1
|
Nowak-Jary J, Machnicka B. Comprehensive Analysis of the Potential Toxicity of Magnetic Iron Oxide Nanoparticles for Medical Applications: Cellular Mechanisms and Systemic Effects. Int J Mol Sci 2024; 25:12013. [PMID: 39596080 PMCID: PMC11594039 DOI: 10.3390/ijms252212013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Owing to recent advancements in nanotechnology, magnetic iron oxide nanoparticles (MNPs), particularly magnetite (Fe3O4) and maghemite (γ-Fe2O3), are currently widely employed in the field of medicine. These MNPs, characterized by their large specific surface area, potential for diverse functionalization, and magnetic properties, have found application in various medical domains, including tumor imaging (MRI), radiolabelling, internal radiotherapy, hyperthermia, gene therapy, drug delivery, and theranostics. However, ensuring the non-toxicity of MNPs when employed in medical practices is paramount. Thus, ongoing research endeavors are essential to comprehensively understand and address potential toxicological implications associated with their usage. This review aims to present the latest research and findings on assessing the potential toxicity of magnetic nanoparticles. It meticulously delineates the primary mechanisms of MNP toxicity at the cellular level, encompassing oxidative stress, genotoxic effects, disruption of the cytoskeleton, cell membrane perturbation, alterations in the cell cycle, dysregulation of gene expression, inflammatory response, disturbance in ion homeostasis, and interference with cell migration and mobility. Furthermore, the review expounds upon the potential impact of MNPs on various organs and systems, including the brain and nervous system, heart and circulatory system, liver, spleen, lymph nodes, skin, urinary, and reproductive systems.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516 Zielona Gora, Poland;
| | | |
Collapse
|
2
|
Subhasinghe I, Matsuyama-Kato A, Ahmed KA, Ayalew LE, Gautam H, Popowich S, Chow-Lockerbie B, Tikoo SK, Griebel P, Gomis S. Oligodeoxynucleotides containing CpG motifs upregulate bactericidal activities of heterophils and enhance immunoprotection of neonatal broiler chickens against Salmonella Typhimurium septicemia. Poult Sci 2024; 103:104078. [PMID: 39096829 PMCID: PMC11345621 DOI: 10.1016/j.psj.2024.104078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 08/05/2024] Open
Abstract
In the past, we demonstrated that oligodeoxynucleotides containing CpG motifs (CpG-ODN) mimicking bacterial DNA, stimulate the innate immune system of neonatal broiler chickens and protect them against Escherichia coli and Salmonella Typhimurium (S. Typhimurium) septicemia. The first line of innate immune defense mechanism is formed by heterophils and plays a critical protective role against bacterial septicemia in avian species. Therefore, the objectives of this study were 1) to explore the kinetics of CpG-ODN mediated antibacterial mechanisms of heterophils following single or twice administration of CpG-ODN in neonatal broiler chickens and 2) to investigate the kinetics of the immunoprotective efficacy of single versus twice administration of CpG-ODN against S. Typhimurium septicemia. In this study, we successfully developed and optimized flow cytometry-based assays to measure phagocytosis, oxidative burst, and degranulation activity of heterophils. Birds that received CpG-ODN had significantly increased (p < 0.05) phagocytosis, oxidative burst, and degranulation activity of heterophils as early as 24 h following CpG-ODN administration. Twice administration of CpG-ODN significantly increased the phagocytosis activity of heterophils. In addition, our newly developed CD107a based flow cytometry assay demonstrated a significantly higher degranulation activity of heterophils following twice than single administration of CpG-ODN. However, the oxidative burst activity of heterophils was not significantly different between birds that received CpG-ODN only once or twice. Furthermore, delivery of CpG-ODN twice increased immunoprotection against S. Typhimurium septicemia compared to once but the difference was not statistically significant. In conclusion, we demonstrated enhanced bactericidal activity of heterophils after administration of CpG-ODN to neonatal broiler chickens. Further investigations will be required to identify other activated innate immune cells and the specific molecular pathways associated with the CpG-ODN mediated activation of heterophils.
Collapse
Affiliation(s)
- Iresha Subhasinghe
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Ayumi Matsuyama-Kato
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Khawaja Ashfaque Ahmed
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Lisanework E Ayalew
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Hemlata Gautam
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Shelly Popowich
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Betty Chow-Lockerbie
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Suresh K Tikoo
- Vaccinology and Immunotherapy, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Philip Griebel
- Vaccinology and Immunotherapy, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; VIDO-InterVac., University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Susantha Gomis
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.
| |
Collapse
|
3
|
Hara Y, Yoshizawa K, Yaguchi A, Hiramatsu H, Uchida N, Muraoka T. ROS-Responsive Methionine-Containing Amphiphilic Peptides Impart Enzyme-Triggered Phase Transition and Antioxidant Cell Protection. Biomacromolecules 2024; 25:3499-3506. [PMID: 38720562 PMCID: PMC11170935 DOI: 10.1021/acs.biomac.4c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 06/11/2024]
Abstract
Reactive oxygen species (ROS) are produced by cellular activities, such as metabolism and immune response, and play important roles in cell signaling and homeostasis. However, overproduced ROS causes irreversible damage to nucleic acids and membrane lipids, supporting genetic mutations and enhancing the effects of aging. Cells defend themselves against ROS using antioxidant systems based on redox-active sulfur and transition metals. Inspired by such biological redox-responsive systems, we developed methionine-containing self-assembling peptides. The Met-containing peptides formed hydrogels that underwent a gel-to-sol phase transition upon oxidation by H2O2, and the sensitivity of the peptides to the oxidant increased as the number of Met residues increased. The peptide containing three Met residues, the largest number of Met residues in our series of designed peptides, showed the highest sensitivity to oxidation and detoxification to protect cells from ROS damage. In addition, this peptide underwent a phase transition in response to H2O2 produced by an oxidizing enzyme. This study demonstrates the design of a supramolecular biomaterial that is responsive to enzymatically generated ROS and can protect cells against oxidative stress.
Collapse
Affiliation(s)
- Yoshika Hara
- Department
of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Tokyo, Japan
| | - Ken Yoshizawa
- Department
of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Tokyo, Japan
| | - Atsuya Yaguchi
- Department
of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Tokyo, Japan
| | - Hirotsugu Hiramatsu
- Department
of Applied Chemistry and Institute of Molecular Science National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
- Center
for Emergent Functional Matter Science National
Yang Ming Chiao Tung University 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Noriyuki Uchida
- Department
of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Tokyo, Japan
| | - Takahiro Muraoka
- Department
of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Tokyo, Japan
- Kanagawa
Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina 243-0435, Kanagawa, Japan
| |
Collapse
|
4
|
Gulati M, Thomas JM, Ennis CL, Hernday AD, Rawat M, Nobile CJ. The bacillithiol pathway is required for biofilm formation in Staphylococcus aureus. Microb Pathog 2024; 191:106657. [PMID: 38649100 DOI: 10.1016/j.micpath.2024.106657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Staphylococcus aureus is a major human pathogen that can cause infections that range from superficial skin and mucosal infections to life threatening disseminated infections. S. aureus can attach to medical devices and host tissues and form biofilms that allow the bacteria to evade the host immune system and provide protection from antimicrobial agents. To counter host-generated oxidative and nitrosative stress mechanisms that are part of the normal host responses to invading pathogens, S. aureus utilizes low molecular weight (LMW) thiols, such as bacillithiol (BSH). Additionally, S. aureus synthesizes its own nitric oxide (NO), which combined with its downstream metabolites may also protect the bacteria against specific host responses. We have previously shown that LMW thiols are required for biofilm formation in Mycobacterium smegmatis and Pseudomonas aeruginosa. Here, we show that the S. aureus bshC mutant strain, which is defective in the last step of the BSH pathway and lacks BSH, is impaired in biofilm formation. We also identify a possible S-nitrosobacillithiol reductase (BSNOR), similar in sequence to an S-nitrosomycothiol reductase found in M. smegmatis and show that the putative S. aureus bsnoR mutant strain has reduced levels of BSH and decreased biofilm formation. Our studies also show that NO plays an important role in biofilm formation and that acidified sodium nitrite severely reduces biofilm thickness. These studies provide insight into the roles of oxidative and nitrosative stress mechanisms on biofilm formation and indicate that BSH and NO are key players in normal biofilm formation in S. aureus.
Collapse
Affiliation(s)
- Megha Gulati
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, USA
| | - Jason M Thomas
- Department of Biology, California State University-Fresno, Fresno, CA, USA
| | - Craig L Ennis
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, USA; Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, USA
| | - Aaron D Hernday
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, USA; Health Sciences Research Institute, University of California, Merced, CA, USA
| | - Mamta Rawat
- Department of Biology, California State University-Fresno, Fresno, CA, USA.
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, USA; Health Sciences Research Institute, University of California, Merced, CA, USA.
| |
Collapse
|
5
|
Badran G, Grare C, Masson JD, David MO, Achour D, Guidice JML, Garçon G, Crépeaux G. Difference in the cellular response following THP-1 derived phagocytic monocyte cells exposure to commercial aluminum-based adjuvants and aluminum-containing vaccines. J Trace Elem Med Biol 2024; 83:127394. [PMID: 38262194 DOI: 10.1016/j.jtemb.2024.127394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Aluminum-based adjuvants (ABAs) enhance the immune response following vaccine injection. Their mechanisms of action are not fully understood, and their bio-persistency have been described associated with long-term adverse effects. METHODS We evaluated and compared the cellular effects of the two main ABAs and whole vaccines on ATP production, ROS generation and cytokines production (IL-6 and IL-10), using THP-1 cells. RESULTS ABAs altered the cell energy metabolism by increasing ROS production after 24 h and reducing ATP production after 48 h. In addition, both ABAs and whole vaccines induced different kinetics of IL-6 production, whereas only ABAs induced IL-10 secretion. CONCLUSION This study showed clearly, for a first time, a difference in cellular response to the ABAs and whole vaccines which should be taken into consideration in future studies focusing on the effect of ABA in vaccines. Future studies on ABAs should also pay attention to mitochondrial function alterations following exposure to ABA-containing vaccines.
Collapse
Affiliation(s)
- Ghidaa Badran
- Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France.
| | - Céline Grare
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | | | - Marie-Odile David
- Université Paris-Saclay, Inserm, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques, U1204, 91025 Evry, France
| | - Djamal Achour
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - Jean-Marc Lo Guidice
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - Guillaume Garçon
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - Guillemette Crépeaux
- Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France; Ecole Nationale Vétérinaire d'Alfort, IMRB, F-94700 Maisons-Alfort, France
| |
Collapse
|
6
|
Edzeamey FJ, Ramchunder Z, Pourzand C, Anjomani Virmouni S. Emerging antioxidant therapies in Friedreich's ataxia. Front Pharmacol 2024; 15:1359618. [PMID: 38379897 PMCID: PMC10876797 DOI: 10.3389/fphar.2024.1359618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/25/2024] [Indexed: 02/22/2024] Open
Abstract
Friedreich's ataxia (FRDA) is a rare childhood neurologic disorder, affecting 1 in 50,000 Caucasians. The disease is caused by the abnormal expansion of the GAA repeat sequence in intron 1 of the FXN gene, leading to the reduced expression of the mitochondrial protein frataxin. The disease is characterised by progressive neurodegeneration, hypertrophic cardiomyopathy, diabetes mellitus and musculoskeletal deformities. The reduced expression of frataxin has been suggested to result in the downregulation of endogenous antioxidant defence mechanisms and mitochondrial bioenergetics, and the increase in mitochondrial iron accumulation thereby leading to oxidative stress. The confirmation of oxidative stress as one of the pathological signatures of FRDA led to the search for antioxidants which can be used as therapeutic modality. Based on this observation, antioxidants with different mechanisms of action have been explored for FRDA therapy since the last two decades. In this review, we bring forth all antioxidants which have been investigated for FRDA therapy and have been signed off for clinical trials. We summarise their various target points in FRDA disease pathway, their performances during clinical trials and possible factors which might have accounted for their failure or otherwise during clinical trials. We also discuss the limitation of the studies completed and propose possible strategies for combinatorial therapy of antioxidants to generate synergistic effect in FRDA patients.
