1
|
Guo Z, Tang X, Wang W, Luo Z, Zeng Y, Zhou N, Yu Z, Wang D, Song B, Zhou C, Xiong W. The photo-based treatment technology simultaneously removes resistant bacteria and resistant genes from wastewater. J Environ Sci (China) 2025; 148:243-262. [PMID: 39095161 DOI: 10.1016/j.jes.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 08/04/2024]
Abstract
Because of the recent widespread usage of antibiotics, the acquisition and dissemination of antibiotic-resistance genes (ARGs) were prevalent in the majority of habitats. Generally, the biological wastewater treatment processes used in wastewater treatment plants have a limited efficiencies of antibiotics resistant bacteria (ARB) disinfection and ARGs degradation and even promote the proliferation of ARGs. Problematically, ARB and ARGs in effluent pose potential risks if they are not further treated. Photocatalytic oxidation is considered a promising disinfection technology, where the photocatalytic process generates many free radicals that enhance the interaction between light and deoxyribonucleic acid (DNA) for ARB elimination and subsequent degradation of ARGs. This review aims to illustrate the progress of photocatalytic oxidation technology for removing antibiotics resistant (AR) from wastewater in recent years. We discuss the sources and transfer of ARGs in wastewater. The overall removal efficiencies of ultraviolet radiation (UV)/chlorination, UV/ozone, UV/H2O2, and UV/sulfate-radical based system for ARB and ARGs, as well as the experimental parameters and removal mechanisms, are systematically discussed. The contribution of photocatalytic materials based on TiO2 and g-C3N4 to the inactivation of ARB and degradation of ARGs is highlighted, producing many free radicals to attack ARB and ARGs while effectively limiting the horizontal gene transfer (HGT) in wastewater. Finally, based on the reviewed studies, future research directions are proposed to realize specific photocatalytic oxidation technology applications and overcome current challenges.
Collapse
Affiliation(s)
- Zicong Guo
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Xiang Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjun Wang
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, China
| | - Zhangxiong Luo
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Yuxi Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Nan Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Zhigang Yu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Biao Song
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Chengyun Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China.
| | - Weiping Xiong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China.
| |
Collapse
|
2
|
Yu P, Guo X, Wang W, Wang L, Zhang H, Deng L, Yang H, He T, Wu P, Zhang Y. Distribution and driving mechanisms of antibiotic resistance genes in urbanized watersheds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176387. [PMID: 39317254 DOI: 10.1016/j.scitotenv.2024.176387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/12/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Antibiotic resistance genes (ARGs) have emerged as a global concern, posing significant threats to human health and safety. Understanding the contamination levels and driving mechanisms behind ARG proliferation is urgently needed. Urban watersheds, influenced by human activities, serve as critical reservoirs for ARGs; however, the impact of urbanization on ARG spread of and the underlying driving mechanisms remain unclear. This study evaluates the diversity and abundance of ARGs in water and sediment samples from the Jialing River watershed in Chongqing City, China. The obtained results indicate that aminoglycoside and multidrug ARGs are the primary contributors to ARG presence in both sediments and water. Additionally, the diversity and abundance of ARGs are higher in water than in sediments. ARGs in watershed show a significant positive correlation with mobile genetic elements (MGEs). While environmental factors in urbanized watersheds affect ARG abundance and distribution to some extent, they are not the primary drivers. Urbanization itself emerges as a prominent factor influencing ARG diversity and abundance in river basins. Specifically, livestock, healthcare, and agriculture are identified as the main social factors influencing ARG proliferation in the highly urbanized areas of the Jialing River watershed. Further investigation into other contributing social factors, such as industrial development, is warranted. This study reveals the factors driving ARG distribution in urbanized watersheds, providing a foundation for future efforts to maintain ecological health in these environments.
Collapse
Affiliation(s)
- Ping Yu
- College of Resources and Environment, Chengdu University of Information Technology, No. 24 Block 1, Xuefu Road, Chengdu 610225, PR China; Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Xujing Guo
- College of Resources and Environment, Chengdu University of Information Technology, No. 24 Block 1, Xuefu Road, Chengdu 610225, PR China
| | - Wenguo Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Lan Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Hongwei Zhang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Liangwei Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Hongnan Yang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Ting He
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Peike Wu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Yunhong Zhang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.
| |
Collapse
|
3
|
Macrì M, Bonetta S, Di Cesare A, Sabatino R, Corno G, Catozzo M, Pignata C, Mecarelli E, Medana C, Carraro E, Bonetta S. Antibiotic resistance and pathogen spreading in a wastewater treatment plant designed for wastewater reuse. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125051. [PMID: 39357555 DOI: 10.1016/j.envpol.2024.125051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Climate change significantly contributes to water scarcity in various regions worldwide. While wastewater reuse is a crucial strategy for mitigating water scarcity, it also carries potential risks for human health due to the presence of pathogenic and antibiotic resistant bacteria (ARB). Antibiotic resistance represents a Public Health concern and, according to the global action plan on antimicrobial resistance, wastewater role in selecting and spreading ARB must be monitored. Our aim was to assess the occurrence of ARB, antibiotic resistance genes (ARGs), and potential pathogenic bacteria throughout a wastewater treatment plant (WWTP) designed for water reuse. Furthermore, we aimed to evaluate potential association between ARB and ARGs with antibiotics and heavy metals. The results obtained revealed the presence of ARB, ARGs and pathogenic bacteria at every stage of the WWTP. Notably, the most prevalent ARB and ARG were sulfamethoxazole-resistant bacteria (up to 7.20 log CFU mL-1) and sulII gene (up to 5.91 log gene copies mL-1), respectively. The dominant pathogenic bacteria included Arcobacter, Flavobacterium and Aeromonas. Although the abundance of these elements significantly decreased during treatment (influent vs. effluent, p < 0.05), they were still present in the effluent designated for reuse. Additionally, significant correlations were observed between heavy metal concentrations (copper, nickel and selenium) and antibiotic resistance elements (ampicillin-resistant bacteria, tetracycline-resistant bacteria, ARB total abundance and sulII) (p < 0.05). These results underscore the importance of monitoring the role of WWTP in spreading antibiotic resistance, in line with the One Health approach. Additionally, our findings suggest the need of interventions to reduce human health risks associated with the reuse of wastewater for agricultural purposes.
Collapse
Affiliation(s)
- Manuela Macrì
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Sara Bonetta
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Andrea Di Cesare
- National Research Council of Italy - Water Research Institute (CNR-IRSA), Molecular Ecology Group (MEG), Largo Tonolli 50, 28922, Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Raffaella Sabatino
- National Research Council of Italy - Water Research Institute (CNR-IRSA), Molecular Ecology Group (MEG), Largo Tonolli 50, 28922, Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Gianluca Corno
- National Research Council of Italy - Water Research Institute (CNR-IRSA), Molecular Ecology Group (MEG), Largo Tonolli 50, 28922, Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Marta Catozzo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Cristina Pignata
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Enrica Mecarelli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 44, 10126, Torino, Italy
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 44, 10126, Torino, Italy
| | - Elisabetta Carraro
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Silvia Bonetta
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy.
| |
Collapse
|
4
|
Shah BA, Malhotra H, Papade SE, Dhamale T, Ingale OP, Kasarlawar ST, Phale PS. Microbial degradation of contaminants of emerging concern: metabolic, genetic and omics insights for enhanced bioremediation. Front Bioeng Biotechnol 2024; 12:1470522. [PMID: 39364263 PMCID: PMC11446756 DOI: 10.3389/fbioe.2024.1470522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
The perpetual release of natural/synthetic pollutants into the environment poses major risks to ecological balance and human health. Amongst these, contaminants of emerging concern (CECs) are characterized by their recent introduction/detection in various niches, thereby causing significant hazards and necessitating their removal. Pharmaceuticals, plasticizers, cyanotoxins and emerging pesticides are major groups of CECs that are highly toxic and found to occur in various compartments of the biosphere. The sources of these compounds can be multipartite including industrial discharge, improper disposal, excretion of unmetabolized residues, eutrophication etc., while their fate and persistence are determined by factors such as physico-chemical properties, environmental conditions, biodegradability and hydrological factors. The resultant exposure of these compounds to microbiota has imposed a selection pressure and resulted in evolution of metabolic pathways for their biotransformation and/or utilization as sole source of carbon and energy. Such microbial degradation phenotype can be exploited to clean-up CECs from the environment, offering a cost-effective and eco-friendly alternative to abiotic methods of removal, thereby mitigating their toxicity. However, efficient bioprocess development for bioremediation strategies requires extensive understanding of individual components such as pathway gene clusters, proteins/enzymes, metabolites and associated regulatory mechanisms. "Omics" and "Meta-omics" techniques aid in providing crucial insights into the complex interactions and functions of these components as well as microbial community, enabling more effective and targeted bioremediation. Aside from natural isolates, metabolic engineering approaches employ the application of genetic engineering to enhance metabolic diversity and degradation rates. The integration of omics data will further aid in developing systemic-level bioremediation and metabolic engineering strategies, thereby optimising the clean-up process. This review describes bacterial catabolic pathways, genetics, and application of omics and metabolic engineering for bioremediation of four major groups of CECs: pharmaceuticals, plasticizers, cyanotoxins, and emerging pesticides.
Collapse
Affiliation(s)
- Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sandesh E Papade
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Tushar Dhamale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Omkar P Ingale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sravanti T Kasarlawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
5
|
Drane K, Sheehan M, Whelan A, Ariel E, Kinobe R. The Role of Wastewater Treatment Plants in Dissemination of Antibiotic Resistance: Source, Measurement, Removal and Risk Assessment. Antibiotics (Basel) 2024; 13:668. [PMID: 39061350 PMCID: PMC11274174 DOI: 10.3390/antibiotics13070668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Antibiotic Resistance Genes (ARGs) are contaminants of emerging concern with marked potential to impact public and environmental health. This review focusses on factors that influence the presence, abundance, and dissemination of ARGs within Wastewater Treatment Plants (WWTPs) and associated effluents. Antibiotic-Resistant Bacteria (ARB) and ARGs have been detected in the influent and the effluent of WWTPs worldwide. Different levels of wastewater treatment (primary, secondary, and tertiary) show different degrees of removal efficiency of ARGs, with further differences being observed when ARGs are captured as intracellular or extracellular forms. Furthermore, routinely used molecular methodologies such as quantitative polymerase chain reaction or whole genome sequencing may also vary in resistome identification and in quantifying ARG removal efficiencies from WWTP effluents. Additionally, we provide an overview of the One Health risk assessment framework, as well as future strategies on how WWTPs can be assessed for environmental and public health impact.
Collapse
Affiliation(s)
- Kezia Drane
- College of Public Health Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| | - Madoc Sheehan
- College of Science, Technology, and Engineering, James Cook University, Townsville, QLD 4811, Australia;
| | - Anna Whelan
- Townsville Water and Waste, Wastewater Operations, Townsville, QLD 4810, Australia;
| | - Ellen Ariel
- College of Public Health Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| | - Robert Kinobe
- College of Public Health Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| |
Collapse
|
6
|
Wang B, Xu Z, Dong B. Occurrence, fate, and ecological risk of antibiotics in wastewater treatment plants in China: A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133925. [PMID: 38432096 DOI: 10.1016/j.jhazmat.2024.133925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
This review offers a comprehensive overview of the occurrence, fate, and ecological risk associated with six major categories of antibiotics found in influent, effluent, and sludge from urban wastewater treatment plants (WWTPs) in China. Further exploration includes examining the correlation between antibiotic residual rates in the effluents and process parameters of urban WWTPs across the country. Lastly, a nationwide and urban cluster-specific evaluation of the ecological risk posed by antibiotics in WWTPs is conducted. The findings reveal that the average concentrations of antibiotics in influent, effluent, and sludge from urban WWTPs in China are 786.2 ng/L, 311.2 ng/L, and 186.8 μg/kg, respectively. Among the detected antibiotics, 42% exhibit moderate to high ecological risk in the effluent, with ciprofloxacin, sulfamethoxazole, erythromycin, azithromycin, and tetracycline posing moderate to high ecological risks in sludge. The current biological treatment processes in WWTPs demonstrate inefficacy in removing antibiotics. Hence, there is a pressing need to develop and integrate innovative technologies, such as advanced oxidation processes. This review aims to offer a more comprehensive understanding and identify priority antibiotics for control to effectively manage antibiotic pollution within WWTPs at both national and regional levels.
