1
|
Yılmaz HÖ, Şahin K, Ayvaz H. A comparative study of cognitive function and reaction time in obese and non-obese adults. Neurol Res 2025:1-10. [PMID: 39904741 DOI: 10.1080/01616412.2025.2462739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
OBJECTIVE Obesity may negatively affect the physical health and cognitive functions of individuals and delay their reaction time to stimuli. However, the association among obesity, cognitive functions, and reaction times is yet to be fully elucidated. The aim of this study was to assess the effect of obesity on cognitive functions and visual and auditory reaction times in adults. METHODS Data of 100 participants (50 obese and 50 normal) were analyzed in the study. Anthropometric parameters and 24-h dietary recall data were recorded. The Montreal Cognitive Assessment (MoCA) was used to evaluate the cognitive functions, Simple Reaction Time Task (SRTT)-Visual and SRTT-Auditory were used to assess visual and auditory reaction times of the participants, respectively. RESULTS The mean MoCA score of the obese was significantly lower than normal (17.46 and 25.22, respectively; p < 0.001). In addition, the mean auditory (p < 0.001) and visual (p < 0.05) reaction times of obese were significantly longer than normal. Similarly, this condition was also observed for the fastest and lowest values of auditory and visual reaction times. Additionally, obesity caused a decrease in the MoCA score (β = -0.762; p < 0.001) and delayed visual (β = 0.423; p < 0.001) and auditory (β = 0.590; p < 0.001) reactions. The negative effect of obesity was maintained after controlling for potential factors (MoCA, β = -0.594; p < 0.001; SRTT-Auditory, β = 0.409; p < 0.01; SRTT-Visual, β = 0.330; p < 0.05). CONCLUSION Obese participants showed worse cognitive, auditory and visual performance. Additional research will be necessary in the future to shed light on the fundamental mechanisms involved.
Collapse
Affiliation(s)
- Hacı Ömer Yılmaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bandırma Onyedi Eylul University, Balıkesir, Türkiye
| | - Kezban Şahin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bandırma Onyedi Eylul University, Balıkesir, Türkiye
| | - Hilal Ayvaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gümüşhane University, Gümüşhane, Türkiye
| |
Collapse
|
2
|
Wang M, Xu K, Yang J, Bennett DA, Du H, Liu X. Normal-weight obesity subtypes and 10-year risks of major vascular diseases in 0.3 million adults. Clin Nutr 2024; 45:36-42. [PMID: 39740297 DOI: 10.1016/j.clnu.2024.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND & AIMS Obesity directly contributes to the progression of cardiovascular disease, but little is known about the association and risk attribution of normal-weight obesity subtypes with the incidence of major vascular events (MVEs) and their subtypes. METHODS This is a prospective cohort study based on the China Kadoorie Biobank (CKB). A total of 308,071 individuals with no prior vascular diseases or cancer were included at baseline. The incidence of MVEs and their subtypes were recorded during follow-up. Adjusted hazard ratios (HRs) for each disease were yielded by Cox regression. RESULTS During a median follow-up of 10.3 years, 62,040 MVEs occurred, with the adjusted HRs (95 % confidence intervals) were 1.11 (1.09-1.13) for normal-weight general obesity (NWGO), 1.27 (1.23-1.31) for normal-weight central obesity (NWCO), and 1.30 (1.27-1.33) for normal-weight central and general obesity (NWCGO). For subtypes of MVEs, increased waist circumference (WC) was associated with excess risk of ischaemic heart disease (IHD) independent of body fat percent (BF%) levels (HR range: 1.30-1.69 in men; 1.36-1.55 in women), while the risk plateaued with rising BF% within each WC quartile. However, even in men with lower WC (≤78 cm [median]), the risks of cerebrovascular disease (CeVD), particularly ischaemic stroke (IS), were increased with higher BF% (all P < 0.01). Conversely, in women, independent dose-response associations were primarily observed between increasing WC and CeVD, with the highest risk observed for IS (HR 1.38, 1.31-1.47). CONCLUSIONS This study provided novel, sex-specific evidence that normal-weight obesity subtypes were associated with distinct risks of subtypes of MVEs, with elevated risks predominantly attributable to WC in women and both WC and BF% in men.
Collapse
Affiliation(s)
- Menghan Wang
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Department of Epidemiology and Biostatistics, School of Public Health, Global Health Institute, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, China
| | - Kun Xu
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Department of Epidemiology and Biostatistics, School of Public Health, Global Health Institute, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, China
| | - Jiaomei Yang
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Department of Epidemiology and Biostatistics, School of Public Health, Global Health Institute, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, China
| | - Derrick A Bennett
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, OX37LF, Oxford, UK
| | - Huaidong Du
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, OX37LF, Oxford, UK
| | - Xin Liu
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Department of Epidemiology and Biostatistics, School of Public Health, Global Health Institute, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Xu H, Xu C, Xu J. Altered gray matter structural covariance networks in young adults with obesity. Int J Obes (Lond) 2024:10.1038/s41366-024-01703-3. [PMID: 39695278 DOI: 10.1038/s41366-024-01703-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Overwhelming evidence showed that obesity was associated with abnormal brain functional networks. However, the changes of structural covariance networks (SCNs) based on cortical thickness (CT) and cortical surface area (CSA) in obesity is still unclear. METHODS In this study, 243 young adults with obesity and matched 243 lean individuals were enrolled from the Human Connectome Project Release S1200 dataset. All participants underwent magnetic resonance imaging scans following clinical and neuropsychological assessments. SCNs matrices were constructed by Brain Connectivity Toolbox based on both CT and CSA. Nonparametric permutation tests were adopted to examine group differences of these matrices. RESULTS Young adults with obesity exhibited lower CSA of left entorhinal cortex, but higher CT of both left rostral anterior cingulate cortex and right superior parietal lobule, as well as lower CT of left temporal pole. While in terms of global network measures, there were no significant group differences; in terms of nodal network measures, young adults with obesity exhibited alterations in widespread brain regions including left posterior cingulate cortex, bilateral superior frontal gyrus, left entorhinal cortex and right insula. CONCLUSIONS Young adults with obesity exhibited abnormal nodal network measures in widespread brain regions involved in default mode network, central executive network and salience network. These findings indicate the adverse effects of obesity on young adults might be associated with the altered triple network.
Collapse
Affiliation(s)
- Hui Xu
- School of Mental Health, Zhejiang Provincial Clinical Research Center for Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Cheng Xu
- School of Mental Health, Zhejiang Provincial Clinical Research Center for Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jing Xu
- School of Mental Health, Zhejiang Provincial Clinical Research Center for Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
4
|
Wing D, Roelands B, Wetherell JL, Nichols JF, Meeusen R, Godino JG, Shimony JS, Snyder AZ, Nishino T, Nicol GE, Nagels G, Eyler LT, Lenze EJ. Cardiorespiratory Fitness and Sleep, but not Physical Activity, are Associated with Functional Connectivity in Older Adults. SPORTS MEDICINE - OPEN 2024; 10:113. [PMID: 39425826 PMCID: PMC11490599 DOI: 10.1186/s40798-024-00778-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/29/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Aging results in changes in resting state functional connectivity within key networks associated with cognition. Cardiovascular function, physical activity, sleep, and body composition may influence these age-related changes in the brain. Better understanding these associations may help clarify mechanisms related to brain aging and guide interventional strategies to reduce these changes. METHODS In a large (n = 398) sample of healthy community dwelling older adults that were part of a larger interventional trial, we conducted cross sectional analyses of baseline data to examine the relationships between several modifiable behaviors and resting state functional connectivity within networks associated with cognition and emotional regulation. Additionally, maximal aerobic capacity, physical activity, quality of sleep, and body composition were assessed. Associations were explored both through correlation and best vs. worst group comparisons. RESULTS Greater cardiovascular fitness, but not larger quantity of daily physical activity, was associated with greater functional connectivity within the Default Mode (p = 0.008 r = 0.142) and Salience Networks (p = 0.005, r = 0.152). Better sleep (greater efficiency and fewer nighttime awakenings) was also associated with greater functional connectivity within multiple networks including the Default Mode, Executive Control, and Salience Networks. When the population was split into quartiles, the highest body fat group displayed higher functional connectivity in the Dorsal Attentional Network compared to the lowest body fat percentage (p = 0.011; 95% CI - 0.0172 to - 0.0023). CONCLUSION These findings confirm and expand on previous work indicating that, in older adults, higher levels of cardiovascular fitness and better sleep quality, but not greater quantity of physical activity, total sleep time, or lower body fat percentage are associated with increased functional connectivity within key resting state networks.
