1
|
Sankova M, Nikolenko V, Oganesyan M, Vinnik Y, Gavryushova L, Redina S, Rizaeva N, Sankov A, Bulygin K, Vovkogon A, Pontes-Silva A, Zharikov Y. Zinc pathogenic importance in correcting immunity and restoring public health in the post-COVID period: An overview. Cytokine 2024; 184:156761. [DOI: 10.1016/j.cyto.2024.156761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
|
2
|
Ahmad R, Shaju R, Atfi A, Razzaque MS. Zinc and Diabetes: A Connection between Micronutrient and Metabolism. Cells 2024; 13:1359. [PMID: 39195249 DOI: 10.3390/cells13161359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Diabetes mellitus is a global health problem and a major contributor to mortality and morbidity. The management of this condition typically involves using oral antidiabetic medication, insulin, and appropriate dietary modifications, with a focus on macronutrient intake. However, several human studies have indicated that a deficiency in micronutrients, such as zinc, can be associated with insulin resistance as well as greater glucose intolerance. Zinc serves as a chemical messenger, acts as a cofactor to increase enzyme activity, and is involved in insulin formation, release, and storage. These diverse functions make zinc an important trace element for the regulation of blood glucose levels. Adequate zinc levels have also been shown to reduce the risk of developing diabetic complications. This review article explains the role of zinc in glucose metabolism and the effects of its inadequacy on the development, progression, and complications of diabetes mellitus. Furthermore, it describes the impact of zinc supplementation on preventing diabetes mellitus. The available information suggests that zinc has beneficial effects on the management of diabetic patients. Although additional large-scale randomized clinical trials are needed to establish zinc's clinical utility further, efforts should be made to increase awareness of its potential benefits on human health and disease.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka 1230, Bangladesh
| | - Ronald Shaju
- Department of Medical Education, School of Medicine, University of Texas Rio Grande Valley (UTRGV), Edinburg, TX 78541, USA
| | - Azeddine Atfi
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mohammed S Razzaque
- Department of Medical Education, School of Medicine, University of Texas Rio Grande Valley (UTRGV), Edinburg, TX 78541, USA
| |
Collapse
|
3
|
Pastacı Özsobacı N, Karış D, Ercan AM, Özçelik D. Investigation of Zinc on hemorheological parameters in a rat model of diabetes. J Trace Elem Med Biol 2024; 84:127450. [PMID: 38643593 DOI: 10.1016/j.jtemb.2024.127450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024]
Abstract
Diabetes mellitus (DM) is a complex, chronic metabolic disorder characterized by impaired regulation of blood glucose levels. Zinc (Zn) is an essential trace elements that plays a role in various physiological processes within the body, including those related to diabetes. The current study was investigated the effect of Zn supplementation on hemorheological parameters in a rat model of DM. After induction of DM, 32 male Wistar albino rats were divided into four groups: control, Zn, DM, and Zn+DM. Whole blood viscosity (WBV) was determined by using digital cone and plate viscometer and plasma viscosity (PV) was determined by a Coulter Harkness capillary viscometer. The rats in the DM Group showed a decrease in both Zn levels and body weight, as well as an increase in glucose levels when compared to the control group. Diabetic rats supplemented with Zn displayed lower blood glucose levels and higher concentrations of Zn compared to the DM Group. The higher PV and lower hematocrit level were measured in DM Group than control group and lower PV, higher hematocrit level were measured in Zn+DM group than DM Group. The WBV was measured at four different shear rates (57.6-115.2 - 172.8-230.4 s -1). A statistically significant increase was observed in the DM group compared to the control group. Additionally, a statistically significant decrease was observed in the Zn+DM Group compared to the DM Group at a shear rate of 230.4 s-1. Erythrocyte rigidity index (Tk) and oxygen delivery index (ODI) were computed under conditions of high shear rate. The rats in the DM group exhibited a reduction in ODI and an elevation in Tk in comparison to the control group. Conversely, the diabetic rats supplemented with Zn exhibited decreased Tk and increased ODI compared to the DM Group. Zn supplementation seems to have a potential beneficial effect for protecting adverse affect of diabetes on hemorheogical parameters and for maintaining vascular health.
Collapse
Affiliation(s)
- Nural Pastacı Özsobacı
- Department of Biophysics, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkiye.
| | - Denizhan Karış
- Department of Biophysics, Faculty of Medicine, Istinye University, Istanbul, Turkiye
| | - Alev Meltem Ercan
- Department of Biophysics, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkiye
| | - Derviş Özçelik
- Department of Biophysics, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkiye; Department of Biophysics, Faculty of Medicine, Istanbul Arel University, Istanbul, Turkiye
| |
Collapse
|
4
|
Rech L, Zahradka P, Taylor CG. Marginal Zinc Deficiency Promotes Pancreatic Islet Enlargement While Zinc Supplementation Improves the Pancreatic Insulin Response in Zucker Diabetic Fatty Rats. Nutrients 2024; 16:1819. [PMID: 38931174 PMCID: PMC11206688 DOI: 10.3390/nu16121819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Zinc deficiency has been associated with the worsening of diabetes while zinc supplementation has been proposed to ameliorate diabetes. This study examined the effects of marginal zinc deficiency (MZD) and zinc supplementation (ZS) on obesity, glycemic control, pancreatic islets, hepatic steatosis and renal function of Zucker diabetic fatty (ZDF) rats. Male ZDF rats were fed an MZD, zinc control (ZC) or ZS diet (4, 30 and 300 mg Zn/kg diet, respectively), and lean Zucker rats were fed a ZC diet for 8 weeks. MZD and ZS did not alter body weight or whole-body composition in ZDF rats. MZD ZDF rats had reduced zinc concentrations in the femur and pancreas, a greater number of enlarged pancreatic islets and a diminished response to an oral glucose load based on a 1.8-fold greater incremental area-under-the-curve (AUC) for glucose compared to ZC ZDF. ZS ZDF rats had elevated serum, femur and pancreatic zinc concentrations, unchanged pancreatic parameters and a 50% reduction in the AUC for insulin compared to ZC ZDF rats, suggesting greater insulin sensitivity. Dietary zinc intake did not alter hepatic steatosis, creatinine clearance, or levels of proteins that contribute to insulin signaling, inflammation or zinc transport in epididymal fat. Potential adverse effects of ZS were suggested by reduced hepatic copper concentrations and elevated serum urea compared to ZC ZDF rats. In summary, ZS improved the pancreatic insulin response but not the glucose handling. In contrast, reduced zinc status in ZDF rats led to impaired glucose tolerance and a compensatory increase in the number and size of pancreatic islets which could lead to β-cell exhaustion.
Collapse
Affiliation(s)
- Leslie Rech
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada (P.Z.)
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Peter Zahradka
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada (P.Z.)
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Carla G. Taylor
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada (P.Z.)
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
5
|
Daneshvar M, Ghaheri M, Safarzadeh D, Karimi F, Adib-Hajbagheri P, Ahmadzade M, Haedi A. Effect of zinc supplementation on glycemic biomarkers: an umbrella of interventional meta-analyses. Diabetol Metab Syndr 2024; 16:124. [PMID: 38849958 PMCID: PMC11162043 DOI: 10.1186/s13098-024-01366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Several studies have evaluated the effects of zinc supplementation on glycemic biomarkers in humans and have demonstrated varying results. We systematically evaluated the literature and performed an umbrella meta-analysis of the effects of zinc supplementation on type 2 diabetes biomarkers. METHODS A comprehensive literature search was conducted in the following databases; PubMed, Embase, Embase, Cochrane Library, Scopus, and Web of Science for studies published up to March 10, 2024. RESULTS Zinc supplementation was effective in reducing serum FBS (WMD: - 13.58, 95% CI: - 17.38, - 9.77; p < 0.001; SMD: - 0.52, 95% CI - 0.79, - 0.25; p = < 0.001), insulin (SMD: - 0.67, 95% CI - 0.96, - 0.38; p < 0.001), HOMA-IR levels (WMD - 0.52, 95% CI - 0.66, - 0.38; p < 0.001; SMD: - 0.78, 95% CI - 1.02, - 0.42; p < 0.001), and HbA1c (WMD: - 0.35, 95% CI - 0.43, - 0.27; p < 0.001). CONCLUSION Zinc supplementation significantly reduced FBS, HOMA-IR, insulin and HbA1c. These findings suggest that zinc is potentially an effective complementary intervention to improve type 2 diabetes biomarkers.
Collapse
Affiliation(s)
| | - Mohammad Ghaheri
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Diba Safarzadeh
- Vocational School of Health Service, Near East University, Nicosia, Cyprus
| | - Fatemeh Karimi
- Department of Nutrition, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parisa Adib-Hajbagheri
- Department of Cardiology, Chamran Cardiovascular Research Education Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohadese Ahmadzade
- Department of Urology, Shahid Labbafinejad Medical Center, Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Haedi
- Student Research Committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Jones Lipinski RA, Stancill JS, Nuñez R, Wynia-Smith SL, Sprague DJ, Nord JA, Bird A, Corbett JA, Smith BC. Zinc-chelating BET bromodomain inhibitors equally target islet endocrine cell types. Am J Physiol Regul Integr Comp Physiol 2024; 326:R515-R527. [PMID: 38618911 PMCID: PMC11381023 DOI: 10.1152/ajpregu.00259.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/19/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
Inhibition of the bromodomain and extraterminal domain (BET) protein family is a potential strategy to prevent and treat diabetes; however, the clinical use of BET bromodomain inhibitors (BETis) is associated with adverse effects. Here, we explore a strategy for targeting BETis to β cells by exploiting the high-zinc (Zn2+) concentration in β cells relative to other cell types. We report the synthesis of a novel, Zn2+-chelating derivative of the pan-BETi (+)-JQ1, (+)-JQ1-DPA, in which (+)-JQ1 was conjugated to dipicolyl amine (DPA). As controls, we synthesized (+)-JQ1-DBA, a non-Zn2+-chelating derivative, and (-)-JQ1-DPA, an inactive enantiomer that chelates Zn2+. Molecular modeling and biophysical assays showed that (+)-JQ1-DPA and (+)-JQ1-DBA retain potent binding to BET bromodomains in vitro. Cellular assays demonstrated (+)-JQ1-DPA attenuated NF-ĸB target gene expression in β cells stimulated with the proinflammatory cytokine interleukin 1β. To assess β-cell selectivity, we isolated islets from a mouse model that expresses green fluorescent protein in insulin-positive β cells and mTomato in insulin-negative cells (non-β cells). Surprisingly, Zn2+ chelation did not confer β-cell selectivity as (+)-JQ1-DPA was equally effective in both β and α cells; however, (+)-JQ1-DPA was less effective in macrophages, a nonendocrine islet cell type. Intriguingly, the non-Zn2+-chelating derivative (+)-JQ1-DBA displayed the opposite selectivity, with greater effect in macrophages compared with (+)-JQ1-DPA, suggesting potential as a macrophage-targeting molecule. These findings suggest that Zn2+-chelating small molecules confer endocrine cell selectivity rather than β-cell selectivity in pancreatic islets and provide valuable insights and techniques to assess Zn2+ chelation as an approach to selectively target small molecules to pancreatic β cells.NEW & NOTEWORTHY Inhibition of BET bromodomains is a novel potential strategy to prevent and treat diabetes mellitus. However, BET inhibitors have negative side effects. We synthesized a BET inhibitor expected to exploit the high zinc concentration in β cells to accumulate in β cells. We show our inhibitor targeted pancreatic endocrine cells; however, it was less effective in immune cells. A control inhibitor showed the opposite effect. These findings help us understand how to target specific cells in diabetes treatment.
