1
|
Lv X, Gao J, Yang J, Zou Y, Chen J, Sun Y, Song J, Liu Y, Wang L, Xia L, Yu S, Wei Z, Chen L, Hou X. Clinical and functional characterization of a novel KCNJ11 (c.101G > A, p.R34H) mutation associated with maturity-onset diabetes mellitus of the young type 13. Endocrine 2024; 86:515-527. [PMID: 38761346 DOI: 10.1007/s12020-024-03873-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
PURPOSE This study aimed to describe the clinical features, diagnostic and therapeutic course of a patient with MODY13 caused by KCNJ11 (c.101G > A, p.R34H) and how it contributes to the pathogenesis of MODY13, and to explore new therapeutic targets. METHODS Whole-exome sequencing was used to screen prediagnosed individuals and family members with clinically suspected KCNJ11 mutations. Real-time fluorescence quantitative PCR, western blotting, thallium flux of potassium channels, glucose-stimulated insulin secretion (GSIS), and immunofluorescence assays were used to analyze the regulation of insulin secretion by the KCNJ11 mutant in MIN6 cells. Daily blood glucose levels were continuously monitored for 14 days in the proband using the ambulatory blood glucose meter (SIBIONICS). RESULTS Mutation screening of the entire exon of the gene identified a heterozygous KCNJ11 (c.101G > A, p.R34H) mutation in the proband and his mother. Cell-based GSIS assays after transfection of MIN6 using wild-type and mutant plasmids revealed that this mutation impaired insulin secretory function. Furthermore, we found that this impaired secretory function is associated with reduced functional activity of the mutant KCNJ11 protein and reduced expression of the insulin secretion-associated exocytosis proteins STXBP1 and SNAP25. CONCLUSION For the first time, we revealed the pathogenic mechanism of KCNJ11 (c.101G > A, p.R34H) associated with MODY13. This mutant can cause alterations in KATP channel activity, reduce sensitivity to glucose stimulation, and impair pancreatic β-cell secretory function by downregulating insulin secretion-associated exocytosis proteins. Therefore, oral sulfonylurea drugs can lower blood glucose levels through pro-insulinotropic effects and are more favorable for patients with this mutation.
Collapse
Affiliation(s)
- Xiaoyu Lv
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jing Gao
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jingwen Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ying Zou
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jun Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yujing Sun
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jia Song
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yiran Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Liming Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Longqing Xia
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Shijia Yu
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Zichun Wei
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, Shandong, China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, 250012, Shandong, China
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, Shandong, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, 250012, Shandong, China.
| |
Collapse
|
2
|
Chandran S, Verma D, Rajadurai VS, Yap F. Case report: A novel HNF1A variant linked to gestational diabetes, congenital hyperinsulinism, and diazoxide hypersensitivity. Front Endocrinol (Lausanne) 2024; 15:1471596. [PMID: 39421536 PMCID: PMC11484256 DOI: 10.3389/fendo.2024.1471596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024] Open
Abstract
Diazoxide (DZX) remains the first-line medication for the treatment of prolonged and persistent forms of hyperinsulinemic hypoglycemia (HH). In nearly 40%-50% of cases of HH, the genetic mechanism is unidentified. Almost half of the infants with permanent or genetic causes are DZX sensitive, but hypersensitivity to DZX is extremely rare, and the mechanism is poorly understood. Here, we report for the first time a case of DZX hypersensitivity in a neonate with HH who inherited a novel HNF1A variant from the mother. A term, male large-for-gestational-age infant of a diabetic mother presented with early onset of severe, recurrent hypoglycemia. Critical blood samples when hypoglycemic confirmed HH. Diazoxide was initiated at conventional doses of 5 mg/kg/day, which resulted in hyperglycemia (blood glucose, 16.6 mmol/L) within 48 h. Glucose infusion was rapidly weaned off. DZX was withheld and eventually stopped. Following 3 days of milk feeds alone with a normal glucose profile, suspecting a resolution of HH, he underwent a 6-h fasting study and passed. While on glucose monitoring in the hospital, he again developed hypoglycemic episodes, and the critical blood samples confirmed HH. DZX was restarted at a lower dose of 3 mg/kg/day, which required further down-titration to 0.7 mg/kg/day before steady euglycemia was obtained. No more episodes of hypo- or hyperglycemia occurred, and he passed a safety fasting study before discharge. Molecular genetic testing identified a novel HNF1A mutation in the mother-child dyad, whereas the father tested negative. We concluded that the HH phenotype due to this novel HNF1A mutation can be mutation specific and require a very low dose of DZX. Clinicians should observe closely for the risk of diabetic ketoacidosis and hyperglycemic hyperosmolar state while initiating DZX therapy.
Collapse
Affiliation(s)
- Suresh Chandran
- Division of Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Pediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
- Pediatric Academic Clinical Programme, Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Deepti Verma
- Division of Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Victor Samuel Rajadurai
- Division of Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Pediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
- Pediatric Academic Clinical Programme, Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Fabian Yap
- Division of Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Pediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
3
|
Perge K, Capel E, Senée V, Julier C, Vigouroux C, Nicolino M. Ciliopathies are responsible for short stature and insulin resistance: A systematic review of this clinical association regarding SOFT syndrome. Rev Endocr Metab Disord 2024; 25:827-838. [PMID: 39017987 PMCID: PMC11470920 DOI: 10.1007/s11154-024-09894-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
SOFT syndrome (Short stature-Onychodysplasia-Facial dysmorphism-hypoTrichosis) is a rare primordial dwarfism syndrome caused by biallelic variants in POC1A encoding a centriolar protein. To refine the phenotypic spectrum of SOFT syndrome, recently shown to include metabolic features, we conducted a systematic review of all published cases (19 studies, including 42 patients). The SOFT tetrad affected only 24 patients (57%), while all cases presented with short stature from birth (median height: -5.5SDS([-8.5]-[-2.8])/adult height: 132.5 cm(103.5-148)), which was most often disproportionate (90.5%), with relative macrocephaly. Bone involvement resulted in short hands and feet (100%), brachydactyly (92.5%), metaphyseal (92%) or epiphyseal (84%) anomalies, and/or sacrum/pelvis hypoplasia (58%). Serum IGF-I was increased (median IGF-I level: + 2 SDS ([-0.5]-[+ 3])). Recombinant human growth hormone (rhGH) therapy was stopped for absence/poor growth response (7/9 patients, 78%) and/or hyperglycemia (4/9 patients, 45%). Among 11 patients evaluated, 10 (91%) presented with central distribution of fat (73%), clinical (64%) and/or biological insulin resistance (IR) (100%, median HOMA-IR: 18), dyslipidemia (80%), and hepatic steatosis (100%). Glucose tolerance abnormalities affected 58% of patients aged over 10 years. Patients harbored biallelic missense (52.4%) or truncating (45.2%) POC1A variants. Biallelic null variants, affecting 36% of patients, were less frequently associated with the SOFT tetrad (33% vs 70% respectively, p = 0.027) as compared to other variants, without difference in the prevalence of metabolic abnormalities. POC1A should be sequenced in children with short stature, altered glucose/insulin homeostasis and/or centripetal fat distribution. In patients with SOFT syndrome, rhGH treatment is not indicated, and IR-related complications should be regularly screened and monitored.PROSPERO registration: CRD42023460876.
Collapse
Affiliation(s)
- Kevin Perge
- Pediatric Endocrinology, Diabetology and Metabolism Department, Femme Mère Enfant Hospital, Hospices Civils de Lyon, Bron, France.
- Claude Bernard University, Lyon 1, Lyon, France.
- Paris University, Institut Cochin, INSERM U1016, CNRS UMR-8104, Paris, France.
| | - Emilie Capel
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris, France
| | - Valérie Senée
- Paris University, Institut Cochin, INSERM U1016, CNRS UMR-8104, Paris, France
| | - Cécile Julier
- Paris University, Institut Cochin, INSERM U1016, CNRS UMR-8104, Paris, France
| | - Corinne Vigouroux
- Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris, France
- Department of Endocrinology, Diabetology and Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
- Department of Molecular Biology and Genetics, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, Paris, France
| | - Marc Nicolino
- Pediatric Endocrinology, Diabetology and Metabolism Department, Femme Mère Enfant Hospital, Hospices Civils de Lyon, Bron, France
- Claude Bernard University, Lyon 1, Lyon, France
| |
Collapse
|
4
|
Katra B, Szopa M. Course of pregnancy and 10-year observation of twins diagnosed with GCK-MODY in the neonatal period: a case report. Front Endocrinol (Lausanne) 2024; 15:1395424. [PMID: 39411314 PMCID: PMC11473288 DOI: 10.3389/fendo.2024.1395424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
Monogenic diabetes accounts for 5% of all incidence of hyperglycemia and Maturity Onset Diabetes of the Young (MODY) is the most common form. In GCK-MODY, one of the most common forms of MODY, hyperglycemia is caused by a mutation of a gene responsible for coding glucokinase. At the clinical level, this condition presents as persistent, moderate and asymptomatic elevated fasting glucose levels and has a relatively low incidence of micro and macro-vascular complications. In general, the treatment of choice is to follow and maintain a healthy lifestyle. The incidence of GCK-MODY during pregnancy is 2% on average (0-6%). In this report, we introduce a case of a woman diagnosed with GCK-MODY during the pregnancy with twins, a boy and a girl, diagnosed with GCK-MODY after birth. We discuss the course of pregnancy, the need for access to fast and uncomplicated genetic diagnostics in utero, and the impact of the MODY diagnosis on the life of the mother and that of her children. In our case, the diagnosis of GCK-MODY was associated with a feeling of relief, after years of uncertainty, and helped to introduce more appropriate eating behaviors and lifestyle changes for both the mother and her children.
Collapse
Affiliation(s)
- Barbara Katra
- Department of Metabolic Diseases, Jagiellonian University Medical College, Kraków, Poland
- Department of Metabolic Diseases and Diabetology, University Hospital in Krakow, Kraków, Poland
| | - Magdalena Szopa
- Department of Metabolic Diseases, Jagiellonian University Medical College, Kraków, Poland
- Department of Metabolic Diseases and Diabetology, University Hospital in Krakow, Kraków, Poland
| |
Collapse
|
5
|
Serbis A, Kantza E, Siomou E, Galli-Tsinopoulou A, Kanaka-Gantenbein C, Tigas S. Monogenic Defects of Beta Cell Function: From Clinical Suspicion to Genetic Diagnosis and Management of Rare Types of Diabetes. Int J Mol Sci 2024; 25:10501. [PMID: 39408828 PMCID: PMC11476815 DOI: 10.3390/ijms251910501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Monogenic defects of beta cell function refer to a group of rare disorders that are characterized by early-onset diabetes mellitus due to a single gene mutation affecting insulin secretion. It accounts for up to 5% of all pediatric diabetes cases and includes transient or permanent neonatal diabetes, maturity-onset diabetes of the young (MODY), and various syndromes associated with diabetes. Causative mutations have been identified in genes regulating the development or function of the pancreatic beta cells responsible for normal insulin production and/or release. To date, more than 40 monogenic diabetes subtypes have been described, with those caused by mutations in HNF1A and GCK genes being the most prevalent. Despite being caused by a single gene mutation, each type of monogenic diabetes, especially MODY, can appear with various clinical phenotypes, even among members of the same family. This clinical heterogeneity, its rarity, and the fact that it shares some features with more common types of diabetes, can make the clinical diagnosis of monogenic diabetes rather challenging. Indeed, several cases of MODY or syndromic diabetes are accurately diagnosed in adulthood, after having been mislabeled as type 1 or type 2 diabetes. The recent widespread use of more reliable sequencing techniques has improved monogenic diabetes diagnosis, which is important to guide appropriate treatment and genetic counselling. The current review aims to summarize the latest knowledge on the clinical presentation, genetic confirmation, and therapeutic approach of the various forms of monogenic defects of beta cell function, using three imaginary clinical scenarios and highlighting clinical and laboratory features that can guide the clinician in reaching the correct diagnosis.
Collapse
Affiliation(s)
- Anastasios Serbis
- Department of Pediatrics, University of Ioannina, 45110 Ioannina, Greece; (E.K.); (E.S.)
- Department of Endocrinology & Diabetes Center, University of Ioannina, 45110 Ioannina, Greece;
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, 54636 Thessaloniki, Greece;
| | - Evanthia Kantza
- Department of Pediatrics, University of Ioannina, 45110 Ioannina, Greece; (E.K.); (E.S.)
| | - Ekaterini Siomou
- Department of Pediatrics, University of Ioannina, 45110 Ioannina, Greece; (E.K.); (E.S.)
| | - Assimina Galli-Tsinopoulou
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, 54636 Thessaloniki, Greece;
| | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Diabetes and Metabolism and Aghia Sophia ENDO-ERN Center for Rare Pediatric Endocrine Disorders, First Department of Pediatrics, Medical School, Aghia Sophia Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stelios Tigas
- Department of Endocrinology & Diabetes Center, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
6
|
Ka M, Hawkins E, Pouponnot C, Duvillié B. Modelling human diabetes ex vivo: a glance at maturity onset diabetes of the young. Front Endocrinol (Lausanne) 2024; 15:1427413. [PMID: 39387055 PMCID: PMC11461259 DOI: 10.3389/fendo.2024.1427413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Diabetes is a complex metabolic disease which most commonly has a polygenic origin; however, in rare cases, diabetes may be monogenic. This is indeed the case in both Maturity Onset Diabetes of the Young (MODY) and neonatal diabetes. These disease subtypes are believed to be simpler than Type 1 (T1D) and Type 2 Diabetes (T2D), which allows for more precise modelling. During the three last decades, many studies have focused on rodent models. These investigations provided a wealth of knowledge on both pancreas development and beta cell function. In particular, they allowed the establishment of a hierarchy of the transcription factors and highlighted the role of microenvironmental factors in the control of progenitor cell proliferation and differentiation. Transgenic mice also offered the possibility to decipher the mechanisms that define the functional identity of the pancreatic beta cells. Despite such interest in transgenic mice, recent data have also indicated that important differences exist between mice and human. To overcome these limitations, new human models are necessary. In the present review, we describe these ex vivo models, which are created using stem cells and organoids, and represent an important step toward islet cell therapy and drug discovery.