Collapse
Affiliation(s)
- David Wing
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, USA.
- Exercise and Physical Activity Resource Center (EPARC), University of California, San Diego, USA.
| | - Bart Roelands
- Human Physiology & Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Vrije Universiteit Brussel, Brussels, Belgium
| | - Julie Loebach Wetherell
- Mental Health Service, VA San Diego Healthcare System, San Diego, USA
- Department of Psychiatry, University of California, San Diego, USA
| | - Jeanne F Nichols
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, USA
- Exercise and Physical Activity Resource Center (EPARC), University of California, San Diego, USA
| | - Romain Meeusen
- Human Physiology & Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Vrije Universiteit Brussel, Brussels, Belgium
- Department of Sports, Recreation, Exercise and Sciences, Community and Health Sciences, University of the Western Cape, Cape Town, South Africa
| | - Job G Godino
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, USA
- Exercise and Physical Activity Resource Center (EPARC), University of California, San Diego, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Abraham Z Snyder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tomoyuki Nishino
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Ginger E Nicol
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Guy Nagels
- Department of Neurology, Brussels, Belgium/Center for Neurosciences (C4N), UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Lisa T Eyler
- Department of Psychiatry, University of California, San Diego, USA
- Education, and Clinical Center, Desert-Pacific Mental Illness Research, San Diego Veterans Administration Healthcare System, San Diego, USA
| | - Eric J Lenze
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
5
|
Seidel F, Vreeken D, Custers E, Wiesmann M, Özsezen S, van Duyvenvoorde W, Caspers M, Menke A, Morrison MC, Verschuren L, Duering M, Hazebroek EJ, Kiliaan AJ, Kleemann R. Metabolic dysfunction-associated steatotic liver disease is associated with effects on cerebral perfusion and white matter integrity. Heliyon 2024; 10:e38516. [PMID: 39391513 PMCID: PMC11466594 DOI: 10.1016/j.heliyon.2024.e38516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/29/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
It is unclear whether early metabolic and inflammatory aberrations in the liver are associated with detrimental changes in brain structure and cognitive function. This cross-sectional study examines putative associations between metabolic dysfunction-associated steatotic liver disease (MASLD) and brain health in 36-55 year-old participants with obesity (n = 70) from the BARICO study (BAriatric surgery Rijnstate and Radboudumc neuroImaging and Cognition in Obesity). The participants underwent brain magnetic resonance imaging to study brain volumes and cortical thickness (3T MRI including T1-weighted magnetization-prepared rapid gradient-echo sequence), cerebral blood perfusion (arterial spin labeling) and white matter integrity (diffusion weighted imaging to assess mean-skeletonized mean diffusivity and fluid-attenuated inversion recovery to detect the presence of white matter hyperintensities (WMH)). The participants additionally performed neuropsychological tests to assess global cognition, working and episodic memory, verbal fluency and the ability to shift attention. Liver biopsies were collected and liver dysfunction was examined with histopathological, biochemical, and gene expression analyses. Linear regression analyses were performed between liver and brain parameters and the influence of body-mass index, diabetes and hypertension was explored. Early stages of liver disease were not associated with cognitive status but with cerebrovascular changes independently of age, sex, BMI, diabetes and hypertension: hepatic fibrosis development was associated with higher spatial coefficient of variation (sCoV) in the nucleus accumbens (NAcc), reflecting greater variations in cerebral perfusion and reduced vascular efficiency. Elevated hepatic levels of free cholesterol and cholesteryl esters were associated with increased WMH, indicating cerebral small vessel disease. RNA-seq and pathway analyses identified associations between sCoV in NAcc and WMH and the expression of hepatic genes involved in inflammation and cellular stress. Additionally, sCoV in NAcc correlated with plasma IL-6 levels suggesting that systemic-low grade inflammation may, at least partly, mediate this relationship. In conclusion, this study demonstrates that specific features of liver dysfunction (e.g. free cholesterol, onset of fibrosis) are associated with subtle cerebrovascular impairments, when changes in cognitive performance are not yet noticeable. These findings highlight the need for future research on therapeutic strategies that normalize metabolic-inflammatory aberrations in the liver to reduce the risk of cognitive decline.
Collapse
Affiliation(s)
- Florine Seidel
- Department Medical Imaging, Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ Nijmegen, the Netherlands
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE Leiden, the Netherlands
| | - Debby Vreeken
- Department Medical Imaging, Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ Nijmegen, the Netherlands
- Department of Bariatric Surgery, Vitalys, part of Rijnstate hospital, Postbus 9555, 6800 TA Arnhem, the Netherlands
| | - Emma Custers
- Department Medical Imaging, Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ Nijmegen, the Netherlands
- Department of Bariatric Surgery, Vitalys, part of Rijnstate hospital, Postbus 9555, 6800 TA Arnhem, the Netherlands
| | - Maximilian Wiesmann
- Department Medical Imaging, Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ Nijmegen, the Netherlands
| | - Serdar Özsezen
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE Leiden, the Netherlands
| | - Wim van Duyvenvoorde
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE Leiden, the Netherlands
| | - Martien Caspers
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE Leiden, the Netherlands
| | - Aswin Menke
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE Leiden, the Netherlands
| | - Martine C. Morrison
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE Leiden, the Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE Leiden, the Netherlands
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD), University Hospital LMU Munich, Feodor-Lynen-Straße 17, 81377 Munich, Germany
- Medical Imaging Analysis Center (MIAC) and Department of Biomedical Engineering, University of Basel, Marktgasse 8, CH-4051 Basel, Switzerland
| | - Eric J. Hazebroek
- Department of Bariatric Surgery, Vitalys, part of Rijnstate hospital, Postbus 9555, 6800 TA Arnhem, the Netherlands
- Division of Human Nutrition and Health, Wageningen University, Postbus 17 6700 AA Wageningen Wageningen, the Netherlands
| | - Amanda J. Kiliaan
- Department Medical Imaging, Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ Nijmegen, the Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE Leiden, the Netherlands
| |
Collapse
|
6
|
Toimela J, Halt A, Kerkelä M, Kampman O, Suvisaari J, Kieseppä T, Lähteenvuo M, Tiihonen J, Ahola-Olli A, Veijola J, Holm M. Association of obesity to reaction time and visual memory in schizophrenia. Schizophr Res Cogn 2024; 37:100316. [PMID: 38764744 PMCID: PMC11101897 DOI: 10.1016/j.scog.2024.100316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024]
Abstract
Background Both overweight and cognitive deficits are common among people with schizophrenia (SZ) and schizoaffective disorder. The results in earlier studies have been inconsistent on whether overweight is associated with cognitive deficits in psychotic disorders. Aims Our aim in this study was to detect possible associations between obesity and cognitive deficits among study participants with SZ and schizoaffective disorder. Methods The study sample included 5382 participants with a clinical diagnosis of SZ or schizoaffective disorder selected from the Finnish SUPER study. Obesity was measured both with body-mass index and waist circumference. The cognitive performance was evaluated with two tests from the Cambridge automated neuropsychological test battery: Reaction time was evaluated with the 5-choice serial reaction time task. Visual memory was evaluated with the paired associative learning test. The final analysis included a total sample of 4498 participants applicable for the analysis of the reaction time and 3967 participants for the analysis of the visual memory. Results Obesity measured with body-mass index was associated with better performance in reaction time task among both female and male participants. Among male participants, overweight was associated with better performance in the visual memory test. The waist circumference was not associated with cognitive measures. Conclusions The results suggest that obesity in people with SZ or schizoaffective disorder might not be associated with cognitive deficits but instead with better cognitive performance. The results were opposite from earlier literature on the general population. More research is required to better understand whether the results might be partly caused by the differences in the etiology of obesity between the general population and people with SZ.