Collapse
Affiliation(s)
- Rachel A Jones Lipinski
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jennifer S Stancill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Raymundo Nuñez
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Sarah L Wynia-Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Daniel J Sprague
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Joshua A Nord
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Amir Bird
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
7
|
Zong R, Zhang X, Dong X, Liu G, Zhang J, Gao Y, Zhang Z, Ma Y, Gao H, Gamper N. Genetic deletion of zinc transporter ZnT 3 induces progressive cognitive deficits in mice by impairing dendritic spine plasticity and glucose metabolism. Front Mol Neurosci 2024; 17:1375925. [PMID: 38807922 PMCID: PMC11130425 DOI: 10.3389/fnmol.2024.1375925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Zinc transporter 3 (ZnT3) is abundantly expressed in the brain, residing in synaptic vesicles, where it plays important roles in controlling the luminal zinc levels. In this study, we found that ZnT3 knockout in mice decreased zinc levels in the hippocampus and cortex, and was associated with progressive cognitive impairments, assessed at 2, 6, and 9-month of age. The results of Golgi-Cox staining demonstrated that ZnT3 deficiency was associated with an increase in dendritic complexity and a decrease in the density of mature dendritic spines, indicating potential synaptic plasticity deficit. Since ZnT3 deficiency was previously linked to glucose metabolism abnormalities, we tested the expression levels of genes related to insulin signaling pathway in the hippocampus and cortex. We found that the Expression of glucose transporters, GLUT3, GLUT4, and the insulin receptor in the whole tissue and synaptosome fraction of the hippocampus of the ZnT3 knockout mice were significantly reduced, as compared to wild-type controls. Expression of AKT (A serine/threonine protein kinase) and insulin-induced AKT phosphorylation was also reduced in the hippocampus of ZnT3 knockout mice. We hypothesize that the ZnT3 deficiency and reduced brain zinc levels may cause cognitive impairment by negatively affecting glycose metabolism via decreased expression of key components of insulin signaling, as well as via changes in synaptic plasticity. These finding may provide new therapeutic target for treatments of neurodegenerative disorders.
Collapse
Affiliation(s)
- Rui Zong
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoding Zhang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaohui Dong
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Guan Liu
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jieyao Zhang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiting Gao
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhongyang Zhang
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yiming Ma
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Haixia Gao
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Nikita Gamper
- Department of Pharmacology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Hebei Collaboration Innovation Center for Mechanism, Diagnosis and Treatment of Neurological and Psychiatric Disease, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
8
|
Nakamura A, Kido T, Seki Y, Suka M. Zinc deficiency affects insulin secretion and alters insulin-regulated metabolic signaling in rats. J Trace Elem Med Biol 2024; 83:127375. [PMID: 38184923 DOI: 10.1016/j.jtemb.2023.127375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND The essential trace element zinc is important in stabilizing pancreatic insulin secretion. Zinc not only influences the synthesis of insulin but also affects its activity. Insulin not only exerts a hypoglycemic effect but also regulates glucose and lipid metabolisms in insulin target organs. In this study, we aimed to determine changes to pancreatic β cells and insulin secretion induced by different zinc concentrations and to evaluate the effect of zinc deficiency on glucose intolerance, insulin resistance, and insulin target organs via changing insulin levels. METHODS We set up two experimental trials. In the first trial, male Sprague Dawley (SD) rats were divided into three groups. Group one (ZnC) received a standard diet, group two (ZnF) was given a zinc-free diet, and group three (ZnFC) was initially fed a zinc-free diet followed by a reversion to the standard diet. After sacrifice, we observed changes in blood parameters, including insulin, and examined alterations in pancreatic tissue using immunostaining, with focus on the localization of pancreatic β-cells. In the second trial, male SD rats were split into two groups, with one receiving a standard diet and the other a zinc-free diet. Oral glucose tolerance and insulin tolerance tests were then performed. After sacrifice, we evaluated changes in lipid and glucose metabolism within insulin target organs using quantitative polymerase chain reaction. RESULTS In the first trial, blood insulin levels and the area of insulin-positive staining in pancreatic β-cells decreased in the ZnF compared to the ZnC group. The ZnFC group did not show recovery in either blood insulin levels or the area of insulin-positive staining in pancreatic β-cells. In the second trial, no differences were observed in glucose tolerance or insulin resistance between the ZnC and ZnF groups. However, changes in the expression of insulin target genes were noted in the liver and adipose tissue in the ZnF group. CONCLUSION We reveal that dietary zinc concentrations not only affect the concentration of insulin in the blood but also impact the localization of pancreatic β-cells involved in insulin production. Furthermore, our results suggest that changes in blood insulin levels, induced by different zinc concentrations, could cause metabolic alterations in insulin target organs such as the liver and adipose tissue. This study sheds more light on the role of zinc in insulin-regulated metabolic diseases.
Collapse
Affiliation(s)
- Anna Nakamura
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan.
| | - Takamasa Kido
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Yoshiko Seki
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Machi Suka
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| |
Collapse
|
9
|
Jensen GC, Janis MK, Nguyen HN, David OW, Zastrow ML. Fluorescent Protein-Based Sensors for Detecting Essential Metal Ions across the Tree of Life. ACS Sens 2024; 9:1622-1643. [PMID: 38587931 PMCID: PMC11073808 DOI: 10.1021/acssensors.3c02695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Genetically encoded fluorescent metal ion sensors are powerful tools for elucidating metal dynamics in living systems. Over the last 25 years since the first examples of genetically encoded fluorescent protein-based calcium indicators, this toolbox of probes has expanded to include other essential and non-essential metal ions. Collectively, these tools have illuminated fundamental aspects of metal homeostasis and trafficking that are crucial to fields ranging from neurobiology to human nutrition. Despite these advances, much of the application of metal ion sensors remains limited to mammalian cells and tissues and a limited number of essential metals. Applications beyond mammalian systems and in vivo applications in living organisms have primarily used genetically encoded calcium ion sensors. The aim of this Perspective is to provide, with the support of historical and recent literature, an updated and critical view of the design and use of fluorescent protein-based sensors for detecting essential metal ions in various organisms. We highlight the historical progress and achievements with calcium sensors and discuss more recent advances and opportunities for the detection of other essential metal ions. We also discuss outstanding challenges in the field and directions for future studies, including detecting a wider variety of metal ions, developing and implementing a broader spectral range of sensors for multiplexing experiments, and applying sensors to a wider range of single- and multi-species biological systems.
Collapse
Affiliation(s)
- Gary C Jensen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Makena K Janis
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Hazel N Nguyen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Ogonna W David
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
10
|
Ray GW, Zeng Q, Kusi P, Zhang H, Shao T, Yang T, Wei Y, Li M, Che X, Guo R. Genetic and inflammatory factors underlying gestational diabetes mellitus: a review. Front Endocrinol (Lausanne) 2024; 15:1399694. [PMID: 38694942 PMCID: PMC11061502 DOI: 10.3389/fendo.2024.1399694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 05/04/2024] Open
Abstract
Gestational diabetes mellitus (GDM) poses a significant global health concern, impacting both maternal and fetal well-being. Early detection and treatment are imperative to mitigate adverse outcomes during pregnancy. This review delves into the pivotal role of insulin function and the influence of genetic variants, including SLC30A8, CDKAL1, TCF7L2, IRS1, and GCK, in GDM development. These genetic variations affect beta-cell function and insulin activity in crucial tissues, such as muscle, disrupting glucose regulation during pregnancy. We propose a hypothesis that this variation may disrupt zinc transport, consequently impairing insulin production and secretion, thereby contributing to GDM onset. Furthermore, we discussed the involvement of inflammatory pathways, such as TNF-alpha and IL-6, in predisposing individuals to GDM. Genetic modulation of these pathways may exacerbate glucose metabolism dysregulation observed in GDM patients. We also discussed how GDM affects cardiovascular disease (CVD) through a direct correlation between pregnancy and cardiometabolic function, increasing atherosclerosis, decreased vascular function, dyslipidemia, and hypertension in women with GDM history. However, further research is imperative to unravel the intricate interplay between inflammatory pathways, genetics, and GDM. This understanding is pivotal for devising targeted gene therapies and pharmacological interventions to rectify genetic variations in SLC30A8, CDKAL1, TCF7L2, IRS1, GCK, and other pertinent genes. Ultimately, this review offers insights into the pathophysiological mechanisms of GDM, providing a foundation for developing strategies to mitigate its impact.
Collapse
Affiliation(s)
- Gyan Watson Ray
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
| | - Qiaoli Zeng
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
| | - Phidelia Kusi
- University of Ghana, Ministry of Fisheries and Aquaculture Development, Fisheries Commission, Accra, Ghana
| | - Hengli Zhang
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
| | - Taotao Shao
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
| | - Taili Yang
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
| | - Yue Wei
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
| | - Mianqin Li
- Department of Obstetric, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Xiaoqun Che
- Department of Obstetric, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
- Reproductive Medicine Center, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Runmin Guo
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
| |
Collapse
|
11
|
Shukla AK, Mahale A, Choudhary S, Sharma P, Kulkarni OP, Bhattacharya A. Development and Validation of a Fluorogenic Probe for Lysosomal Zinc Release. Chembiochem 2024; 25:e202300783. [PMID: 38038368 DOI: 10.1002/cbic.202300783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
Zinc homeostasis, which allows optimal zinc utilization in diverse life processes, is responsible for the general well-being of human beings. This paper describes developing and validating an easily accessible indole-containing zinc-specific probe in the cellular milieu. The probe was synthesized from readily available starting materials and was subjected to steady-state fluorescence studies. It showed selective sensing behavior towards Zn2+ with reversible binding. The suppression of PET (Photoinduced Electron Transfer) and ESIPT (Excited State Intramolecular Proton Transfer) elicited selectivity, and the detection limit was 0.63 μM (LOQ 6.8 μM). The zinc sensing capability of the probe was also screened in the presence of low molecular weight ligands [LMWLs] and showed interference only with GSH and ATP. It is non-toxic and can detect zinc in different cell lines under various stress conditions such as inflammation, hyperglycemia, and apoptosis. The probe could stain the early and late stages of apoptosis in PAN-2 cells by monitoring the zinc release. Most experiments were conducted without external zinc supplementation, showing its innate ability to detect zinc.
Collapse
Affiliation(s)
- Adarash Kumar Shukla
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Ashutosh Mahale
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Savita Choudhary
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Pravesh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Onkar Prakash Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Anupam Bhattacharya
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| |
Collapse
|
12
|
Zi Z, Rao Y. Discoveries of GPR39 as an evolutionarily conserved receptor for bile acids and of its involvement in biliary acute pancreatitis. SCIENCE ADVANCES 2024; 10:eadj0146. [PMID: 38306436 PMCID: PMC10836733 DOI: 10.1126/sciadv.adj0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
Acute pancreatitis (AP) is one of the most common gastrointestinal diseases. Bile acids (BAs) were proposed to be a cause of AP nearly 170 years ago, though the underlying mechanisms remain unclear. Here, we report that two G protein-coupled receptors, GPR39 and GHSR, mediated cellular responses to BAs. Our results revealed GPR39 as an evolutionarily conserved receptor for BAs, particularly 3-O-sulfated lithocholic acids. In cultured cell lines, GPR39 is sufficient for BA-induced Ca2+ elevation. In pancreatic acinar cells, GPR39 mediated BA-induced Ca2+ elevation and necrosis. Furthermore, AP induced by BAs was significantly reduced in GPR39 knockout mice. Our findings provide in vitro and in vivo evidence demonstrating that GPR39 is necessary and sufficient to mediate BA signaling, highlighting its involvement in biliary AP pathogenesis, and suggesting it as a promising therapeutic target for biliary AP.
