1
|
Vijayaram S, Ghafarifarsani H, Vuppala S, Nedaei S, Mahendran K, Murugappan R, Chou CC. Selenium Nanoparticles: Revolutionizing Nutrient Enhancement in Aquaculture - A Review. Biol Trace Elem Res 2025; 203:442-453. [PMID: 38589682 DOI: 10.1007/s12011-024-04172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Aquaculture, a cornerstone of global food production, confronts myriad challenges including disease outbreaks and environmental degradation. Achieving nutritionally balanced aquafeed is critical for sustainable production, prompting exploration into innovative solutions like selenium nanoparticles (SeNPs). SeNPs offer potent antimicrobial, antioxidant, and growth-promoting properties, bolstering gut immunity and digestive capacity in aquatic animals. Their high bioavailability and ability to traverse gut barriers make them promising candidates for aquafeed supplementation. This study investigates SeNPs as a cutting-edge solution to enhance nutrient supply in aquaculture, addressing key challenges while promoting environmental stewardship and food security. By synthesizing current research and highlighting future directions, this review provides valuable insights into sustainable aquaculture practices. SeNPs hold promise for revolutionizing aquaculture feed formulations, offering a pathway to improved production outcomes and environmental sustainability.
Collapse
Affiliation(s)
- Srirengaraj Vijayaram
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, 145 Xingda Rd., Taichung, Taiwan, 40227
| | - Hamed Ghafarifarsani
- Department of Animal Science, Chaharmahal and Bakhtiari Agricultural and Natural Resources Research and Education Center, AREEO, Shahrekord, Iran.
| | - Srikanth Vuppala
- Research and Development Division, WIISE Srl Societa' Benefit, Via dei Grottoni 67/16, 00149, Rome, Italy
| | - Shiva Nedaei
- Department of Fisheries Science, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Karthikeyan Mahendran
- Department of Microbiology and Biotechnology, Thiagarajar College, Madurai Kamaraj University, Madurai, Tamilnadu, India
| | - Ramanathan Murugappan
- Department of Zoology, Thiagarajar College, Madurai Kamaraj University, Madurai, Tamilnadu, India
| | - Chi-Chung Chou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, 145 Xingda Rd., Taichung, Taiwan, 40227.
| |
Collapse
|
2
|
Ghafarifarsani H, Ahani S, Aftabgard M, Ahani S, Yousefi M. Efficacy of Lactobacillus acidophilus and yeast cell wall-derived supplements on immunity responses, growth performance, and disease resistance in Cyprinus carpio juveniles. Vet Res Commun 2024; 49:23. [PMID: 39570486 DOI: 10.1007/s11259-024-10567-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
This study investigated the effects of probiotic Lactobacillus acidophilus (PTCC 1643) (LA) and a commercial yeast cell wall prebiotic (Immunogen®) (IM) on immunoantioxidant, growth, and digestive status, and resistance to Aeromonas hydrophila in Cyprinus carpio juveniles. The fish were fed in five treatments including control (T1), LA1.5 (T2): 1.5 (× 10^8 CFU/g of LA)/kg diet, LA3 (T3): 3 (× 10^8 CFU/g of LA)/kg diet, IM1 (T4): 1 g of IM/kg diet, and IM2 (T5): 2 g of IM/ kg diet. After 60 days, the function of growth and intestinal protease and amylase showed a significant increase in IM treatments. Serum levels of total protein and superoxide dismutase in LA3 treatment, as well as albumin, catalase, and glutathione peroxidase in LA3 and IM2 treatments were significantly increased. Serum level of malondialdehyde in LA and IM treatments, as well as alkaline phosphatase (ALP) in LA treatments, alanine aminotransferase in LA and IM2 treatments, and lactate dehydrogenase in LA3 treatment was significantly decreased. Serum levels of all the immune parameters in LA3 treatment, as well as alternative complement pathway hemolytic and nitroblue tetrazolium in IM2 treatment were significantly improved. Mucosal level of protease in LA3 and IM2 treatments, total immunoglobulin, and lysozyme in LA and IM2 treatments, as well as ALP and peroxidase in LA3 treatment was significantly increased. Cumulative mortality rate in LA and IM treatments was significantly decreased compared to control after the 14-day challenge with A. hydrophila. It is recommended to include IM2 in the diet of C. carpio juveniles with regard to its beneficial effects on growth and immunity status.
Collapse
Affiliation(s)
- Hamed Ghafarifarsani
- Department of Animal Science, Chaharmahal and Bakhtiari Agricultural and Natural Resources Research and Education Center, AREEO, Shahrekord, Iran.
| | - Saman Ahani
- School of Veterinary Medicine, Islamic Azad University Karaj Branch, Karaj, Iran
| | - Maryam Aftabgard
- Young Researchers and Elite Club, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran
| | - Sara Ahani
- Department of Fisheries, College of Agricultural and Natural Resources, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Morteza Yousefi
- Department of Veterinary Medicine, RUDN University, 6 Miklukho-Maklaya St., Moscow, 117198, Russia.
| |
Collapse
|
3
|
Ahmad N, Hussain SM, Ali S, Tahir MF, Sarker PK, Shahid M. Nano-selenium supplementation: improving growth, digestibility and mineral absorption in freshwater fish, Catla catla. BMC Vet Res 2024; 20:438. [PMID: 39342340 PMCID: PMC11438357 DOI: 10.1186/s12917-024-04291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND This research investigated the impact of selenium-nanoparticles (Se-NPs) supplemented in sunflower meal (SM)-based diets on digestibility, mineral absorption, and growth performance of Catla catla. Se-NPs were added to seven test meals in varying amounts (0, 0.5, 1, 1.5, 2, 2.5 and 3 mgkg- 1). A total of 315 fish were evenly allocated three replicate tanks, with 15 fish per tank, and given diets equivalent to (5%) of their wet biomass daily for a period of 90 days. RESULTS The test diet (T-D) supplemented with 1.5 mgkg- 1 Se-NPs yielded remarkable results, including a significant increase in mean weight gain (14 g), an impressive average weight gain percentage (208%), a 100% survival rate, with no mortality observed and the highest specific growth rate (1.25). Moreover, 1.5 mgkg- 1 Se-NPs (T-D-IV) demonstrated superior nutritional digestibility (CP, 76%; CF, 79% and GE, 74%). Additionally, the diet 1.5 mgkg- 1 Se-NPs showed enhanced mineral absorption (K, P, Ca, Na, Zn, Cu and Fe) than other diets. CONCLUSION It was practically proven that the growth indices, nutrient absorption, and mineral status of C. catla were significantly improved by Se-NPs supplemented SM-based diets, with the optimum level of supplementation being 1.5 mgkg- 1.
Collapse
Affiliation(s)
- Nisar Ahmad
- Department of Zoology, University of Jhang, Jhang, 35200, Pakistan
| | - Syed Makhdoom Hussain
- Fish Nutrition Laboratory, Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | | | - Pallab K Sarker
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
4
|
Rashwan AG, Assar DH, Salah AS, Liu X, Al-Hawary II, Abu-Alghayth MH, Salem SMR, Khalil K, Hanafy NAN, Abdelatty A, Sun L, Elbialy ZI. Dietary Chitosan Attenuates High-Fat Diet-Induced Oxidative Stress, Apoptosis, and Inflammation in Nile Tilapia ( Oreochromis niloticus) through Regulation of Nrf2/Kaep1 and Bcl-2/Bax Pathways. BIOLOGY 2024; 13:486. [PMID: 39056682 PMCID: PMC11273726 DOI: 10.3390/biology13070486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Fatty liver injury is a prevalent condition in most farmed fish, yet the molecular mechanisms underpinning this pathology remain largely elusive. A comprehensive feeding trial spanning eight weeks was conducted to discern the potential of dietary chitosan in mitigating the deleterious effects of a high-fat diet (HFD) while concurrently exploring the underlying mechanism. Growth performance, haemato-biochemical capacity, antioxidant capacity, apoptotic/anti-apoptotic gene expression, inflammatory gene expression, and histopathological changes in the liver, kidney, and intestine were meticulously assessed in Nile tilapia. Six experimental diets were formulated with varying concentrations of chitosan. The first three groups were administered a diet comprising 6% fat with chitosan concentrations of 0%, 5%, and 10% and were designated as F6Ch0, F6Ch5, and F6Ch10, respectively. Conversely, the fourth, fifth, and sixth groups were fed a diet containing 12% fat with chitosan concentrations of 0%, 5%, and 10%, respectively, for 60 days and were termed F12Ch0, F12Ch5, and F12Ch10. The results showed that fish fed an HFD demonstrated enhanced growth rates and a significant accumulation of fat in the perivisceral tissue, accompanied by markedly elevated serum hepatic injury biomarkers and serum lipid levels, along with upregulation of pro-apoptotic and inflammatory markers. In stark contrast, the expression levels of nrf2, sod, gpx, and bcl-2 were notably decreased when compared with the control normal fat group. These observations were accompanied by marked diffuse hepatic steatosis, diffuse tubular damage, and shortened intestinal villi. Intriguingly, chitosan supplementation effectively mitigated the aforementioned findings and alleviated intestinal injury by upregulating the expression of tight junction-related genes. It could be concluded that dietary chitosan alleviates the adverse impacts of an HFD on the liver, kidney, and intestine by modulating the impaired antioxidant defense system, inflammation, and apoptosis through the variation in nrf2 and cox2 signaling pathways.
Collapse
Affiliation(s)
- Aya G. Rashwan
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (A.G.R.); (I.I.A.-H.)
| | - Doaa H. Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Abdallah S. Salah
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Xiaolu Liu
- Single-Cell Center, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, CAS Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao 266101, China;
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ibrahim I. Al-Hawary
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (A.G.R.); (I.I.A.-H.)
| | - Mohammed H. Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia;
| | - Shimaa M. R. Salem
- Department of Animal Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 33516, Egypt;
| | - Karim Khalil
- Department of Veterinary Medicine, College of Applied & Health Sciences, A’Sharqiyah University, P.O. Box 42, Ibra 400, Oman;
| | - Nemany A. N. Hanafy
- Group of Molecular Cell Biology and Bionanotechnology, Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Alaa Abdelatty
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Luyang Sun
- Single-Cell Center, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, CAS Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao 266101, China;
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zizy I. Elbialy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (A.G.R.); (I.I.A.-H.)
| |
Collapse
|
5
|
Hou L, Fu Y, Zhao C, Fan L, Hu H, Yin S. The research progress on the impact of antibiotics on the male reproductive system. ENVIRONMENT INTERNATIONAL 2024; 187:108670. [PMID: 38669720 DOI: 10.1016/j.envint.2024.108670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Antibiotics are extensively utilized in the livestock and poultry industry and can accumulate in animals and the environment, leading to potential health risks for humans via food and water consumption. Research on antibiotic toxicity, particularly their impact as endocrine disruptors on the male reproductive system, is still in its nascent stages. This review highlights the toxic effect of antibiotics on the male reproductive system, detailing the common routes of exposure and the detrimental impact and mechanisms of various antibiotic classes. Additionally, it discusses the protective role of food-derived active substances against the reproductive toxicity induced by antibiotics. This review aims to raise awareness about the reproductive toxicity of antibiotics in males and to outline the challenges that must be addressed in future research.
Collapse
Affiliation(s)
- Lirui Hou
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yuhan Fu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Chong Zhao
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, Yunamingyuan West Road, Haidian District, Beijing 100193, China
| | - Hongbo Hu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Shutao Yin
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
6
|
Abdollahi-Mousavi SE, Keyvanshokooh S, Torfi Mozanzadeh M, Ghasemi A. Efficacy of nutritional selenium nanoparticles on growth performance, immune response, antioxidant capacity, expression of growth and immune-related genes, and post-stress recovery in juvenile Sobaity seabream (Sparidentex hasta). FISH & SHELLFISH IMMUNOLOGY 2024; 147:109452. [PMID: 38360194 DOI: 10.1016/j.fsi.2024.109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
This study evaluated the impacts of nano-Se on the growth, immunity, antioxidant capacity, physiological parameters, gene expression, and stress resistance of fingerling Sobaity seabream (Sparidentex hasta). The fish with an average weight of 21.5 ± 0.1 g were divided into four treatment groups in triplicates that received one of the test diets supplemented with varying levels of nano-Se: 0 (control), 0.5 (Se-0.5), 1 (Se-1), and 2 (Se-2) mg/Kg for 60 days. The results showed that final weight, weight gain rate, specific growth rate, feed intake, and feed conversion ratio improved with significant linear and quadratic trends (P < 0.05) in response to nano-Se-supplemented diets, and the best values were measured in the Se-2 group. Superoxide dismutase activity level remained unaffected among the four groups (P > 0.05). Catalase activity increased in nano-Se-supplemented groups, with the highest level measured in fish fed the Se-0.5 diet. Glutathione peroxidase activity levels were not significantly different between the control and nano-Se groups, but the lowest malondialdehyde concentration was detected in the Se-2 group. Nano-Se had no marked effect on total plasma Ig levels; however, the highest lysozyme activity and alternative complement activity (ACH50) were observed in the Se-0.5 and Se-2 groups, respectively. No significant differences (P > 0.05) were observed in plasma total protein, albumin, globulin, triglyceride, and thyroid hormone (T3 and T4) contents among the groups. However, the lowest cholesterol and low-density lipoprotein values and the highest high-density lipoprotein concentration were measured in the Se-2 group. The Se-0.5 and Se-1 groups exhibited significantly lower levels of aspartate aminotransferase activity, and the lowest alkaline phosphatase activity level was detected in the Se-1 group. The expression level of insulin-like growth factor I gene in all nano-Se-fed groups was significantly higher than the control. Also, the expression of interleukin-1β and lysozyme genes was significantly upregulated in nano-Se-supplemented groups, with the highest values in the Se-2 group. Following acute crowding stress, plasma cortisol and lactate levels at all post-stress time intervals were not significantly different among the experimental groups. Fish fed the Se-0.5 and Se-2 diets tended to have lower plasma glucose concentrations than other groups. In conclusion, dietary nano-Se at 2 mg/kg is recommended to promote growth performance and enhance antioxidant and immune parameters in Sobaity juveniles.