Collapse
Affiliation(s)
- Bingqing Wang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zuxin Xu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Bin Dong
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
7
|
Luo L, Wang Z, Huang X, Gu JD, Yu C, Deng O. The fate of antibiotic resistance genes in wastewater containing microalgae treated by chlorination, ultra-violet, and Fenton reaction. WATER RESEARCH 2024; 254:121392. [PMID: 38430757 DOI: 10.1016/j.watres.2024.121392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Antibiotic resistance genes (ARGs) and bacteria (ARBs) in the effluent of wastewater treatment plants (WWTPs) are of utmost importance for the dissemination of ARGs in natural aquatic environments. Therefore, there is an urgent need for effective technologies to eliminate WWTP ARGs/ARBs and mitigate the associated risks posed by the discharged ARG in aquatic environments. To test the effective technology for eliminating ARGs/ARBs, we compared the removal of ARGs and ARBs by three different tertiary treatments, namely ultra-violet (UV) disinfection, chlorination disinfection, and Fenton oxidation. Then, the treated wastewater was co-cultured with Chlorella vulgaris (representative of aquatic biota) to investigate the fate of discharged ARGs into the aquatic environment. The results demonstrated that chlorination (at a chlorine concentration of 15 mg/L) and Fenton (at pH 2.73, with 0.005 mol/L Fe2+ and 0.0025 mol/L H2O2) treatment showed higher efficacy in ARG removal (1.8 - 4.17 logs) than UV treatment (15 min) (1.29 - 3.87 logs). Moreover, chlorine at 15 mg/L and Fenton treatment effectively suppressed ARB regeneration while UV treatment for 15 min could not. Regardless of treatments tested in this study, the input of treated wastewater to the Chlorella system increased the number of ARGs and mobile genetic elements (MGEs), indicating the potential risk of ARG dissemination associated with WWTP discharge. Among the wastewater-Chlorella co-culture systems, chlorination resulted in less of an increase in the number of ARGs and MGEs compared to Fenton and UV treatment. When comparing the wastewater systems to the co-culture systems, it was observed that Chlorella vulgaris reduced the number of ARGs and MGEs in chlorination and UV-treated wastewater; however, Chlorella vulgaris promoted ARG survival in Fenton-treated water, suggesting that aquatic microalgae might act as a barrier to ARG dissemination. Overall, chlorination treatment not only effectively removes ARGs and inhibits ARB regeneration but also shows a lower risk of ARG dissemination. Therefore, chlorination is recommended for practical application in controlling the spread of discharged ARGs from WWTP effluent in natural aquatic environments.
Collapse
Affiliation(s)
- Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Zimu Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xin Huang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion - Israel Institute of Technology, Shantou 515063, PR China
| | - Chenxiao Yu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ouping Deng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China; College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
8
|
Wang X, Zhang D, Ma K, Bu C, Wang Y, Tang Y, Xu J, Xu Y. Biochar and zero-valent iron alleviated sulfamethoxazole and tetracycline co-stress on the long-term system performance of bioretention cells: Insights into microbial community, antibiotic resistance genes and functional genes. ENVIRONMENTAL RESEARCH 2024; 248:118271. [PMID: 38262515 DOI: 10.1016/j.envres.2024.118271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024]
Abstract
Antibiotics and antibiotic resistance genes (ARGs), known as emerging contaminants, have raised widespread concern due to their potential environmental and human health risks. In this study, a conventional bioretention cell (C-BRC) and three modified bioretention cells with biochar (BC-BRC), microbial fuel cell coupled/biochar (EBC-BRC) and zero-valent iron/biochar (Fe/BC-BRC) were established and two antibiotics, namely sulfamethoxazole (SMX) and tetracycline (TC), were introduced into the systems in order to thoroughly investigate the co-stress associated with the long-term removal of pollutants, dynamics of microbial community, ARGs and functional genes in wastewater treatment. The results demonstrated that the SMX and TC co-stress significantly inhibited the removal of total nitrogen (TN) (C-BRC: 37.46%; BC-BRC: 41.64%; EBC-BRC: 55.60%) and total phosphorous (TP) (C-BRC: 53.11%; BC-BRC: 55.36%; EBC-BRC: 62.87%) in C-BRC, BC-BRC and EBC-BRC, respectively, while Fe/BC-BRC exhibited profoundly stable and high removal efficiencies (TN: 89.33%; TP: 98.36%). Remarkably, greater than 99% removals of SMX and TC were achieved in three modified BRCs compared with C-BRC (SMX: 30.86 %; TC: 59.29%). The decreasing absolute abundances of denitrifying bacteria and the low denitrification functional genes (nirK: 2.80 × 105-5.97 × 105 copies/g; nirS: 7.22 × 105-1.69 × 106 copies/g) were responsible for the lower TN removals in C-BRC, BC-BRC and EBC-BRC. The amendment of Fe/BC successfully detoxified SMX and TC to functional bacteria. Furthermore, the co-stress of antibiotics stimulated the propagation of ARGs (sulI, sulII, tetA and tetC) in substrates of all BRCs and only Fe/BC-BRC effectively reduced all the ARGs in effluent by an order of magnitude. The findings contribute to developing robust ecological wastewater treatment technologies to simultaneously remove nutrients and multiple antibiotics.
Collapse
Affiliation(s)
- Xue Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Danyi Zhang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Kexin Ma
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Chibin Bu
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Ying Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Yanqiang Tang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Jianing Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
9
|
Yang JH, Fu JJ, Jia ZY, Geng YC, Ling YR, Fan NS, Jin RC. Microbial response and recovery strategy of the anammox process under ciprofloxacin stress from pure strain and consortia perspectives. ENVIRONMENT INTERNATIONAL 2024; 186:108599. [PMID: 38554504 DOI: 10.1016/j.envint.2024.108599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/01/2024]
Abstract
Ciprofloxacin (CIP) poses a high risk of resistance development in water environments. Therefore, comprehensive effects and recovery strategies of CIP in anaerobic ammonia oxidation (anammox) process were systematically elucidated from consortia and pure strains perspectives. The anammox consortia was not significantly affected by the stress of 10 mg L-1 CIP, while the higher concentration (20 mg L-1) of CIP caused a dramatic reduction in the nitrogen removal performance of anammox system. Simultaneously, the abundances of dominant functional bacteria and corresponding genes also significantly decreased. Such inhibition could not be mitigated by the recovery strategy of adding hydrazine and hydroxylamine. Reducing nitrogen load rate from 5.1 to 1.4 kg N m-3 d-1 promoted the restoration of three reactors. In addition, the robustness and recovery of anammox systems was evaluated using starvation and shock strategies. Simultaneously, antibiotic resistance genes and key metabolic pathways of anammox consortia were upregulated, such as carbohydrate and energy metabolisms. In addition, 11 pure stains were isolated from the anammox system and identified through phylogenetic analysis, 40 % of which showed multidrug resistance, especially Pseudomonas. These findings provide deep insights into the responding mechanism of anammox consortia to CIP stress and promote the application of anammox process for treating wastewater containing antibiotics.
Collapse
Affiliation(s)
- Jun-Hui Yang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jin-Jin Fu
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zi-Yu Jia
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yin-Ce Geng
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yi-Rong Ling
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Si Fan
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China; Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China; Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
10
|
Wang Z, Cai M, Du P, Li X. Wastewater surveillance for antibiotics and resistance genes in a river catchment: Spatiotemporal variations and the main drivers. WATER RESEARCH 2024; 251:121090. [PMID: 38219685 DOI: 10.1016/j.watres.2023.121090] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/26/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
Wastewater-based epidemiology (WBE) is used for mining information about public health such as antibiotics resistance. This study investigated the distribution profiles of six types of antibiotic resistance genes (ARGs) in wastewater and rivers in Wuhu City, China. The levels of ARGs found in the Qingyijiang River were significantly higher than other rivers, and were comparable to effluent levels. Among the ARGs, sulfonamides ARGs and intI1 were the predominant in both wastewaters and rivers. Additionally, the concentrations of ARGs were higher on weekends as opposed to weekdays. Their distribution patterns remained consistent inter-week and inter-season using linear regression analysis (p < 0.001). Interestingly, the occurrence levels of ARGs in wastewaters during spring were significantly higher than in autumn, although insignificant in rivers. The apparent removal rate of ARGs in domestic wastewater sources ranged from 61.52-99.29%, except for qepA (-1.91% to 81.09%), whereas the removal rates in mixed domestic and industrial wastewaters showed a marked decrease (-92.94% to 76.67%). A correlation network analysis revealed that azithromycin and erythromycin were key antibiotics, while blaNDM-1, tetM, tetB, and ermB were identified as key ARGs. Sulfonamide and fluoroquinolone antibiotics, and tetracycline and macrolide ARGs were the primary contributors. Linear mixed models demonstrated that socio-economic variables positively impacted the occurrence levels of ARGs, whereas wastewater flow and river runoff were the negative drivers for their concentrations in wastewaters and surface waters, respectively. Overall, this WBE study contributes to the understanding of spatiotemporal profiles and main drivers of the occurrence of ARGs in wastewater and receiving water.
Collapse
Affiliation(s)
- Zhenglu Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041 PR China
| | - Min Cai
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, PR China
| | - Peng Du
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875 PR China.
| | - Xiqing Li
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871 PR China
| |
Collapse
|
11
|
Zhang Y, Xu Z, Chu W, Zhang J, Jin W, Ye C. Tracking the source of antibiotic resistome in the stormwater network drainage in the presence of sewage illicit connections. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168989. [PMID: 38036118 DOI: 10.1016/j.scitotenv.2023.168989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Stormwater pipes are illicitly connected with sewage in many countries, which means that sewage enters stormwater pipes and the drainage is discharged to surface water without any treatment. Sewage contains more pathogens and highly risky antibiotic resistance genes (ARGs) than surface runoff. Therefore, sewage may alter the microbial and ARG compositions in stormwater pipe drainage, which in turn leads to an increased risk of resistance in surface water. However, the effects of sewage on ARGs in the drainage of stormwater networks have not been systematically studied. This study characterized the microbial and ARG composition of several environmental compartments of a typical stormwater network and quantified their contributions to those in the drainage. This network transported ARGs and microorganisms from sewage, sediments in stormwater pipes, and surface runoff into the drainage and thus into the river. According to metagenomic analysis, multidrug resistance genes were most abundant in all samples and the numbers and relative abundance of ARGs in the drainage collected during wet weather were comparable to that of sewage. The results of SourceTracker showed that the relative contribution of sewage was double that of rainwater and surface runoff in the drainage during wet weather for both microorganisms and ARGs. Desulfovibrio, Azoarcus, and Sulfuritalea were connected with the greatest number of ARGs and were most abundant in the sediments of stormwater pipes. Furthermore, stochastic processes were found to dominate ARG and microbial assembly, as the effects of high hydrodynamic intensity outweighed the effects of environmental filtration and species interactions. The findings of this study can increase our understanding of ARGs in stormwater pipe drainage, a crucial medium linking ARGs in sewage to environmental ARGs.
Collapse
Affiliation(s)
- Yu Zhang
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Zuxin Xu
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China.
| | - Wenhai Chu
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China.
| | - Jingyi Zhang
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Wei Jin
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Cheng Ye
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
12
|
Perez-Bou L, Gonzalez-Martinez A, Gonzalez-Lopez J, Correa-Galeote D. Promising bioprocesses for the efficient removal of antibiotics and antibiotic-resistance genes from urban and hospital wastewaters: Potentialities of aerobic granular systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123115. [PMID: 38086508 DOI: 10.1016/j.envpol.2023.123115] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
The use, overuse, and improper use of antibiotics have resulted in higher levels of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs), which have profoundly disturbed the equilibrium of the environment. Furthermore, once antibiotic agents are excreted in urine and feces, these substances often can reach wastewater treatment plants (WWTPs), in which improper treatments have been highlighted as the main reason for stronger dissemination of antibiotics, ARB, and ARGs to the receiving bodies. Hence, achieving better antibiotic removal capacities in WWTPs is proposed as an adequate approach to limit the spread of antibiotics, ARB, and ARGs into the environment. In this review, we highlight hospital wastewater (WW) as a critical hotspot for the dissemination of antibiotic resistance due to its high level of antibiotics and pathogens. Hence, monitoring the composition and structure of the bacterial communities related to hospital WW is a key factor in controlling the spread of ARGs. In addition, we discuss the advantages and drawbacks of the current biological WW treatments regarding the antibiotic-resistance phenomenon. Widely used conventional activated sludge technology has proved to be ineffective in mitigating the dissemination of ARB and ARGs to the environment. However, aerobic granular sludge (AGS) technology is a promising technology-with broad adaptability and excellent performance-that could successfully reduce antibiotics, ARB, and ARGs in the generated effluents. We also outline the main operational parameters involved in mitigating antibiotics, ARB, and ARGs in WWTPs. In this regard, WW operation under long hydraulic and solid retention times allows better removal of antibiotics, ARB, and ARGs independently of the WW technology employed. Finally, we address the current knowledge of the adsorption and degradation of antibiotics and their importance in removing ARB and ARGs. Notably, AGS can enhance the removal of antibiotics, ARB, and ARGs due to the complex microbial metabolism within the granular biomass.