Collapse
Affiliation(s)
- Zhentao Zi
- Chinese Institutes for Medical Research, Beijing (CIMR, Beijing) and the State Key Laboratory of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences, School of Pharmaceutical Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yi Rao
- Chinese Institutes for Medical Research, Beijing (CIMR, Beijing) and the State Key Laboratory of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences, School of Pharmaceutical Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Changping Laboratory, Chinese Institute of Brain Research Beijing and Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 102206, China
| |
Collapse
|
13
|
Guo M, Li M, Cui F, Wang H, Ding X, Gao W, Fang X, Chen L, Niu P, Ma J. Mediation effect of serum zinc on insulin secretion inhibited by methyl tert-butyl ether in gas station workers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8952-8962. [PMID: 38183540 DOI: 10.1007/s11356-023-31772-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
Methyl tert-butyl ether (MTBE), a type of gasoline additive, has been found to affect insulin function and glucose homeostasis in animal experiments, but there is still no epidemiological evidence. Zinc (Zn) is a key regulatory element of insulin secretion and function, and Zn homeostasis can be disrupted by MTBE exposure through inducing oxidative stress. Therefore, we suspected that Zn might be involved and play an important role in the process of insulin secretion inhibited by MTBE exposure. In this study, we recruited 201 male subjects including occupational and non-occupational MTBE exposure from Anhui Province, China in 2019. Serum insulin and functional analog fibroblast growth factor 1 (FGF1) and blood MTBE were detected by Elisa and headspace solid-phase microextraction and gas chromatography-high-resolution mass spectrometry. According to MTBE internal exposure level, the workers were divided into low- and high-exposed groups and found that the serum insulin level in the high-exposed group was significantly lower than that in the low-exposed group (p = 0.003) while fasting plasma glucose (FPG) level increased obviously in the high-exposed group compared to the low-exposed group (p = 0.001). Further analysis showed that MTBE exposure level was positively correlated with FPG level, but negatively correlated with serum insulin level, which suggested that the FPG level increase might be related to the decrease of serum insulin level induced by MTBE exposure. The results of further mediation effect analysis showed that changes in serum zinc levels played a major intermediary role in the process of insulin secretion inhibition and blood glucose elevation caused by MTBE exposure. In addition, a significant negative correlation was found between MTBE exposure and serum Zn level, which might play a strong mediating effect on the inhibition of insulin secretion induced by MTBE exposure. In conclusion, our study provided evidence that MTBE could inhibit insulin secretion and interfere with Zn metabolism in gas station workers for the first time, and found that Zn might play an important mediation effect during the process of inhibiting insulin secretion and interfering with glucose metabolism induced by MTBE exposure.
Collapse
Affiliation(s)
- Mingxiao Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Mengdi Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Fengtao Cui
- Occupational Disease Prevention and Control Hospital of Huaibei Mining Co., Ltd., Huaibei, 235000, Anhui Province, China
| | - Hanyun Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Xinping Ding
- Occupational Disease Prevention and Control Hospital of Huaibei Mining Co., Ltd., Huaibei, 235000, Anhui Province, China
| | - Wei Gao
- Occupational Disease Prevention and Control Hospital of Huaibei Mining Co., Ltd., Huaibei, 235000, Anhui Province, China
| | - Xingqiang Fang
- Occupational Disease Prevention and Control Hospital of Huaibei Mining Co., Ltd., Huaibei, 235000, Anhui Province, China
| | - Li Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Junxiang Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
14
|
Hamamah S, Iatcu OC, Covasa M. Nutrition at the Intersection between Gut Microbiota Eubiosis and Effective Management of Type 2 Diabetes. Nutrients 2024; 16:269. [PMID: 38257161 PMCID: PMC10820857 DOI: 10.3390/nu16020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Nutrition is one of the most influential environmental factors in both taxonomical shifts in gut microbiota as well as in the development of type 2 diabetes mellitus (T2DM). Emerging evidence has shown that the effects of nutrition on both these parameters is not mutually exclusive and that changes in gut microbiota and related metabolites such as short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) may influence systemic inflammation and signaling pathways that contribute to pathophysiological processes associated with T2DM. With this background, our review highlights the effects of macronutrients, carbohydrates, proteins, and lipids, as well as micronutrients, vitamins, and minerals, on T2DM, specifically through their alterations in gut microbiota and the metabolites they produce. Additionally, we describe the influences of common food groups, which incorporate varying combinations of these macronutrients and micronutrients, on both microbiota and metabolic parameters in the context of diabetes mellitus. Overall, nutrition is one of the first line modifiable therapies in the management of T2DM and a better understanding of the mechanisms by which gut microbiota influence its pathophysiology provides opportunities for optimizing dietary interventions.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
15
|
Deng G, Chen H, Liu Y, Zhou Y, Lin X, Wei Y, Sun R, Zhang Z, Huang Z. Combined exposure to multiple essential elements and cadmium at early pregnancy on gestational diabetes mellitus: a prospective cohort study. Front Nutr 2023; 10:1278617. [PMID: 38125730 PMCID: PMC10730676 DOI: 10.3389/fnut.2023.1278617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Background Minerals and trace elements were involved in the pathogenesis and progression of diabetes. However, the association of mixed exposure to essential elements and toxic elements with gestational diabetes mellitus (GDM) is poorly understood. Objective This study aims to examine the associations between serum calcium (Ca), iron (Fe), zinc (Zn), copper (Cu), magnesium (Mg), and cadmium (Cd) concentrations in early pregnancy and GDM risk in Chinese pregnant women. Method A total of 1,168 pregnant women were included in this prospective cohort study. The concentrations of serum elements were measured using the polarography method before 14 gestational weeks and an oral glucose tolerance test was conducted at 24-28 gestational weeks to diagnose GDM. Binary logistic regression analysis and restricted cubic spline were applied to evaluate the association between serum individual element and GDM. Bayesian kernel machine regression (BKMR) and weighted quantile sum (WQS) regression were used to assess the associations between mixed essential elements and Cd exposure and GDM risk. Results The mean concentrations of Zn (124.65 vs. 120.12 μmol/L), Fe (135.26 vs. 132.21 μmol/L) and Cu (23.33 vs. 23.03 μmol/L) in the GDM group were significantly higher than those in the control group. Single-element modeling results suggested that second and fourth-quartile maternal Zn and Fe concentration, third and fourth-quartile Cu concentration and fourth-quartile Ca concentration were associated with an increased risk of GDM compared to first-quartile values. Restricted cubic spline analysis showed U-shaped and non-linear relationships between Cd and GDM. According to the BKMR models and WQS analyses, a six-element mixture was significantly and positively associated with the risk of GDM. Additionally, Cd, Zn, and Cu contributed the most strongly to the association. Conclusion Serum Zn, Cu, Fe, and Ca exposure during early pregnancy showed a positive association with GDM in the individual evaluation. The multiple-evaluation showed that high levels of elements mixture, particularly Cd, Zn, and Cu, may promote the development of GDM.
Collapse
Affiliation(s)
- Guifang Deng
- Department of Clinical Nutrition, Union Shenzhen Hospital of Huazhong University of Science and Technology, Shenzhen, China
| | - Hengying Chen
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Liu
- Department of Clinical Nutrition, Union Shenzhen Hospital of Huazhong University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Yingyu Zhou
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaoping Lin
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuanhuan Wei
- Department of Clinical Nutrition, Union Shenzhen Hospital of Huazhong University of Science and Technology, Shenzhen, China
| | - Ruifang Sun
- Department of Clinical Nutrition, Union Shenzhen Hospital of Huazhong University of Science and Technology, Shenzhen, China
| | - Zheqing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhenhe Huang
- Geriatric Medicine Department, Union Shenzhen Hospital of Huazhong University of Science and Technology, Shenzhen, China
| |
Collapse
|
16
|
Ruan S, Guo X, Ren Y, Cao G, Xing H, Zhang X. Nanomedicines based on trace elements for intervention of diabetes mellitus. Biomed Pharmacother 2023; 168:115684. [PMID: 37820567 DOI: 10.1016/j.biopha.2023.115684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023] Open
Abstract
Epidemiology shows that the incidence of diabetes mellitus (DM) is increasing year by year globally. Proper interventions are highly aspired for diabetics to improve the quality of life and prevent development of chronic complications. Trace elements, also known as microelements, are chemical substances that are present in our body in minute amounts. They are necessitated by the body for growth, development and functional metabolism. For the past few years, trace element nanoparticles have aroused considerable interest as a burgeoning form of nanomedicines in antidiabetic applications. These microelement-based nanomedicines can regulate glucose metabolism in several ways, showing great potential for diabetes management. Starting from the pathophysiology of diabetes, the state-of-the-art of diabetes treatment, the physiological roles of trace elements, various emerging trace element nanoparticles specific for diabetes were comprehensively reviewed in this work. Our findings disclose that trace element nanoparticles can fight against diabetes by lowering blood glucose, promoting insulin secretion, alleviating glucose intolerance, improving insulin sensitivity, ameliorating lipid profile, anti-inflammation and anti-oxidant stress, and other mechanisms. In conclusion, trace element nanoparticles can be applied as nanomedicines or dietary modifiers for effective intervention for diabetes.
Collapse
Affiliation(s)
- Shuxian Ruan
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaolei Guo
- Office of Academic Research, Binzhou Polytechnic, Binzhou, China
| | - Yuehong Ren
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Guangshang Cao
- Department of Pharmaceutics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Huijie Xing
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, China.
| | - Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China.
| |
Collapse
|
17
|
Yang L, Zhang X, Liu Q, Wen Y, Wang Q. Update on the ZNT8 epitope and its role in the pathogenesis of type 1 diabetes. Minerva Endocrinol (Torino) 2023; 48:447-458. [PMID: 38099391 DOI: 10.23736/s2724-6507.22.03723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Type 1 diabetes (T1D) is an organ-specific chronic autoimmune disease mediated by autoreactive T cells. ZnT8 is a pancreatic islet-specific zinc transporter that is mainly located in β cells. It not only participates in the synthesis, storage and secretion of insulin but also maintains the structural integrity of insulin. ZnT8 is the main autoantigen recognized by autoreactive CD8+ T cells in children and adults with T1D. This article summarizes the latest research results on the T lymphocyte epitope and B lymphocyte epitope of ZnT8 in the current literature. The structure and expression of ZnT8, the role of ZnT8 in insulin synthesis and its role in autoimmunity are reviewed. ZnT8 is the primary autoantigen of T1D and is specifically expressed in pancreatic islets. Thus, it is one of biomarkers for the diagnosis of T1D. It has broad prospects for further research on immunomodulators for the treatment of T1D.
Collapse
Affiliation(s)
- Liu Yang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuejiao Zhang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qing Liu
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yan Wen
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qing Wang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China -
| |
Collapse
|
18
|
Sun Z, Shao Y, Yan K, Yao T, Liu L, Sun F, Wu J, Huang Y. The Link between Trace Metal Elements and Glucose Metabolism: Evidence from Zinc, Copper, Iron, and Manganese-Mediated Metabolic Regulation. Metabolites 2023; 13:1048. [PMID: 37887373 PMCID: PMC10608713 DOI: 10.3390/metabo13101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Trace metal elements are of vital importance for fundamental biological processes. They function in various metabolic pathways after the long evolution of living organisms. Glucose is considered to be one of the main sources of biological energy that supports biological activities, and its metabolism is tightly regulated by trace metal elements such as iron, zinc, copper, and manganese. However, there is still a lack of understanding of the regulation of glucose metabolism by trace metal elements. In particular, the underlying mechanism of action remains to be elucidated. In this review, we summarize the current concepts and progress linking trace metal elements and glucose metabolism, particularly for the trace metal elements zinc, copper, manganese, and iron.