Collapse
Affiliation(s)
- Seyed Eisa Abdollahi-Mousavi
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Khouzestan, Iran
| | - Saeed Keyvanshokooh
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Khouzestan, Iran.
| | - Mansour Torfi Mozanzadeh
- South Iran Aquaculture Research Centre, Iranian Fisheries Science Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Ahwaz, Iran.
| | - Ahmad Ghasemi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| |
Collapse
|
7
|
Pourmoradkhani F, Sarvi Moghanlou K, Sohrabi T, Imani A, Gholizadeh V, Pourahad Anzabi M. Supplementation of Siberian sturgeon (Acipenser baerii) diet with different zinc sources: effects on growth performance, digestive enzymes activity, hemato-biochemical parameters, antioxidant response and liver histology. Vet Res Commun 2024; 48:797-810. [PMID: 37923869 DOI: 10.1007/s11259-023-10252-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
An 8-week feeding trial was carried out to examine the effect of different sources of dietary Zn on some physiological responses (performance, digestive enzymes activity, hemato-biochemical parameters, antioxidant status and liver histology) of Siberian sturgeon, Acipenser baerii. For this purpose, fish with an average weight of 100 g ± 5 were randomly allocated into four groups including control, inorganic zinc (Zn-sulfate), organic zinc (Zn-gluconate), and zinc-oxide nanoparticles (ZnO-NPs) at 50 mg Zn kg- 1 feed. Improved growth indices, namely weight gain (WG) and specific growth rate (SGR) and feed conversion ratio (FCR) were observed in fish fed Zn-gluconate supplemented diet (P < 0.0.5). The highest digestive enzymes activity was recorded in fish fed Zn-gluconate supplementation (P < 0.0.5). Hematological indices significantly increased in fish fed diet containing ZnO-NPs (P < 0.0.5). Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) of fish fed ZnO-NPs contained diet were the highest (P < 0.0.5). The highest serum superoxide dismutase (SOD) and catalase (CAT) enzymes activity were observed in fish fed ZnO-NPs and inorganic/organic Zn contained diets, respectively. While liver tissue SOD and glutathione peroxidase (GPx) enzymes activity Zn were significantly increased in fish fed inorganic/organic Zn supplemented diet (P < 0.0.5). Based on liver histological results, a severe tissue changes such as necrosis and pyknosis were observed in fish fed with Zn-sulfate in comparison to other forms. In conclusion, the data of the present study confirmed that organic Zn (mainly) and nano-Zn (to some extent) could be more efficient Zn sources in Siberian sturgeon.
Collapse
Affiliation(s)
| | | | - Tooraj Sohrabi
- International Sturgeon Research Institute, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Organization (AREEO), Tehran, Iran , Rasht, Iran
| | - Ahmad Imani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran
| | - Vahid Gholizadeh
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran
| | | |
Collapse
|
8
|
Zhang P, Zhang C, Yao X, Xie Y, Zhang H, Shao X, Yang X, Nie Q, Ye J, Wu C, Mi H. Selenium yeast improve growth, serum biochemical indices, metabolic ability, antioxidant capacity and immunity in black carp Mylopharyngodnpiceus. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109414. [PMID: 38296006 DOI: 10.1016/j.fsi.2024.109414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/01/2024] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
This experiment was conducted to investigate the impacts of dietary selenium yeast (SeY) on the growth performance, fish body composition, metabolic ability, antioxidant capability, immunity and inflammatory responses in juvenile black carp (Mylopharyngodn piceus). The base diet was supplemented with 0.00, 0.30 and 0.60 g/kg SeY (0.04, 0.59 and 1.15 mg/kg of selenium) to form three isonitrogenous and isoenergetic diets for juvenile black carp with a 60-day. Adequate dietary SeY (0.30 and 0.60 g/kg) could significantly increase the weight gain (WG), special growth rate (SGR) compared to the SeY deficient groups (0.00 g/kg) (P < 0.05). Meanwhile, 0.30 and 0.60 g/kg SeY elevated the mRNA levels of selenoprotein T2 (SEPT2), selenoprotein H (SEPH), selenoprotein S (SEPS) and selenoprotein M (SEPM) in the liver and intestine compared with the SeY deficient groups (P < 0.05). Adequate dietary SeY could promote glucose catabolism and utilization through activating glucose transport (GLUT2), glycolysis (GCK, HK, PFK, PK, PDH), tricarboxylic acid cycle (ICDH and MDH), glycogen synthesis (LG, GCS and GBE) and IRS/PI3K/AKT signal pathway molecules (IRS2b, PI3Kc and AKT1) compared with the SeY deficient groups (P < 0.05). Similarly, adequate dietary SeY could improve lipid transport and triglycerides (TG) synthesis through increasing transcription amounts of CD36, GK, DGAT, ACC and FAS in the fish liver compared with the SeY deficient groups (P < 0.05). In addition, adequate SeY could markedly elevate activities of antioxidant enzymes (T-SOD, CAT, GR, GPX) and contents of T-AOC and GSH, while increased transcription amounts of Nrf2, Cu/Zn-SOD, CAT, and GPX in fish liver and intestine (P < 0.05). However, adequate SeY notably decreased contents of MDA, and the mRNA transcription levels of Keap1 in the intestine compared with the SeY deficient groups (P < 0.05). Adequate SeY markedly increased amounts or levels of the immune factors (ALP, ACP, LZM, C3, C4 and IgM) and the transcription levels of innate immune-related functional genes in the liver and intestine (LZM, C3 and C9) compared to the SeY deficient groups (P < 0.05). Moreover, adequate SeY could notably reduce levels of IL-8, IL-1β, and IFN-γ and elevate TGF-1β levels in fish intestine (P < 0.05). The transcription levels of MAPK13, MAPK14 and NF-κB p65 were notably reduced in fish intestine treated with 0.30 and 0.60 g/kg SeY (P < 0.05). In conclusion, these results suggested that 0.30 and 0.60 g/kg SeY could not only improve growth performance, increase Se, glucose and lipid metabolic abilities, enhance antioxidant capabilities and immune responses, but also alleviate inflammation, thereby supplying useful reference for producing artificial feeds in black carp.
Collapse
Affiliation(s)
- Penghui Zhang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou, 313000, China
| | - Chen Zhang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou, 313000, China
| | - Xinfeng Yao
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou, 313000, China
| | - Yuanyuan Xie
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou, 313000, China
| | - Hao Zhang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou, 313000, China
| | - Xianping Shao
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou, 313000, China
| | - Xia Yang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou, 313000, China
| | - Qin Nie
- The Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd, 168 Chengdong Avenue, Yichang, 443000, China
| | - Jinyun Ye
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou, 313000, China
| | - Chenglong Wu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou, 313000, China.
| | - Haifeng Mi
- Healthy Aquaculture Key Laboratory of Sichuan Province, Tongwei Co, Ltd, 588 Tianfu Avenue, Chengdu, 610093, China.
| |
Collapse
|
9
|
Khaled AA, Shabaan AM, Hammad SM, Hafez EE, Saleh AA. Exploring the impact of nano-Se and nano-clay feed supplements on interleukin genes, immunity and growth rate in European Sea Bass (Dicentrarchus labrax). Sci Rep 2024; 14:2631. [PMID: 38302608 PMCID: PMC10834503 DOI: 10.1038/s41598-024-53274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
This study aimed to investigate the effects of adding Nano-Selenium (NSe) and Nano-clay (NC) as feed supplements on European Sea Bass (Dicentrarchus labrax). Two separate experiments were conducted, one with NC and the other with NSe. Each experiment consisted of four sub-groups with varying concentrations of NC or NSe. The expression levels of five immune-related genes (TNF-α, TNF-β, IL-2, IL-6 and IL-12) were measured using Real-time Quantitative PCR (Rt-PCR) Assay. The results showed an increase in the expression of interleukins (IL-2, IL-6 and IL-12) and pro-inflammatory cytokines (TNF-α and TNF-β) after exposure to NC and NSe. TNF-α gene expression was significantly higher with both 1 mg and 10 mg concentrations of NC and NSe. TNF-β gene expression was highest with the 5 mg concentration of NC. The concentrations of 1 mg and 10 mg for NC, and 1 mg, 5 mg, and 10 mg for NSe, led to the highest (p < 0.05) levels of IL-2 expression compared to the control. Similar trends were observed for IL-6 and IL-12 gene expression. Understanding the impact of these concentrations on gene expression, growth rate, biochemical indices, and antioxidant status can provide valuable insights into the potential applications of NC and NSe supplements on European Sea Bass.
Collapse
Affiliation(s)
- Asmaa A Khaled
- Animal and Fish Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria City, 21531, Egypt
| | - Amany M Shabaan
- Chemistry Department, Biochemistry Division, Faculty of Science, El-Fayoum University, El-Fayoum, Egypt
| | - Saad M Hammad
- Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, 21934, Egypt
| | - Elsayed E Hafez
- Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, 21934, Egypt
| | - Ahmed A Saleh
- Animal and Fish Production Department, Faculty of Agriculture (Alshatby), Alexandria University, Alexandria City, 11865, Egypt.
| |
Collapse
|
10
|
Xu Y, Gong Y, Li S, Zhou Y, Ma Z, Yi G, Chen N, Wang W, Huang X. Inositol Inclusion Affects Growth, Body Composition, Antioxidant Performance, and Lipid Metabolism of Largemouth Bass ( Micropterus salmoides). AQUACULTURE NUTRITION 2024; 2024:9944159. [PMID: 38283889 PMCID: PMC10817803 DOI: 10.1155/2024/9944159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/25/2023] [Accepted: 01/05/2024] [Indexed: 01/30/2024]
Abstract
The present study explored the effects of inositol on growth performance, body composition, antioxidant performance, and lipid metabolism of largemouth bass (Micropterus salmoides). Six isonitrogenous and isolipidic diets containing 0 mg/kg (G1, control), 125 mg/kg (G2), 250 mg/kg (G3), 375 mg/kg (G4), 500 mg/kg (G5), and 625 mg/kg (G6) inositol were prepared and fed to cultured fish (initial weight: 110 ± 1 g) for 8 weeks in recirculating the aquaculture systems. The results indicated that compared with G1 group, the weight gain rate (WGR), specific growth rate (SGR), and feed efficiency rate (FER) in the G3 group were significantly higher. The crude lipid content of the whole fish and the liver of cultured fish was significantly reduced with increasing dietary inositol inclusion. However, no significant effects on moisture, crude protein, and ash contents of fish were observed among the different groups. Dietary inositol supplementation significantly increased muscular crude protein. However, muscular total lipid contents were decreased when the inclusion level was higher than 250 mg/kg (G3-G6 groups). As dietary inositol supplemental level increased, serum triglyceride (TG), and cholesterol (TC) contents showed an increasing trend and reached the maximum value in the G3 group. Additionally, serum low-density lipoprotein cholesterol (LDL-C) in G2, G3, G4, and G5 groups was significantly upregulated by increasing inositol. While, there was no significant change in serum high-density lipoprotein cholesterol (HDL-C) among the treatments. Inositol inclusion also significantly reduced the serum alkaline phosphatase (AKP), glutamic-pyruvic transaminase (ALT), and glutamic-oxaloacetic transaminase (AST) activities as well as serum malondialdehyde (MDA) content but significantly increased serum catalase (CAT), superoxide dismutase (SOD) activities, and total antioxidant capacity (T-AOC). Compared with the control group, the activities of hepatic total lipase (TL) and lipoprotein lipase (LPL) were significantly elevated in the G3, G4, and G5 groups. Above all, dietary inositol supplementation could improve growth performance and antioxidant capacity, and reduce the liver fat content of largemouth bass, and the optimal supplementation level of inositol in feed is estimated to be 250.31-267.27 mg/kg.
Collapse
Affiliation(s)
- Yinglin Xu
- Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Research, Shanghai Ocean University, Shanghai 201306, China
| | - Ye Gong
- Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Research, Shanghai Ocean University, Shanghai 201306, China
| | - Songlin Li
- Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Research, Shanghai Ocean University, Shanghai 201306, China
- China-ASEAN “The Belt and Road” Joint Laboratory of Mariculture Technology, Ministry of Science and Technology of China, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yue Zhou
- Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Research, Shanghai Ocean University, Shanghai 201306, China
| | - Zhixiao Ma
- Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Research, Shanghai Ocean University, Shanghai 201306, China
| | - Ganfeng Yi
- Fantastic Victory (Shenzhen) Technological Innovation Group Co. Ltd, Shenzhen 518054, China
| | - Naisong Chen
- Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Research, Shanghai Ocean University, Shanghai 201306, China
- China-ASEAN “The Belt and Road” Joint Laboratory of Mariculture Technology, Ministry of Science and Technology of China, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai 201306, China
| | - Weilong Wang
- Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Research, Shanghai Ocean University, Shanghai 201306, China
- China-ASEAN “The Belt and Road” Joint Laboratory of Mariculture Technology, Ministry of Science and Technology of China, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xuxiong Huang
- Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Research, Shanghai Ocean University, Shanghai 201306, China
- China-ASEAN “The Belt and Road” Joint Laboratory of Mariculture Technology, Ministry of Science and Technology of China, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
11
|
Ibrahim RE, Elshobaky G, ElHady M, Abdelwarith AA, Younis EM, Rhouma NR, Murad SK, Yassin EMM, Khamis T, Ismail SH, Davies SJ, Abdel Rahman AN. Nelumbo nucifera synthesized selenium nanoparticles modulate the immune-antioxidants, biochemical indices, and pro/anti-inflammatory cytokines pathways in Oreochromis niloticus infected with Aeromonas veronii. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109287. [PMID: 38092091 DOI: 10.1016/j.fsi.2023.109287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/17/2023] [Accepted: 12/07/2023] [Indexed: 12/31/2023]
Abstract
Bacterial infection is considered one of the major issues in fish culturing that results in economic losses. Metal nanoparticles are a cutting-edge and effective disease management and preventive strategy because of their antibacterial ability. In this investigation, the selenium nanoparticles were prepared by a biological method using Nelumbo nucifera leaves extract. The in-vitro antibacterial activity of N. nucifera synthesized selenium nanoparticles (NN-SeNPs) was tested against Aeromonas veronii. A treatment assay was conducted on 210 Oreochromis niloticus (average body weight: 27 ± 2.00 g). A preliminary approach was conducted on 90 fish for determination of the therapeutic concentration of NN-SeNPs which was found to be 4 mg/L. Fish (n = 120) were categorized into four groups for 10 days; G1 (control) and G2 (NN-SeNPs) were non-challenged and treated with 0 and 4 mg/L NN-SeNPs, respectively. While, G3 and G4 were infected with 2 × 106 CFU/mL of A. veronii and treated with 0 and 4 mg/L NN-SeNPs, respectively. NN-SeNPs exhibited an inhibition zone against A. veronii with a diameter of 16 ± 1.25 mm. The A. veronii infection increased the hepato-renal biomarkers (alanine and aspartate aminotransferases and creatinine) than the control group. An oxidative stress was the consequence of A. veronii infection (higher malondialdehyde and hydrogen peroxide levels with lower glutathione peroxidase superoxide, dismutase, and catalase activity). A. veronii infection resulted in lower immunological biomarker values (immunoglobulin M, lysozyme, and complement 3) with higher expression of the inflammatory cytokines (interleukin-1β and tumor necrosis factor-ɑ) as well as lower expression of the anti-inflammatory cytokines (interleukin-10 and transforming growth factor-β). Therapeutic application with 4 mg/L NN-SeNPs prevented the disease progression; and modulated the hepato-renal function disruptions, oxidant-immune dysfunction, as well as the pro/anti-inflammatory cytokines pathway in the A. veronii-infected fish. These findings suggest that NN-SeNPs, employed as a water therapy, can safeguard fish from the harmful effects of A. veronii and serve as a promising antibacterial agent for sustainable aquaculture.
