gruninger TR, LeBoeuf B, Liu Y, Garcia LR. Molecular signaling involved in regulating feeding and other mitivated behaviors. Mol Neurobiol 2007; 35:1-20. [PMID: 17519503 DOI: 10.1007/bf02700621] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 11/30/1999] [Accepted: 09/06/2006] [Indexed: 12/29/2022]
Abstract
The metabolic and nutritional status of an organism influences multiple behaviors in addition to food intake. When an organism is hungry, it employs behaviors that help it locate and ingest food while suppressing behaviors that are not associated with this goal. Alternatively, when an organism is satiated, food-seeking behaviors are repressed so that the animal can direct itself to other goal-oriented tasks such as reproductive behaviors. Studies in both vertebrate and invertebrate model systems have revealed that food-deprived and -satiated behaviors are differentially executed and integrated via common molecular signaling mechanisms. This article discusses cellular and molecular mechanisms for how insulin, neuropeptide Y (NPY), and serotonin utilize common signaling pathways to integrate feeding and metabolic state with other motivated behaviors. Insulin, NPY, and serotonin are three of the most well-studied molecules implicated in regulating such behaviors. Overall, insulin signaling allows an organism to coordinate proper behavioral output with changes in metabolism, NPY activates behaviors required for locating and ingesting food, and serotonin modulates behaviors performed when an organism is satiated. These three molecules work to ensure that the proper behaviors are executed in response to the feeding state of an organism.
Collapse
Affiliation(s)
- Todd R Gruninger
- Department of Biology, Texas A&M University, TAMU 3258, College Station, TX, USA
| | | | | | | |
Collapse
|
42
|
Eva C, Serra M, Mele P, Panzica G, Oberto A. Physiology and gene regulation of the brain NPY Y1 receptor. Front Neuroendocrinol 2006; 27:308-39. [PMID: 16989896 DOI: 10.1016/j.yfrne.2006.07.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 07/18/2006] [Accepted: 07/25/2006] [Indexed: 10/24/2022]
Abstract
Neuropeptide Y (NPY) is one of the most prominent and abundant neuropeptides in the mammalian brain where it interacts with a family of G-protein coupled receptors, including the Y(1) receptor subtype (Y(1)R). NPY-Y(1)R signalling plays a prominent role in the regulation of several behavioural and physiological functions including feeding behaviour and energy balance, sexual hormone secretion, stress response, emotional behaviour, neuronal excitability and ethanol drinking. Y(1)R expression is regulated by neuronal activity and peripheral hormones. The Y(1)R gene has been isolated from rodents and humans and it contains multiple regulatory elements that may participate in the regulation of its expression. Y(1)R expression in the hypothalamus is modulated by changes in energetic balance induced by a wide variety of conditions (fasting, pregnancy, hyperglycaemic challenge, hypophagia, diet induced obesity). Estrogens up-regulate responsiveness to NPY to stimulate preovulatory GnRH and gonadotropin surges by increasing Y(1)R gene expression both in the hypothalamus and the pituitary. Y(1)R expression is modulated by different kinds of brain insults, such as stress and seizure activity, and alteration in its expression may contribute to antidepressant action. Chronic modulation of GABA(A) receptor function by benzodiazepines or neuroactive steroids also affects Y(1)R expression in the amygdala, suggesting that a functional interaction between the GABA(A) receptor and Y(1)R mediated signalling may contribute to the regulation of emotional behaviour. In this paper, we review the state of the art concerning Y(1)R function and gene expression, including our personal contribution to many of the subjects mentioned above.
Collapse
Affiliation(s)
- Carola Eva
- Sezione di Farmacologia, Dipartimento di Anatomia, Farmacologia e Medicina Legale, Università di Torino, Italy; Centro Rita Levi Montalcini, Università di Torino, Italy.