Collapse
Affiliation(s)
- Moustapha Ka
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
- Equipe Labellisée par la Ligue contre le cancer, Orsay, France
| | - Eleanor Hawkins
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
- Equipe Labellisée par la Ligue contre le cancer, Orsay, France
| | - Celio Pouponnot
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
- Equipe Labellisée par la Ligue contre le cancer, Orsay, France
| | - Bertrand Duvillié
- Department of Signaling, Radiobiology and Cancer, Institut Curie, Orsay, France
- INSERM U1021, Centre Universitaire, Orsay, France
- CNRS UMR 3347, Centre Universitaire, Orsay, France
- Université Paris-Saclay, Orsay, France
- PSL Research University, Paris, France
- Equipe Labellisée par la Ligue contre le cancer, Orsay, France
| |
Collapse
|
7
|
Welsch S, Harvengt A, Gallo P, Martin M, Beckers D, Mouraux T, Seret N, Lebrethon MC, Helaers R, Brouillard P, Vikkula M, Lysy PA. A New Tool to Identify Pediatric Patients with Atypical Diabetes Associated with Gene Polymorphisms. Diabetes Metab J 2024; 48:949-959. [PMID: 38523249 PMCID: PMC11449816 DOI: 10.4093/dmj.2023.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/25/2023] [Indexed: 03/26/2024] Open
Abstract
BACKGRUOUND Recent diabetes subclassifications have improved the differentiation between patients with type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus despite several overlapping features, yet without considering genetic forms of diabetes. We sought to facilitate the identification of monogenic diabetes by creating a new tool that we validated in a pediatric maturity-onset diabetes of the young (MODY) cohort. METHODS We first created the DIAgnose MOnogenic DIAbetes (DIAMODIA) criteria based on the pre-existing, but incomplete, MODY calculator. This new score is composed of four strong and five weak criteria, with patients having to display at least one weak and one strong criterion. RESULTS The effectiveness of the DIAMODIA criteria was evaluated in two patient cohorts, the first consisting of patients with confirmed MODY diabetes (n=34) and the second of patients with T1DM (n=390). These DIAMODIA criteria successfully detected 100% of MODY patients. Multiple correspondence analysis performed on the MODY and T1DM cohorts enabled us to differentiate MODY patients from T1DM. The three most relevant variables to distinguish a MODY from T1DM profile were: lower insulin-dose adjusted A1c score ≤9, glycemic target-adjusted A1c score ≤4.5, and absence of three anti-islet cell autoantibodies. CONCLUSION We validated the DIAMODIA criteria, as it effectively identified all monogenic diabetes patients (MODY cohort) and succeeded to differentiate T1DM from MODY patients. The creation of this new and effective tool is likely to facilitate the characterization and therapeutic management of patients with atypical diabetes, and promptly referring them for genetic testing which would markedly improve clinical care and counseling, as well.
Collapse
Affiliation(s)
- Sophie Welsch
- Pediatrics Unit, Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Antoine Harvengt
- Pediatrics Unit, Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Paola Gallo
- Pediatric Endocrinology Unit, Saint-Luc University Clinics, Brussels, Belgium
| | - Manon Martin
- Louvain Institute of Biomolecular Science and Technology (IBST) Unit, UCLouvain, Brussels, Belgium
| | - Dominique Beckers
- Pediatric Endocrinology and Diabetology Unit, CHU-UCL Namur sites Saint-Elisabeth and Mont-Godinne, Namur, Belgium
| | - Thierry Mouraux
- Pediatric Endocrinology and Diabetology Unit, CHU-UCL Namur sites Saint-Elisabeth and Mont-Godinne, Namur, Belgium
| | - Nicole Seret
- Pediatric Endocrinology and Diabetology Unit, Clinique CHC MontLégia (CHC MontLégia Clinic), Liège, Belgium
| | | | - Raphaël Helaers
- Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Philippe A. Lysy
- Pediatrics Unit, Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Pediatric Endocrinology Unit, Saint-Luc University Clinics, Brussels, Belgium
| |
Collapse
|
8
|
Tanaka S, Akagawa H, Azuma K, Higuchi S, Ujiie A, Hashimoto K, Iwasaki N. High prevalence of copy number variations in the Japanese participants with suspected MODY. Clin Genet 2024; 106:293-304. [PMID: 38733153 DOI: 10.1111/cge.14544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Maturity-Onset Diabetes of the Young (MODY) is a diabetes mellitus subtype caused by a single gene. The detection rate of the responsible gene is 27% in the United Kingdom, indicating that the causative gene remains unknown in the majority of clinically diagnosed MODY cases. To improve the detection rate, we applied comprehensive genetic testing using whole exome sequencing (WES) followed by Multiplex Ligation-dependent Probe Amplification (MLPA) and functional analyses. Twenty-one unrelated Japanese participants with MODY were enrolled in the study. To detect copy number variations (CNVs), WES was performed first, followed by MLPA analysis for participants who were negative on the basis of WES. Undetermined variants were analyzed according to their functional properties. WES identified 7 pathogenic and 3 novel likely pathogenic variants in the 21 participants. Functional analyses revealed that 1 in 3 variants was pathogenic. MLPA analysis applied to the remaining 13 undetermined samples identified 4 cases with pathogenic CNVs: 3 in HNF4A and 1 in HNF1B. Pathogenic variants were identified in 12 participants (12/21, 57.1%) - relatively high rate reported to date. Notably, one-third of the participants had CNVs in HNF4A or HNF1B, indicating a limitation of WES-only screening.
Collapse
Affiliation(s)
- Satoshi Tanaka
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
- Diabetes and Metabolism, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroyuki Akagawa
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
- Department of Neurosurgery, Tokyo Women's Medical University Adachi Medical Center, Tokyo, Japan
| | - Kenkou Azuma
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| | - Sayaka Higuchi
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsushi Ujiie
- Department of Diabetes, Endocrinology and Hematology, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Koshi Hashimoto
- Department of Diabetes, Endocrinology and Hematology, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Naoko Iwasaki
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
- Diabetes and Metabolism, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
- Division of Diabetes, Endocrinology and Metabolism, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| |
Collapse
|
9
|
Broome DT, Mehdi A, Chase C, de Freitas MF, Gregg BE, Oral EA, Herman WH. Use of a Dual GIP/GLP-1 Receptor Agonist in HNF1A-MODY and HNF4A-MODY. Diabetes Care 2024; 47:e65-e66. [PMID: 39008714 PMCID: PMC11362115 DOI: 10.2337/dc24-0730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024]
Affiliation(s)
- David T. Broome
- Division of Internal Medicine, Department of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI
| | - Alina Mehdi
- Division of Internal Medicine, Department of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI
| | - Colby Chase
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Maria Foss de Freitas
- Division of Internal Medicine, Department of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI
| | - Brigid E. Gregg
- Division of Internal Medicine, Department of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI
| | - Elif A. Oral
- Division of Internal Medicine, Department of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI
| | - William H. Herman
- Division of Internal Medicine, Department of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI
| |
Collapse
|
10
|
Aung NL. Plasma Glucose. Clin Diabetes 2024; 42:574-578. [PMID: 39429450 PMCID: PMC11486848 DOI: 10.2337/cd24-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
|
11
|
Sharma M, Maurya K, Nautiyal A, Chitme HR. Monogenic Diabetes: A Comprehensive Overview and Therapeutic Management of Subtypes of Mody. Endocr Res 2024:1-11. [PMID: 39106207 DOI: 10.1080/07435800.2024.2388606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND Monogenic diabetes often occurs as a result of single-gene mutations. The illness is minimally affected by environmental and behavioral factors, and it constitutes around one to five percent of all cases of diabetes. METHODS Newborn diabetes mellitus (NDM) and maturity-onset diabetes of the young (MODY) are the predominant causes of monogenic diabetes, accounting for a larger proportion of cases, while syndromic diabetes represents a smaller percentage. MODY, a group of inherited non-autoimmune diabetes mellitus disorders, is quite common. However, it remains frequently misdiagnosed despite increasing public awareness. The condition is characterized by insulin resistance, the development of diabetes at a young age (before 25 years), mild high blood sugar levels, inheritance in an autosomal dominant pattern, and the preservation of natural insulin production. RESULTS Currently, there are 14 distinct subtypes of MODY that have been identified. Each subtype possesses distinct characteristics in terms of their frequency, clinical symptoms, severity of diabetes, related complications, and response to medicinal interventions. Due to the clinical similarities, lack of awareness, and high expense of genetic testing, distinguishing between type I (T1D) and type II diabetes mellitus (T2D) can be challenging, resulting in misdiagnosis of this type of diabetes. As a consequence, a significant number of individuals are being deprived of adequate medical attention. Accurate diagnosis enables the utilization of novel therapeutic strategies and enhances the management of therapy in comparison to type II and type I diabetes. CONCLUSION This article offers a concise overview of the clinical subtypes and characteristics of monogenic diabetes. Furthermore, this article discusses the various subtypes of MODY, as well as the process of diagnosing, managing, and treating the condition. It also addresses the difficulties encountered in detecting and treating MODY.
Collapse
Affiliation(s)
- Manisha Sharma
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Kajal Maurya
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Anuj Nautiyal
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | | |
Collapse
|
12
|
Narasimhegowda M, Nagarajappa VH, Palany R. A case series of maturity-onset diabetes of the young highlighting atypical presentations and the implications of genetic diagnosis. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e230239. [PMID: 39420905 PMCID: PMC11326734 DOI: 10.20945/2359-4292-2023-0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/05/2024] [Indexed: 10/19/2024]
Abstract
Maturity-onset diabetes of the young (MODY) is a clinically heterogeneous group of monogenic diabetes characterized by onset at a young age and an autosomal dominant mode of inheritance. Notably, MODY accounts for 2%-5% of all diabetes cases, and its distinction from types 1 (T1DM) and 2 (T2DM) diabetes mellitus is often challenging. We report herein the cases of two girls and a boy who presented initially with diabetic ketoacidosis. In view of the strong family history of diabetes in all three of them, the diagnosis of MODY was considered and confirmed by molecular testing. The patient in Case 1 (a 10-year-old girl) had a variation in the HNF1A gene (MODY 3). The patient in Case 2 (a 13-year-old girl) had a variation in the HNF1B gene (MODY 5) and was also clinically diagnosed with HNF1B MODY due to short stature, abnormal renal function, renal cysts, unicornuate uterus, and diabetic ketoacidosis at presentation. The patient in Case 3 (a 14-year-old boy) had a variation in the KCNJ11 gene (MODY 13) and presented with diabetic ketoacidosis; after initially being treated as having T1DM, he developed progressive weight gain, acanthosis nigricans, and decreased requirement of insulin. The patients in Cases 1 and 3 were subsequently treated with oral sulfonylureas and insulin was gradually tapered and interrupted, resulting in drastic improvement in glucose control. The patient in Case 2 remained on insulin, as this is the appropriate management for MODY 5. This case series demonstrates that atypical cases of MODY with ketoacidosis do occur, underscoring the potential for this complication within the phenotypic spectrum of MODY. In patients with atypical presentations, a thorough family history taking may reveal the diagnosis of MODY.
Collapse
Affiliation(s)
- Meghana Narasimhegowda
- Division of Pediatric and Adolescent EndocrinologyIndira Gandhi Institute of Child HealthBengaluruIndia Division of Pediatric and Adolescent Endocrinology, Indira Gandhi Institute of Child Health, Bengaluru, India
| | - Vani Hebbal Nagarajappa
- Division of Pediatric and Adolescent EndocrinologyIndira Gandhi Institute of Child HealthBengaluruIndia Division of Pediatric and Adolescent Endocrinology, Indira Gandhi Institute of Child Health, Bengaluru, India
| | - Raghupathy Palany
- Division of Pediatric and Adolescent EndocrinologyIndira Gandhi Institute of Child HealthBengaluruIndia Division of Pediatric and Adolescent Endocrinology, Indira Gandhi Institute of Child Health, Bengaluru, India
| |
Collapse
|
13
|
Peixoto-Barbosa R, Calliari LE, Crispim F, Moisés RS, Dib SA, Reis AF, Giuffrida FMA. Clinical screening for GCK-MODY in 2,989 patients from the Brazilian Monogenic Diabetes Study Group (BRASMOD) and the Brazilian Type 1 Diabetes Study Group (BrazDiab1SG). ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e230314. [PMID: 39420902 PMCID: PMC11326741 DOI: 10.20945/2359-4292-2023-0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/03/2024] [Indexed: 10/19/2024]
Abstract
Objectives To evaluate the accuracy of routinely available parameters in screening for GCK maturity-onset diabetes of the young (MODY), leveraging data from two large cohorts - one of patients with GCK-MODY and the other of patients with type 1 diabetes (T1D). Materials and methods The study included 2,687 patients with T1D, 202 patients with clinical features of MODY but without associated genetic variants (NoVar), and 100 patients with GCK-MODY (GCK). Area under the receiver-operating characteristic curve (ROC-AUC) analyses were used to assess the performance of each parameter - both alone and incorporated into regression models - in discriminating between groups. Results The best parameter discriminating between GCK-MODY and T1D was a multivariable model comprising glycated hemoglobin (HbA1c), fasting plasma glucose, age at diagnosis, hypertension, microvascular complications, previous diabetic ketoacidosis, and family history of diabetes. This model had a ROC-AUC value of 0.980 (95% confidence interval [CI] 0.974-0.985) and positive (PPV) and negative (NPV) predictive values of 43.74% and 100%, respectively. The best model discriminating between GCK and NoVar included HbA1c, age at diagnosis, hypertension, and triglycerides and had a ROC-AUC value of 0.850 (95% CI 0.783-0.916), PPV of 88.36%, and NPV of 97.7%; however, this model was not significantly different from the others. A novel GCK variant was also described in one individual with MODY (7-44192948-T-C, p.Ser54Gly), which showed evidence of pathogenicity on in silico prediction tools. Conclusions This study identified a highly accurate (98%) composite model for differentiating GCK-MODY and T1D. This model may help clinicians select patients for genetic evaluation of monogenic diabetes, enabling them to implement correct treatment without overusing limited resources.