Collapse
Affiliation(s)
- J.S. Toimela
- Research Unit of Clinical Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland
| | - A.H. Halt
- Research Unit of Clinical Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland
- Department of Psychiatry, Oulu University Hospital, FI-90220 Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - M. Kerkelä
- Research Unit of Clinical Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland
| | - O. Kampman
- Department of Clinical Sciences, Psychiatry, Umeå University, Umeå SE-90187, Sweden
- University of Turku, Faculty of Medicine, Department of Clinical Medicine (Psychiatry), Turku, Finland
- The Wellbeing Services Country of Ostrobothnia, Department of Psychiatry, Vaasa, Finland
- The Pirkanmaa Wellbeing Services Country, Department of Psychiatry, Tampere, Finland
| | - J. Suvisaari
- Mental Health Unit, Finnish Institute for Health and Welfare (THL), FI-00271 Helsinki, Finland
| | - T. Kieseppä
- Mental Health Unit, Finnish Institute for Health and Welfare (THL), FI-00271 Helsinki, Finland
- University of Helsinki, Helsinki University Hospital, Psychiatry, FI-00029 Helsinki, Finland
| | - M. Lähteenvuo
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, FI-70240 Kuopio, Finland
| | - J. Tiihonen
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, FI-70240 Kuopio, Finland
- Department of Clinical Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
- Center for Psychiatry Research, Stockholm City Council, SE-11364 Stockholm, Sweden
| | - A. Ahola-Olli
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014 Helsinki, Finland
- Department of Internal Medicine, Satasairaala Hospital, Pori, Finland
| | - J. Veijola
- Research Unit of Clinical Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland
- Department of Psychiatry, Oulu University Hospital, FI-90220 Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - M. Holm
- Mental Health Unit, Finnish Institute for Health and Welfare (THL), FI-00271 Helsinki, Finland
| | - The SUPER researchers listed in the Acknowledgements
- Research Unit of Clinical Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland
- Department of Psychiatry, Oulu University Hospital, FI-90220 Oulu, Finland
- Mental Health Unit, Finnish Institute for Health and Welfare (THL), FI-00271 Helsinki, Finland
- University of Helsinki, Helsinki University Hospital, Psychiatry, FI-00029 Helsinki, Finland
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, FI-70240 Kuopio, Finland
- Department of Clinical Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
- Center for Psychiatry Research, Stockholm City Council, SE-11364 Stockholm, Sweden
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014 Helsinki, Finland
- Department of Internal Medicine, Satasairaala Hospital, Pori, Finland
- Department of Clinical Sciences, Psychiatry, Umeå University, Umeå SE-90187, Sweden
- University of Turku, Faculty of Medicine, Department of Clinical Medicine (Psychiatry), Turku, Finland
- The Wellbeing Services Country of Ostrobothnia, Department of Psychiatry, Vaasa, Finland
- The Pirkanmaa Wellbeing Services Country, Department of Psychiatry, Tampere, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
7
|
Sánchez-Ortí JV, Balanzá-Martínez V, Correa-Ghisays P, Selva-Vera G, Vila-Francés J, Magdalena-Benedito R, San-Martin C, Victor VM, Escribano-Lopez I, Hernandez-Mijares A, Vivas-Lalinde J, Crespo-Facorro B, Tabarés-Seisdedos R. Inflammation and weight change related to neurocognitive and functional impairment in diabetes and psychiatric disorders. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2024:S2950-2853(24)00030-9. [PMID: 38740330 DOI: 10.1016/j.sjpmh.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/24/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION Obesity is a global pandemic associated with various cardio-metabolic and psychiatric disorders. Neurocognitive and functional deficits have been associated with several somatic and psychiatric disorders. Adiposity-related inflammation has recently emerged as a key risk factor for neurocognitive and functional impairments. This prospective transdiagnostic study aimed to investigate the role of adiposity-related inflammatory markers in neurocognitive and functional outcomes associated with weight changes. METHODS Peripheral blood inflammatory and oxidative stress biomarkers and neurocognitive and functional performance were assessed twice over 1 year in 165 individuals, including 30 with schizophrenia, 42 with bipolar disorder, 35 with major depressive disorder, 30 with type 2 diabetes mellitus (T2DM), and 28 healthy controls. Participants were stratified by body mass index into categories of type 2 obesity (T2OB; n=30), type 1 obesity (T1OB; n=42), overweight (OW; n=53), and average weight (NW; n=40). Mixed one-way analysis of covariance and linear and binary logistic regression analyses were performed. RESULTS Compared with NW, T2OB and T1OB were significantly associated with impaired neurocognitive and functional performance (p<0.01; η2p=0.06-0.12) and higher levels of C-reactive protein and platelets (PLT) (p<0.01; η2p=0.08-0.16), with small-to-moderate effect sizes. IL-6, IL-10, and PLT were key factors for detecting significant weight changes in T1OB and T2OB over time. Regression models revealed that inflammatory and oxidative stress biomarkers and cellular adhesion molecules were significantly associated with neurocognitive and functional performance (p<0.05). DISCUSSION Obesity is characterized by neurocognitive and functional impairments alongside low-grade systemic inflammation. Adiposity-related inflammatory biomarkers may contribute to neurocognitive and functional decline in individuals with T2DM and psychiatric disorders. Our data suggest that these biomarkers facilitate the identification of specific subgroups of individuals at higher risk of developing obesity.
Collapse
Affiliation(s)
- Joan Vicent Sánchez-Ortí
- INCLIVA - Health Research Institute, Valencia, Spain; Center for Biomedical Research in Mental Health Network (CIBERSAM), Health Institute, Carlos III, Madrid, Spain; TMAP - Evaluation Unit in Personal Autonomy, Dependency and Serious Mental Disorders, University of Valencia, Valencia, Spain; Faculty of Psychology, University of Valencia, Valencia, Spain
| | - Vicent Balanzá-Martínez
- INCLIVA - Health Research Institute, Valencia, Spain; Center for Biomedical Research in Mental Health Network (CIBERSAM), Health Institute, Carlos III, Madrid, Spain; TMAP - Evaluation Unit in Personal Autonomy, Dependency and Serious Mental Disorders, University of Valencia, Valencia, Spain; Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, Valencia, Spain; Mental Health Unit of Catarroja, Valencia, Spain
| | - Patricia Correa-Ghisays
- INCLIVA - Health Research Institute, Valencia, Spain; Center for Biomedical Research in Mental Health Network (CIBERSAM), Health Institute, Carlos III, Madrid, Spain; TMAP - Evaluation Unit in Personal Autonomy, Dependency and Serious Mental Disorders, University of Valencia, Valencia, Spain; Faculty of Psychology, University of Valencia, Valencia, Spain; Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, Valencia, Spain
| | - Gabriel Selva-Vera
- INCLIVA - Health Research Institute, Valencia, Spain; Center for Biomedical Research in Mental Health Network (CIBERSAM), Health Institute, Carlos III, Madrid, Spain; TMAP - Evaluation Unit in Personal Autonomy, Dependency and Serious Mental Disorders, University of Valencia, Valencia, Spain; Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, Valencia, Spain
| | - Joan Vila-Francés
- IDAL - Intelligent Data Analysis Laboratory, University of Valencia, Valencia, Spain
| | | | - Constanza San-Martin
- TMAP - Evaluation Unit in Personal Autonomy, Dependency and Serious Mental Disorders, University of Valencia, Valencia, Spain; Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - Víctor M Victor
- INCLIVA - Health Research Institute, Valencia, Spain; Service of Endocrinology and Nutrition, University Hospital Dr. Peset, Spain; Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain
| | | | | | | | - Benedicto Crespo-Facorro
- Center for Biomedical Research in Mental Health Network (CIBERSAM), Health Institute, Carlos III, Madrid, Spain; Department of Psychiatry, Faculty of Medicine, University of Sevilla, HU Virgen del Rocío IBIS, Spain
| | - Rafael Tabarés-Seisdedos
- INCLIVA - Health Research Institute, Valencia, Spain; Center for Biomedical Research in Mental Health Network (CIBERSAM), Health Institute, Carlos III, Madrid, Spain; TMAP - Evaluation Unit in Personal Autonomy, Dependency and Serious Mental Disorders, University of Valencia, Valencia, Spain; Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, Valencia, Spain.
| |
Collapse
|
8
|
Wing D, Eyler LT, Lenze EJ, Wetherell JL, Nichols JF, Meeusen R, Godino J, Shimony JS, Snyder AZ, Nishino T, Nicol GE, Nagels G, Roelands B. Fatness but Not Fitness Linked to BrainAge: Longitudinal Changes in Brain Aging during an Exercise Intervention. Med Sci Sports Exerc 2024; 56:655-662. [PMID: 38079309 PMCID: PMC10947938 DOI: 10.1249/mss.0000000000003337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024]
Abstract
PURPOSE Fitness, physical activity, body composition, and sleep have all been proposed to explain differences in brain health. We hypothesized that an exercise intervention would result in improved fitness and body composition and would be associated with improved structural brain health. METHODS In a randomized controlled trial, we studied 485 older adults who engaged in an exercise intervention ( n = 225) or a nonexercise comparison condition ( n = 260). Using magnetic resonance imaging, we estimated the physiological age of the brain (BrainAge) and derived a predicted age difference compared with chronological age (brain-predicted age difference (BrainPAD)). Aerobic capacity, physical activity, sleep, and body composition were assessed and their impact on BrainPAD explored. RESULTS There were no significant differences between experimental groups for any variable at any time point. The intervention group gained fitness, improved body composition, and increased total sleep time but did not have significant changes in BrainPAD. Analyses of changes in BrainPAD independent of group assignment indicated significant associations with changes in body fat percentage ( r (479) = 0.154, P = 0.001), and visceral adipose tissue (VAT) ( r (478) = 0.141, P = 0.002), but not fitness ( r (406) = -0.075, P = 0.129), sleep ( r (467) range, -0.017 to 0.063; P range, 0.171 to 0.710), or physical activity ( r (471) = -0.035, P = 0.444). With linear regression, changes in body fat percentage and VAT significantly predicted changes in BrainPAD ( β = 0.948, P = 0.003) with 1-kg change in VAT predicting 0.948 yr of change in BrainPAD. CONCLUSIONS In cognitively normal older adults, exercise did not appear to impact BrainPAD, although it was effective in improving fitness and body composition. Changes in body composition, but not fitness, physical activity, or sleep impacted BrainPAD. These findings suggest that focus on weight control, particularly reduction of central obesity, could be an interventional target to promote healthier brains.