Collapse
Affiliation(s)
- Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt.
| | - Gehad Elshobaky
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, PO Box 35516, Mansoura, Dakahlia, Egypt
| | - Mohamed ElHady
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Nasreddin R Rhouma
- Biology Department, Faculty of Science, Misurata University, PO Box 2478, Misurata, Libya
| | - Suzan K Murad
- Department of Public Health, Faculty of Health Science, Misurata University, PO Box2478, Libya
| | - Engy Mohamed Mohamed Yassin
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| | - Sameh H Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Campus, 6th October City, Giza, 12588, Egypt
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, H91V8Y1, Galway, Ireland
| | - Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt.
| |
Collapse
|
12
|
Moustafa EM, Shukry M, Zayed MM, Farrag FA, Abd El-Aziz WE, Omar AA. Impact of Sel-Plex ® dietary supplementation on growth performance, physiological response, oxidative status, and immunity-linked gene expression in Nile tilapia ( Oreochromis niloticus) fingerlings challenged with Aeromonas hydrophila. Open Vet J 2024; 14:70-89. [PMID: 38633150 PMCID: PMC11018427 DOI: 10.5455/ovj.2024.v14.i1.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/15/2023] [Indexed: 04/19/2024] Open
Abstract
Background Organic selenium (Sel-Plex®) supplementation holds considerable promise for improving the effectiveness of fish production. Aim This experiment was accomplished to judge the potential benefits of Sel-Plex® nutritional additive on growth outcomes, physiological response, oxidative status, and immunity-linked gene expression in Nile tilapia (Oreochromis niloticus) fingerlings exposed to bacterial infection with Aeromonas hydrophila. Methods Utilizing a basal diet of 30% protein, four experimental diets were prepared, each of which contained Sel-Plex® at concentrations of 0.0, 0.5, 1, and 2 mg/kg, respectively. Three replicates of 20 fish/treatment were used using 240 healthy Nile tilapia fingerlings. Fish were placed in 12 glass aquariums and separated into 4 groups at random. For the entire span of 8 weeks, diets were admitted to fish at a 3% rate of fish biomass/aquarium. After the feeding trial, pathogenic A. hydrophila was intraperitoneally injected into fish of each treatment, and fish were observed for 15 days to track the survival rate (SR) after the challenge. Results Growth performance, physiological response, immunological parameters (phagocytic activity, phagocytic index, and lysozyme), and antioxidant parameters [catalase, superoxide dismutase (SOD), malondialdehyde, and glutathione peroxidase (GPx)] were noticeably improved in Sel-Plex® treated groups. Moreover, Sel-Plex® increased gene expression linked with the immune system in the liver (tumor necrosis factor-alpha and interleukin 1β), to growth (insulin-like growth factor 1 and growth hormone receptor), and antioxidants (SOD and GPx). Under pathogen-challenge conditions, the employed dietary Sel-Plex® supplementation could successfully lower fish oxidative stress, offering a potential preventive additive for Nile tilapia instead of antibiotics. On the other hand, Sel-Plex® significantly enhanced each of three intestinal morphological measurements (villus width, villus length, and crypt depth), demonstrating the greatest influence on the improvement of intestinal structure overall. In the Nile tilapia control group, the infection with A. hydrophila caused noticeable degenerative alterations in the gut, hepatopancreas, spleen, and posterior kidney. The severity of the lesion was significantly reduced and significantly improved with higher Sel-Plex® concentrations. Sel-Plex® supplemented groups had 100% SRs among the A. hydrophila-challenged groups. Conclusion It could be advised to enrich the diets of Nile tilapia fingerlings with 1-2 mg.kg-1 of Sel-Plex® to enhance growth rate, physiological response, immunological reaction, and intestinal absorptive capacity.
Collapse
Affiliation(s)
- Eman Moustafa Moustafa
- Fish Diseases and Management Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Mustafa Shukry
- Animal Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Mohamed M. Zayed
- Aquaculture Department, Faculty of Aquatic Fisheries Sciences, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Foad A. Farrag
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Delta University for Science and Technology, Dakahlia, Egypt
| | - Wesam E. Abd El-Aziz
- Fish Diseases and Management Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Amira A. Omar
- Fish Diseases and Management Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|
13
|
Chen N, Yao P, Zhang W, Zhang Y, Xin N, Wei H, Zhang T, Zhao C. Selenium nanoparticles: Enhanced nutrition and beyond. Crit Rev Food Sci Nutr 2023; 63:12360-12371. [PMID: 35848122 DOI: 10.1080/10408398.2022.2101093] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Selenium is a trace nutrient that has both nutritional and nutraceutical functions, whereas narrow nutritional range of selenium intake limits its use. Selenium nanoparticles (SeNPs) are less toxic and more bioavailable than traditional forms of selenium, suggesting that SeNPs have the potential to replace traditional selenium in food industries and/or biomedical fields. From the perspective of how SeNPs can be applied in health area, this review comprehensively discusses SeNPs in terms of its preparation, nutritional aspect, detoxification effect of heavy metals, nutraceutical functions and anti-pathogenic microorganism effects. By physical, chemical, or biological methods, inorganic selenium can be transformed into SeNPs which have increased stability and bioavailability as well as low toxicity. SeNPs are more effective than traditional selenium form in synthesizing selenoproteins like glutathione peroxidases. SeNPs can reshape the digestive system to facilitate digestion and absorption of nutrients. SeNPs have shown excellent potential to adjunctively treat cancer patients, enhance immune system, control diabetes, and prevent rheumatoid arthritis. Additionally, SeNPs have good microbial anti-pathogenic effects and can be used with other antimicrobial agents to fight against pathogenic bacteria, fungi, or viruses. Development of novel SeNPs with enhanced functions can greatly benefit the food-, nutraceutical-, and biomedical industries.
Collapse
Affiliation(s)
- Nan Chen
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Peng Yao
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Wei Zhang
- Weihai Baihe Biology Technological Co., Ltd, Rongcheng, Shandong, China
| | - Yutong Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Naicheng Xin
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Hongdi Wei
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
- Jilin Engineering Technology Research Center for High Value Utilization of Animal By-Products, Jilin University, Changchun, China
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun, China
- Jilin Engineering Technology Research Center for High Value Utilization of Animal By-Products, Jilin University, Changchun, China
| |
Collapse
|
14
|
Yaqub A, Nasir M, Kamran M, Majeed I, Arif A. Immunomodulation, Fish Health and Resistance to Staphylococcus aureus of Nile Tilapia (Oreochromis niloticus) Fed Diet Supplemented with Zinc Oxide Nanoparticles and Zinc Acetate. Biol Trace Elem Res 2023; 201:4912-4925. [PMID: 36701087 DOI: 10.1007/s12011-023-03571-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023]
Abstract
Recently some metal-based nanoparticles have gained serious attention from aquaculture and the fish feed industry as feed supplements. Oral supplementation of zinc oxide nanoparticles (ZnO-NPs) in fish feed, replacing Zn acetate (conventionally used zinc), is suggested as a cost-effective and efficient approach. Our study assessed the response of Nile tilapia, Oreochromis niloticus, fingerlings after its diet supplemented with chemically synthesized ZnO-NPs and zinc acetate under controlled conditions. ZnO-NPs were chemically synthesized and characterized. Tilapia fingerlings with an average body weight of 09.12 ± 1.23 g were randomly distributed into five groups. An 8-week trial was set with control and four experimental groups. Basal diet (D1) was used as control, whereas D2, D3 and D4 comprising 20, 40, and 60 mgkg-1 ZnO-NPs supplementation were experimental diets. Additionally, D5 was composed of a basal diet supplemented with 40 mgkg-1 of conventionally used zinc acetate. Significant improvement (P < 0.05) was found in nanoparticles and Zn acetate supplemented groups as compared to control, while the 40 mgkg-1 Zn-NPs supplemented diet (D3) showed best performance in terms of health parameters, oxidative status and disease resistance. Antioxidant profiling was based on catalase, superoxide dismutase, glutathione's transferase, and malondialdehyde; hematology included Hb, WBCs, RBCs, HCT MCV, MCH and MCHC; immunological parameters comprised IgM, lysozyme activity, phagocytic activity, respiratory burst activity, cholesterol, aspartate aminotransferase, alanine aminotransferase, glucose content, and total serum proteins. We report that the D3 (40 mgkg-1 ZnO-NPs supplementation) significantly (P < 0.05) improved health-related parameters as compared to the other groups. Moreover, D3 also showed significantly decreased mortality percentage when challenged by Staphylococcus aureus, while the Zn acetate supplemented diet group showed better results as compared to control. Overall results suggest the basal diet supplemented with 40 mgkg-1 ZnO-NP for enhanced health parameters, oxidative status, immune response, and disease resistance. Hence, 40mgkg-1 ZnO-NP can be recommended to formulate the practical diet of fish to boost health improvement, immunomodulation, and resistance to bacterial disease.
Collapse
Affiliation(s)
- Atif Yaqub
- Fish Nutrition Laboratory, Department of Zoology, Government College University, Lahore, 54000, Punjab, Pakistan.
| | - Muhammad Nasir
- Fish Nutrition Laboratory, Department of Zoology, Government College University, Lahore, 54000, Punjab, Pakistan
| | - Muhammad Kamran
- Aquaculture Laboratory, Department of Zoology, University of Sialkot, Sialkot, 51040, Punjab, Pakistan
| | - Iqra Majeed
- Fish Nutrition Laboratory, Department of Zoology, Government College University, Lahore, 54000, Punjab, Pakistan
| | - Aneeza Arif
- Fish Nutrition Laboratory, Department of Zoology, Government College University, Lahore, 54000, Punjab, Pakistan
| |
Collapse
|
15
|
Eissa ESH, Bazina WK, Abd El-Aziz YM, Abd Elghany NA, Tawfik WA, Mossa MI, Abd El Megeed OH, Abd El-Hamed NNB, El-Saeed AF, El-Haroun E, Davies SJ, Hasimuna OJ, Eissa MEH, Khalil HS. Nano-selenium impacts on growth performance, digestive enzymes, antioxidant, immune resistance and histopathological scores of Nile tilapia, Oreochromis niloticus against Aspergillus flavus infection. AQUACULTURE INTERNATIONAL 2023. [DOI: 10.1007/s10499-023-01230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
AbstractThe present study examined the impacts of varying amounts of selenium nanoparticles (Se-NPs) as a natural antioxidant and metabolic regulator on growth performance, antioxidant capacity, digestive enzymes and immune resistance of Oreochromis niloticus challenged to Aspergillus flavus infection. For 60 days, fish were fed the experimental diet of 30% crude protein up to apparent satiation three times a day. Se-NPs were added to the control diet at different levels of 0.0 (control), 0.5 (T1), 1.0 (T2) and 1.5 (T3) mg/kg diet to fed monosex Nile tilapia fingerlings with average initial weight (4.5 ± 0.5 g). Fish were randomly distributed in 12 tanks 100 L at a density of 20 fish per tank after 2-week acclimation to represent four treatments in triplicates. The results indicated that the growth indices, feed efficiency and survival rate were significantly enhanced (P < 0.05) by incorporating Se-NPs up to 1 mg/kg diet. Furthermore, the haemato-biochemical parameters, digestive enzymes activity and antioxidant capacity of the fish were significantly improved (P < 0.05) at T2. When the fish were challenged with Aspergillus flavus, a decreasing mortality rate was observed, which clearly shows that selenium nanoparticles boosted the fish’s immune response at T2. The intestinal morphology as villus length, villus width, muscular fibres layer thickness and absorption intestinal zone after challenged with A. flavus infection were considerably enhanced (P < 0.05) by incorporating all Se-NP levels. Histopathological score significantly improved (P < 0.05) for the hepatopancreatic, intestinal, gills and muscle tissues at T2. The present study concludes that selenium nanoparticles up to 1.0 mg/kg diet can be efficiently used in tilapia feed to help boost fish production, immune system response and histopathological parameters.
Collapse
|
16
|
Satgurunathan T, Bhavan PS, Kalpana R, Jayakumar T, Sheu JR, Manjunath M. Influence of Garlic (Allium sativum) Clove-Based Selenium Nanoparticles on Status of Nutritional, Biochemical, Enzymological, and Gene Expressions in the Freshwater Prawn Macrobrachium rosenbergii (De Man, 1879). Biol Trace Elem Res 2023; 201:2036-2057. [PMID: 35665883 DOI: 10.1007/s12011-022-03300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/26/2022] [Indexed: 11/02/2022]
Abstract
Selenium (Se) is one of the essential micronutrients for performing vital body functions. This study aims at examining the influence of dietary supplementation of garlic clove-based green-synthesized selenium nanoparticles (GBGS-SeNPs, 48-87 nm) on carcass minerals and trace elements, and growth, biochemical, enzymological, and gene expression analyses in the freshwater prawn, Macrobrachium rosenbergii post larvae (PL). The 96 h LC50 of this GBGS-SeNPs to M. rosenbergii PL was 52.23 mg L-1. Five different artificial diets without supplementation of GBGS-SeNPs (control, 0.0 mg kg-1) and with supplementations of GBGS-SeNPs starting from 100 times lower than the LC50 value (0.5, 1.0, 1.5, and 2.0 mg kg-1) were prepared and fed to M. rosenbergii PL for 90 days. A dose-dependent accumulation of Se was observed in the carcass of experimental prawns. GBGS-SeNPs, up to 1.5 mg kg-1 significantly influenced the absorption of other trace elements (Ca, Cu, and Fe) and mineral salts (K, Mg, Na, and Zn). GBGS-SeNPs-supplemented diets showed efficient food conversion ratio (FCR) of 1.32 g against 2.71 g, and therefore enhanced the survival rate (85.6% against 78.8% in control) and weight gain (WG) of 1.41 g against 0.46 g of control prawn. GBGS-SeNPs significantly elevated the activities of protease, amylase, and lipase, and the contents of total protein, essential amino acids (EAA), total carbohydrate, total lipid, monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), and ash. These indicate the growth promoting potential of GBGS-SeNPs in prawn. The insignificantly altered activities of glutamic oxaloacetate transaminase (GOT), glutamic pyruvate transaminase (GPT), superoxide dismutase (SOD), and catalase, and the content of malondialdehyde (MDA) up to 1.5 mg kg-1 suggest its acceptability in prawn. Moreover, a respective down- and upregulated myostatin (MSTN) and crustacean hyperglycemic hormone (CHH) genes confirmed the influence of GBGS-SeNPs on the growth of prawn. In contrast, 2.0 mg kg-1 GBGS-SeNPs supplementation starts to produce negative effects on prawn (FCR, 1.76 g; survival rate, 82.2%; WG, 0.84 g against respective values of 1.32 g, 85.6%; and 1.41 g observed in 1.5 mg kg-1 of GBGS-SeNPs-supplemented diet fed prawn). This study recommends a maximum of 1.5 mg kg-1 GBGS-SeNPs as dietary supplement to attain sustainable growth of M. rosenbergii. This was confirmed through polynomial and linear regression analyses.