Collapse
Affiliation(s)
- Renata Peixoto-Barbosa
- Universidade Federal de São PauloSão PauloSPBrasil Disciplina de Endocrinologia, Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil
- Departamento de Ciências da VidaUniversidade do Estado da BahiaSalvadorBABrasil Departamento de Ciências da Vida, Universidade do Estado da Bahia (Uneb), Salvador, BA, Brasil
| | - Luis Eduardo Calliari
- Departamento de PediatriaFaculdade de Ciências MédicasSanta Casa de Misericórdia de São PauloSão PauloSPBrasil Departamento de Pediatria, Faculdade de Ciências Médicas da Santa Casa de Misericórdia de São Paulo, São Paulo, SP, Brasil
| | - Felipe Crispim
- Universidade Federal de São PauloSão PauloSPBrasil Disciplina de Endocrinologia, Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil
| | - Regina S. Moisés
- Universidade Federal de São PauloSão PauloSPBrasil Disciplina de Endocrinologia, Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil
| | - Sergio A. Dib
- Universidade Federal de São PauloSão PauloSPBrasil Disciplina de Endocrinologia, Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil
| | - André F. Reis
- Universidade Federal de São PauloSão PauloSPBrasil Disciplina de Endocrinologia, Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil
| | - Fernando M. A. Giuffrida
- Universidade Federal de São PauloSão PauloSPBrasil Disciplina de Endocrinologia, Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brasil
- Departamento de Ciências da VidaUniversidade do Estado da BahiaSalvadorBABrasil Departamento de Ciências da Vida, Universidade do Estado da Bahia (Uneb), Salvador, BA, Brasil
| |
Collapse
|
14
|
Zečević K, Volčanšek Š, Katsiki N, Rizzo M, Milardović TM, Stoian AP, Banach M, Muzurović E. Maturity-onset diabetes of the young (MODY) - in search of ideal diagnostic criteria and precise treatment. Prog Cardiovasc Dis 2024; 85:14-25. [PMID: 38513726 DOI: 10.1016/j.pcad.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Maturity-onset diabetes of the young (MODY) is a spectrum of clinically heterogenous forms of monogenic diabetes mellitus characterized by autosomal dominant inheritance, onset at a young age, and absence of pancreatic islets autoimmunity. This rare form of hyperglycemia, with clinical features overlapping with type 1 and type 2 diabetes mellitus, has 14 subtypes with differences in prevalence and complications occurrence which tailor therapeutic approach. MODY phenotypes differ based on the gene involved, gene penetrance and expressivity. While MODY 2 rarely leads to diabetic complications and is easily managed with lifestyle interventions alone, more severe subtypes, such as MODY 1, 3, and 6, require an individualized treatment approach to maintain a patient's quality of life and prevention of complications. This review summarizes current evidence on the presentation, diagnosis, and management of MODY, an example of a genetic cause of hyperglycemia that calls for a precision medicine approach.
Collapse
Affiliation(s)
- Ksenija Zečević
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Špela Volčanšek
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia; Medical Faculty Ljubljana, Ljubljana, Slovenia
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy; Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Tanja Miličević Milardović
- Internal Medicine Department, Endocrinology, Diabetology, and Metabolism Division, University Hospital of Split, Split, Croatia; University of Split School of Medicine, Split, Croatia
| | - Anca Pantea Stoian
- Diabetes, Nutrition and Metabolic diseases Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Łódź, Lodz, Poland; Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother's Memorial Hospital Research Institute, Łódź, Poland; Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emir Muzurović
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro; Department of Internal Medicine, Endocrinology Section, Clinical Center of Montenegro, Podgorica, Montenegro.
| |
Collapse
|
15
|
Bhattacharya S, Pappachan JM. Monogenic diabetes in children: An underdiagnosed and poorly managed clinical dilemma. World J Diabetes 2024; 15:1051-1059. [PMID: 38983823 PMCID: PMC11229976 DOI: 10.4239/wjd.v15.i6.1051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 06/11/2024] Open
Abstract
Monogenic diabetes, constituting 1%-2% of global diabetes cases, arises from single gene defects with distinctive inheritance patterns. Despite over 50 ass-ociated genetic disorders, accurate diagnoses and management of monogenic diabetes remain inadequate, underscoring insufficient clinician awareness. The disease spectrum encompasses maturity-onset diabetes of the young (MODY), characterized by distinct genetic mutations affecting insulin secretion, and neonatal diabetes mellitus (NDM) - a heterogeneous group of severe hyperglycemic disorders in infants. Mitochondrial diabetes, autoimmune monogenic diabetes, genetic insulin resistance and lipodystrophy syndromes further diversify the monogenic diabetes landscape. A tailored approach based on phenotypic and biochemical factors to identify candidates for genetic screening is recommended for suspected cases of MODY. NDM diagnosis warrants immediate molecular genetic testing for infants under six months. Identifying these genetic defects presents a unique opportunity for precision medicine. Ongoing research aimed to develop cost-effective genetic testing methods and gene-based therapy can facilitate appropriate identification and optimize clinical outcomes. Identification and study of new genes offer a valuable opportunity to gain deeper insights into pancreatic cell biology and the pathogenic mechanisms underlying common forms of diabetes. The clinical review published in the recent issue of World Journal of Diabetes is such an attempt to fill-in our knowledge gap about this enigmatic disease.
Collapse
Affiliation(s)
| | - Joseph M Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
16
|
Crowley MT, Paponette B, Bacon S, Byrne MM. Management of pregnancy in women with monogenic diabetes due to mutations in GCK, HNF1A and HNF4A genes. Front Genet 2024; 15:1362977. [PMID: 38933924 PMCID: PMC11199717 DOI: 10.3389/fgene.2024.1362977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
Women with maturity-onset diabetes of the young (MODY) need tailored antenatal care and monitoring of their offspring. Each MODY subtype has different implications for glycaemic targets, treatment choices and neonatal management. Hyperglycaemia of MODY is often first diagnosed in adolescence or early adulthood and therefore is clinically relevant to pregnant women. MODY remains an under-recognised and undiagnosed condition. Pregnancy represents an opportune time to make a genetic diagnosis of MODY and provide precision treatment. This review describes the nuance of antenatal care in women with MODY and the implications for pregnancies affected by a positive paternal genotype. Mutations in hepatic nuclear factor 1-alpha (HNF1A) and 4-alpha (HNF4A) genes are associated with progressive β-cell dysfunction resulting in early onset diabetes. Patients are largely managed with sulphonylureas outside of pregnancy. Macrosomia and persistent neonatal hypoglycaemia are reported in 54% and 15% of HNF4A genotype positive offspring respectively with a median increase in birthweight of 790 g. Close observation of foetal growth in utero allows optimal timing of delivery to minimise peri- and postpartum materno-foetal complications. Glucokinase (GCK)-MODY causes mild fasting hyperglycaemia which does not require treatment outside of pregnancy. Birthweight of offspring of maternal carriers is dependent on foetal genotype; heterozygous mutation carriers are usually normal weight while genotype negative offspring are large for gestational age (600 g heavier). Affected offspring of paternal carriers may be small for gestational age (500 g lighter). Serial growth scans with measurement of the abdominal circumference indirectly differentiate foetal genotype. Measurement of cell free foetal DNA in maternal blood from the late first trimester is superior to traditionally used ultrasound to distinguish foetal genotype. Cost and accessibility may limit its use.
Collapse
Affiliation(s)
- M. T. Crowley
- Department of Endocrinology and Diabetes, Mater Misericordiae University Hospital, Dublin, Ireland
| | - B. Paponette
- Department of Endocrinology and Diabetes, Sligo University Hospital, Sligo, Ireland
| | - S. Bacon
- Department of Endocrinology and Diabetes, Sligo University Hospital, Sligo, Ireland
| | - M. M. Byrne
- Department of Endocrinology and Diabetes, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
17
|
Nakhe AY, Dadi PK, Kim J, Dickerson MT, Behera S, Dobson JR, Shrestha S, Cartailler JP, Sampson L, Magnuson MA, Jacobson DA. The MODY-associated KCNK16 L114P mutation increases islet glucagon secretion and limits insulin secretion resulting in transient neonatal diabetes and glucose dyshomeostasis in adults. eLife 2024; 12:RP89967. [PMID: 38700926 PMCID: PMC11068355 DOI: 10.7554/elife.89967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
The gain-of-function mutation in the TALK-1 K+ channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of β-cell electrical activity and glucose-stimulated insulin secretion. The KCNK16 gene encoding TALK-1 is the most abundant and β-cell-restricted K+ channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the CD-1 (ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell β-cell K+ currents resulting in blunted glucose-stimulated Ca2+ entry and loss of glucose-induced Ca2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impairs glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet insulin secretion during development. These data suggest that TALK-1 is an islet-restricted target for the treatment for diabetes.
Collapse
Affiliation(s)
- Arya Y Nakhe
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Jinsun Kim
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Matthew T Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Soma Behera
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Jordyn R Dobson
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Shristi Shrestha
- Center for Stem Cell Biology, Vanderbilt UniversityNashvilleUnited States
| | | | - Leesa Sampson
- Center for Stem Cell Biology, Vanderbilt UniversityNashvilleUnited States
| | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
- Center for Stem Cell Biology, Vanderbilt UniversityNashvilleUnited States
- Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| |
Collapse
|
18
|
Kuznetsova KG, Vašíček J, Skiadopoulou D, Molnes J, Udler M, Johansson S, Njølstad PR, Manning A, Vaudel M. Bioinformatics pipeline for the systematic mining genomic and proteomic variation linked to rare diseases: The example of monogenic diabetes. PLoS One 2024; 19:e0300350. [PMID: 38635808 PMCID: PMC11025945 DOI: 10.1371/journal.pone.0300350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/23/2024] [Indexed: 04/20/2024] Open
Abstract
Monogenic diabetes is characterized as a group of diseases caused by rare variants in single genes. Like for other rare diseases, multiple genes have been linked to monogenic diabetes with different measures of pathogenicity, but the information on the genes and variants is not unified among different resources, making it challenging to process them informatically. We have developed an automated pipeline for collecting and harmonizing data on genetic variants linked to monogenic diabetes. Furthermore, we have translated variant genetic sequences into protein sequences accounting for all protein isoforms and their variants. This allows researchers to consolidate information on variant genes and proteins linked to monogenic diabetes and facilitates their study using proteomics or structural biology. Our open and flexible implementation using Jupyter notebooks enables tailoring and modifying the pipeline and its application to other rare diseases.
Collapse
Affiliation(s)
- Ksenia G. Kuznetsova
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Jakub Vašíček
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Dafni Skiadopoulou
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Janne Molnes
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Miriam Udler
- Department of Medicine, Massachusetts General Hospital, Boston, MA, United States of America
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
- Department of Medicine, Harvard Medical School, Boston, MA, United States of America
| | - Stefan Johansson
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Pål Rasmus Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | - Alisa Manning
- Department of Medicine, Massachusetts General Hospital, Boston, MA, United States of America
- Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
- Department of Medicine, Harvard Medical School, Boston, MA, United States of America
| | - Marc Vaudel
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
19
|
Urakami T, Terada H, Mine Y, Aoki M, Suzuki J, Morioka I. Clinical characteristics in children with maturity-onset diabetes of the young detected by urine glucose screening at schools in the Tokyo Metropolitan Area. Clin Pediatr Endocrinol 2024; 33:113-123. [PMID: 38993716 PMCID: PMC11234186 DOI: 10.1297/cpe.2024-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/27/2024] [Indexed: 07/13/2024] Open
Abstract
This study aimed to examine the clinical characteristics of young children diagnosed with maturity-onset diabetes (MODY) using urine glucose screening at schools. The study participants were 70 non-obese children who were clinically diagnosed with type 2 diabetes through urine glucose screening at schools in Tokyo between 1974 and 2020. Of these children, 55 underwent genetic testing, and 21 were finally diagnosed with MODY: MODY2 in eight, MODY3 in eight, MODY1 in four and MODY5 in one. A family history of diabetes was found in 76.2% of the patients. Fasting plasma glucose levels did not differ between the different MODY subtypes, while patients with MODY 3, 1, and 5 had significantly higher levels of glycosylated hemoglobin and 2-hour glucose in an oral glucose tolerance test than those with MODY2. In contrast, most patients exhibit mild insulin resistance and sustained β-cell function. In the initial treatment, all patients with MODY2 were well controlled with diet and exercise, whereas the majority of those with MODY3, 1, and 5 required pharmacological treatment within one month of diagnosis. In conclusion, urine glucose screening in schools appears to be one of the best opportunities for early detection of the disease and providing appropriate treatment to patients.
Collapse
Affiliation(s)
- Tatsuhiko Urakami
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroki Terada
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Yusuke Mine
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Masako Aoki
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Junichi Suzuki
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Zhao J, Chen Y, Ma F, Shu H, Zheng L, Liu Y, Li X, Xu T, Zhou Z, Zhou K. MODY Probability Calculator Is Suitable for MODY Screening in China: A Population-based Study. J Endocr Soc 2024; 8:bvae047. [PMID: 38562131 PMCID: PMC10983078 DOI: 10.1210/jendso/bvae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Indexed: 04/04/2024] Open
Abstract
Context Selecting appropriate individuals for genetic testing is essential due to the optimal treatment for maturity-onset diabetes of the young (MODY). However, how to effectively screen for MODY in China remains unclear. Objective To validate the performance of current screening strategies in selecting patients with MODY based on a nationwide type 2 diabetes cohort. Methods A panel of 14 MODY genes was analyzed from 1911 type 2 diabetes patients who were ages 15 to 35 years. Variants were evaluated according to the American College of Medical Genetics and Genomics guidelines. Based on this cohort, we simulated the 2 most frequently used screening strategies, including the traditional MODY criteria and the MODY probability calculator (MPC), to assess their ability to select patients with MODY. Results From a total of 1911 participants, 42 participants harbored pathogenic/likely pathogenic variants. The performance of the traditional criteria was sensitivity: 19.0%, specificity: 72.9%, positive predictive value (PPV): 1.6%, and missing rate: 81.0%. The optimal cut-off for MPC was 40.7%. Based on this cut-off value, the performance was sensitivity: 54.8%, specificity: 81.0%, PPV: 6.1%, and missing rate: 45.2%. Moreover, hemoglobin A1c, insulin treatment, and family history of diabetes have poor discrimination between MODY and young-onset type 2 diabetes. Conclusion The MPC is better than traditional criteria in terms of both sensitivity and PPV. To ensure more MODY patients benefit from optimal treatment, we therefore suggest that routine genetic testing be performed on all type 2 diabetes patients who are between the ages of 15 and35 years and have MPC probability value over 40.7%.