Collapse
Affiliation(s)
- Zhendong Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yuzhuo Shao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Kunhao Yan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tianzhao Yao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Lulu Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Feifei Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jiarui Wu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yunpeng Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
19
|
Fang H, Li Y, Yang X, Chen Y, Guo Z, He W. Recent advances in Zn 2+ imaging: From organelles to in vivo applications. Curr Opin Chem Biol 2023; 76:102378. [PMID: 37633062 DOI: 10.1016/j.cbpa.2023.102378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 08/28/2023]
Abstract
Zn2+ is involved in various physiological and pathological processes in living systems. Monitoring the dynamic spatiotemporal changes of Zn2+ levels in organelles, cells, and in vivo is of great importance for the investigation of the physiological and pathological functions of Zn2+. However, this task is quite challenging since Zn2+ in living systems is present at low concentrations and undergoes rapid dynamic changes. In this review, we summarize the design and application of fluorescent probes for Zn2+ imaging in organelles, cells, and live organisms reported over the past two years. We aim to provide inspiration for the design of novel Zn2+ probes for multi-level monitoring and deepen the understanding of Zn2+ biology.
Collapse
Affiliation(s)
- Hongbao Fang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Yaheng Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Xiuzhi Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China; Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210000, China.
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China; Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210000, China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China; Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210000, China.
| |
Collapse
|
20
|
Jamrozik D, Dutczak R, Machowicz J, Wojtyniak A, Smędowski A, Pietrucha-Dutczak M. Metallothioneins, a Part of the Retinal Endogenous Protective System in Various Ocular Diseases. Antioxidants (Basel) 2023; 12:1251. [PMID: 37371981 DOI: 10.3390/antiox12061251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Metallothioneins are the metal-rich proteins that play important roles in metal homeostasis and detoxification. Moreover, these proteins protect cells against oxidative stress, inhibit proapoptotic mechanisms and enhance cell differentiation and survival. Furthermore, MTs, mainly MT-1/2 and MT-3, play a vital role in protecting the neuronal retinal cells in the eye. Expression disorders of these proteins may be responsible for the development of various age-related eye diseases, including glaucoma, age-related macular degeneration, diabetic retinopathy and retinitis pigmentosa. In this review, we focused on the literature reports suggesting that these proteins may be a key component of the endogenous protection system of the retinal neurons, and, when the expression of MTs is disrupted, this system becomes inefficient. Moreover, we described the location of different MT isoforms in ocular tissues. Then we discussed the changes in MT subtypes' expression in the context of the common eye diseases. Finally, we highlighted the possibility of the use of MTs as biomarkers for cancer diagnosis.
Collapse
Affiliation(s)
- Daniel Jamrozik
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Radosław Dutczak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Joanna Machowicz
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Alicja Wojtyniak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Adrian Smędowski
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- GlaucoTech Co., Gen., Władysława Sikorskiego 45/177, 40-282 Katowice, Poland
| | - Marita Pietrucha-Dutczak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| |
Collapse
|
21
|
Serbis A, Giapros V, Tsamis K, Balomenou F, Galli-Tsinopoulou A, Siomou E. Beta Cell Dysfunction in Youth- and Adult-Onset Type 2 Diabetes: An Extensive Narrative Review with a Special Focus on the Role of Nutrients. Nutrients 2023; 15:2217. [PMID: 37432389 PMCID: PMC10180650 DOI: 10.3390/nu15092217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 07/12/2023] Open
Abstract
Traditionally a disease of adults, type 2 diabetes (T2D) has been increasingly diagnosed in youth, particularly among adolescents and young adults of minority ethnic groups. Especially, during the recent COVID-19 pandemic, obesity and prediabetes have surged not only in minority ethnic groups but also in the general population, further raising T2D risk. Regarding its pathogenesis, a gradually increasing insulin resistance due to central adiposity combined with a progressively defective β-cell function are the main culprits. Especially in youth-onset T2D, a rapid β-cell activity decline has been observed, leading to higher treatment failure rates, and early complications. In addition, it is well established that both the quantity and quality of food ingested by individuals play a key role in T2D pathogenesis. A chronic imbalance between caloric intake and expenditure together with impaired micronutrient intake can lead to obesity and insulin resistance on one hand, and β-cell failure and defective insulin production on the other. This review summarizes our evolving understanding of the pathophysiological mechanisms involved in defective insulin secretion by the pancreatic islets in youth- and adult-onset T2D and, further, of the role various micronutrients play in these pathomechanisms. This knowledge is essential if we are to curtail the serious long-term complications of T2D both in pediatric and adult populations.
Collapse
Affiliation(s)
- Anastasios Serbis
- Department of Pediatrics, School of Medicine, University of Ioannina, St. Niarhcos Avenue, 45500 Ioannina, Greece;
| | - Vasileios Giapros
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, St. Νiarhcos Avenue, 45500 Ioannina, Greece (F.B.)
| | - Konstantinos Tsamis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, St. Niarhcos Avenue, 45500 Ioannina, Greece
| | - Foteini Balomenou
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, St. Νiarhcos Avenue, 45500 Ioannina, Greece (F.B.)
| | - Assimina Galli-Tsinopoulou
- Second Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece;
| | - Ekaterini Siomou
- Department of Pediatrics, School of Medicine, University of Ioannina, St. Niarhcos Avenue, 45500 Ioannina, Greece;
| |
Collapse
|
22
|
Plotnikoff GA, Dobberstein L, Raatz S. Nutritional Assessment of the Symptomatic Patient on a Plant-Based Diet: Seven Key Questions. Nutrients 2023; 15:1387. [PMID: 36986117 PMCID: PMC10056340 DOI: 10.3390/nu15061387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Plant-based diets, both vegan and vegetarian, which emphasize grains, vegetables, fruits, legumes, nuts, and seeds are increasingly popular for health as well as financial, ethical, and religious reasons. The medical literature clearly demonstrates that whole food plant-based diets can be both nutritionally sufficient and medically beneficial. However, any person on an intentionally restrictive, but poorly-designed diet may predispose themselves to clinically-relevant nutritional deficiencies. For persons on a poorly-designed plant-based diet, deficiencies are possible in both macronutrients (protein, essential fatty acids) and micronutrients (vitamin B12, iron, calcium, zinc, and vitamin D). Practitioner evaluation of symptomatic patients on a plant-based diet requires special consideration of seven key nutrient concerns for plant-based diets. This article translates these concerns into seven practical questions that all practitioners can introduce into their patient assessments and clinical reasoning. Ideally, persons on plant-based diets should be able to answer these seven questions. Each serves as a heuristic prompt for both clinician and patient attentiveness to a complete diet. As such, these seven questions support increased patient nutrition knowledge and practitioner capacity to counsel, refer, and appropriately focus clinical resources.
Collapse
Affiliation(s)
| | | | - Susan Raatz
- Department of Food Science and Nutrition, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
23
|
Moroni-González D, Sarmiento-Ortega VE, Diaz A, Brambila E, Treviño S. Pancreas-Liver-Adipose Axis: Target of Environmental Cadmium Exposure Linked to Metabolic Diseases. TOXICS 2023; 11:223. [PMID: 36976988 PMCID: PMC10059892 DOI: 10.3390/toxics11030223] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Cadmium has been well recognized as a critical toxic agent in acute and chronic poisoning cases in occupational and nonoccupational settings and environmental exposure situations. Cadmium is released into the environment after natural and anthropogenic activities, particularly in contaminated and industrial areas, causing food pollution. In the body, cadmium has no biological activity, but it accumulates primarily in the liver and kidney, which are considered the main targets of its toxicity, through oxidative stress and inflammation. However, in the last few years, this metal has been linked to metabolic diseases. The pancreas-liver-adipose axis is largely affected by cadmium accumulation. Therefore, this review aims to collect bibliographic information that establishes the basis for understanding the molecular and cellular mechanisms linked to cadmium with carbohydrate, lipids, and endocrine impairments that contribute to developing insulin resistance, metabolic syndrome, prediabetes, and diabetes.
Collapse
Affiliation(s)
- Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, 22 South. FCQ9, Ciudad Universitaria, Puebla 72560, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| |
Collapse
|
24
|
Okuda K, Takashima I, Takagi A. Advances in reaction-based synthetic fluorescent probes for studying the role of zinc and copper ions in living systems. J Clin Biochem Nutr 2023; 72:1-12. [PMID: 36777081 PMCID: PMC9899921 DOI: 10.3164/jcbn.22-92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/01/2022] [Indexed: 12/15/2022] Open
Abstract
Recently, the behavior of essential trace metal elements in living organisms has attracted more and more attention as their dynamics have been found to be tightly regulated by metallothionines, transporters, etc. As the physiological and/or pathological roles of such metal elements are critical, there have been many non-invasive methods developed to determine their cellular functions, mainly by small molecule fluorescent probes. In this review, we focus on probes that detect intracellular zinc and monovalent copper. Both zinc and copper act not only as tightly bound cofactors of enzymes and proteins but also as signaling factors as labile or loosely bound species. Many fluorescent probes that detect mobile zinc or monovalent copper are recognition-based probes, whose detection is hindered by the abundance of intracellular chelators such as glutathione which interfere with the interaction between probe and metal. In contrast, reaction-based probes release fluorophores triggered by zinc or copper and avoid interference from such intracellular chelators, allowing the detection of even low concentrations of such metals. Here, we summarize the current status of the cumulative effort to develop such reaction-based probes and discuss the strategies adopted to overcome their shortcomings.
Collapse
Affiliation(s)
- Kensuke Okuda
- Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada-ku, Kobe 658-8558, Japan,To whom correspondence should be addressed. E-mail:
| | - Ippei Takashima
- Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada-ku, Kobe 658-8558, Japan
| | - Akira Takagi
- Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada-ku, Kobe 658-8558, Japan
| |
Collapse
|
25
|
Firth G, Yu Z, Bartnicka JJ, Parker D, Kim J, Sunassee K, Greenwood HE, Al-Salamee F, Jauregui-Osoro M, Di Pietro A, Guzman J, Blower PJ. Imaging zinc trafficking in vivo by positron emission tomography with zinc-62. Metallomics 2022; 14:mfac076. [PMID: 36201445 PMCID: PMC9578021 DOI: 10.1093/mtomcs/mfac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022]
Abstract
Non-invasive imaging techniques to dynamically map whole-body trafficking of essential metals in vivo in health and diseases are needed. Despite 62Zn having appropriate physical properties for positron emission tomography (PET) imaging (half-life, 9.3 h; positron emission, 8.2%), its complex decay via 62Cu (half-life, 10 min; positron emission, 97%) has limited its use. We aimed to develop a method to extract 62Zn from a 62Zn/62Cu generator, and to investigate its use for in vivo imaging of zinc trafficking despite its complex decay. 62Zn prepared by proton irradiation of natural copper foil was used to construct a conventional 62Zn/62Cu generator. 62Zn was eluted using trisodium citrate and used for biological experiments, compared with 64Cu in similar buffer. PET/CT imaging and ex vivo tissue radioactivity measurements were performed following intravenous injection in healthy mice. [62Zn]Zn-citrate was readily eluted from the generator with citrate buffer. PET imaging with the eluate demonstrated biodistribution similar to previous observations with the shorter-lived 63Zn (half-life 38.5 min), with significant differences compared to [64Cu]Cu-citrate, notably in pancreas (>10-fold higher at 1 h post-injection). Between 4 and 24 h, 62Zn retention in liver, pancreas, and kidney declined over time, while brain uptake increased. Like 64Cu, 62Zn showed hepatobiliary excretion from liver to intestines, unaffected by fasting. Although it offers limited reliability of scanning before 1 h post-injection, 62Zn-PET allows investigation of zinc trafficking in vivo for >24 h and hence provides a useful new tool to investigate diseases where zinc homeostasis is disrupted in preclinical models and humans.