Collapse
Affiliation(s)
- Lizandra Perez-Bou
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain; Microbial Biotechnology Group, Microbiology and Virology Department, Faculty of Biology, University of Havana, Cuba
| | - Alejandro Gonzalez-Martinez
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain
| | - Jesus Gonzalez-Lopez
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain
| | - David Correa-Galeote
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain.
| |
Collapse
|
13
|
Sun X, Wang X, Han Q, Yu Q, Wanyan R, Li H. Bibliometric analysis of papers on antibiotic resistance genes in aquatic environments on a global scale from 2012 to 2022: Evidence from universality, development and harmfulness. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168597. [PMID: 37981129 DOI: 10.1016/j.scitotenv.2023.168597] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Antibiotic resistance genes (ARGs), emerging pollutants, are widely distributed in aquatic environments, and are tightly linked to human health. However, the research progress and trends in recent years on ARGs of aquatic environments are still unclear. This paper made a comprehensive understanding of the research advance, study trends and key topics of 1592 ARGs articles from 2012 to 2022 by bibliometrics. Publications on ARGs increased rapidly from 2012 to 2022, and scholars paid closer attention to the field of Environmental Sciences & Ecology. The most influential country and institution was mainly China and Chinese Academy of Sciences, respectively. The most articles (14.64 %) were published in the journal Science of the total environment. China and USA had the most cooperation, and USA was more inclined to international cooperation. PCR-based methods for water ARG research were the most widely used, followed by metagenomics. The most studied ARG types were sulfonamides, tetracyclines. Moreover, ARGs from wastewater and rivers were popularly concerned. Current topics mainly included pollution investigation, characteristics, transmission, reduction and risk identification of ARGs. Additionally, future research directions were proposed. Generally, by bibliometrics, this paper reviews the research hotspots and future directions of ARGs on a global scale, and summarizes the more important categories of ARGs, the pollution degree of ARGs in the relevant water environment and the research methods, which can provide a more comprehensive information for the future breakthrough of resistance mechanism, prevention and control standard formulation of ARGs.
Collapse
Affiliation(s)
- Xiaofang Sun
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaochen Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Ruijun Wanyan
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
14
|
Saibu S, Uhanie Perera I, Suzuki S, Rodó X, Fujiyoshi S, Maruyama F. Resistomes in freshwater bioaerosols and their impact on drinking and recreational water safety: A perspective. ENVIRONMENT INTERNATIONAL 2024; 183:108377. [PMID: 38103344 DOI: 10.1016/j.envint.2023.108377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Antibiotic resistance genes (ARGs) are widespread environmental pollutants of biological origin that pose a significant threat to human, animal, and plant health, as well as to ecosystems. ARGs are found in soil, water, air, and waste, and several pathways for global dissemination in the environment have been described. However, studies on airborne ARG transport through atmospheric particles are limited. The ARGs in microorganisms inhabiting an environment are referred to as the "resistome". A global search was conducted of air-resistome studies by retrieving bioaerosol ARG-related papers published in the last 30 years from PubMed. We found that there is no dedicated methodology for isolating ARGs in bioaerosols; instead, conventional methods for microbial culture and metagenomic analysis are used in combination with standard aerosol sampling techniques. There is a dearth of information on the bioaerosol resistomes of freshwater environments and their impact on freshwater sources used for drinking and recreational activities. More studies of aerobiome freshwater environments are needed to ensure the safe use of water and sanitation. In this review we outline and synthesize the few studies that address the freshwater air microbiome (from tap water, bathroom showers, rivers, lakes, and swimming pools) and their resistomes, as well as the likely impacts on drinking and recreational waters. We also discuss current knowledge gaps for the freshwater airborne resistome. This review will stimulate new investigations of the atmospheric microbiome, particularly in areas where both air and water quality are of public health concern.
Collapse
Affiliation(s)
- Salametu Saibu
- Department of Microbiology, Lagos State University of Ojo, Lagos, Nigeria
| | - Ishara Uhanie Perera
- Section of Microbial Genomics and Ecology, Planetary Health and Innovation Science Center (PHIS), The IDEC Institute, Hiroshima University, Japan
| | - Satoru Suzuki
- Graduate School of Science and Engineering, Center for Marine Environmental Studies, Ehime University, Japan
| | - Xavier Rodó
- ICREA and CLIMA Program, Barcelona Institute for Global Health (-ISGlobal), Barcelona, Spain
| | - So Fujiyoshi
- Section of Microbial Genomics and Ecology, Planetary Health and Innovation Science Center (PHIS), The IDEC Institute, Hiroshima University, Japan
| | - Fumito Maruyama
- Section of Microbial Genomics and Ecology, Planetary Health and Innovation Science Center (PHIS), The IDEC Institute, Hiroshima University, Japan.
| |
Collapse
|
15
|
Duarte DJ, Zillien C, Kox M, Oldenkamp R, van der Zaan B, Roex E, Ragas AMJ. Characterization of urban sources of antibiotics and antibiotic-resistance genes in a Dutch sewer catchment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167439. [PMID: 37774886 DOI: 10.1016/j.scitotenv.2023.167439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
A one year study was conducted in the city of Nijmegen, The Netherlands, to characterize various urban sources of antibiotics and antibiotic resistant genes (ARGs) in wastewater within a single sewer catchment. Prevalence of ermB, tet(W), sul1, sul2, intl1, and 16S rRNA gene was determined at 10 locations within the city. Sampling locations included a nursing home, a student residence, a hospital and an industrial area, among others. Wastewater concentrations of 23 antibiotics were measured using passive sampling. Additionally, excreted loads of 22 antibiotics were estimated based on ambulatory prescription and clinical usage data. Genes sul1 and intl1 were most abundant across most locations. Ciprofloxacin and amoxicillin together contributed over 92 % of the total estimated antibiotic selective pressure at all sampling points. The present study highlights the prominent role that hospitals can have in the prevalence and proliferation of ARGs in urban wastewater. Furthermore, results suggest that even short-term changes in the therapeutic regimen prescribed in hospitals may translate into shifting ARG abundance patterns in hospital wastewater. The methods applied present an opportunity to identify emission hotspots and prioritize intervention options to limit ARG spread from urban wastewater to the environment.
Collapse
Affiliation(s)
- Daniel J Duarte
- Radboud University Nijmegen, Radboud Institute for Biological and Environmental Sciences, Department of Environmental Science, 6500 GL Nijmegen, Netherlands
| | - Caterina Zillien
- Radboud University Nijmegen, Radboud Institute for Biological and Environmental Sciences, Department of Environmental Science, 6500 GL Nijmegen, Netherlands.
| | - Martine Kox
- Deltares, Subsurface and Groundwater Systems, Daltonlaan 600, 3584 KB Utrecht, the Netherlands
| | - Rik Oldenkamp
- Department of Global Health-Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Paasheuvelweg 25, 1105 BP Amsterdam, the Netherlands
| | - Bas van der Zaan
- Deltares, Subsurface and Groundwater Systems, Daltonlaan 600, 3584 KB Utrecht, the Netherlands
| | - Erwin Roex
- National Institute for Public Health and the Environment (RIVM), Centre for Zoonoses and Environmental Microbiology, 3721 MA Bilthoven, the Netherlands
| | - Ad M J Ragas
- Radboud University Nijmegen, Radboud Institute for Biological and Environmental Sciences, Department of Environmental Science, 6500 GL Nijmegen, Netherlands
| |
Collapse
|
16
|
Papaioannou C, Geladakis G, Kommata V, Batargias C, Lagoumintzis G. Insights in Pharmaceutical Pollution: The Prospective Role of eDNA Metabarcoding. TOXICS 2023; 11:903. [PMID: 37999555 PMCID: PMC10675236 DOI: 10.3390/toxics11110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
Environmental pollution is a growing threat to natural ecosystems and one of the world's most pressing concerns. The increasing worldwide use of pharmaceuticals has elevated their status as significant emerging contaminants. Pharmaceuticals enter aquatic environments through multiple pathways related to anthropogenic activity. Their high consumption, insufficient waste treatment, and the incapacity of organisms to completely metabolize them contribute to their accumulation in aquatic environments, posing a threat to all life forms. Various analytical methods have been used to quantify pharmaceuticals. Biotechnology advancements based on next-generation sequencing (NGS) techniques, like eDNA metabarcoding, have enabled the development of new methods for assessing and monitoring the ecotoxicological effects of pharmaceuticals. eDNA metabarcoding is a valuable biomonitoring tool for pharmaceutical pollution because it (a) provides an efficient method to assess and predict pollution status, (b) identifies pollution sources, (c) tracks changes in pharmaceutical pollution levels over time, (d) assesses the ecological impact of pharmaceutical pollution, (e) helps prioritize cleanup and mitigation efforts, and (f) offers insights into the diversity and composition of microbial and other bioindicator communities. This review highlights the issue of aquatic pharmaceutical pollution while emphasizing the importance of using modern NGS-based biomonitoring actions to assess its environmental effects more consistently and effectively.
Collapse
Affiliation(s)
- Charikleia Papaioannou
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - George Geladakis
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Vasiliki Kommata
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Costas Batargias
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | | |
Collapse
|
17
|
Cho S, Hiott LM, Read QD, Damashek J, Westrich J, Edwards M, Seim RF, Glinski DA, Bateman McDonald JM, Ottesen EA, Lipp EK, Henderson WM, Jackson CR, Frye JG. Distribution of Antibiotic Resistance in a Mixed-Use Watershed and the Impact of Wastewater Treatment Plants on Antibiotic Resistance in Surface Water. Antibiotics (Basel) 2023; 12:1586. [PMID: 37998788 PMCID: PMC10668835 DOI: 10.3390/antibiotics12111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
The aquatic environment has been recognized as a source of antibiotic resistance (AR) that factors into the One Health approach to combat AR. To provide much needed data on AR in the environment, a comprehensive survey of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), and antibiotic residues was conducted in a mixed-use watershed and wastewater treatment plants (WWTPs) within the watershed to evaluate these contaminants in surface water. A culture-based approach was used to determine prevalence and diversity of ARB in surface water. Low levels of AR Salmonella (9.6%) and Escherichia coli (6.5%) were detected, while all Enterococcus were resistant to at least one tested antibiotic. Fewer than 20% of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae (17.3%) and carbapenem-resistant Enterobacteriaceae (CRE) (7.7%) were recovered. Six ARGs were detected using qPCR, primarily the erythromycin-resistance gene, ermB. Of the 26 antibiotics measured, almost all water samples (98.7%) had detectable levels of antibiotics. Analysis of wastewater samples from three WWTPs showed that WWTPs did not completely remove AR contaminants. ARGs and antibiotics were detected in all the WWTP effluent discharges, indicating that WWTPs are the source of AR contaminants in receiving water. However, no significant difference in ARGs and antibiotics between the upstream and downstream water suggests that there are other sources of AR contamination. The widespread occurrence and abundance of medically important antibiotics, bacteria resistant to antibiotics used for human and veterinary purposes, and the genes associated with resistance to these antibiotics, may potentially pose risks to the local populations exposed to these water sources.
Collapse
Affiliation(s)
- Sohyun Cho
- Poultry Microbiological Safety and Processing Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA; (S.C.); (L.M.H.); (C.R.J.)
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA;
| | - Lari M. Hiott
- Poultry Microbiological Safety and Processing Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA; (S.C.); (L.M.H.); (C.R.J.)
| | - Quentin D. Read
- Agricultural Research Service, U.S. Department of Agriculture, Southeast Area, Raleigh, NC 27606, USA;
| | - Julian Damashek
- Department of Biology, Utica University, Utica, NY 13502, USA;
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (J.W.); (E.A.O.)
| | - Jason Westrich
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (J.W.); (E.A.O.)
| | - Martinique Edwards
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA; (M.E.); (E.K.L.)
| | - Roland F. Seim
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA;
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA 30605, USA; (D.A.G.); (W.M.H.)
| | - Donna A. Glinski
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA 30605, USA; (D.A.G.); (W.M.H.)
| | - Jacob M. Bateman McDonald
- Lewis F. Rogers Institute for Environmental and Spatial Analysis, University of North Georgia, Oakwood, GA 30566, USA;
| | - Elizabeth A. Ottesen
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (J.W.); (E.A.O.)
| | - Erin K. Lipp
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA; (M.E.); (E.K.L.)
| | - William Matthew Henderson
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA 30605, USA; (D.A.G.); (W.M.H.)
| | - Charlene R. Jackson
- Poultry Microbiological Safety and Processing Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA; (S.C.); (L.M.H.); (C.R.J.)
| | - Jonathan G. Frye
- Poultry Microbiological Safety and Processing Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA; (S.C.); (L.M.H.); (C.R.J.)
| |
Collapse
|
18
|
Canan-Rochenbach G, Barreiros MAB, Lima AOS, Conti-Lampert AD, Ariente-Neto R, Pimentel-Almeida W, Laçoli R, Corrêa R, Radetski CM, Cotelle S. Are hospital wastewater treatment plants a source of new resistant bacterial strains? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108635-108648. [PMID: 37752395 DOI: 10.1007/s11356-023-30007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023]
Abstract
To understand which type of hospital waste may contain the highest amount of antibiotic resistant microorganisms that could be released into the environment, the bacterial strains entering and leaving a hospital wastewater treatment plant (HWTP) were identified and tested for their antibiotic susceptibility. To achieve this goal, samples were collected from three separate sites, inlet and outlet wastewater positions, and sludge generated in a septic tank. After microbiological characterization according to APHA, AWWA, and WEF protocols, the relative susceptibility of the bacterial strains to various antibiotic agents was assessed according to the Clinical and Laboratory Standards Institute guidelines, to determine whether there were higher numbers of resistant bacterial strains in the inlet wastewater sample than in the outlet wastewater and sludge samples. The results showed more antibiotic resistant bacteria in the sludge than in the inlet wastewater, and that the Enterobacteriaceae family was the predominant species in the collected samples. The most antibiotic-resistant families were found to be Streptococcacea and non-Enterobacteriaceae. Some bacterial strains were resistant to all the tested antibiotics. We conclude that the studied HWTP can be considered a source of resistant bacterial strains. It is suggested that outlet water and sludge generated in HWTPs should be monitored, and that efficient treatment to eliminate all bacteria from the different types of hospital waste released into the environment is adopted.