Collapse
Affiliation(s)
- Jing Zhao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yan Chen
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Fuhui Ma
- Department of Endocrinology and Metabolic Diseases, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Urumqi, 830001, China
| | - Hua Shu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Heping District, Tianjin, 300052, China
| | - Li Zheng
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Tao Xu
- Guangzhou Laboratory, Guangdong Province, Guangdong 510005, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Kaixin Zhou
- Guangzhou Laboratory, Guangdong Province, Guangdong 510005, China
- School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| |
Collapse
|
21
|
Almutair A, Almulhem B. Semaglutide as a potential therapeutic alternative for HNF1B-MODY: a case study. Front Endocrinol (Lausanne) 2024; 15:1294264. [PMID: 38524636 PMCID: PMC10957750 DOI: 10.3389/fendo.2024.1294264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/31/2024] [Indexed: 03/26/2024] Open
Abstract
Maturity-onset diabetes of the young (MODY) is a grouping of monogenic disorders. It is characterized by dominantly inherited, non-insulin-dependent diabetes. MODY is relatively rare, encompassing up to 3.5% in those diagnosed under 30 years of age. Specific types are most commonly treated with sulfonylurea, particularly those identified as HNF4A-MODY and HNF1A-MODY. HNF1B-MODY is another type that is most frequently managed with insulin therapy but lacks a defined precision treatment. We present an 18-year-old, non-obese female patient diagnosed with HNF1B-MODY. She displays complete gene deletion, a renal cyst, and hypomagnesemia. Her treatment plan includes both long- and short-acting insulin, though she frequently encountered hypoglycemia and hyperglycemia. Semaglutide, a GLP-1RA, was administered weekly over 4 months. The patient's glucose level was continuously tracked using Dexcom's Continuous Glucose Monitoring system. The data suggested a notable improvement in her condition: time-in-range (TIR) increased from 70% to 88%, with some days achieving 100%, and the frequency of hypoglycemic episodes, indicated by time-below-range values, fell from 5% to 1%. The time-above-range values also dropped from 25% to 10%, and her HbA1c levels declined from 7% to 5.6%. During the semaglutide therapy, we were able to discontinue her insulin treatment. Additionally, her body mass index (BMI) was reduced from 24.1 to 20.1 kg/m2. However, the semaglutide treatment was halted after 4 months due to side effects such as nausea, vomiting, and reduced appetite. Other contributing factors included exam stress and a COVID-19 infection, which forced a switch back to insulin. Her last recorded HbA1c level under exclusive insulin therapy rose to 7.1%, and her BMI increased to 24.9 kg/m2. In conclusion, semaglutide could potentially replace insulin to improve glucose variability, TIR, and HbA1c in patients with HNF1B-MODY. However, more extensive studies are required to confirm its long-term safety and efficacy.
Collapse
Affiliation(s)
- Angham Almutair
- Pediatric Department, King Abdullah Specialized Children’s Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdul-Aziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Beshaier Almulhem
- Pediatric Department, King Abdullah Specialized Children’s Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdul-Aziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
22
|
Yue X, Luo Y, Wang J, Huang D. Monogenic Diabetes with GATA6 Mutations: Characterization of a Novel Family and a Comprehensive Analysis of the GATA6 Clinical and Genetics Traits. Mol Biotechnol 2024; 66:467-474. [PMID: 37204622 PMCID: PMC10881634 DOI: 10.1007/s12033-023-00761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/26/2023] [Indexed: 05/20/2023]
Abstract
Monogenic diabetes caused by GATA6 mutations were almost described as neonatal diabetes, and the phenotypic spectrum has expanded since then. Our study underscores the broad phenotypic spectrum by reporting a de novo GATA6 mutation in a family. Furthermore, we reviewed related literature to summarize the clinical and genetic characteristics of monogenic diabetes with GATA6 mutations (n = 39) in order to improve clinicians' understanding of the disease. We conclude that the GATA6 missense mutation (c. 749G > T, p. Gly250Val) is not reported presently, characterized by adult-onset diabetes with pancreatic dysplasia and located in transcriptional activation region. Carries with GATA6 mutations (n = 55) have a variable spectrum of diabetes, ranging from neonatal (72.7%), childhood-onset (20%) to adults-onset (7.5%). 83.5% of patients with abnormal pancreatic development. Heart and hepatobillary defects are the most common abnormalities of extrapancreatic features. Most mutations with GATA6 are loss of function (LOF, 71.8%) and located in functional region. Functional studies mostly support loss-of-function as the pathophysiological mechanism. In conclusion, there are various types of diabetes with GATA6 mutations, which can also occur in adult diabetes. Phenotypic defects with GATA6 mutations are most frequently malformations of pancreas and heart. This highlights the importance of comprehensive clinical evaluation of identified carriers to evaluate their full phenotypic spectrum.
Collapse
Affiliation(s)
- Xing Yue
- Department of Metabolism and Endocrinology, The Third Hospital of Changsha, Laodongxi Road #176, Changsha, 410011, Hunan, People's Republic of China.
| | - Yaheng Luo
- Department of Metabolism and Endocrinology, The Third Hospital of Changsha, Laodongxi Road #176, Changsha, 410011, Hunan, People's Republic of China
| | - Jing Wang
- Department of Metabolism and Endocrinology, The Third Hospital of Changsha, Laodongxi Road #176, Changsha, 410011, Hunan, People's Republic of China
| | - Debin Huang
- Department of Metabolism and Endocrinology, The Third Hospital of Changsha, Laodongxi Road #176, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
23
|
Balogun WO, Naylor R, Adedokun BO, Ogunniyi A, Olopade OI, Dagogo-Jack SE, Bell GI, Philipson LH. Implementing genetic testing in diabetes: Knowledge, perceptions of healthcare professionals, and barriers in a developing country. POPULATION MEDICINE 2024; 6:9. [PMID: 38681897 PMCID: PMC11052599 DOI: 10.18332/popmed/184210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/17/2024] [Indexed: 05/01/2024] Open
Abstract
INTRODUCTION Maturity-Onset Diabetes of the Young (MODY) is an unusual type of diabetes often missed in clinical practice, especially in Africa. Treatment decisions for MODY depend on a precise diagnosis, only made by genetic testing. We aimed to determine MODY knowledge among Nigerian healthcare professionals (HCPs), their perceptions, and barriers to the implementation of genetic testing in diabetes patients. METHODS A cross-sectional survey was conducted among doctors and nurses in three levels of public and private healthcare institutions in Ibadan, Nigeria, from December 2018 to June 2019. In all, 70% and 30% of a total 415 participants were recruited from public and private centers, respectively. HCPs were recruited in a 60:40% ratio, respectively. A 51-item instrument was used to assess MODY knowledge, perceptions of HCPs, and barriers to the implementation of genetic testing in diabetes patients. RESULTS In the survey, 43.4% self-rated their current MODY knowledge to be at least moderate. About 68%, 73% and 86%, respectively, correctly answered 3 of 5 questions on basic genetics' knowledge. However, only 1 of 7 MODY-specific questions was answered correctly by 72.7% of the respondents. The mean basic genetics and MODY-specific knowledge scores were 2.6/5 (SD=1.0) and 1.8/9 (SD=1.3), respectively. Multiple linear regression showed higher mean scores among those aged 30-49 years, those with degrees and fellowships (except PhD), and general practitioners; 360 (80.0%) perceived that genetic testing plays a central role in diabetes care. Barriers to genetic testing were lack of access to testing facilities, guidance on the use of and updates/educational materials on genetic testing (82.7%, 62.1% and 50.3%, respectively). CONCLUSIONS The level of MODY awareness and knowledge among Nigerian HCPs is unacceptably low with a lack of access to genetic testing facilities. These can hinder the implementation of precision diabetes medicine. Increased awareness, provision of decision support aids, and genetic testing facilities are urgently needed.
Collapse
Affiliation(s)
- Williams O. Balogun
- Department of Medicine, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Rochelle Naylor
- Departments of Medicine and Pediatrics, Kovler Diabetes Center, University of Chicago, Chicago, Illinois, United States of America
| | - Babatunde O. Adedokun
- Department of Epidemiology and Statistics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adesola Ogunniyi
- Department of Medicine, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Olufunmilayo I. Olopade
- Center for Clinical Cancer Genetics and Global Health and Section of Haematology Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Samuel E. Dagogo-Jack
- Department of Internal Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Division of Endocrinology and Metabolism, University of Tennessee Health Science Center, Tennessee, United States of America
| | - Graeme I. Bell
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Loui H. Philipson
- Departments of Medicine and Pediatrics, Kovler Diabetes Center, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
24
|
Nakhe AY, Dadi PK, Kim J, Dickerson MT, Behera S, Dobson JR, Shrestha S, Cartailler JP, Sampson L, Magnuson MA, Jacobson DA. The MODY-associated KCNK16 L114P mutation increases islet glucagon secretion and limits insulin secretion resulting in transient neonatal diabetes and glucose dyshomeostasis in adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.20.545631. [PMID: 37546831 PMCID: PMC10401960 DOI: 10.1101/2023.06.20.545631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The gain-of-function mutation in the TALK-1 K + channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of β-cell electrical activity and glucose-stimulated insulin secretion (GSIS). The KCNK16 gene encoding TALK-1, is the most abundant and β-cell-restricted K + channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the mixed C57BL/6J:CD-1(ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell β-cell K + currents resulting in blunted glucose-stimulated Ca 2+ entry and loss of glucose-induced Ca 2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impaired glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet hormone secretion during development. These data strongly suggest that TALK-1 is an islet-restricted target for the treatment of diabetes.
Collapse
|
25
|
De Sousa SMC, Wu KHC, Colclough K, Rawlings L, Dubowsky A, Monnik M, Poplawski N, Scott HS, Horowitz M, Torpy DJ. Identification of monogenic diabetes in an Australian cohort using the Exeter maturity-onset diabetes of the young (MODY) probability calculator and next-generation sequencing gene panel testing. Acta Diabetol 2024; 61:181-188. [PMID: 37812285 PMCID: PMC10866744 DOI: 10.1007/s00592-023-02193-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
AIMS This study aims to describe the prevalence of monogenic diabetes in an Australian referral cohort, in relation to Exeter maturity-onset diabetes of the young (MODY) probability calculator (EMPC) scores and next-generation sequencing with updated testing where relevant. METHODS State-wide 5-year retrospective cohort study of individuals referred for monogenic diabetes genetic testing. RESULTS After excluding individuals who had cascade testing for a familial variant (21) or declined research involvement (1), the final cohort comprised 40 probands. Incorporating updated testing, the final genetic result was positive (likely pathogenic/pathogenic variant) in 11/40 (27.5%), uncertain (variant of uncertain significance) in 8/40 (20%) and negative in 21/40 (52.5%) participants. Causative variants were found in GCK, HNF1A, MT-TL1 and HNF4A. Variants of uncertain significance included a novel multi-exonic GCK duplication. Amongst participants with EMPC scores ≥ 25%, a causative variant was identified in 37%. Cascade testing was positive in 9/10 tested relatives with diabetes and 0/6 tested relatives with no history of diabetes. CONCLUSIONS Contemporary genetic testing produces a high yield of positive results in individuals with clinically suspected monogenic diabetes and their relatives with diabetes, highlighting the value of genetic testing for this condition. An EMPC score cutoff of ≥ 25% correctly yielded a positive predictive value of ≥ 25% in this multiethnic demographic. This is the first Australian study to describe EMPC scores in the Australian clinic setting, albeit a biased referral cohort. Larger studies may help characterise EMPC performance between ethnic subsets, noting differences in the expected probability of monogenic diabetes relative to type 2 diabetes.
Collapse
Affiliation(s)
- Sunita M C De Sousa
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia.
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - Kathy H C Wu
- Clinical Genomics, St Vincent's Hospital, Darlinghurst, NSW, Australia
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
- Discipline of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- School of Medicine, University of Notre Dame, Sydney, NSW, Australia
| | - Kevin Colclough
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Lesley Rawlings
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
| | - Andrew Dubowsky
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
| | - Melissa Monnik
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Nicola Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Hamish S Scott
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
- Centre for Cancer Biology, an alliance between SA Pathology, The University of South Australia, Adelaide, Australia
| | - Michael Horowitz
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - David J Torpy
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| |
Collapse
|
26
|
Jeeyavudeen MS, Murray SR, Strachan MWJ. Management of monogenic diabetes in pregnancy: A narrative review. World J Diabetes 2024; 15:15-23. [PMID: 38313847 PMCID: PMC10835499 DOI: 10.4239/wjd.v15.i1.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/13/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Pregnancy in women with monogenic diabetes is potentially complex, with significant implications for both maternal and fetal health. Among these, maturity-onset diabetes of the young (MODY) stands out as a prevalent monogenic diabetes subtype frequently encountered in clinical practice. Each subtype of MODY requires a distinct approach tailored to the pregnancy, diverging from management strategies in non-pregnant individuals. Glucokinase MODY (GCK-MODY) typically does not require treatment outside of pregnancy, but special considerations arise when a woman with GCK-MODY becomes pregnant. The glycemic targets in GCK-MODY pregnancies are not exclusively dictated by the maternal/paternal MODY genotype but are also influenced by the genotype of the developing fetus. During pregnancy, the choice between sulfonylurea or insulin for treating hepatocyte nuclear factor 1-alpha (HNF1A)-MODY and HNF4A-MODY depends on the mother's specific circumstances and the available expertise. Management of other rarer MODY subtypes is individualized, with decisions made on a case-by-case basis. Therefore, a collaborative approach involving expert diabetes and obstetric teams is crucial for the comprehensive management of MODY pregnancies.