Collapse
Affiliation(s)
- David Wing
- Herbert Wertheim School of Public Health; University of California, San Diego, CA
- Exercise and Physical Activity Resource Center (EPARC); University of California, San Diego, CA
| | - Lisa T. Eyler
- Department of Psychiatry, University of California, San Diego, CA
- Desert-Pacific Mental Illness Research, Education, and Clinical Center, San Diego Veterans Administration Healthcare System, San Diego, CA
| | - Eric J. Lenze
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Julie Loebach Wetherell
- Mental Health Service, VA San Diego Healthcare System, San Diego, CA
- Department of Psychiatry, University of California, San Diego, CA
| | - Jeanne F. Nichols
- Herbert Wertheim School of Public Health; University of California, San Diego, CA
- Exercise and Physical Activity Resource Center (EPARC); University of California, San Diego, CA
| | - Romain Meeusen
- Human Physiology & Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, BELGIUM
- Brubotics, Vrije Universiteit Brussel, Brussels, BELGIUM
| | - Job Godino
- Herbert Wertheim School of Public Health; University of California, San Diego, CA
- Exercise and Physical Activity Resource Center (EPARC); University of California, San Diego, CA
| | - Joshua S. Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Abraham Z. Snyder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Tomoyuki Nishino
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Ginger E. Nicol
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Guy Nagels
- Department of Neurology, UZ Brussel, Brussel, Belgium/Center for Neurosciences (C4N) Vrije Universiteit Brussel (VUB), Brussels, BELGIUM
| | - Bart Roelands
- Human Physiology & Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, BELGIUM
- Brubotics, Vrije Universiteit Brussel, Brussels, BELGIUM
| |
Collapse
|
9
|
Lu P, Gao CX, Luo FJ, Huang YT, Gao MM, Long YS. Hippocampal proteomic changes in high-fat diet-induced obese mice associated with memory decline. J Nutr Biochem 2024; 125:109554. [PMID: 38142716 DOI: 10.1016/j.jnutbio.2023.109554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/24/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Substantial evidence suggest that chronic consumption of high-fat diets (HFDs) can lead to obesity, abnormal metabolism, as well as cognitive impairment. Molecular and cellular changes regarding hippocampal dysfunctions have been identified in multiple HFD animal models. Therefore, in-depth identification of expression changes of hippocampal proteins is critical for understanding the mechanism of HFD-induced cognitive deficits. In this study, we fed 3-week-old male mice with HFD for 3 months to generate obese mice who exhibit systemic metabolic abnormality and learning and memory decline. Using an iTRAQ-labeled proteomic analysis, we identified a total of 82 differentially expressed proteins (DEPs) in the hippocampus upon HFD with 35 up-regulated proteins and 47 down-regulated proteins. Functional enrichment indicated that these DEPs were predominantly enriched in regulation of catabolic process, dendritic shaft, neuron projection morphogenesis and GTPase regulator activity. Protein-protein interaction enrichment showed that the DEPs are mostly enriched in postsynaptic functions; and of them, six proteins (i.e., DLG3, SYNGAP1, DCLK1, GRIA4, GRIP1, and ARHGAP32) were involved in several functional assemblies of the postsynaptic density including G-protein signaling, scaffolding and adaptor, kinase and AMPA signaling, respectively. Collectively, our findings suggest that these DEPs upon HFD might contribute to memory decline by disturbing neuronal and postsynaptic functions in the hippocampus.
Collapse
Affiliation(s)
- Ping Lu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Cun-Xiu Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Fei-Jian Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yu-Ting Huang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Mei-Mei Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yue-Sheng Long
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
10
|
Lin S, Jiang L, Wei K, Yang J, Cao X, Li C. Sex-Specific Association of Body Mass Index with Hippocampal Subfield Volume and Cognitive Function in Non-Demented Chinese Older Adults. Brain Sci 2024; 14:170. [PMID: 38391744 PMCID: PMC10887390 DOI: 10.3390/brainsci14020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Recent research suggests a possible association between midlife obesity and an increased risk of dementia in later life. However, the underlying mechanisms remain unclear. Little is known about the relationship between body mass index (BMI) and hippocampal subfield atrophy. In this study, we aimed to explore the associations between BMI and hippocampal subfield volumes and cognitive function in non-demented Chinese older adults. Hippocampal volumes were assessed using structural magnetic resonance imaging. Cognitive function was evaluated using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). A total of 66 participants were included in the final analysis, with 35 females and 31 males. We observed a significant correlation between BMI and the hippocampal fissure volume in older females. In addition, there was a negative association between BMI and the RBANS total scale score, the coding score, and the story recall score, whereas no significant correlations were observed in older males. In conclusion, our findings revealed sex-specific associations between BMI and hippocampal subfield volumes and cognitive performance, providing valuable insights into the development of effective interventions for the early prevention of cognitive decline.
Collapse
Affiliation(s)
- Shaohui Lin
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Department of Geriatrics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lijuan Jiang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Kai Wei
- Department of Traditional Chinese Medicine, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
- Shanghai Institute of Traditional Chinese Medicine for Mental Health, Shanghai 201108, China
| | - Junjie Yang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xinyi Cao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Clinical Neurocognitive Research Center, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai 200030, China
| |
Collapse
|
11
|
Souza-Pereira A, Hernandez MDS, Guerra JMDS, Nieswald BH, Bianchini MC, Godinho DB, Nascimento AS, Puntel RL, Royes LFF, Rambo LM. Swimming training and caffeine supplementation protects against metabolic syndrome-induced nuclear factor-κB activation and cognitive deficits in rats. Nutr Res 2024; 122:19-32. [PMID: 38070463 DOI: 10.1016/j.nutres.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/04/2023] [Accepted: 11/05/2023] [Indexed: 03/08/2024]
Abstract
Metabolic syndrome (MS) is a disorder that increasingly affects the world population, mainly because of changes in lifestyle and dietary habits. In this regard, both physical exercise and caffeine are low-cost and easily accessible therapies that separately have shown positive effects against metabolic disorders. Therefore, we hypothesized that physical exercise combined with caffeine could have a synergistic effect in the treatment of MS, risk factors, and cognitive deficits. Animals were divided into 8 groups and received fructose (15% w/v) or vehicle for 10 weeks. Swimming training and caffeine (6 mg/kg) started 4 weeks after fructose administration. Trained animals presented decreased body weight and visceral fat mass and increased soleus weight compared with untrained fructose-treated animals. Caffeine supplementation also prevented the gain of visceral fat mass induced by fructose. Furthermore, both treatments reversed fructose-induced decrease in glucose clearance over time and fructose-induced increase in 4-hydroxynonenal and nuclear factor-κB immunoreactivity. Physical training also improved the lipidic profile in fructose-treated animals (high-density lipoprotein, low-density lipoprotein, and triglycerides), improved short-term, long-term, and localization memory, and reversed the fructose-induced deficit in short-term memory. Physical training also increased nuclear factor erythroid 2-related factor 2 immunoreactivity per se. Considering that physical training and caffeine reversed some of the damages induced by fructose it is plausible to consider these treatments as alternative, nonpharmacological, and low-cost therapies to help reduce MS-associated risk factors; however, combined treatments did not show additive effects as hypothesized.
