1
|
Fuyuki A, Sohel MSH, Homma T, Kitamura K, Takashima S, Onouchi S, Saito S. Selective prosaposin expression in Langerhans islets of the mouse pancreas. Tissue Cell 2024; 88:102367. [PMID: 38537378 DOI: 10.1016/j.tice.2024.102367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 06/17/2024]
Abstract
The islets of Langerhans are clusters of endocrine cells surrounded by exocrine acinar cells in the pancreas. Prosaposin is a housekeeping protein required for normal lysosomal function, but its expression level is significantly different among tissues. Prosaposin also exists in various body fluids including serum. Intracellularly, prosaposin activates lysosomes and may support autophagy, and extracellularly, prosaposin promotes survival of neurons via G protein-coupled receptors. In this study, prosaposin and its mRNA expression were examined in endocrine cells of the islets as well as in exocrine acinar cells in the pancreas of mice by in situ hybridization and immunostaining. High expression levels of prosaposin were found in Alpha, Beta and Delta cells in the islets, whereas prosaposin mRNA expression was faint or negative and prosaposin immunoreactivity was negative in exocrine acinar cells. The high expression levels of prosaposin in endocrine cells may indicate that prosaposin plays a crucial role in crinophagy, which is a characteristic autophagy in peptide-secreting endocrine cells, and/or that prosaposin is secreted from pancreatic islets. Since prosaposin has been reported in serum, this study suggests a new possible function of the Langerhans islets.
Collapse
Affiliation(s)
- Aimi Fuyuki
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Md Shahriar Hasan Sohel
- Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Takeshi Homma
- Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kai Kitamura
- Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Shigeo Takashima
- Division of Genomics Research, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Sawa Onouchi
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Shouichiro Saito
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
2
|
Luxmi R, King SM. Cilia Provide a Platform for the Generation, Regulated Secretion, and Reception of Peptidergic Signals. Cells 2024; 13:303. [PMID: 38391915 PMCID: PMC10886904 DOI: 10.3390/cells13040303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Cilia are microtubule-based cellular projections that act as motile, sensory, and secretory organelles. These structures receive information from the environment and transmit downstream signals to the cell body. Cilia also release vesicular ectosomes that bud from the ciliary membrane and carry an array of bioactive enzymes and peptide products. Peptidergic signals represent an ancient mode of intercellular communication, and in metazoans are involved in the maintenance of cellular homeostasis and various other physiological processes and responses. Numerous peptide receptors, subtilisin-like proteases, the peptide-amidating enzyme, and bioactive amidated peptide products have been localized to these organelles. In this review, we detail how cilia serve as specialized signaling organelles and act as a platform for the regulated processing and secretion of peptidergic signals. We especially focus on the processing and trafficking pathways by which a peptide precursor from the green alga Chlamydomonas reinhardtii is converted into an amidated bioactive product-a chemotactic modulator-and released from cilia in ectosomes. Biochemical dissection of this complex ciliary secretory pathway provides a paradigm for understanding cilia-based peptidergic signaling in mammals and other eukaryotes.
Collapse
Affiliation(s)
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA;
| |
Collapse
|
3
|
Szukiewicz D. Molecular Mechanisms for the Vicious Cycle between Insulin Resistance and the Inflammatory Response in Obesity. Int J Mol Sci 2023; 24:9818. [PMID: 37372966 DOI: 10.3390/ijms24129818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The comprehensive anabolic effects of insulin throughout the body, in addition to the control of glycemia, include ensuring lipid homeostasis and anti-inflammatory modulation, especially in adipose tissue (AT). The prevalence of obesity, defined as a body mass index (BMI) ≥ 30 kg/m2, has been increasing worldwide on a pandemic scale with accompanying syndemic health problems, including glucose intolerance, insulin resistance (IR), and diabetes. Impaired tissue sensitivity to insulin or IR paradoxically leads to diseases with an inflammatory component despite hyperinsulinemia. Therefore, an excess of visceral AT in obesity initiates chronic low-grade inflammatory conditions that interfere with insulin signaling via insulin receptors (INSRs). Moreover, in response to IR, hyperglycemia itself stimulates a primarily defensive inflammatory response associated with the subsequent release of numerous inflammatory cytokines and a real threat of organ function deterioration. In this review, all components of this vicious cycle are characterized with particular emphasis on the interplay between insulin signaling and both the innate and adaptive immune responses related to obesity. Increased visceral AT accumulation in obesity should be considered the main environmental factor responsible for the disruption in the epigenetic regulatory mechanisms in the immune system, resulting in autoimmunity and inflammation.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
4
|
Fagihi MA, Bhattacharjee S. Amyloid Fibrillation of Insulin: Amelioration Strategies and Implications for Translation. ACS Pharmacol Transl Sci 2022; 5:1050-1061. [PMID: 36407954 PMCID: PMC9667547 DOI: 10.1021/acsptsci.2c00174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/29/2022]
Abstract
Insulin is a therapeutically relevant molecule with use in treating diabetes patients. Unfortunately, it undergoes a range of untoward and often unpredictable physical transformations due to alterations in its biochemical environment, including pH, ionic strength, temperature, agitation, and exposure to hydrophobic surfaces. The transformations are prevalent in its physiologically active monomeric form, while the zinc cation-coordinated hexamer, although physiologically inactive, is stable and less susceptible to fibrillation. The resultant molecular reconfiguration, including unfolding, misfolding, and hydrophobic interactions, often results in agglomeration, amyloid fibrillogenesis, and precipitation. As a result, a part of the dose is lost, causing a compromised therapeutic efficacy. Besides, the amyloid fibrils form insoluble deposits, trigger immunologic reactions, and harbor cytotoxic potential. The physical transformations also hold back a successful translation of non-parenteral insulin formulations, in addition to challenges related to encapsulation, chemical modification, purification, storage, and dosing. This review revisits the mechanisms and challenges that drive such physical transformations in insulin, with an emphasis on the observed amyloid fibrillation, and presents a critique of the current amelioration strategies before prioritizing some future research objectives.
Collapse
Affiliation(s)
- Megren
H. A. Fagihi
- School
of Medicine, University College Dublin (UCD), Belfield, Dublin 4, Ireland
- Clinical
Laboratory Sciences Department, College of Applied Medical Sciences, Najran University, Najran 55461, Kingdom
of Saudi Arabia
| | - Sourav Bhattacharjee
- School
of Veterinary Medicine, University College
Dublin (UCD), Belfield, Dublin 4, Ireland
| |
Collapse
|
5
|
Li M, Feng F, Feng H, Hu P, Xue Y, Xu T, Song E. VAMP4 regulates insulin levels by targeting secretory granules to lysosomes. J Cell Biol 2022; 221:213439. [PMID: 36053215 PMCID: PMC9441717 DOI: 10.1083/jcb.202110164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022] Open
Abstract
Insulin levels are essential for the maintenance of glucose homeostasis, and deviations lead to pathoglycemia or diabetes. However, the metabolic mechanism controlling insulin quantity and quality is poorly understood. In pancreatic β cells, insulin homeostasis and release are tightly governed by insulin secretory granule (ISG) trafficking, but the required regulators and mechanisms are largely unknown. Here, we identified that VAMP4 controlled the insulin levels in response to glucose challenge. VAMP4 deficiency led to increased blood insulin levels and hyperresponsiveness to glucose. In β cells, VAMP4 is packaged into immature ISGs (iISGs) at trans-Golgi networks and subsequently resorted to clathrin-coated vesicles during granule maturation. VAMP4-positive iISGs and resorted vesicles then fuse with lysosomes facilitated by a SNARE complex consisting of VAMP4, STX7, STX8, and VTI1B, which ensures the breakdown of excess (pro)insulin and obsolete materials and thus maintenance of intracellular insulin homeostasis. Thus, VAMP4 is a key factor regulating the insulin levels and a potential target for the treatment of diabetes.
Collapse
Affiliation(s)
- Min Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,Guangzhou Laboratory, Guangzhou, China,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Fengping Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Han Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pengkai Hu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanhong Xue
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,Guangzhou Laboratory, Guangzhou, China,Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,Dr. Tao Xu:
| | - Eli Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,Correspondence to Dr. Eli Song:
| |
Collapse
|
6
|
Abstract
Cilia are sensory and secretory organelles that both receive information from the environment and transmit signals. Cilia-derived vesicles (ectosomes), formed by outward budding of the ciliary membrane, carry enzymes and other bioactive products; this process represents an ancient mode of regulated secretion. Peptidergic intercellular communication controls a wide range of physiological and behavioral responses and occurs throughout eukaryotes. The Chlamydomonas reinhardtii genome encodes what appear to be numerous prepropeptides and enzymes homologous to those used to convert metazoan prepropeptides into bioactive peptide products. Since C. reinhardtii, a green alga, lack the dense core vesicles in which metazoan peptides are processed and stored, we explored the hypothesis that propeptide processing and secretion occur through the regulated release of ciliary ectosomes. A synthetic peptide (GATI-amide) that could be generated from a 91-kDa peptide precursor (proGATI) serves as a chemotactic modulator, attracting minus gametes while repelling plus gametes. Here we dissect the processing pathway that leads to formation of an amidated peptidergic sexual signal specifically on the ciliary ectosomes of plus gametes. Unlike metazoan propeptides, modeling studies identified stable domains in proGATI. Mass spectrometric analysis of a potential prohormone convertase and the amidated proGATI-derived products found in cilia and mating ectosomes link endoproteolytic cleavage to ectosome entry. Extensive posttranslational modification of proGATI confers stability to its amidated product. Analysis of this pathway affords insight into the evolution of peptidergic signaling; this will facilitate studies of the secretory functions of metazoan cilia.