Collapse
Affiliation(s)
| | - Sarah R Murray
- MRC Centre for Reproductive Health, University of Edinburgh Queen’s Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| | - Mark W J Strachan
- Metabolic Unit, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
27
|
ElSayed NA, Aleppo G, Bannuru RR, Bruemmer D, Collins BS, Ekhlaspour L, Gaglia JL, Hilliard ME, Johnson EL, Khunti K, Lingvay I, Matfin G, McCoy RG, Perry ML, Pilla SJ, Polsky S, Prahalad P, Pratley RE, Segal AR, Seley JJ, Selvin E, Stanton RC, Gabbay RA. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2024. Diabetes Care 2024; 47:S20-S42. [PMID: 38078589 PMCID: PMC10725812 DOI: 10.2337/dc24-s002] [Citation(s) in RCA: 169] [Impact Index Per Article: 169.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, an interprofessional expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
28
|
Wang T, Zhu M, Wang Y, Hu C, Fang C, Hu J. Two novel GCK mutations in Chinese patients with maturity-onset diabetes of the young. Endocrine 2024; 83:92-98. [PMID: 37847371 DOI: 10.1007/s12020-023-03509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/25/2023] [Indexed: 10/18/2023]
Abstract
PURPOSE Heterozygous inactivating mutations in the glucokinase (GCK) gene result in the asymptomatic fasting hyperglycemia named as GCK-MODY or MODY2. The genetic testing can effectively avoid the misdiagnosis and inappropriate treatment for GCK-MODY. METHODS A total of 25 unrelated families with MODY were screened for mutations in coding region of GCK by using direct sequencing. Three different bioinformatics tools such as PolyPhen2, Mutation Taster and PROVEAN were performed to predict the function of mutant proteins. The glucose profile was recorded by continuous glucose monitoring system (CGMS) to evaluate the glycemic variability for the GCK-MODY patient. RESULTS Our study identified five GCK mutations in 24% of the families (6/25): two novel mutations (I126fs and G385A) and three already described mutations (G44S, H50fs and S383L). In silico analyses predicted that these mutations altered structural conformational changes. The values of mean amplitude of glycemic excursions (MAGE), an important index of blood glucose fluctuation in CGMS system, were 0.81 in the first 24 h and 1.61 in the second 24 h record in the patient with GCK-MODY (F3), suggesting little glucose fluctuation. CONCLUSION The genetic testing is suggested to be important to differentiate GCK-MODY from other types of diabetes. CGMS might be used to screen GCK-MODY cases prior to genetic testing.
Collapse
Affiliation(s)
- Tao Wang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Mengmeng Zhu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yun Wang
- Department of Clinical Laboratory, Suzhou Guangji Hospital, Suzhou, 215123, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Chen Fang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| |
Collapse
|
29
|
Sun HY, Lin XY. Genetic perspectives on childhood monogenic diabetes: Diagnosis, management, and future directions. World J Diabetes 2023; 14:1738-1753. [PMID: 38222792 PMCID: PMC10784795 DOI: 10.4239/wjd.v14.i12.1738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/10/2023] [Accepted: 11/14/2023] [Indexed: 12/14/2023] Open
Abstract
Monogenic diabetes is caused by one or even more genetic variations, which may be uncommon yet have a significant influence and cause diabetes at an early age. Monogenic diabetes affects 1 to 5% of children, and early detection and gene-tically focused treatment of neonatal diabetes and maturity-onset diabetes of the young can significantly improve long-term health and well-being. The etiology of monogenic diabetes in childhood is primarily attributed to genetic variations affecting the regulatory genes responsible for beta-cell activity. In rare instances, mutations leading to severe insulin resistance can also result in the development of diabetes. Individuals diagnosed with specific types of monogenic diabetes, which are commonly found, can transition from insulin therapy to sulfonylureas, provided they maintain consistent regulation of their blood glucose levels. Scientists have successfully devised materials and methodologies to distinguish individuals with type 1 or 2 diabetes from those more prone to monogenic diabetes. Genetic screening with appropriate findings and interpretations is essential to establish a prognosis and to guide the choice of therapies and management of these interrelated ailments. This review aims to design a comprehensive literature summarizing genetic insights into monogenetic diabetes in children and adolescents as well as summarizing their diagnosis and mana-gement.
Collapse
Affiliation(s)
- Hong-Yan Sun
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| | - Xiao-Yan Lin
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| |
Collapse
|
30
|
Adadey SM, Mensah JA, Acquah KS, Abugri J, Osei-Yeboah R. Early-onset diabetes in Africa: A mini-review of the current genetic profile. Eur J Med Genet 2023; 66:104887. [PMID: 37995864 DOI: 10.1016/j.ejmg.2023.104887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Early-onset diabetes is poorly diagnosed partly due to its heterogeneity and variable presentations. Although several genes have been associated with the disease, these genes are not well studied in Africa. We sought to identify the major neonatal, early childhood, juvenile, or early-onset diabetes genes in Africa; and evaluate the available molecular methods used for investigating these gene variants. A literature search was conducted on PubMed, Scopus, Africa-Wide Information, and Web of Science databases. The retrieved records were screened and analyzed to identify genetic variants associated with early-onset diabetes. Although 319 records were retrieved, 32 were considered for the current review. Most of these records (22/32) were from North Africa. The disease condition was genetically heterogenous with most cases possessing unique gene variants. We identified 22 genes associated with early-onset diabetes, 9 of which had variants (n = 19) classified as pathogenic or likely pathogenic (PLP). Among the PLP variants, IER3IP1: p.(Leu78Pro) was the variant with the highest number of cases. There was limited data from West Africa, hence the contribution of genetic variability to early-onset diabetes in Africa could not be comprehensively evaluated. It is worth mentioning that most studies were focused on natural products as antidiabetics and only a few studies reported on the genetics of the disease. ABCC8 and KCNJ11 were implicated as major contributors to early-onset diabetes gene networks. Gene ontology analysis of the network associated ion channels, impaired glucose tolerance, and decreased insulin secretions to the disease. Our review highlights 9 genes from which PLP variants have been identified and can be considered for the development of an African diagnostic panel. There is a gap in early-onset diabetes genetic research from sub-Saharan Africa which is much needed to develop a comprehensive, efficient, and cost-effective genetic panel that will be useful in clinical practice on the continent and among the African diasporas.
Collapse
Affiliation(s)
- Samuel Mawuli Adadey
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana; School of Medicine and Health Science, University for Development Studies, Tamale, Ghana.
| | | | - Kojo Sekyi Acquah
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| | - James Abugri
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C.K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana.
| | - Richard Osei-Yeboah
- Centre for Global Health, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
31
|
Kumar A, Kumar A, Samadarshi S, Manrai M, Tevatia MS, Dawra S. Unknown presentation of a rare genetic disorder: Monogenic diabetes in young type 4 presenting with hepatic cysts and procoagulant state. Med J Armed Forces India 2023; 79:S297-S300. [PMID: 38144640 PMCID: PMC10746807 DOI: 10.1016/j.mjafi.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/06/2021] [Indexed: 11/23/2022] Open
Abstract
Maturity onset diabetes in young (MODY) is the most common form of monogenic diabetes, which characteristically presents in adolescents and young adults. Till date, pathogenic variations involving 14 different genes have been causally implicated with the development of MODY. Maturity onset diabetes in young type 4 (MODY-4) is a very rare form of MODY. We present here case of 28-year-old nonobese male patient with distinct family history of diabetes spanning two generations, incidentally, detected to have a rare form of diabetes on genetic analysis when he presented with recurrent thromboembolic manifestations: deep vein thrombosis and pulmonary thromboembolism. Our case highlights a previously unknown disease association of a rare genetic disorder. Increasing awareness about this genetic disorder and early identification of such cases will enhance our understanding of hitherto unknown disease associations and the pathophysiological role of genetic mutations. This may contribute to the improved treatment and prevention of debilitating diseases such as diabetes.
Collapse
Affiliation(s)
- Anupam Kumar
- Senior Advisor (Endocrinology), Command Hospital (Southern Command), Pune, India
| | - Ankit Kumar
- Resident (Medicine), Command Hospital (Southern Command), Pune, India
| | - Samir Samadarshi
- Resident (Medicine), Command Hospital (Southern Command), Pune, India
| | - Manish Manrai
- Professor, Department of Internal Medicine, Armed Forces Medical College, Pune, India
| | | | - Saurabh Dawra
- Classified Specialist (Gastroenterology), Command Hospital (Southern Command), Pune, India
| |
Collapse
|
32
|
Svalastoga P, Kaci A, Molnes J, Solheim MH, Johansson BB, Krogvold L, Skrivarhaug T, Valen E, Johansson S, Molven A, Sagen JV, Søfteland E, Bjørkhaug L, Tjora E, Aukrust I, Njølstad PR. Characterisation of HNF1A variants in paediatric diabetes in Norway using functional and clinical investigations to unmask phenotype and monogenic diabetes. Diabetologia 2023; 66:2226-2237. [PMID: 37798422 PMCID: PMC10627920 DOI: 10.1007/s00125-023-06012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/09/2023] [Indexed: 10/07/2023]
Abstract
AIMS/HYPOTHESIS Correctly diagnosing MODY is important, as individuals with this diagnosis can discontinue insulin injections; however, many people are misdiagnosed. We aimed to develop a robust approach for determining the pathogenicity of variants of uncertain significance in hepatocyte nuclear factor-1 alpha (HNF1A)-MODY and to obtain an accurate estimate of the prevalence of HNF1A-MODY in paediatric cases of diabetes. METHODS We extended our previous screening of the Norwegian Childhood Diabetes Registry by 830 additional samples and comprehensively genotyped HNF1A variants in autoantibody-negative participants using next-generation sequencing. Carriers of pathogenic variants were treated by local healthcare providers, and participants with novel likely pathogenic variants and variants of uncertain significance were enrolled in an investigator-initiated, non-randomised, open-label pilot study (ClinicalTrials.gov registration no. NCT04239586). To identify variants associated with HNF1A-MODY, we functionally characterised their pathogenicity and assessed the carriers' phenotype and treatment response to sulfonylurea. RESULTS In total, 615 autoantibody-negative participants among 4712 cases of paediatric diabetes underwent genetic sequencing, revealing 19 with HNF1A variants. We identified nine carriers with novel variants classified as variants of uncertain significance or likely to be pathogenic, while the remaining ten participants carried five pathogenic variants previously reported. Of the nine carriers with novel variants, six responded favourably to sulfonylurea. Functional investigations revealed their variants to be dysfunctional and demonstrated a correlation with the resulting phenotype, providing evidence for reclassifying these variants as pathogenic. CONCLUSIONS/INTERPRETATION Based on this robust classification, we estimate that the prevalence of HNF1A-MODY is 0.3% in paediatric diabetes. Clinical phenotyping is challenging and functional investigations provide a strong complementary line of evidence. We demonstrate here that combining clinical phenotyping with functional protein studies provides a powerful tool to obtain a precise diagnosis of HNF1A-MODY.
Collapse
Affiliation(s)
- Pernille Svalastoga
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Alba Kaci
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Laboratory Medicine, Østfold Hospital Trust, Grålum, Norway
| | - Janne Molnes
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Marie H Solheim
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bente B Johansson
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lars Krogvold
- Division of Childhood and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Torild Skrivarhaug
- Division of Childhood and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Stefan Johansson
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Anders Molven
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Jørn V Sagen
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Eirik Søfteland
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Lise Bjørkhaug
- Department of Safety, Chemistry, and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Erling Tjora
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | - Ingvild Aukrust
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Pål R Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway.
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
33
|
Lian H, Gong S, Li M, Wang X, Wang F, Cai X, Liu W, Luo Y, Zhang S, Zhang R, Zhou L, Zhu Y, Ma Y, Ren Q, Zhang X, Chen J, Chen L, Wu J, Gao L, Zhou X, Li Y, Zhong L, Han X, Ji L. Prevalence and Clinical Characteristics of PDX1 Variant Induced Diabetes in Chinese Early-Onset Type 2 Diabetes. J Clin Endocrinol Metab 2023; 108:e1686-e1694. [PMID: 37279936 DOI: 10.1210/clinem/dgad303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
CONTEXT Maturity-onset diabetes of the young 4 (MODY4) is caused by mutations of PDX1; its prevalence and clinical features are not well known. OBJECTIVE This study aimed to investigate the prevalence and clinical characteristics of MODY4 in Chinese people clinically diagnosed with early-onset type 2 diabetes (EOD), and to evaluate the relationship between the PDX1 genotype and the clinical phenotype. METHOD The study cohort consisted of 679 patients with EOD. PDX1 mutations were screened by DNA sequencing, and their pathogenicity was evaluated by functional experiments and American College of Medical Genetics and Genomics guidelines. MODY4 was diagnosed in individuals with diabetes who carry a pathogenic or likely pathogenic PDX1 variant. All reported cases were reviewed for analyzing the genotype-phenotype relationship. RESULT 4 patients with MODY4 were identified, representing 0.59% of this Chinese EOD cohort. All the patients were diagnosed before 35 years old, either obese or not obese. Combined with previously reported cases, the analysis revealed that the carriers of homeodomain variants were diagnosed earlier than those with transactivation domain variants (26.10 ± 11.00 vs 41.85 ± 14.66 years old, P < .001), and the proportions of overweight and obese individuals with missense mutation were higher than those with nonsense or frameshift mutations (27/34 [79.4%] vs 3/8 [37.5%], P = .031). CONCLUSION Our study suggested that MODY4 was prevalent in 0.59% of patients with EOD in a Chinese population. It was more difficult to identify clinically than other MODY subtypes owning to its clinical similarity to EOD. Also, this study revealed that there is some relationship between genotype and phenotype.