Collapse
Affiliation(s)
- Thangavelu Satgurunathan
- Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
- Present address of the first author: Department of Biotechnology, RVS College of Arts and Science (Autonomous), Sulur, Coimbatore, 641402, Tamil Nadu, India
| | | | - Ramasamy Kalpana
- Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Thanasekaran Jayakumar
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, 605014, India
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Manubolu Manjunath
- Department of Environmental Health Sciences and Organismal Biology, Ohio State University, Columbus, OH, 43212, USA
| |
Collapse
|
17
|
Asl SS, Tafvizi F, Noorbazargan H. Biogenic synthesis of gold nanoparticles using Satureja rechingeri Jamzad: a potential anticancer agent against cisplatin-resistant A2780CP ovarian cancer cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20168-20184. [PMID: 36251187 DOI: 10.1007/s11356-022-23507-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Drug resistance of cancer cells is a major issue in cancer treatment. Plant-mediated nanoparticle synthesis has been applied in recent years to overcome this problem. In this study, the biogenic synthesis of AuNPs was explored using Satureja rechingeri Jamzad aqueous leaf extract, and their anticancer effects were evaluated in cisplatin-resistant A2780CP ovarian cancer cells. The chemical composition of S. rechingeri Jamzad was analyzed using gas chromatography-mass spectrometry. The characteristics of green-synthesized AuNPs were confirmed using XRD, FTIR, UV-visible spectroscopy, TEM, SEM, EDX, DLS, and zeta potential. The cytotoxic effects of AuNPs and S. rechingeri Jamzad aqueous extract on cisplatin-resistant A2780CP ovarian cancer cells were evaluated by MTT assay and flow cytometry. Real-time PCR analyzed gene expression. The chemical composition revealed that carvacrol (89%) was the main component of the S. rechingeri Jamzad extract. The average size of the spherical biosynthesized AuNPs was 15.1 ± 3.7 nm. The AuNPs and plant extract inhibited the growth of cisplatin-resistant ovarian cancer cells in a time- and dose-dependent manner. The apoptotic cell death was confirmed by flow cytometry and DAPI staining. The proapoptotic genes were upregulated, while anti-apoptotic and metastatic genes were downregulated. According to the cell cycle analysis, cancer cells were arrested in the G0/G1 phase. Considering the anticancer activity of the synthesized AuNPs using S. rechingeri Jamzad and the low side effects of AuNPs on normal cells, these AuNPs showed strong potential for use as biological agents in drug-resistant cancer cells treatment.
Collapse
Affiliation(s)
- Sahar Sadeghi Asl
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | - Hassan Noorbazargan
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Wischhusen P, Betancor MB, Sprague M, Ortega A, de la Gándara F, Tocher DR, Mourente G. Molecular Antioxidant Functions are Enhanced in Atlantic Bluefin Tuna ( Thunnus Thynnus, L.) Larvae Fed Selenium-Enriched Rotifers Brachionus Rotundiformis. Antioxidants (Basel) 2022; 12:antiox12010026. [PMID: 36670887 PMCID: PMC9854485 DOI: 10.3390/antiox12010026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Selenium (Se) is an essential trace element for fish with more than 40 selenoproteins identified, many exhibiting antioxidant functions. This study investigated the effect of dietary Se supplementation on physiological parameters, selenoprotein and antioxidant enzyme gene expression in Atlantic bluefin tuna (ABT, Thunnus thynnus) larvae. First-feeding ABT larvae were divided into triplicate groups and fed rotifers Brachionus rotundiformis enriched with five different levels of Se (0, 3, 10, 30, and 100 µg Se·L-1) until 14 days after hatching. Both rotifers and ABT larvae effectively accumulated Se achieving maximum levels in the Se100 treatment (30.05 μg Se·g-1 and 194 ± 38 μg Se·g-1 dry mass, respectively). Larvae showed highest total length when fed Se3 rotifers, whereas flexion index was highest in larvae fed Se10. Selenium supplementation increased the gene expression of selenoproteins gpx1, msrb1, trxr2, selenom, selenop, and selenoe compared to the non-supplemented control (Se0), but only marginal differences were detected between supplementation levels. In contrast, expression of the antioxidant enzymes cat and sod1 were lowest in larvae fed Se100. To conclude, non-Se-enriched rotifers may be suboptimal for first feeding ABT larvae, which showed improved selenoprotein and antioxidant gene expression when fed a diet containing 4.42 μg Se·g-1 dry mass.
Collapse
Affiliation(s)
- Pauline Wischhusen
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Mónica B. Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
- Correspondence: ; Tel.: +44-1786-467993
| | - Matthew Sprague
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Aurelio Ortega
- Planta Experimental de Cultivos Marinos, Instituto Español de Oceanografía (IEO), 30860 Puerto de Mazarrón (Murcia), Spain
| | - Fernando de la Gándara
- Planta Experimental de Cultivos Marinos, Instituto Español de Oceanografía (IEO), 30860 Puerto de Mazarrón (Murcia), Spain
| | - Douglas R. Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Gabriel Mourente
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
19
|
Saad AM, Sitohy MZ, Sultan-Alolama MI, El-Tarabily KA, El-Saadony MT. Green nanotechnology for controlling bacterial load and heavy metal accumulation in Nile tilapia fish using biological selenium nanoparticles biosynthesized by Bacillus subtilis AS12. Front Microbiol 2022; 13:1015613. [PMID: 36620021 PMCID: PMC9816870 DOI: 10.3389/fmicb.2022.1015613] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/31/2022] [Indexed: 12/24/2022] Open
Abstract
Heavy metal accumulation and pathogenic bacteria cause adverse effects on aquaculture. The active surface of selenium (Se) nanoparticles can mitigate these effects. The present study used Se-resistant Bacillus subtilis AS12 to fabricate biological Se nanoparticles (Bio-SeNPs). The double-edged Bio-SeNPs were tested for their ability to reduce the harmful effects of heavy metals and bacterial load in Nile tilapia (Oreochromis niloticus) and their respective influences on fish growth, behavior, and health. The Bio-SeNPs have a spherical shape with an average size of 77 nm and high flavonoids and phenolic content (0.7 and 1.9 g g-1 quercetin and gallic acid equivalents, respectively), resulting in considerable antioxidant and antibacterial activity. The Bio-SeNPs (3-5 μg ml-1) in the current study resolved two serious issues facing the aquaculture industry, firstly, the population of pathogenic bacteria, especially Aeromonas hydrophilia, which was reduced by 28-45% in fish organs. Secondly, heavy metals (Cd and Hg) at two levels (1 and 2 μg ml-1) were reduced by 50-87% and 57-73% in response to Bio-SeNPs (3-5 μg ml-1). Thus, liver function parameters were reduced, and inner immunity was enhanced. The application of Bio-SeNPs (3-5 μg ml-1) improved fish gut health, growth, and behavior, resulting in fish higher weight gain by 36-52% and a 40% specific growth rate, compared to controls. Furthermore, feeding and arousal times increased by 20-22% and 28-53%, respectively, while aggression time decreased by 78% compared to the control by the same treatment. In conclusion, Bio-SeNPs can mitigate the accumulation of heavy metals and reduce the bacterial load in a concentration-dependent manner, either in the fish media or fish organs.
Collapse
Affiliation(s)
- Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mahmoud Z. Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamad I. Sultan-Alolama
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates,Department of Health, Research and Innovation Center, Zayed Complex for Herbal Research and Traditional Medicine, Abu Dhabi, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates,Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates,Harry Butler Institute, Murdoch University, Murdoch, WA, Australia,*Correspondence: Khaled A. El-Tarabily,
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
20
|
Ghaniem S, Nassef E, Zaineldin AI, Bakr A, Hegazi S. A Comparison of the Beneficial Effects of Inorganic, Organic, and Elemental Nano-selenium on Nile Tilapia: Growth, Immunity, Oxidative Status, Gut Morphology, and Immune Gene Expression. Biol Trace Elem Res 2022; 200:5226-5241. [PMID: 35028868 DOI: 10.1007/s12011-021-03075-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/19/2021] [Indexed: 12/29/2022]
Abstract
This study investigates the effects of different sources of selenium (inorganic (SSE), organic (OSE), and elemental nano-selenium (NSE)) on the performance of Nile tilapia (Oreochromis niloticus). In total, 204 Nile tilapia fingerlings were randomly divided into 4 equal groups fed 1 of 4 diets: a control (adding no selenium) and 3 diets as selenium sources (1 mg/kg diet), After a 65-day feeding trial, the growth performance parameters of Nile tilapia were significantly enhanced by dietary selenium supplementation (P < 0.05), with the highest values recorded in the OSE- and NSE-supplemented groups. The selenium-supplemented groups had the highest packed-cell volume, hemoglobin, and red blood cell levels, with the highest values seen in the NSE-supplemented group (P < 0.05). Innate immune-related enzymes and immunoglobulin levels were significantly enhanced with selenium supplementation (P < 0.05); the NSE group demonstrated the highest significant levels of these enzyme activities (P < 0.05). In all selenium-supplemented groups, malondialdehyde levels were significantly and equally reduced (P < 0.05) compared with levels in the control. Bactericidal activity was only enhanced in the NSE group (P < 0.05) compared with other treatments. The expression of TNF-α and IL-Iβ genes was significantly upregulated in selenium-supplemented groups, with the highest expression in the OSE and NSE groups (P < 0.05). These findings support the importance of incorporating selenium in the diet of Nile tilapia. Furthermore, elementary nano-selenium is more effective than inorganic or organic selenium supplementation at improving Nile tilapia growth performance and overall health.
Collapse
Affiliation(s)
- Sameh Ghaniem
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Eldsokey Nassef
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Amr I Zaineldin
- Agriculture Research Center, Animal Health Research Institute (AHRI-DOKI), Kafrelsheikh, Egypt.
| | - Abdulnasser Bakr
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Sayed Hegazi
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
21
|
Kumar C, Sharma RK. Effects of differently incubated cupric oxide nanoparticles on the granulosa cells of caprine ovary in vitro. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84243-84255. [PMID: 35779216 DOI: 10.1007/s11356-022-21691-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
In the nanoscience metal and metal oxide, nanoparticles have a prominent place because of their vast applications. Recent finding shows that in addition to size, there are other critical factors governing the biological response of nanoparticles. These factors include surface chemistry and shape that influences solubility, rate of diffusion, drug delivery, melting temperature, and colour of the nanoparticles. It is thus the present study that was aimed to investigate the effect of temperature on the shape and size of nanoparticles and related cytotoxicity of these particles on ovarian granulosa cells. Cupric oxide nanoparticles (CuONPs) were synthesized using a simple, efficient, and reproducible precipitation method involving the reduction of Cu metal salt with sodium hydroxide and then incubation of the precipitates at 70 °C for 5 h. Subsequently, this prepared sample was divided into 3 subsamples and incubated at 3 different temperatures, i.e. 70 °C, 150 °C, and 350 °C for 5 h to study the effect of temperature on the particles. The products were characterized by XRD, FTIR, HRTEM, and FESEM. Characterization of the particles revealed that all particles were monoclinic crystalline in nature and had a size range from 9 to 60 nm. Particles were of different shapes: spherical, needle, and capsule. The toxicity of each particle was determined on granulosa cells by exposing cells for 24 h at 2 different doses. Toxicological results showed the size and shape-related toxicity of nanoparticles where spherical shapes were significantly more toxic than capsule-shaped particles.
Collapse
Affiliation(s)
- Chetan Kumar
- Department of Zoology, Kurukshetra University Kurukshetra, Kurukshetra, India
| | | |
Collapse
|
22
|
Rathore SS, Hanumappa SM, Yusufzai SI, Suyani NK, Abdullah-Al-Mamun M, Nasren S, Sidiq MJ, Hanumanthappa SK, Kalyani R. Dietary Administration of Engineered Nano-selenium and Vitamin C Ameliorates Immune Response, Nutritional Physiology, Oxidative Stress, and Resistance Against Aeromonas hydrophila in Nile Tilapia (Oreochromis niloticus). Biol Trace Elem Res 2022:10.1007/s12011-022-03473-3. [PMID: 36374364 DOI: 10.1007/s12011-022-03473-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
Functional trace elements and vitamins can boost immunity and anti-oxidative response in aquatic animals with effects on nutritional physiology. Nano-selenium (nano-Se) and vitamin C (VC) have been used as immunomodulators and antioxidants in fish feed. The present work was performed to determine the protective effects of diets supplemented with different combinations of nano-Se and VC on Nile tilapia (Oreochromis niloticus). Triplicate groups of 20 fish/tank (13.87 ± 0.10 g) were reared and fed with basal diet (control-T1) (without supplementation of nano-Se and VC) and three experimental diets as T2, T3, and T4 (100, 200, and 300 mg/kg VC respectively) with a pre-determined dose of nano-Se (1.0 mg/kg) for 90 days. Different immune indices, haemato-biochemical, and antioxidant activities were measured at the end of the first, second, and third months of feeding. The findings depicted that significantly (p < 0.05) higher growth was observed in T4. Red blood cells, white blood cells, and haemoglobin were found significantly (p < 0.05) higher in T4 for the third month. Serum biochemical-immunological indices (alkaline phosphatase, glucose, cholesterol, lysozyme, myeloperoxidase, total protein, albumin and globulin) followed the same trend. Furthermore, antioxidant assays such as catalase, superoxide dismutase, glutathione peroxidase, glutathione S-transferase, and malondialdehyde were significantly (p < 0.05) improved in T4 for the third month. Significantly (p < 0.05) least cumulative mortality against Aeromonas hydrophila was obtained in the fish-fed diets incorporated with nano-Se and VC. Therefore, dietary supplementation with nano-Se and VC is noteworthy for improving growth, serum biochemical status, immune response, antioxidant status, and disease resistance.
Collapse
Affiliation(s)
- Sanjay Singh Rathore
- Department of Aquaculture, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575002, Karnataka, India.
| | - Shivananda Murthy Hanumappa
- Department of Aquaculture, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575002, Karnataka, India
| | | | - Nitin Kanji Suyani
- Department of Fisheries Resources and Management, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575002, Karnataka, India
| | - Muhammad Abdullah-Al-Mamun
- Department of Aquaculture, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575002, Karnataka, India
- Department of Fish Health Management, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Shamima Nasren
- Department of Aquaculture, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575002, Karnataka, India
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Mohammad Junaid Sidiq
- Department of Aquaculture, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575002, Karnataka, India
| | - Srinivasa Kamsagara Hanumanthappa
- Department of Aquaculture, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575002, Karnataka, India
| | - Rakesh Kalyani
- Department of Aquaculture, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Mangalore, 575002, Karnataka, India
| |
Collapse
|
23
|
Akintelu SA, Olabemiwo OM, Ibrahim AO, Oyebamiji JO, Oyebamiji AK, Olugbeko SC. Biosynthesized nanoparticles as a rescue aid for agricultural sustainability and development. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-022-00382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Hashim M, Mujahid H, Hassan S, Bukhari S, Anjum I, Hano C, Abbasi BH, Anjum S. Implication of Nanoparticles to Combat Chronic Liver and Kidney Diseases: Progress and Perspectives. Biomolecules 2022; 12:1337. [PMID: 36291548 PMCID: PMC9599274 DOI: 10.3390/biom12101337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/11/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
Liver and kidney diseases are the most frequently encountered problems around the globe. Damage to the liver and kidney may occur as a result of exposure to various drugs, chemicals, toxins, and pathogens, leading to severe disease conditions such as cirrhosis, fibrosis, hepatitis, acute kidney injury, and liver and renal failure. In this regard, the use of nanoparticles (NPs) such as silver nanoparticles (AgNPs), gold nanoparticles (AuNPs), and zinc oxide nanoparticles (ZnONPs) has emerged as a rapidly developing field of study in terms of safe delivery of various medications to target organs with minimal side effects. Due to their physical characteristics, NPs have inherent pharmacological effects, and an accidental buildup can have a significant impact on the structure and function of the liver and kidney. By suppressing the expression of the proinflammatory cytokines iNOS and COX-2, NPs are known to possess anti-inflammatory effects. Additionally, NPs have demonstrated their ability to operate as an antioxidant, squelching the generation of ROS caused by substances that cause oxidative stress. Finally, because of their pro-oxidant properties, they are also known to increase the level of ROS, which causes malignant liver and kidney cells to undergo apoptosis. As a result, NPs can be regarded as a double-edged sword whose inherent therapeutic benefits can be refined as we work to comprehend them in terms of their toxicity.