Collapse
|
7
|
Mahmoudi A, Firouzjaei AA, Darijani F, Navashenaq JG, Taghizadeh E, Darroudi M, Gheibihayat SM. Effect of diabetes on efferocytosis process. Mol Biol Rep 2022; 49:10849-10863. [PMID: 35902446 DOI: 10.1007/s11033-022-07725-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/04/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022]
Abstract
Diabetes is a complex of genetic, metabolic, and autoimmune disorders that are characterized by hyperglycemia. Elevated apoptotic cell count following defective clearance of dead cells that can cause chronic inflammation is a hallmark of the diabetic wound. Effective dead cell clearance is a prerequisite for rapid inflammation resolution and successful recovery. Efferocytosis is a multistep process in which phagocytes engulf the dead cells. Cell body elimination is of great significance in disease and homeostasis. Recent research has clarified that diabetic wounds have an enhanced load of the apoptotic cell, which is partly attributed to the dysfunction of macrophages in apoptotic clearance at the site of the diabetic wounds. In the current work, we highlight the pathways implicated in efferocytosis, from the diagnosis of apoptotic cells to the phagocytic swallowing and the homeostatic resolution, and explain the possible pathophysiological episodes occurring when the proceeding is abrogated. Also, we describe the last development in the management of inflammation in diabetes wound and future directions of surveillance.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of medical biotechnology and nanotechnology, faculty of medicine, Mashhad University of Medical science, Mashhad, Iran
| | - Ali Ahmadizad Firouzjaei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Darijani
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Eskandar Taghizadeh
- Department of Medical Genetic, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, P.O. Box: 8915173143, Yazd, Iran.
| |
Collapse
|
8
|
Sexual hormones and diabetes: The impact of estradiol in pancreatic β cell. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021. [PMID: 33832654 DOI: 10.1016/bs.ircmb.2021.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Diabetes is one of the most prevalent metabolic diseases and its incidence is increasing throughout the world. Data from World Health Organization (WHO) point-out that diabetes is a major cause of blindness, kidney failure, heart attacks, stroke and lower limb amputation and estimated 1.6 million deaths were directly caused by it in 2016. Population studies show that the incidence of this disease increases in women after menopause, when the production of estrogen is decreasing in them. Knowing the impact that estrogenic signaling has on insulin-secreting β cells is key to prevention and design of new therapeutic targets. This chapter explores the role of estrogen and their receptors in the regulation of insulin secretion and biosynthesis, proliferation, regeneration and survival in pancreatic β cells. In addition, delves into the genetic animal models developed and its application for the specific study of the different estrogen signaling pathways. Finally, discusses the impact of menopause and hormone replacement therapy on pancreatic β cell function.
Collapse
|
9
|
Burns CH, Yau B, Rodriguez A, Triplett J, Maslar D, An YS, van der Welle REN, Kossina RG, Fisher MR, Strout GW, Bayguinov PO, Veenendaal T, Chitayat D, Fitzpatrick JAJ, Klumperman J, Kebede MA, Asensio CS. Pancreatic β-Cell-Specific Deletion of VPS41 Causes Diabetes Due to Defects in Insulin Secretion. Diabetes 2021; 70:436-448. [PMID: 33168621 PMCID: PMC7881869 DOI: 10.2337/db20-0454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
Insulin secretory granules (SGs) mediate the regulated secretion of insulin, which is essential for glucose homeostasis. The basic machinery responsible for this regulated exocytosis consists of specific proteins present both at the plasma membrane and on insulin SGs. The protein composition of insulin SGs thus dictates their release properties, yet the mechanisms controlling insulin SG formation, which determine this molecular composition, remain poorly understood. VPS41, a component of the endolysosomal tethering homotypic fusion and vacuole protein sorting (HOPS) complex, was recently identified as a cytosolic factor involved in the formation of neuroendocrine and neuronal granules. We now find that VPS41 is required for insulin SG biogenesis and regulated insulin secretion. Loss of VPS41 in pancreatic β-cells leads to a reduction in insulin SG number, changes in their transmembrane protein composition, and defects in granule-regulated exocytosis. Exploring a human point mutation, identified in patients with neurological but no endocrine defects, we show that the effect on SG formation is independent of HOPS complex formation. Finally, we report that mice with a deletion of VPS41 specifically in β-cells develop diabetes due to severe depletion of insulin SG content and a defect in insulin secretion. In sum, our data demonstrate that VPS41 contributes to glucose homeostasis and metabolism.
Collapse
Affiliation(s)
| | - Belinda Yau
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | | | - Jenna Triplett
- Department of Biological Sciences, University of Denver, Denver, CO
| | - Drew Maslar
- Department of Biological Sciences, University of Denver, Denver, CO
| | - You Sun An
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Reini E N van der Welle
- Section of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ross G Kossina
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
| | - Max R Fisher
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
| | - Gregory W Strout
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
| | - Peter O Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
| | - Tineke Veenendaal
- Section of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - David Chitayat
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
- Departments of Neuroscience and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| | - Judith Klumperman
- Section of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Melkam A Kebede
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Cedric S Asensio
- Department of Biological Sciences, University of Denver, Denver, CO
| |
Collapse
|
10
|
Pereira de Arruda EH, Vieira da Silva GL, da Rosa-Santos CA, Arantes VC, de Barros Reis MA, Colodel EM, Gaspar de Moura E, Lisboa PC, Carneiro EM, Damazo AS, Latorraca MQ. Protein restriction during pregnancy impairs intra-islet GLP-1 and the expansion of β-cell mass. Mol Cell Endocrinol 2020; 518:110977. [PMID: 32791189 DOI: 10.1016/j.mce.2020.110977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/14/2020] [Accepted: 08/03/2020] [Indexed: 12/26/2022]
Abstract
We evaluated whether protein restriction during pregnancy alters the morphometry of pancreatic islets, the intra-islet glucagon-like peptide-1 (GLP-1) production, and the anti-apoptotic signalling pathway modulated by GLP-1. Control non-pregnant (CNP) and control pregnant (CP) rats were fed a 17% protein diet, and low-protein non-pregnant (LPNP) and low-protein pregnant (LPP) groups were fed a 6% protein diet. The masses of islets and β-cells were similar in the LPNP group and the CNP group but were higher in the CP group than in the CNP group and were equal in the LPP group and the LPNP group. Both variables were lower in the LPP group than in the CP group. Prohormone convertase 2 and GLP-1 fluorescence in α-cells was lower in the low-protein groups than in the control groups. The least PC2/glucagon colocalization was observed in the LPP group, and the most was observed in the CP group. There was less prohormone convertase 1/3/glucagon colocalization in the LPP group than in the CP group. GLP-1/glucagon colocalization was similar in the LPP, CP and CNP groups, which showed less GLP-1/glucagon colocalization than the LPNP group. The mRNA Pka, Creb and Pdx-1 contents were higher in islets from pregnant rats than in islets from non-pregnant rats. Protein restriction during pregnancy impaired the mass of β-cells and the intra-islet GLP-1 production but did not interfere with the transcription of genes of the anti-apoptotic signalling pathway modulated by GLP-1.
Collapse
Affiliation(s)
| | | | - Chaiane Aline da Rosa-Santos
- Mestrado em Nutrição, Alimentos e Metabolismo, Faculdade de Nutrição, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Vanessa Cristina Arantes
- Departamento de Alimentos e Nutrição, Faculdade de Nutrição, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | | | - Edson Moleta Colodel
- Departamento de Clínica Médica Veterinária, Faculdade de Agronomia e Medicina Veterinária, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Egberto Gaspar de Moura
- Laboratório de Fisiologia Endócrina, Departamento de Ciências Fisiológicas, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patrícia Cristina Lisboa
- Laboratório de Fisiologia Endócrina, Departamento de Ciências Fisiológicas, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Everardo Magalhães Carneiro
- Departamento de Anatomia, Biologia Cellular, Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Amílcar Sabino Damazo
- Departamento de Ciências Básicas da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Márcia Queiroz Latorraca
- Departamento de Alimentos e Nutrição, Faculdade de Nutrição, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| |
Collapse
|
11
|
Rao A, McBride EL, Zhang G, Xu H, Cai T, Notkins AL, Aronova MA, Leapman RD. Determination of secretory granule maturation times in pancreatic islet β-cells by serial block-face electron microscopy. J Struct Biol 2020; 212:107584. [PMID: 32736074 DOI: 10.1016/j.jsb.2020.107584] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 01/19/2023]
Abstract
It is shown how serial block-face electron microscopy (SBEM) of insulin-secreting β-cells in wild-type mouse pancreatic islets of Langerhans can be used to determine maturation times of secretory granules. Although SBEM captures the β-cell structure at a snapshot in time, the observed ultrastructure can be considered representative of a dynamic equilibrium state of the cells since the pancreatic islets are maintained in culture in approximate homeostasis. It was found that 7.2 ± 1.2% (±st. dev.) of the β-cell volume is composed of secretory granule dense-cores exhibiting angular shapes surrounded by wide (typically ≳100 nm) electron-lucent halos. These organelles are identified as mature granules that store insulin for regulated release through the plasma membrane, with a release time of 96 ± 12 h, as previously obtained from pulsed 35S-radiolabeling of cysteine and methionine. Analysis of β-cell 3D volumes reveals a subpopulation of secretory organelles without electron-lucent halos, identified as immature secretory granules. Another subpopulation of secretory granules is found with thin (typically ≲30 nm) electron-lucent halos, which are attributed to immature granules that are transforming from proinsulin to insulin by action of prohormone convertases. From the volume ratio of proinsulin in the immature granules to insulin in the mature granules, we estimate that the newly formed immature granules remain in morphologically-defined immature states for an average time of 135 ± 14 min, and the immature transforming granules for an average time of 130 ± 17 min.
Collapse
Affiliation(s)
- A Rao
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - E L McBride
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - G Zhang
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - H Xu
- Experimental Medicine Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - T Cai
- Experimental Medicine Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - A L Notkins
- Experimental Medicine Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - M A Aronova
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - R D Leapman
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Ward MG, Li G, Hao M. Apoptotic β-cells induce macrophage reprogramming under diabetic conditions. J Biol Chem 2018; 293:16160-16173. [PMID: 30213857 DOI: 10.1074/jbc.ra118.004565] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/06/2018] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) occurs when insulin-producing pancreatic β-cells fail to secrete sufficient insulin to compensate for insulin resistance. As T2DM progresses, apoptotic β-cells need to be removed by macrophages through efferocytosis that is anti-inflammatory by nature. Paradoxically, infiltrating macrophages are a main source of inflammatory cytokines that leads to T2DM. It is unclear how apoptotic β-cells impact macrophage function. We show under diabetic conditions, phagocytosis of apoptotic β-cells causes lysosomal permeabilization and generates reactive oxygen species that lead to inflammasome activation and cytokine secretion in macrophages. Efferocytosis-induced lipid accumulation transforms islet macrophages into foam cell-like outside the context of atherosclerosis. Our study suggests that whereas macrophages normally play a protective anti-inflammatory role, the increasing demand of clearing apoptotic cells may trigger them to undergo proinflammatory reprogramming as T2DM progresses. This shift in the balance between opposing macrophage inflammatory responses could contribute to chronic inflammation involved in metabolic diseases. Our study highlights the importance of preserving macrophage lysosomal function as a therapeutic intervention for diabetes progression.