Collapse
Affiliation(s)
- Gisele Canan-Rochenbach
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, SC, 88302-202, Brazil
| | - Marco A B Barreiros
- Universidade Federal do Paraná (UFPR), Campus Palotina, Palotina, PR, 85950-000, Brazil
| | - André O S Lima
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, SC, 88302-202, Brazil
| | - Aline Dal Conti-Lampert
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, SC, 88302-202, Brazil
| | - Rafael Ariente-Neto
- Universidade Federal do Paraná (UFPR), Campus Jandaia do Sul, Curso de Engenharia de Produção, Jandaia do Sul, PR, 86900-000, Brazil
| | - Wendell Pimentel-Almeida
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, SC, 88302-202, Brazil
| | - Rosane Laçoli
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, SC, 88302-202, Brazil
| | - Rogério Corrêa
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciências Farmacêuticas, Itajaí, SC, 88302-202, Brazil
| | - Claudemir M Radetski
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, SC, 88302-202, Brazil.
| | - Sylvie Cotelle
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), F-57050, Metz, France
| |
Collapse
|
19
|
Sims N, Kannan A, Holton E, Jagadeesan K, Mageiros L, Standerwick R, Craft T, Barden R, Feil EJ, Kasprzyk-Hordern B. Antimicrobials and antimicrobial resistance genes in a one-year city metabolism longitudinal study using wastewater-based epidemiology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122020. [PMID: 37336345 DOI: 10.1016/j.envpol.2023.122020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/24/2023] [Accepted: 06/10/2023] [Indexed: 06/21/2023]
Abstract
This longitudinal study tests correlations between antimicrobial agents (AA) and corresponding antimicrobial resistance genes (ARGs) generated by a community of >100 k people inhabiting one city (Bath) over a 13 month randomised monitoring programme of community wastewater. Several AAs experienced seasonal fluctuations, such as the macrolides erythromycin and clarithromycin that were found in higher loads in winter, whilst other AA levels, including sulfamethoxazole and sulfapyridine, stayed consistent over the study period. Interestingly, and as opposed to AAs, ARGs prevalence was found to be less variable, which indicates that fluctuations in AA usage might either not directly affect ARG levels or this process spans beyond the 13-month monitoring period. However, it is important to note that weekly positive correlations between individual associated AAs and ARGs were observed where seasonal variability in AA use was reported: ermB and macrolides CLR-clarithromycin and dmCLR-N-desmethyl clarithromycin, aSPY- N-acetyl sulfapyridine and sul1, and OFX-ofloxacin and qnrS. Furthermore, ARG loads normalised to 16S rRNA (gene load per microorganism) were positively correlated to the ARG loads normalised to the human population (gene load per capita), which indicates that the abundance of microorganisms is proportional to the size of human population and that the community size, and not AA levels, is a major driver of ARG levels in wastewater. Comparison of hospital and community wastewater showed higher number of AAs and their metabolites, their frequency of occurrence and concentrations in hospital wastewater. Examples include: LZD-linezolid (used only in severe bacterial infections) and AMX-amoxicillin (widely used, also in community but with very low wastewater stability) that were found only in hospital wastewater. CIP-ciprofloxacin, SMX-sulfamethoxazole, TMP-trimethoprim, MTZ-metronidazole and macrolides were found at much higher concentrations in hospital wastewater while TET-tetracycline and OTC-oxytetracycline, as well as antiretrovirals, had an opposite trend. In contrast, comparable concentrations of resistant genes were observed in both community and hospital wastewater. This supports the hypothesis that AMR levels are more of an endemic nature, developing over time in individual communities. Both hospital and community wastewater had AAs that exceeded PNEC values (e.g. CLR-clarithromycin, CIP-ciprofloxacin). In general, though, hospital effluents had a greater number of quantifiable AAs exceeding PNECs (e.g. SMX-sulfamethoxazole, ERY-erythromycin, TMP-trimethoprim). Hospitals are therefore an important consideration in AMR surveillance as could be high risk areas for AMR.
Collapse
Affiliation(s)
- Natalie Sims
- University of Bath, Department of Chemistry, Bath, BA2 7AY, UK; Centre for Sustainable Circular Technologies, Bath, BA2 7AY, UK
| | - Andrew Kannan
- University of Bath, Department of Chemistry, Bath, BA2 7AY, UK
| | | | | | - Leonardos Mageiros
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | | - Tim Craft
- Department of R&D, Royal United Hospitals Bath, NHS Foundation Trust, Bath, BA1 3NG, UK
| | - Ruth Barden
- Wessex Water, Claverton Down Rd, Bath, BA2 7WW, UK
| | - Edward J Feil
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Barbara Kasprzyk-Hordern
- University of Bath, Department of Chemistry, Bath, BA2 7AY, UK; Centre for Sustainable Circular Technologies, Bath, BA2 7AY, UK.
| |
Collapse
|
20
|
Wang L, Xu Y, Qin T, Wu M, Chen Z, Zhang Y, Liu W, Xie X. Global trends in the research and development of medical/pharmaceutical wastewater treatment over the half-century. CHEMOSPHERE 2023; 331:138775. [PMID: 37100249 PMCID: PMC10123381 DOI: 10.1016/j.chemosphere.2023.138775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/07/2023]
Abstract
The COVID-19 pandemic has severely impacted public health and the worldwide economy. The overstretched operation of health systems around the world is accompanied by potential and ongoing environmental threats. At present, comprehensive scientific assessments of research on temporal changes in medical/pharmaceutical wastewater (MPWW), as well as estimations of researcher networks and scientific productivity are lacking. Therefore, we conducted a thorough literature study, using bibliometrics to reproduce research on medical wastewater over nearly half a century. Our primary goal is systematically to map the evolution of keyword clusters over time, and to obtain the structure and credibility of clusters. Our secondary objective was to measure research network performance (country, institution, and author) using CiteSpace and VOSviewer. We extracted 2306 papers published between 1981 and 2022. The co-cited reference network identified 16 clusters with well-structured networks (Q = 0.7716, S = 0.896). The main trends were as follows: 1) Early MPWW research prioritized sources of wastewater, and this cluster was considered to be the mainstream research frontier and direction, representing an important source and priority research area. 2) Mid-term research focused on characteristic contaminants and detection technologies. Particularly during 2000-2010, a period of rapid developments in global medical systems, pharmaceutical compounds (PhCs) in MPWW were recognized as a major threat to human health and the environment. 3) Recent research has focused on novel degradation technologies for PhC-containing MPWW, with high scores for research on biological methods. Wastewater-based epidemiology has emerged as being consistent with or predictive of the number of confirmed COVID-19 cases. Therefore, the application of MPWW in COVID-19 tracing will be of great interest to environmentalists. These results could guide the future direction of funding agencies and research groups.
Collapse
Affiliation(s)
- Ling Wang
- Department of Nursing, The Second Hospital of Nanjing, Nursing, Nanjing Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, 210003, China
| | - Yixia Xu
- Department of Nursing, The Second Hospital of Nanjing, Nursing, Nanjing Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, 210003, China
| | - Tian Qin
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang, 330031, China
| | - Mengting Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang, 330031, China
| | - Zhiqin Chen
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang, 330031, China
| | - Yalan Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang, 330031, China
| | - Wei Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang, 330031, China.
| | - Xianchuan Xie
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
21
|
Sun S, Wang Q, Wang N, Yang S, Qi H. High-risk antibiotics positively correlated with antibiotic resistance genes in five typical urban wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118296. [PMID: 37267763 DOI: 10.1016/j.jenvman.2023.118296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
Antibiotic resistance genes (ARGs) and antibiotic amount increased within close proximity to human dominated ecosystems. However, few studies assessed the distribution of antibiotics and ARGs in multiple ecosystems especially the different urban wastewater. In this study, the spatial distribution of ARGs and antibiotics across the urban wastewater included domestic, livestock, hospital, pharmaceutical wastewater, influent of the wastewater treatment plant (WWTP) in Northeast China. The q-PCR results showed that ARGs were most abundant in community wastewater and followed by WWTP influent, livestock wastewater, pharmaceutical wastewater and hospital wastewater. The ARG composition differed among the five ecotypes with qnrS was the dominant ARG subtypes in WWTP influent and community wastewater, while sul2 dominant in livestock, hospital, pharmaceutical wastewater. The concentration of antibiotics was closely related to the antibiotic usage and consumption data. In addition to the high concentration of azithromycin at all sampling points, more than half of the antibiotics in livestock wastewater were veterinary antibiotics. However, antibiotics that closely related to humankind such as roxithromycin and sulfamethoxazole accounted for a higher proportion in hospital wastewater (13.6%) and domestic sewage (33.6%), respectively. The ambiguous correlation between ARGs and their corresponding antibiotics was detected. However, antibiotics that exhibited high ecotoxic effects were closely and positively correlated with ARGs and the class 1 integrons (intI1), which indicated that high ecotoxic compounds might affect antimicrobial resistance of bacteria by mediating horizontal gene transfer of ARGs. The coupling mechanism between the ecological risk of antibiotics and bacterial resistance needed to be further studied, and thereby provided a new insight to study the impact of environmental pollutants on ARGs in various ecotypes.
Collapse
Affiliation(s)
- Shaojing Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan, 056038, China.
| | - Qing Wang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan, 056038, China
| | - Na Wang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Shengjuan Yang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan, 056038, China
| | - Hong Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
22
|
Sun R, Liu Y, Li T, Qian ZJ, Zhou C, Hong P, Sun S, Li C. Plastic wastes and surface antibiotic resistance genes pollution in mangrove environments. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:634. [PMID: 37133617 DOI: 10.1007/s10661-023-11312-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 04/25/2023] [Indexed: 05/04/2023]
Abstract
Mangroves are located at the intersection of land and sea and are also heavily affected by plastic wastes. Biofilms of plastic wastes in mangroves are reservoirs for antibiotic resistance genes (ARGs). In this study, plastic wastes and ARG pollution were investigated from three typical mangrove areas in Zhanjiang, South China. Transparent was the dominant colors of plastic wastes in three mangroves. Fragment and film shape accounted for 57.73-88.23% of plastic waste samples in mangroves. In addition, 39.50% of plastic wastes in protected area mangroves are PS. The metagenomic results shows that the 175 ARGs were found on plastic wastes of the three mangroves, the abundance accounting for 91.11% of the total ARGs. The abundance of Vibrio accounted for 2.31% of the total bacteria genera in aquaculture pond area mangrove. Correlation analysis shows that a microbe can carry multiple ARGs that may improve resistance to antibiotics. Microbes are the potential hosts of most ARGs, suggesting that ARGs can be transmitted by microbes. Because the mangroves are closely related to human activities and the high abundance of ARGs on plastic increases the ecological risks, people should improve plastic waste management and prevent the spread of ARGs by reducing plastic pollution.