Collapse
Affiliation(s)
- Mariam Hashim
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| | - Huma Mujahid
- Department of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Samina Hassan
- Department of Botany, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| | - Shanila Bukhari
- Department of Botany, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| | - Iram Anjum
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| | - Christophe Hano
- Department of Biological Chemistry, University of Orleans, Eure & Loir Campus, 28000 Chartres, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 15320, Pakistan
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan
| |
Collapse
|
25
|
Naiel MAE, Negm SS, Ghazanfar S, Shukry M, Abdelnour SA. The risk assessment of high-fat diet in farmed fish and its mitigation approaches: A review. J Anim Physiol Anim Nutr (Berl) 2022; 107:948-969. [PMID: 35934925 DOI: 10.1111/jpn.13759] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
In the era of intensification of fish farms, the high-fat diet (HFD) has been applied to promote growth and productivity, provide additional energy and substitute partial protein in fish feeds. Certainly, HFD within specific concentrations was found to be beneficial in boosting fish performance throughout a short-term feeding. However, excessive dietary fat levels displayed vast undesirable impacts on growth, feed efficiency, liver function, antioxidant capacity and immune function and finally reduced the economic revenue of cultured fish. Moreover, studies have shown that fish diets containing a high level of fats resulted in increasing lipid accumulation, stimulated endoplasmic reticulum stress and suppressed autophagy in fish liver. Investigations showed that HFD could impair the intestinal barrier of fish via triggering inflammation, metabolic disorders, oxidative stress and microbiota imbalance. Several approaches have been widely used for reducing the undesirable influences of HFD in fish. Dietary manipulation could mitigate the adverse impacts triggered by HFD, and boost growth and productivity via reducing blood lipids profile, attenuating oxidative stress and hepatic lipid deposition and improving mitochondrial activity, immune function and antioxidant activity in fish. As well, dietary feed additives have been shown to decrease hepatic lipogenesis and modulate the inflammatory response in fish. Based on the literature, previous studies indicated that phytochemicals could reduce apoptosis and enhance the immunity of fish fed with HFD. Thus, the present review will explore the potential hazards of HFD on fish species. It will also provide light on the possibility of employing some safe feed additives to mitigate HFD risks in farmed fish.
Collapse
Affiliation(s)
- Mohammed A E Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Samar S Negm
- Fish Biology and Ecology Department, Central Lab for Aquaculture Research (CLAR), Abassa, Agriculture Research Center, Giza, Egypt
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced and Biotechnology (NIGAB), National Agricultural Research Centre, Islamabad, Pakistan
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
26
|
Kassab RB, Elbaz M, Oyouni AAA, Mufti AH, Theyab A, Al-Brakati A, Mohamed HA, Hebishy AMS, Elmallah MIY, Abdelfattah MS, Abdel Moneim AE. Anticolitic activity of prodigiosin loaded with selenium nanoparticles on acetic acid-induced colitis in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55790-55802. [PMID: 35320477 DOI: 10.1007/s11356-022-19747-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Ulcerative colitis (UC) is a chronic autoimmune inflammatory disease associated with extensive mucosal damage. Prodigiosins (PGs) are natural bacterial pigments with well-known antioxidant and immunosuppressive properties. In the current study, we examined the possible protective effect of PGs loaded with selenium nanoparticles (PGs-SeNPs) against acetic acid (AcOH)-induced UC in rats. Thirty-five rats were separated into five equal groups with seven animals/group: control, UC, PGs (300 mg/kg), sodium selenite (Na2SeO3, 2 mg/kg), PGs-SeNPs (0.5 mg/kg), and 5-aminosalicylates (5-ASA, 200 mg/kg). Interestingly, PGs-SeNPs administration lessened colon inflammation and mucosal damage as indicated by inhibiting inflammatory markers upon AcOH injection. Furthermore, PGs-SeNPs improved the colonic antioxidant capacity and prevented oxidative insults as evidenced by the upregulation of Nrf2- and its downstream antioxidants along with the decreased pro-oxidants [reactive oxygen species (ROS), carbonyl protein, malondialdehyde (MDA), inducible nitric oxide synthase (iNOS), and nitric oxide (NO] in the colon tissue. Furthermore, PGs-SeNPs protected intestinal cell loss through blockade apoptotic cascade by decreasing pro-apoptotic proteins [Bcl-2-associated X protein (Bax) and caspase-3] and increasing anti-apoptotic protein, B cell lymphoma 2 (Bcl2). Collectively, PGs-SeNPs could be used as an alternative anti-colitic option due to their strong anti-inflammatory, antioxidant, and anti-apoptotic activities.
Collapse
Affiliation(s)
- Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Mohamad Elbaz
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Atif A A Oyouni
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmad H Mufti
- Medical Genetics Department, Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | - Ashraf Al-Brakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Hala A Mohamed
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ali M S Hebishy
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | | | | | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
27
|
Dosoky WM, Al-Banna AA, Zahran SM, Farag SA, Abdelsalam NR, Khafaga AF. Zinc oxide nanoparticles induce dose-dependent toxicosis in broiler chickens reared in summer season. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:54088-54107. [PMID: 35292898 PMCID: PMC9356964 DOI: 10.1007/s11356-022-19156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/06/2022] [Indexed: 05/05/2023]
Abstract
This research evaluates the effect of dietary zinc oxide nanoparticles' (ZnO NPs) supplementation on growth performance, immunity, oxidative antioxidative properties, and histopathological picture of broiler chicken reared in the summer season. A total of 224 1-day-old male Cobb chicks were randomly allocated to seven groups of dietary treatments (n = 32). Seven isocaloric and isonitrogenous diets were formulated. ZnO NPs were added to the basal diet at seven different levels, 0, 5, 10, 20, 40, 60, and 80 ppm/kg diet, respectively, for 35 days. Results indicated that live body weight (g) did not differ significantly (P > 0.05) between treatment groups, whereas compared to control, the 5 ppm ZnO NPs/kg diet recorded the highest live body weight at 21 and 35 days. No significant effects for the feed consumption (g/bird/period) and feed conversion ratio (g feed/g gain) among treated and control birds were observed. Hematological and immunological variables showed significant (P ≤ 0.05) dose-dependent modulations by ZnO NP supplementation. Significant (P ≤ 0.05) differences were observed in the phagocytic activity, phagocytic index, and IgM and IgG between the treatment groups, with the 5 and 10 ppm ZnO NPs/kg diet recording the best values, followed by the 20 ppm ZnO NPs/kg diet. Different supplementations had nonsignificant effects on the digestibility of nutrients (P ≤ 0.05). Histopathological pictures of the kidney, liver, and lymphoid organs, ultrastructural examination of muscle tissues, and expression of inflammatory cytokines showed dose-dependent morphological and structural changes. In conclusion, the ZnO NP supplementation in broiler diet to eliminate the heat stress hazards in summer season is recommended in dose level of not more than 10 ppm/kg diet.
Collapse
Affiliation(s)
- Waleed M. Dosoky
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531 Egypt
| | - Aya A. Al-Banna
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531 Egypt
| | - Soliman M. Zahran
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531 Egypt
| | - Soha A. Farag
- Department of Animal Production, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531 Egypt
| | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758 Egypt
| |
Collapse
|
28
|
Pan S, Yan X, Dong X, Li T, Suo X, Tan B, Zhang S, Li Z, Yang Y, Zhang H. The positive effects of dietary inositol on juvenile hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu) fed high-lipid diets: Growthperformance, antioxidant capacity and immunity. FISH & SHELLFISH IMMUNOLOGY 2022; 126:84-95. [PMID: 35577318 DOI: 10.1016/j.fsi.2022.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
The objective of the present research was to assess the influence of inositol supplementation on growth performance, histological morphology of liver, immunity and expression of immune-related genes in juvenile hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu). Hybrid grouper (initial weight 6.76 ± 0.34 g) were fed isonitrogenous and isolipidic diets (16%) with various inositol levels of 0.17 g/kg (J1, the control group), 0.62 g/kg (J2), 1.03 g/kg (J3), 1.78 g/kg (J4), 3.43 g/kg (J5), 6.59 g/kg (J6), respectively. The growth experiment lasted for 8 weeks. The results indicated that dietary inositol had a significant promoting effect on final mean body weight of the J5 and J6 groups and specific growth rate (SGR) of the J3, J4, J5 and J6 groups (P < 0.05). In the serum, superoxide dismutase (SOD) of the J4 group became significantly active compared with that of the control group (P < 0.05), while aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (AKP) activities in the inositol-treated groups showed distinctly decreased compared with those of the control group (P < 0.05). In the liver, dietary inositol could significantly increase the activities of SOD, catalase (CAT), lysozyme (LYZ) and the contents of total antioxidative capacity (T-AOC) and immunoglobulin M (IgM) (P < 0.05), and distinctly reduce the content of malondialdehyde (MDA) as well as reactive oxygen species (ROS) (P < 0.05). Compared with the control group, the damaged histological morphology of the liver was relieved and even returned to normal after an inositol increase (0.4-3.2 g/kg). In the liver, the remarkable up-regulation of SOD, CAT, glutathione peroxidase (GPX), heat shock protein70 (HSP70) and heat shock protein90 (HSP90) expression levels were stimulated by supply of inositol, while interleukin 6 (IL6), interleukin 8 (IL8) and transforming growth factor β (TGF-β) expression levels were down-regulated by supply of inositol. In head kidney, the mRNA of toll-like receptor 22 (TLR22), myeloid differentiation factor 88 (MyD88) and interleukin 1β (IL1β) expression levels were significantly down-regulated (P < 0.05), which could further lead to remarkable down-regulation of IL6 and tumor necrosis factor α (TNF-α) expression (P < 0.05). These results indicated that high-lipid diets with supply of inositol promoted growth, increased the antioxidant capacity, and suppressed the inflammation of the liver and head kidney by inhibiting the expression of pro-inflammation factors (IL6, IL8, TGF-β and TNF-α). In conclusion, these results indicated that dietary inositol promoted growth, improved antioxidant capacity and immunity of hybrid grouper fed high-lipid diets. Based on SGR, broken-line regression analysis showed that 1.66 g/kg inositol supply was recommended in high-lipid diets of juvenile grouper.
Collapse
Affiliation(s)
- Simiao Pan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China
| | - Xiaobo Yan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China
| | - Xiaohui Dong
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China.
| | - Tao Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China
| | - Xiangxiang Suo
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China
| | - Shuang Zhang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China
| | - Zhihao Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China
| | - Yuanzhi Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Haitao Zhang
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China
| |
Collapse
|
29
|
Hassan MA, Hozien ST, Abdel Wahab MM, Hassan AM. Risk assessment of glyphosate and malathion pollution and their potential impact on Oreochromis niloticus: role of organic selenium supplementation. Sci Rep 2022; 12:9992. [PMID: 35705587 PMCID: PMC9200714 DOI: 10.1038/s41598-022-13216-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
A field survey was conducted on five fish farms to trace glyphosate and malathion pollution with some physicochemical parameters. A precise half-life time, LC50-96h, of these agrochemicals on Oreochromis niloticus, as well as chronic exposure with organic selenium (OS) supplementation, were experimentally investigated. Oreochromis niloticus was subjected to the following: (negative control); (2 mg L-1 glyphosate); (0.5 mg L-1 malathion); (glyphosate 1.6 mg L-1 and 0.3 mg L-1 malathion); (glyphosate 2 mg L-1 and OS 0.8 g kg-1 diet); (malathion 0.5 mg L-1 and OS 0.8 g kg-1 diet) and (glyphosate 1.6 mg L-1; malathion 0.3 mg L-1 and OS 0.8 g kg-1 diet). Furthermore, data from the analyzed pond revealed a medium risk quotient (RQ) for both agrochemicals. The detected agrochemicals were related to their application, and vegetation type surrounding the farms, also their biodegradation was correlated to water pH, temperature, and salinity. Glyphosate and malathion had half-lives of 2.8 and 2.3 days and LC50-96h of 2.331 and 0.738 mg L-1, respectively. The severest nervous symptoms; increased oxidative stress markers, as well as high bacterial count in the livers and kidneys of fish challenged with Aeromonas hydrophila, were observed in the combined exposure, followed by a single exposure to malathion and then glyphosate. Organic selenium mitigated these impacts.
Collapse
Affiliation(s)
- Marwa A Hassan
- Department of Animal Hygiene, Zoonoses and Behavior, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Samaa T Hozien
- Animal Health Research Institute, Ismailia, 41522, Egypt
| | | | - Ahmed M Hassan
- Department of Animal Hygiene, Zoonoses and Behavior, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
30
|
Selenium Nanoparticles (SeNPs) Immunomodulation Is More Than Redox Improvement: Serum Proteomics and Transcriptomic Analyses. Antioxidants (Basel) 2022; 11:antiox11050964. [PMID: 35624828 PMCID: PMC9137598 DOI: 10.3390/antiox11050964] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
Selenium nanoparticles (SeNPs) are a novel elemental form selenium and often reported to possess beneficial bioactivities such as anticancer, promoting bone growth and immunomodulation. Our previous study demonstrated that chitosan-stabilized SeNPs have strong activity in immunomodulation. However, the mechanism underlying the immunomodulation of SeNPs is still unknown. The aim of this study is to identify the molecular mechanisms involved in SeNP-induced immunomodulation. Using zebrafish, as a common immunological animal model with a highly conserved molecular mechanism with other vertebrates, we conducted serum proteomic and tissue transcriptome analyses on individuals fed with SeNP in healthy or disease conditions. We also compared differences between SeNPs and an exogenous antioxidant Trolox in immune activity and redox regulation. Our results suggest that the immunomodulation activity was highly related to antioxidant activity and lipid metabolism. Interestingly, the biological functions enhanced by SeNP were almost identical in the healthy and disease conditions. However, while the SeNP was suppressing ROS in healthy individuals, it promoted ROS formation during disease condition. This might be related to the defense mechanism against pathogens. SOD and NFkβ appeared to be the key molecular switch changing effect of SeNPs when individuals undergo infection, indicating the close relationship between immune and redox regulation.