Collapse
Affiliation(s)
- Meliza G Ward
- From the Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10065
| | - Ge Li
- From the Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10065
| | - Mingming Hao
- From the Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10065
| |
Collapse
|
13
|
Boland BB, Brown C, Alarcon C, Demozay D, Grimsby JS, Rhodes CJ. β-Cell Control of Insulin Production During Starvation-Refeeding in Male Rats. Endocrinology 2018; 159:895-906. [PMID: 29244064 PMCID: PMC5776497 DOI: 10.1210/en.2017-03120] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/30/2017] [Indexed: 12/17/2022]
Abstract
Mammalian metabolism has evolved to adapt to changes in nutrient status. Insulin, the key anabolic hormone, facilitates intracellular storage of nutrient fuels and plays a pivotal role in the transition away from catabolism upon refeeding. Although circulating insulin relative to nutrient levels has been well characterized during fasting and refeeding, how pancreatic β-cell biology caters to acute changes in insulin demand has not been sufficiently addressed. Here, we examined the dynamics of (pro)insulin production and associated changes in β-cell ultrastructure during refeeding after a 72-hour fast in male rats. We found that fasted β-cells had marked degranulation, which inversely coordinated with the upregulation of autophagolysomal and lysosomal organelles. There was also expanded Golgi that correlated with enhanced (pro)insulin biosynthetic capacity but, conversely, blunted in vivo insulin secretion. Within 4 to 6 hours of refeeding, proinsulin biosynthesis, cellular ultrastructure, in vivo insulin secretion, and glucose tolerance normalized to levels near those of fed control animals, indicating a rapid replenishment of normal insulin secretory capacity. Thus, during a prolonged fast, the β-cell protects against hypoglycemia by markedly reducing insulin secretory capacity in vivo but is simultaneously poised to efficiently increase (pro)insulin production upon refeeding to effectively return normal insulin secretory capacity within hours.
Collapse
Affiliation(s)
- Brandon B. Boland
- Kovler Diabetes Center, Department of Medicine Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, Illinois 60637
- Division of Cardiovascular and Metabolic Disease, MedImmune LLC, Gaithersburg, Maryland 20878
| | - Charles Brown
- Division of Cardiovascular and Metabolic Disease, MedImmune LLC, Gaithersburg, Maryland 20878
| | - Cristina Alarcon
- Kovler Diabetes Center, Department of Medicine Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, Illinois 60637
| | - Damien Demozay
- Kovler Diabetes Center, Department of Medicine Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, Illinois 60637
| | - Joseph S. Grimsby
- Division of Cardiovascular and Metabolic Disease, MedImmune LLC, Gaithersburg, Maryland 20878
| | - Christopher J. Rhodes
- Kovler Diabetes Center, Department of Medicine Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, Illinois 60637
- Division of Cardiovascular and Metabolic Disease, MedImmune LLC, Gaithersburg, Maryland 20878
| |
Collapse
|
14
|
Wheeler E, Marenne G, Barroso I. Genetic aetiology of glycaemic traits: approaches and insights. Hum Mol Genet 2017; 26:R172-R184. [PMID: 28977447 PMCID: PMC5886471 DOI: 10.1093/hmg/ddx293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 12/17/2022] Open
Abstract
Glycaemic traits such as fasting and post-challenge glucose and insulin measures, as well as glycated haemoglobin (HbA1c), are used to diagnose and monitor diabetes. These traits are risk factors for cardiovascular disease even below the diabetic threshold, and their study can additionally yield insights into the pathophysiology of type 2 diabetes. To date, a diverse set of genetic approaches have led to the discovery of over 97 loci influencing glycaemic traits. In this review, we will focus on recent advances in the genetic aetiology of glycaemic traits, and the resulting biological insights. We will provide a brief overview of results ranging from common, to low- and rare-frequency variant-trait association studies, studies leveraging the diversity across populations, and studies harnessing the power of genetic and genomic approaches to gain insights into the biological underpinnings of these traits.
Collapse
Affiliation(s)
- Eleanor Wheeler
- Department of Human Genetics, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Gaëlle Marenne
- Department of Human Genetics, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Inês Barroso
- Department of Human Genetics, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
15
|
Raleigh D, Zhang X, Hastoy B, Clark A. The β-cell assassin: IAPP cytotoxicity. J Mol Endocrinol 2017; 59:R121-R140. [PMID: 28811318 DOI: 10.1530/jme-17-0105] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/15/2017] [Indexed: 12/28/2022]
Abstract
Islet amyloid polypeptide (IAPP) forms cytotoxic oligomers and amyloid fibrils in islets in type 2 diabetes (T2DM). The causal factors for amyloid formation are largely unknown. Mechanisms of molecular folding and assembly of human IAPP (hIAPP) into β-sheets, oligomers and fibrils have been assessed by detailed biophysical studies of hIAPP and non-fibrillogenic, rodent IAPP (rIAPP); cytotoxicity is associated with the early phases (oligomers/multimers) of fibrillogenesis. Interaction with synthetic membranes promotes β-sheet assembly possibly via a transient α-helical molecular conformation. Cellular hIAPP cytotoxicity can be activated from intracellular or extracellular sites. In transgenic rodents overexpressing hIAPP, intracellular pro-apoptotic signals can be generated at different points in β-cell protein synthesis. Increased cellular trafficking of proIAPP, failure of the unfolded protein response (UPR) or excess trafficking of misfolded peptide via the degradation pathways can induce apoptosis; these data indicate that defects in intracellular handling of hIAPP can induce cytotoxicity. However, there is no evidence for IAPP overexpression in T2DM. Extracellular amyloidosis is directly related to the degree of β-cell apoptosis in islets in T2DM. IAPP fragments, fibrils and multimers interact with membranes causing disruption in vivo and in vitro These findings support a role for extracellular IAPP in β-sheet conformation in cytotoxicity. Inhibitors of fibrillogenesis are useful tools to determine the aberrant mechanisms that result in hIAPP molecular refolding and islet amyloidosis. However, currently, their role as therapeutic agents remains uncertain.
Collapse
Affiliation(s)
- Daniel Raleigh
- Department of ChemistryStony Brook University, Stony Brook, New York, USA
- Research Department of Structural and Molecule BiologyUniversity College London, London, UK
| | - Xiaoxue Zhang
- Department of ChemistryStony Brook University, Stony Brook, New York, USA
| | - Benoît Hastoy
- Oxford Centre for Diabetes Endocrinology and MetabolismUniversity of Oxford, Oxford, UK
| | - Anne Clark
- Oxford Centre for Diabetes Endocrinology and MetabolismUniversity of Oxford, Oxford, UK
| |
Collapse
|
16
|
Boland BB, Rhodes CJ, Grimsby JS. The dynamic plasticity of insulin production in β-cells. Mol Metab 2017; 6:958-973. [PMID: 28951821 PMCID: PMC5605729 DOI: 10.1016/j.molmet.2017.04.010] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Although the insulin-producing pancreatic β-cells are quite capable of adapting to both acute and chronic changes in metabolic demand, persistently high demand for insulin will ultimately lead to their progressive dysfunction and eventual loss. Recent and historical studies highlight the importance of 'resting' the β-cell as a means of preserving functional β-cell mass. SCOPE OF REVIEW We provide experimental evidence to highlight the remarkable plasticity for insulin production and secretion by the pancreatic β-cell alongside some clinical evidence that supports leveraging this unique ability to preserve β-cell function. MAJOR CONCLUSIONS Treatment strategies for type 2 diabetes mellitus (T2DM) targeted towards reducing the systemic metabolic burden, rather than demanding greater insulin production from an already beleaguered β-cell, should be emphasized to maintain endogenous insulin secretory function and delay the progression of T2DM.
Collapse
Key Words
- ATF6, Activating Transcription Factor 6
- CHOP, CCAAT/Enhancer-Binding Homologous Protein
- EPAC, Exchange Factor Directly Activated by cAMP
- EROβ1, ER-resident oxidoreductase β1
- GIP, Gastric Inhibitory Polypeptide
- GLP-1, Glucagon-like Peptide 1
- GLUT2, Glucose Transporter 2
- GSIS, Glucose Stimulated Insulin Secretion
- IREα, Inositol Requiring Enzyme α
- Insulin production
- NEFA, Non-esterified Fatty Acid
- PERK, Protein Kinase RNA-like Endoplasmic Reticulum Kinase
- PKA, Protein Kinase A
- PKC, Protein Kinase C
- PLC, Phospholipase C
- ROS, Reactive Oxygen Species
- SNAP-25, Soluble NSF Attachment Protein 25
- SNARE, Soluble NSF Attachment Protein Receptor
- STZ, Streptozotocin
- T2DM
- T2DM, Type 2 Diabetes Mellitus
- TRP, Transient Receptor Potential
- VAMP-2, Vehicle Associated Membrane Protein 2
- VDCC, Voltage Dependent Calcium Channel
- mTORC1, Mammalian Target of Rapamycin 1
- nH, Hill coefficient
- β-cell rest
Collapse
Affiliation(s)
- Brandon B. Boland
- MedImmune, Cardiovascular and Metabolic Disease Research, 1 MedImmune Way, Gaithersburg, MD 20878, USA
| | | | | |
Collapse
|
17
|
Das S, Bhattacharyya D. Destabilization of Human Insulin Fibrils by Peptides of Fruit Bromelain Derived From Ananas comosus (Pineapple). J Cell Biochem 2017; 118:4881-4896. [PMID: 28548677 DOI: 10.1002/jcb.26173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022]
Abstract
Deposition of insulin aggregates in human body leads to dysfunctioning of several organs. Effectiveness of fruit bromelain from pineapple in prevention of insulin aggregate was investigated. Proteolyses of bromelain was done as par human digestive system and the pool of small peptides was separated from larger peptides and proteins. Under conditions of growth of insulin aggregates from its monomers, this pool of peptides restricted the reaction upto formation of oligomers of limited size. These peptides also destabilized preformed insulin aggregates to oligomers. These processes were followed fluorimetrically using Thioflavin T and 1-ANS, size-exclusion HPLC, dynamic light scattering, atomic force microscopy, and transmission electron microscopy. Sequences of insulin (A and B chains) and bromelain were aligned using Clustal W software to predict most probable sites of interactions. Synthetic tripeptides corresponding to the hydrophobic interactive sites of bromelain showed disaggregation of insulin suggesting specificity of interactions. The peptides GG and AAA serving as negative controls showed no potency in destabilization of aggregates. Disaggregation potency of the peptides was also observed when insulin was deposited on HepG2 liver cells where no formation of toxic oligomers occurred. Amyloidogenic des-octapeptide (B23-B30 of insulin) incapable of cell signaling showed cytotoxicity similar to insulin. This toxicity could be neutralized by bromelain derived peptides. FT-IR and far-UV circular dichroism analysis indicated that disaggregated insulin had structure distinctly different from that of its hexameric (native) or monomeric states. Based on the stoichiometry of interaction and irreversibility of disaggregation, the mechanism/s of the peptides and insulin interactions has been proposed. J. Cell. Biochem. 118: 4881-4896, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sromona Das
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Debasish Bhattacharyya
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
18
|
MiR-30a targets IL-1α and regulates islet functions as an inflammation buffer and response factor. Sci Rep 2017; 7:5270. [PMID: 28706254 PMCID: PMC5509704 DOI: 10.1038/s41598-017-05560-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/30/2017] [Indexed: 12/24/2022] Open
Abstract
Diabetes is an inflammatory disease. Inflammation plays an important role in islet functions. However, the exact mechanisms by which inflammation affects islet functions remain unclear. In this study, we investigated the regulatory effects of miR-30a on inflammation and islet functions. The results indicate that miR-30a serves as an inflammation-resolving buffer factor by targeting interleukin 1a (IL-1α) in immune cells and in islet cells, which might play an important role in inflammation homeostasis. miR-30a ameliorates islet functions in an inflammatory micro-environment by targeting the IL-1α/nuclear factor kappa B (NFKB) p65 subunit (p65)/p62 (SQSTM1)/insulin axis, which can be developed into a novel antidiabetic approach. miR-30a serves as a promising inflammation-response biomarker in inflammatory diseases and is possibly activated by the toll-like receptor 4 (TLR4)/IL-1α/NFKB pathways. However, the exact molecular mechanisms by which miR-30a regulates inflammation and islet functions as well as the potential applications in transitional medicine require further elucidation.