Collapse
Affiliation(s)
- Hong Lian
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Siqian Gong
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Meng Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Xirui Wang
- Department of Endocrinology, Beijing Airport Hospital. No. 49, Beijing 101318, China
| | - Fang Wang
- Department of Endocrinology, Capital Medical University Beijing Tiantan Hospital. No. 119, Beijing 100050, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Wei Liu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Yingying Luo
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Simin Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Rui Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Lingli Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Yu Zhu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Yumin Ma
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Qian Ren
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Xiuying Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Jing Chen
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Ling Chen
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Jing Wu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Leili Gao
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Xianghai Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Yufeng Li
- Department of Endocrinology, Beijing Pinggu Hospital. No. 59, Beijing 101200, China
| | - Liyong Zhong
- Department of Endocrinology, Capital Medical University Beijing Tiantan Hospital. No. 119, Beijing 100050, China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center. No. 11, Beijing 100044, China
| |
Collapse
|
34
|
Misra S, Aguilar-Salinas CA, Chikowore T, Konradsen F, Ma RCW, Mbau L, Mohan V, Morton RW, Nyirenda MJ, Tapela N, Franks PW. The case for precision medicine in the prevention, diagnosis, and treatment of cardiometabolic diseases in low-income and middle-income countries. Lancet Diabetes Endocrinol 2023; 11:836-847. [PMID: 37804857 DOI: 10.1016/s2213-8587(23)00164-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/08/2023] [Accepted: 06/01/2023] [Indexed: 10/09/2023]
Abstract
Cardiometabolic diseases are the leading preventable causes of death in most geographies. The causes, clinical presentations, and pathogenesis of cardiometabolic diseases vary greatly worldwide, as do the resources and strategies needed to prevent and treat them. Therefore, there is no single solution and health care should be optimised, if not to the individual (ie, personalised health care), then at least to population subgroups (ie, precision medicine). This optimisation should involve tailoring health care to individual disease characteristics according to ethnicity, biology, behaviour, environment, and subjective person-level characteristics. The capacity and availability of local resources and infrastructures should also be considered. Evidence needed for equitable precision medicine cannot be generated without adequate data from all target populations, and the idea that research done in high-income countries will transfer adequately to low-income and middle-income countries (LMICs) is problematic, as many migration studies and transethnic comparisons have shown. However, most data for precision medicine research are derived from people of European ancestry living in high-income countries. In this Series paper, we discuss the case for precision medicine for cardiometabolic diseases in LMICs, the barriers and enablers, and key considerations for implementation. We focus on three propositions: first, failure to explore and implement precision medicine for cardiometabolic disease in LMICs will enhance global health disparities. Second, some LMICs might already be placed to implement cardiometabolic precision medicine under appropriate circumstances, owing to progress made in treating infectious diseases. Third, improvements in population health from precision medicine are most probably asymptotic; the greatest gains are more likely to be obtained in countries where health-care systems are less developed. We outline key recommendations for implementation of precision medicine approaches in LMICs.
Collapse
Affiliation(s)
- Shivani Misra
- Division of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; Department of Diabetes and Endocrinology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Carlos A Aguilar-Salinas
- Dirección de Nutricion, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, México
| | - Tinashe Chikowore
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; MRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Flemming Konradsen
- Novo Nordisk Foundation, Copenhagen, Denmark; Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | | | - Viswanathan Mohan
- Madras Diabetes Research Foundation, ICMR Centre for Advanced Research in Diabetes, Chennai, India; Dr Mohan's Diabetes Specialties Centre, IDF Centre of Excellence in Diabetes Care, Chennai, India
| | | | - Moffat J Nyirenda
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda; London School of Hygiene and Tropical Medicine, London, UK
| | - Neo Tapela
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; International Consortium for Health Outcomes Measurement, Oxford, UK
| | - Paul W Franks
- Novo Nordisk Foundation, Copenhagen, Denmark; Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmö, Sweden; Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Harvard T H Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
35
|
Cho J, Horikawa Y, Oiwa Y, Hosomichi K, Yabe D, Imai T. Glucokinase Variant Proteins Are Resistant to Fasting-Induced Uridine Diphosphate Glucose-Dependent Degradation in Maturity-Onset Diabetes of the Young Type 2 Patients. Int J Mol Sci 2023; 24:15842. [PMID: 37958824 PMCID: PMC10649437 DOI: 10.3390/ijms242115842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
We previously reported that glucokinase undergoes ubiquitination and subsequent degradation, a process mediated by cereblon, particularly in the presence of uridine diphosphate glucose (UDP-glucose). In this context, we hereby present evidence showcasing the resilience of variant glucokinase proteins of maturity-onset diabetes of the young type 2 (MODY2) against degradation and, concomitantly, their influence on insulin secretion, both in cell lines and in the afflicted MODY2 patient. Hence, glucose-1-phodphate promotes UDP-glucose production by UDP-glucose pyrophosphorylase 2; consequently, UDP-glucose-dependent glucokinase degradation may occur during fasting. Next, we analyzed glucokinase variant proteins from MODY2 or persistent hyperinsulinemic hypoglycemia in infancy (PHHI). Among the eleven MODY2 glucokinase-mutated proteins tested, those with a lower glucose-binding affinity exhibited resistance to UDP-glucose-dependent degradation. Conversely, the glucokinaseA456V-mutated protein from PHHI had a higher glucose affinity and was sensitive to UDP-glucose-dependent degradation. Furthermore, in vitro studies involving UDP-glucose-dependent glucokinase variant proteins and insulin secretion during fasting in Japanese MODY2 patients revealed a strong correlation and a higher coefficient of determination. This suggests that UDP-glucose-dependent glucokinase degradation plays a significant role in the pathogenesis of glucose-homeostasis-related hereditary diseases, such as MODY2 and PHHI.
Collapse
Affiliation(s)
- Jaeyong Cho
- Department of Chemical Biology, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (J.C.); (Y.O.)
| | - Yukio Horikawa
- Departments of Diabetes, Endocrinology and Metabolism, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (Y.H.); (D.Y.)
| | - Yuki Oiwa
- Department of Chemical Biology, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (J.C.); (Y.O.)
| | - Kazuyoshi Hosomichi
- Laboratory of Computational Genomics, School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan;
| | - Daisuke Yabe
- Departments of Diabetes, Endocrinology and Metabolism, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (Y.H.); (D.Y.)
- Department of Rheumatology and Clinical Immunology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Takeshi Imai
- Department of Chemical Biology, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (J.C.); (Y.O.)
| |
Collapse
|
36
|
Wu HX, Chu TY, Iqbal J, Jiang HL, Li L, Wu YX, Zhou HD. Cardio-cerebrovascular Outcomes in MODY, Type 1 Diabetes, and Type 2 Diabetes: A Prospective Cohort Study. J Clin Endocrinol Metab 2023; 108:2970-2980. [PMID: 37093977 DOI: 10.1210/clinem/dgad233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023]
Abstract
CONTEXT Cardio-cerebrovascular events are severe complications of diabetes. OBJECTIVE We aim to compare the incident risk of cardio-cerebrovascular events in maturity onset diabetes of the young (MODY), type 1 diabetes, and type 2 diabetes. METHODS Type 1 diabetes, type 2 diabetes, and MODY were diagnosed by whole exome sequencing. The primary endpoint was the occurrence of the first major adverse cardiovascular event (MACE), including acute myocardial infarction, heart failure, stroke, unstable angina pectoris, and cardio-cerebrovascular-related mortality. Cox proportional hazards models were applied and adjusted to calculate hazard ratios (HRs) and 95% CIs for the incident risk of MACE in type 1 diabetes, type 2 diabetes, MODY, and MODY subgroups compared with people without diabetes (control group). RESULTS Type 1 diabetes, type 2 diabetes, and MODY accounted for 2.7%, 68.1%, and 11.4% of 26 198 participants with diabetes from UK Biobank. During a median follow-up of 13 years, 1028 MACEs occurred in the control group, contrasting with 70 events in patients with type 1 diabetes (HR 2.15, 95% CI 1.69-2.74, P < .05), 5020 events in patients with type 2 diabetes (HR 7.02, 95% CI 6.56-7.51, P < .05), and 717 events in MODY (HR 5.79, 95% CI 5.26-6.37, P < .05). The hazard of MACE in HNF1B-MODY was highest among MODY subgroups (HR 11.00, 95% CI 5.47-22.00, P = 1.5 × 10-11). CONCLUSION MODY diagnosed by genetic analysis represents higher prevalence than the clinical diagnosis in UK Biobank. The risk of incident cardio-cerebrovascular events in MODY ranks between type 1 diabetes and type 2 diabetes.
Collapse
Affiliation(s)
- Hui-Xuan Wu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Key Laboratory of Diabetes Immunology Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Tian-Yao Chu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 41000, Hunan, China
| | - Junaid Iqbal
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Key Laboratory of Diabetes Immunology Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hong-Li Jiang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Key Laboratory of Diabetes Immunology Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Long Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Key Laboratory of Diabetes Immunology Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yan-Xuan Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 15000, China
| | - Hou-De Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Key Laboratory of Diabetes Immunology Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
37
|
Zhou GH, Tao M, Wang Q, Chen XY, Liu J, Zhang LL. Maturity-onset diabetes of the young type 9 or latent autoimmune diabetes in adults: A case report and review of literature. World J Diabetes 2023; 14:1137-1145. [PMID: 37547587 PMCID: PMC10401456 DOI: 10.4239/wjd.v14.i7.1137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/27/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY) is a monogenic genetic disease often clinically misdiagnosed as type 1 or type 2 diabetes. MODY type 9 (MODY9) is a rare subtype caused by mutations in the PAX4 gene. Currently, there are limited reports on PAX4-MODY, and its clinical characteristics and treatments are still unclear. In this report, we described a Chinese patient with high autoimmune antibodies, hyperglycemia and a site mutation in the PAX4 gene.
CASE SUMMARY A 42-year-old obese woman suffered diabetes ketoacidosis after consuming substantial amounts of beverages. She had never had diabetes before, and no one in her family had it. However, her autoantibody tested positive, and she managed her blood glucose within the normal range for 6 mo through lifestyle inter-ventions. Later, her blood glucose gradually increased. Next-generation sequencing and Sanger sequencing were performed on her family. The results revealed that she and her mother had a heterozygous mutation in the PAX4 gene (c.314G>A, p.R105H), but her daughter did not. The patient is currently taking liraglutide (1.8 mg/d), and her blood glucose levels are under control. Previous cases were retrieved from PubMed to investigate the relationship between PAX4 gene mutations and diabetes.
CONCLUSION We reported the first case of a PAX4 gene heterozygous mutation site (c.314G>A, p.R105H), which does not appear pathogenic to MODY9 but may facilitate the progression of latent autoimmune diabetes in adults.
Collapse
Affiliation(s)
- Guang-Hong Zhou
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Min Tao
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Qing Wang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Xing-Yu Chen
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Jing Liu
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Li-Li Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
38
|
Aarthy R, Aston-Mourney K, Amutha A, Mikocka-Walus A, Anjana RM, Unnikrishnan R, Jebarani S, Venkatesan U, Gopi S, Radha V, Mohan V. Identification of appropriate biochemical parameters and cut points to detect Maturity Onset Diabetes of Young (MODY) in Asian Indians in a clinic setting. Sci Rep 2023; 13:11408. [PMID: 37452084 PMCID: PMC10349068 DOI: 10.1038/s41598-023-37766-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Maturity Onset Diabetes of the Young (MODY) is a monogenic form of diabetes which is detected by genetic testing. We looked at clinical and biochemcial variables that could help detect possible MODY among Asian Indians with youth-onset diabetes. From the diabetes electronic medical records of a diabetes care centre in Chennai in southern India, demographic, anthropometric, and biochemical details of 34 genetically confirmed MODY participants were extracted. They were compared with patients with type 1 diabetes (T1D) (n = 1011) and type 2 diabetes (T2D) (n = 1605), diagnosed below 30 years of age. Clinical and biochemical variables including body mass index (BMI), glycated hemoglobin, HDL cholesterol, and C-peptide (fasting and stimulated) were analyzed to determine whether cut points could be derived to identify individuals who could be sent for genetic testing to diagnose or rule out MODY in this ethnic group. The age at diagnosis was higher for T2D (26.5 ± 4.0 years) compared to T1D (18.2 ± 6.1 years) and MODY (17.8 ± 6.0 years). Individuals with MODY had BMI, glycated hemoglobin, total cholesterol, triglycerides, HDL cholesterol, and C-peptide levels which were intermediate between T1D and T2D. The identified probable parameters and their cut points to identify cases for MODY genetic screening were BMI 21.2-22.7 kg/m2, glycated hemoglobin 7.2-10%, HDL cholesterol 43-45 mg/dl, fasting C -peptide, 1.2-2.1 ng/ml and stimulated C-peptide, 2.1-4.5 ng/ml. Asian Indians with MODY have clinical features that are intermediate between T1D and T2D and selected biochemical parameters, especially stimulated C peptide cut points were the most useful to diagnose MODY.