Collapse
Affiliation(s)
- Fred Jonathan Edzeamey
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health, Medicine, and Life Sciences (CHMLS), Brunel University London, Uxbridge, United Kingdom
| | - Zenouska Ramchunder
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health, Medicine, and Life Sciences (CHMLS), Brunel University London, Uxbridge, United Kingdom
| | - Charareh Pourzand
- Department of Life Sciences, University of Bath, Bath, United Kingdom
- Centre for Therapeutic Innovation, University of Bath, Bath, United Kingdom
| | - Sara Anjomani Virmouni
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health, Medicine, and Life Sciences (CHMLS), Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
7
|
Kuley R, Duvvuri B, Wallin JJ, Bui N, Adona MV, O’Connor NG, Sahi SK, Stanaway IB, Wurfel MM, Morrell ED, Liles WC, Bhatraju PK, Lood C. Mitochondrial N-formyl methionine peptides contribute to exaggerated neutrophil activation in patients with COVID-19. Virulence 2023; 14:2218077. [PMID: 37248708 PMCID: PMC10231045 DOI: 10.1080/21505594.2023.2218077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023] Open
Abstract
Neutrophil dysregulation is well established in COVID-19. However, factors contributing to neutrophil activation in COVID-19 are not clear. We assessed if N-formyl methionine (fMet) contributes to neutrophil activation in COVID-19. Elevated levels of calprotectin, neutrophil extracellular traps (NETs) and fMet were observed in COVID-19 patients (n = 68), particularly in critically ill patients, as compared to HC (n = 19, p < 0.0001). Of note, the levels of NETs were higher in ICU patients with COVID-19 than in ICU patients without COVID-19 (p < 0.05), suggesting a prominent contribution of NETs in COVID-19. Additionally, plasma from COVID-19 patients with mild and moderate/severe symptoms induced in vitro neutrophil activation through fMet/FPR1 (formyl peptide receptor-1) dependent mechanisms (p < 0.0001). fMet levels correlated with calprotectin levels validating fMet-mediated neutrophil activation in COVID-19 patients (r = 0.60, p = 0.0007). Our data indicate that fMet is an important factor contributing to neutrophil activation in COVID-19 disease and may represent a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Runa Kuley
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, USA
- Center for Life Sciences, Mahindra University, Hyderabad, India
| | - Bhargavi Duvvuri
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, USA
| | | | - Nam Bui
- Biomarker Sciences, Gilead Sciences Inc, Foster City, CA, USA
| | - Mary Vic Adona
- Biomarker Sciences, Gilead Sciences Inc, Foster City, CA, USA
| | - Nicholas G. O’Connor
- Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Sharon K. Sahi
- Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Ian B. Stanaway
- Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Mark M. Wurfel
- Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Eric D. Morrell
- Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - W. Conrad Liles
- Department of Medicine, University of Washington, Seattle, WA, USA
- Sepsis Center of Research Excellence-UW (SCORE-UW), University of Washington, Seattle, WA, USA
| | - Pavan K. Bhatraju
- Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
- Sepsis Center of Research Excellence-UW (SCORE-UW), University of Washington, Seattle, WA, USA
| | - Christian Lood
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Benea L, Ravoiu Lupu A, Bounegru I, Vizureanu P. Effect of Functional Nanoporous TiO 2 Film Obtained on Ti6Al4V Implant Alloy to Improve Resistance in Biological Solution for Inflammatory Conditions. Int J Mol Sci 2023; 24:ijms24108529. [PMID: 37239875 DOI: 10.3390/ijms24108529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The metallic titanium-based biomaterials are sensitive to corrosion-induced degradation in biological fluids in the presence of inflammatory conditions containing reactive oxygen species (ROS). Excess ROS induces oxidative modification of cellular macromolecules, inhibits protein function, and promotes cell death. In addition, ROS could promote implant degradation by accelerating the corrosive attack of biological fluids. The functional nanoporous titanium oxide film is obtained on titanium alloy to study the effect on implant reactivity in biological fluid with reactive oxygen species such as hydrogen peroxide, which are present in inflammations. The TiO2 nanoporous film is obtained by electrochemical oxidation at high potential. The untreated Ti6Al4V implant alloy and nanoporous titanium oxide film are comparatively evaluated for corrosion resistance in biological solution by Hank's and Hank's doped with hydrogen peroxide by electrochemical methods. The results showed that the presence of the anodic layer significantly improved the resistance of the titanium alloy to corrosion-induced degradation in biological solutions under inflammatory conditions.
Collapse
Affiliation(s)
- Lidia Benea
- Competences Center: Interfaces-Tribocorrosion-Electrochemical Systems, Dunarea de Jos University of Galati, 47 Domnească Street, RO-800008 Galati, Romania
| | - Anca Ravoiu Lupu
- Competences Center: Interfaces-Tribocorrosion-Electrochemical Systems, Dunarea de Jos University of Galati, 47 Domnească Street, RO-800008 Galati, Romania
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 Al. I. Cuza Street, RO-800010 Galati, Romania
| | - Iulian Bounegru
- Competences Center: Interfaces-Tribocorrosion-Electrochemical Systems, Dunarea de Jos University of Galati, 47 Domnească Street, RO-800008 Galati, Romania
| | - Petrica Vizureanu
- Faculty of Materials Science and Engineering, "Gheorghe Asachi" Technical University of Iasi, RO-700050 Iasi, Romania
| |
Collapse
|
9
|
Wei Y, Liu C, Li L. Geniposide improves bleomycin-induced pulmonary fibrosis by inhibiting NLRP3 inflammasome activation and modulating metabolism. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
|
10
|
Sarkar S, Karmakar S, Basu M, Ghosh P, Ghosh MK. Neurological damages in COVID-19 patients: Mechanisms and preventive interventions. MedComm (Beijing) 2023; 4:e247. [PMID: 37035134 PMCID: PMC10080216 DOI: 10.1002/mco2.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 04/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus, causes coronavirus disease 2019 (COVID-19) which led to neurological damage and increased mortality worldwide in its second and third waves. It is associated with systemic inflammation, myocardial infarction, neurological illness including ischemic strokes (e.g., cardiac and cerebral ischemia), and even death through multi-organ failure. At the early stage, the virus infects the lung epithelial cells and is slowly transmitted to the other organs including the gastrointestinal tract, blood vessels, kidneys, heart, and brain. The neurological effect of the virus is mainly due to hypoxia-driven reactive oxygen species (ROS) and generated cytokine storm. Internalization of SARS-CoV-2 triggers ROS production and modulation of the immunological cascade which ultimately initiates the hypercoagulable state and vascular thrombosis. Suppression of immunological machinery and inhibition of ROS play an important role in neurological disturbances. So, COVID-19 associated damage to the central nervous system, patients need special care to prevent multi-organ failure at later stages of disease progression. Here in this review, we are selectively discussing these issues and possible antioxidant-based prevention therapies for COVID-19-associated neurological damage that leads to multi-organ failure.
Collapse
Affiliation(s)
- Sibani Sarkar
- Division of Cancer Biology and Inflammatory DisorderSignal Transduction in Cancer and Stem Cells LaboratoryCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB)KolkataIndia
| | - Subhajit Karmakar
- Division of Cancer Biology and Inflammatory DisorderSignal Transduction in Cancer and Stem Cells LaboratoryCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB)KolkataIndia
| | - Malini Basu
- Department of MicrobiologyDhruba Chand Halder College, University of CalcuttaDakshin BarasatWBIndia
| | - Pratyasha Ghosh
- Department of EconomicsBethune CollegeUniversity of CalcuttaKolkataIndia
| | - Mrinal K Ghosh
- Division of Cancer Biology and Inflammatory DisorderSignal Transduction in Cancer and Stem Cells LaboratoryCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB)KolkataIndia
| |
Collapse
|
11
|
Kotla NG, Rochev Y. IBD disease-modifying therapies: insights from emerging therapeutics. Trends Mol Med 2023; 29:241-253. [PMID: 36720660 DOI: 10.1016/j.molmed.2023.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 02/01/2023]
Abstract
Inflammatory bowel disease (IBD) pathogenesis is associated with gut mucosal inflammation, epithelial damage, and dysbiosis leading to a dysregulated gut mucosal barrier. However, the extent and underlying mechanisms remain largely unknown. Current treatment regimens have focused mainly on treating IBD symptoms; however, such treatment strategies do not address mucosal epithelial repair, barrier homeostasis, or intestinal dysbiosis. Although attempts have been made to identify new therapeutic modalities to enhance gut barrier functions, these are at an early developmental stage and have not been wholly successful. We review conventional therapies, the possible relevant role of gut barrier-protecting agents, and biomaterial strategies relating to combination therapies that may pave the way towards developing new therapeutic approaches for IBD.
Collapse
Affiliation(s)
- Niranjan G Kotla
- CÚRAM, Science Foundation Ireland (SFI) Research Centre for Medical Devices, University of Galway, Galway, Ireland.
| | - Yury Rochev
- CÚRAM, Science Foundation Ireland (SFI) Research Centre for Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
12
|
Liu J, Jia B, Li Z, Li W. Reactive oxygen species-responsive polymer drug delivery systems. Front Bioeng Biotechnol 2023; 11:1115603. [PMID: 36815896 PMCID: PMC9932603 DOI: 10.3389/fbioe.2023.1115603] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Applying reactive polymer materials sensitive to biological stimuli has recently attracted extensive research interest. The special physiological effects of reactive oxygen species (ROS) on tumors or inflammation and the application of ROS-responsive polymers as drug-delivery systems in organisms have attracted much attention. ROS is a vital disease signal molecule, and the unique accumulation of ROS-responsive polymers in pathological sites may enable ROS-responsive polymers to deliver payload (such as drugs, ROS-responsive prodrugs, and gene therapy fragments) in a targeted fashion. In this paper, the research progress of ROS-responsive polymers and their application in recent years were summarized and analyzed. The research progress of ROS-responsive polymers was reviewed from the perspective of nanoparticle drug delivery systems, multi-responsive delivery systems, and ROS-responsive hydrogels. It is expected that our work will help understand the future development trends in this field.
Collapse
Affiliation(s)
- Jiaxue Liu
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Boyan Jia
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Zhibo Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China,*Correspondence: Zhibo Li, ; Wenliang Li,
| | - Wenliang Li
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China,*Correspondence: Zhibo Li, ; Wenliang Li,
| |
Collapse
|
13
|
Tripathi R, Gupta R, Sahu M, Srivastava D, Das A, Ambasta RK, Kumar P. Free radical biology in neurological manifestations: mechanisms to therapeutics interventions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62160-62207. [PMID: 34617231 DOI: 10.1007/s11356-021-16693-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Recent advancements and growing attention about free radicals (ROS) and redox signaling enable the scientific fraternity to consider their involvement in the pathophysiology of inflammatory diseases, metabolic disorders, and neurological defects. Free radicals increase the concentration of reactive oxygen and nitrogen species in the biological system through different endogenous sources and thus increased the overall oxidative stress. An increase in oxidative stress causes cell death through different signaling mechanisms such as mitochondrial impairment, cell-cycle arrest, DNA damage response, inflammation, negative regulation of protein, and lipid peroxidation. Thus, an appropriate balance between free radicals and antioxidants becomes crucial to maintain physiological function. Since the 1brain requires high oxygen for its functioning, it is highly vulnerable to free radical generation and enhanced ROS in the brain adversely affects axonal regeneration and synaptic plasticity, which results in neuronal cell death. In addition, increased ROS in the brain alters various signaling pathways such as apoptosis, autophagy, inflammation and microglial activation, DNA damage response, and cell-cycle arrest, leading to memory and learning defects. Mounting evidence suggests the potential involvement of micro-RNAs, circular-RNAs, natural and dietary compounds, synthetic inhibitors, and heat-shock proteins as therapeutic agents to combat neurological diseases. Herein, we explain the mechanism of free radical generation and its role in mitochondrial, protein, and lipid peroxidation biology. Further, we discuss the negative role of free radicals in synaptic plasticity and axonal regeneration through the modulation of various signaling molecules and also in the involvement of free radicals in various neurological diseases and their potential therapeutic approaches. The primary cause of free radical generation is drug overdosing, industrial air pollution, toxic heavy metals, ionizing radiation, smoking, alcohol, pesticides, and ultraviolet radiation. Excessive generation of free radicals inside the cell R1Q1 increases reactive oxygen and nitrogen species, which causes oxidative damage. An increase in oxidative damage alters different cellular pathways and processes such as mitochondrial impairment, DNA damage response, cell cycle arrest, and inflammatory response, leading to pathogenesis and progression of neurodegenerative disease other neurological defects.