Collapse
|
31
|
Hadei M, Rabbani S, Nabizadeh R, Mahvi AH, Mesdaghinia A, Naddafi K. Comparison of the Toxic Effects of Pristine and Photocatalytically Used TiO 2 Nanoparticles in Mice. Biol Trace Elem Res 2022; 200:2298-2311. [PMID: 34309800 DOI: 10.1007/s12011-021-02846-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/17/2021] [Indexed: 01/13/2023]
Abstract
TiO2 nanoparticles used in the photocatalytic degradation of pollutants in water treatment processes undergo physiochemical changes; therefore, their toxicological effects may be potentially different from those of the pristine nanoparticles. This study compared the toxic effects of exposure to pristine and photocatalytically used TiO2 nanoparticles in mice. To obtain used TiO2, the nanoparticles were used for photocatalytic degradation of a model pollutant under UV irradiation several times. Two groups of mice were exposed to pristine (PT group) and photocatalytically used TiO2 (UT group) at three different concentrations (5-20 mg/m3) using whole-body exposure chambers (2 h/day, 5 days/weeks, 4 weeks). Exposure to both pristine and used TiO2 increased the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphate (ALP), lactate dehydrogenase (LDH), C-reactive protein (CRP), and creatine kinase (CK-MB) significantly. Both exposed groups showed higher levels of WBC, lymphocytes, platelets, hematocrits, hemoglobin, and mean corpuscular volume (MCV) and lower levels of RBC and mean corpuscular hemoglobin concentration (MCHC) in a concentration-dependent manner. In all analyses, there were small non-significant differences between the PT and UT groups. More pathological changes were observed in the lung, kidney, and brain of the UT group, while the PT group showed more pathological effects in the liver and heart. The histological observations indicated that damage was mostly in the form of vascular endothelial injury. These two types of TiO2 may activate different pathways to promote adverse effects. Further studies are required to evaluate and distinguish the mechanisms through which pristine and used TiO2 induce toxicity.
Collapse
Affiliation(s)
- Mostafa Hadei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Solid Waste Research (CSWR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mesdaghinia
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Naddafi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Hassan MA, Hozien ST, Abdel Wahab MM, Hassan AM. Ameliorative effect of selenium yeast supplementation on the physio-pathological impacts of chronic exposure to glyphosate and or malathion in Oreochromis niloticus. BMC Vet Res 2022; 18:159. [PMID: 35501865 PMCID: PMC9063350 DOI: 10.1186/s12917-022-03261-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/18/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Pesticide exposure is thought to be a major contributor to living organism health deterioration, as evidenced by its impact on both cultured fish species and human health. Commercial fish diets are typically deficient in selenium (Se); hence, supplementation may be necessary to meet requirements during stress. Therefore, this study was conducted to investigate the protective role of selenium yeast (SY) supplementation for 60 days against the deleterious effects of glyphosate and or malathion chronic toxicity at sublethal concentrations in Oreochromis niloticus . METHODS Two hundred and ten fish were divided into seven groups (n = 30/group) as follows: G1 (negative control); G2 (2 mg L- 1 glyphosate); G3 (0.5 mg L- 1 malathion); G4 (glyphosate 1.6 mg L- 1 and malathion 0.3 mg L- 1); G5 (glyphosate 2 mg L- 1 and SY 3.3 mg kg- 1); G6 (malathion 0.5 mg L- 1 and SY 3.3 mg kg- 1); and G7 (glyphosate 1.6 mg L- 1; malathion 0.3 mg L- 1 and SY 3.3 mg kg- 1). RESULTS Results revealed significant alteration in growth performance parameters including feed intake (FI), body weight (BW), body weight gain (BWG), specific growth rate (SGR), feed conversion ratio (FCR), and protein efficiency ratio (PER). G4 has the highest documented cumulative mortalities (40%), followed by G3 (30%). Additionally, the greatest impact was documented in G4, followed by G3 and then G2 as severe anemia with significant thrombocytopenia; leukocytosis; hypoproteinemia; increased Alanine aminotransferase (ALT) and Aspartate aminotransferase (AST), urea, and creatinine, as well as malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GPx). Considering the previously mentioned parameters, selenium yeast (Saccharomyces cerevisiae) (3.3 mg kg- 1 available selenium) mitigated the negative impact of both the agrochemicals, whether exposed singly or in combination, in addition to their antioxidative action. CONCLUSIONS In conclusion, our study found that organophosphorus agrochemicals, single or combined, had negative impacts on Oreochromis niloticus regarding growth performance, biochemical and hematological changes in the serum, as well as induced oxidative damage in liver and kidney tissues. Supplementation of SY at the rate of 3.3 mg kg- 1 diet (2.36 mg kg- 1 selenomethionine and 0.94 mg organic selenium) ameliorated the fish performance and health status adversely affected by organophosphorus agrochemical intoxication.
Collapse
Affiliation(s)
- Marwa A Hassan
- Faculty of Veterinary Medicine, Department of Animal Hygiene, Zoonoses and Behaviour, Suez Canal University, Ismailia, 41522, Egypt.
| | - Samaa T Hozien
- Animal Health Research Institute, Ismailia, 41522, Egypt
| | | | - Ahmed M Hassan
- Faculty of Veterinary Medicine, Department of Animal Hygiene, Zoonoses and Behaviour, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
33
|
Metwally AA, Abdel-Hady ANAA, Haridy MAM, Ebnalwaled K, Saied AA, Soliman AS. Wound healing properties of green (using Lawsonia inermis leaf extract) and chemically synthesized ZnO nanoparticles in albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23975-23987. [PMID: 34820756 DOI: 10.1007/s11356-021-17670-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/17/2021] [Indexed: 05/27/2023]
Abstract
Wound healing is one of the utmost medical issues in human and veterinary medicine, which explains the urgent need for developing new agents that possess wound healing activities. The present study aimed to assess the effectiveness of green and chemical zinc oxide nanoparticles (ZnO-NPs) for wound healing. ZnO-NPs (green using Lawsonia inermis leaf extract and chemical) were synthesized and characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and high-resolution transmission electron microscopy (HRTEM). The gels containing the nanomaterials were prepared and inspected. Forty-five albino rats were divided into three groups, the control group was treated with normal saline 0.9%, and the other two groups were treated with gels containing green or chemical ZnO-NPs, respectively. On the 3rd, 7th, 14th, and 21st days post-treatment (PT), the wounds were clinicopathologically examined. Both nanomaterials have good crystallinity and high purity, but green ZnO-NPs have a longer nanowire length and diameter than chemical ZnO-NPs. The formed gels were highly viscous with a pH of 6.5 to 7. The treated groups with ZnO-NP gels showed clinical improvement, as decreased wound surface area (WSA) percent (WSA%), increased wound contraction percent (WC%), and reduced healing time (p < 0.05) when compared with the control group. The histological scoring showed that the epithelialization score was significantly higher at the 21st day post-treatment in the treated groups than in the control group (p < 0.05), but the vasculature, necrosis, connective tissue formation, and collagen synthesis scores were mostly similar. The green and chemical ZnO-NP gels showed promising wound healing properties; however, the L. inermis-mediated ZnO-NPs were more effective.
Collapse
Affiliation(s)
- Asmaa A Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81511, Egypt
| | - Abdel-Nasser A A Abdel-Hady
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Mohie A M Haridy
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Khaled Ebnalwaled
- Electronics & Nano Devices Lab, Physics Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
- Egypt Nanotechnology Center (EGNC), Cairo University Sheikh Zayed Campus, Giza, 12588, Egypt
| | - AbdulRahman A Saied
- Department of Food Establishments Licensing (Aswan Branch), National Food Safety Authority (NFSA), Aswan, 81511, Egypt.
- Touristic Activities and Interior Offices Sector (Aswan Office), Ministry of Tourism and Antiquities, Aswan, 81511, Egypt.
| | - Ahmed S Soliman
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Cairo University, Cairo, 11865, Egypt
| |
Collapse
|
34
|
Ibrahim MS, El-Gendi GMI, Ahmed AI, El-Haroun ER, Hassaan MS. Nano Zinc Versus Bulk Zinc Form as Dietary Supplied: Effects on Growth, Intestinal Enzymes and Topography, and Hemato-biochemical and Oxidative Stress Biomarker in Nile Tilapia (Oreochromis niloticus Linnaeus, 1758). Biol Trace Elem Res 2022; 200:1347-1360. [PMID: 33931824 DOI: 10.1007/s12011-021-02724-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022]
Abstract
Five isonitrogenous diets were formulated to comprise two forms of zinc (Zn): convention zinc oxide named Bulk-ZnO or zinc oxide nanoparticles (Nano-ZnO) supplemented at two levels 30 and 60 mg kg-1 compared to the control diet. Nile tilapia, Oreochromis niloticus, fingerlings (5.02-5.05 g) were fed tested diets two times a day for 84 days. The results displayed that the best growth and digestive enzyme activity (P < 0.05) were noticed in fish fed 60 mg kg-1 Nano-ZnO. Moreover, significant (P < 0.05) improvement in intestinal topography was observed in 60 mg kg-1 Nano-ZnO group versus other treatments. Furthermore, fish fed 30 mg kg-1 Nano-ZnO recorded the best values of hematological indices (P < 0.05). The alanine and aspartate aminotransferase (ALT and AST) values were lower, while total serum protein, albumin, and globulin contents were clearly higher in fish fed diet that contained 30 mg kg-1 Nano-ZnO versus other groups. The significant highest values of oxidative enzyme activity escorted with lower malondialdehyde value recorded of fish fed diet supplemented with 60 mg kg-1 Nano-ZnO. The results indicated that inclusion of Nano-ZnO at 60 mg kg-1 was the recommended source to enhance growth, feed utilization, amylase and lipase enzymes activity, intestinal morphology, hemato-biochemical, and oxidative response biomarkers of Nile tilapia compared with Bulk-ZnO in commercial tilapia feeds.
Collapse
Affiliation(s)
- Mohamed S Ibrahim
- Department of Aquaculture, Central Laboratory of Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, Egypt
| | - Gaffar M I El-Gendi
- Department of Animal Production, Fish Research Laboratory, Faculty of Agriculture at Moshtohor, Benha University, Benha, 13736, Egypt
| | - Ahmed I Ahmed
- Department of Aquaculture, Central Laboratory of Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, Egypt
| | - Ehab R El-Haroun
- Animal Production Department, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Mohamed S Hassaan
- Department of Animal Production, Fish Research Laboratory, Faculty of Agriculture at Moshtohor, Benha University, Benha, 13736, Egypt.
| |
Collapse
|
35
|
Rastgar S, Alijani Ardeshir R, Segner H, Tyler CR, J G M Peijnenburg W, Wang Y, Salati AP, Movahedinia A. Immunotoxic effects of metal-based nanoparticles in fish and bivalves. Nanotoxicology 2022; 16:88-113. [PMID: 35201945 DOI: 10.1080/17435390.2022.2041756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is a global research interest in metal nanoparticles (MNPs) due to their diverse applications, rapidly increasing use, and increased presence in the aquatic environment. Currently, most MNPs in the environment are at levels unlikely to cause overt toxicity. Sub-lethal effects that MNPs may induce, notable immunotoxicity, could however have significant health implications. Thus, deciphering the immunological interactions of MNPs with aquatic organisms constitutes a much-needed area of research. In this article, we critically assess the evidence for immunotoxic effects of MNPs in bivalves and fish, as key wildlife sentinels with widely differing ecological niches that are used as models in ecotoxicology. The first part of this review details the properties, fate, and fundamental physicochemical behavior of MNPs in the aquatic ecosystem. We then consider the toxicokinetics of MNP uptake, accumulation, and deposition in fish and bivalves. The main body of the review then focuses on immune reactions in response to MNPs exposure in bivalves and fish illustrating their immunotoxic potential. Finally, we identify major knowledge gaps in our current understanding of the implications of MNPs exposure for immunological functions and the associated health consequences for bivalves and fish, as well as the general lessons learned on the immunotoxic properties of the emerging class of nanoparticulate contaminants in fish and bivalves.
Collapse
Affiliation(s)
- Sara Rastgar
- Department of Marine Biology, Faculty of Marine Sciences, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | | | - Helmut Segner
- Centre for Fish and Wildlife Health, Department of Pathobiology and Infectious Diseases, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.,Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter, UK
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands.,Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, PR China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, PR China
| | - Amir Parviz Salati
- Department of Fisheries, Faculty of Marine Natural resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Abdolali Movahedinia
- Department of Marine Biology, Faculty of Marine Sciences, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
36
|
Babaei AA, Rafiee M, Khodagholi F, Ahmadpour E, Amereh F. Nanoplastics-induced oxidative stress, antioxidant defense, and physiological response in exposed Wistar albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11332-11344. [PMID: 34535860 DOI: 10.1007/s11356-021-15920-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, plastic pollution and in particular nano(micro)plastics is considered as an issue of global concern in environmental samples. The present work was conducted to clarify the oxidative stress of polystyrene nanoplastics (PS-NPs) exposure and physiological response of male Wistar rats. Animals were treated orally with PS-NPs at four doses (1, 3, 6, and10 mg/kg-day) for 5 weeks. Results demonstrated the accumulation of PS-NPs through whole body scanning and also a dose-dependent increase in the production of reactive oxygen species (ROS). Alterations in antioxidant responses including serum levels of catalase (CAT) and total glutathione content were noticed, but not superoxide dismutase (SOD), pointing towards the perturbation of redox state induced by exposure conditions. Biochemical parameters viz. glucose, cortisol, lipase, lactate, lactate dehydrogenase (LDH), alkaline phosphatase, gamma-glutamyl transpeptidase (GGT), triglycerides, and urea showed a significant increase, while total protein, albumin, and globulin levels showed an appreciable decline. The pattern of associations noticed with AChE activity and biochemical responses in our study suggests the possibility that a neurobehavioral effect or dysfunctions in energy metabolism may be the potential modes of action, possibly through stress response as well as liver function. Perturbations of creatinine and uric acid levels are indeed plausible biological explanations for the association with kidney dysfunction. Although we provided a new scientific clue for exploring the biological consequences of NPs which might induce effects such as oxidative stress relating to the induction of antioxidant enzymes, the results warrant additional research with a larger sample size.