Collapse
|
19
|
Røder ME. Hyperproinsulinemia in obesity and in type 2 diabetes and its relation to cardiovascular disease. Expert Rev Endocrinol Metab 2017; 12:227-239. [PMID: 30058886 DOI: 10.1080/17446651.2017.1331735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Disproportionately elevated fasting levels of proinsulin immunoreactive material (PIM)relative to insulin immunoreactivity (IRI) are a well-established abnormality in type 2 diabetes. Thesignificance of this abnormality has been investigated and discussed in several studies. Areas covered: The present review focuses on the role of proinsulin and its conversion intermediates inthe development of type 2 diabetes, obesity and insulin resistance, and the potential role as a marker ofcardiovascular risk, including the most important studies in this field. Expert commentary: The composition of plasma PIM is heterogeneous comprising des(31,32)-proinsulin,intact proinsulin and small amounts of des(64,65)-proinsulin. Disproportionate hyperproinsulinemiaseems to occur early in the development and before the diagnosis of type 2 diabetes, and seemsassociated to disease progression. Obesity and insulin resistance does not influence fasting PIM/IRI levels in type 2 diabetes. Fasting PIM/IRI levels in type 2 diabetes are closely associated with the degree of impairment in insulin secretory capacity. Different type 2 diabetes alleles have been described associated with elevated PIM/IRI levels. Recent data suggests that proinsulin and its conversion intermediates may have a role as markers of increased risk of cardiovascular disease in glucose intolerance and type 2 diabetes.
Collapse
Affiliation(s)
- Michael E Røder
- a Center for Diabetes Research , Gentofte Hospital , Hellerup , Denmark
| |
Collapse
|
20
|
Brereton MF, Rohm M, Ashcroft FM. β-Cell dysfunction in diabetes: a crisis of identity? Diabetes Obes Metab 2016; 18 Suppl 1:102-9. [PMID: 27615138 PMCID: PMC5890905 DOI: 10.1111/dom.12732] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/25/2016] [Indexed: 12/23/2022]
Abstract
Type 2 diabetes is characterized by insulin resistance and a progressive loss of β-cell function induced by a combination of both β-cell loss and impaired insulin secretion from remaining β-cells. Here, we review the fate of the β-cell under chronic hyperglycaemic conditions with regard to β-cell mass, gene expression, hormone content, secretory capacity and the ability to de- or transdifferentiate into other cell types. We compare data from various in vivo and in vitro models of diabetes with a novel mouse model of inducible, reversible hyperglycaemia (βV59M mice). We suggest that insulin staining using standard histological methods may not always provide an accurate estimation of β-cell mass or number. We consider how β-cell identity is best defined, and whether expression of transcription factors normally found in islet progenitor cells, or in α-cells, implies that mature β-cells have undergone dedifferentiation or transdifferentiation. We propose that even in long-standing diabetes, β-cells predominantly remain β-cells-but not as we know them.
Collapse
Affiliation(s)
- M F Brereton
- Department of Physiology, Anatomy and Genetics and OXION, University of Oxford, Oxford, UK
| | - M Rohm
- Department of Physiology, Anatomy and Genetics and OXION, University of Oxford, Oxford, UK
| | - F M Ashcroft
- Department of Physiology, Anatomy and Genetics and OXION, University of Oxford, Oxford, UK.
| |
Collapse
|
21
|
Transcript Expression Data from Human Islets Links Regulatory Signals from Genome-Wide Association Studies for Type 2 Diabetes and Glycemic Traits to Their Downstream Effectors. PLoS Genet 2015; 11:e1005694. [PMID: 26624892 PMCID: PMC4666611 DOI: 10.1371/journal.pgen.1005694] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/30/2015] [Indexed: 01/01/2023] Open
Abstract
The intersection of genome-wide association analyses with physiological and functional data indicates that variants regulating islet gene transcription influence type 2 diabetes (T2D) predisposition and glucose homeostasis. However, the specific genes through which these regulatory variants act remain poorly characterized. We generated expression quantitative trait locus (eQTL) data in 118 human islet samples using RNA-sequencing and high-density genotyping. We identified fourteen loci at which cis-exon-eQTL signals overlapped active islet chromatin signatures and were coincident with established T2D and/or glycemic trait associations. At some, these data provide an experimental link between GWAS signals and biological candidates, such as DGKB and ADCY5. At others, the cis-signals implicate genes with no prior connection to islet biology, including WARS and ZMIZ1. At the ZMIZ1 locus, we show that perturbation of ZMIZ1 expression in human islets and beta-cells influences exocytosis and insulin secretion, highlighting a novel role for ZMIZ1 in the maintenance of glucose homeostasis. Together, these findings provide a significant advance in the mechanistic insights of T2D and glycemic trait association loci.
Collapse
|
22
|
Aged insulin granules display reduced microtubule-dependent mobility and are disposed within actin-positive multigranular bodies. Proc Natl Acad Sci U S A 2015; 112:E667-76. [PMID: 25646459 DOI: 10.1073/pnas.1409542112] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insulin secretion is key for glucose homeostasis. Insulin secretory granules (SGs) exist in different functional pools, with young SGs being more mobile and preferentially secreted. However, the principles governing the mobility of age-distinct SGs remain undefined. Using the time-reporter insulin-SNAP to track age-distinct SGs we now show that their dynamics can be classified into three components: highly dynamic, restricted, and nearly immobile. Young SGs display all three components, whereas old SGs are either restricted or nearly immobile. Both glucose stimulation and F-actin depolymerization recruit a fraction of nearly immobile young, but not old, SGs for highly dynamic, microtubule-dependent transport. Moreover, F-actin marks multigranular bodies/lysosomes containing aged SGs. These data demonstrate that SGs lose their responsiveness to glucose stimulation and competence for microtubule-mediated transport over time while changing their relationship with F-actin.
Collapse
|
23
|
Boland BB, Alarcón C, Ali A, Rhodes CJ. Monomethylated-adenines potentiate glucose-induced insulin production and secretion via inhibition of phosphodiesterase activity in rat pancreatic islets. Islets 2015; 7:e1073435. [PMID: 26404841 PMCID: PMC4878263 DOI: 10.1080/19382014.2015.1073435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Monomethyladenines have effects on DNA repair, G-protein-coupled receptor antagonism and autophagy. In islet ß-cells, 3-methyladenine (3-MA) has been implicated in DNA-repair and autophagy, but its mechanism of action is unclear. Here, the effect of monomethylated adenines was examined in rat islets. 3-MA, N6-methyladenine (N6-MA) and 9-methyladenine (9-MA), but not 1- or 7-monomethylated adenines, specifically potentiated glucose-induced insulin secretion (3-4 fold; p ≤ 0.05) and proinsulin biosynthesis (∼2-fold; p ≤ 0.05). Using 3-MA as a 'model' monomethyladenine, it was found that 3-MA augmented [cAMP]i accumulation (2-3 fold; p ≤ 0.05) in islets within 5 minutes. The 3-, N6- and 9-MA also enhanced glucose-induced phosphorylation of the cAMP/protein kinase-A (PKA) substrate cAMP-response element binding protein (CREB). Treatment of islets with pertussis or cholera toxin indicated 3-MA mediated elevation of [cAMP]i was not mediated via G-protein-coupled receptors. Also, 3-MA did not compete with 9-cyclopentyladenine (9-CPA) for adenylate cyclase inhibition, but did for the pan-inhibitor of phosphodiesterase (PDE), 3-isobutyl-1-methylxanthine (IBMX). Competitive inhibition experiments with PDE-isoform specific inhibitors suggested 3-MA to have a preference for PDE4 in islet ß-cells, but this was likely reflective of PDE4 being the most abundant PDE isoform in ß-cells. In vitro enzyme assays indicated that 3-, N6- and 9-MA were capable of inhibiting most PDE isoforms found in ß-cells. Thus, in addition to known inhibition of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3'K)/m Target of Rapamycin (mTOR) signaling, 3-MA also acts as a pan-phosphodiesterase inhibitor in pancreatic ß-cells to elevate [cAMP]i and then potentiate glucose-induced insulin secretion and production in parallel.