Collapse
Affiliation(s)
- Ramasamy Aarthy
- Madras Diabetes Research Foundation (ICMR Centre for Advanced Research on Diabetes), Chennai, India
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Deakin University Geelong, Geelong, Australia
| | - Kathryn Aston-Mourney
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Deakin University Geelong, Geelong, Australia
| | - Anandakumar Amutha
- Madras Diabetes Research Foundation (ICMR Centre for Advanced Research on Diabetes), Chennai, India
| | | | - Ranjit Mohan Anjana
- Madras Diabetes Research Foundation (ICMR Centre for Advanced Research on Diabetes), Chennai, India
- Dr. Mohan's Diabetes Specialties Centre (IDF Centre of Excellence in Diabetes Care), No 4, Conran Smith Road, Gopalapuram, Chennai, 600086, India
| | - Ranjit Unnikrishnan
- Madras Diabetes Research Foundation (ICMR Centre for Advanced Research on Diabetes), Chennai, India
- Dr. Mohan's Diabetes Specialties Centre (IDF Centre of Excellence in Diabetes Care), No 4, Conran Smith Road, Gopalapuram, Chennai, 600086, India
| | - Saravanan Jebarani
- Madras Diabetes Research Foundation (ICMR Centre for Advanced Research on Diabetes), Chennai, India
| | - Ulagamathesan Venkatesan
- Madras Diabetes Research Foundation (ICMR Centre for Advanced Research on Diabetes), Chennai, India
| | - Sundaramoorthy Gopi
- Madras Diabetes Research Foundation (ICMR Centre for Advanced Research on Diabetes), Chennai, India
| | - Venkatesan Radha
- Madras Diabetes Research Foundation (ICMR Centre for Advanced Research on Diabetes), Chennai, India
| | - Viswanathan Mohan
- Madras Diabetes Research Foundation (ICMR Centre for Advanced Research on Diabetes), Chennai, India.
- Dr. Mohan's Diabetes Specialties Centre (IDF Centre of Excellence in Diabetes Care), No 4, Conran Smith Road, Gopalapuram, Chennai, 600086, India.
| |
Collapse
|
39
|
DeForest N, Kavitha B, Hu S, Isaac R, Krohn L, Wang M, Du X, De Arruda Saldanha C, Gylys J, Merli E, Abagyan R, Najmi L, Mohan V, Flannick J, Peloso GM, Gordts PL, Heinz S, Deaton AM, Khera AV, Olefsky J, Radha V, Majithia AR. Human gain-of-function variants in HNF1A confer protection from diabetes but independently increase hepatic secretion of atherogenic lipoproteins. CELL GENOMICS 2023; 3:100339. [PMID: 37492105 PMCID: PMC10363808 DOI: 10.1016/j.xgen.2023.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/08/2023] [Accepted: 05/03/2023] [Indexed: 07/27/2023]
Abstract
Loss-of-function mutations in hepatocyte nuclear factor 1A (HNF1A) are known to cause rare forms of diabetes and alter hepatic physiology through unclear mechanisms. In the general population, 1:100 individuals carry a rare, protein-coding HNF1A variant, most of unknown functional consequence. To characterize the full allelic series, we performed deep mutational scanning of 11,970 protein-coding HNF1A variants in human hepatocytes and clinical correlation with 553,246 exome-sequenced individuals. Surprisingly, we found that ∼1:5 rare protein-coding HNF1A variants in the general population cause molecular gain of function (GOF), increasing the transcriptional activity of HNF1A by up to 50% and conferring protection from type 2 diabetes (odds ratio [OR] = 0.77, p = 0.007). Increased hepatic expression of HNF1A promoted a pro-atherogenic serum profile mediated in part by enhanced transcription of risk genes including ANGPTL3 and PCSK9. In summary, ∼1:300 individuals carry a GOF variant in HNF1A that protects carriers from diabetes but enhances hepatic secretion of atherogenic lipoproteins.
Collapse
Affiliation(s)
- Natalie DeForest
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Babu Kavitha
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Centre for Advanced Research on Diabetes, Affiliated with University of Madras, Chennai, India
| | - Siqi Hu
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Roi Isaac
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Minxian Wang
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiaomi Du
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Camila De Arruda Saldanha
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jenny Gylys
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Edoardo Merli
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Laeya Najmi
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Viswanathan Mohan
- Department of Diabetology, Dr. Mohan’s Diabetes Specialties Centre (IDF Centre of Education) & Madras Diabetes Research Foundation (ICMR Centre for Advanced Research on Diabetes), Chennai, India
| | - Alnylam Human Genetics
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Centre for Advanced Research on Diabetes, Affiliated with University of Madras, Chennai, India
- Alnylam Pharmaceuticals, Cambridge, MA, USA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
- Department of Diabetology, Dr. Mohan’s Diabetes Specialties Centre (IDF Centre of Education) & Madras Diabetes Research Foundation (ICMR Centre for Advanced Research on Diabetes), Chennai, India
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - AMP-T2D Consortium
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Centre for Advanced Research on Diabetes, Affiliated with University of Madras, Chennai, India
- Alnylam Pharmaceuticals, Cambridge, MA, USA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
- Department of Diabetology, Dr. Mohan’s Diabetes Specialties Centre (IDF Centre of Education) & Madras Diabetes Research Foundation (ICMR Centre for Advanced Research on Diabetes), Chennai, India
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jason Flannick
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Gina M. Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Philip L.S.M. Gordts
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Sven Heinz
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Amit V. Khera
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jerrold Olefsky
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Venkatesan Radha
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Centre for Advanced Research on Diabetes, Affiliated with University of Madras, Chennai, India
| | - Amit R. Majithia
- Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
40
|
Baretić M, Caban D, Sertić J. Genetic and Clinical Characterization of Patients with HNF1B-Related MODY in Croatia. J Pers Med 2023; 13:1063. [PMID: 37511676 PMCID: PMC10381678 DOI: 10.3390/jpm13071063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Mutation of the gene encoding Hepatocyte Nuclear transcription Factor-1 Beta (HNF1B) causes a rare monogenetic subtype of Maturity-Onset Diabetes of the Young (MODY). HNF1B-related MODY results in the dysfunction of multiple organ systems. However, genetic analysis enables personalized medicine for patients and families. AIMS To understand the clinical characteristics and explore the gene mutations in Croatian patients. METHODS This was a retrospective observational study of individuals (and their relatives) who were, due to the clinical suspicion of MODY, referred to the Department of Laboratory Diagnostics at the University Hospital Centre Zagreb for genetic testing. RESULTS A total of 118 participants, 56% females, were screened. Seven patients (three females) from five families were identified to have HNF1B-related MODY. The median age at diagnosis was 31 (11-45) years, the median c-peptide was 0.8 (0.55-1.39) nmol/L, the median HbA1c was 9.1 (5.7-18.4)%, and the median BMI was 22.9 kg/m2 (17-24.6). Patients had a variety of clinical manifestations; kidney disease was not as frequent as liver lesions, neuropsychiatric symptoms, hyperlipidemia, hyperuricemia, and hypomagnesemia. We identified two new pathogenic mutations (c.1006C > G protein p.His336Asp on exon 4 and c.1373T > G p protein Val458Gly on exon 7). CONCLUSIONS In a study involving Croatian patients, new genetic (two previously unknown mutations) and clinical (diverse range of clinical presentations) aspects of HNF1B-related MODY were found.
Collapse
Affiliation(s)
- Maja Baretić
- Division of Endocrinology and Diabetes, Department of Internal Medicine, University Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Domagoj Caban
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Jadranka Sertić
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
41
|
Thuesen ACB, Jensen RT, Maagensen H, Kristiansen MR, Sørensen HT, Vaag A, Beck-Nielsen H, Pedersen OB, Grarup N, Nielsen JS, Rungby J, Gjesing AP, Storgaard H, Vilsbøll T, Hansen T. Identification of pathogenic GCK variants in patients with common type 2 diabetes can lead to discontinuation of pharmacological treatment. Mol Genet Metab Rep 2023; 35:100972. [PMID: 37008541 PMCID: PMC10063379 DOI: 10.1016/j.ymgmr.2023.100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Background Functionally disruptive variants in the glucokinase gene (GCK) cause a form of mild non-progressive hyperglycemia, which does not require pharmacological treatment. A substantial proportion of patients with type 2 diabetes (T2D) carry GCK variants. We aimed to investigate whether carriers of rare GCK variants diagnosed with T2D have a glycemic phenotype and treatment response consistent with GCK-diabetes. Methods Eight patients diagnosed with T2D from the Danish DD2 cohort who had previously undergone sequencing of GCK participated. Clinical examinations at baseline included an oral glucose tolerance test and continuous glucose monitoring. Carriers with a glycemic phenotype consistent with GCK-diabetes took part in a three-month treatment withdrawal. Results Carriers of pathogenic and likely pathogenic variants had lower median fasting glucose and C-peptide levels compared to carriers of variants of uncertain significance and benign variants (median fasting glucose: 7.3 (interquartile range: 0.4) mmol/l vs. 9.5 (1.6) mmol/l, p = 0.04; median fasting C-peptide 902 (85) pmol/l vs. 1535 (295) pmol/l, p = 0.03). Four participants who discontinued metformin treatment and one diet-treated participant were reevaluated after three months. There was no deterioration of HbA1c or fasting glucose (median baseline HbA1c: 49 (3) vs. 51 (6) mmol/mol after three months, p = 0.4; median baseline fasting glucose: 7.3 (0.4) mmol/l vs. 7.0 (0.6) mmol/l after three months, p = 0.5). Participants did not consistently fulfill best practice guidelines for GCK screening nor clinical criteria for monogenic diabetes. Discussion Carriers of pathogenic or likely pathogenic GCK variants identified by unselected screening in T2D should be reported, as they have a glycemic phenotype and treatment response consistent with GCK-diabetes. Variants of uncertain significance should be interpreted with care. Systematic genetic screening of patients with common T2D receiving routine care can lead to the identification and precise care of patients with misclassified GCK-diabetes who are not identifiable through common genetic screening criteria.
Collapse
Affiliation(s)
- Anne Cathrine Baun Thuesen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Research, Copenhagen University Hospital – Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Rasmus Tanderup Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Maagensen
- Clinical Research, Copenhagen University Hospital – Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Maja Refshauge Kristiansen
- Steno Diabetes Center Odense, the Danish Centre for Strategic Research in Type 2 Diabetes (DD2), Odense University Hospital, Odense, Denmark
| | - Henrik Toft Sørensen
- Department of Clinical Epidemiology, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| | - Allan Vaag
- Clinical Research, Copenhagen University Hospital – Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department for Translational Type 2 Diabetes Research, Lund University Diabetes Center, Lund University, Sweden
| | - Henning Beck-Nielsen
- Steno Diabetes Center Odense, the Danish Centre for Strategic Research in Type 2 Diabetes (DD2), Odense University Hospital, Odense, Denmark
| | - Oluf B. Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Steen Nielsen
- Steno Diabetes Center Odense, the Danish Centre for Strategic Research in Type 2 Diabetes (DD2), Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jørgen Rungby
- Clinical Research, Copenhagen University Hospital – Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anette Prior Gjesing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Heidi Storgaard
- Clinical Research, Copenhagen University Hospital – Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Tina Vilsbøll
- Clinical Research, Copenhagen University Hospital – Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Corresponding author at: Blegdamsvej 3B, 07-8, 2200 København N, Denmark.
| |
Collapse
|
42
|
Toomata Z, Leask M, Krishnan M, Cadzow M, Dalbeth N, Stamp LK, de Zoysa J, Merriman T, Wilcox P, Dewes O, Murphy R. Genetic testing for misclassified monogenic diabetes in Māori and Pacific peoples in Aōtearoa New Zealand with early-onset type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1174699. [PMID: 37234800 PMCID: PMC10206310 DOI: 10.3389/fendo.2023.1174699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Aims Monogenic diabetes accounts for 1-2% of diabetes cases yet is often misdiagnosed as type 2 diabetes. The aim of this study was to examine in Māori and Pacific adults clinically diagnosed with type 2 diabetes within 40 years of age, (a) the prevalence of monogenic diabetes in this population (b) the prevalence of beta-cell autoantibodies and (c) the pre-test probability of monogenic diabetes. Methods Targeted sequencing data of 38 known monogenic diabetes genes was analyzed in 199 Māori and Pacific peoples with BMI of 37.9 ± 8.6 kg/m2 who had been diagnosed with type 2 diabetes between 3 and 40 years of age. A triple-screen combined autoantibody assay was used to test for GAD, IA-2, and ZnT8. MODY probability calculator score was generated in those with sufficient clinical information (55/199). Results No genetic variants curated as likely pathogenic or pathogenic were found. One individual (1/199) tested positive for GAD/IA-2/ZnT8 antibodies. The pre-test probability of monogenic diabetes was calculated in 55 individuals with 17/55 (31%) scoring above the 20% threshold considered for diagnostic testing referral. Discussion Our findings suggest that monogenic diabetes is rare in Māori and Pacific people with clinical age, and the MODY probability calculator likely overestimates the likelihood of a monogenic cause for diabetes in this population.
Collapse
Affiliation(s)
- Zanetta Toomata
- Department of Medicine, Waipapa Taumata Rau, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Megan Leask
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mohanraj Krishnan
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pittsburgh, PA, United States
| | - Murray Cadzow
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, Waipapa Taumata Rau, The University of Auckland, Auckland, New Zealand
| | - Lisa K. Stamp
- Department of Medicine, University of Otago, Christchurch, Christchurch, New Zealand
| | - Janak de Zoysa
- Department of Medicine, Waipapa Taumata Rau, The University of Auckland, Auckland, New Zealand
| | - Tony Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Phillip Wilcox
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand
| | - Ofa Dewes
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- Langimalie Research Centre, Auckland, New Zealand
- Centre of Methods and Policy Application in the Social Sciences, The University of Auckland, Auckland, New Zealand
| | - Rinki Murphy
- Department of Medicine, Waipapa Taumata Rau, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
43
|
Gersing S, Cagiada M, Gebbia M, Gjesing AP, Coté AG, Seesankar G, Li R, Tabet D, Weile J, Stein A, Gloyn AL, Hansen T, Roth FP, Lindorff-Larsen K, Hartmann-Petersen R. A comprehensive map of human glucokinase variant activity. Genome Biol 2023; 24:97. [PMID: 37101203 PMCID: PMC10131484 DOI: 10.1186/s13059-023-02935-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Glucokinase (GCK) regulates insulin secretion to maintain appropriate blood glucose levels. Sequence variants can alter GCK activity to cause hyperinsulinemic hypoglycemia or hyperglycemia associated with GCK-maturity-onset diabetes of the young (GCK-MODY), collectively affecting up to 10 million people worldwide. Patients with GCK-MODY are frequently misdiagnosed and treated unnecessarily. Genetic testing can prevent this but is hampered by the challenge of interpreting novel missense variants. RESULT Here, we exploit a multiplexed yeast complementation assay to measure both hyper- and hypoactive GCK variation, capturing 97% of all possible missense and nonsense variants. Activity scores correlate with in vitro catalytic efficiency, fasting glucose levels in carriers of GCK variants and with evolutionary conservation. Hypoactive variants are concentrated at buried positions, near the active site, and at a region of known importance for GCK conformational dynamics. Some hyperactive variants shift the conformational equilibrium towards the active state through a relative destabilization of the inactive conformation. CONCLUSION Our comprehensive assessment of GCK variant activity promises to facilitate variant interpretation and diagnosis, expand our mechanistic understanding of hyperactive variants, and inform development of therapeutics targeting GCK.