Collapse
Affiliation(s)
- Ali Akbar Babaei
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rafiee
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Air Quality Health and Climate Change Research Center, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Fariba Khodagholi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Ahmadpour
- Department of Environment and Occupational Health, Deputy of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Amereh
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Sun J, Liu Z, Quan J, Li L, Zhao G, Lu J. Protective effects of different concentrations of selenium nanoparticles on rainbow trout (Oncorhynchus mykiss) primary hepatocytes under heat stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113121. [PMID: 34968796 DOI: 10.1016/j.ecoenv.2021.113121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Heat stress leads to altered expression of associated heat shock proteins (HSPs), which are critical molecular chaperones related to cellular function in living organisms. Selenium nanoparticles (SeNPs), a nanocomposite form of Se, have a protective effect against heat stress-induced cellular damage. In this study, primary rainbow trout hepatocytes were isolated to identify the protective function of SeNPs in rainbow trout hepatocytes. Experiments were divided into five groups and SeNPs were added at concentrations of 0, 2.0, 3.0, 5.0 and 8.0 μg/mL and incubated at 18 ℃ for 4, 8, 12, 24 and 48 h respectively. Hepatocyte viability, GSH-Px and SOD activity were enhanced and MDA content was reduced following the addition of SeNPs. Expression of GSH-P1 and genes related to HSPs (including HSP70a, HSP60, HSP90β, HSP10 and HSP47) were significantly increased and the optimal concentration of SeNPs for adding to hepatocytes was identified as 5.0 µg/mL. Adding 5.0 µg/mL SeNPs following heat stress (24 ℃) increased hepatocyte viability, GSH-Px and SOD activity, while MDA levels first decreased and then increased. Expression of GSH-P1 and genes related to HSPs (including HSP70a, HSP60, HSP90β, HSP10 and HSP47) were significantly higher than controls. In summary, SeNPs and slight heat stress synergistically enhanced the expression of GSH-P1 and HSPs and protected hepatocytes from heat stress damage, suggesting that SeNPs is a potential hepatocyte protective therapeutic agent.
Collapse
Affiliation(s)
- Jun Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Jinqiang Quan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Lanlan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Guiyan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Junhao Lu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| |
Collapse
|
38
|
Yazhiniprabha M, Gopi N, Mahboob S, Al-Ghanim KA, Al-Misned F, Ahmed Z, Riaz MN, Sivakamavalli J, Govindarajan M, Vaseeharan B. The dietary supplementation of zinc oxide and selenium nanoparticles enhance the immune response in freshwater fish Oreochromis mossambicus against aquatic pathogen Aeromonas hydrophila. J Trace Elem Med Biol 2022; 69:126878. [PMID: 34688058 DOI: 10.1016/j.jtemb.2021.126878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/31/2021] [Accepted: 10/12/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Green nanoparticles are subjected as an immunostimulant against bacterial pathogens. METHODS Murraya koenigii berry extract-based synthesized zinc oxide nanoparticles (Mb-ZnO NPs) and selenium nanoparticles (Mb-Se NPs) were relatively analyzed for immunostimulation in serum and mucus fish Oreochromis mossambicus against Aeromonas hydrophila infections. Initial minimum inhibitory concentration (MIC) was determined for both Mb-ZnO NPs and Mb-Se NPs followed by specific growth rate (SGR), antioxidant level (Superoxide dismutase activity (SOD), Catalase activity (CA), and Glutathione peroxidase activity (GPx)), and immune parameters Myeloperoxidase activity (MPO), Respiratory burst activity (RBA), Lysozyme activity (LYZ), Alkaline phosphatase activity (ALP), Serum antiprotease activity and Natural complement activity (NAC). RESULTS The potential bacterial inhibition property of Mb-ZnO NPs and Mb-Se NPs exhibited the most negligible concentration of 25 and 15 μg mL-1, respectively, against A. hydrophila. In addition, Mb-ZnO NPs and Mb-Se NPs exhibited 70-80 % and 90-95 % diminished biofilm activity at 50 μg mL-1 that was viewed under an inverted research microscope and confocal laser scanning microscopy (CLSM). Protein leakage and nucleic acid leakage assay quantified oozed out protein and nucleic acid from A. hydrophila that confirms Mb-Se NPs exhibited vigorous antibacterial activity than Mb-ZnO NPs at tested concentrations. Oreochromis mossambicus fed with Mb-ZnO NPs and Mb-Se NPs supplemented diet at different concentrations (0.5 mg/kg, 1 mg/kg and 2 mg/kg) improved SGR along with a rise in the immune response of those fishes against A. hydrophila infection. Serum and mucus of fish fed with Mb-Se NPs supplemented diet exhibited a significant rise in antioxidant level SOD, CA and GPx at a dosage of 2 mg/kg. Likewise, lipid peroxidation assay detected significantly diminished oxidative stress in the serum and mucus of fish fed with Mb-Se NPs supplemented diet (2 mg/kg). Enhanced immune parameters in serum and mucus of fish fed with Mb-Se NPs supplemented diet determined by MPO, RBA, LYZ, ALP, Serum antiprotease activity and NAC. CONCLUSION Thus O. mossambicus fed with Mb-Se NPs supplemented diet was less prone to become infected by aquatic pathogen A. hydrophila established by challenge study. On the whole, Mb-Se NPs supplemented diet ensured the rise in antioxidant response that boosts the immune responses and reduces the chance of getting infected against A. hydrophila infections.
Collapse
Affiliation(s)
- Mariappan Yazhiniprabha
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630004, Tamil Nadu, India
| | - Narayanan Gopi
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630004, Tamil Nadu, India
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fahad Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Zubair Ahmed
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | | | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, 608 002 Tamil Nadu, India; Unit of Natural Products and Nanotechnology, Department of Zoology, Government College for Women (Autonomous), Kumbakonam, 612 001, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, 630004, Tamil Nadu, India.
| |
Collapse
|
39
|
Singh M, Verma Y, Rana SVS. Attributes of oxidative stress in the reproductive toxicity of nickel oxide nanoparticles in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:5703-5717. [PMID: 34424461 DOI: 10.1007/s11356-021-15657-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
The nanoparticles of nickel are now being widely used in industrial, commercial, and biomedical applications. In recent years, health safety issues posed by them have aroused concerns among health scientists. The aim of the present study was to investigate the role of oxidative stress in male reproductive toxicity induced by nickel oxide nanoparticles in rats. Male Wistar rats (140-170 g) were administered with nickel oxide nanoparticles (NiONPs) (particles size <30 nm) (5 mg/kg body weight) by gavage for 30 days. Its effects on different parameters, viz., sperm count, motility, and morphology, were investigated. DNA damage in sperms was monitored through comet assay. All these observations indicated a spermicidal effect of NiONPs. Results on lipid peroxidation (MDA, H2O2, and NO) and oxidative stress (GSH, GPx, and catalase) thus studied in testes exhibited adverse effects of NiONPs. Histopathological results on male reproductive organs, viz., testis, epididymis, vas deferens, seminal vesicles, and prostate also demonstrated moderate to severe toxicity. A comparison of these results with those obtained on nickel oxide microparticle (NiOMP)-treated rats showed that NiONPs are more toxic than NiOMPs. Furthermore, NiONPs could create an imbalance between oxidants and antioxidants in the testes. It is concluded that redox imbalance in testes constitutes a major mechanism of NiONP-induced reproductive toxicity.
Collapse
Affiliation(s)
- Meenu Singh
- Department of Toxicology, Ch. Charan Singh University, Meerut, 250 004, India
| | - Yeshvandra Verma
- Department of Toxicology, Ch. Charan Singh University, Meerut, 250 004, India
| | | |
Collapse
|
40
|
Abdel-Wahhab MA, El-Nekeety AA, Mohammed HE, El-Messery TM, Roby MH, Abdel-Aziem SH, Hassan NS. Synthesis of encapsulated fish oil using whey protein isolate to prevent the oxidative damage and cytotoxicity of titanium dioxide nanoparticles in rats. Heliyon 2021; 7:e08456. [PMID: 34901503 PMCID: PMC8640477 DOI: 10.1016/j.heliyon.2021.e08456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/30/2021] [Accepted: 11/18/2021] [Indexed: 12/27/2022] Open
Abstract
Fish oil exhibited several beneficial effects on human health; however, its applications face several challenges such as its effects on the organoleptic properties of food and its susceptibility to oxidation. Titanium dioxide NPs (TiO2-NPs) are utilized widely in pharmaceutical and food applications although there are some reports about their oxidative damage to living organisms. The current work was undertaken to identify fatty acids content in mullet fish oil, encapsulation, and characterization of the oil, and to assess the protective efficiency of the encapsulated mullet fish oil (EMFO) against the oxidative damage and genotoxicity of TiO2-NPs in rats. Sixty female Sprague-Dawley rats were distributed to 6 groups and treated for 21 days included the control group; TiO2-NPs-treated group (50 mg/kg b.w); the groups treated with EMFO (50 or 100 mg/kg b.w) and the groups received TiO2-NPs plus EMFO at the low or high dose. Samples of blood, liver, and kidney were taken for different assays and histological studies. The GC-FID analysis showed that a total of 14 different fatty acids were found in Mullet fish oil included 41.4% polyunsaturated fatty acids (PUFAs), 31.1% monounsaturated fatty acids (MUFAs), and 25.1% saturated fatty acids (SFAs). The structure of EMFO was spherical with an average diameter of 234.5 nm and a zeta potential of -6.24 mV and was stable up to 10 days at 25 °C with EE of 81.08%. The PV of EMFO was decreased at 5 days then increased at 15 days; however, TBARS was increased throughout the storage time over 15 days. The biological evaluation showed that TiO2-NPs disturb the hepato-nephro functions, lipid profile, inflammatory cytokines, oxidative stress markers, antioxidant enzymes activity, and their corresponding gene expression along with severe pathological alterations in both hepatic and renal tissue. Co-administration of EMFO induced a strong antioxidant role, and the high level could normalize the majority of the parameters tested and the histological picture of the hepatic and renal tissues. These results pointed out that the encapsulation technology enhances the protective role of EMFO against oxidative stress and genotoxicity of TiO2-NPs through the prevention of ω-3 PUFAs oxidation and controlling their release.
Collapse
Affiliation(s)
- Mosaad A. Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Centre, Dokki, Cairo, Egypt
- Corresponding author.
| | - Aziza A. El-Nekeety
- Food Toxicology & Contaminants Department, National Research Centre, Dokki, Cairo, Egypt
| | - Hagar E. Mohammed
- Zoology Department, Faculty of Science, Al-Arish University, Al-Arish, Egypt
| | | | - Mohamed H. Roby
- Food Science and Technology Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | | | - Nabila S. Hassan
- Pathology Department, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
41
|
Effects of selenium nanoparticles on growth performance, hematological, serum biochemical parameters, and antioxidant status in fish. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Abou-Zeid SM, Elkhadrawey BA, Anis A, AbuBakr HO, El-Bialy BE, Elsabbagh HS, El-Borai NB. Neuroprotective effect of sesamol against aluminum nanoparticle-induced toxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53767-53780. [PMID: 34037932 DOI: 10.1007/s11356-021-14587-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Alumina nanoparticles (ALNPs) are widely used causing neurobehavioral impairment in intoxicated animals and humans. Sesamol (SML) emerged as a natural phytochemical with potent antioxidant and anti-inflammatory properties. However, no study has directly tested the potential of SML to protect against AlNP-induced detrimental effects on the brain. AlNPs (100 mg/kg) were orally administered to rats by gavage with or without oral sesamol (100 mg/kg) for 28 days. In AlNP-intoxicated group, the brain AChE activity was elevated. The concentrations of MDA and 8-OHdG were increased suggesting lipid peroxidation and oxidative DNA damage. GSH depletion with inhibited activities of CAT and SOD were demonstrated. Serum levels of IL-1β and IL-6 were elevated. The expressions of GST, TNF-α, and caspase-3 genes in the brain were upregulated. Histopathologically, AlNPs induced hemorrhages, edema, neuronal necrosis, and/or apoptosis in medulla oblongata. The cerebellum showed loss of Purkinje cells, and the cerebrum showed perivascular edema, neuronal degeneration, necrosis, and neuronal apoptosis. However, concomitant administration of SML with AlNPs significantly ameliorated the toxic effects on the brain, reflecting antioxidant, anti-inflammatory, and anti-apoptotic effects of SML. Considering these results, sesamol could be a promising phytochemical with neuroprotective activity against AlNP-induced neurotoxicity.
Collapse
Affiliation(s)
- Shimaa M Abou-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, 32897, Egypt.
| | - Basma A Elkhadrawey
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, 32897, Egypt
| | - Anis Anis
- Department of Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, 32897, Egypt
| | - Huda O AbuBakr
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Badr E El-Bialy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, 32897, Egypt
| | - Hesham S Elsabbagh
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, 32897, Egypt
| | - Nermeen B El-Borai
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, 32897, Egypt
| |
Collapse
|
43
|
Dawood MAO, Basuini MFE, Yilmaz S, Abdel-Latif HMR, Kari ZA, Abdul Razab MKA, Ahmed HA, Alagawany M, Gewaily MS. Selenium Nanoparticles as a Natural Antioxidant and Metabolic Regulator in Aquaculture: A Review. Antioxidants (Basel) 2021; 10:1364. [PMID: 34572996 PMCID: PMC8471321 DOI: 10.3390/antiox10091364] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Balanced aquafeed is the key factor for enhancing the productivity of aquatic animals. In this context, aquatic animals require optimal amounts of lipids, proteins, carbohydrates, vitamins, and minerals. The original plant and animals' ingredients in the basal diets are insufficient to provide aquafeed with suitable amounts of minerals. Concurrently, elements should be incorporated in aquafeed in optimal doses, which differ based on the basal diets' species, age, size, and composition. Selenium is one of the essential trace elements involved in various metabolic, biological, and physiological functions. Se acts as a precursor for antioxidative enzyme synthesis leading to high total antioxidative capacity. Further, Se can enhance the immune response and the tolerance of aquatic animals to infectious diseases. Several metabolic mechanisms, such as thyroid hormone production, cytokine formation, fecundity, and DNA synthesis, require sufficient Se addition. The recent progress in the nanotechnology industry is also applied in the production of Se nanoparticles. Indeed, Se nanoparticles are elaborated as more soluble and bioavailable than the organic and non-organic forms. In aquaculture, multiple investigations have elaborated the role of Se nanoparticles on the performances and wellbeing of aquatic animals. In this review, the outputs of recent studies associated with the role of Se nanoparticles on aquatic animals' performances were simplified and presented for more research and development.