Collapse
Affiliation(s)
- Rahul Tripathi
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Devesh Srivastava
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Ankita Das
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India.
- , Delhi, India.
- Molecular Neuroscience and Functional Genomics Laboratory, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
14
|
Geraskevich AV, Solomonenko AN, Dorozhko EV, Korotkova EI, Barek J. Electrochemical Sensors for the Detection of Reactive Oxygen Species in Biological Systems: A Critical Review. Crit Rev Anal Chem 2022; 54:742-774. [PMID: 35867547 DOI: 10.1080/10408347.2022.2098669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Reactive oxygen species (ROS) involving superoxide anion, hydrogen peroxide and hydroxyl radical play important role in human health. ROS are known to be the markers of oxidative stress associated with different pathologies including neurodegenerative and cardiovascular diseases, as well as cancer. Accordingly, ROS level detection in biological systems is an essential problem for biomedical and analytical research. Electrochemical methods seem to have promising prospects in ROS determination due to their high sensitivity, rapidity, and simple equipment. This review demonstrates application of modern electrochemical sensors for ROS detection in biological objects (e.g., cell lines and body fluids) over a decade between 2011 and 2021. Particular attention is paid to sensors materials and various types of modifiers for ROS selective detection. Moreover, the sensors comparative characteristics, their main advantages, disadvantages and their possibilities and limitations are discussed.
Collapse
Affiliation(s)
- Alina V Geraskevich
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Anna N Solomonenko
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Elena V Dorozhko
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Elena I Korotkova
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Jiří Barek
- UNESCO Laboratory of Environmental Electrochemistry, Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czechia, Czech Republic
| |
Collapse
|
15
|
Simicic D, Cudalbu C, Pierzchala K. Overview of oxidative stress findings in hepatic encephalopathy: From cellular and ammonium-based animal models to human data. Anal Biochem 2022; 654:114795. [PMID: 35753389 DOI: 10.1016/j.ab.2022.114795] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/26/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Abstract
Oxidative stress is a natural phenomenon in the body. Under physiological conditions intracellular reactive oxygen species (ROS) are normal components of signal transduction cascades, and their levels are maintained by a complex antioxidants systems participating in the in-vivo redox homeostasis. Increased oxidative stress is present in several chronic diseases and interferes with phagocytic and nervous cell functions, causing an up-regulation of cytokines and inflammation. Hepatic encephalopathy (HE) occurs in both acute liver failure (ALF) and chronic liver disease. Increased blood and brain ammonium has been considered as an important factor in pathogenesis of HE and has been associated with inflammation, neurotoxicity, and oxidative stress. The relationship between ROS and the pathophysiology of HE is still poorly understood. Therefore, sensing ROS production for a better understanding of the relationship between oxidative stress and functional outcome in HE pathophysiology is critical for determining the disease mechanisms, as well as to improve the management of patients. This review is emphasizing the important role of oxidative stress in HE development and documents the changes occurring as a consequence of oxidative stress augmentation based on cellular and ammonium-based animal models to human data.
Collapse
Affiliation(s)
- D Simicic
- CIBM Center for Biomedical Imaging, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Functional and Metabolic Imaging, EPFL, Lausanne, Switzerland
| | - C Cudalbu
- CIBM Center for Biomedical Imaging, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - K Pierzchala
- CIBM Center for Biomedical Imaging, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Functional and Metabolic Imaging, EPFL, Lausanne, Switzerland.
| |
Collapse
|
16
|
Geurtzen K, López-Delgado AC, Duseja A, Kurzyukova A, Knopf F. Laser-mediated osteoblast ablation triggers a pro-osteogenic inflammatory response regulated by reactive oxygen species and glucocorticoid signaling in zebrafish. Development 2022; 149:275194. [DOI: 10.1242/dev.199803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 02/22/2022] [Indexed: 12/31/2022]
Abstract
ABSTRACT
In zebrafish, transgenic labeling approaches, robust regenerative responses and excellent in vivo imaging conditions enable precise characterization of immune cell behavior in response to injury. Here, we monitored osteoblast-immune cell interactions in bone, a tissue which is particularly difficult to in vivo image in tetrapod species. Ablation of individual osteoblasts leads to recruitment of neutrophils and macrophages in varying numbers, depending on the extent of the initial insult, and initiates generation of cathepsin K+ osteoclasts from macrophages. Osteoblast ablation triggers the production of pro-inflammatory cytokines and reactive oxygen species, which are needed for successful macrophage recruitment. Excess glucocorticoid signaling as it occurs during the stress response inhibits macrophage recruitment, maximum speed and changes the macrophage phenotype. Although osteoblast loss is compensated for within a day by contribution of committed osteoblasts, macrophages continue to populate the region. Their presence is required for osteoblasts to fill the lesion site. Our model enables visualization of bone repair after microlesions at single-cell resolution and demonstrates a pro-osteogenic function of tissue-resident macrophages in non-mammalian vertebrates.
Collapse
Affiliation(s)
- Karina Geurtzen
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, 01307 Dresden, Germany
- Center for Healthy Aging, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, 3000 Leuven, Belgium
| | - Alejandra Cristina López-Delgado
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, 01307 Dresden, Germany
- Center for Healthy Aging, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Ankita Duseja
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, 01307 Dresden, Germany
- Center for Healthy Aging, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
- Department of Oncology and Metabolism, Metabolic Bone Centre, Sorby Wing, Northern General Hospital, Sheffield S5 7AU, UK
| | - Anastasia Kurzyukova
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, 01307 Dresden, Germany
- Center for Healthy Aging, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
- Faculty of Health and Medical Sciences, Biotech Research & Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Franziska Knopf
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, 01307 Dresden, Germany
- Center for Healthy Aging, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
17
|
Thompson B, Davidson EA, Chen Y, Orlicky DJ, Thompson DC, Vasiliou V. Oxidative stress induces inflammation of lens cells and triggers immune surveillance of ocular tissues. Chem Biol Interact 2022; 355:109804. [PMID: 35123994 PMCID: PMC9136680 DOI: 10.1016/j.cbi.2022.109804] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 11/03/2022]
Abstract
Recent reports have challenged the notion that the lens is immune-privileged. However, these studies have not fully identified the molecular mechanism(s) that promote immune surveillance of the lens. Using a mouse model of targeted glutathione (GSH) deficiency in ocular surface tissues, we have investigated the role of oxidative stress in upregulating cytokine expression and promoting immune surveillance of the eye. RNA-sequencing of lenses from postnatal day (P) 1-aged Gclcf/f;Le-CreTg/- (KO) and Gclcf/f;Le-Cre-/- control (CON) mice revealed upregulation of many cytokines (e.g., CCL4, GDF15, CSF1) and immune response genes in the lenses of KO mice. The eyes of KO mice had a greater number of cells in the aqueous and vitreous humors at P1, P20 and P50 than age-matched CON and Gclcw/w;Le-CreTg/- (CRE) mice. Histological analyses revealed the presence of innate immune cells (i.e., macrophages, leukocytes) in ocular structures of the KO mice. At P20, the expression of cytokines and ROS content was higher in the lenses of KO mice than in those from age-matched CRE and CON mice, suggesting that oxidative stress may induce cytokine expression. In vitro administration of the oxidant, hydrogen peroxide, and the depletion of GSH (using buthionine sulfoximine (BSO)) in 21EM15 lens epithelial cells induced cytokine expression, an effect that was prevented by co-treatment of the cells with N-acetyl-l-cysteine (NAC), a antioxidant. The in vivo and ex vivo induction of cytokine expression by oxidative stress was associated with the expression of markers of epithelial-to-mesenchymal transition (EMT), α-SMA, in lens cells. Given that EMT of lens epithelial cells causes posterior capsule opacification (PCO), we propose that oxidative stress induces cytokine expression, EMT and the development of PCO in a positive feedback loop. Collectively these data indicate that oxidative stress induces inflammation of lens cells which promotes immune surveillance of ocular structures.
Collapse
Affiliation(s)
- Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA
| | - Emily A Davidson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA
| | - David J Orlicky
- Department of Pathology, Anschutz School of Medicine, University of Colorado, Aurora, CO, USA
| | - David C Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA; Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA.
| |
Collapse
|
18
|
Kotla NG, Isa ILM, Rasala S, Demir S, Singh R, Baby BV, Swamy SK, Dockery P, Jala VR, Rochev Y, Pandit A. Modulation of Gut Barrier Functions in Ulcerative Colitis by Hyaluronic Acid System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103189. [PMID: 34761543 PMCID: PMC8811821 DOI: 10.1002/advs.202103189] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Indexed: 05/10/2023]
Abstract
The active stages of intestinal inflammation and the pathogenesis of ulcerative colitis are associated with superficial mucosal damage and intermittent wounding that leads to epithelial barrier defects and increased permeability. The standard therapeutic interventions for colitis have focused mainly on maintaining the remission levels of the disease. Nonetheless, such treatment strategies (using anti-inflammatory, immunomodulatory agents) do not address colitis' root cause, especially the mucosal damage and dysregulated intestinal barrier functions. Restoration of barrier functionality by mucosal healing or physical barrier protecting strategies shall be considered as an initial event in the disease suppression and progression. Herein, a biphasic hyaluronan (HA) enema suspension, naïve-HA systems that protect the dysregulated gut epithelium by decreasing the inflammation, permeability, and helping in maintaining the epithelial barrier integrity in the dextran sodium sulfate-induced colitis mice model is reported. Furthermore, HA-based system modulates intestinal epithelial junctional proteins and regulatory signaling pathways, resulting in attenuation of inflammation and mucosal protection. The results suggest that HA-based system can be delivered as an enema to act as a barrier protecting system for managing distal colonic inflammatory diseases, including colitis.