Collapse
Affiliation(s)
- Brandon B Boland
- The Kovler Diabetes Center; Department of Medicine; Section on Endocrinology, Diabetes & Metabolism; The University of Chicago; Chicago, IL USA
| | - Cristina Alarcón
- The Kovler Diabetes Center; Department of Medicine; Section on Endocrinology, Diabetes & Metabolism; The University of Chicago; Chicago, IL USA
| | - Almas Ali
- The Kovler Diabetes Center; Department of Medicine; Section on Endocrinology, Diabetes & Metabolism; The University of Chicago; Chicago, IL USA
| | - Christopher J Rhodes
- The Kovler Diabetes Center; Department of Medicine; Section on Endocrinology, Diabetes & Metabolism; The University of Chicago; Chicago, IL USA
- Correspondence to: Christopher J Rhodes PhD;
| |
Collapse
|
24
|
Weckman A, Di Ieva A, Rotondo F, Syro LV, Ortiz LD, Kovacs K, Cusimano MD. Autophagy in the endocrine glands. J Mol Endocrinol 2014; 52:R151-63. [PMID: 24565917 DOI: 10.1530/jme-13-0241] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Autophagy is an important cellular process involving the degradation of intracellular components. Its regulation is complex and while there are many methods available, there is currently no single effective way of detecting and monitoring autophagy. It has several cellular functions that are conserved throughout the body, as well as a variety of different physiological roles depending on the context of its occurrence in the body. Autophagy is also involved in the pathology of a wide range of diseases. Within the endocrine system, autophagy has both its traditional conserved functions and specific functions. In the endocrine glands, autophagy plays a critical role in controlling intracellular hormone levels. In peptide-secreting cells of glands such as the pituitary gland, crinophagy, a specific form of autophagy, targets the secretory granules to control the levels of stored hormone. In steroid-secreting cells of glands such as the testes and adrenal gland, autophagy targets the steroid-producing organelles. The dysregulation of autophagy in the endocrine glands leads to several different endocrine diseases such as diabetes and infertility. This review aims to clarify the known roles of autophagy in the physiology of the endocrine system, as well as in various endocrine diseases.
Collapse
Affiliation(s)
- Andrea Weckman
- Division of Neurosurgery, Department of Surgery, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada Division of Pathology, Department of Laboratory Medicine, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada Department of Neurosurgery, Hospital Pablo Tobon Uribe and Clinica Medellin, Medellin, Colombia Division of Neurooncology, Instituto de Cancerologia, Clinic Las Americas, Medellin, Colombia
| | | | | | | | | | | | | |
Collapse
|
25
|
Liu M, Wright J, Guo H, Xiong Y, Arvan P. Proinsulin entry and transit through the endoplasmic reticulum in pancreatic beta cells. VITAMINS AND HORMONES 2014; 95:35-62. [PMID: 24559913 DOI: 10.1016/b978-0-12-800174-5.00002-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin is an essential hormone for maintaining metabolic homeostasis in the body. To make fully bioactive insulin, pancreatic beta cells initiate synthesis of the insulin precursor, preproinsulin, at the cytosolic side of the endoplasmic reticulum (ER), whereupon it undergoes co- and post-translational translocation across the ER membrane. Preproinsulin is cleaved by signal peptidase to form proinsulin that folds on the luminal side of the ER, forming three evolutionarily conserved disulfide bonds. Properly folded proinsulin forms dimers and exits from the ER, trafficking through Golgi complex into immature secretory granules wherein C-peptide is endoproteolytically excised, allowing fully bioactive two-chain insulin to ultimately be stored in mature granules for insulin secretion. Although insulin biosynthesis has been intensely studied in recent decades, the earliest events, including proinsulin entry and exit from the ER, have been relatively understudied. However, over the past 5 years, more than 20 new insulin gene mutations have been reported to cause a new syndrome termed Mutant INS-gene-induced Diabetes of Youth (MIDY). Although these mutants have not been completely characterized, most of them affect proinsulin entry and exit from the ER. Here, we summarize our current knowledge about the early events of insulin biosynthesis and review recent advances in understanding how defects in these events may lead to pancreatic beta cell failure.
Collapse
Affiliation(s)
- Ming Liu
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Metabolism, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Jordan Wright
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Huan Guo
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yi Xiong
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
26
|
Mahe E, Nguyen C, Arredondo J. Crinophagy in Neuroblastoma: A Case Report and Review of the Literature. Ultrastruct Pathol 2013; 38:237-41. [DOI: 10.3109/01913123.2013.830167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Tudurí E, Bruin JE, Denroche HC, Fox JK, Johnson JD, Kieffer TJ. Impaired Ca(2+) signaling in β-cells lacking leptin receptors by Cre-loxP recombination. PLoS One 2013; 8:e71075. [PMID: 23936486 PMCID: PMC3731269 DOI: 10.1371/journal.pone.0071075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/30/2013] [Indexed: 11/21/2022] Open
Abstract
Obesity is a major risk factor for diabetes and is typically associated with hyperleptinemia and a state of leptin resistance. The impact of chronically elevated leptin levels on the function of insulin-secreting β-cells has not been elucidated. We previously generated mice lacking leptin signaling in β-cells by using the Cre-loxP strategy and showed that these animals develop increased body weight and adiposity, hyperinsulinemia, impaired glucose-stimulated insulin secretion and insulin resistance. Here, we performed several in vitro studies and observed that β-cells lacking leptin signaling in this model are capable of properly metabolizing glucose, but show impaired intracellular Ca2+ oscillations and lack of synchrony within the islets in response to glucose, display reduced response to tolbutamide and exhibit morphological abnormalities including increased autophagy. Defects in intracellular Ca2+ signaling were observed even in neonatal islets, ruling out the possible contribution of obesity to the β-cell irregularities observed in adults. In parallel, we also detected a disrupted intracellular Ca2+ pattern in response to glucose and tolbutamide in control islets from adult transgenic mice expressing Cre recombinase under the rat insulin promoter, despite these animals being glucose tolerant and secreting normal levels of insulin in response to glucose. This unexpected observation impeded us from discerning the consequences of impaired leptin signaling as opposed to long-term Cre expression in the function of insulin-secreting cells. These findings highlight the need to generate improved Cre-driver mouse models or new tools to induce Cre recombination in β-cells.
Collapse
Affiliation(s)
- Eva Tudurí
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer E. Bruin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Heather C. Denroche
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica K. Fox
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy J. Kieffer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
28
|
Ordelheide AM, Gerst F, Rothfuss O, Heni M, Haas C, Thielker I, Herzberg-Schäfer S, Böhm A, Machicao F, Ullrich S, Stefan N, Fritsche A, Häring HU, Staiger H. Nor-1, a novel incretin-responsive regulator of insulin genes and insulin secretion. Mol Metab 2013; 2:243-55. [PMID: 24044104 DOI: 10.1016/j.molmet.2013.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/07/2013] [Accepted: 06/10/2013] [Indexed: 01/09/2023] Open
Abstract
B-cell failure at the onset of type 2 diabetes is caused by a decline in β-cell function in the postprandial state and loss of pancreatic β-cell mass. Recently, we showed an association between increased insulin secretion and a single nucleotide polymorphism (SNP), SNP rs12686676, in the NR4A3 gene locus encoding the nuclear receptor Nor-1. Nor-1 is expressed in β-cells, however, not much is known about its function with regard to insulin gene expression and insulin secretion. Nor-1 is induced in a glucose-/incretin-dependent manner via the PKA pathway and directly induces insulin gene expression. Additionally, it stimulates insulin secretion possibly via regulation of potentially important genes in insulin exocytosis. Moreover, we show that the minor allele of NR4A3 SNP rs12686676 fully rescues incretin resistance provoked by a well-described polymorphism in TCF7L2. Thus, Nor-1 represents a promising new target for pharmacological intervention to fight diabetes.
Collapse
Affiliation(s)
- Anna-Maria Ordelheide
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital Tübingen, Germany ; Institute for Diabetes Research and Metabolic Diseases of the Helmholz Centre Munich at the University of Tübingen, Germany ; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Katsumata T, Oishi H, Sekiguchi Y, Nagasaki H, Daassi D, Tai PH, Ema M, Kudo T, Takahashi S. Bioluminescence imaging of β cells and intrahepatic insulin gene activity under normal and pathological conditions. PLoS One 2013; 8:e60411. [PMID: 23593212 PMCID: PMC3617225 DOI: 10.1371/journal.pone.0060411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 02/27/2013] [Indexed: 01/19/2023] Open
Abstract
In diabetes research, bioluminescence imaging (BLI) has been applied in studies of β-cell impairment, development, and islet transplantation. To develop a mouse model that enables noninvasive imaging of β cells, we generated a bacterial artificial chromosome (BAC) transgenic mouse in which a mouse 200-kbp genomic fragment comprising the insulin I gene drives luciferase expression (Ins1-luc BAC transgenic mouse). BLI of mice was performed using the IVIS Spectrum system after intraperitoneal injection of luciferin, and the bioluminescence signal from the pancreatic region analyzed. When compared with MIP-Luc-VU mice [FVB/N-Tg(Ins1-luc)VUPwrs/J] expressing luciferase under the control of the 9.2-kbp mouse insulin I promoter (MIP), the bioluminescence emission from Ins1-luc BAC transgenic mice was enhanced approximately 4-fold. Streptozotocin-treated Ins1-luc BAC transgenic mice developed severe diabetes concomitant with a sharp decline in the BLI signal intensity in the pancreas. Conversely, mice fed a high-fat diet for 8 weeks showed an increase in the signal, reflecting a decrease or increase in the β-cell mass. Although the bioluminescence intensity of the islets correlated well with the number of isolated islets in vitro, the intensity obtained from a living mouse in vivo did not necessarily reflect an absolute quantification of the β-cell mass under pathological conditions. On the other hand, adenovirus-mediated gene transduction of β-cell-related transcription factors in Ins1-luc BAC transgenic mice generated luminescence from the hepatic region for more than 1 week. These results demonstrate that BLI in Ins1-luc BAC transgenic mice provides a noninvasive method of imaging islet β cells and extrapancreatic activity of the insulin gene in the liver under normal and pathological conditions.