Collapse
Affiliation(s)
- Ruikun Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yu Liu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ting Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhong-Ji Qian
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518114, Guangdong, China
| | - Chunxia Zhou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518114, Guangdong, China
- School of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Pengzhi Hong
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518114, Guangdong, China
- School of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shengli Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518114, Guangdong, China.
| |
Collapse
|
23
|
Qiu D, Ke M, Zhang Q, Zhang F, Lu T, Sun L, Qian H. Response of microbial antibiotic resistance to pesticides: An emerging health threat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158057. [PMID: 35977623 DOI: 10.1016/j.scitotenv.2022.158057] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
The spread of microbial antibiotic resistance has seriously threatened public health globally. Non-antibiotic stressors have significantly contributed to the evolution of bacterial antibiotic resistance. Although numerous studies have been conducted on the potential risk of pesticide pollution for bacterial antibiotic resistance, a systematic review of these concerns is still lacking. In the present study, we elaborate the mechanism underlying the effects of pesticides on bacterial antibiotic resistance acquisition as well as the propagation of antimicrobial resistance. Pesticide stress enhanced the acquisition of antibiotic resistance in bacteria via various mechanisms, including the activation of efflux pumps, inhibition of outer membrane pores for resistance to antibiotics, and gene mutation induction. Horizontal gene transfer is a major mechanism whereby pesticides influence the transmission of antibiotic resistance genes (ARGs) in bacteria. Pesticides promoted the conjugation transfer of ARGs by increasing cell membrane permeability and increased the proportion of bacterial mobile gene elements, which facilitate the spread of ARGs. This review can improve our understanding regarding the pesticide-induced generation and spread of ARGs and antibiotic resistant bacteria. Moreover, it can be applied to reduce the ecological risks of ARGs in the future.
Collapse
Affiliation(s)
- Danyan Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Fan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
24
|
Pirsaheb M, Moradi N, Hossini H. Sonochemical processes for antibiotics removal from water and wastewater: A systematic review. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Okoye CO, Nyaruaba R, Ita RE, Okon SU, Addey CI, Ebido CC, Opabunmi AO, Okeke ES, Chukwudozie KI. Antibiotic resistance in the aquatic environment: Analytical techniques and interactive impact of emerging contaminants. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:103995. [PMID: 36210048 DOI: 10.1016/j.etap.2022.103995] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic pollution is becoming an increasingly severe threat globally. Antibiotics have emerged as a new class of environmental pollutants due to their expanding usage and indiscriminate application in animal husbandry as growth boosters. Contamination of aquatic ecosystems by antibiotics can have a variety of negative impacts on the microbial flora of these water bodies, as well as lead to the development and spread of antibiotic-resistant genes. Various strategies for removing antibiotics from aqueous systems and environments have been developed. Many of these approaches, however, are constrained by their high operating costs and the generation of secondary pollutants. This review aims to summarize research on the distribution and effects of antibiotics in aquatic environments, their interaction with other emerging contaminants, and their remediation strategy. The ecological risks associated with antibiotics in aquatic ecosystems and the need for more effective monitoring and detection system are also highlighted.
Collapse
Affiliation(s)
- Charles Obinwanne Okoye
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya
| | - Raphael Nyaruaba
- Center for Biosafety Megascience, Wuhan Institute of Virology, CAS, Wuhan, PR China; Organization of African Academic Doctor, Nairobi, Kenya
| | - Richard Ekeng Ita
- Department of Biological Sciences Ritman University, Ikot Ekpene, Akwa Ibom State, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya
| | - Samuel Ukpong Okon
- Department of Marine Science, Akwa Ibom State University, Mkpat Enin, P.M.B. 1167, Nigeria; Department of Ocean Engineering, Ocean College, Zhejiang University, Zhoushan 316021, PR China; Organization of African Academic Doctor, Nairobi, Kenya
| | - Charles Izuma Addey
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, PR China; Organization of African Academic Doctor, Nairobi, Kenya
| | - Chike C Ebido
- Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya
| | | | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China; Organization of African Academic Doctor, Nairobi, Kenya.
| | - Kingsley Ikechukwu Chukwudozie
- Department of Microbiology, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya; Department of Clinical Medicine, School of Medicine, Jiangsu University 212013, PR China.
| |
Collapse
|
26
|
Addae-Nuku DS, Kotey FCN, Dayie NTKD, Osei MM, Tette EMA, Debrah P, Donkor ES. Multidrug-Resistant Bacteria in Hospital Wastewater of the Korle Bu Teaching Hospital in Accra, Ghana. ENVIRONMENTAL HEALTH INSIGHTS 2022; 16:11786302221130613. [PMID: 36311334 PMCID: PMC9597020 DOI: 10.1177/11786302221130613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/15/2022] [Indexed: 06/10/2023]
Abstract
BACKGROUND Antimicrobial resistance (AMR) is one of the top 10 public health threats. One approach to tackling the AMR menace could involve expanding the range of AMR surveillance domains to include hospital wastewater (HWW), a domain that has largely been overlooked by researchers. AIM To evaluate the occurrence of multidrug-resistant bacteria in hospital wastewater of the Korle Bu Teaching Hospital (KBTH). METHODOLOGY This was a longitudinal study involving 288 HWW samples consecutively collected across 12 weeks from the pool of wastewater emanating from 2 critical care units of KBTH-The Child Health Unit and the Maternity Unit-on Mondays and Thursdays, each week. The samples were cultured for bacteria, which were identified using the Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF) technique and subjected to antimicrobial susceptibility testing via the Kirby-Bauer method. RESULTS In total, 294 bacteria of 23 different types, all being Gram-negative, were isolated from the 288 samples. The predominant ones were Escherichia coli (30.6%, n = 90), Klebsiella pneumoniae (11.2%, n = 33), Citrobacter freundii (10.9%, n = 32), Alcaligenes faecalis (5.8%, n = 17), and Pseudomonas mendocina (5.4%, n = 16). The prevalence of multidrug resistance among the isolates was 55.4% (n = 163). Moreover, the prevalence of extended-spectrum beta-lactamase (ESBL) producers was 15.6% (n = 46). E. coli accounted for the most ESBL-producing organisms (28.9%, n = 26). CONCLUSION The wastewater generated by the Maternity and Child Health Units of KBTH harbored a wide range of multidrug resistant bacteria, with a good proportion of these being ESBL producers, and the predominant one being E. coli. The study thus identifies the wastewater of KBTH as an important source of multidrug resistant organisms, and underscores the significance of appropriate treatment of wastewater of the hospital and other clinical, and related settings prior to its discharge.
Collapse
Affiliation(s)
- Daisy S Addae-Nuku
- Department of Medical Microbiology,
University of Ghana Medical School, Accra, Ghana
| | - Fleischer CN Kotey
- Department of Medical Microbiology,
University of Ghana Medical School, Accra, Ghana
- FleRhoLife Research Consult, Teshie,
Accra, Ghana
| | - Nicholas TKD Dayie
- Department of Medical Microbiology,
University of Ghana Medical School, Accra, Ghana
| | - Mary-Magdalene Osei
- Department of Medical Microbiology,
University of Ghana Medical School, Accra, Ghana
- FleRhoLife Research Consult, Teshie,
Accra, Ghana
| | - Edem MA Tette
- Department of Community Health,
University of Ghana Medical School, Accra, Ghana
| | - Philip Debrah
- Department of Pharmaceutics and
Microbiology, School of Pharmacy, College of Health Sciences, University of Ghana,
Legon, Accra, Ghana
| | - Eric S Donkor
- Department of Medical Microbiology,
University of Ghana Medical School, Accra, Ghana
| |
Collapse
|
27
|
Wang N, Xue L, Ding G, Han Y, Feng Y, Liu J, Li N, He W. High concentration of ammonia sensitizes the response of microbial electrolysis cells to tetracycline. WATER RESEARCH 2022; 225:119064. [PMID: 36130438 DOI: 10.1016/j.watres.2022.119064] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Microbial electrolysis cell (MEC) is a promising technology for effective energy conversion of wastewater organics to biogas. Yet, in swine wastewater treatment, the complex contaminants including antibiotics may affect MEC performance, while the high ammonia concentration might increase this risk by increasing cell membrane permeability. In this work, the responses of MECs on tetracycline (TC) with low and high ammonia loadings (80 and 1000 mg L-1) were fully investigated. The TC of 0 to 1 mg L-1 slightly improved MEC performance in current production and electrochemical characteristics with low ammonia loading, while TC ≥ 4 mg L-1 started to show negative effects. Generally, the high ammonia loading sensitized MECs to TC concentration, inducing the current and COD removal of MECs to sharply decline with TC ≥ 0.5 mg L-1. The positive effect of high ammonia loading on MEC due to conductivity increase was counteracted with TC ≥ 1 mg L-1. The co-contamination of TC and ammonia significantly decreased the bioactivity and biomass of anode biofilm. Although the high concentration of co-existing TC and ammonia inhibited MEC performance, the reactors still obtained positive energy feedback. The network analyses indicated that the effluent suspension contributed much to antibiotic resistance gene (ARG) transmission, while the microplastics (MPs) in wastewater greatly raised the risks of ARGs spreading. This work systematically examined the synergetic effects of TC and ammonia and the transmission of ARGs in MEC operation, which is conducive to expediting the application of MECs in swine wastewater treatment.
Collapse
Affiliation(s)
- Naiyu Wang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Lefei Xue
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Guofang Ding
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yu Han
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Weihua He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huang he Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
28
|
Wang Y, Han Y, Li L, Liu J, Yan X. Distribution, sources, and potential risks of antibiotic resistance genes in wastewater treatment plant: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119870. [PMID: 35921944 DOI: 10.1016/j.envpol.2022.119870] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Irrational use of antibiotics produces a large number of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Wastewater treatment plants (WWTPs) act as important sources and sinks of ARGs, and play an important role in their generation, treatment, and dissemination. This study summarizes the types, concentrations, and factors of ARGs in WWTPs, investigates the sources of ARGs in wastewater, compares the removal efficiencies of different treatment processes on ARGs, and analyzes the potential risks of ARGs accumulation in effluent, sludge and their emission into the air. The results show that the main ARGs detected in the influent of WWTPs are the genes resistant to macrolides (ermB, ermF), tetracyclines (tetW, tetA, tetC), sulfonamides (sul1, sul2), and β-lactams (blaOXA, blaTEM). The concentrations of ARGs in the influent of the WWTPs are 2.23 × 102-3.90 × 109 copies/mL. Wastewater quality and microbial community are the dominant factors that affect the distribution characteristics of ARGs. The accumulation of ARGs in effluent, sludge, and aerosols pose potential risks to the regional ecological environment and human health. Based on these results, research trends with respect to ARGs in WWTPs are also prospected.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Junxin Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Xu Yan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| |
Collapse
|
29
|
Effects of varying flux and transmembrane pressure conditions during ceramic ultrafiltration on the infectivity and retention of MS2 bacteriophages. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
Porphyrin@Lignin nanoparticles: Reusable photocatalysts for effective aqueous degradation of antibiotics. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Van LT, Hagiu I, Popovici A, Marinescu F, Gheorghe I, Curutiu C, Ditu LM, Holban AM, Sesan TE, Lazar V. Antimicrobial Efficiency of Some Essential Oils in Antibiotic-Resistant Pseudomonas aeruginosa Isolates. PLANTS 2022; 11:plants11152003. [PMID: 35956481 PMCID: PMC9370326 DOI: 10.3390/plants11152003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
Abstract
Pseudomonas aeruginosa is a non-fermentative Gram-negative opportunistic pathogen, frequently encountered in difficult-to-treat hospital-acquired infections and also wastewaters. The natural resistance of this pathogen, together with the frequent occurrence of multidrug-resistant strains, make current antibiotic therapy inefficient in treating P. aeruginosa infections. Antibiotic therapy creates a huge pressure to select resistant strains in clinical settings but also in the environment, since high amounts of antibiotics are released in waters and soil. Essential oils (EOs) and plant-derived compounds are efficient, ecologic, and sustainable alternatives in the management of various diseases, including infections. In this study, we evaluated the antibacterial effects of four commercial essential oils, namely, tea tree, thyme, sage, and eucalyptus, on 36 P. aeruginosa strains isolated from hospital infections and wastewaters. Bacterial strains were characterized in terms of virulence and antimicrobial resistance. The results show that most strains expressed soluble pore toxin virulence factors such as lecithinase (89–100%) and lipase (72–86%). All P. aeruginosa strains were positive for alginate encoding gene and 94.44% for protease IV; most of the strains were exotoxin producers (i.e., 80.56% for the ExoS gene, 77.78% for the ExoT gene, while the ExoU gene was present in 38.98% of the strains). Phospholipase-encoding genes (plc) were identified in 91.67/86.11% of the cases (plcH/plcN genes). A high antibiotic resistance level was identified, most of the strains being resistant to cabapenems and cephalosporins. Cabapenem resistance was higher in hospital and hospital wastewater strains (55.56–100%) as compared to those in urban wastewater. The most frequently encountered encoding genes were for extended spectrum β-lactamases (ESBLs), namely, blaCTX-M (83.33% of the strains), blaSHV (80.56%), blaGES (52.78%), and blaVEB (13.89%), followed by carbapenemase-encoding genes (blaVIM, 8.33%). Statistical comparison of the EOs’ antimicrobial results showed that thyme gave the lowest minimum inhibitory concentrations (MIC) and minimum biofilm eradication concentrations (MBEC) in P. aeruginosa-resistant isolates, making this EO a competitive candidate for the development of efficient and ecologic antimicrobial alternatives.