Collapse
Affiliation(s)
- Adson Souza-Pereira
- Biochemistry Graduate Program, Federal University of Pampa, Uruguaiana, RS, Brazil
| | | | | | | | | | - Douglas Buchmann Godinho
- Department of Methods and Sportive Techniques, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Robson Luiz Puntel
- Biochemistry Graduate Program, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Luiz Fernando Freire Royes
- Department of Methods and Sportive Techniques, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Leonardo Magno Rambo
- Biochemistry Graduate Program, Federal University of Pampa, Uruguaiana, RS, Brazil.
| |
Collapse
|
12
|
Fróes FT, Da Ré C, Taday J, Galland F, Gonçalves CA, Leite MC. Palmitic acid, but not other long-chain saturated fatty acids, increases S100B protein and TNF-α secretion by astrocytes. Nutr Res 2024; 122:101-112. [PMID: 38215571 DOI: 10.1016/j.nutres.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024]
Abstract
Obesity is a health problem that involves fat accumulation in adipose and other tissues and causes cell dysfunction. Long-chain saturated fatty acids can induce and propagate inflammation, which may also contribute to the brain alterations found in individuals with obesity. Fatty acids accumulate in astrocytes in situations of blood‒brain barrier disruption, such as inflammatory conditions. Furthermore, the increase in tumor necrosis factor-alpha (TNF-α) and S100 calcium-binding protein B (S100B) secretion is considered an essential component of the inflammatory response. We hypothesize that through their action on astrocytes, long-chain saturated fatty acids mediate some of the brain alterations observed in individuals with obesity. Here, we investigate the direct effect of long-chain fatty acids on astrocytes. Primary astrocyte cultures were incubated for 24 hours with myristic, palmitic, stearic, linoleic, or α-linolenic acids (25-100 µM). All saturated fatty acids tested led to an increase in TNF-α secretion, but only palmitic acid, one of the most common fatty acids, increased S100B secretion, indicating that S100B secretion is probably not caused in response to TNF-α release. Palmitic acid also caused nuclear migration of nuclear factor kappa B. Long-chain saturated fatty acids did not alter cell viability or redox status. In conclusion, long-chain saturated fatty acids can alter astrocytic homeostasis and may contribute to brain disorders associated with obesity, such as neuroinflammation.
Collapse
Affiliation(s)
- Fernanda Telles Fróes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carollina Da Ré
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jéssica Taday
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabiana Galland
- Centro de Ciência e Qualidade dos Alimentos, Instituto de Tecnologia de Alimentos, Campinas, Brazil
| | - Carlos Alberto Gonçalves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marina Concli Leite
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
13
|
Lu T, Ding L, Zheng X, Li Y, Wei W, Liu W, Tao J, Xue X. Alisol A Exerts Neuroprotective Effects Against HFD-Induced Pathological Brain Aging via the SIRT3-NF-κB/MAPK Pathway. Mol Neurobiol 2024; 61:753-771. [PMID: 37659035 PMCID: PMC10861652 DOI: 10.1007/s12035-023-03592-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Chronic consumption of a high-fat diet (HFD) has profound effects on brain aging, which is mainly characterized by cognitive decline, inflammatory responses, and neurovascular damage. Alisol A (AA) is a triterpenoid with therapeutic potential for metabolic diseases, but whether it has a neuroprotective effect against brain aging caused by a HFD has not been investigated. Six-month-old male C57BL6/J mice were exposed to a HFD with or without AA treatment for 12 weeks. Behavioral tasks were used to assess the cognitive abilities of the mice. Neuroinflammation and changes in neurovascular structure in the brains were examined. We further assessed the mechanism by which AA exerts neuroprotective effects against HFD-induced pathological brain aging in vitro and in vivo. Behavioral tests showed that cognitive function was improved in AA-treated animals. AA treatment reduced microglia activation and inflammatory cytokine release induced by a HFD. Furthermore, AA treatment increased the number of hippocampal neurons, the density of dendritic spines, and the expression of tight junction proteins. We also demonstrated that AA attenuated microglial activation by targeting the SIRT3-NF-κB/MAPK pathway and ameliorated microglial activation-induced tight junction degeneration in endothelial cells and apoptosis in hippocampal neurons. The results of this study show that AA may be a promising agent for the treatment of HFD-induced brain aging.
Collapse
Affiliation(s)
- Taotao Lu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350112, China
- Fujian Key Laboratory of Rehabilitation Techniques, Cognitive Rehabilitation, Fuzhou, 350112, China
| | - Linlin Ding
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350112, China
| | - Xiaoqing Zheng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350112, China
| | - Yongxu Li
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350112, China
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, No 13, Hudongzhi Road, Fuzhou City, 350003, Fujian Province, China
| | - Wei Wei
- Fujian Key Laboratory of Rehabilitation Techniques, Cognitive Rehabilitation, Fuzhou, 350112, China
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, No 13, Hudongzhi Road, Fuzhou City, 350003, Fujian Province, China
| | - Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350112, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350112, China
- Fujian Key Laboratory of Rehabilitation Techniques, Cognitive Rehabilitation, Fuzhou, 350112, China
| | - Xiehua Xue
- Fujian Key Laboratory of Rehabilitation Techniques, Cognitive Rehabilitation, Fuzhou, 350112, China.
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, No 13, Hudongzhi Road, Fuzhou City, 350003, Fujian Province, China.
| |
Collapse
|
14
|
Prabhakar PK. Combination Therapy: A New Tool for the Management of Obesity. Endocr Metab Immune Disord Drug Targets 2024; 24:402-417. [PMID: 37641995 DOI: 10.2174/1871530323666230825140808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/19/2023] [Accepted: 07/20/2023] [Indexed: 08/31/2023]
Abstract
Obesity is a chronic lifestyle issue with devastating results. Behavioral changes are one of the initial lines of management strategies for obesity, but they are not very efficient management strategies. Many people also use surgical intervention to maintain a healthy weight, now considered to be the most common and effective obesity management. Chemically synthesized medicines fill the gap between lifestyle interventions and minimally invasive surgical management of obesity. The most common issue associated with monotherapy without side effects is its moderate effectiveness and higher dose requirement. Combination therapy is already used for many serious and complicated disease treatments and management and has shown efficacy as well. Generally, we use two or more medicines with different mechanisms of action for a better effect. The commonly used combination therapy for obesity management includes low-dose phentermine and prolonged and slow-releasing mechanism topiramate; naltrexone, and bupropion. Phentermine with inhibitors of Na-glucose cotransporter-2 or glucagon-like peptide-1 (GLP-1) agonists with gastric hormone or Na-glucose cotransporter-2 are two more viable combo therapy. This combination strategy aims to achieve success in bariatric surgery and the scientific community is working in this direction.
Collapse
Affiliation(s)
- Pranav Kumar Prabhakar
- Department of Research Impact and Outcome, Lovely Professional University, Punjab, 144411, India
| |
Collapse
|
15
|
Costache AD, Ignat BE, Grosu C, Mastaleru A, Abdulan I, Oancea A, Roca M, Leon MM, Badescu MC, Luca S, Jigoranu AR, Chetran A, Mitu O, Costache II, Mitu F. Inflammatory Pathways in Overweight and Obese Persons as a Potential Mechanism for Cognitive Impairment and Earlier Onset Alzeihmer's Dementia in the General Population: A Narrative Review. Biomedicines 2023; 11:3233. [PMID: 38137454 PMCID: PMC10741501 DOI: 10.3390/biomedicines11123233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The overweight status or obesity can be confirmed through classical methods such as the body mass index (BMI) and the waist-to-hip ratio (WHR). Apart from metabolic issues such as atherosclerosis, liver steatosis, or diabetes mellitus, long-term obesity or overweight status can pose a risk for cardiovascular and neurovascular complications. While some acute adverse events like coronary syndromes of strokes are well-documented to be linked to an increased body mass, there are also chronic processes that, due to their silent onset and evolution, are underdiagnosed and not as thoroughly studied. Through this review, we aimed to collect all relevant data with regard to the long-term impact of obesity on cognitive function in all ages and its correlation with an earlier onset of dementia such as Alzheimer's disease (AD). The exact mechanisms through which a decline in cognitive functions occurs in overweight or obese persons are still being discussed. A combination of factors has been acknowledged as potential triggers, such as a sedentary lifestyle and stress, as well as a genetic predisposition, for example, the apolipoprotein E (ApoE) alleles in AD. Most research highlights the impact of vascular dysfunction and systemic inflammation on the nervous system in patients with obesity and the subsequent neurological changes. Obesity during the early to mid-ages leads to an earlier onset of cognitive dysfunction in various forms. Also, lifestyle intervention can reverse cognitive dysfunction, especially dieting, to encourage weight loss.