Collapse
Affiliation(s)
- Tokio Katsumata
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Hisashi Oishi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Yukari Sekiguchi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Haruka Nagasaki
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Dhouha Daassi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Pei-Han Tai
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Masatsugu Ema
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Takashi Kudo
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
30
|
PERK is required in the adult pancreas and is essential for maintenance of glucose homeostasis. Mol Cell Biol 2012; 32:5129-39. [PMID: 23071091 DOI: 10.1128/mcb.01009-12] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Germ line PERK mutations are associated with diabetes mellitus and growth retardation in both rodents and humans. In contrast, late embryonic excision of PERK permits islet development and was found to prevent onset of diabetes, suggesting that PERK may be dispensable in the adult pancreas. To definitively establish the functional role of PERK in adult pancreata, we generated mice harboring a conditional PERK allele in which excision is regulated by tamoxifen administration. Deletion of PERK in either young adult or mature adult mice resulted in hyperglycemia associated with loss of islet and β cell architecture. PERK excision triggered intracellular accumulation of proinsulin and Glut2, massive endoplasmic reticulum (ER) expansion, and compensatory activation of the remaining unfolded-protein response (UPR) signaling pathways specifically in pancreatic tissue. Although PERK excision increased β cell death, this was not a result of decreased proliferation as previously reported. In contrast, a significant and specific increase in β cell proliferation was observed, a result reflecting increased cyclin D1 accumulation. This work demonstrates that contrary to expectations, PERK is required for secretory homeostasis and β cell survival in adult mice.
Collapse
|
31
|
Coupling of metabolic, second messenger pathways and insulin granule dynamics in pancreatic beta-cells: a computational analysis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 107:293-303. [PMID: 21920379 DOI: 10.1016/j.pbiomolbio.2011.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 08/26/2011] [Accepted: 09/01/2011] [Indexed: 12/26/2022]
Abstract
Insulin secretory responses to nutrient stimuli and hormonal modulators in pancreatic beta-cells are controlled by a variety of secondary messengers. We have analyzed numerous mechanisms responsible for regulated exocytosis in these cells and present an integrated mathematical model of cytosolic Ca²⁺, cAMP and granule dynamics. The insulin-containing granules in the beta-cell were divided into four classes: a large "reserve" granule pool, a smaller pool of the morphologically docked granules that is chemically 'primed' for release or the "readily releasable pool", and a pool of "restless newcomer granules" that undergoes preferential exocytosis. The model incorporates glucose and other aspects of metabolism, the cAMP amplifying pathway, insulin granule dynamics and the exocyst concept for granule binding. The values of most of the model parameters were inferred from available experimental data. The model can generate both the fast first phase and slow biphasic insulin secretion found experimentally in response to a step increase of membrane potential or of glucose. The numerical simulations have also reproduced a variety of experimental conditions, such as periodic stimulation by high K⁺ and the potentiation induced in islets by pre-incubation with cAMP pathway activators. The explicit incorporation of Ca²⁺ channels, Ca²⁺ and cAMP dynamics allows the model to be further connected to current models for calcium and metabolic dynamics and provides an interpretation of the roles of the triggering and amplifying pathways of glucose-stimulated insulin secretion. The model may be important in the identification of pharmacological targets for improving insulin secretion in type 2 diabetes.
Collapse
|
32
|
Chen ZF, Li YB, Han JY, Wang J, Yin JJ, Li JB, Tian H. The double-edged effect of autophagy in pancreatic beta cells and diabetes. Autophagy 2011; 7:12-6. [PMID: 20935505 DOI: 10.4161/auto.7.1.13607] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Autophagy is an intracellular catabolic system, which enables cells to capture cytoplasmic components for degradation within lysosomes. Autophagy is involved in development, differentiation and tissue remodeling in various organisms, and is also implicated in certain diseases. Recent studies demonstrate that autophagy is necessary to maintain architecture and function of pancreatic beta cells. Altered autophagy is also involved in pancreatic beta cell death. Whether autophagy plays a protective or harmful role in diabetes is still not clear. In this review, we will summarize the current knowledge about the role of autophagy in pancreatic beta cell and diabetes.
Collapse
Affiliation(s)
- Ze-fang Chen
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Xie L, Hoffman RP, Veng-Pedersen P. Population analysis of ethnicity and first-phase insulin release. Diabetes Res Clin Pract 2010; 89:243-9. [PMID: 20570007 PMCID: PMC4445972 DOI: 10.1016/j.diabres.2010.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/22/2010] [Accepted: 04/29/2010] [Indexed: 11/25/2022]
Abstract
OBJECTIVE A mechanistic, physiologically-based pharmacokinetic (PK/PD) model was developed to describe the biphasic insulin release and evaluate the racial effects on the glucose-insulin kinetics in response to intravenous glucose. METHODS Fifteen African-American and 18 Caucasian children and adolescents between 8 and 18 years of age were enrolled in the study. Intravenous bolus of glucose (250 mg/kg) was administered and blood samples collected at frequent intervals for three hours following the glucose injection. A nonlinear mixed-effect population kinetic analysis with covariate structure was performed using Monolix. RESULTS A significantly higher initial insulin secretion from a readily releasable pool, which is responsible for the first-phase insulin secretion, was detected in African-Americans compared to Caucasians (p<0.05). CONCLUSIONS The proposed kinetic model is able to describe the glucose-stimulated insulin response, account for the first-phase insulin release and identify a racially-based pharmacokinetic difference in insulin's biphasic secretion behavior. It is hypothesized that the first-phase insulin component may play an important role in the development of type 2 diabetes. The proposed mechanistic model provides a quantitative analysis of the biphasic insulin release that may be useful in the early detection of diabetes.
Collapse
Affiliation(s)
- Lanyi Xie
- Division of Pharmaceutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Robert P. Hoffman
- Department of Pediatrics (R.P.H.), College of Medicine, Ohio State University, Columbus, OH 43205, United States
| | - Peter Veng-Pedersen
- Division of Pharmaceutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
- Corresponding author. Tel.: +1 319 335 8792; fax: +1 319 335 9349. (P. Veng-Pedersen)
| |
Collapse
|
34
|
Haas J, Vöhringer-Martinez E, Bögehold A, Matthes D, Hensen U, Pelah A, Abel B, Grubmüller H. Primary steps of pH-dependent insulin aggregation kinetics are governed by conformational flexibility. Chembiochem 2009; 10:1816-22. [PMID: 19533727 DOI: 10.1002/cbic.200900266] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Insulin aggregation critically depends on pH. The underlying energetic and structural determinants are, however, unknown. Here, we measure the kinetics of the primary aggregation steps of the insulin monomer in vitro and relate it to its conformational flexibility. To assess these primary steps the monomer concentration was monitored by mass spectrometry at various pH values and aggregation products were imaged by atomic force microscopy. Lowering the pH from 3 to 1.6 markedly accelerated the observed aggregation kinetics. The influence of pH on the monomer structure and dynamics in solution was studied by molecular dynamics simulations, with the protonation states of the titrable groups obtained from electrostatic calculations. Reduced flexibility was observed for low pH values, mainly in the C terminus and in the helix of the B chain; these corresponded to an estimated entropy loss of 150 J mol(-1) K(-1). The striking correlation between entropy loss and pH value is consistent with the observed kinetic traces. In analogy to the well-known Phi value analysis, this result allows the extraction of structural information about the rate determining transition state of the primary aggregation steps. In particular, we suggest that the residues in the helix of the B chain are involved in this transition state.
Collapse
Affiliation(s)
- Jürgen Haas
- Department of Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Jansen J, Karges W, Rink L. Zinc and diabetes--clinical links and molecular mechanisms. J Nutr Biochem 2009; 20:399-417. [PMID: 19442898 DOI: 10.1016/j.jnutbio.2009.01.009] [Citation(s) in RCA: 285] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 01/12/2009] [Accepted: 01/13/2009] [Indexed: 12/18/2022]
Abstract
Zinc is an essential trace element crucial for the function of more than 300 enzymes and it is important for cellular processes like cell division and apoptosis. Hence, the concentration of zinc in the human body is tightly regulated and disturbances of zinc homeostasis have been associated with several diseases including diabetes mellitus, a disease characterized by high blood glucose concentrations as a consequence of decreased secretion or action of insulin. Zinc supplementation of animals and humans has been shown to ameliorate glycemic control in type 1 and 2 diabetes, the two major forms of diabetes mellitus, but the underlying molecular mechanisms have only slowly been elucidated. Zinc seems to exert insulin-like effects by supporting the signal transduction of insulin and by reducing the production of cytokines, which lead to beta-cell death during the inflammatory process in the pancreas in the course of the disease. Furthermore, zinc might play a role in the development of diabetes, since genetic polymorphisms in the gene of zinc transporter 8 and in metallothionein (MT)-encoding genes could be demonstrated to be associated with type 2 diabetes mellitus. The fact that antibodies against this zinc transporter have been detected in type 1 diabetic patients offers new diagnostic possibilities. This article reviews the influence of zinc on the diabetic state including the molecular mechanisms, the role of the zinc transporter 8 and MT for diabetes development and the resulting diagnostic and therapeutic options.
Collapse
Affiliation(s)
- Judith Jansen
- Institute of Immunology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | | | | |
Collapse
|
36
|
Hartley T, Brumell J, Volchuk A. Emerging roles for the ubiquitin-proteasome system and autophagy in pancreatic beta-cells. Am J Physiol Endocrinol Metab 2009; 296:E1-10. [PMID: 18812463 DOI: 10.1152/ajpendo.90538.2008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein degradation in eukaryotic cells is mediated primarily by the ubiquitin-proteasome system and autophagy. Turnover of protein aggregates and other cytoplasmic components, including organelles, is another function attributed to autophagy. The ubiquitin-proteasome system and autophagy are essential for normal cell function but under certain pathological conditions can be overwhelmed, which can lead to adverse effects in cells. In this review we will focus primarily on the insulin-producing pancreatic beta-cell. Pancreatic beta-cells respond to glucose levels by both producing and secreting insulin. The inability of beta-cells to secrete sufficient insulin is a major contributory factor in the development of type 2 diabetes. The aim of this review is to examine some of the crucial roles of the ubiquitin-proteasome system and autophagy in normal pancreatic beta-cell function and how these pathways may become dysfunctional under pathological conditions associated with metabolic syndromes.
Collapse
Affiliation(s)
- Taila Hartley
- Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, ON, M5G 1L7 Canada
| | | | | |
Collapse
|
37
|
De Pauw PEM, Vermeulen I, Ubani OC, Truyen I, Vekens EMF, van Genderen FT, De Grijse JW, Pipeleers DG, Van Schravendijk C, Gorus FK. Simultaneous Measurement of Plasma Concentrations of Proinsulin and C-Peptide and Their Ratio with a Trefoil-Type Time-Resolved Fluorescence Immunoassay. Clin Chem 2008; 54:1990-8. [DOI: 10.1373/clinchem.2008.109710] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: When the concentrations of 2 or more substances are measured separately, their molar ratios are subject to the additive imprecisions of the different assays. We hypothesized that the cumulative error for concentration ratios of peptides containing a common sequence might be minimized by measuring the peptides simultaneously with a “trefoil-type” immunoassay.