| | | | | | | | | |
Collapse
|
43
|
Gamba M, Pralong FP. Control of GnRH neuronal activity by metabolic factors: the role of leptin and insulin. Mol Cell Endocrinol 2006; 254-255:133-9. [PMID: 16757107 DOI: 10.1016/j.mce.2006.04.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Energy balance exerts a critical influence on reproductive function. Leptin and insulin are among the metabolic factors signaling the nutritional status of an individual to the hypothalamus, and their role in the overall modulation of the activity of GnRH neurons is increasingly recognized. The experiments described here were designed to further investigate the central mechanisms of action of these two hormones and the precise hypothalamic pathways implicated in their effects on the reproductive axis. NPY neurons represent a primary target of leptin actions within the hypothalamus We used mice lacking the NPY Y1 receptor (Y1-/- mice) to investigate the physiological importance of the hypothalamic NPY neuronal system and its downstream pathways involving Y1 in the reproductive effects of leptin. Results point to a crucial role for the NPY Y1 receptor in the control of the onset of puberty and the maintenance of reproductive functions by leptin. A striking finding of these experiments was the observation that juvenile Y1-/- mice submitted to food restriction can proceed through puberty like normally fed animals, demonstrating that the absence of Y1 impairs the perception of decreasing energy stores by the gonadotrope axis. Next, we used parallel in vivo and in vitro experiments to delineate the role of insulin in the stimulation and maintenance of the activity of the neuroendocrine reproductive axis. First, we observed that the increase in circulating insulin levels achieved during hyperinsulinemic clamp studies in normal male mice was associated with a significant rise in LH secretion. This effect of insulin is likely mediated at the hypothalamic level, as insulin stimulates the secretion and the expression of GnRH by hypothalamic neurons in culture. Using primary neuronal cultures as well as a novel GnRH neuronal cell line obtained by conditional immortalization of adult rat hypothalamic neurons, we have recently demonstrated that this effect of insulin on GnRH gene expression is probably mediated directly at the level of GnRH neurons, and involves the stimulation of the MAP kinase Erk1/2 pathway. Taken together, these results provide new insights into the mechanisms involved in the regulation of GnRH neuronal activity by metabolic factors.
Collapse
Affiliation(s)
- Marcella Gamba
- Services of Endocrinology, Diabetology and Metabolism, BH 19-709, University Hospitals of Lausanne and Geneva, Switzerland
| | | |
Collapse
|
44
|
Theander-Carrillo C, Wiedmer P, Cettour-Rose P, Nogueiras R, Perez-Tilve D, Pfluger P, Castaneda TR, Muzzin P, Schürmann A, Szanto I, Tschöp MH, Rohner-Jeanrenaud F. Ghrelin action in the brain controls adipocyte metabolism. J Clin Invest 2006; 116:1983-93. [PMID: 16767221 PMCID: PMC1474815 DOI: 10.1172/jci25811] [Citation(s) in RCA: 343] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 04/20/2006] [Indexed: 11/17/2022] Open
Abstract
Many homeostatic processes, including appetite and food intake, are controlled by neuroendocrine circuits involving the CNS. The CNS also directly regulates adipocyte metabolism, as we have shown here by examining central action of the orexigenic hormone ghrelin. Chronic central ghrelin infusion resulted in increases in the glucose utilization rate of white and brown adipose tissue without affecting skeletal muscle. In white adipocytes, mRNA expression of various fat storage-promoting enzymes such as lipoprotein lipase, acetyl-CoA carboxylase alpha, fatty acid synthase, and stearoyl-CoA desaturase-1 was markedly increased, while that of the rate-limiting step in fat oxidation, carnitine palmitoyl transferase-1alpha, was decreased. In brown adipocytes, central ghrelin infusion resulted in lowered expression of the thermogenesis-related mitochondrial uncoupling proteins 1 and 3. These ghrelin effects were dose dependent, occurred independently from ghrelin-induced hyperphagia, and seemed to be mediated by the sympathetic nervous system. Additionally, the expression of some fat storage enzymes was decreased in ghrelin-deficient mice, which led us to conclude that central ghrelin is of physiological relevance in the control of cell metabolism in adipose tissue. These results unravel the existence of what we believe to be a new CNS-based neuroendocrine circuit regulating metabolic homeostasis of adipose tissue.
Collapse
Affiliation(s)
- Claudia Theander-Carrillo
- Laboratory of Metabolism, Division of Endocrinology, Diabetology, and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbrucke, Nuthetal, Germany.