Collapse
Affiliation(s)
- Alexandru Dan Costache
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.C.); (A.M.); (I.A.); (A.O.); (M.R.); (M.M.L.); (M.C.B.); (S.L.); (A.R.J.); (A.C.); (O.M.); (I.I.C.); (F.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Bogdan Emilian Ignat
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.C.); (A.M.); (I.A.); (A.O.); (M.R.); (M.M.L.); (M.C.B.); (S.L.); (A.R.J.); (A.C.); (O.M.); (I.I.C.); (F.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Cristina Grosu
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.C.); (A.M.); (I.A.); (A.O.); (M.R.); (M.M.L.); (M.C.B.); (S.L.); (A.R.J.); (A.C.); (O.M.); (I.I.C.); (F.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Alexandra Mastaleru
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.C.); (A.M.); (I.A.); (A.O.); (M.R.); (M.M.L.); (M.C.B.); (S.L.); (A.R.J.); (A.C.); (O.M.); (I.I.C.); (F.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Irina Abdulan
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.C.); (A.M.); (I.A.); (A.O.); (M.R.); (M.M.L.); (M.C.B.); (S.L.); (A.R.J.); (A.C.); (O.M.); (I.I.C.); (F.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Andra Oancea
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.C.); (A.M.); (I.A.); (A.O.); (M.R.); (M.M.L.); (M.C.B.); (S.L.); (A.R.J.); (A.C.); (O.M.); (I.I.C.); (F.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Mihai Roca
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.C.); (A.M.); (I.A.); (A.O.); (M.R.); (M.M.L.); (M.C.B.); (S.L.); (A.R.J.); (A.C.); (O.M.); (I.I.C.); (F.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Maria Magdalena Leon
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.C.); (A.M.); (I.A.); (A.O.); (M.R.); (M.M.L.); (M.C.B.); (S.L.); (A.R.J.); (A.C.); (O.M.); (I.I.C.); (F.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Minerva Codruta Badescu
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.C.); (A.M.); (I.A.); (A.O.); (M.R.); (M.M.L.); (M.C.B.); (S.L.); (A.R.J.); (A.C.); (O.M.); (I.I.C.); (F.M.)
- “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Stefana Luca
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.C.); (A.M.); (I.A.); (A.O.); (M.R.); (M.M.L.); (M.C.B.); (S.L.); (A.R.J.); (A.C.); (O.M.); (I.I.C.); (F.M.)
- “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Alexandru Raul Jigoranu
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.C.); (A.M.); (I.A.); (A.O.); (M.R.); (M.M.L.); (M.C.B.); (S.L.); (A.R.J.); (A.C.); (O.M.); (I.I.C.); (F.M.)
- “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Adriana Chetran
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.C.); (A.M.); (I.A.); (A.O.); (M.R.); (M.M.L.); (M.C.B.); (S.L.); (A.R.J.); (A.C.); (O.M.); (I.I.C.); (F.M.)
- “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Ovidiu Mitu
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.C.); (A.M.); (I.A.); (A.O.); (M.R.); (M.M.L.); (M.C.B.); (S.L.); (A.R.J.); (A.C.); (O.M.); (I.I.C.); (F.M.)
- “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Irina Iuliana Costache
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.C.); (A.M.); (I.A.); (A.O.); (M.R.); (M.M.L.); (M.C.B.); (S.L.); (A.R.J.); (A.C.); (O.M.); (I.I.C.); (F.M.)
- “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Florin Mitu
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (A.D.C.); (A.M.); (I.A.); (A.O.); (M.R.); (M.M.L.); (M.C.B.); (S.L.); (A.R.J.); (A.C.); (O.M.); (I.I.C.); (F.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
- Romanian Academy of Medical Sciences, 927180 Bucharest, Romania
- Romanian Academy of Scientists, 050044 Bucharest, Romania
| |
Collapse
|
16
|
Tedrus GMAS, Leandro-Merhi VA, Rebelo RC, da Silva BN. Cognition and obesity in adults with epilepsy. NUTR HOSP 2023; 40:1033-1040. [PMID: 37409725 DOI: 10.20960/nh.04421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
Introduction Objective: to assess the occurrence of overweight/obesity in patient with epilepsy (PWEs) and to relate it to cognitive aspects and clinical variables. Methodology: the measurements of waist circumference, calf circumference, arm circumference, and the body mass index were related to the scores of the Mini-Mental State Examination and the Brief Cognitive Battery-Edu, as well as to the clinical variables of 164 PWEs, with a significance level of p < 0.05. Data were compared to a similar control group (CG) comprising 71 cases. Linear and multiple logistic regression models were used to assess factors related to cognitive aspects. Results: the mean age of the PWEs was 49.8 ± 16.6 years with a mean length of epilepsy of 22 ± 15.9 years. Overweight/obesity occurred in 106 (64.6 %) PWEs and in 42 (59.1 %) CG subjects. The PWEs had a worse performance in several cognitive functions when compared to CG subjects. In the PWEs, overweight/obesity was associated with lower educational level, older age, and cognitive impairment. Greater waist circumference, overweight, age at the first seizure, and use of polytherapy with antiseizure medications were predictive factors of memory impairment in multiple linear regression. Greater arm and calf circumference values were associated with better performance in several cognitive areas. Conclusion: the occurrence of overweight/obesity in PWEs and CG subjects was high. Cognitive impairment occurred in a high number of PWEs and was associated with overweight, greater waist circumference values, and clinical aspects of epilepsy. Better cognitive performance was associated with greater arm and calf circumference.
Collapse
Affiliation(s)
- Gloria M A S Tedrus
- Postgraduate Program in Health Sciences. Pontifícia Universidade Católica de Campinas
| | | | | | - Bárbara Nunes da Silva
- Undergraduate Program. Faculdade de Medicina. Pontifícia Universidade Católica de Campinas
| |
Collapse
|
17
|
Ali Z, Godoy-Corchuelo JM, Martins-Bach AB, Garcia-Toledo I, Fernández-Beltrán LC, Nair RR, Spring S, Nieman BJ, Jimenez-Coca I, Bains RS, Forrest H, Lerch JP, Miller KL, Fisher EMC, Cunningham TJ, Corrochano S. Mutation in the FUS nuclear localisation signal domain causes neurodevelopmental and systemic metabolic alterations. Dis Model Mech 2023; 16:dmm050200. [PMID: 37772684 PMCID: PMC10642611 DOI: 10.1242/dmm.050200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Variants in the ubiquitously expressed DNA/RNA-binding protein FUS cause aggressive juvenile forms of amyotrophic lateral sclerosis (ALS). Most FUS mutation studies have focused on motor neuron degeneration; little is known about wider systemic or developmental effects. We studied pleiotropic phenotypes in a physiological knock-in mouse model carrying the pathogenic FUSDelta14 mutation in homozygosity. RNA sequencing of multiple organs aimed to identify pathways altered by the mutant protein in the systemic transcriptome, including metabolic tissues, given the link between ALS-frontotemporal dementia and altered metabolism. Few genes were commonly altered across all tissues, and most genes and pathways affected were generally tissue specific. Phenotypic assessment of mice revealed systemic metabolic alterations related to the pathway changes identified. Magnetic resonance imaging brain scans and histological characterisation revealed that homozygous FUSDelta14 brains were smaller than heterozygous and wild-type brains and displayed significant morphological alterations, including a thinner cortex, reduced neuronal number and increased gliosis, which correlated with early cognitive impairment and fatal seizures. These findings show that the disease aetiology of FUS variants can include both neurodevelopmental and systemic alterations.