Collapse
Affiliation(s)
- Niranjan G. Kotla
- CÚRAM, SFI Research Centre for Medical DevicesNational University of Ireland GalwayGalwayH91 W2TYIreland
| | - Isma Liza Mohd Isa
- CÚRAM, SFI Research Centre for Medical DevicesNational University of Ireland GalwayGalwayH91 W2TYIreland
- Present address:
Department of AnatomyFaculty of MedicineUniversiti KebangsaanMalaysia
| | - Swetha Rasala
- CÚRAM, SFI Research Centre for Medical DevicesNational University of Ireland GalwayGalwayH91 W2TYIreland
| | - Secil Demir
- CÚRAM, SFI Research Centre for Medical DevicesNational University of Ireland GalwayGalwayH91 W2TYIreland
| | - Rajbir Singh
- Department of Microbiology and ImmunologyJames Graham Brown Cancer CenterUniversity of LouisvilleLouisvilleKY40202USA
| | - Becca V. Baby
- Department of Microbiology and ImmunologyJames Graham Brown Cancer CenterUniversity of LouisvilleLouisvilleKY40202USA
| | - Samantha K. Swamy
- CÚRAM, SFI Research Centre for Medical DevicesNational University of Ireland GalwayGalwayH91 W2TYIreland
| | - Peter Dockery
- Department of AnatomyNational University of IrelandGalwayH91 TK33Ireland
| | - Venkatakrishna R. Jala
- Department of Microbiology and ImmunologyJames Graham Brown Cancer CenterUniversity of LouisvilleLouisvilleKY40202USA
| | - Yury Rochev
- CÚRAM, SFI Research Centre for Medical DevicesNational University of Ireland GalwayGalwayH91 W2TYIreland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical DevicesNational University of Ireland GalwayGalwayH91 W2TYIreland
| |
Collapse
|
19
|
Pierzchala K, Simicic D, Sienkiewicz A, Sessa D, Mitrea S, Braissant O, McLin VA, Gruetter R, Cudalbu C. Central nervous system and systemic oxidative stress interplay with inflammation in a bile duct ligation rat model of type C hepatic encephalopathy. Free Radic Biol Med 2022; 178:295-307. [PMID: 34890769 DOI: 10.1016/j.freeradbiomed.2021.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/12/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023]
Abstract
The role and coexistence of oxidative stress (OS) and inflammation in type C hepatic encephalopathy (C HE) is a subject of intense debate. Under normal conditions the physiological levels of intracellular reactive oxygen species are controlled by the counteracting antioxidant response to maintain redox homeostasis. Our previous in-vivo1H-MRS studies revealed the longitudinal impairment of the antioxidant system (ascorbate) in a bile-duct ligation (BDL) rat model of type C HE. Therefore, the aim of this work was to examine the course of central nervous system (CNS) OS and systemic OS, as well as to check for their co-existence with inflammation in the BDL rat model of type C HE. To this end, we implemented a multidisciplinary approach, including ex-vivo and in-vitro electron paramagnetic resonance spectroscopy (EPR) spin-trapping, which was combined with UV-Vis spectroscopy, and histological assessments. We hypothesized that OS and inflammation act synergistically in the pathophysiology of type C HE. Our findings point to an increased CNS- and systemic-OS and inflammation over the course of type C HE progression. In particular, an increase in the CNS OS was observed as early as 2-weeks post-BDL, while the systemic OS became significant at week 6 post-BDL. The CNS EPR measurements were further validated by a substantial accumulation of 8-Oxo-2'-deoxyguanosine (Oxo-8-dG), a marker of oxidative DNA/RNA modifications on immunohistochemistry (IHC). Using IHC, we also detected increased synthesis of antioxidants, glutathione peroxidase 1 (GPX-1) and superoxide dismutases (i.e.Cu/ZnSOD (SOD1) and MnSOD (SOD2)), along with proinflammatory cytokine interleukin-6 (IL-6) in the brains of BDL rats. The presence of systemic inflammation was observed already at 2-weeks post-surgery. Thus, these results suggest that CNS OS is an early event in type C HE rat model, which seems to precede systemic OS. Finally, our results suggest that the increase in CNS OS is due to enhanced formation of intra- and extra-cellular ROS rather than due to reduced antioxidant capacity, and that OS in parallel with inflammation plays a significant role in type C HE.
Collapse
Affiliation(s)
- K Pierzchala
- Center for Biomedical Imaging, EPFL, Lausanne, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Functional and Metabolic Imaging, EPFL, Lausanne, Switzerland.
| | - D Simicic
- Center for Biomedical Imaging, EPFL, Lausanne, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Functional and Metabolic Imaging, EPFL, Lausanne, Switzerland
| | - A Sienkiewicz
- Laboratory for Quantum Magnetism, Institute of Physics, EPFL, Lausanne, Switzerland; ADSresonances Sàrl, Préverenges, Switzerland
| | - D Sessa
- Swiss Pediatric Liver Center, Department of Pediatrics, Gynecology and Obstetrics, University Hospitals Geneva and University of Geneva, Geneva, Switzerland
| | - S Mitrea
- Center for Biomedical Imaging, EPFL, Lausanne, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - O Braissant
- Service of Clinical Chemistry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - V A McLin
- Swiss Pediatric Liver Center, Department of Pediatrics, Gynecology and Obstetrics, University Hospitals Geneva and University of Geneva, Geneva, Switzerland
| | - R Gruetter
- Center for Biomedical Imaging, EPFL, Lausanne, Switzerland; Laboratory of Functional and Metabolic Imaging, EPFL, Lausanne, Switzerland
| | - C Cudalbu
- Center for Biomedical Imaging, EPFL, Lausanne, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Goshtasbi H, Pakchin PS, Movafeghi A, Barar J, Castejon AM, Omidian H, Omidi Y. Impacts of oxidants and antioxidants on the emergence and progression of Alzheimer's disease. Neurochem Int 2021; 153:105268. [PMID: 34954260 DOI: 10.1016/j.neuint.2021.105268] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 01/06/2023]
Abstract
The brain shows a high sensitivity to oxidative stress (OS). Thus, the maintenance of homeostasis of the brain regarding the reduction-oxidation (redox) situation is crucial for the regular function of the central nervous systems (CNS). The imbalance between the reactive oxygen species (ROS) and the cellular mechanism might lead to the emergence of OS, causing profound cell death as well as tissue damages and initiating neurodegenerative disorders (NDDs). Characterized by the cytoplasmic growth of neurofibrillary tangles and extracellular β-amyloid plaques, Alzheimer's disease (AD) is a complex NDD that causes dementia in adult life with severe manifestations. Nuclear factor erythroid 2-related factor 2 (NRF2) is a key transcription factor that regulates the functional expression of OS-related genes and the functionality of endogenous antioxidants. In the case of oxidative damage, NRF2 is transferred to the nucleus and attached to the antioxidant response element (ARE) that enhances the sequence to initiate transcription of the cell-protecting genes. This review articulates various mechanisms engaged with the generation of active and reactive species of endogenous and exogenous oxidants and focuses on the antioxidants as a body defense system regarding the NRF2-ARE signaling path in the CNS.
Collapse
Affiliation(s)
- Hamieh Goshtasbi
- Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Samadi Pakchin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Movafeghi
- Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ana M Castejon
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, United States
| | - Hossein Omidian
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, United States
| | - Yadollah Omidi
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, United States.
| |
Collapse
|
21
|
Przykaza Ł. Understanding the Connection Between Common Stroke Comorbidities, Their Associated Inflammation, and the Course of the Cerebral Ischemia/Reperfusion Cascade. Front Immunol 2021; 12:782569. [PMID: 34868060 PMCID: PMC8634336 DOI: 10.3389/fimmu.2021.782569] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/29/2021] [Indexed: 01/13/2023] Open
Abstract
Despite the enormous progress in the understanding of the course of the ischemic stroke over the last few decades, a therapy that effectively protects neurovascular units (NVUs) and significantly improves neurological functions in stroke patients has still not been achieved. The reasons for this state are unclear, but it is obvious that the cerebral ischemia and reperfusion cascade is a highly complex phenomenon, which includes the intense neuroinflammatory processes, and comorbid stroke risk factors strongly worsen stroke outcomes and likely make a substantial contribution to the pathophysiology of the ischemia/reperfusion, enhancing difficulties in searching of successful treatment. Common concomitant stroke risk factors (arterial hypertension, diabetes mellitus and hyperlipidemia) strongly drive inflammatory processes during cerebral ischemia/reperfusion; because these factors are often present for a long time before a stroke, causing low-grade background inflammation in the brain, and already initially disrupting the proper functions of NVUs. Broad consideration of this situation in basic research may prove to be crucial for the success of future clinical trials of neuroprotection, vasculoprotection and immunomodulation in stroke. This review focuses on the mechanism by which coexisting common risk factors for stroke intertwine in cerebral ischemic/reperfusion cascade and the dysfunction and disintegration of NVUs through inflammatory processes, principally activation of pattern recognition receptors, alterations in the expression of adhesion molecules and the subsequent pathophysiological consequences.
Collapse
Affiliation(s)
- Łukasz Przykaza
- Laboratory of Experimental and Clinical Neurosurgery, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
22
|
The Diguanylate Cyclase YfiN of Pseudomonas aeruginosa Regulates Biofilm Maintenance in Response to Peroxide. J Bacteriol 2021; 204:e0039621. [PMID: 34694901 DOI: 10.1128/jb.00396-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa forms surface-attached communities that persist in the face of antimicrobial agents and environmental perturbation. Published work has found extracellular polysaccharide (EPS) production, regulation of motility and induction of stress response pathways as contributing to biofilm tolerance during such insults. However, little is known regarding the mechanism(s) whereby biofilm maintenance is regulated when exposed to such environmental challenges. Here, we provide evidence that the diguanylate cyclase YfiN is important for the regulation of biofilm maintenance when exposed to peroxide. We find that, compared to the wild type (WT), static biofilms of the ΔyfiN mutant exhibit a maintenance defect, which can be further exacerbated by exposure to peroxide (H2O2); this defect can be rescued through genetic complementation. Additionally, we found that the ΔyfiN mutant biofilms produce less c-di-GMP than WT, and that H2O2 treatment enhanced motility of surface-associated bacteria and increased cell death for the ΔyfiN mutant grown as a biofilm compared to WT biofilms. These data provide evidence that YfiN is required for biofilm maintenance by P. aeruginosa, via c-di-GMP signaling, to limit motility and protect viability in response to peroxide stress. These findings add to the growing recognition that biofilm maintenance by P. aeruginosa is an actively regulated process that is controlled, at least in part, by the wide array of c-di-GMP metabolizing enzymes found in this microbe. Importance We build on previous findings that suggest that P. aeruginosa utilizes c-di-GMP metabolizing enzymes to actively maintain a mature biofilm. Here, we explore how the diguanylate cyclase YfiN contributes to the regulation of biofilm maintenance during peroxide exposure. We find that mature P. aeruginosa biofilms require YfiN to synthesize c-di-GMP, regulate motility and to insure viability during peroxide stress. These findings provide further evidence that the modulation of c-di-GMP in response to environmental signals is an important mechanism by which biofilms are maintained.
Collapse
|
23
|
Shukla RK, Badiye A, Vajpayee K, Kapoor N. Genotoxic Potential of Nanoparticles: Structural and Functional Modifications in DNA. Front Genet 2021; 12:728250. [PMID: 34659351 PMCID: PMC8511513 DOI: 10.3389/fgene.2021.728250] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022] Open
Abstract
The rapid advancement of nanotechnology enhances the production of different nanoparticles that meet the demand of various fields like biomedical sciences, industrial, material sciences and biotechnology, etc. This technological development increases the chances of nanoparticles exposure to human beings, which can threaten their health. It is well known that various cellular processes (transcription, translation, and replication during cell proliferation, cell cycle, cell differentiation) in which genetic materials (DNA and RNA) are involved play a vital role to maintain any structural and functional modification into it. When nanoparticles come into the vicinity of the cellular system, chances of uptake become high due to their small size. This cellular uptake of nanoparticles enhances its interaction with DNA, leading to structural and functional modification (DNA damage/repair, DNA methylation) into the DNA. These modifications exhibit adverse effects on the cellular system, consequently showing its inadvertent effect on human health. Therefore, in the present study, an attempt has been made to elucidate the genotoxic mechanism of nanoparticles in the context of structural and functional modifications of DNA.