Collapse
Affiliation(s)
- Sarah Gersing
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Matteo Cagiada
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Marinella Gebbia
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
| | - Anette P Gjesing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Atina G Coté
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
| | - Gireesh Seesankar
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
| | - Roujia Li
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5T 3A1, Canada
| | - Daniel Tabet
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5T 3A1, Canada
| | - Jochen Weile
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5T 3A1, Canada
| | - Amelie Stein
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Anna L Gloyn
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederick P Roth
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, M5G 1X5, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, M5T 3A1, Canada.
| | - Kresten Lindorff-Larsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark.
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark.
| |
Collapse
|
44
|
Noohi F, Sundaresan MS, Naylor RN, Ross LF. Diagnosis, treatment and disclosure: A qualitative exploration of participant challenges in a Monogenic Diabetes Registry. Genet Med 2023; 25:100019. [PMID: 36681871 PMCID: PMC10620612 DOI: 10.1016/j.gim.2023.100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Maturity-onset diabetes of the young (MODY) represents a heterogenous group of monogenic diabetes. Despite its autosomal dominant inheritance, many MODY participants in the University of Chicago Monogenic Diabetes Registry have no family members enrolled. We aimed to gather data on the Registry participants' experiences in (1) receipt of an accurate diagnosis, (2) decisions regarding disclosure of their MODY genetic test results with biological relatives, and (3) recommendations toward our Registry's processes and outreach. METHODS We conducted 20 one-on-one semistructured interviews with adult Registry participants. RESULTS All participants found navigating the health care system challenging because of the providers' unfamiliarity with MODY and dismissal of its importance post diagnosis. All had shared their results with at least 1 relative, however many found their relatives resistant to engaging with their providers. Participants wanted to receive targeted information on their condition and connect with other participants who have faced similar diagnostic and treatment challenges. CONCLUSION Our results demonstrate that our probands faced resistance to reclassification of their diabetes from both health care providers and relatives. In an effort to improve cascade testing, the Registry is designing a portal to facilitate participant-research team communication and provide additional supports for participants to involve family members in testing.
Collapse
Affiliation(s)
- Forough Noohi
- Department of Medicine, The University of Chicago, Chicago, IL.
| | | | - Rochelle N Naylor
- Department of Medicine, The University of Chicago, Chicago, IL; Department of Pediatrics, The University of Chicago, Chicago, IL
| | - Lainie Friedman Ross
- Department of Medicine, The University of Chicago, Chicago, IL; Department of Pediatrics, The University of Chicago, Chicago, IL
| |
Collapse
|
45
|
Abstract
Monogenic diabetes includes several clinical conditions generally characterized by early-onset diabetes, such as neonatal diabetes, maturity-onset diabetes of the young (MODY) and various diabetes-associated syndromes. However, patients with apparent type 2 diabetes mellitus may actually have monogenic diabetes. Indeed, the same monogenic diabetes gene can contribute to different forms of diabetes with early or late onset, depending on the functional impact of the variant, and the same pathogenic variant can produce variable diabetes phenotypes, even in the same family. Monogenic diabetes is mostly caused by impaired function or development of pancreatic islets, with defective insulin secretion in the absence of obesity. The most prevalent form of monogenic diabetes is MODY, which may account for 0.5-5% of patients diagnosed with non-autoimmune diabetes but is probably underdiagnosed owing to insufficient genetic testing. Most patients with neonatal diabetes or MODY have autosomal dominant diabetes. More than 40 subtypes of monogenic diabetes have been identified to date, the most prevalent being deficiencies of GCK and HNF1A. Precision medicine approaches (including specific treatments for hyperglycaemia, monitoring associated extra-pancreatic phenotypes and/or following up clinical trajectories, especially during pregnancy) are available for some forms of monogenic diabetes (including GCK- and HNF1A-diabetes) and increase patients' quality of life. Next-generation sequencing has made genetic diagnosis affordable, enabling effective genomic medicine in monogenic diabetes.
Collapse
|
46
|
Thewjitcharoen Y, Soontaree N, Waralee C, Siriwan B, Sirinate K, Ekgaluck W, Thep H. Prevalence and characteristics of misdiagnosed adult-onset type 1 diabetes mellitus in Thai people by random plasma C-peptide testing. Heliyon 2023; 9:e14262. [PMID: 36923852 PMCID: PMC10009731 DOI: 10.1016/j.heliyon.2023.e14262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 02/07/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Background It is critical to determine the exact type of diabetes because misclassification led to inappropriate treatments. The classification of DM can be aided by the measurement of pancreatic autoantibodies and plasma C-peptide levels. Previous studies suggested that random plasma C-peptide testing in those with clinically diagnosed adult T1DM of at least 3 years duration has led to reclassification in some cases. Aim This study aimed to assess the prevalence and characteristics of misdiagnosed adult-onset type 1 diabetes mellitus in Thai people by random plasma C-peptide testing. Methods A cross-sectional study of adult Thai patients diagnosed with clinically diagnosed T1DM and DM duration of at least 3 years at Theptarin Hospital, a diabetes center in Bangkok, Thailand was studied. Clinically misdiagnosis of T1DM was defined by preserved endogenous insulin secretion. Characteristics of the misdiagnosed patients were compared with definite T1DM patients. Results A total of 73 patients (females 52.1%, mean age 42.2 ± 12.5 years, duration of DM 20.3 ± 11.3 years) were studied. The prevalence of available anti-GAD and anti-IA2 were 53.3% and 20.8%, respectively. Preserved endogenous insulin secretion evaluated by random C-peptide or stimulated C-peptide was found in 8 patients (11.0%). The misdiagnosed patients had higher prevalence of hypertension and diabetic complications. Three patients were suspected to have monogenic diabetes and five patients were reclassified as possible T2DM. Conclusions Approximately one-tenth of adult T1DM patients were misdiagnosed. Random plasma C-peptide testing at least 3 years after a diagnosis of T1DM was superior to the measurement of pancreatic autoantibodies. Our present study highlights the need to increase accuracy in the diagnosis of T1DM patients by re-assessing endogenous insulin production with measurement of random plasma C-peptide levels.
Collapse
|
47
|
Zhang N, Zhao H, Li C, Zhang FZ. Novel gene mutation in maturity-onset diabetes of the young: A case report. World J Clin Cases 2023; 11:1099-1105. [PMID: 36874436 PMCID: PMC9979303 DOI: 10.12998/wjcc.v11.i5.1099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/20/2022] [Accepted: 01/19/2023] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY) is the most common monogenic type of diabetes. Recently, 14 gene mutations have been found to be associated with MODY. In addition, the KLF11 gene mutation is the pathogenic gene of MODY7. To date, the clinical and functional characteristics of the novel KLF11 mutation c. G31A have not yet been reported.
CASE SUMMARY We report of a 30-year-old male patient with a one-year history of nonketosis-prone diabetes and a 3-generation family history of diabetes. The patient was found to carry a KLF11 gene mutation. Therefore, the clinical data of family members were collected and investigated. A total of four members of the family were found to have heterozygous mutations in the KLF11 gene c. G31A, which resulted in a change in the corresponding amino acid p.D11N. Three patients had diabetes mellitus, and one patient had impaired glucose tolerance.
CONCLUSION The heterozygous mutation of the KLF11 gene c.G31A (p. D11N) is a new mutation site of MODY7. Subsequently, the main treatment included dietary interventions and oral drugs.
Collapse
Affiliation(s)
- Na Zhang
- Department of Endocrinology, Liaocheng Third People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Hui Zhao
- Department of Endocrinology, Binzhou Central Hospital, Binzhou 251700, Shandong Province, China
| | - Cui Li
- Department of Endocrinology, Liaocheng Third People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Feng-Zhi Zhang
- Department of Endocrinology, Liaocheng Third People's Hospital, Liaocheng 252000, Shandong Province, China
| |
Collapse
|
48
|
Peng H, Li J, Wang Z. De novo HNF1A mutation of young maturity-onset diabetes 3 of a young girl-Case report. BMC Endocr Disord 2023; 23:38. [PMID: 36782183 PMCID: PMC9926701 DOI: 10.1186/s12902-023-01293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Young maturity-onset diabetes of the young type3(MODY3) as a special type of diabetes, the probability of diagnosis is low. This article reports on a case and reviews the relevant knowledge of the disease. We report an 11-year-and-11-month-old girl whose grandmother died from diabetic complications while the rest of the families were non-diabetes. The proband was initially treated with insulin and metformin but the threatment proved inefficient. After an exome-targeted capture sequencing test, she was diagnosed with mature-onset diabetes of young type 3 (MODY3), and sulfonylureas make sense. The key to mody treatment is a correct and timely diagnosis, which contributes to helping patients overcome the problems of MODY3, especially for blood sugar control.
Collapse
Affiliation(s)
- Haoran Peng
- Chengdu Medical College, 610083 Chengdu, China
| | - Jianbo Li
- Southwest Medical University, 646000 Luzhou, China
| | - Zhang Wang
- Department of Geriatrics, The General Hospital of Western Theater Command, 610083 Chengdu, China
| |
Collapse
|
49
|
Ivanoshchuk D, Shakhtshneider E, Mikhailova S, Ovsyannikova A, Rymar O, Valeeva E, Orlov P, Voevoda M. The Mutation Spectrum of Rare Variants in the Gene of Adenosine Triphosphate (ATP)-Binding Cassette Subfamily C Member 8 in Patients with a MODY Phenotype in Western Siberia. J Pers Med 2023; 13:jpm13020172. [PMID: 36836406 PMCID: PMC9967647 DOI: 10.3390/jpm13020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
During differential diagnosis of diabetes mellitus, the greatest difficulties are encountered with young patients because various types of diabetes can manifest themselves in this age group (type 1, type 2, and monogenic types of diabetes mellitus, including maturity-onset diabetes of the young (MODY)). The MODY phenotype is associated with gene mutations leading to pancreatic-β-cell dysfunction. Using next-generation sequencing technology, targeted sequencing of coding regions and adjacent splicing sites of MODY-associated genes (HNF4A, GCK, HNF1A, PDX1, HNF1B, NEUROD1, KLF11, CEL, PAX4, INS, BLK, KCNJ11, ABCC8, and APPL1) was carried out in 285 probands. Previously reported missense variants c.970G>A (p.Val324Met) and c.1562G>A (p.Arg521Gln) in the ABCC8 gene were found once each in different probands. Variant c.1562G>A (p.Arg521Gln) in ABCC8 was detected in a compound heterozygous state with a pathogenic variant of the HNF1A gene in a diabetes patient and his mother. Novel frameshift mutation c.4609_4610insC (p.His1537ProfsTer22) in this gene was found in one patient. All these variants were detected in available family members of the patients and cosegregated with diabetes mellitus. Thus, next-generation sequencing of MODY-associated genes is an important step in the diagnosis of rare MODY subtypes.
Collapse
Affiliation(s)
- Dinara Ivanoshchuk
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-(383)-363-4963; Fax: +7-(383)-333-1278
| | - Elena Shakhtshneider
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
| | - Svetlana Mikhailova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Alla Ovsyannikova
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
| | - Oksana Rymar
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
| | - Emil Valeeva
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Pavel Orlov
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
| | - Mikhail Voevoda
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia
| |
Collapse
|
50
|
Chen Y, Zhao J, Li X, Xie Z, Huang G, Yan X, Zhou H, Zheng L, Xu T, Zhou K, Zhou Z. Prevalence of maturity-onset diabetes of the young in phenotypic type 2 diabetes in young adults: a nationwide, multi-center, cross-sectional survey in China. Chin Med J (Engl) 2023; 136:56-64. [PMID: 36723869 PMCID: PMC10106210 DOI: 10.1097/cm9.0000000000002321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY) is the most common monogenic diabetes. The aim of this study was to assess the prevalence of MODY in phenotypic type 2 diabetes (T2DM) among Chinese young adults. METHODS From April 2015 to October 2017, this cross-sectional study involved 2429 consecutive patients from 46 hospitals in China, newly diagnosed between 15 years and 45 years, with T2DM phenotype and negative for standardized glutamic acid decarboxylase antibody at the core laboratory. Sequencing using a custom monogenic diabetes gene panel was performed, and variants of 14 MODY genes were interpreted as per current guidelines. RESULTS The survey determined 18 patients having genetic variants causing MODY (6 HNF1A , 5 GCK , 3 HNF4A , 2 INS , 1 PDX1 , and 1 PAX4 ). The prevalence of MODY was 0.74% (95% confidence interval [CI]: 0.40-1.08%). The clinical characteristics of MODY patients were not specific, 72.2% (13/18) of them were diagnosed after 35 years, 47.1% (8/17) had metabolic syndrome, and only 38.9% (7/18) had a family history of diabetes. No significant difference in manifestations except for hemoglobin A1c levels was found between MODY and non-MODY patients. CONCLUSION The prevalence of MODY in young adults with phenotypic T2DM was 0.74%, among which HNF1A -, GCK -, and HNF4A -MODY were the most common subtypes. Clinical features played a limited role in the recognition of MODY.
Collapse
Affiliation(s)
- Yan Chen
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jing Zhao
- College of Life Sciences, The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiang Yan
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Houde Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Li Zheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Xu
- College of Life Sciences, The University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 271016, China
| | - Kaixin Zhou
- College of Life Sciences, The University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 271016, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| |
Collapse
|