Collapse
Affiliation(s)
- Zeinab Ali
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxfordshire OX11 ORD, UK
| | - Juan M. Godoy-Corchuelo
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Aurea B. Martins-Bach
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9D, UK
| | - Irene Garcia-Toledo
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Luis C. Fernández-Beltrán
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
- Department of Medicine, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Remya R. Nair
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxfordshire OX11 ORD, UK
| | - Shoshana Spring
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M57 3H7, Canada
| | - Brian J. Nieman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M57 3H7, Canada
| | - Irene Jimenez-Coca
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Rasneer S. Bains
- Mary Lyon Centre at MRC Harwell, Didcot, Oxfordshire OX11 ORD, UK
| | - Hamish Forrest
- Mary Lyon Centre at MRC Harwell, Didcot, Oxfordshire OX11 ORD, UK
| | - Jason P. Lerch
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9D, UK
| | - Karla L. Miller
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9D, UK
| | - Elizabeth M. C. Fisher
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Thomas J. Cunningham
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxfordshire OX11 ORD, UK
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, London W1W 7FF, UK
| | - Silvia Corrochano
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxfordshire OX11 ORD, UK
| |
Collapse
|
18
|
Caldú X, Prats-Soteras X, García-García I, Prunell-Castañé A, Sánchez-Garre C, Cano N, Tor E, Sender-Palacios MJ, Ottino-González J, Garolera M, Jurado MÁ. Body mass index, systemic inflammation and cognitive performance in adolescents: A cross-sectional study. Psychoneuroendocrinology 2023; 156:106298. [PMID: 37295218 DOI: 10.1016/j.psyneuen.2023.106298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/21/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Excessive body weight has been related to lower cognitive performance. One of the mechanisms through which excess body weight may affect cognition is inflammation. HYPOTHESIS Our hypothesis is that both body mass index (BMI) and circulating levels of inflammatory biomarkers will be negatively related to cognitive performance. DESIGN Cross-sectional study. SETTING Users of the public health centres of the Consorci Sanitari de Terrassa (Terrassa, Spain) between 2010 and 2017 aged 12-21 years. PARTICIPANTS One hundred and five adolescents (46 normoweight, 18 overweight, 41 obese). MEASUREMENTS Levels of high sensitivity C-reactive protein, interleukin 6, tumour necrosis factor α (TNFα) and fibrinogen were determined from blood samples. Cognitive performance was evaluated and six cognitive composites were obtained: working memory, cognitive flexibility, inhibitory control, decision-making, verbal memory, and fine motor speed. A single multivariate general lineal model was used to assess the influence of the four inflammatory biomarkers, as well as participants' BMI, sex, and age on the 6 cognitive indexes. RESULTS An inverse relationship between BMI and inhibitory control (F = 5.688, p = .019; β = -0.212, p = .031), verbal memory (F = 5.404, p = .022; β = -0.255, p = .009) and fine motor speed (F = 9.038, p = .003; β = -0.319, p = .001) was observed. Levels of TNFα and fibrinogen were inversely related to inhibitory control (F = 5.055, p = .027; β = -0.226, p = .021) and verbal memory (F = 4.732, p = .032; β = -0.274, p = .005), respectively. LIMITATIONS The cross-sectional nature of the study, the use of cognitive tests designed for clinical purposes, and the use of BMI as a proxy for adiposity are limitations of our study that must be taken into account when interpreting results. CONCLUSIONS Our data indicate that some components of executive functions, together with verbal memory, are sensitive to specific obesity-related inflammatory agents at early ages.
Collapse
Affiliation(s)
- Xavier Caldú
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, C/ Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Xavier Prats-Soteras
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, C/ Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Isabel García-García
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Clinique la Prairie, Montreux, Rue du Lac 142, 1815 Clarens, Switzerland
| | - Anna Prunell-Castañé
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, C/ Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Consuelo Sánchez-Garre
- Unitat d'Endocrinologia Pediàtrica, Departament de Pediatria, Hospital de Terrassa, Consorci Sanitari de Terrassa, Ctra Torrebonica s/n, 08227 Terrassa, Spain
| | - Neus Cano
- Unitat de Neuropsicologia, Hospital de Terrassa, Consorci Sanitari de Terrassa, Ctra Torrebonica s/n, 08227 Terrassa, Spain; Brain, Cognition and Behavior Clinical Research Group, Consorci Sanitari de Terrassa, Ctra Torrebonica s/n, 08227 Terrassa, Spain
| | - Encarnació Tor
- Centre d'Atenció Primària Terrassa Nord, Consorci Sanitari de Terrassa, Av del Vallès 451, 08226 Terrassa, Spain
| | - María-José Sender-Palacios
- Centre d'Atenció Primària Terrassa Nord, Consorci Sanitari de Terrassa, Av del Vallès 451, 08226 Terrassa, Spain
| | - Jonatan Ottino-González
- Division of Endocrinology, The Saban Research Institute, Children's Hospital Los Angeles, United States
| | - Maite Garolera
- Unitat de Neuropsicologia, Hospital de Terrassa, Consorci Sanitari de Terrassa, Ctra Torrebonica s/n, 08227 Terrassa, Spain; Brain, Cognition and Behavior Clinical Research Group, Consorci Sanitari de Terrassa, Ctra Torrebonica s/n, 08227 Terrassa, Spain.
| | - María Ángeles Jurado
- Departament de Psicologia Clínica i Psicobiologia, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Pg. Vall d'Hebron, 171, 08035 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, C/ Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| |
Collapse
|
19
|
Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Ramos-Campo DJ, Belinchón-deMiguel P, Martinez-Guardado I, Dalamitros AA, Yáñez-Sepúlveda R, Martín-Rodríguez A, Tornero-Aguilera JF. Mitochondria and Brain Disease: A Comprehensive Review of Pathological Mechanisms and Therapeutic Opportunities. Biomedicines 2023; 11:2488. [PMID: 37760929 PMCID: PMC10526226 DOI: 10.3390/biomedicines11092488] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondria play a vital role in maintaining cellular energy homeostasis, regulating apoptosis, and controlling redox signaling. Dysfunction of mitochondria has been implicated in the pathogenesis of various brain diseases, including neurodegenerative disorders, stroke, and psychiatric illnesses. This review paper provides a comprehensive overview of the intricate relationship between mitochondria and brain disease, focusing on the underlying pathological mechanisms and exploring potential therapeutic opportunities. The review covers key topics such as mitochondrial DNA mutations, impaired oxidative phosphorylation, mitochondrial dynamics, calcium dysregulation, and reactive oxygen species generation in the context of brain disease. Additionally, it discusses emerging strategies targeting mitochondrial dysfunction, including mitochondrial protective agents, metabolic modulators, and gene therapy approaches. By critically analysing the existing literature and recent advancements, this review aims to enhance our understanding of the multifaceted role of mitochondria in brain disease and shed light on novel therapeutic interventions.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
- Group de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Ana Isabel Beltrán-Velasco
- Psychology Department, Facultad de Ciencias de la Vida y la Naturaleza, Universidad Antonio de Nebrija, 28240 Madrid, Spain
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Pedro Belinchón-deMiguel
- Department of Nursing and Nutrition, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
| | | | - Athanasios A. Dalamitros
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | | |
Collapse
|
20
|
Huang X, Sun Y, Wu A, Zhang X. Overweight or Obesity among Chinese Han People with Schizophrenia: Demographic, Clinical and Cognitive Correlations. Brain Sci 2023; 13:1245. [PMID: 37759846 PMCID: PMC10527401 DOI: 10.3390/brainsci13091245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
People with schizophrenia are more likely to be afflicted by obesity or overweight compared to the general population. This study aimed to explore the incidence of overweight and obesity, clinical features and cognitive performance of Chinese Han patients with chronic schizophrenia who had overweight or obesity. We obtained data from 985 schizophrenia inpatients about overweight and obesity through body mass index (BMI). All patients were evaluated with the positive and negative syndrome scale, the Mini-mental State Examination (MMSE) and the repeated battery for evaluation of the neuropsychological status (RBANS) scale. We collected demographic and clinical data using self-reported questionnaires. We divided patients into normal weight (BMI < 24 kg/m2), overweight (24 ≤ BMI < 28 kg/m2) and obese (≥28 kg/m2) groups according to the Working Group on Obesity in China (WGOC) criteria. We compared the clinical data between the three groups and then conducted binary logistic regression and linear regression to assess variables that were significantly associated with overweight and obesity and higher BMI. Of the sample, 324 (32.9%) and 191 (19.4%) patients had overweight and obesity, respectively. Patients who had overweight and obesity were younger, had less education, had higher waist and hip circumferences, higher rates of diabetes and a higher sumPANSP score (compared with patients in the normal group, p < 0.05). There were more female patients with obesity (compared with patients in the normal and overweight groups, p < 0.05). Logistic regression analysis indicated that overweight and obesity were associated with sumPANSP (OR = 1.03, 95%CI = 1-1.061, p = 0.049) and diabetes (OR = 1.891, 95%CI = 1.255-2.849, p = 0.002). Further linear regression showed that age (B = -0.004, t = -2.83, p = 0.005), educational level (B = -0.037, t = -2.261, p = 0.024), diabetes (B = 0.133, t = 2.721, p = 0.007) and sumPANSP (B = 0.008, t = 2.552, p = 0.011) were risk factors for higher BMI. We did not find cognitive performance differences between patients with or without overweight and obesity. Overweight and obesity were associated with some demographic and clinical factors in patients with persistent schizophrenia.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; (X.H.)
| | - Yuan Sun
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China;
| | - Anshi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; (X.H.)