Collapse
Affiliation(s)
- Ritesh K Shukla
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Ashish Badiye
- Department of Forensic Science, Government Institute of Forensic Science, Nagpur, India
| | - Kamayani Vajpayee
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Neeti Kapoor
- Department of Forensic Science, Government Institute of Forensic Science, Nagpur, India
| |
Collapse
|
24
|
Prasad A, Manoharan RR, Sedlářová M, Pospíšil P. Free Radical-Mediated Protein Radical Formation in Differentiating Monocytes. Int J Mol Sci 2021; 22:ijms22189963. [PMID: 34576127 PMCID: PMC8468151 DOI: 10.3390/ijms22189963] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 12/03/2022] Open
Abstract
Free radical-mediated activation of inflammatory macrophages remains ambiguous with its limitation to study within biological systems. U-937 and HL-60 cell lines serve as a well-defined model system known to differentiate into either macrophages or dendritic cells in response to various chemical stimuli linked with reactive oxygen species (ROS) production. Our present work utilizes phorbol 12-myristate-13-acetate (PMA) as a stimulant, and factors such as concentration and incubation time were considered to achieve optimized differentiation conditions. ROS formation likely hydroxyl radical (HO●) was confirmed by electron paramagnetic resonance (EPR) spectroscopy combined with confocal laser scanning microscopy (CLSM). In particular, U-937 cells were utilized further to identify proteins undergoing oxidation by ROS using anti-DMPO (5,5-dimethyl-1-pyrroline N-oxide) antibodies. Additionally, the expression pattern of NADPH Oxidase 4 (NOX4) in relation to induction with PMA was monitored to correlate the pattern of ROS generated. Utilizing macrophages as a model system, findings from the present study provide a valuable source for expanding the knowledge of differentiation and protein expression dynamics.
Collapse
Affiliation(s)
- Ankush Prasad
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic;
- Correspondence: (A.P.); (P.P.); Tel.: +420-585634752 (A.P.); Fax: +420-585225737 (A.P.)
| | - Renuka Ramalingam Manoharan
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic;
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic;
| | - Pavel Pospíšil
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic;
- Correspondence: (A.P.); (P.P.); Tel.: +420-585634752 (A.P.); Fax: +420-585225737 (A.P.)
| |
Collapse
|
25
|
Alikhani M, Touati E, Karimipoor M, Vosough M, Mohammadi M. Mitochondrial DNA Copy Number Variations in Gastrointestinal Tract Cancers: Potential Players. J Gastrointest Cancer 2021; 53:770-781. [PMID: 34486088 DOI: 10.1007/s12029-021-00707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Alterations of mitochondria have been linked to several cancers. Also, the mitochondrial DNA copy number (mtDNA-CN) is altered in various cancers, including gastrointestinal tract (GIT) cancers, and several research groups have investigated its potential as a cancer biomarker. However, the exact causes of mtDNA-CN variations are not yet revealed. This review discussed the conceivable players in this scheme, including reactive oxygen species (ROS), mtDNA genetic variations, DNA methylation, telomere length, autophagy, immune system activation, aging, and infections, and discussed their possible impact in the initiation and progression of cancer. By further exploring such mechanisms, mtDNA-CN variations may be effectively utilized as cancer biomarkers and provide grounds for developing novel cancer therapeutic agents.
Collapse
Affiliation(s)
- Mehdi Alikhani
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Eliette Touati
- Unit of Helicobacter Pathogenesis, Department of Microbiology, CNRS UMR2001, Institut Pasteur, 25-28 Rue du Dr Roux cedex 15, 75724, Paris, France
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marjan Mohammadi
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
26
|
Alikhani M, Saberi S, Esmaeili M, Michel V, Tashakoripour M, Abdirad A, Aghakhani A, Eybpoosh S, Vosough M, Mohagheghi MA, Eshagh Hosseini M, Touati E, Mohammadi M. Mitochondrial DNA Copy Number Variations and Serum Pepsinogen Levels for Risk Assessment in Gastric Cancer. IRANIAN BIOMEDICAL JOURNAL 2021; 25:323-33. [PMID: 34425651 PMCID: PMC8487685 DOI: 10.52547/ibj.25.5.323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/13/2021] [Indexed: 01/14/2023]
Abstract
Background Variations in mitochondrial DNA copy number (mtDNA-CN) of peripheral blood leukocytes (PBLs), as a potential biomarker for gastric cancer (GC) screening has currently been subject to controversy. Herein, we have assessed its efficiency in GC screening, in parallel and in combination with serum pepsinogen (sPG) I/II ratio, as an established indicator of gastric atrophy. Methods The study population included GC (n = 53) and non-GC (n = 207) dyspeptic patients. The non-GC group was histologically categorized into CG (n = 104) and NM (n = 103) subgroups. The MtDNA-CN of PBLs was measured by quantitative real-time PCR. The sPG I and II levels and anti-H. pylori serum IgG were measured by ELISA. Results The mtDNA-CN was found significantly higher in GC vs. non-GC (OR = 3.0; 95% CI = 1.4, 6.4) subjects. Conversely, GC patients had significantly lower sPG I/II ratio than the non-GC (OR = 3.2; CI = 1.4, 7.2) subjects. The combination of these two biomarkers yielded a dramatic amplification of the odds of GC risk in double-positive (high mtDNA-CN-low sPGI/II) subjects, in reference to double-negatives (low mtDNA-CN-high sPGI/II), when assessed against non-GC (OR = 27.1; CI = 5.0, 147.3), CG (OR = 13.1; CI = 2.4, 72.6), or NM (OR = 49.5; CI = 7.9, 311.6) groups. Conclusion The combination of these two biomarkers, namely mtDNA-CN in PBLs and serum PG I/II ratio, drastically enhanced the efficiency of GC risk assessment, which calls for further validations.
Collapse
Affiliation(s)
- Mehdi Alikhani
- HPGC Research Group, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Samaneh Saberi
- HPGC Research Group, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Esmaeili
- HPGC Research Group, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Valérie Michel
- Institut Pasteur, Unit of Helicobacter Pathogenesis, CNRS UMR2001, 25-28 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Mohammad Tashakoripour
- Gastroenterology Department, Amiralam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Abdirad
- Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezoo Aghakhani
- Clinical Research Dept., Pasteur Institute of Iran, Tehran, Iran
| | - Sana Eybpoosh
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Mahmoud Eshagh Hosseini
- Gastroenterology Department, Amiralam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Eliette Touati
- Institut Pasteur, Unit of Helicobacter Pathogenesis, CNRS UMR2001, 25-28 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Marjan Mohammadi
- HPGC Research Group, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
27
|
de Fátima Pereira de Faria C, Dos Reis Martinez CB, Takahashi LS, de Mello MMM, Martins TP, Urbinati EC. Modulation of the innate immune response, antioxidant system and oxidative stress during acute and chronic stress in pacu (Piaractus mesopotamicus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:895-905. [PMID: 33786673 DOI: 10.1007/s10695-021-00940-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Stress is an energy-demanding process, as well as the responses of the innate immune system, that impose a metabolic overload on cellular energy production, which can affect the cellular redox balance, causing oxidative damage. We evaluated the role of stress in the modulation of innate immune and oxidative/antioxidant mechanisms in juvenile pacu exposed to acute and chronic stressors. The experimental period lasted 30 days, and fish (113.7 ± 35.1 g) were fed commercial feed. During this period, half of the fish were not manipulated (Condition A), and the other half were chased with a dip net for 5 min twice a day (Condition C). After the 30-day period, fish from both groups were sampled (baseline sampling), and the remainders (not sampled) were air exposed for 3 min (acute stressor), returned to the tanks, and were sampled again 30 min, 3 h, 6 h, and 24 h after air exposure. We evaluated biomarkers of stress (circulating cortisol and glucose), the innate immune system (respiratory burst activity/RBA, hemolytic activity of the complement system (HA-AP) and serum concentration of lysozyme), oxidative damage (lipid peroxidation/LPO), and antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; and glutathione peroxidase, GSH-Px). Our results showed that stress, acutely or chronically, caused a transient reduction of RAL and activated the HA-AP. Acutely, stress increased the lysozyme concentration. Furthermore, both conditions caused oxidative stress in the liver, and differently they modulated the antioxidant system, enhancing SOD activity and impairing CAT and GSH-Px activity.
Collapse
Affiliation(s)
- Camila de Fátima Pereira de Faria
- Universidade Estadual Paulista, UNESP, Centro de Aquicultura, Via de Acesso Paulo Donato Castellane, 14.884-900, Jaboticabal, SP, Brazil
| | - Claudia Bueno Dos Reis Martinez
- Universidade Estadual de Londrina, UEL, Departamento de Ciências Fisiológicas, Rodovia Celso Garcia Cid - Pr 445 Km 380, Campus Universitário, Londrina, PR, 86057-970, Brazil
| | - Leonardo Susumu Takahashi
- Universidade Estadual Paulista, UNESP, Centro de Aquicultura, Via de Acesso Paulo Donato Castellane, 14.884-900, Jaboticabal, SP, Brazil
- Universidade Estadual Paulista, UNESP, Faculdade de Ciências Agrárias e Tecnologia (FCAT-Unesp), Dracena, Rod. João Ribeiro de Barros, km 651, Dracena, SP, 17900-000, Brazil
| | - Mariana Maluli Marinho de Mello
- Universidade Estadual Paulista, UNESP, Centro de Aquicultura, Via de Acesso Paulo Donato Castellane, 14.884-900, Jaboticabal, SP, Brazil
| | - Talísia Pereira Martins
- Universidade Estadual Paulista, UNESP, Centro de Aquicultura, Via de Acesso Paulo Donato Castellane, 14.884-900, Jaboticabal, SP, Brazil
| | - Elisabeth Criscuolo Urbinati
- Universidade Estadual Paulista, UNESP, Centro de Aquicultura, Via de Acesso Paulo Donato Castellane, 14.884-900, Jaboticabal, SP, Brazil.
- Universidade Estadual Paulista, UNESP, Faculdade de Ciências Agrárias e Veterinárias, Via de Acesso Paulo Donato Castellane, 14, Jaboticabal, SP, .884-900, Brazil.
| |
Collapse
|
28
|
Methylprednisolone Induces Extracellular Trap Formation and Enhances Bactericidal Effect of Canine Neutrophils. Int J Mol Sci 2021; 22:ijms22147734. [PMID: 34299355 PMCID: PMC8304006 DOI: 10.3390/ijms22147734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Methylprednisolone is a glucocorticoid and can negatively influence immune defense mechanisms. During bacterial infections in the dog, neutrophils infiltrate infected tissue and mediate antimicrobial effects with different mechanisms such as phagocytosis and neutrophil extracellular trap (NET) formation. Here, we investigated the influence of methylprednisolone on canine NET formation and neutrophil killing efficiency of Gram positive and Gram negative bacteria. Therefore, canine blood derived neutrophils were treated with different concentrations of methylprednisolone over time. The survival factor of Staphylococcus pseudintermedius, Streptococcus canis or Escherichia coli was determined in presence of stimulated neutrophils. Additionally, free DNA and nucleosomes as NET marker were analyzed in supernatants and neutrophils were assessed for NET formation by immunofluorescence microscopy. Methylprednisolone concentrations of 62.5 and 625 µg/mL enhanced the neutrophil killing of Gram positive bacteria, whereas no significant influence was detected for the Gram negative Escherichia coli. Interestingly, higher amounts of free DNA were detected under methylprednisolone stimulation in a concentration dependency and in the presence of Streptococcus canis and Escherichia coli. The nucleosome release by neutrophils is induced by bacterial infection and differs depending on the concentration of methylprednisolone. Furthermore, immunofluorescence microscopy analysis identified methylprednisolone at a concentration of 62.5 µg/mL as a NET inducer. In summary, methylprednisolone enhances NET-formation and time-dependent and concentration-dependent the bactericidal effect of canine neutrophils on Gram positive bacteria.
Collapse
|
29
|
Rawat S, Vrati S, Banerjee A. Neutrophils at the crossroads of acute viral infections and severity. Mol Aspects Med 2021; 81:100996. [PMID: 34284874 PMCID: PMC8286244 DOI: 10.1016/j.mam.2021.100996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022]
Abstract
Neutrophils are versatile immune effector cells essential for mounting a first-line defense against invading pathogens. However, uncontrolled activation can lead to severe life-threatening complications. Neutrophils exist as a heterogeneous population, and their interaction with pathogens and other immune cells may shape the outcome of the host immune response. Diverse classes of viruses, including the recently identified novel SARS-CoV-2, have shown to alter the various aspects of neutrophil biology, offering possibilities for selective intervention. Here, we review heterogeneity within the neutrophil population, highlighting the functional consequences of circulating phenotypes and their critical involvement in exaggerating protective and pathological immune responses against the viruses. We discuss the recent findings of neutrophil extracellular traps (NETs) in COVID-19 pathology and cover other viruses, where neutrophil biology and NETs are crucial for developing disease severity. In the end, we have also pointed out the areas where neutrophil-mediated responses can be finely tuned to outline opportunities for therapeutic manipulation in controlling inflammation against viral infection.