Collapse
Affiliation(s)
- Mahmoud A. O. Dawood
- Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
- The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, Cairo 11835, Egypt
| | - Mohammed F. El Basuini
- Animal Production Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt;
- Faculty of Desert Agriculture, King Salman International University, South Sinai 46618, Egypt
| | - Sevdan Yilmaz
- Department of Aquaculture, Faculty of Marine Sciences and Technology, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey;
| | - Hany M. R. Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Behera 22758, Egypt;
| | - Zulhisyam Abdul Kari
- Faculty of Agro-Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Malaysia
| | | | - Hamada A. Ahmed
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Mahmoud S. Gewaily
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
| |
Collapse
|
44
|
Abd El-Kader MF, Fath El-Bab AF, Abd-Elghany MF, Abdel-Warith AWA, Younis EM, Dawood MAO. Selenium Nanoparticles Act Potentially on the Growth Performance, Hemato-Biochemical Indices, Antioxidative, and Immune-Related Genes of European Seabass (Dicentrarchus labrax). Biol Trace Elem Res 2021; 199:3126-3134. [PMID: 33058040 DOI: 10.1007/s12011-020-02431-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022]
Abstract
The current study investigated the role of selenium (Se) nanoparticles on the growth performance, hemato-biochemical indices, antioxidative, and immune-related genes of European seabass (Dicentrarchus labrax). Therefore, fish with initial weight of 20.53 ± 0.10 g/fish were fed diets with 0, 0.25, 0.5, and 1 mg Se nanoparticles/kg diet for 90 days. The final body weight, weight gain, and specific growth rate of fish fed dietary nano-Se varying levels were significantly higher than the control with the highest performances and lowest FCR in the group of fish fed nano-Se at 0.5 mg/kg. The values of Hb, PCV, RBCs, and WBCs were significantly higher in fish fed varying levels of Se nanoparticles than fish fed the basal diets. The values of total serum protein and globulin were significantly higher in fish fed varying levels of Se nanoparticles than fish fed the basal diets. Additionally, globulin had higher value in the group of fish fed 0.25 and 0.5 mg nano-Se/kg than fish fed 1 mg nano-Se/kg (P < 0.05). No significant alterations were observed on albumin, ALT, and AST variables (P > 0.05). Phagocytic index, phagocytic, lysozyme activities were significantly higher in fish fed varying levels of Se nanoparticles than fish fed the basal diets in a dose dependent manner (P < 0.05). Further, SOD activity had higher value in the group of fish fed 0.25 and 0.5 mg nano-Se/kg than fish fed 1 mg nano-Se/kg, whereas CAT was increased in the group of fish fed dietary 0.5 mg nano-Se/kg diet (P < 0.05). The level of MDA was significantly lowered by dietary nano-Se where the group of fish fed 0.25 mg/kg had the lowest level followed by those fed 0.5 and 1 mg/kg. The expression of GH, IGF-1, IL-8, and IL-1β genes had the highest mRNA levels in the group of fish fed 0.25 and 0.5 mg/kg followed by those fed 1 mg/kg, whereas HSP70 was downregulated. Based on the overall results, Se nanoparticles are recommended at the rate of 0.5-1 mg/kg diet to maintain the optimal growth performance, hemato-biochemical indices, antioxidative status, and immune-related genes in European seabass.
Collapse
Affiliation(s)
- Marwa F Abd El-Kader
- Department of Fish Diseases and Management, Sakha Aquaculture Research Unit, Central Laboratory for Aquaculture Research, A.R.C, Cairo, Egypt
| | - Ahmed F Fath El-Bab
- Animal Production Department, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Mohamed F Abd-Elghany
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Cairo, Nasr City, Egypt
| | - Abdel-Wahab A Abdel-Warith
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Cairo, Nasr City, Egypt
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
45
|
Akintunde JK, Ajiboye JA, Siemuri EO, Olabisi OO. Fansidar drug induces cytotoxicity in some vital tissues in a rat model: combination defensive effect of selenium and zinc capsules. Ther Adv Drug Saf 2021; 12:20420986211027101. [PMID: 34349977 PMCID: PMC8287264 DOI: 10.1177/20420986211027101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 06/04/2021] [Indexed: 12/05/2022] Open
Abstract
AIM Fansidar (FAN) is widely used as an antimalarial drug, but it may cause hepatoxicity, nephrotoxicity, and neurotoxicity. Hence, the study examines the cytoprotection of selenium (Se) and zinc (Zn) tablets against FAN induced toxicity. METHOD Group I was given distilled water. Groups II, III, IV, and V received 50 mg/kg FAN by gavage. Group III was co-treated with a 50 mg/kg Se tablet. Group IV was co-treated with a 50 mg/kg Zn tablet. Group V was co-treated with a 50 mg/kg Se tablet + 50 mg/kg Zn tablet. The exposure lasted for 7 days (sub-acute exposure). RESULT FAN causes cytotoxicity through significant (p < 0.05) alteration of antioxidant molecules and hepatic enzymes. It also significantly (p < 0.05) induces renal, hepatocyte, and purkinje cell damage, but no visible lesion on testicular cells. The FAN induced cytotoxicity was significantly (p < 0.05) reversed on treatment with both single and combined antioxidant tablets. CONCLUSION Our study supports the view that antioxidant micronutrient (Se and Zn) tablets may be a useful modulator in alleviating FAN induced oxidative stress and cytotoxicity in male rats. PLAIN LANGUAGE SUMMARY Combined selenium and zinc capsules: better therapy against cytotoxicity Fansidar was approved by United States' Food and Drug Administration as an anti-malarial drug to treat acute and complicated malaria fever among patients in West Africa; however, its usage elicits toxicity to several organs of the body. It was elucidated that the combination of selenium and zinc capsules promotes organ wellness on co-treatment with Fansidar.
Collapse
Affiliation(s)
- J. K Akintunde
- Applied Biochemistry and Molecular Toxicology Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, P.M.B 2240, Abeokuta, Nigeria
| | - J. A Ajiboye
- Department of Chemical Sciences, Biochemistry unit, College of Natural and Applied Sciences, Bells University of Technology, Ota, Ogun State, Nigeria
| | - E. O Siemuri
- Applied Biochemistry and Molecular Toxicology Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Ogun, Nigeria
| | - O. O. Olabisi
- Department of Chemical Sciences, Biochemistry unit, College of Natural and Applied Sciences, Bells University of Technology, Ota, Ogun State, Nigeria
| |
Collapse
|
46
|
Xia X, Zhang X, Liu M, Duan M, Zhang S, Wei X, Liu X. Toward improved human health: efficacy of dietary selenium on immunity at the cellular level. Food Funct 2021; 12:976-989. [PMID: 33443499 DOI: 10.1039/d0fo03067h] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Selenium, an essential trace element in the body, participates in various biological processes in the form of selenoproteins. In humans, a suitable concentration of selenium is essential for maintaining normal cellular function. Decreased levels of selenoproteins can lead to obstruction of the normal physiological functions of tissues and cells and even death. In addition, the level of selenium in the body affects cellular immunity, humoral immunity, and the balance between type 2 and type 1 helper T cells. Selenium can affect the immune function of the body through the reactive oxygen species (ROS), NF-κB, ferroptosis and NRF2 pathways. This paper reviews the immune effect of selenium on the body and the process of signal transduction and aims to serve as a reference for follow-up studies of immune function and research on the development of new selenium compounds and active targets.
Collapse
Affiliation(s)
- Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China.
| | - Xiulin Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, Shanxi, PR China
| | - Mingcheng Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China.
| | - Mingyuan Duan
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China.
| | - Shanshan Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China.
| | - Xiaobing Wei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, PR China.
| | - Xingyou Liu
- Xinxiang University, Xinxiang 453003, Henan, PR China.
| |
Collapse
|
47
|
Moustafa EM, Abd El-Kader MF, Hassan MM, Fath El-Bab AF, Omar A, Farrag F, Gewida AG, Abd-Elghany MF, Shukry M, Alwakeel RA. Trial for use nanoselenium particle with different dietary regime in Oreochromis niloticus and Mugil cephalus polyculture ponds: Growth efficiency, haematological, antioxidant, immunity and transcriptional analysis. Vet Med Sci 2021; 7:1575-1586. [PMID: 33955189 PMCID: PMC8464258 DOI: 10.1002/vms3.490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/24/2021] [Accepted: 03/24/2021] [Indexed: 12/02/2022] Open
Abstract
Background Fish farming is one of the most productive economies in the world. One of the essential goals in fish production is to minimize processing costs while maintaining and increasing the vital functions, weight and immunity of fish. Objective We conducted this study to explore nanoselenium (Nano‐Se) particles in various feeding schemes. Material and Method Nano‐Se particles incorporated in the basal diet at (0.5 mg/kg diet), and the fish was divided into six groups after adaptation as the follows: The first group was feed daily with a diet containing Nano‐Se (0.5 mg/kg diet); the second group was exposed to a feeding programme in which it has day feeding followed by day of starvation with a diet containing Nano‐Se (0.5 mg/kg diet); the third group was day feeding followed by 2 days of starvation; the fourth group served as a negative control group in which this group was continuous feeding with a basal diet without Nano‐Se; the fifth group was day feeding with the basal diet followed by a day of starvation; and the sixth group was day feeding with basal diet followed by 2 days of starvation. Result Our result revealed that Group 2 showed significant improvement in haematological parameters, red blood cells and haemoglobin with a substantial increase in total protein (p < 0.05) as well as lysosomal and phagocytic activity with considerable upregulation of growth hormone and insulin growth factor 1 in addition to markedly increase in the pro‐inflammatory cytokines. Finally, this study offers the first‐time dietary regime with Nano‐Se supplementation that saves the feeding cost and increases fish welfare and growth.
Collapse
Affiliation(s)
- Eman M Moustafa
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Marwa F Abd El-Kader
- Fish Diseases and Management, Sakha Aquaculture Research Unit, Central Lab for Aquaculture Research, A.R.C., Cairo, Egypt
| | - Montaser M Hassan
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ahmed F Fath El-Bab
- Animal Production, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Amira Omar
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Foad Farrag
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ahmed G Gewida
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Mohamed F Abd-Elghany
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Rasha A Alwakeel
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
48
|
Jiao Y, Wang X, Chen JH. Biofabrication of AuNPs using Coriandrum sativum leaf extract and their antioxidant, analgesic activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144914. [PMID: 33550058 DOI: 10.1016/j.scitotenv.2020.144914] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/01/2020] [Accepted: 12/25/2020] [Indexed: 05/22/2023]
Abstract
In this work, Gold nanoparticles (AuNPs) were synthesized by reducing aqueous Au metal ions upon interaction with Coriandrum sativum (C. sativum) leaf extract. The optical absorption peak for the synthesized AuNPs was obtained by using UV-visible spectroscopy within a range of 540-550 nm. The formation of diffraction peaks found at 2θ values of 78.00°, 66.05°, 44.85° and 38.48° that corresponds to the index planes (311), (220), (200), and (111) validate the effective synthesis of AuNPs. Transmission electron microscopy (TEM) was utilized to measure the size range of the spherical shaped nanoparticles, which is obtained to be 32.96 ± 5.25 nm. The peaks obtained from the FTIR results are closely linked to anthocyanins, benzophenones, flavonoids and phenols, which indicated that these biomolecules may serve as reducing agents. Additionally, studies of antioxidant function in vitro revealed that the activities of ABTS (2, 2'-azino-bis 3-ethylbenzthiazoline-6-sulfonic acid) and DPPH (2,2-diphenyl-1-picrylhydrazyl) were improved dose-dependently. Further, the results of analgesic analysis showed that the cumulative action of AuNPs and the C. sativum leaf extract in pain relief is more efficient than independent C. sativum leaf extract and the aspirin drug.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Stomatology, the 7th Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Xinglei Wang
- Emergency Medical Center, Second Hospital of Shandong University, China.
| | - Ji-Hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| |
Collapse
|
49
|
Jahanbakhshi A, Pourmozaffar S, Adeshina I, Mahmoudi R, Erfanifar E, Ajdari A. Selenium nanoparticle and selenomethionine as feed additives: effects on growth performance, hepatic enzymes' activity, mucosal immune parameters, liver histology, and appetite-related gene transcript in goldfish (Carassius auratus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:639-652. [PMID: 33611774 DOI: 10.1007/s10695-021-00937-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study was to assess the effects of different dietary selenium sources, selenium nanoparticle (nSe), and selenomethionine (SeMet) as feed additives on growth performance, hepatic enzymes' activity, biochemical, mucosal immune parameters, liver histology, and appetite-related gene transcript in goldfish (Carassius auratus). At first, goldfish juveniles (n=480; mean 4.54 g) were fed dietary selenium nanoparticle at 0, 0.3, 0.6, and 0.9 mg nSe/kg diet and SeMet at 0, 0.3, 0.6, and 0.9 mg Se/kg for 9 weeks. Growth performance was evaluated using standard procedures. Blood, skin mucus, and tissue samples (liver and intestine) were collected for biochemical, mucosal immune response, histology, and ghrelin and insulin-like growth factor-I (IGF-I) gene expression. The results showed that fish fed diets fortified with 0.6 mg nSe/kg and 0.6 mg Se/kg had a significant higher weight gain, specific growth rates (SGR), and lower feed conversion ratios (FCR) than fish fed basal diets (p<0.05). Furthermore, dietary nSe and SeMet enhanced blood biochemical profiles especially alkaline phosphatase (ALP) (p < 0.05) and mucosal immunity than the control group in goldfish. Moreover, the liver histological investigation showed that fish fed 0.9 mg of SeMet and nSe kg-1 diets had higher liver lesion scores such as karyolysis, lipidosis, and hyperemia while fish fed 0, 0.3, and 0.6 mg of SeMet and nSe kg-1 diets had small liver changes at 9 weeks. The study further established that inclusion of nSe and SeMet in the diet of goldfish greatly promoted ghrelin and IGF-1genes expressions (p <0.05). Overall, dietary nSe performs better than SeMet and basal diets. The results evoked that nSe and SeMet stimulate the growth, biochemical, and mucosal immunity in goldfish at 0.6 mg/kg.
Collapse
Affiliation(s)
- Abdolreza Jahanbakhshi
- Offshore Fisheries Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Chabahar, Iran.
| | - Sajjad Pourmozaffar
- Persian Gulf Mollusks Research Station, Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Bandar-e-Lengeh, Iran.
| | - Ibrahim Adeshina
- Department of Aquaculture and Fisheries, University of Ilorin, Ilorin, Nigeria.
| | - Roghayeh Mahmoudi
- Cold-water Fishes Genetic and Breeding Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Yasouj, Iran
| | - Elnaz Erfanifar
- Offshore Fisheries Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Chabahar, Iran
| | - Ashkan Ajdari
- Offshore Fisheries Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Chabahar, Iran
| |
Collapse
|
50
|
Adedara IA, Awogbindin IO, Mohammed KA, Da-Silva OF, Farombi EO. Abatement of the dysfunctional hypothalamic-pituitary-gonadal axis due to ciprofloxacin administration by selenium in male rats. J Biochem Mol Toxicol 2021; 35:e22741. [PMID: 33592137 DOI: 10.1002/jbt.22741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/30/2020] [Accepted: 02/03/2021] [Indexed: 12/31/2022]
Abstract
The present study examined the influence of selenium on ciprofloxacin-mediated reproductive dysfunction in rats. The research design consisted of five groups of eight animals each. The rats were administered 135 mg/kg body weight of ciprofloxacin per se or simultaneously with selenium at 0.25 and 0.5 mg/kg for 15 uninterrupted days. Antioxidant and inflammatory indices were assayed using the testes, epididymis, and hypothalamus of the animals after sacrifice. Results revealed that ciprofloxacin treatment per se interfered with the reproductive axis as demonstrated by diminished serum hormonal levels, sperm quality, and enzymatic indices of testicular function, which were, however, abrogated following selenium co-treatment. Besides this, administration of selenium attenuated the depletion of glutathione level, inhibition of catalase, superoxide dismutase, glutathione-S-transferase and glutathione peroxidase activities with a concomitant reduction in reactive oxygen and nitrogen species, and lipid peroxidation in ciprofloxacin-treated in rats. Selenium treatment also mitigated ciprofloxacin-mediated elevation in nitric oxide level and of myeloperoxidase activity as well as histological lesions in the animals. Overall, selenium attenuated impairment in the male reproductive axis due to ciprofloxacin treatment through abatement of inflammation and oxidative stress in rats.
Collapse
Affiliation(s)
- Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ifeoluwa O Awogbindin
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Khadija A Mohammed
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwatobiloba F Da-Silva
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|