Department of Psychiatry, Obesity Research Center, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, and
Department of Rehabilitation and Geriatrics, University of Geneva School of Medicine, Geneva, Switzerland
| | - Petra Wiedmer
- Laboratory of Metabolism, Division of Endocrinology, Diabetology, and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbrucke, Nuthetal, Germany.
Department of Psychiatry, Obesity Research Center, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, and
Department of Rehabilitation and Geriatrics, University of Geneva School of Medicine, Geneva, Switzerland
| | - Philippe Cettour-Rose
- Laboratory of Metabolism, Division of Endocrinology, Diabetology, and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbrucke, Nuthetal, Germany.
Department of Psychiatry, Obesity Research Center, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, and
Department of Rehabilitation and Geriatrics, University of Geneva School of Medicine, Geneva, Switzerland
| | - Ruben Nogueiras
- Laboratory of Metabolism, Division of Endocrinology, Diabetology, and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbrucke, Nuthetal, Germany.
Department of Psychiatry, Obesity Research Center, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, and
Department of Rehabilitation and Geriatrics, University of Geneva School of Medicine, Geneva, Switzerland
| | - Diego Perez-Tilve
- Laboratory of Metabolism, Division of Endocrinology, Diabetology, and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbrucke, Nuthetal, Germany.
Department of Psychiatry, Obesity Research Center, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, and
Department of Rehabilitation and Geriatrics, University of Geneva School of Medicine, Geneva, Switzerland
| | - Paul Pfluger
- Laboratory of Metabolism, Division of Endocrinology, Diabetology, and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbrucke, Nuthetal, Germany.
Department of Psychiatry, Obesity Research Center, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, and
Department of Rehabilitation and Geriatrics, University of Geneva School of Medicine, Geneva, Switzerland
| | - Tamara R. Castaneda
- Laboratory of Metabolism, Division of Endocrinology, Diabetology, and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbrucke, Nuthetal, Germany.
Department of Psychiatry, Obesity Research Center, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, and
Department of Rehabilitation and Geriatrics, University of Geneva School of Medicine, Geneva, Switzerland
| | - Patrick Muzzin
- Laboratory of Metabolism, Division of Endocrinology, Diabetology, and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbrucke, Nuthetal, Germany.
Department of Psychiatry, Obesity Research Center, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, and
Department of Rehabilitation and Geriatrics, University of Geneva School of Medicine, Geneva, Switzerland
| | - Annette Schürmann
- Laboratory of Metabolism, Division of Endocrinology, Diabetology, and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbrucke, Nuthetal, Germany.
Department of Psychiatry, Obesity Research Center, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, and
Department of Rehabilitation and Geriatrics, University of Geneva School of Medicine, Geneva, Switzerland
| | - Ildiko Szanto
- Laboratory of Metabolism, Division of Endocrinology, Diabetology, and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbrucke, Nuthetal, Germany.
Department of Psychiatry, Obesity Research Center, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, and
Department of Rehabilitation and Geriatrics, University of Geneva School of Medicine, Geneva, Switzerland
| | - Matthias H. Tschöp
- Laboratory of Metabolism, Division of Endocrinology, Diabetology, and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbrucke, Nuthetal, Germany.
Department of Psychiatry, Obesity Research Center, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, and
Department of Rehabilitation and Geriatrics, University of Geneva School of Medicine, Geneva, Switzerland
| | - Françoise Rohner-Jeanrenaud
- Laboratory of Metabolism, Division of Endocrinology, Diabetology, and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbrucke, Nuthetal, Germany.
Department of Psychiatry, Obesity Research Center, University of Cincinnati, Cincinnati, Ohio, USA.