Collapse
Affiliation(s)
- Luc Tran Van
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (L.T.V.); (A.P.); (F.M.); (I.G.); (L.M.D.); (A.-M.H.); (T.E.S.); (V.L.)
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Ilinca Hagiu
- The Overlake Private School, 108th St., Redmond, WA 98053, USA;
| | - Adelina Popovici
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (L.T.V.); (A.P.); (F.M.); (I.G.); (L.M.D.); (A.-M.H.); (T.E.S.); (V.L.)
| | - Florica Marinescu
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (L.T.V.); (A.P.); (F.M.); (I.G.); (L.M.D.); (A.-M.H.); (T.E.S.); (V.L.)
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Irina Gheorghe
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (L.T.V.); (A.P.); (F.M.); (I.G.); (L.M.D.); (A.-M.H.); (T.E.S.); (V.L.)
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Carmen Curutiu
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (L.T.V.); (A.P.); (F.M.); (I.G.); (L.M.D.); (A.-M.H.); (T.E.S.); (V.L.)
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Correspondence:
| | - Lia Mara Ditu
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (L.T.V.); (A.P.); (F.M.); (I.G.); (L.M.D.); (A.-M.H.); (T.E.S.); (V.L.)
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alina-Maria Holban
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (L.T.V.); (A.P.); (F.M.); (I.G.); (L.M.D.); (A.-M.H.); (T.E.S.); (V.L.)
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Tatiana Eugenia Sesan
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (L.T.V.); (A.P.); (F.M.); (I.G.); (L.M.D.); (A.-M.H.); (T.E.S.); (V.L.)
| | - Veronica Lazar
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania; (L.T.V.); (A.P.); (F.M.); (I.G.); (L.M.D.); (A.-M.H.); (T.E.S.); (V.L.)
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
32
|
Samanta P, Horn H, Saravia F. Removal of Diverse and Abundant ARGs by MF-NF Process from Pig Manure and Digestate. MEMBRANES 2022; 12:membranes12070661. [PMID: 35877864 PMCID: PMC9317629 DOI: 10.3390/membranes12070661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023]
Abstract
Antimicrobial resistances are emerging as one main threat to worldwide human health and are expected to kill 10 million people by 2050. Intensive livestock husbandry, along with biogas digestate, are considered as one of the biggest ARG reservoirs. Despite major concerns, little information is available on the diversity and abundance of various ARGs in small to large scale pig farms and biogas digestate slurry in Germany, followed by their consequent removal using microfiltration (MF)-nanofiltration (NF) process. Here, we report the identification and quantification of 189 ARGs in raw manure and digestate samples, out of which 66 ARGs were shared among manures and 53 ARGs were shared among both manure and digestate samples. The highest reported total ARG copy numbers in a single manure sampling site was 1.15 × 108 copies/100 µL. In addition, we found the absolute concentrations of 37 ARGs were above 105 copies/100 μL. Filtration results showed that the highly concentrated ARGs (except aminoglycoside resistance ARGs) in feed presented high log retention value (LRV) from 3 to as high as 5 after the MF-NF process. Additionally, LRV below 2 was noticed where the initial absolute ARG concentrations were ≤103 copies/100 μL. Therefore, ARG removal was found to be directly proportional to its initial concentration in the raw manure and in digestate samples. Consequently, some ARGs (tetH, strB) can still be found within the permeate of NF with up to 104 copies/100 μL.
Collapse
Affiliation(s)
- Prantik Samanta
- DVGW-Research Center at the Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany; (H.H.); (F.S.)
- Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany
- Correspondence:
| | - Harald Horn
- DVGW-Research Center at the Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany; (H.H.); (F.S.)
- Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany
| | - Florencia Saravia
- DVGW-Research Center at the Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany; (H.H.); (F.S.)
| |
Collapse
|
33
|
Jang J, Park J, Hwang CY, Choi J, Shin J, Kim YM, Cho KH, Kim JH, Lee YM, Lee BY. Abundance and diversity of antibiotic resistance genes and bacterial communities in the western Pacific and Southern Oceans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153360. [PMID: 35085628 DOI: 10.1016/j.scitotenv.2022.153360] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the abundance and diversity of antibiotic resistance genes (ARGs) and the composition of bacterial communities along a transect covering the western Pacific Ocean (36°N) to the Southern Ocean (74°S) using the Korean icebreaker R/V Araon (total cruise distance: 14,942 km). The relative abundances of ARGs and bacteria were assessed with quantitative PCR and next generation sequencing, respectively. The absolute abundance of ARGs was 3.0 × 106 ± 1.6 × 106 copies/mL in the western Pacific Ocean, with the highest value (7.8 × 106 copies/mL) recorded at a station in the Tasman Sea (37°S). The absolute abundance of ARGs in the Southern Ocean was 1.8-fold lower than that in the western Pacific Ocean, and slightly increased (0.7-fold) toward Terra Nova Bay in Antarctica, possibly resulting from natural terrestrial sources or human activity. β-Lactam and tetracycline resistance genes were dominant in all samples (88-99%), indicating that they are likely the key ARGs in the ocean. Correlation and network analysis showed that Bdellovibrionota, Bacteroidetes, Cyanobacteria, Margulisbacteria, and Proteobacteria were positively correlated with ARGs, suggesting that these bacteria are the most likely ARG carriers. This study highlights the latitudinal profile of ARG distribution in the open ocean system and provides insights that will help in monitoring emerging pollutants on a global scale.
Collapse
Affiliation(s)
- Jiyi Jang
- Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea; Ulsan National Institute of Science and Technology, 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, South Korea
| | - Jiyeon Park
- Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea.
| | - Chung Yeon Hwang
- Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jinhee Choi
- Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea
| | - Jingyeong Shin
- Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Young Mo Kim
- Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Kyung Hwa Cho
- Ulsan National Institute of Science and Technology, 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, South Korea
| | - Jung-Hyun Kim
- Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea
| | - Yung Mi Lee
- Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea
| | - Bang Yong Lee
- Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea
| |
Collapse
|
34
|
Zhang C, Zhao X, Wang C, Hakizimana I, Crittenden JC, Laghari AA. Electrochemical flow-through disinfection reduces antibiotic resistance genes and horizontal transfer risk across bacterial species. WATER RESEARCH 2022; 212:118090. [PMID: 35085844 DOI: 10.1016/j.watres.2022.118090] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/08/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), as emerging pollutants, are released into environment, increasing the risk of horizontal gene transfer (HGT). However, a limited number of studies quantified the effects of ARB disinfection on the HGT risk. This study investigated the inactivation of E. coli 10667 (sul) and the release and removal of ARGs using an electrochemical flow-through reactor (EFTR). Furthermore, the transfer frequencies and potential mechanisms of HGT after disinfection were explored using non-resistant E. coli GMCC 13373 as the recipient and E. coli DH5α carrying plasmid RP4 as the donor. A threshold of current density (0.25 mA/cm2) was observed to destroy cells and release intracellular ARGs (iARGs) to increase extracellular ARGs (eARGs) concentration. The further increase in the current density to 1 mA/cm2 resulted in the decline of eARGs concentration due to the higher degradation rate of eARGs than the release rate of iARGs. The performance of ARGs degradation and HGT frequency by EFTR were compared with those of conventional disinfection processes, including chlorination and ultraviolet radiation (UV). A higher ARGs degradation (83.46%) was observed by EFTR compared with that under chlorination (10.23%) and UV (27.07%). Accordingly, EFTR reduced the HGT frequency (0.69) of released ARGs into the recipient (Forward transfer), and the value was lower than that by chlorination (2.69) and UV (1.73). Meanwhile, the surviving injured E. coli 10667 (sul) with increased cell permeability was transferred by plasmid RP4 from the donor (Reverse transfer) with a higher frequency of 0.33 by EFTR compared with that under chlorination (0.26) and UV (0.16). In addition, the sul3 gene was the least resistant to EFTR than sul1 and sul2 gene. These findings provide important insights into the mechanism of HGT between the injured E. coli 10667 (sul) and environmental bacteria. EFTR is a promising disinfection technology for preventing the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Cong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| | - Israel Hakizimana
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - John C Crittenden
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Azhar Ali Laghari
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
35
|
Luo J, Cheng X, Su Y, Zhang L, Du W, Bao X, Huang W, Feng Q, Cao J, Wu Y. Metagenomic assembly deciphered the type-dependent effects of surfactants on the fates of antibiotics resistance genes during sludge fermentation and the underlying mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150822. [PMID: 34627892 DOI: 10.1016/j.scitotenv.2021.150822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Waste activated sludge (WAS) is an important reservoir of antibiotic resistance genes (ARGs). However, the interactive effects of co-existed substances in WAS on ARGs fates have yet to be disclosed. This study demonstrated the type-dependent effects of surfactants (potentially effective chemicals for WAS disposal) on the reduction of ARGs during WAS fermentation, which followed the order of linear alkylbenzene sulphonates (LAS) > alkyl polyglucoside (APG) > hexadecyl trimethyl ammonium bromide (HTAB). Interestingly, the ratio of ARGs affiliated to efflux pump showed an upward trend in the surfactant-treated reactor. Mechanistic investigations revealed that the extracellular polymeric substances (EPS) destruction induced by surfactants increased the permeability of bacterial cells and caused the ARGs being released and susceptible for subsequent elimination. Besides, the surfactants significantly altered the microbial community, resulting in the ARGs reduction via changing the potential hosts. Also, the metabolic pathways participated in the dissemination of ARGs were remarkably down-regulated, thereby resulting in the reduction of ARGs abundances. This work broadened the understanding of ARGs fates during WAS fermentation and provided insights on the interactive functions of exogenous chemicals in multiple matrics.
Collapse
Affiliation(s)
- Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Xiaoshi Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China University, Shanghai 200241, China
| | - Le Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Wei Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Xingchen Bao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
36
|
Cai L, Sun J, Yao F, Yuan Y, Zeng M, Zhang Q, Xie Q, Wang S, Wang Z, Jiao X. Antimicrobial resistance bacteria and genes detected in hospital sewage provide valuable information in predicting clinical antimicrobial resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148815. [PMID: 34247085 DOI: 10.1016/j.scitotenv.2021.148815] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 02/05/2023]
Abstract
Extensive use of antibiotics is significantly associated with development of antibiotic-resistant (AR) bacteria. However, their causal relationships have not been adequately investigated, especially in human population and hospitals. Our aims were to understand clinical AR through revealing co-occurrence patterns between antibiotic-resistant bacteria and genes (ARB and ARGs), and their association with antibiotic use, and to consider impact of ARB and ARGs on environmental and human health. Antibiotic usage was calculated based on the actual consumption in our target hospital. ARB was identified by culture. In isolates collected from hospital sewage, bacterial-specific DNA sequences and ARGs were determined using metagenomics. Our data revealed that the use of culture-based single-indicator-strain approaches only captured ARB in 16.17% of the infectious samples. On the other hand, 1573 bacterial species and 885 types of ARGs were detected in the sewage. Furthermore, hospital use of antibiotics influenced the resistance profiles, but the strength varied among bacteria. From our metagenomics analyses, ARGs for aminoglycosides were the most common, followed by sulfonamide, tetracycline, phenicol, macrolides, and quinolones, comprising 82.6% of all ARGs. Association analyses indicated that 519 pairs of ARGs were significantly correlated with ARB species (r > 0.8). The co-occurrence patterns of bacteria-ARGs mirrored the AR in the clinic. In conclusion, our systematic investigation further emphasized that antibiotic usage in hospital significantly influenced the abundance and types of ARB and ARGs in dose- and time-dependent manners which, in turn, mirrored clinical AR. In addition, our data provide novel information on development of certain ARB with multiple antibiotic resistance. These ARB and ARGs from sewage can also be disseminated into the environment and communities to create health problems. Therefore, it would be helpful to use such data to develop improved predictive risk model of AR, to enhance effective use of antibiotics, and to reduce environmental pollution.
Collapse
Affiliation(s)
- Leshan Cai
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Jiayu Sun
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Fen Yao
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yumeng Yuan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Mi Zeng
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Qiaoxin Zhang
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Qingdong Xie
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Shiwei Wang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, Jiangsu 225000, China
| | - Zhen Wang
- Institute of Marine Sciences, Shantou University, Shantou 515063, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China.
| |
Collapse
|
37
|
K.T V, Ram Achar R, Siriger S. A review on emerging micropollutants: sources, environmental concentration and toxicity. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.04.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Every minute, the environment is filled with pollutants of various types, including physical, chemical, and biological. A new threat has emerged in recent years due to human activity, which is of significant concern. These pollutants are not like conventional pollutants but can alter the physiology of living things, and hence these are named emerging pollutants. The pollutant sources include crop protection chemicals, personal care products, antimicrobial mixtures, active pharmaceutical ingredients (API). These compounds are biologically crucial because their minute quantity can also disrupt an individual's endocrine system, and hence they are also called endocrine disruptors. This current work reviews many aspects, including source, problems, and legislative solutions that have been farmed to cope with the current situation of emerging micropollutants.