Collapse
Affiliation(s)
- George Firth
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Zilin Yu
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Joanna J Bartnicka
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - David Parker
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jana Kim
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Kavitha Sunassee
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Hannah E Greenwood
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Fahad Al-Salamee
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Maite Jauregui-Osoro
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Alberto Di Pietro
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Joanna Guzman
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Philip J Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| |
Collapse
|
26
|
Banach M, Harley ITW, Getahun A, Cambier JC. Comparative analysis of the repertoire of insulin-reactive B cells in type 1 diabetes-prone and resistant mice. Front Immunol 2022; 13:961209. [PMID: 36275764 PMCID: PMC9579539 DOI: 10.3389/fimmu.2022.961209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/26/2022] [Indexed: 01/04/2023] Open
Abstract
Seropositivity for autoantibodies against multiple islet antigens is associated with development of autoimmune type 1 diabetes (T1D), suggesting a role for B cells in disease. The importance of B cells in T1D is indicated by the effectiveness of B cell-therapies in mouse models and patients. B cells contribute to T1D by presenting islet antigens, including insulin, to diabetogenic T cells that kill pancreatic beta cells. The role of B cell receptor (BCR) affinity in T1D development is unclear. Here, we employed single cell RNA sequencing to define the relationship between BCR affinity for insulin and B cell phenotype during disease development. We utilized immunoglobulin (Ig) heavy chain (VH125) mouse models in which high-affinity insulin-reactive B cells (IBCs) were previously shown to be anergic in diabetes-resistant VH125.C57BL/6-H2g7 and activated in VH125. NOD mice developing disease. Here, high-affinity IBCs were found in the spleen of prediabetic VH125. NOD mice and exhibited marginal zone or follicular phenotypes. Ig light chains expressed by these B cells are unmutated and biased toward Vκ4-74 and Vκ4-57 usage. Receptors expressed by anergic high-affinity IBCs of diabetes-resistant VH125.C57BL/6-H2g7 are also unmutated; however, in this genetic background light chains are polymorphic relative to those of NOD. Light chains derived from NOD and C57BL/6-H2g7 genetic backgrounds conferred divergent kinetics of binding to insulin when paired with the VH125 heavy chain. These findings suggest that relaxation of tolerance mechanisms in the NOD mouse leads to accumulation and partial activation of B cells expressing germline encoded high-affinity BCRs that support development of autoimmunity.
Collapse
Affiliation(s)
- Maureen Banach
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Isaac T. W. Harley
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Division of Rheumatology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Rheumatology Section, Medicine Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Andrew Getahun
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - John C. Cambier
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
27
|
Kang J, Yan Q, Zhou C, Zhou X, Tan Z. Replacing ZnSO 4 with Zn-glycine in the diet of goat promotes the pancreatic function of the offspring. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:63-71. [PMID: 36514374 PMCID: PMC9731826 DOI: 10.1016/j.aninu.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/20/2022] [Accepted: 08/12/2022] [Indexed: 12/16/2022]
Abstract
Zinc supplementation in the diet of goats affects pancreas development in offspring. However, the impact of maternal inorganic and organic zinc supplementation in offspring is poorly defined. In this study, 14 late-pregnant goats were assigned at random to the zinc sulfate group (ZnSO4, n = 7) and the zinc-glycine chelate group (Zn-Gly, n = 7), respectively. Serum samples and pancreas tissue were collected from kids whose mothers were fed ZnSO4 and Zn-Gly at the late pregnancy, respectively. Histologic examination showed no morphologic differences between the 2 groups. Pancreatic zinc content in kids tended to be increased when replacing ZnSO4 with Zn-Gly. The serum insulin concentration was greater and glucagon less in the Zn-Gly group when compared to the ZnSO4 group. The activities of lipase and chymotrypsin were enhanced when replacing ZnSO4 with Zn-Gly. Proteomics results showed that 234 proteins were differentially expressed between the 2 groups, some of which were associated with the secretion of insulin, enzyme activity and signal transduction. The results suggested that supply of dietary Zn-Gly to goats during late pregnancy promoted pancreatic function in offspring compared with dietary ZnSO4 supplementation. This provides new information about pancreatic function when supplementing different zinc sources in the diets of late pregnant goats.
Collapse
Affiliation(s)
- Jinhe Kang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
| | - Qiongxian Yan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
| | - Chuanshe Zhou
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
| | - Xiaoling Zhou
- College of Animal Science, Tarim University, Alaer 843300, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- Corresponding author.
| |
Collapse
|
28
|
Baltaci SB, Unal O, Gulbahce-Mutlu E, Gumus H, Pehlivanoglu S, Yardimci A, Mogulkoc R, Baltaci AK. The Role of Zinc Status on Spatial Memory, Hippocampal Synaptic Plasticity, and Insulin Signaling in icv-STZ-Induced Sporadic Alzheimer's-Like Disease in Rats. Biol Trace Elem Res 2022; 200:4068-4078. [PMID: 34727320 DOI: 10.1007/s12011-021-02999-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD), especially its sporadic form (sAD), is of multifactorial nature. Brain insulin resistance and disrupted zinc homeostasis are two key aspects of AD that remain to be elucidated. Here, we investigated the effects of dietary zinc deficiency and supplementation on memory, hippocampal synaptic plasticity, and insulin signaling in intracerebroventricular streptozotocin (icv-STZ)-induced sAD in rats. The memory performance was evaluated by Morris water maze. The expression of hippocampal protein and mRNA levels of targets related to synaptic plasticity and insulin pathway was assessed by Western blot and real-time quantitative PCR. We found memory deficits in icv-STZ rats, which were fully recovered by zinc supplementation. Western blot analysis revealed that icv-STZ treatment significantly reduced hippocampal PSD95 and p-GSK3β, and zinc supplementation restored the normal protein levels. mRNA levels of BDNF, PSD95, SIRT1, GLUT4, insulin receptor, and ZnT3 were found to be reduced by icv-STZ and reestablished by zinc supplementation. Our data suggest that zinc supplementation improves cognitive deficits and rescues the decline in key molecular targets of synaptic plasticity and insulin signaling in hippocampus caused by icv-STZ induced sAD in rats.
Collapse
Affiliation(s)
- Saltuk Bugra Baltaci
- Department of Physiology, Medical Faculty, Selçuk University, Konya, 42031, Turkey
| | - Omer Unal
- Department of Physiology, Medical Faculty, Selçuk University, Konya, 42031, Turkey
| | - Elif Gulbahce-Mutlu
- Department of Medical Biology, Medical Faculty, KTO Karatay University, Konya, Turkey
| | - Haluk Gumus
- Department of Neurology, Medical Faculty, Selçuk University, Konya, Turkey
| | - Suray Pehlivanoglu
- Department of Molecular Biology, Science Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Ahmet Yardimci
- Department of Physiology, Medical Faculty, Firat University, Elazig, Turkey
| | - Rasim Mogulkoc
- Department of Physiology, Medical Faculty, Selçuk University, Konya, 42031, Turkey
| | | |
Collapse
|
29
|
Liu M, Zhang J, Chen Z. Emerging Trends in Fluorescence Bioimaging of Divalent Metal Cations Using Small‐Molecule Indicators. Chemistry 2022; 28:e202200587. [DOI: 10.1002/chem.202200587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Mingqiao Liu
- College of Future Technology Institute of Molecular Medicine National Biomedical Imaging Center Beijing Key Laboratory of Cardiometabolic Molecular Medicine Peking University 100871 Beijing China
- Academy for Advanced Interdisciplinary Studies Peking University 100871 Beijing China
| | - Junwei Zhang
- College of Future Technology Institute of Molecular Medicine National Biomedical Imaging Center Beijing Key Laboratory of Cardiometabolic Molecular Medicine Peking University 100871 Beijing China
| | - Zhixing Chen
- College of Future Technology Institute of Molecular Medicine National Biomedical Imaging Center Beijing Key Laboratory of Cardiometabolic Molecular Medicine Peking University 100871 Beijing China
- Academy for Advanced Interdisciplinary Studies Peking University 100871 Beijing China
- Peking-Tsinghua Center for Life Science Peking University 100871 Beijing China
| |
Collapse
|
30
|
Triangulating evidence for the causal impact of single-intervention zinc supplement on glycaemic control for type 2 diabetes: systematic review and meta-analysis of randomised controlled trial and two-sample Mendelian randomisation. Br J Nutr 2022; 129:1929-1944. [PMID: 35946077 PMCID: PMC10167665 DOI: 10.1017/s0007114522002616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Although previous studies suggested the protective effect of Zn for type 2 diabetes (T2D), the unitary causal effect remains inconclusive. We investigated the causal effect of Zn as a single intervention on glycaemic control for T2D, using a systematic review of randomised controlled trials and two-sample Mendelian randomisation (MR). Four primary outcomes were identified: fasting blood glucose/fasting glucose, HbA1c, homeostatic model assessment for insulin resistance (HOMA-IR) and serum insulin/fasting insulin level. In the systematic review, four databases were searched until June 2021. Studies, in which participants had T2D and intervention did not comprise another co-supplement, were included. Results were synthesised through the random-effects meta-analysis. In the two-sample MR, we used single-nucleotide polymorphisms (SNP) from MR-base, strongly related to Zn supplements, to infer the relationship causally, but not specified T2D. In the systematic review and meta-analysis, fourteen trials were included with overall 897 participants initially. The Zn supplement led to a significant reduction in the post-trial mean of fasting blood glucose (mean difference (MD): −26·52 mg/dl, 95 % CI (−35·13, −17·91)), HbA1c (MD: −0·52 %, 95 % CI: (−0·90, −0·13)) and HOMA-IR (MD: −1·65, 95 % CI (−2·62, −0·68)), compared to the control group. In the two-sample MR, Zn supplement with two SNP reduced the fasting glucose (inverse-variance weighted coefficient: −2·04 mmol/l, 95 % CI (−3·26, −0·83)). From the two methods, Zn supplementation alone may causally improve glycaemic control among T2D patients. The findings are limited by power from the small number of studies and SNP included in the systematic review and two-sample MR analysis, respectively.