Collapse
Affiliation(s)
- Surender Rawat
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Sudhanshu Vrati
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Arup Banerjee
- Regional Centre for Biotechnology, Faridabad, Haryana, India.
| |
Collapse
|
30
|
Modulation of immunity and hepatic antioxidant defense by corticosteroids in pacu (Piaractus mesopotamicus). Comp Biochem Physiol A Mol Integr Physiol 2021; 260:111025. [PMID: 34237465 DOI: 10.1016/j.cbpa.2021.111025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/23/2022]
Abstract
We investigated the impact of both the oral administration of hydrocortisone (HC) and an acute stressor on stress, innate immune responses and antioxidant system/oxidative stress responses of juvenile Piaractus mesopotamicus. Fish were either 1) given a commercial feed (C), 2) given a feed supplemented with 400 mg/kg HC, or 3) fed a commercial feed, chased for 2 min and exposed to air for 4 min (S). After initial sampling, fish C and HC were fed and sampled 1, 3, 6, 24 and 72 h post-feeding. Fish S were fed at the same time as the other groups, exposed to a stressor, and sampled 1, 3, 6, 24 and 72 h after. Exposure to the stressor increased circulating glucose and cortisol levels (at 1 and 3 h, respectively), while oral HC increased circulating cortisol at 1 h and glucose at 3 h. The stressor activated respiratory activity of leukocytes (RAL) at 3 h and reduced it at 6 h. HC did not activate RAL, but it did impair it at 6 h. The serum hemolytic activity of the complement system (HAC50) was impaired by the stressor at 1 and 3 h and by HC at 1 h. Regarding the antioxidant system, exposure to the stressor reduced glutathione peroxidase (GPx) and catalase (CAT) activity and decreased concentrations of reduced glutathione (GSH) in the liver up to 6 h. HC only impaired GPx. Additionally, stress induced the accumulation of melano-macrophage (MM) and melano-macrophage centers (MMC), which are biomarkers of oxidative stress, in the spleen. Differences in biomarkers in fish given cortisol and exposed to stress indicate that exogenous hormone was unable to precisely reproduce stress responses.
Collapse
|
31
|
Redox Regulation of Lipid Mobilization in Adipose Tissues. Antioxidants (Basel) 2021; 10:antiox10071090. [PMID: 34356323 PMCID: PMC8301038 DOI: 10.3390/antiox10071090] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Lipid mobilization in adipose tissues, which includes lipogenesis and lipolysis, is a paramount process in regulating systemic energy metabolism. Reactive oxygen and nitrogen species (ROS and RNS) are byproducts of cellular metabolism that exert signaling functions in several cellular processes, including lipolysis and lipogenesis. During lipolysis, the adipose tissue generates ROS and RNS and thus requires a robust antioxidant response to maintain tight regulation of redox signaling. This review will discuss the production of ROS and RNS within the adipose tissue, their role in regulating lipolysis and lipogenesis, and the implications of antioxidants on lipid mobilization.
Collapse
|
32
|
McCollum CR, Bertram JR, Nagpal P, Chatterjee A. Photoactivated Indium Phosphide Quantum Dots Treat Multidrug-Resistant Bacterial Abscesses In Vivo. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30404-30419. [PMID: 34156817 DOI: 10.1021/acsami.1c08306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The increasing prevalence of drug-resistant bacterial strains is causing illness and death in an unprecedented number of people around the globe. Currently implemented small-molecule antibiotics are both increasingly less efficacious and perpetuating the evolution of resistance. Here, we propose a new treatment for drug-resistant bacterial infection in the form of indium phosphide quantum dots (InP QDs), semiconductor nanoparticles that are activated by light to produce superoxide. We show that the superoxide generated by InP QDs is able to effectively kill drug-resistant bacteria in vivo to reduce subcutaneous abscess infection in mice without being toxic to the animal. Our InP QDs are activated by near-infrared wavelengths with high transmission through skin and tissues and are composed of biocompatible materials. Body weight and organ tissue histology show that the QDs are nontoxic at a macroscale. Inflammation and oxidative stress markers in serum demonstrate that the InP QD treatment did not result in measurable effects on mouse health at concentrations that reduce drug-resistant bacterial viability in subcutaneous abscesses. The InP QD treatment decreased bacterial viability by over 3 orders of magnitude in subcutaneous abscesses formed in mice. These InP QDs thus provide a promising alternative to traditional small-molecule antibiotics, with the potential to be applied to a wide variety of infection types, including wound, respiratory, and urinary tract infections.
Collapse
Affiliation(s)
- Colleen R McCollum
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - John R Bertram
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Prashant Nagpal
- Antimicrobial Regeneration Consortium, Boulder, Colorado 80301, United States
- Sachi Bioworks, Inc., Boulder, Colorado 80301, United States
- Quantum Biology, Inc., Boulder, Colorado 80301, United States
| | - Anushree Chatterjee
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Antimicrobial Regeneration Consortium, Boulder, Colorado 80301, United States
- Sachi Bioworks, Inc., Boulder, Colorado 80301, United States
| |
Collapse
|
33
|
Abstract
When attempting to propagate infections, bacterial pathogens encounter phagocytes that encase them in vacuoles called phagosomes. Within phagosomes, bacteria are bombarded with a plethora of stresses that often lead to their demise. However, pathogens have evolved numerous strategies to counter those host defenses and facilitate survival. Given the importance of phagosome-bacteria interactions to infection outcomes, they represent a collection of targets that are of interest for next-generation antibacterials. To facilitate such therapies, different approaches can be employed to increase understanding of phagosome-bacteria interactions, and these can be classified broadly as top down (starting from intact systems and breaking down the importance of different parts) or bottom up (developing a knowledge base on simplified systems and progressively increasing complexity). Here we review knowledge of phagosomal compositions and bacterial survival tactics useful for bottom-up approaches, which are particularly relevant for the application of reaction engineering to quantify and predict the time evolution of biochemical species in these death-dealing vacuoles. Further, we highlight how understanding in this area can be built up through the combination of immunology, microbiology, and engineering.
Collapse
Affiliation(s)
- Darshan M Sivaloganathan
- Program in Quantitative and Computational Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA;
| |
Collapse
|
34
|
Mast cells modulate early responses to Mycobacterium bovis Bacillus Calmette-Guerin by phagocytosis and formation of extracellular traps. Cell Immunol 2021; 365:104380. [PMID: 34049012 DOI: 10.1016/j.cellimm.2021.104380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022]
Abstract
The early interactions between the vaccine Mycobacterium bovis Bacillus Calmette Guerin (BCG) and host peripheral innate immune cells like Mast cells (MCs) may pave the way for generating appropriate protective innate and adaptive immune responses. Mice on administration of BCG by intratracheal instillation showed a massive increase in MC numbers in the infected lung. In vitro co-culture of BCG and rodent Rat Basophilic Leukaemia (RBL-2H3) MCs led to significant killing of BCG. RBL-2H3 MCs were able to phagocytose BCG, take up BCG-derived antigens by macropinocytosis, generate Reactive Oxygen Species (ROS) and degranulate. Further, a few MCs died and released MC extracellular traps (MCETs) having DNA, histones and tryptase to trap BCG. This study highlights the multi-pronged effector responses of MCs on encountering BCG. These responses or their evasion may lead to success or failure of BCG vaccine to provide long term immunity to infections.
Collapse
|
35
|
Islam SMT, Won J, Khan M, Mannie MD, Singh I. Hypoxia-inducible factor-1 drives divergent immunomodulatory functions in the pathogenesis of autoimmune diseases. Immunology 2021; 164:31-42. [PMID: 33813735 DOI: 10.1111/imm.13335] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/12/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric (HIF-1α/ HIF-1β) transcription factor in which the oxygen-sensitive HIF-1α subunit regulates gene transcription to mediate adaptive tissue responses to hypoxia. HIF-1 is a key mediator in both regulatory and pathogenic immune responses, because ongoing inflammation in localized tissues causes increased oxygen consumption and consequent hypoxia within the inflammatory lesions. In autoimmune diseases, HIF-1 plays complex and divergent roles within localized inflammatory lesions by orchestrating a critical immune interplay sponsoring the pathogenesis of the disease. In this review, we have summarized the role of HIF-1 in lymphoid and myeloid immunomodulation in autoimmune diseases. HIF-1 drives inflammation by controlling the Th17/Treg /Tr1 balance through the tipping of the differentiation of CD4+ T cells in favour of pro-inflammatory Th17 cells while suppressing the development of anti-inflammatory Treg /Tr1 cells. On the other hand, HIF-1 plays a protective role by facilitating the expression of anti-inflammatory cytokine IL-10 in and expansion of CD1dhi CD5+ B cells, known as regulatory B cells or B10 cells. Apart from lymphoid cells, HIF-1 also controls the activation of macrophages, neutrophils and dendritic cells, thus eventually further influences the activation and development of effector/regulatory T cells by facilitating the creation of a pro/anti-inflammatory microenvironment within the autoinflammatory lesions. Based on the critical immunomodulatory roles that HIF-1 plays, this master transcription factor seems to be a potent druggable target for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- S M Touhidul Islam
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Mark D Mannie
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA.,Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
36
|
Hamed MO, Barlow AD, Dolezalova N, Khosla S, Sagar A, Gribble FM, Davies S, Murphy MP, Hosgood SA, Nicholson ML, Saeb-Parsy K. Ex vivo normothermic perfusion of isolated segmental porcine bowel: a novel functional model of the small intestine. BJS Open 2021; 5:6220254. [PMID: 33839750 PMCID: PMC8038264 DOI: 10.1093/bjsopen/zrab009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/26/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND There is an unmet need for suitable ex vivo large animal models in experimental gastroenterology and intestinal transplantation. This study details a reliable and effective technique for ex vivo normothermic perfusion (EVNP) of segmental porcine small intestine. METHODS Segments of small intestine, 1.5-3.0 m in length, were retrieved from terminally anaesthetized pigs. After a period of cold ischaemia, EVNP was performed for 2 h at 37°C with a mean pressure of 80 mmHg using oxygenated autologous blood diluted with Ringer's solution. The duration of EVNP was extended to 4 h for a second set of experiments in which two segments of proximal to mid-ileum (1.5-3.0 m) were retrieved from each animal and reperfused with whole blood (control) or leucocyte-depleted blood to examine the impact of leucocyte depletion on reperfusion injury. RESULTS After a mean cold ischaemia time of 5 h and 20 min, EVNP was performed in an initial group of four pigs. In the second set of experiments, five pigs were used in each group. In all experiments bowel segments were well perfused and exhibited peristalsis during EVNP. Venous glucose levels significantly increased following luminal glucose stimulation (mean(s.e.m.) basal level 1.8(0.6) mmol/l versus peak 15.5(5.8) mmol/l; P < 0.001) and glucagon-like peptide 1 (GLP-1) levels increased in all experiments, demonstrating intact absorptive and secretory intestinal functions. There were no significant differences between control and leucocyte-depleted animals regarding blood flow, venous glucose, GLP-1 levels or histopathology at the end of 4 h of EVNP. CONCLUSIONS This novel model is suitable for the investigation of gastrointestinal physiology, pathology and ischaemia reperfusion injury, along with evaluation of potential therapeutic interventions.