Collapse
Affiliation(s)
- Vadiraj K.T
- Department of Environmental Science, JSS Academy of Higher Education and Research, Mysore, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru-570 015, Karnataka, India
| | - Sindhuja Siriger
- Department of Studies in Environmental Science, University of Mysore, Mysuru, India
| |
Collapse
|
38
|
Chen P, Guo X, Li S, Li F. A review of the bioelectrochemical system as an emerging versatile technology for reduction of antibiotic resistance genes. ENVIRONMENT INTERNATIONAL 2021; 156:106689. [PMID: 34175779 DOI: 10.1016/j.envint.2021.106689] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic contamination and the resulting resistance genes have attracted worldwide attention because of the extensive overuse and abuse of antibiotics, which seriously affects the environment as well as human health. Bioelectrochemical system (BES), a potential avenue to be explored, can alleviate antibiotic pollution and reduce antibiotic resistance genes (ARGs). This review mainly focuses on analyzing the possible reasons for the good performance of ARG reduction by BESs and potential ways to improve its performance on the basis of revealing the generation and transmission of ARGs in BES. This system reduces ARGs through two pathways: (1) the contribution of BES to the low selection pressure of ARGs caused by the efficient removal of antibiotics, and (2) inhibition of ARG transmission caused by low sludge yield. To promote the reduction of ARGs, incorporating additives, improving the removal rate of antibiotics by adjusting the environmental conditions, and controlling the microbial community in BES are proposed. Furthermore, this review also provides an overview of bioelectrochemical coupling systems including the BES coupled with the Fenton system, BES coupled with constructed wetland, and BES coupled with photocatalysis, which demonstrates that this method is applicable in different situations and conditions and provides inspiration to improve these systems to control ARGs. Finally, the challenges and outlooks are addressed, which is constructive for the development of technologies for antibiotic and ARG contamination remediation and blocking risk migration.
Collapse
Affiliation(s)
- Ping Chen
- Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, China
| | - Xiaoyan Guo
- Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, China
| | - Shengnan Li
- Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Fengxiang Li
- Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, China.
| |
Collapse
|
39
|
Uluseker C, Kaster KM, Thorsen K, Basiry D, Shobana S, Jain M, Kumar G, Kommedal R, Pala-Ozkok I. A Review on Occurrence and Spread of Antibiotic Resistance in Wastewaters and in Wastewater Treatment Plants: Mechanisms and Perspectives. Front Microbiol 2021; 12:717809. [PMID: 34707579 PMCID: PMC8542863 DOI: 10.3389/fmicb.2021.717809] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/15/2021] [Indexed: 11/15/2022] Open
Abstract
This paper reviews current knowledge on sources, spread and removal mechanisms of antibiotic resistance genes (ARGs) in microbial communities of wastewaters, treatment plants and downstream recipients. Antibiotic is the most important tool to cure bacterial infections in humans and animals. The over- and misuse of antibiotics have played a major role in the development, spread, and prevalence of antibiotic resistance (AR) in the microbiomes of humans and animals, and microbial ecosystems worldwide. AR can be transferred and spread amongst bacteria via intra- and interspecies horizontal gene transfer (HGT). Wastewater treatment plants (WWTPs) receive wastewater containing an enormous variety of pollutants, including antibiotics, and chemicals from different sources. They contain large and diverse communities of microorganisms and provide a favorable environment for the spread and reproduction of AR. Existing WWTPs are not designed to remove micropollutants, antibiotic resistant bacteria (ARB) and ARGs, which therefore remain present in the effluent. Studies have shown that raw and treated wastewaters carry a higher amount of ARB in comparison to surface water, and such reports have led to further studies on more advanced treatment processes. This review summarizes what is known about AR removal efficiencies of different wastewater treatment methods, and it shows the variations among different methods. Results vary, but the trend is that conventional activated sludge treatment, with aerobic and/or anaerobic reactors alone or in series, followed by advanced post treatment methods like UV, ozonation, and oxidation removes considerably more ARGs and ARB than activated sludge treatment alone. In addition to AR levels in treated wastewater, it examines AR levels in biosolids, settled by-product from wastewater treatment, and discusses AR removal efficiency of different biosolids treatment procedures. Finally, it puts forward key-points and suggestions for dealing with and preventing further increase of AR in WWTPs and other aquatic environments, together with a discussion on the use of mathematical models to quantify and simulate the spread of ARGs in WWTPs. Mathematical models already play a role in the analysis and development of WWTPs, but they do not consider AR and challenges remain before models can be used to reliably study the dynamics and reduction of AR in such systems.
Collapse
Affiliation(s)
- Cansu Uluseker
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Krista Michelle Kaster
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Kristian Thorsen
- Department of Electrical Engineering and Computer Science, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Daniel Basiry
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Sutha Shobana
- Department of Chemistry and Research Centre, Aditanar College of Arts and Science, Tiruchendur, India
| | - Monika Jain
- Department of Natural Resource Management, College of Forestry, Banda University of Agricultural and Technology, Banda, India
| | - Gopalakrishnan Kumar
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Roald Kommedal
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Ilke Pala-Ozkok
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| |
Collapse
|
40
|
Chaves-Barquero LG, Humeniuk BW, Luong KH, Cicek N, Wong CS, Hanson ML. Crushed recycled glass as a substrate for constructed wetland wastewater treatment: a case study of its potential to facilitate pharmaceutical removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52306-52318. [PMID: 34003437 DOI: 10.1007/s11356-021-14483-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
The use of recycled glass as a substrate for constructed wetlands was assessed through two studies. The first study examined the dissipation of atenolol, carbamazepine, and sulfamethoxazole in mesocosm-modeled wetlands using glass or limestone gravel as substrates, with or without cattails (Typha spp.). Following pseudo-first-order kinetics, atenolol dissipated the fastest from the water surface of the mesocosms (t1/2~1 day), followed by sulfamethoxazole (t1/2~14 days), and carbamazepine (t1/2~48 days), with no significant differences across treatments. Increased half-lives were observed at greater depth, likely due to light screening. A Monte Carlo sensitivity analysis diagnosed sunlight absorption rates and second-order hydroxyl-mediated indirect photolysis rates to be the main sources of uncertainty in our dissipation rate estimates, compared to our observed rates. The second study examined in situ pharmaceutical removal in tertiary pilot-scale subsurface filters made of crushed recycled glass or sand in a wastewater treatment facility in Manitoba, Canada. Glass and sand showed no significant differences for pharmaceutical removals; atenolol and metoprolol were removed below limits of detection, while carbamazepine and sulfamethoxazole persisted over a retention time of 24 h. Overall, recycled glass performed similarly to traditional substrates for wetland-based wastewater treatment.
Collapse
Affiliation(s)
- Luis G Chaves-Barquero
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
- Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago, 30101, Costa Rica.
| | - Braedon W Humeniuk
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Kim H Luong
- Richardson College for the Environment, The University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Nazim Cicek
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6, Canada
| | - Charles S Wong
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago, 30101, Costa Rica
- Richardson College for the Environment, The University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, 92626, USA
| | - Mark L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
41
|
Zhang D, Peng Y, Chan CL, On H, Wai HKF, Shekhawat SS, Gupta AB, Varshney AK, Chuanchuen R, Zhou X, Xia Y, Liang S, Fukuda K, Medicherla KM, Tun HM. Metagenomic Survey Reveals More Diverse and Abundant Antibiotic Resistance Genes in Municipal Wastewater Than Hospital Wastewater. Front Microbiol 2021; 12:712843. [PMID: 34526976 PMCID: PMC8435860 DOI: 10.3389/fmicb.2021.712843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
Alongside antibiotic resistance, co-selection of antibiotics, biocides, and metal resistance is a growing concern. While hospital wastewater is considered a hotspot for antibiotic-resistant bacteria (ARB) and genes (ARGs), the scenario in India, one of the biggest consumers of antibiotics, remains poorly described. In this study, we used metagenomic sequencing to characterize ARGs and biocide/metal resistance genes (BMRGs) in four wastewater treatment plants (WWTPs) in Jaipur City of India. We observed a significantly lower richness and abundance of ARGs in the influent of a WWTP exclusively receiving hospital wastewater when compared to other three WWTPs involving municipal wastewater treatment. Several tetracycline and macrolide-lincosamide-streptogramin resistance genes were enriched in influents of these three municipal wastewater-related treatment plants, whereas hospital wastewater had a higher abundance of genes conferring resistance to disinfectant-related compounds such as synergize and wex-cide-128, reflecting the patterns of antibiotic/disinfectant use. Of note, in the wastewater system with more chemicals, there was a strong correlation between the numbers of ARGs and BMRGs potentially harbored by common hosts. Our study highlights significant influxes of ARGs from non-hospital sources in Jaipur City, and thus more attention should be paid on the emergence of ARGs in general communities.
Collapse
Affiliation(s)
- Dengwei Zhang
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China.,HKU-Pasteur Research Pole, University of Hong Kong, Hong Kong SAR, China
| | - Ye Peng
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China.,HKU-Pasteur Research Pole, University of Hong Kong, Hong Kong SAR, China
| | - Chak-Lun Chan
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China.,HKU-Pasteur Research Pole, University of Hong Kong, Hong Kong SAR, China
| | - Hilda On
- HKU-Pasteur Research Pole, University of Hong Kong, Hong Kong SAR, China
| | - Hogan Kok-Fung Wai
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China.,HKU-Pasteur Research Pole, University of Hong Kong, Hong Kong SAR, China
| | | | | | - Alok Kumar Varshney
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Jaipur, India.,Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Mesra, Ranchi, India
| | - Rungtip Chuanchuen
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Xudong Zhou
- Institute of Social and Family Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yankai Xia
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Suisha Liang
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China.,HKU-Pasteur Research Pole, University of Hong Kong, Hong Kong SAR, China
| | - Keiji Fukuda
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Krishna Mohan Medicherla
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Jaipur, India.,Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Mesra, Ranchi, India
| | - Hein M Tun
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China.,HKU-Pasteur Research Pole, University of Hong Kong, Hong Kong SAR, China.,School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
42
|
Jiang J, Wang H, Zhang S, Li S, Zeng W, Li F. The influence of external resistance on the performance of microbial fuel cell and the removal of sulfamethoxazole wastewater. BIORESOURCE TECHNOLOGY 2021; 336:125308. [PMID: 34044244 DOI: 10.1016/j.biortech.2021.125308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
Microbial fuel cells (MFCs) are promising equipment for simultaneous treatment of sewage and power generation. External resistance (Rext) plays a crucial impact in the performance of MFCs in antibiotic wastewater treatment and antibiotic resistance genes (ARGs) reduction. In this study, Rext and whether to add 20 mg/L sulfamethoxazole (SMX) as variables, it was observed that the performance of several chemical properties of MFCs was optimal when Rext was 1000 Ω. The power density before and after addition of SMX was 1220.5 ± 24.5 mW/m2 and 1186.2 ± 9.2 mW/m2, respectively; Furthermore, the degradation rate of SMX was as high as 87.52 ± 1.97% within 48 h. High-throughput sequencing results showed that both Rext and SMX affected the microbial community and relative abundance of the phylum and genera. Meanwhile, the MFCs with 1000 Ω Rext generated less the targeted ARGs. Experimental results showed that 1000 Ω was the most suitable Rext for MFCs in the treatment of antibiotic wastewater.
Collapse
Affiliation(s)
- Jiwei Jiang
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Haonan Wang
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Shixuan Zhang
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Shengnan Li
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Wenlu Zeng
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
43
|
Avershina E, Shapovalova V, Shipulin G. Fighting Antibiotic Resistance in Hospital-Acquired Infections: Current State and Emerging Technologies in Disease Prevention, Diagnostics and Therapy. Front Microbiol 2021; 12:707330. [PMID: 34367112 PMCID: PMC8334188 DOI: 10.3389/fmicb.2021.707330] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
Rising antibiotic resistance is a global threat that is projected to cause more deaths than all cancers combined by 2050. In this review, we set to summarize the current state of antibiotic resistance, and to give an overview of the emerging technologies aimed to escape the pre-antibiotic era recurrence. We conducted a comprehensive literature survey of >150 original research and review articles indexed in the Web of Science using "antimicrobial resistance," "diagnostics," "therapeutics," "disinfection," "nosocomial infections," "ESKAPE pathogens" as key words. We discuss the impact of nosocomial infections on the spread of multi-drug resistant bacteria, give an overview over existing and developing strategies for faster diagnostics of infectious diseases, review current and novel approaches in therapy of infectious diseases, and finally discuss strategies for hospital disinfection to prevent MDR bacteria spread.