Collapse
|
31
|
Quantitative, in situ visualization of intracellular insulin vesicles in pancreatic beta cells. Proc Natl Acad Sci U S A 2022; 119:e2202695119. [PMID: 35921440 PMCID: PMC9371705 DOI: 10.1073/pnas.2202695119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Characterizing relationships between Zn2+, insulin, and insulin vesicles is of vital importance to the study of pancreatic beta cells. However, the precise content of Zn2+ and the specific location of insulin inside insulin vesicles are not clear, which hinders a thorough understanding of the insulin secretion process and diseases caused by blood sugar dysregulation. Here, we demonstrated the colocalization of Zn2+ and insulin in both single extracellular insulin vesicles and pancreatic beta cells by using an X-ray scanning coherent diffraction imaging (ptychography) technique. We also analyzed the elemental Zn2+ and Ca2+ contents of insulin vesicles using electron microscopy and energy dispersive spectroscopy (EDS) mapping. We found that the presence of Zn2+ is an important characteristic that can be used to distinguish insulin vesicles from other types of vesicles in pancreatic beta cells and that the content of Zn2+ is proportional to the size of insulin vesicles. By using dual-energy contrast X-ray microscopy and scanning transmission X-ray microscopy (STXM) image stacks, we observed that insulin accumulates in the off-center position of extracellular insulin vesicles. Furthermore, the spatial distribution of insulin vesicles and their colocalization with other organelles inside pancreatic beta cells were demonstrated using three-dimensional (3D) imaging by combining X-ray ptychography and an equally sloped tomography (EST) algorithm. This study describes a powerful method to univocally describe the location and quantitative analysis of intracellular insulin, which will be of great significance to the study of diabetes and other blood sugar diseases.
Collapse
|
32
|
Prakash J, Sallaram S, Martin A, Veeranna RP, Peddha MS. Phytochemical and Functional Characterization of Different Parts of the Garcinia xanthochymus Fruit. ACS OMEGA 2022; 7:21172-21182. [PMID: 35755390 PMCID: PMC9219070 DOI: 10.1021/acsomega.2c01966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The fruit of Garcinia xanthochymus is consumed traditionally and is known to possess health-promoting effects. However, studies involving the characterization of phytochemicals of different parts of the fruit, and their biological activity were limited and hence warranted a comprehensive study. The proximate analyses reveal that fruit peel was rich in crude fiber. The levels of essential minerals, fatty acids, amino acids, carotenoids, organic acids, and polyphenols were significantly higher in the peel, followed by the rind, seed, and pulp. The in vitro antioxidant assays revealed that the polyphenolic extract of the peel possesses a high antioxidant effect compared to the extracts from other parts of theG. xanthochymus fruit. Furthermore, the in vitro assays reveal the antidiabetic potential of the methanol extract. This is the first comprehensive report involving the characterization and biological properties of different parts of the G. xanthochymus fruit. Hence, our study implicates the potential use of this fruit for the development of functional foods for diabetes.
Collapse
Affiliation(s)
- Janhavi Prakash
- Department
of Biochemistry, CSIR-CFTRI, Mysore 570020, Karnataka, India
- Academy
of Scientific and Innovative Research (ACSIR), Ghaziabad 201 002, India
| | - Sindhoora Sallaram
- Department
of Fruit and Vegetable Technology, CSIR-CFTRI, Mysore 570020, Karnataka, India
- Academy
of Scientific and Innovative Research (ACSIR), Ghaziabad 201 002, India
| | - Asha Martin
- Department
of Food Safety and Analytical Quality Control Laboratory, CSIR-CFTRI, Mysore 570020, Karnataka, India
- Academy
of Scientific and Innovative Research (ACSIR), Ghaziabad 201 002, India
| | - Ravindra P. Veeranna
- Department
of Biochemistry, CSIR-CFTRI, Mysore 570020, Karnataka, India
- Academy
of Scientific and Innovative Research (ACSIR), Ghaziabad 201 002, India
| | - Muthukumar Serva Peddha
- Department
of Biochemistry, CSIR-CFTRI, Mysore 570020, Karnataka, India
- Academy
of Scientific and Innovative Research (ACSIR), Ghaziabad 201 002, India
| |
Collapse
|
33
|
Yamada K, Deb A, Shoba VM, Lim D, Maji B, Modell AE, Choudhary A. Rational Design of Silicon-Based Zinc Ionophores. Angew Chem Int Ed Engl 2022; 61:e202201698. [PMID: 35385189 DOI: 10.1002/anie.202201698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 01/24/2023]
Abstract
Ionophores transport ions across biological membranes and have wide-ranging applications, but a platform for their rapid development does not exist. We report a platform for developing ionophores from metal-ion chelators, which are readily available with wide-ranging affinities and specificities, and structural data that can aid rational design. Specifically, we fine-tuned the binding affinity and lipophilicity of a ZnII -chelating ligand by introducing silyl groups proximal to the ZnII -binding pocket, which generated ionophores that performed better than most of the currently known ZnII ionophores. Furthermore, these silicon-based ionophores were specific for ZnII over other metals and exhibited better antibacterial activity and less toxicity to mammalian cells than several known ZnII ionophores, including pyrithione. These studies establish rational design principles for the rapid development of potent and specific ionophores and a new class of antibacterial agents.
Collapse
Affiliation(s)
- Kei Yamada
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Arghya Deb
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Veronika M Shoba
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Donghyun Lim
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Basudeb Maji
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ashley E Modell
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
34
|
Basile G, Qadir MMF, Mauvais-Jarvis F, Vetere A, Shoba V, Modell AE, Pastori RL, Russ HA, Wagner BK, Dominguez-Bendala J. Emerging diabetes therapies: Bringing back the β-cells. Mol Metab 2022; 60:101477. [PMID: 35331962 PMCID: PMC8987999 DOI: 10.1016/j.molmet.2022.101477] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Stem cell therapies are finally coming of age as a viable alternative to pancreatic islet transplantation for the treatment of insulin-dependent diabetes. Several clinical trials using human embryonic stem cell (hESC)-derived β-like cells are currently underway, with encouraging preliminary results. Remaining challenges notwithstanding, these strategies are widely expected to reduce our reliance on human isolated islets for transplantation procedures, making cell therapies available to millions of diabetic patients. At the same time, advances in our understanding of pancreatic cell plasticity and the molecular mechanisms behind β-cell replication and regeneration have spawned a multitude of translational efforts aimed at inducing β-cell replenishment in situ through pharmacological means, thus circumventing the need for transplantation. SCOPE OF REVIEW We discuss here the current state of the art in hESC transplantation, as well as the parallel quest to discover agents capable of either preserving the residual mass of β-cells or inducing their proliferation, transdifferentiation or differentiation from progenitor cells. MAJOR CONCLUSIONS Stem cell-based replacement therapies in the mold of islet transplantation are already around the corner, but a permanent cure for type 1 diabetes will likely require the endogenous regeneration of β-cells aided by interventions to restore the immune balance. The promise of current research avenues and a strong pipeline of clinical trials designed to tackle these challenges bode well for the realization of this goal.
Collapse
Affiliation(s)
- G Basile
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - M M F Qadir
- Tulane University School of Medicine, New Orleans, LA, USA; Southeast Louisiana Veterans Affairs Medical Center, New Orleans, LA, USA
| | - F Mauvais-Jarvis
- Tulane University School of Medicine, New Orleans, LA, USA; Southeast Louisiana Veterans Affairs Medical Center, New Orleans, LA, USA
| | - A Vetere
- Broad Institute, Cambridge, MA, USA
| | - V Shoba
- Broad Institute, Cambridge, MA, USA
| | | | - R L Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - H A Russ
- Barbara Davis Center for Diabetes, Colorado University Anschutz Medical Campus, Aurora, CO, USA.
| | | | - J Dominguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
35
|
Ascorbic Acid Ameliorates Cardiac and Hepatic Toxicity Induced by Azithromycin-Etoricoxib Drug Interaction. Curr Issues Mol Biol 2022; 44:2529-2541. [PMID: 35735613 PMCID: PMC9222074 DOI: 10.3390/cimb44060172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
The complexity of prescribing safe and effective drug therapy is still challenging. Due to the increased number of medications taken by patients, the potential for drug-drug interactions has clinically important consequences. This study focuses on the potential drug-drug interaction between azithromycin and etoricoxib and the possibility of counteracting this adverse reaction by giving ascorbic acid intraperitoneally to male albino rats. Sixty adult male albino rats weighing 150–180 g were used. The rats were allocated into six equal groups. One group was a control, and the others were given azithromycin, etoricoxib, either alone or combination, with one group treated with ascorbic acid and the last group treated with the drug combination and ascorbic acid. Blood samples were collected for measuring AST, ALT, LDH, CK-MB, and troponin alongside antioxidant enzymes and histopathological examination for both liver and heart tissue. The results showed both hepatic and cardiac damage in azithromycin and etoricoxib groups represented by increasing levels of heaptoc enzymes (ALT, AST, LDH, CK-MB, and troponin) with declining antioxidant enzymes and elevation of malondialdehyde and the appearance of hepatic and cardiac toxicities. Upon administration, ascorbic acid ameliorated all the mentioned biochemical parameters. In conclusion, ascorbic acid has great antioxidant capacities and hepatic and cardiac ameliorative effects and can alleviate drug interaction toxicity.
Collapse
|
36
|
Zinc(II) Complexes with Dimethyl 2,2′-Bipyridine-4,5-dicarboxylate: Structure, Antimicrobial Activity and DNA/BSA Binding Study. INORGANICS 2022. [DOI: 10.3390/inorganics10060071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Two zinc(II) complexes with dimethyl 2,2′-bipyridine-4,5-dicarboxylate (py-2py) of the general formula [Zn(py-2py)X2], X = Cl− (1) and Br− (2) were synthesized and characterized by NMR, IR and UV-Vis spectroscopy and single-crystal X-ray diffraction analysis. Complexes 1 and 2 are isostructural and adopt a slightly distorted tetrahedral geometry with values of tetrahedral indices τ4 and τ’4 in the range of 0.80–0.85. The complexes were evaluated for their in vitro antimicrobial activity against two bacterial (Pseudomonas aeruginosa and Staphylococcus aureus) and two fungal strains (Candida albicans and Candida parapsilosis), while their cytotoxicity was tested on the normal human lung fibroblast cell line (MRC-5) and the model organism Caenorhabditis elegans. Complex 1 showed moderate activity against both Candida strains. However, this complex was twofold more cytotoxic compared to complex 2. The complexes tested had no effect on the survival rate of C. elegans. Complex 2 showed the ability to inhibit filamentation of C. albicans, while complex 1 was more effective than complex 2 in inhibiting biofilm formation. The interactions of complexes 1 and 2 with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) were studied to evaluate their binding affinity toward these biomolecules.
Collapse
|
37
|
Sahu S, Sikdar Y, Bag R, Cerezo J, Cerón-Carrasco JP, Goswami S. Turn on Fluorescence Sensing of Zn2+ Based on Fused Isoindole-Imidazole Scaffold. Molecules 2022; 27:molecules27092859. [PMID: 35566211 PMCID: PMC9103770 DOI: 10.3390/molecules27092859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
Optical chemosensors caused a revolution in the field of sensing due to their high specificity, sensitivity, and fast detection features. Imidazole derivatives have offered promising features in the literature as they bear suitable donor/acceptor groups for the selective analytes in the skeleton. In this work, an isoindole-imidazole containing a Schiff base chemosensor (1-{3-[(2-Diethylamino-ethylimino)-methyl]-2-hydroxy-5-methyl-phenyl}-2H-imidazo[5,1-a]isoindole-3,5-dione) was designed and synthesized. The complete sensing phenomena have been investigated by means of UV-Vis, fluorescence, lifetime measurement, FT-IR, NMR and ESI-MS spectroscopic techniques. The optical properties of the synthesized ligand were investigated in 3:7 HEPES buffer:DMSO medium and found to be highly selective and sensitive toward Zn2+ ion through a fluorescence turn-on response with detection limit of 0.073 μm. Furthermore, this response is effective in gel form also. The competition studies reveal that the response of the probe for Zn2+ ion is unaffected by other relevant metal ions. The stoichiometric binding study was performed utilizing Job’s method which indicated a 1:1 sensor–Zn2+ ensemble. Computational calculations were performed to pinpoint the mechanism of sensing.