Collapse
Affiliation(s)
- M O Hamed
- Correspondence to: Department of Surgery, Addenbrookes Hospital, Hills Road, Cambridge, CB2 0QQ, UK (e-mail:)
| | - A D Barlow
- Department of Surgery, University of Cambridge, and NIHR Cambridge Biomedical Research Campus, Cambridge, UK
| | - N Dolezalova
- Department of Surgery, University of Cambridge, and NIHR Cambridge Biomedical Research Campus, Cambridge, UK
| | - S Khosla
- Wellcome Trust – MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - A Sagar
- Wellcome Trust – MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - F M Gribble
- Department of Histopathology, University of Cambridge, Cambridge, UK
| | - S Davies
- Department of Histopathology, University of Cambridge, Cambridge, UK
| | - M P Murphy
- MRC Mitochondrial Biology Unit, Cambridge, UK
| | - S A Hosgood
- Department of Surgery, University of Cambridge, and NIHR Cambridge Biomedical Research Campus, Cambridge, UK
| | - M L Nicholson
- Department of Surgery, University of Cambridge, and NIHR Cambridge Biomedical Research Campus, Cambridge, UK
| | - K Saeb-Parsy
- Department of Surgery, University of Cambridge, and NIHR Cambridge Biomedical Research Campus, Cambridge, UK
| |
Collapse
|
37
|
Jedidi S, Sammari H, Selmi H, Hosni K, Rtibi K, Aloui F, Adouni O, Sebai H. Strong protective effects of Salvia officinalis L. leaves decoction extract against acetic acid-induced ulcerative colitis and metabolic disorders in rat. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
38
|
Naidoo N, Moodley J, Naicker T. Maternal endothelial dysfunction in HIV-associated preeclampsia comorbid with COVID-19: a review. Hypertens Res 2021; 44:386-398. [PMID: 33469197 PMCID: PMC7815501 DOI: 10.1038/s41440-020-00604-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/07/2020] [Accepted: 11/07/2020] [Indexed: 02/07/2023]
Abstract
This review assesses markers of endothelial dysfunction (ED) associated with the maternal syndrome of preeclampsia (PE). We evaluate the role of antiretroviral therapy (ART) in human immunodeficiency virus (HIV)-infected preeclamptic women. Furthermore, we briefly discuss the potential of lopinavir/ritonavir (LPV/r), dolutegravir (DTG) and remdesivir (RDV) in drug repurposing and their safety in pregnancy complicated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In HIV infection, the trans-activator of transcription protein, which has homology with vascular endothelial growth factor, impairs angiogenesis, leading to endothelial injury and possible PE development despite neutralization of their opposing immune states. Markers of ED show strong evidence supporting the adverse role of ART in PE development and mortality compared to treatment-naïve pregnancies. Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2 infection, exploits angiotensin-converting enzyme 2 (ACE 2) to induce ED and hypertension, thereby mimicking angiotensin II-mediated PE in severe cases of infection. Upregulated ACE 2 in pregnancy is a possible risk factor for SARS-CoV-2 infection and subsequent PE development. The potential effectiveness of LPV/r against COVID-19 is inconclusive; however, defective decidualization, along with elevated markers of ED, was observed. Therefore, the safety of these drugs in HIV-positive pregnancies complicated by COVID-19 requires attention. Despite the observed endothelial protective properties of DTG, there is a lack of evidence of its effects on pregnancy and COVID-19 therapeutics. Understanding RDV-ART interactions and the inclusion of pregnant women in antiviral drug repurposing trials is essential. This review provides a platform for further research on PE in the HIV-COVID-19 syndemic.
Collapse
Affiliation(s)
- Nitalia Naidoo
- Optics and Imaging Centre, Doris Duke Medical Research Institution, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Jagidesa Moodley
- Women's Health and HIV Research Group, Department of Obstetrics and Gynecology, School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institution, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
39
|
Parker HA, Dickerhof N, Forrester L, Ryburn H, Smyth L, Messens J, Aung HL, Cook GM, Kettle AJ, Hampton MB. Mycobacterium smegmatis Resists the Bactericidal Activity of Hypochlorous Acid Produced in Neutrophil Phagosomes. THE JOURNAL OF IMMUNOLOGY 2021; 206:1901-1912. [PMID: 33753427 DOI: 10.4049/jimmunol.2001084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/03/2021] [Indexed: 12/22/2022]
Abstract
Neutrophils are often the major leukocyte at sites of mycobacterial infection, yet little is known about their ability to kill mycobacteria. In this study we have investigated whether the potent antibacterial oxidant hypochlorous acid (HOCl) contributes to killing of Mycobacterium smegmatis when this bacterium is phagocytosed by human neutrophils. We found that M. smegmatis were ingested by neutrophils into intracellular phagosomes but were killed slowly. We measured a t 1/2 of 30 min for the survival of M. smegmatis inside neutrophils, which is 5 times longer than that reported for Staphylococcus aureus and 15 times longer than Escherichia coli Live-cell imaging indicated that neutrophils generated HOCl in phagosomes containing M. smegmatis; however, inhibition of HOCl production did not alter the rate of bacterial killing. Also, the doses of HOCl that are likely to be produced inside phagosomes failed to kill isolated bacteria. Lethal doses of reagent HOCl caused oxidation of mycothiol, the main low-m.w. thiol in this bacterium. In contrast, phagocytosed M. smegmatis maintained their original level of reduced mycothiol. Collectively, these findings suggest that M. smegmatis can cope with the HOCl that is produced inside neutrophil phagosomes. A mycothiol-deficient mutant was killed by neutrophils at the same rate as wild-type bacteria, indicating that mycothiol itself is not the main driver of M. smegmatis resistance. Understanding how M. smegmatis avoids killing by phagosomal HOCl could provide new opportunities to sensitize pathogenic mycobacteria to destruction by the innate immune system.
Collapse
Affiliation(s)
- Heather A Parker
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch 8140, New Zealand;
| | - Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch 8140, New Zealand
| | - Lorna Forrester
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch 8140, New Zealand
| | - Heath Ryburn
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch 8140, New Zealand.,Department of Microbiology and Immunology, Otago School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Leon Smyth
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch 8140, New Zealand
| | - Joris Messens
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, 1050 Brussels, Belgium.,Brussels Center for Redox Biology, 1050 Brussels, Belgium; and.,Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Htin L Aung
- Department of Microbiology and Immunology, Otago School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, Otago School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch 8140, New Zealand
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch 8140, New Zealand;
| |
Collapse
|
40
|
Li N, Wu K, Feng F, Wang L, Zhou X, Wang W. Astragaloside IV alleviates silica‑induced pulmonary fibrosis via inactivation of the TGF‑β1/Smad2/3 signaling pathway. Int J Mol Med 2021; 47:16. [PMID: 33448318 PMCID: PMC7834968 DOI: 10.3892/ijmm.2021.4849] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022] Open
Abstract
The aim of the present study was to investigate the anti-fibrotic effects of astragaloside IV (ASV) in silicosis rats, and to further explore the potential underlying molecular mechanisms. A silica-induced rat model of pulmonary fibrosis was successfully constructed. Hematoxylin and eosin and Masson's trichrome staining were performed to observe the pathological changes in lung tissues. Immunohistochemical analysis was used to assess the expression levels of Collagen I, fibronectin and α-smooth muscle actin (α-SMA). A hemocytometer and Giemsa staining were used to evaluate the cytological characteristics of the bronchoalveolar lavage fluid. ELISA was used to detect the levels of the inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-1β and IL-6. Reverse transcription-quantitative PCR and western blotting were performed to detect the mRNA and protein expression levels of genes associated with the transforming growth factor (TGF)-β1/Smad signaling pathway. ASV alleviated silica-induced pulmonary fibrosis, and reduced the expression of collagen I, fibronectin and α-SMA. In addition, the results of the present study suggested that the ASV-mediated anti-pulmonary fibrosis response may involve reduction of inflammation and oxidative stress. More importantly, ASV suppressed silica-induced lung fibroblast fibrosis via the TGF-β1/Smad signaling pathway, thereby inhibiting the progression of silicosis. In conclusion, the present study indicated that ASV may prevent silicosis-induced fibrosis by reducing the expression of Collagen I, fibronectin and α-SMA, and reducing the inflammatory response and oxidative stress, and these effects may be mediated by inhibiting the activation of the TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Nannan Li
- Department of Respiratory Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ke Wu
- Department of Cardiology, Central Hospital of Tai'an of Shandong Province, Tai'an, Shandong 271000, P.R. China
| | - Feifei Feng
- Department of Respiratory Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Lin Wang
- Department of Special Examination, Central Hospital of Tai'an of Shandong Province, Tai'an, Shandong 271000, P.R. China
| | - Xiang Zhou
- Department of Anesthesiology, Central Hospital of Tai'an of Shandong Province, Tai'an, Shandong 271000, P.R. China
| | - Wei Wang
- Department of Respiratory Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
41
|
McCollum CR, Levy M, Bertram JR, Nagpal P, Chatterjee A. Photoexcited Quantum Dots as Efficacious and Nontoxic Antibiotics in an Animal Model. ACS Biomater Sci Eng 2021; 7:1863-1875. [DOI: 10.1021/acsbiomaterials.0c01406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Colleen R. McCollum
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Max Levy
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - John R. Bertram
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Prashant Nagpal
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Antimicrobial Regeneration Consortium, Boulder, Colorado 80301, United States
- Sachi Bioworks, Inc., Boulder, Colorado 80301, United States
| | - Anushree Chatterjee
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Antimicrobial Regeneration Consortium, Boulder, Colorado 80301, United States
- Sachi Bioworks, Inc., Boulder, Colorado 80301, United States
| |
Collapse
|
42
|
Davis KU, Sheats MK. The Role of Neutrophils in the Pathophysiology of Asthma in Humans and Horses. Inflammation 2020; 44:450-465. [PMID: 33150539 DOI: 10.1007/s10753-020-01362-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
Abstract
Asthma is a common and debilitating chronic airway disease that affects people and horses of all ages worldwide. While asthma in humans most commonly involves an excessive type 2 immune response and eosinophilic inflammation, neutrophils have also been recognized as key players in the pathophysiology of asthma, including in the severe asthma phenotype where neutrophilic inflammation predominates. Severe equine asthma syndrome (sEAS) features prominent neutrophilic inflammation and has been increasingly used as a naturally occurring animal model for the study of human neutrophilic asthma. This comparative review examines the recent literature in order to explore the role of neutrophil inflammatory functions in the pathophysiology and immunology of asthma in humans and horses.
Collapse
Affiliation(s)
- Kaori Uchiumi Davis
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC, 27607, USA.,Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA
| | - M Katie Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC, 27607, USA. .,Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA.
| |
Collapse
|
43
|
The interplay of the oral microbiome and alcohol consumption in oral squamous cell carcinomas. Oral Oncol 2020; 110:105011. [PMID: 32980528 DOI: 10.1016/j.oraloncology.2020.105011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/11/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022]
Abstract
Oral cancer (OC) is among the top twenty occurring cancers in the world, with a mortality rate of 50%. A shift to a functionally inflammatory or a 'disease state' oral microbiome composition has been observed amongst patients with premalignant disorders and OC, with evidence suggesting alcohol could be exacerbating the inflammatory influence of the oral microorganisms. Alcohol dehydrogenase (ADH, EC 1.1.1.1) converts alcohol into a known carcinogenic metabolite, acetaldehyde and while ADH levels in oral mucosa are low, several oral commensal species possess ADH and could produce genotoxic levels of acetaldehyde. With a direct association between oral microbiome status, alcohol and poor oral health status combining to induce chronic inflammation with increased acetaldehyde levels - this leads to a tumour promoting environment. This new disease state increases the production of reactive oxygen species (ROS), while impairing anti-oxidant systems thus activating the redox signalling required for the promotion and survival of tumours. This review aims to highlight the evidence linking these processes in the progression of oral cancer.