Department of Cell Physiology and Metabolism, Faculty of Medicine, and
Department of Rehabilitation and Geriatrics, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
45
|
Somm E, Cettour-Rose P, Asensio C, Charollais A, Klein M, Theander-Carrillo C, Juge-Aubry CE, Dayer JM, Nicklin MJH, Meda P, Rohner-Jeanrenaud F, Meier CA. Interleukin-1 receptor antagonist is upregulated during diet-induced obesity and regulates insulin sensitivity in rodents. Diabetologia 2006; 49:387-93. [PMID: 16385385 DOI: 10.1007/s00125-005-0046-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 07/24/2005] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS The IL-1 receptor antagonist (IL-1Ra) is an anti-inflammatory cytokine known to antagonise the actions of IL-1. We have previously shown that IL-1Ra is markedly upregulated in the serum of obese patients, is correlated with BMI and insulin resistance, and is overexpressed in the white adipose tissue (WAT) of obese humans. The aim of this study was to examine the role of IL-1Ra in the regulation of glucose homeostasis in rodents. METHODS We assessed the expression of genes related to IL-1 signalling in the WAT of mice fed a high-fat diet, as well as the effect of Il1rn (the gene for IL-1Ra) deletion and treatment with IL-1Ra on glucose homeostasis in rodents. RESULTS We show that the expression of Il1rn and the gene encoding the inhibitory type II IL-1 receptor was upregulated in diet-induced obesity. The blood insulin:glucose ratio was significantly lower in Il1rn ( -/- )animals, which is compatible with an increased sensitivity to insulin, reinforced by the fact that the insulin content and pancreatic islet morphology of Il1rn ( -/- ) animals were normal. In contrast, the administration of IL-1Ra to normal rats for 5 days led to a decrease in the whole-body glucose disposal due to a selective decrease in muscle-specific glucose uptake. CONCLUSIONS/INTERPRETATION The expression of genes encoding inhibitors of IL-1 signalling is upregulated in the WAT of mice with diet-induced obesity, and IL-1Ra reduces insulin sensitivity in rats through a muscle-specific decrease in glucose uptake. These results suggest that the markedly increased levels of IL-1Ra in human obesity might contribute to the development of insulin resistance.
Collapse
Affiliation(s)
- E Somm
- Endocrine Unit, Department of Internal Medicine, University Hospital, 24 rue Micheli-du-Crest, CH-1211 Geneva 14, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Ullamari Pesonen
- Dept. of Pharmacology and Clinical Pharmacology, University of Turku, Itäinen Pitkäkatu 4B, FIN-20520, Turku, Finland.
| |
Collapse
|
47
|
Asensio C, Jimenez M, Kühne F, Rohner-Jeanrenaud F, Muzzin P. The lack of beta-adrenoceptors results in enhanced insulin sensitivity in mice exhibiting increased adiposity and glucose intolerance. Diabetes 2005; 54:3490-5. [PMID: 16306366 DOI: 10.2337/diabetes.54.12.3490] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We and others have previously shown that triple knockout mice lacking the beta1/beta2/beta3-adrenoceptors (beta-less mice) developed a progressive obesity at adulthood. Here, we studied the glucose homeostasis in beta-less mice before the onset of obesity. We show that beta-less mice have increased fat mass and are glucose intolerant. In addition, we observed that beta-less mice have impaired glucose-induced insulin secretion and exhibit an increase in liver PEPCK gene expression in the fed state, suggesting that they have increased gluconeogenesis. Although these characteristics are usually associated with insulin resistance, beta-less mice exhibit enhanced insulin sensitivity during insulin tolerance tests. This is keeping with the results obtained during euglycemic-hyperinsulinemic clamps showing that beta-less mice display increased insulin responsiveness with normal suppression of hepatic glucose production. Altogether, our results suggest that an intact beta-adrenergic system is required to regulate overall glucose homeostasis and, in particular, insulin-mediated glucose uptake, most likely at the level of muscles and adipose tissue.