Methods: As a model of this approach, we developed a dual-label time-resolved fluorescence immunoassay (TRFIA) to simultaneously measure proinsulin, C-peptide, and the proinsulin–C-peptide ratio (PI/C). A monoclonal antibody captures all C-peptide–containing molecules, and 2 differently labeled antibodies distinguish between proinsulin-like molecules and true C-peptide.
Results: The trefoil-type TRFIA was capable of measuring plasma C-peptide and proinsulin simultaneously without mutual interference at limits of quantification of 48 and 8125 pmol/L, and 2.1 and 197 pmol/L, respectively. Within-laboratory imprecision values for the trefoil-type TRFIA ranged between 8.4% and 12% for the hormone concentrations. Unlike the hormone results obtained with separate assays, imprecision did not increase when PI/C was calculated from trefoil assay results (P < 0.05). Peptide concentrations were highly correlated with results obtained in individual comparison assays (r2 ≥ 0.965; P < 0.0001). The total error for PI/C obtained with the trefoil-type TRFIA remained ≤25% over a broader C-peptide range than with separate hormone assays (79–7200 pmol/L vs 590–4300 pmol/L C-peptide). Preliminary data indicate little or no interference by heterophile antibodies.
Conclusions: The developed trefoil-type TRFIA is a reliable method for simultaneous measurement of proinsulin, C-peptide, and PI/C and provides proof of principle for the development of other trefoil-type multiple-label immunoassays.
Collapse
Affiliation(s)
| | - Ilse Vermeulen
- Diabetes Research Center, Brussels Free University, Brussels, Belgium
| | - Ogonnaya C Ubani
- Diabetes Research Center, Brussels Free University, Brussels, Belgium
| | - Inge Truyen
- Diabetes Research Center, Brussels Free University, Brussels, Belgium
| | | | | | - Joeri W De Grijse
- Diabetes Research Center, Brussels Free University, Brussels, Belgium
| | | | | | - Frans K Gorus
- Diabetes Research Center, Brussels Free University, Brussels, Belgium
| |
Collapse
|
38
|
Speidel D, Salehi A, Obermueller S, Lundquist I, Brose N, Renström E, Rorsman P. CAPS1 and CAPS2 regulate stability and recruitment of insulin granules in mouse pancreatic beta cells. Cell Metab 2008; 7:57-67. [PMID: 18177725 DOI: 10.1016/j.cmet.2007.11.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 10/15/2007] [Accepted: 11/19/2007] [Indexed: 11/25/2022]
Abstract
CAPS1 and CAPS2 regulate dense-core vesicle release of transmitters and hormones in neuroendocrine cells, but their precise roles in the secretory process remain enigmatic. Here we show that CAPS2(-/-) and CAPS1(+/-);CAPS2(-/-) mice, despite having increased insulin sensitivity, are glucose intolerant and that this effect is attributable to a marked reduction of glucose-induced insulin secretion. This correlates with diminished Ca(2+)-dependent exocytosis, a reduction in the size of the morphologically docked pool, a decrease in the readily releasable pool of secretory vesicles, slowed granule priming, and suppression of second-phase (but not first-phase) insulin secretion. In beta cells of CAPS1(+/-);CAPS2(-/-) mice, the lowered insulin content and granule numbers were associated with an increase in lysosome numbers and lysosomal enzyme activity. We conclude that although CAPS proteins are not required for Ca(2+)-dependent exocytosis to proceed, they exert a modulatory effect on insulin granule priming, exocytosis, and stability.
Collapse
Affiliation(s)
- Dina Speidel
- Department of Clinical Sciences Malmö, Lund University, UMAS, Malmö, Sweden.
| | | | | | | | | | | | | |
Collapse
|
39
|
Uchizono Y, Alarcón C, Wicksteed BL, Marsh BJ, Rhodes CJ. The balance between proinsulin biosynthesis and insulin secretion: where can imbalance lead? Diabetes Obes Metab 2007; 9 Suppl 2:56-66. [PMID: 17919179 DOI: 10.1111/j.1463-1326.2007.00774.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Insulin is stored in pancreatic beta-cells in beta-granules. Whenever insulin is secreted in response to a nutrient secretagogue, there is a complementary increase in proinsulin biosynthesis to replenish intracellular insulin stores. This specific nutrient regulation of proinsulin biosynthesis is predominately regulated at the translational level. Recently, a highly conserved cis-element in the 5'-untranslated region (UTR) of preproinsulin mRNA, named ppIGE, has been identified that is required for specific translational regulation of proinsulin biosynthesis. This ppIGE is also found in the 5'-UTR of certain other translationally regulated beta-granule protein mRNAs, including the proinsulin processing endopeptidases, PC1/3 and PC2. This provides a mechanism whereby proinsulin processing is adaptable to changes in proinsulin biosynthesis. However, relatively few beta-granules undergo secretion, with most remaining in the storage pool for approximately 5 days. Aged beta-granules are retired by intracellular degradation mechanisms, either via crinophagy and/or autophagy, as another long-term means of maintaining beta-granule stores at optimal levels. When a disconnection between insulin production and secretion arises, as may occur in type 2 diabetes, autophagy further increases to maintain beta-granule numbers. However, if this increased autophagy becomes chronic, autophagia-mediated cell death occurs that could then contribute to beta-cell loss in type 2 diabetes.
Collapse
Affiliation(s)
- Y Uchizono
- Comprehensive Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
40
|
Expedited approaches to whole cell electron tomography and organelle mark-up in situ in high-pressure frozen pancreatic islets. J Struct Biol 2007; 161:298-313. [PMID: 18069000 DOI: 10.1016/j.jsb.2007.09.015] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2007] [Revised: 08/28/2007] [Accepted: 09/11/2007] [Indexed: 01/11/2023]
Abstract
We have developed a simplified, efficient approach for the 3D reconstruction and analysis of mammalian cells in toto by electron microscope tomography (ET), to provide quantitative information regarding 'global' cellular organization at approximately 15-20 nm resolution. Two insulin-secreting beta cells-deemed 'functionally equivalent' by virtue of their location at the periphery of the same pancreatic islet-were reconstructed in their entirety in 3D after fast-freezing/freeze-substitution/plastic embedment in situ within a glucose-stimulated islet of Langerhans isolated intact from mouse pancreata. These cellular reconstructions have afforded several unique insights into fundamental structure-function relationships among key organelles involved in the biosynthesis and release of the crucial metabolic hormone, insulin, that could not be provided by other methods. The Golgi ribbon, mitochondria and insulin secretory granules in each cell were segmented for comparative analysis. We propose that relative differences between the two cells in terms of the number, dimensions and spatial distribution (and for mitochondria, also the extent of branching) of these organelles per cubic micron of cellular volume reflects differences in the two cells' individual capacity (and/or readiness) to respond to secretagogue stimulation, reflected by an apparent inverse relationship between the number/size of insulin secretory granules versus the number/size of mitochondria and the Golgi ribbon. We discuss the advantages of this approach for quantitative cellular ET of mammalian cells, briefly discuss its application relevant to other complementary techniques, and summarize future strategies for overcoming some of its current limitations.
Collapse
|
41
|
Lachin JM, Christophi CA, Edelstein SL, Ehrmann DA, Hamman RF, Kahn SE, Knowler WC, Nathan DM. Factors associated with diabetes onset during metformin versus placebo therapy in the diabetes prevention program. Diabetes 2007; 56:1153-9. [PMID: 17395752 PMCID: PMC2533728 DOI: 10.2337/db06-0918] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the Diabetes Prevention Program, treatment of subjects with impaired glucose tolerance with metformin >3.2 years reduced the risk of developing type 2 diabetes by 30% compared with placebo. This study describes the mechanisms of this effect. In proportional hazards regression models with 2,155 subjects, changes in weight, the insulinogenic index (IGR), fasting insulin, and proinsulin were predictive of diabetes, though to different degrees within each group. The mean change in weight, fasting insulin, and proinsulin, but not IGR, differed between groups during the study. The 1.7-kg weight loss with metformin versus a 0.3-kg gain with placebo alone explained 64% of the beneficial metformin effect on diabetes risk. Adjustment for weight, fasting insulin, proinsulin, and other metabolic factors combined explained 81% of the beneficial metformin effect, but it remained nominally significant (P = 0.034). After the addition of changes in fasting glucose, 99% of the group effect was explained and is no longer significant. Treatment of high-risk subjects with metformin results in modest weight loss and favorable changes in insulin sensitivity and proinsulin, which contribute to a reduction in the risk of diabetes apart from the associated reductions in fasting glucose.
Collapse
Affiliation(s)
- John M Lachin
- D, Diabetes Prevention Program Coordinating Center, The Biostatistics Center, George Washington University, 6110 Executive Blvd., Suite 750, Rockville, MD 20852, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Gultice AD, Selesniemi KL, Brown TL. Hypoxia inhibits differentiation of lineage-specific Rcho-1 trophoblast giant cells. Biol Reprod 2006; 74:1041-50. [PMID: 16481593 DOI: 10.1095/biolreprod.105.047845] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Defects in placental development lead to pregnancies at risk for miscarriage and intrauterine growth retardation and are associated with preeclampsia, a leading cause of maternal death and premature birth. In preeclampsia, impaired placental formation has been associated with alterations in a specific trophoblast lineage, the invasive trophoblast cells. In this study, an RT-PCR Trophoblast Gene Expression Profile previously developed by our laboratory was utilized to examine the lineage-specific gene expression of the rat Rcho-1 trophoblast cell line. Our results demonstrated that Rcho-1 cells represent an isolated, trophoblast population committed to the giant cell lineage. RT-PCR analysis revealed that undifferentiated Rcho-1 cells expressed trophoblast stem cell marker, Id2, and trophoblast giant cell markers. On differentiation, Rcho-1 cells downregulated Id2 and upregulated Csh1, a marker of the trophoblast giant cell lineage. Neither undifferentiated nor differentiated Rcho-1 cells expressed spongiotrophoblast marker Tpbpa or labyrinthine markers Esx1 and Tec. Differentiating Rcho-1 cells in hypoxia did not alter the expression of lineage-specific markers; however, hypoxia did inhibit the downregulation of the trophoblast stem cell marker Id2. Differentiation in hypoxia also blocked the induction of CSH1 protein. In addition, hypoxia inhibited stress fiber formation and abolished the induction of palladin, a protein associated with stress fiber formation and focal adhesions. Thus, Rcho-1 cells can be maintained as a proliferative, lineage-specific cell line that is committed to the trophoblast giant cell lineage on differentiation in both normoxic and hypoxic conditions; however, hypoxia does inhibit aspects of trophoblast giant cell differentiation at the molecular, morphological, and functional levels.