Collapse
|
44
|
Shao X, Xie Y, Zhang Y, Liu J, Ding Y, Wu M, Wang X, Deng X. Novel therapeutic strategies for treating Pseudomonas aeruginosa infection. Expert Opin Drug Discov 2020; 15:1403-1423. [PMID: 32880507 DOI: 10.1080/17460441.2020.1803274] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Persistent infections caused by the superbug Pseudomonas aeruginosa and its resistance to multiple antimicrobial agents are huge threats to patients with cystic fibrosis as well as those with compromised immune systems. Multidrug-resistant P. aeruginosa has posed a major challenge to conventional antibiotics and therapeutic approaches, which show limited efficacy and cause serious side effects. The public demand for new antibiotics is enormous; yet, drug development pipelines have started to run dry with limited targets available for inventing new antibacterial drugs. Consequently, it is important to uncover potential therapeutic targets. AREAS COVERED The authors review the current state of drug development strategies that are promising in terms of the development of novel and potent drugs to treat P. aeruginosa infection. EXPERT OPINION The prevention of P. aeruginosa infection is increasingly challenging. Furthermore, targeting key virulence regulators has great potential for developing novel anti-P. aeruginosa drugs. Additional promising strategies include bacteriophage therapy, immunotherapies, and antimicrobial peptides. Additionally, the authors believe that in the coming years, the overall network of molecular regulatory mechanism of P. aeruginosa virulence will be fully elucidated, which will provide more novel and promising drug targets for treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Xiaolong Shao
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yingpeng Xie
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yingchao Zhang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Jingui Liu
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yiqing Ding
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota , Grand Forks, North Dakota, USA
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China.,Shenzhen Research Institute, City University of Hong Kong , Shenzhen, China
| |
Collapse
|
45
|
Hall TJ, Azoidis I, Barroso IA, Hughes EAB, Grover LM, Cox SC. Formulation of an antimicrobial superabsorbent powder that gels in situ to produce reactive oxygen. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111479. [PMID: 33255058 DOI: 10.1016/j.msec.2020.111479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/31/2022]
Abstract
The enzymatic oxidation of glucose to produce reactive oxygen species (ROS) provides honey with antimicrobial efficacy. This mechanism offers an alternative to traditional antibiotics; however, topical use of honey is limited due to its adherent and highly viscous properties. This study aims to overcome these issues by engineering a powder-based system that eases delivery and offers in situ activation of ROS. Starch based drying agents were utilised to enable freeze drying of a medical honey, with methylated-β-cyclodextrin (MCD) enabling the highest active incorporation (70%) while still producing a free-flowing powder. Addition of a superabsorbent, sodium polyacrylate (≤40%) was shown to facilitate in situ gelation of the powder, with an absorption capacity of up to 120.7 ± 4.5 mL g-1. Promisingly efficacy of the optimised superabsorbent powder was demonstrated in vitro against several clinically relevant Gram-negative and Gram-positive bacteria (Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa). Alongside this no adverse effects were observed against human dermal fibroblasts. Application of the superabsorbent powder in an ex-vivo porcine wound model revealed capability to form a protective hydrogel barrier in less than 1 min. Overall, this novel ROS producing superabsorbent powder has potential to tackle topical infections without using traditional antibiotics.
Collapse
Affiliation(s)
- Thomas J Hall
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom of Great Britain and Northern Ireland.
| | - Ioannis Azoidis
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom of Great Britain and Northern Ireland
| | - Inês A Barroso
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom of Great Britain and Northern Ireland
| | - Erik A B Hughes
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom of Great Britain and Northern Ireland; NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham B15 2TH, United Kingdom of Great Britain and Northern Ireland
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom of Great Britain and Northern Ireland
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
46
|
Ultrasensitive and specific two-photon fluorescence detection of hypochlorous acid by a lysosome-targeting fluorescent probe for cell imaging. J Pharm Biomed Anal 2020; 190:113545. [PMID: 32846402 DOI: 10.1016/j.jpba.2020.113545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/23/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023]
Abstract
Hypochlorous acid (HOCl) is involved in numerous cellular processes, such as pathogen response, immune regulation, and anti-inflammation. Consequently, the development of HOCl detection at the cellular level has been an important issue in investigating the dynamic distributions of HOCl. Herein, a fluorescent probe, Lyso-NA, containing a HOCl-reactive aminophenol group and a lysosomal-targeting morpholine group, has been effectively designed for detecting lysosomal HOCl. The reaction of Lyso-NA with HOCl induces the oxidation of aminophenol and accompanied by a 136-fold fluorescence enhancement. The detection limit is found at 13 nM. The fluorescence enhancement is accomplished through the suppression of twisted intramolecular charge transfer (TICT). With morpholine, the probe Lyso-NA shows the great lysosomal targetable ability for imaging endogenous lysosomal HOCl in living cells and tissues by two-photon microscopy, providing an opportunity to monitor HOCl in the lysosomes for understanding its biological functions.
Collapse
|
47
|
Buonanno P, Vargas M, Marra A, Iacovazzo C, Servillo G. Lupus and posterior reversible encephalopathy syndrome. Lupus 2020; 29:1146-1147. [DOI: 10.1177/0961203320935182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Pasquale Buonanno
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Maria Vargas
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Annachiara Marra
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Carmine Iacovazzo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Giuseppe Servillo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| |
Collapse
|
48
|
Jackson BS, Nunes Goncalves J, Pretorius E. Comparison of pathological clotting using haematological, functional and morphological investigations in HIV-positive and HIV-negative patients with deep vein thrombosis. Retrovirology 2020; 17:14. [PMID: 32571345 PMCID: PMC7310079 DOI: 10.1186/s12977-020-00523-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Patients infected with the human immunodeficiency virus (HIV) are more prone to systemic inflammation and pathological clotting, and many may develop deep vein thrombosis (DVT) as a result of this dysregulated inflammatory profile. Coagulation tests are not routinely performed unless there is a specific reason. METHODS We recruited ten healthy control subjects, 35 HIV negative patients with deep vein thrombosis (HIV negative-DVT), and 13 HIV patients with DVT (HIV positive-DVT) on the primary antiretroviral therapy (ARV) regimen-emtricitabine, tenofovir and efavirenz. Serum inflammatory markers, haematological results, viscoelastic properties using thromboelastography (TEG) and scanning electron microscopy (SEM) of whole blood (WB) were used to compare the groups. RESULTS The DVT patients (HIV positive and HIV negative) had raised inflammatory markers. The HIV positive-DVT group had anaemia in keeping with anaemia of chronic disorders. DVT patients had a hypercoagulable profile on the TEG but no significant difference between HIV negative-DVT and HIV positive-DVT groups. The TEG analysis compared well and supported our ultrastructural results. Scanning electron microscopy of DVT patient's red blood cells (RBCs) and platelets demonstrated inflammatory changes including abnormal cell shapes, irregular membranes and microparticle formation. All the ultrastructural changes were more prominent in the HIV positive-DVT patients. CONCLUSIONS Although there were trends that HIV-positive patients were more hypercoagulable on functional tests (viscoelastic profile) compared to HIV-negative patients, there were no significant differences between the 2 groups. The sample size was, however, small in number. Morphologically there were inflammatory changes in patients with DVT. These ultrastructural changes, specifically with regard to platelets, appear more pronounced in HIV-positive patients which may contribute to increased risk for hypercoagulability and deep vein thrombosis.
Collapse
Affiliation(s)
- Brandon S Jackson
- Department of Surgery, University of Pretoria, Pretoria, 0007, South Africa
| | | | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa.
| |
Collapse
|
49
|
Stavely R, Nurgali K. The emerging antioxidant paradigm of mesenchymal stem cell therapy. Stem Cells Transl Med 2020; 9:985-1006. [PMID: 32497410 PMCID: PMC7445024 DOI: 10.1002/sctm.19-0446] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/05/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (multipotent stromal cells; MSCs) have been under investigation for the treatment of diverse diseases, with many promising outcomes achieved in animal models and clinical trials. The biological activity of MSC therapies has not been fully resolved which is critical to rationalizing their use and developing strategies to enhance treatment efficacy. Different paradigms have been constructed to explain their mechanism of action, including tissue regeneration, trophic/anti-inflammatory secretion, and immunomodulation. MSCs rarely engraft and differentiate into other cell types after in vivo administration. Furthermore, it is equivocal whether MSCs function via the secretion of many peptide/protein ligands as their therapeutic properties are observed across xenogeneic barriers, which is suggestive of mechanisms involving mediators conserved between species. Oxidative stress is concomitant with cellular injury, inflammation, and dysregulated metabolism which are involved in many pathologies. Growing evidence supports that MSCs exert antioxidant properties in a variety of animal models of disease, which may explain their cytoprotective and anti-inflammatory properties. In this review, evidence of the antioxidant effects of MSCs in in vivo and in vitro models is explored and potential mechanisms of these effects are discussed. These include direct scavenging of free radicals, promoting endogenous antioxidant defenses, immunomodulation via reactive oxygen species suppression, altering mitochondrial bioenergetics, and donating functional mitochondria to damaged cells. Modulation of the redox environment and oxidative stress by MSCs can mediate their anti-inflammatory and cytoprotective properties and may offer an explanation to the diversity in disease models treatable by MSCs and how these mechanisms may be conserved between species.
Collapse
Affiliation(s)
- Rhian Stavely
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia.,Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, Victoria, Australia
| |
Collapse
|
50
|
Khan N, Kim SK, Gagneux P, Dugan L, Varki A. Maximum reproductive lifespan correlates with CD33rSIGLEC gene number: Implications for NADPH oxidase-derived reactive oxygen species in aging. FASEB J 2020; 34:1928-1938. [PMID: 31907986 PMCID: PMC7018541 DOI: 10.1096/fj.201902116r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022]
Abstract
Humans and orcas are among the very rare species that have a prolonged post-reproductive lifespan (PRLS), during which the aging process continues. Reactive oxygen species (ROS) derived from mitochondria and from the NADPH oxidase (NOX) enzymes of innate immune cells are known to contribute to aging, with the former thought to be dominant. CD33-related-Siglecs are immune receptors that recognize self-associated-molecular-patterns and modulate NOX-derived-ROS. We herewith demonstrate a strong correlation of lifespan with CD33rSIGLEC gene number in 26 species, independent of body weight or phylogeny. The correlation is stronger when considering total CD33rSIGLEC gene number rather than those encoding inhibitory and activating subsets, suggesting that lifetime balancing of ROS is important. Combining independent lines of evidence including the short half-life and spontaneous activation of neutrophils, we calculate that even without inter-current inflammation, a major source of lifetime ROS exposure may actually be neutrophil NOX-derived. However, genomes of human supercentenarians (>110 years) do not harbor a significantly higher number of functional CD33rSIGLEC genes. Instead, lifespan correlation with CD33rSIGLEC gene number was markedly strengthened by excluding the post-reproductive lifespan of humans and orcas (R2 = 0.83; P < .0001). Thus, CD33rSIGLEC modulation of ROS likely contributes to maximum reproductive lifespan, but other unknown mechanisms could be important to PRLS.
Collapse
Affiliation(s)
- Naazneen Khan
- Glycobiology Research and Training Center, Center for Academic Research and Training in Anthropogeny, Departments of Medicine, Pathology, Anthropology and Cellular & Molecular Medicine, UC San Diego, La Jolla, California, 92093-0687, United States
| | - Stuart K. Kim
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, 94305, United States
| | - Pascal Gagneux
- Glycobiology Research and Training Center, Center for Academic Research and Training in Anthropogeny, Departments of Medicine, Pathology, Anthropology and Cellular & Molecular Medicine, UC San Diego, La Jolla, California, 92093-0687, United States
| | - Laura Dugan
- VA Tennessee Valley Geriatric Research, Education and Clinical Center (GRECC), Nashville, TN, USA
| | - Ajit Varki
- Glycobiology Research and Training Center, Center for Academic Research and Training in Anthropogeny, Departments of Medicine, Pathology, Anthropology and Cellular & Molecular Medicine, UC San Diego, La Jolla, California, 92093-0687, United States
| |
Collapse
|