Collapse
Affiliation(s)
- Sutapa Sahu
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India; (S.S.); (R.B.)
| | - Yeasin Sikdar
- Department of Chemistry, The Bhawanipur Education Society College, 5, LalaLajpat Rai Sarani, Kolkata 700020, India;
| | - Riya Bag
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India; (S.S.); (R.B.)
| | - Javier Cerezo
- Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - José P. Cerón-Carrasco
- Centro Universitario de la Defensa, Academia General del Aire, Universidad Politécnica de Cartagena, C/Coronel López Peña S/N, Santiago de La Ribera, 30720 Murcia, Spain
- Correspondence: (J.P.C.-C.); (S.G.)
| | - Sanchita Goswami
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India; (S.S.); (R.B.)
- Correspondence: (J.P.C.-C.); (S.G.)
| |
Collapse
|
38
|
El-Megharbel SM, Al-Baqami NM, Al-Thubaiti EH, Qahl SH, Albogami B, Hamza RZ. Antidiabetic Drug Sitagliptin with Divalent Transition Metals Manganese and Cobalt: Synthesis, Structure, Characterization Antibacterial and Antioxidative Effects in Liver Tissues. Curr Issues Mol Biol 2022; 44:1810-1827. [PMID: 35678653 PMCID: PMC9164021 DOI: 10.3390/cimb44050124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/24/2022] Open
Abstract
Metals and their complexes have an increasing number of medical applications. Sitagliptin (STG) acts as an antidiabetic drug. Mn(II) and Co(II) complexes were studied and characterized based on physical characterization, FT-IR, DG/TG, XRD, ESM, and TEM. Data revealed that STG acts as a bidentate ligand through the oxygen atom of a carbonyl group and the nitrogen atom of an amino group. Magnetic measurement data revealed that the Mn/STG metal complex has a square planner geometry. The experiment was performed on 40 male albino rats who were divided into four groups: the control group, STG group, group treated with STG/Mn, and group treated with Co/STG. Biomarkers for hepatic enzymes and antioxidants were found in the blood, and hepatic tissue histology was evaluated. STG in combination with Mn and Co administration showed potent protective effects against hepatic biochemical alterations induced by STG alone, as well as suppressing oxidative stress and structural alterations. These complexes prevented any stress and improved hepatic enzymatic levels more than STG alone. The STG/Mn complex was highly effective against Bacillus subtilis and Streptococcus pneumonia, while STG/Co was highly effective against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureas. Therefore, STG combined with Mn and Co produced a synergistic effect against oxidative stress and improved the histological structure of the liver tissues. STG metal complexes with Mn and Co showed the most potential ameliorative antioxidant and hepatoprotective effects.
Collapse
Affiliation(s)
- Samy M. El-Megharbel
- Department of Chemistry, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence:
| | - Najah M. Al-Baqami
- Department of Biological Sciences, Zoology, Faculty of Sciences, King Abdul-Aziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia;
| | - Eman H. Al-Thubaiti
- Biotechnology Department, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Safa H. Qahl
- Biology Department, College of Sciences, Jeddah University, P.O. Box 34, Jeddah 21959, Saudi Arabia;
| | - Bander Albogami
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (B.A.); (R.Z.H.)
| | - Reham Z. Hamza
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (B.A.); (R.Z.H.)
| |
Collapse
|
39
|
Yamada K, Deb A, Shoba VM, Lim D, Maji B, Modell AE, Choudhary A. Rational Design of Silicon‐Based Zinc Ionophores. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kei Yamada
- Chemical Biology and Therapeutics Science Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
| | - Arghya Deb
- Chemical Biology and Therapeutics Science Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
| | - Veronika M. Shoba
- Chemical Biology and Therapeutics Science Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
- Divisions of Renal Medicine and Engineering Brigham and Women's Hospital Boston MA 02115 USA
| | - Donghyun Lim
- Chemical Biology and Therapeutics Science Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
- Divisions of Renal Medicine and Engineering Brigham and Women's Hospital Boston MA 02115 USA
| | - Basudeb Maji
- Chemical Biology and Therapeutics Science Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
- Divisions of Renal Medicine and Engineering Brigham and Women's Hospital Boston MA 02115 USA
| | - Ashley E. Modell
- Chemical Biology and Therapeutics Science Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
- Divisions of Renal Medicine and Engineering Brigham and Women's Hospital Boston MA 02115 USA
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Department of Medicine Harvard Medical School Boston MA 02115 USA
- Divisions of Renal Medicine and Engineering Brigham and Women's Hospital Boston MA 02115 USA
| |
Collapse
|
40
|
Rao NS, Raju GJN, Tiwari MK, Naidu BG, Sarita P. Serum Elemental Analysis of Type 2 Diabetes Patients Using SRXRF. Biol Trace Elem Res 2022; 200:1485-1494. [PMID: 34076844 DOI: 10.1007/s12011-021-02762-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/20/2021] [Indexed: 11/26/2022]
Abstract
A total of 158 serum samples of newly diagnosed type 2 diabetes patients and control subjects were analyzed using Synchrotron Radiation X-ray Fluorescence (SRXRF) technique. The microprobe XRF beam line-16 of Indus-2 synchrotron radiation facility at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore, India, was used to identify and quantify the elements K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, and Pb. A significant decrease in the mean concentrations of K, Ca, Ti, Cr, Mn, Ni, Zn, and As and an increase in the concentrations of V, Fe, Co, Cu, Se, and Pb were observed in the serum samples of the patient group when compared to the control group. It is hypothesized that the observed alterations in the elemental concentrations might have led to ineffective uptake of insulin and have interfered with glucose homeostasis by either directly or indirectly causing oxidative stress.
Collapse
Affiliation(s)
- N Srinivasa Rao
- Department of Physics, GIS, GITAM Deemed To Be University, Visakhapatnam, 530045, India
| | - G J Naga Raju
- Department of Physics, UCEV- JNTUK, Vizianagaram, 535003, India
| | - M K Tiwari
- X-Ray Optics Section, Indus Synchrotron Utilization Division, RRCAT, Indore, 452013, India
| | - B G Naidu
- Department of Physics, GIS, GITAM Deemed To Be University, Visakhapatnam, 530045, India
| | - P Sarita
- Department of Physics, GIS, GITAM Deemed To Be University, Visakhapatnam, 530045, India.
| |
Collapse
|
41
|
Guo A, He B, Li A, Jiang H. In vitro and in vivo characterization of insulin vesicles by electron microscopy. Biochem Biophys Res Commun 2022; 597:23-29. [PMID: 35123262 DOI: 10.1016/j.bbrc.2022.01.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 11/28/2022]
Abstract
Insulin is the main hypoglycemic hormone, promoting the absorption and storage of glucose and inhibiting its production. It is a hexamer composed of six insulin macromolecules and a Zn2+ and clustered in insulin vesicles of pancreatic β cell. Most current research has focused on the in vivo imaging of whole cells while there are few detailed studies on structure of insulin vesicles. The precise content of Zn2+ in vesicles is not clear, and the aggregation state and location of insulin in insulin vesicles is not fully characterized, which hinders a thorough understanding of insulin secretion process and diseases caused by blood sugar regulation. Here, we performed electron microscopy (EM) studies on both whole cells (in vivo) and extracted isolated insulin vesicles by supercentrifugation (in vitro) to explore the location and distribution of insulin vesicles in pancreatic β cells. Meanwhile, we analyzed the content of Zn2+ and Ca2+ through EM imaging and energy dispersive spectroscopy (EDS) mapping, and the content of Zn2+ was found to be proportional to the size of insulin vesicles. In addition, by taking advantage of TEM tomography, the three-dimensional structure of insulin vesicle was obtained by acquisition projections in different angles of insulin vesicle. This study provides a promising way to quantitative analysis of intracellular insulin, which may be of great significance to the study of diabetes and other blood sugar diseases.
Collapse
Affiliation(s)
- Amin Guo
- School of Physical Science and Technology, & Center for Transformative Science, ShanghaiTech University, Shanghai, 201210, China
| | - Bo He
- School of Physical Science and Technology, & Center for Transformative Science, ShanghaiTech University, Shanghai, 201210, China
| | - Angdi Li
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Huaidong Jiang
- School of Physical Science and Technology, & Center for Transformative Science, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
42
|
|
43
|
Mendes Garrido Abregú F, Caniffi C, Arranz CT, Tomat AL. Impact of Zinc Deficiency During Prenatal and/or Postnatal Life on Cardiovascular and Metabolic Diseases: Experimental and Clinical Evidence. Adv Nutr 2022; 13:833-845. [PMID: 35167660 PMCID: PMC9156367 DOI: 10.1093/advances/nmac012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/13/2021] [Accepted: 02/11/2022] [Indexed: 12/24/2022] Open
Abstract
This review summarizes the latest findings, from animal models and clinical studies, regarding the cardiovascular and metabolic consequences in adult life of zinc deficiency (ZD) during prenatal and early postnatal life. The effect of zinc supplementation (ZS) and new insights about sex differences in the phenotype and severity of cardiovascular and metabolic alterations are also discussed. Zinc has antioxidant, anti-inflammatory, and antiapoptotic properties and regulates the activity of enzymes involved in regulation of the metabolic, cardiovascular, and renal systems. Maternal ZD is associated with intrauterine growth restriction and low birth weight (LBW). Breast-fed preterm infants are at risk of ZD due to lower zinc uptake during fetal life and reduced gut absorption capacity. ZS is most likely to increase growth in preterm infants and survival in LBW infants in countries where ZD is prevalent. Studies performed in rats revealed that moderate ZD during prenatal and/or early postnatal growth is a risk factor for the development of hypertension, cardiovascular and renal alterations, obesity, and diabetes in adult life. An adequate zinc diet during postweaning life does not always prevent the cardiovascular and metabolic alterations induced by zinc restriction during fetal and lactation periods. Male rats are more susceptible to this injury than females, and some of the mechanisms involved include: 1) alterations in organogenesis, 2) activation of oxidative, apoptotic, and inflammatory processes, 3) dysfunction of nitric oxide and renin-angiotensin-aldosterone systems, 4) changes in glucose and lipid metabolism, and 5) adipose tissue dysfunction. Safeguarding body zinc requirements during pregnancy, lactation, and growth periods could become a new target in the prevention and treatment of cardiovascular and metabolic disorders. Further research is needed to elucidate the efficacy of ZS during early stages of growth to prevent the development of these diseases later in life.