Collapse
Affiliation(s)
- Amy D Gultice
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435, USA
| | | | | |
Collapse
|
43
|
Abstract
Type 2 diabetes is caused by progressively increasing insulin resistance coupled with deteriorating beta-cell function, and there is a growing body of evidence to suggest that both of these defects precede hyperglycaemia by many years. Several studies have demonstrated the importance of maintaining beta-cell function in patients with Type 2 diabetes. This review explores parameters used to indicate beta-cell dysfunction, in Type 2 diabetes and in individuals with a predisposition to the disease. A genetic element undoubtedly underlies beta-cell dysfunction; however, a number of modifiable components are also associated with beta-cell deterioration, such as chronic hyperglycaemia and elevated free fatty acids. There is also evidence for a link between pro-inflammatory cytokines and impairment of insulin-signalling pathways in the beta-cell, and the potential role of islet amyloid deposition in beta-cell deterioration continues to be a subject for debate. The thiazolidinediones are a class of agents that have demonstrated clinical improvements in indices of beta-cell dysfunction and have the potential to improve beta-cell function. Data are accumulating to show that this therapeutic group offers a number of advantages over traditionally employed oral agents, and these data demonstrate the growing importance of thiazolidinediones in Type 2 diabetes management.
Collapse
Affiliation(s)
- L A Leiter
- Department of Medicine, University of Toronto, St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
44
|
Kitiphongspattana K, Mathews CE, Leiter EH, Gaskins HR. Proteasome Inhibition Alters Glucose-stimulated (Pro)insulin Secretion and Turnover in Pancreatic β-Cells. J Biol Chem 2005; 280:15727-34. [PMID: 15705591 DOI: 10.1074/jbc.m410876200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metabolic labeling studies were conducted in freshly isolated mouse islets and a beta-cell line (MIN6) to examine the effects of proteasome inhibition on glucose-stimulated (pro)insulin synthesis and secretion. Glucose-stimulated (pro)insulin synthesis, as determined by the incorporation of [(3)H]tyrosine, decreased significantly by 90% in islets and 71% in MIN6 cells pretreated with the proteasome inhibitor lactacystin (10 microM) for 2 h. To follow the fate of newly synthesized (pro)insulin, islets were pulse-labeled with [(3)H]tyrosine (40 microCi) for 20 min and chased +/- lactacystin (10 microM) for up to 4 h. The release of newly synthesized (pro)insulin ([(3)H]tyrosine-labeled) was similar between lactacystin-treated and control islets despite a 51% decrease (p <0.05) in total immunoreactive (pro)insulin secretion by lactacystin-treated islets. The specific radioactivity of [(3)H]tyrosine-labeled (pro)insulin in the extracellular medium of lactacystin-treated islets (0.52 +/- 0.16 cpm/microunits) was 2-fold greater relative to control islets (0.25 +/- 0.06 cpm/microunits). Induction of the unfolded protein response by lactacystin, as evidenced by the up-regulation of endoplasmic reticulum (ER) chaperones (GRP78/BiP, GRP94, protein disulfide isomerase) and induction of the stress-inducible transcription factor C/EBP-homologous protein/GADD153 (CHOP/GADD153), likely contributed to the release of newly synthesized (pro)insulin to relieve ER stress. The present data indicate proteasome inhibition did not prevent, but increased (p <0.05), the intracellular degradation of [(3)H]tyrosine-labeled (pro-)insulin from 8 to 24% in islets. Collectively, these data indicate beta-cells may balance glucose-stimulated (pro)insulin synthesis and secretion with the activity of the proteasome to regulate protein concentrations in the ER.
Collapse
Affiliation(s)
- Kajorn Kitiphongspattana
- Division of Nutritional Sciences, Department of Animal Sciences, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
45
|
Lee W, Wayne NL. Secretion of locally synthesized neurohormone from neurites of peptidergic neurons. J Neurochem 2003. [DOI: 10.1046/j.1471-4159.2003.02194.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Bergman RN, Finegood DT, Kahn SE. The evolution of beta-cell dysfunction and insulin resistance in type 2 diabetes. Eur J Clin Invest 2002; 32 Suppl 3:35-45. [PMID: 12028373 DOI: 10.1046/j.1365-2362.32.s3.5.x] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Insulin resistance and beta-cell dysfunction have important roles in the pathogenesis and evolution of type 2 diabetes. The development of precise methods to measure these factors has helped us to define the relationship between them and evidence is reviewed that changes in insulin sensitivity are compensated by inverse changes in beta-cell responsiveness such that the product of insulin sensitivity and insulin secretion (the disposition index) remains constant. While the disposition index promises to be a useful tool to predict individuals at high risk of developing type 2 diabetes, other factors that contribute to beta-cell dysfunction and mark disease onset and progression include impairments in proinsulin processing and insulin secretion, decreased beta-cell mass and islet amyloid deposition. Emerging data indicate that anti-diabetic agents, such as the thiazolidinediones that simultaneously target insulin resistance and beta-cell dysfunction, may have a beneficial impact on disease onset and progression. Several landmark clinical studies are underway to investigate if their initial promise is supported by data from large-scale trials.
Collapse
Affiliation(s)
- R N Bergman
- Diabetes Research Center, Keck School of Medicine, Department of Physiology and Biophysics, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | |
Collapse
|
47
|
Hanefeld M, Haffner SM, Menschikowski M, Koehler C, Temelkova-Kurktschiev T, Wildbrett J, Fischer S. Different effects of acarbose and glibenclamide on proinsulin and insulin profiles in people with Type 2 diabetes. Diabetes Res Clin Pract 2002; 55:221-7. [PMID: 11850098 DOI: 10.1016/s0168-8227(01)00347-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM In a double-blind, placebo-controlled study, we compared the effect of acarbose (A) and glibenclamide (G) on post-prandial (pp) and 24-h profiles of proinsulin and insulin. METHODS Twenty-seven patients with Type 2 diabetes mellitus insufficiently controlled with diet alone were randomised to receive acarbose, 100 mg thrice daily, glibenclamide, 1 mg thrice daily, or placebo. Before and after 16 weeks of treatment, 24-h profiles of proinsulin, insulin and glucose (fasting, 1 h after breakfast and every 3-h for a 24-h period) were measured under metabolic ward conditions with standardised meals. RESULTS With acarbose, a reduced 24-h level of proinsulin was observed compared with glibenclamide (AUC 1096 +/- 118 vs. 1604 +/- 174 pmol/l per h, P<0.05) at 16 weeks. The breakfast increment of proinsulin was lower with acarbose than glibenclamide (6.8 vs. 19.3 pmol/l, P<0.05) as was the level at that time (37.3 +/- 5.3 vs. 56.4 +/- 7.5 pmol/l, P<0.05). A lower AUC of insulin after treatment was also observed with acarbose than glibenclamide (7.9 +/- 0.9 vs. 14.8 +/- 4.5 nmol/l per h, P<0.05), as also for 1-h increment (81 +/- 26, vs. 380 +/- 120 pmol/l, P<0.01) and 1-h level (325 +/- 30 vs. 621 +/- 132 pmol/l, P<0.01). Acarbose reduced 1-h breakfast glucose increment (baseline 6.3 +/- 0.6, 16-week 3.5 +/- 0.6 mmol/l, P<0.01) and 1-h glucose level (18.1 +/- 1.1 and 14.5 +/- 1.3 mmol/l, P<0.01), whereas glibenclamide did not (6.6 +/- 0.7 vs. 5.4 +/- 0.6 mmol/l and 18.9 +/- 1.5 vs. 15.3 +/- 1.3 mmol/l). CONCLUSIONS Measurement of circadian excursions of proinsulin and insulin reveals distinct differences in meal-time proinsulin and insulin increment and level between acarbose and glibenclamide whereas fasting levels of these insulin fractions remained unaffected.
Collapse
Affiliation(s)
- M Hanefeld
- Centre for Clinical Studies GWT TU Dresden, Technical University, Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
48
|
Hanley AJG, McKeown-Eyssen G, Harris SB, Hegele RA, Wolever TMS, Kwan J, Zinman B. Cross-sectional and prospective associations between abdominal adiposity and proinsulin concentration. J Clin Endocrinol Metab 2002; 87:77-83. [PMID: 11788626 DOI: 10.1210/jcem.87.1.8139] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The objective of this study was to investigate the associations of total and abdominal obesity with variation in proinsulin concentration in a Native Canadian population experiencing an epidemic of type 2 diabetes mellitus (DM). Between 1993 and 1995, 728 members of a Native Canadian community participated in a population-based survey to determine the prevalence and risk factors for type 2 DM. Samples for glucose, C-peptide, and proinsulin were drawn after an overnight fast, and a 75-g oral glucose tolerance test was administered. Type 2 DM and impaired glucose tolerance (IGT) were diagnosed using World Health Organization criteria. Height, weight, waist circumference, and percent body fat were measured. In 1998, 95 individuals who, at baseline, had IGT or normal glucose tolerance with an elevated 2-h glucose level (> or = 7.0 mM) participated in a follow-up evaluation using the same protocol. After adjustment for age, sex, C-peptide concentration, per cent body fat, and waist circumference, proinsulin was found to be significantly elevated in diabetic subjects, relative to subjects with both impaired and normal glucose tolerance (both P < 0.0001); and the concentration in those with IGT was higher, compared with normals (P < 0.0001). Among nondiabetic subjects, proinsulin showed significant univariate associations with percent body fat, body mass index, and waist circumference (r = 0.34, 0.45, 0.41, respectively, all P < 0.0001). After adjustment for body fat and other covariates, waist circumference remained significantly associated with proinsulin concentration in nondiabetic subjects (r = 0.20, P < 0.0001). In prospective analysis, adjusted for covariates (including baseline IGT and follow-up glucose tolerance status), baseline waist circumference was positively associated with both follow-up and change in proinsulin concentration (r = 0.27, P = 0.01; r = 0.24, P = 0.03, respectively). These data highlight the detrimental effects of abdominal obesity on beta-cell function, and support the hypothesis that beta-cell dysfunction occurs early in the natural history of glucose intolerance.
Collapse
Affiliation(s)
- Anthony J G Hanley
- Department of Public Health Sciences, University of Toronto, Ontario M5S 1A8, Canada.
| | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
|