Collapse
Affiliation(s)
- Ekaterina Avershina
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
- Laboratory or Postgenomic Technologies, Izmerov Research Institute of Occupational Health, Moscow, Russia
| | - Valeria Shapovalova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Centre for Strategic Planning of FMBA of Russia, Moscow, Russia
| | - German Shipulin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Centre for Strategic Planning of FMBA of Russia, Moscow, Russia
| |
Collapse
|
44
|
Colorimetric Sensing of Amoxicillin Facilitated by Molecularly Imprinted Polymers. Polymers (Basel) 2021; 13:polym13132221. [PMID: 34279364 PMCID: PMC8271505 DOI: 10.3390/polym13132221] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 12/02/2022] Open
Abstract
The scope of the presented research orientates itself towards the development of a Molecularly Imprinted Polymer (MIP)-based dye displacement assay for the colorimetric detection of the antibiotic amoxicillin in aqueous medium. With this in mind, the initial development of an MIP capable of such a task sets focus on monolithic bulk polymerization to assess monomer/crosslinker combinations that have potential towards the binding of amoxicillin. The best performing composition (based on specificity and binding capacity) is utilized in the synthesis of MIP particles by emulsion polymerization, yielding particles that prove to be more homogenous in size and morphology compared to that of the crushed monolithic MIP, which is an essential trait when it comes to the accuracy of the resulting assay. The specificity and selectivity of the emulsion MIP proceeds to be highlighted, demonstrating a higher affinity towards amoxicillin compared to other compounds of the aminopenicillin class (ampicillin and cloxacillin). Conversion of the polymeric receptor is then undertaken, identifying a suitable dye for the displacement assay by means of binding experiments with malachite green, crystal violet, and mordant orange. Once identified, the optimal dye is then loaded onto the synthetic receptor, and the displaceability of the dye deduced by means of a dose response experiment. Alongside the sensitivity, the selectivity of the assay is scrutinized against cloxacillin and ampicillin. Yielding a dye displacement assay that can be used (semi-)quantitatively in a rapid manner.
Collapse
|
45
|
Li S, Zhang C, Li F, Hua T, Zhou Q, Ho SH. Technologies towards antibiotic resistance genes (ARGs) removal from aquatic environment: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125148. [PMID: 33486226 DOI: 10.1016/j.jhazmat.2021.125148] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/13/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Antibiotic resistance genes (ARGs) have been recognized as emerging pollutants that are widely distributed and accumulated in most of aquatic environment. Although many ARGs-removal technologies are employed, a corresponding discussion of merits and limitations of known technologies is still currently lacking. More importantly, the removal mechanisms of ARGs remain unclear, hindering their ecological feasibility. Thus, further in-depth studies are highly required. In this review, the occurrence and risk of ARGs in aquatic environment are introduced, and the main routes and potential impacts of ARGs dissemination are enumerated. In addition, several novel ARGs detection methods are critically reviewed. Notably, to ensure greater applicability of these technologies, systematic information on how recent technologies impact the ARGs removal and control are comprehensively compared and summarized. Finally, future research directions to alleviate the risk of ARGs in aquatic environment are briefly introduced. Taken together, this review provides useful information to facilitate the development of innovative and feasible ARGs removal technologies and increase their economic viability and ecological sustainability.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China; College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin 300350 China
| | - Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin 300350 China
| | - Tao Hua
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin 300350 China
| | - Qixing Zhou
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin 300350 China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
46
|
Lu H, Wang T, Lu S, Liu H, Wang H, Li C, Liu X, Guo X, Zhao X, Liu F. Performance and bacterial community dynamics of hydroponically grown Iris pseudacorus L. during the treatment of antibiotic-enriched wastewater at low/normal temperature. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:111997. [PMID: 33582416 DOI: 10.1016/j.ecoenv.2021.111997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Antibiotics are widely detected in the water environment, posing a serious threat to the health of humans and animals. The effect of levofloxacin (LOFL) on pollutant removal and the difference in the influence mechanisms at normal and low temperatures in constructed wetlands are worth discussing. A hydroponic culture experiment was designed with Iris pseudacorus L. at low and normal temperatures. LOFL (0-100 µg/L) was added to the systems. The results indicated that the removal of pollutants was affected most by temperature, followed by LOFL concentration. At the same concentration of LOFL, the pollutant removal rate was significantly higher at normal temperature than at low temperature. Low concentrations of LOFL promoted the degradation of pollutants except TN under normal-temperature conditions. Compared with the results at low temperature, the bacterial community richness was higher and the diversity of bacterial communities was lower under normal-temperature conditions. The genera and the function of bacteria were greatly affected by antibiotic concentration, temperature and test time. A series of microorganisms resistant to antibiotics and low temperature were identified in this study. The results will provide valuable information and a reference for our understanding of the ecological effects of LOFL.
Collapse
Affiliation(s)
- Hongbin Lu
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Tao Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Environmental Science and Engineering, Liaoning Technical University, Fuxin 123000, PR China
| | - Shaoyong Lu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Huaqing Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan 250100, PR China
| | - Huanhua Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Chaojun Li
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Xiaohui Liu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xiaochun Guo
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xiaoliang Zhao
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin 123000, PR China
| | - Fuchun Liu
- College of Life Science, Cangzhou Normal University, Cangzhou 061001, PR China
| |
Collapse
|
47
|
He Y, Zhang L, Jiang L, Wagner T, Sutton NB, Ji R, Langenhoff AAM. Improving removal of antibiotics in constructed wetland treatment systems based on key design and operational parameters: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124386. [PMID: 33144002 DOI: 10.1016/j.jhazmat.2020.124386] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/03/2020] [Accepted: 10/23/2020] [Indexed: 05/12/2023]
Abstract
While removal of antibiotics in constructed wetland treatment systems (CWTS) has been described previously, few studies examined the synergistic effect of multiple design and operational parameters for improving antibiotic removal. This review describes the removal of 35 widely used antibiotics in CWTS covering the most common design parameters (flow configuration, substrate, plants) and operational parameters (hydraulic retention time/hydraulic loading rates, feeding mode, aeration, influent quality), and discusses how to tailor those parameters for improving antibiotic removal based on complex removal mechanisms. To achieve an overall efficient removal of antibiotics in CWTS, our principal component analysis indicated that optimization of flow configuration, selection of plant species, and compensation for low microbial activity at low temperature is the priority strategy. For instance, a hybrid-CWTS that integrates the advantages of horizontal and vertical subsurface flow CWTS may provide a sufficient removal performance at reasonable cost and footprint. To target removal of specific antibiotics, future research should focus on elucidating key mechanisms for their removal to guide optimization of the design and operational parameters. More efficient experimental designs (e.g., the Box-Behnken design) are recommended to determine the settings of the key parameters. These improvements would promote development of this environmentally friendly and cost-efficient technology for antibiotic removal.
Collapse
Affiliation(s)
- Yujie He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Avenue 163, 210023 Nanjing, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Beifeng Road, 362000 Quanzhou China
| | - Li Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Avenue 163, 210023 Nanjing, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Beifeng Road, 362000 Quanzhou China
| | - Longxue Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Avenue 163, 210023 Nanjing, China
| | - Thomas Wagner
- Department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Nora B Sutton
- Department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Xianlin Avenue 163, 210023 Nanjing, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Beifeng Road, 362000 Quanzhou China.
| | - Alette A M Langenhoff
- Department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
48
|
Characterization of Environmental and Cultivable Antibiotic-Resistant Microbial Communities Associated with Wastewater Treatment. Antibiotics (Basel) 2021; 10:antibiotics10040352. [PMID: 33810449 PMCID: PMC8066808 DOI: 10.3390/antibiotics10040352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/04/2023] Open
Abstract
Bacterial resistance to antibiotics is a growing global concern, threatening human and environmental health, particularly among urban populations. Wastewater treatment plants (WWTPs) are thought to be “hotspots” for antibiotic resistance dissemination. The conditions of WWTPs, in conjunction with the persistence of commonly used antibiotics, may favor the selection and transfer of resistance genes among bacterial populations. WWTPs provide an important ecological niche to examine the spread of antibiotic resistance. We used heterotrophic plate count methods to identify phenotypically resistant cultivable portions of these bacterial communities and characterized the composition of the culturable subset of these populations. Resistant taxa were more abundant in raw sewage and wastewater before the biological aeration treatment stage. While some antibiotic-resistant bacteria (ARB) were detectable downstream of treated wastewater release, these organisms are not enriched relative to effluent-free upstream water, indicating efficient removal during treatment. Combined culture-dependent and -independent analyses revealed a stark difference in community composition between culturable fractions and the environmental source material, irrespective of culturing conditions. Higher proportions of the environmental populations were recovered than predicted by the widely accepted 1% culturability paradigm. These results represent baseline abundance and compositional data for ARB communities for reference in future studies addressing the dissemination of antibiotic resistance associated with urban wastewater treatment ecosystems.
Collapse
|
49
|
Chaturvedi P, Shukla P, Giri BS, Chowdhary P, Chandra R, Gupta P, Pandey A. Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: A review on emerging contaminants. ENVIRONMENTAL RESEARCH 2021; 194:110664. [PMID: 33400949 DOI: 10.1016/j.envres.2020.110664] [Citation(s) in RCA: 211] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/02/2020] [Accepted: 12/20/2020] [Indexed: 05/24/2023]
Abstract
Antibiotic resistance is a global health emergency linked to unrestrained use of pharmaceutical and personal care products (PPCPs) as prophylactic agent and therapeutic purposes across various industries. Occurrence of pharmaceuticals are identified in ground water, surface water, soils, and wastewater treatment plants (WWTPs) in ng/L to μg/L concentration range. The prevalence of organic compounds including antimicrobial agents, hormones, antibiotics, preservatives, disinfectants, synthetic musks etc. in environment have posed serious health concerns. The aim of this review is to elucidate the major sources accountable for emergence of antibiotic resistance. For this purpose, variety of introductory sources and fate of PPCPs in aquatic environment including human and veterinary wastes, aquaculture and agriculture related wastes, and other anthropogenic activities have been discussed. Furthermore, genetic and enzymatic factors responsible for transfer and appearance of antibiotic resistance genes are presented. Ecotoxicity of PPCPs has been studied in environment in order to present risk imposed to human and ecological health. As per published literature reports, the removal of antibiotics and related traces being difficult, couples the possibility of emergence of antibiotic resistance and hence sustainability in global water resources. Therefore, research on environmental behavior and control strategies should be conducted along with assessing their chronic toxicity to identify potential human and ecological risks.
Collapse
Affiliation(s)
- Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Biotechnology, National Institute of Technology-Raipur, G.E. Road, Raipur, 492010, Chhattisgarh, India.
| | - Parul Shukla
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Balendu Shekher Giri
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Pankaj Chowdhary
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ram Chandra
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology-Raipur, G.E. Road, Raipur, 492010, Chhattisgarh, India.
| | - Ashok Pandey
- Centre for Innovation and Transnational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, Uttar Pradesh, India
| |
Collapse
|
50
|
Maurya AP, Rajkumari J, Pandey P. Enrichment of antibiotic resistance genes (ARGs) in polyaromatic hydrocarbon-contaminated soils: a major challenge for environmental health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12178-12189. [PMID: 33394421 DOI: 10.1007/s11356-020-12171-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Polyaromatic hydrocarbons (PAHs) are widely spread ecological contaminants. Antibiotic resistance genes (ARGs) are present with mobile genetic elements (MGE) in the bacteria. There are molecular evidences that PAHs may induce the development of ARGs in contaminated soils. Also, the abundance of ARGs related to tetracycline, sulfonamides, aminoglycosides, ampicillin, and fluoroquinolones is high in PAH-contaminated environments. Genes encoding the efflux pump are located in the MGE and, along with class 1 integrons, have a significant role as a connecting link between PAH contamination and enrichment of ARGs. The horizontal gene transfer mechanisms further make this interaction more dynamic. Therefore, necessary steps to control ARGs into the environment and risk management plan of PAHs should be enforced. In this review, influence of PAH on evolution of ARGs in the contaminated soil, and its spread in the environment, has been described. The co-occurrence of antibiotic resistance and PAH degradation abilities in bacterial isolates has raised the concerns. Also, presence of ARGs in the microbiome of PAH-contaminated soil has been discussed as environmental hotspots for ARG spread. In addition to this, the possible links of molecular interactions between ARGs and PAHs, and their effect on environmental health has been explored.
Collapse
Affiliation(s)
| | - Jina Rajkumari
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India.
| |
Collapse
|