Collapse
Affiliation(s)
- Facundo Mendes Garrido Abregú
- Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Universidad de Buenos Aires, Buenos Aires, Argentina,CONICET, Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Caniffi
- Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Universidad de Buenos Aires, Buenos Aires, Argentina,CONICET, Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cristina T Arranz
- Facultad de Farmacia y Bioquímica, Cátedra de Fisiología, Universidad de Buenos Aires, Buenos Aires, Argentina,CONICET, Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
44
|
Shcheglova E, Blaszczyk K, Borowiak M. Mitogen Synergy: An Emerging Route to Boosting Human Beta Cell Proliferation. Front Cell Dev Biol 2022; 9:734597. [PMID: 35155441 PMCID: PMC8829426 DOI: 10.3389/fcell.2021.734597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Decreased number and function of beta cells are a key aspect of diabetes mellitus (diabetes), a disease that remains an onerous global health problem. Means of restoring beta cell mass are urgently being sought as a potential cure for diabetes. Several strategies, such as de novo beta cell derivation via pluripotent stem cell differentiation or mature somatic cell transdifferentiation, have yielded promising results. Beta cell expansion is another promising strategy, rendered challenging by the very low proliferative capacity of beta cells. Many effective mitogens have been identified in rodents, but the vast majority do not have similar mitogenic effects in human beta cells. Extensive research has led to the identification of several human beta cell mitogens, but their efficacy and specificity remain insufficient. An approach based on the simultaneous application of several mitogens has recently emerged and can yield human beta cell proliferation rates of up to 8%. Here, we discuss recent advances in restoration of the beta cell population, focusing on mitogen synergy, and the contribution of RNA-sequencing (RNA-seq) to accelerating the elucidation of signaling pathways in proliferating beta cells and the discovery of novel mitogens. Together, these approaches have taken beta cell research up a level, bringing us closer to a cure for diabetes.
Collapse
Affiliation(s)
- Ekaterina Shcheglova
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Katarzyna Blaszczyk
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Malgorzata Borowiak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Malgorzata Borowiak, ;
| |
Collapse
|
45
|
He P, Li H, Liu M, Zhang Z, Zhang Y, Zhou C, Li Q, Liu C, Qin X. U-shaped Association Between Dietary Zinc Intake and New-onset Diabetes: A Nationwide Cohort Study in China. J Clin Endocrinol Metab 2022; 107:e815-e824. [PMID: 34448874 PMCID: PMC8902942 DOI: 10.1210/clinem/dgab636] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 01/07/2023]
Abstract
AIMS We aimed to investigate the relationship of dietary zinc intake with new-onset diabetes among Chinese adults. MATERIALS AND METHODS A total of 16 257 participants who were free of diabetes at baseline from the China Health and Nutrition Survey were included. Dietary intake was measured by 3 consecutive 24-hour dietary recalls combined with a household food inventory. Participants with self-reported physician-diagnosed diabetes, or fasting glucose ≥ 7.0 mmol/L, or glycated hemoglobin ≥ 6.5% during the follow-up were defined as having new-onset diabetes. RESULTS A total of 1097 participants developed new-onset diabetes during a median follow-up duration of 9.0 years. Overall, the association between dietary zinc intake and new-onset diabetes followed a U-shape (P for nonlinearity < 0.001). The risk of new-onset diabetes was significantly lower in participants with zinc intake < 9.1 mg/day (per mg/day: hazard ratio [HR], 0.73; 95% CI, 0.60-0.88), and higher in those with zinc intake ≥ 9.1 mg/day (per mg/day: HR, 1.10; 95% CI, 1.07-1.13). Consistently, when dietary zinc intake was assessed as deciles, compared with those in deciles 2-8 (8.9 -<12.2 mg/day), the risk of new-onset diabetes was higher for decile 1 (<8.9 mg/day: HR, 1.29; 95% CI, 1.04-1.62), and deciles 9 to 10 (≥12.2 mg/day: HR, 1.62; 95% CI, 1.38-1.90). Similar U-shaped relations were found for plant-derived or animal-derived zinc intake with new-onset diabetes (all P for nonlinearity < 0.001). CONCLUSIONS There was a U-shaped association between dietary zinc intake and new-onset diabetes in general Chinese adults, with an inflection point at about 9.1 mg/day.
Collapse
Affiliation(s)
- Panpan He
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou 510515, China
| | - Huan Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou 510515, China
| | - Mengyi Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou 510515, China
| | - Zhuxian Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou 510515, China
| | - Yuanyuan Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou 510515, China
| | - Chun Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou 510515, China
| | - Qinqin Li
- Institute of Biomedicine, Anhui Medical University, Hefei 230032, China
| | - Chengzhang Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou 510515, China
- Institute of Biomedicine, Anhui Medical University, Hefei 230032, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xianhui Qin
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangzhou 510515, China
- Institute of Biomedicine, Anhui Medical University, Hefei 230032, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| |
Collapse
|
46
|
Swain J, Jena S, Manglunia A, Singh J. The journey of insulin over 100 years. JOURNAL OF DIABETOLOGY 2022. [DOI: 10.4103/jod.jod_100_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
47
|
Naskar B, Das Mukhopadhyay C, Goswami S. A new diformyl phenol based chemosensor selectively detects Zn 2+ and Co 2+ in the nanomolar range in 100% aqueous medium and HCT live cells. NEW J CHEM 2022. [DOI: 10.1039/d2nj01478e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new diformyl phenol based chemosensor that can sense Zn2+ and Co2+ in the nanomolar range in 100% aqueous solution and in HCT cells was explored.
Collapse
Affiliation(s)
- Barnali Naskar
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
- Department of Chemistry, Lalbaba College, University of Calcutta, Howrah 711202, India
| | - Chitrangada Das Mukhopadhyay
- Centre for Healthcare Science & Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Sanchita Goswami
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
48
|
Oluranti OI, Agboola EA, Fubara NE, Ajayi MO, Michael OS. Cadmium exposure induces cardiac glucometabolic dysregulation and lipid accumulation independent of pyruvate dehydrogenase activity. Ann Med 2021; 53:1108-1117. [PMID: 34259114 PMCID: PMC8280890 DOI: 10.1080/07853890.2021.1947519] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/20/2021] [Indexed: 02/01/2023] Open
Abstract
CONTEXT Suppressed glucose metabolism, elevated fatty acid metabolism and lipid deposition within myocardial cells are the key pathological features of diabetic cardiomyopathy. Studies have associated cadmium exposure with metabolic disturbances. OBJECTIVE To examine the effects of cadmium exposure on cardiac glucose homeostasis and lipid accumulation in male Wistar rats. METHODS Male Wistar rats were treated for 21 days as (n = 5): Control, cadmium chloride Cd5 (5 mg/kg, p.o.), cadmium chloride Cd30 (30 mg/kg, p.o). RESULTS The fasting serum insulin level in this study decreased significantly. Pyruvate and hexokinase activity reduced significantly in the Cd5 group while no significant change in lactate and glycogen levels. The activity of pyruvate dehydrogenase enzyme significantly increased with an increasing dosage of cadmium. The free fatty acid, total cholesterol and triglyceride levels in the heart increased significantly with increasing dosage of cadmium when compared with the control. Lipoprotein lipase activity in the heart showed no difference in the Cd5 group but a reduction in the activity in the Cd30 group was observed. CONCLUSION This study indicates that cadmium exposure interferes with cardiac substrate handling resulting in impaired glucometabolic regulation and lipid accumulation which could reduce cardiac efficiency.
Collapse
Affiliation(s)
- Olufemi I. Oluranti
- Applied and Environmental Research Unit, Department of Physiology, College of Health Sciences, Bowen University, Iwo, Nigeria
| | - Ebunoluwa A. Agboola
- Applied and Environmental Research Unit, Department of Physiology, College of Health Sciences, Bowen University, Iwo, Nigeria
| | - Nteimam E. Fubara
- Applied and Environmental Research Unit, Department of Physiology, College of Health Sciences, Bowen University, Iwo, Nigeria
| | - Mercy O. Ajayi
- Applied and Environmental Research Unit, Department of Physiology, College of Health Sciences, Bowen University, Iwo, Nigeria
| | - Olugbenga S. Michael
- Cardiometabolic Research Unit, Department of Physiology, College of Health Sciences, Bowen University, Iwo, Nigeria
| |
Collapse
|
49
|
Zhang J, Peng X, Wu Y, Ren H, Sun J, Tong S, Liu T, Zhao Y, Wang S, Tang C, Chen L, Chen Z. Red‐ and Far‐Red‐Emitting Zinc Probes with Minimal Phototoxicity for Multiplexed Recording of Orchestrated Insulin Secretion. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Junwei Zhang
- College of Future Technology Institute of Molecular Medicine National Biomedical Imaging Center Beijing Key Laboratory of Cardiometabolic Molecular Medicine Peking University Beijing 100871 China
| | - Xiaohong Peng
- College of Future Technology Institute of Molecular Medicine National Biomedical Imaging Center Beijing Key Laboratory of Cardiometabolic Molecular Medicine Peking University Beijing 100871 China
- State Key Laboratory of Membrane Biology Peking University Beijing 100871 China
| | - Yunxiang Wu
- College of Future Technology Institute of Molecular Medicine National Biomedical Imaging Center Beijing Key Laboratory of Cardiometabolic Molecular Medicine Peking University Beijing 100871 China
| | - Huixia Ren
- Peking-Tsinghua Center for Life Science Peking University Beijing 100871 China
- Center for Quantitative Biology Peking University Beijing 100871 China
| | - Jingfu Sun
- PKU-Nanjing Institute of Translational Medicine Nanjing 211800 China
| | - Shiyan Tong
- School of Life Science Peking University Beijing 100871 China
| | - Tianyan Liu
- Peking-Tsinghua Center for Life Science Peking University Beijing 100871 China
| | - Yiwen Zhao
- College of Future Technology Institute of Molecular Medicine National Biomedical Imaging Center Beijing Key Laboratory of Cardiometabolic Molecular Medicine Peking University Beijing 100871 China
| | - Shusen Wang
- Organ Transplant Center Tianjin First Central Hospital Nankai University Tianjin 300192 China
| | - Chao Tang
- Peking-Tsinghua Center for Life Science Peking University Beijing 100871 China
- Center for Quantitative Biology Peking University Beijing 100871 China
| | - Liangyi Chen
- College of Future Technology Institute of Molecular Medicine National Biomedical Imaging Center Beijing Key Laboratory of Cardiometabolic Molecular Medicine Peking University Beijing 100871 China
- State Key Laboratory of Membrane Biology Peking University Beijing 100871 China
| | - Zhixing Chen
- College of Future Technology Institute of Molecular Medicine National Biomedical Imaging Center Beijing Key Laboratory of Cardiometabolic Molecular Medicine Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Science Peking University Beijing 100871 China
- PKU-Nanjing Institute of Translational Medicine Nanjing 211800 China
| |
Collapse
|
50
|
Zhu J, Avakyan N, Kakkis AA, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Protein Assembly by Design. Chem Rev 2021; 121:13701-13796. [PMID: 34405992 PMCID: PMC9148388 DOI: 10.1021/acs.chemrev.1c00308] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are nature's primary building blocks for the construction of sophisticated molecular machines and dynamic materials, ranging from protein complexes such as photosystem II and nitrogenase that drive biogeochemical cycles to cytoskeletal assemblies and muscle fibers for motion. Such natural systems have inspired extensive efforts in the rational design of artificial protein assemblies in the last two decades. As molecular building blocks, proteins are highly complex, in terms of both their three-dimensional structures and chemical compositions. To enable control over the self-assembly of such complex molecules, scientists have devised many creative strategies by combining tools and principles of experimental and computational biophysics, supramolecular chemistry, inorganic chemistry, materials science, and polymer chemistry, among others. Owing to these innovative strategies, what started as a purely structure-building exercise two decades ago has, in short order, led to artificial protein assemblies with unprecedented structures and functions and protein-based materials with unusual properties. Our goal in this review is to give an overview of this exciting and highly interdisciplinary area of research, first outlining the design strategies and tools that have been devised for controlling protein self-assembly, then describing the diverse structures of artificial protein assemblies, and finally highlighting the emergent properties and functions of these assemblies.
Collapse
Affiliation(s)
| | | | - Albert A. Kakkis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Alexander M. Hoffnagle
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Yiying Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Tae Su Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Youjeong Na
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Chung-Jui Yu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|