Collapse
Affiliation(s)
- Cédric Asensio
- Department of Cell Physiology and Metabolism, Medical University Centre, Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
48
|
Woods SC, Seeley RJ. Hormonal mediation of energy homeostasis in obesity, diabetes and related disorders. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.ddmec.2005.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Minoura H, Takeshita S, Yamamoto T, Mabuchi M, Hirosumi J, Takakura S, Kawamura I, Seki J, Manda T, Ita M, Mutoh S. Ameliorating effect of FK614, a novel nonthiazolidinedione peroxisome proliferator-activated receptor γ agonist, on insulin resistance in Zucker fatty rat. Eur J Pharmacol 2005; 519:182-90. [PMID: 16039648 DOI: 10.1016/j.ejphar.2005.05.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 04/28/2005] [Accepted: 05/05/2005] [Indexed: 12/22/2022]
Abstract
Effect of 3-(2,4-dichlorobenzyl)-2-methyl-N-(pentylsulfonyl)-3H-benzimidazole-5-carboxamide (FK614), a novel nonthiazolidinedione peroxisome proliferator-activated receptor (PPAR) gamma agonist, on glucose tolerance and insulin resistance in peripheral tissues and in liver using Zucker fatty rats (genetically obese and insulin-resistant) was evaluated and compared to other insulin sensitizers. FK614 (0.32, 1 and 3.2 mg/kg), two thiazolidinedione PPAR gamma agonists, rosiglitazone (0.1, 0.32, 1 and 3.2 mg/kg) and pioglitazone (1, 3.2 and 10 mg/kg), and a biguanide, metformin (320 and 1000 mg/kg), were orally administered to Zucker fatty rats once a day for 14 days. Zucker fatty rats treated with FK614 and rosiglitazone were subjected to evaluation by oral glucose tolerance test. Ameliorating effect of each compound on peripheral and hepatic insulin resistance was evaluated using a euglycemic-hyperinsulineamic clamp procedure. FK614 and rosiglitazone dose-dependently improved impaired glucose tolerance in Zucker fatty rats. In addition, FK614 dose-dependently ameliorated peripheral and hepatic insulin resistance in Zucker fatty rats, with the degree of its effect in peripheral tissues almost equivalent to that in liver when compared at each dose tested. Similar data indicating ameliorating effects on insulin resistance was obtained for rosiglitazone and pioglitazone. Metformin showed less potent effects than other insulin sensitizers and its effect in liver tended to be greater than that in peripheral tissues. These findings suggest clinical potential for FK614 as a treatment of type 2 diabetes, acting by ameliorating insulin resistance both in peripheral tissues and liver.
Collapse
Affiliation(s)
- Hideaki Minoura
- Medicinal Biology Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., 1-6, Kashima 2 chome, Osaka 532-8514, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Beauverger P, Rodriguez M, Nicolas JP, Audinot V, Lamamy V, Dromaint S, Nagel N, Macia C, Léopold O, Galizzi JP, Caignard DH, Aldana I, Monge A, Chomarat P, Boutin JA. Functional characterization of human neuropeptide Y receptor subtype five specific antagonists using a luciferase reporter gene assay. Cell Signal 2005; 17:489-96. [PMID: 15601626 DOI: 10.1016/j.cellsig.2004.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Accepted: 09/10/2004] [Indexed: 10/26/2022]
Abstract
Neuropeptide Y (NPY) has several receptors; one of them, the neuropeptide Y5 receptor (NPY5) seems involved in feeding behavior in mammals. Although this particular receptor has been extensively studied in the literature, the difficulties encountered to obtain a stable cell line expressing this recombinant receptor have impaired the development of tools necessary to establish its molecular pharmacology. We thus established a method for the functional study of new ligands. It is based upon the cotransfection in human melatonin receptor 1 (MT1)-overexpressing HEK293 cells of three plasmids encoding melanocortin receptor (MC5), neuropeptide Y5 receptor (NPY5) and a cyclic AMP response element-controlled luciferase. Once challenged with alphaMSH, the MC5 receptor activates the cyclic AMP response, through the coupling protein subunit G(s). In contrast, NPY5 agonists, through the NPY5 receptor which is negatively coupled to the same pathway, counteract the alphaMSH-mediated effect on cyclic AMP level. Using appropriate controls, this method can pinpoint compounds with antagonistic activity. Simple and straightforward, this system permits reproducible measurements of agonist or antagonist effects in the presence of neuropeptide Y, the natural agonist. This method has the advantage over already existing methods and beyond its apparent complexity, to enhance the cyclic AMP concentration at a 'physiological' level, by opposition to a forskolin-induced adenylate cyclase activation. Finally, to further validate this assay, we showed results from (1) a series of natural peptidic agonists that permitted the standardization and (2) a series of potent nonpeptidic antagonists (affinity >10(-9) M) that form a new class of active NPY5 receptor antagonists.
Collapse
Affiliation(s)
- Philippe Beauverger
- Division de Pharmacologie Moléculaire et Cellulaire, Institut de Recherches Servier, 125 Chemin de Ronde, 78 290 Croissy-sur-Seine, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|