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
21
|
Shrestha S, Zhu X, Kamath V, Sullivan KJ, Deal JA, Sharrett AR, Schneider ALC, Palta P, Gottesman RF, Windham BG, Mosley TH, Griswold ME, Chen H. Factors Associated with Poor Olfaction and Olfactory Decline in Older Adults in the ARIC Neurocognitive Study. Nutrients 2023; 15:3641. [PMID: 37630831 PMCID: PMC10459162 DOI: 10.3390/nu15163641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Olfactory function has significant implications for human health, but few risk factors for olfactory decline have been identified. We examined the factors associated with olfactory status and decline over five years in the Atherosclerosis Risk in Communities (ARIC) Neurocognitive Study. A 12-item odor identification test was used to assess olfaction in 6053 participants in 2011-2013 (ARIC visit 5, mean age: 75.6, 41% male, 23% Black race) and in 3235 participants in 2016-2017 (visit 6). We used Poisson regression models to examine cross-sectional associations of a range of potential factors with the total odor identification errors (mean errors: 2.8 ± 2.4) in visit 5 participants. We used mixed-effect Poisson regression to examine associations with olfactory decline between visits 5 and 6. We also examined associations with visit 5 anosmia prevalence (847 cases, 14%) and incident anosmia between the two visits (510 cases, 16%) using Poisson models. Older age, male sex, lower education, Black race, APOE ε4 alleles, and diabetes were associated with higher odor identification errors and higher anosmia prevalence, and greater physical activity and hypertension with better olfaction. Age, male sex, lower education, Black race, APOE ε4 allele, and vitamin B12 levels were associated with incident anosmia over 5 years. Older age was associated with faster olfactory decline. Future studies with longer follow-ups are warranted.
Collapse
Affiliation(s)
- Srishti Shrestha
- The Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Xiaoqian Zhu
- The Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Vidyulata Kamath
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kevin J. Sullivan
- The Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Jennifer A. Deal
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - A. Richey Sharrett
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Andrea L. C. Schneider
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Priya Palta
- Department of Neurology, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rebecca F. Gottesman
- Stroke Branch, National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD 20892, USA
| | - B. Gwen Windham
- The Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Thomas H. Mosley
- The Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Michael E. Griswold
- The Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Honglei Chen
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
22
|
Liu Q, Liao X, Pan Y, Xiang X, Zhang Y. The Obesity Paradox: Effect of Body Mass Index and Waist Circumference on Post-Stroke Cognitive Impairment. Diabetes Metab Syndr Obes 2023; 16:2457-2467. [PMID: 37605774 PMCID: PMC10440092 DOI: 10.2147/dmso.s420824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
Background Obesity is a risk factor for dementia within the old population however not within the middle-aged population, that is referred to the "obesity paradox". This study explored the association of body mass index (BMI) and waist circumference (WC) with post-stroke cognitive impairment (PSCI) in middle-aged (40-65 years) versus old population (≥ 65 years). Methods The current study enrolled 1735 individuals over the age of 40 who had their first ischemic stroke from the Impairment of Cognition and Sleep (ICONS) subgroup of the China National Stroke Registry-3 (CNSR-3). BMI and WC were used for the diagnosis of obesity and central obesity, respectively. PSCI was diagnosed according to the Montreal Cognitive Assessment (MoCA). The main clinical outcome was the incidence of PSCI assessed at three months after stroke. Multivariable regression analysis was performed to evaluate the association between obesity and three-month PSCI. Stratified analysis was also performed to explore the effect of age on the relationship between obesity and PSCI. Results In the general population, multivariable logistic regression found that the adjusted odds ratio (OR) with 95% confidence interval (CI) of general obesity was 1.45 (1.06-1.98) and that of central obesity was 1.54 (1.24-1.91) for the three-month incidence of PSCI. Stratified analysis by age showed that the adjusted OR with a 95% CI of general obesity was 1.84 (1.24-2.72) in middle-aged patients and 0.89 (0.52-1.54) in elderly patients (p-value for interaction = 0.05). Central obesity was associated with PSCI in all age groups: 1.57 (1.18-2.09) in middle-aged patients and 1.52 (1.08-2.15) in elderly patients (p-value for interaction= 0.93). Conclusion General obesity was related to an increased risk of PSCI in middle-aged but not elderly patients, whereas central obesity was associated with an increased risk of PSCI in all age groups, suggesting that the obesity paradox arises only obesity is outlined by BMI.
Collapse
Affiliation(s)
- Qi Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xiaoling Liao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
- China National Clinical Research Center for Neurological Diseases, Beijing, People’s Republic of China
| | - Yuesong Pan
- China National Clinical Research Center for Neurological Diseases, Beijing, People’s Republic of China
| | - Xianglong Xiang
- China National Clinical Research Center for Neurological Diseases, Beijing, People’s Republic of China
| | - Yumei Zhang
- China National Clinical Research Center for Neurological Diseases, Beijing, People’s Republic of China
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
23
|
Clemente-Suárez VJ, Beltrán-Velasco AI, Redondo-Flórez L, Martín-Rodríguez A, Yáñez-Sepúlveda R, Tornero-Aguilera JF. Neuro-Vulnerability in Energy Metabolism Regulation: A Comprehensive Narrative Review. Nutrients 2023; 15:3106. [PMID: 37513524 PMCID: PMC10383861 DOI: 10.3390/nu15143106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
This comprehensive narrative review explores the concept of neuro-vulnerability in energy metabolism regulation and its implications for metabolic disorders. The review highlights the complex interactions among the neural, hormonal, and metabolic pathways involved in the regulation of energy metabolism. The key topics discussed include the role of organs, hormones, and neural circuits in maintaining metabolic balance. The review investigates the association between neuro-vulnerability and metabolic disorders, such as obesity, insulin resistance, and eating disorders, considering genetic, epigenetic, and environmental factors that influence neuro-vulnerability and subsequent metabolic dysregulation. Neuroendocrine interactions and the neural regulation of food intake and energy expenditure are examined, with a focus on the impact of neuro-vulnerability on appetite dysregulation and altered energy expenditure. The role of neuroinflammation in metabolic health and neuro-vulnerability is discussed, emphasizing the bidirectional relationship between metabolic dysregulation and neuroinflammatory processes. This review also evaluates the use of neuroimaging techniques in studying neuro-vulnerability and their potential applications in clinical settings. Furthermore, the association between neuro-vulnerability and eating disorders, as well as its contribution to obesity, is examined. Potential therapeutic interventions targeting neuro-vulnerability, including pharmacological treatments and lifestyle modifications, are reviewed. In conclusion, understanding the concept of neuro-vulnerability in energy metabolism regulation is crucial for addressing metabolic disorders. This review provides valuable insights into the underlying neurobiological mechanisms and their implications for metabolic health. Targeting neuro-vulnerability holds promise for developing innovative strategies in the prevention and treatment of metabolic disorders, ultimately improving metabolic health outcomes.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Tajo Street s/n, 28670 Madrid, Spain
| | | | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile
| | | |
Collapse
|
24
|
Seidel F, Fluiter K, Kleemann R, Worms N, van Nieuwkoop A, Caspers MPM, Grigoriadis N, Kiliaan AJ, Baas F, Michailidou I, Morrison MC. Ldlr-/-.Leiden mice develop neurodegeneration, age-dependent astrogliosis and obesity-induced changes in microglia immunophenotype which are partly reversed by complement component 5 neutralizing antibody. Front Cell Neurosci 2023; 17:1205261. [PMID: 37457817 PMCID: PMC10346859 DOI: 10.3389/fncel.2023.1205261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Obesity has been linked to vascular dysfunction, cognitive impairment and neurodegenerative diseases. However, experimental models that recapitulate brain pathology in relation to obesity and vascular dysfunction are still lacking. Methods In this study we performed the histological and histochemical characterization of brains from Ldlr-/-.Leiden mice, an established model for obesity and associated vascular disease. First, HFD-fed 18 week-old and 50 week-old Ldlr-/-.Leiden male mice were compared with age-matched C57BL/6J mice. We then assessed the effect of high-fat diet (HFD)-induced obesity on brain pathology in Ldlr-/-.Leiden mice and tested whether a treatment with an anti-complement component 5 antibody, a terminal complement pathway inhibitor recently shown to reduce vascular disease, can attenuate neurodegeneration and neuroinflammation. Histological analyses were complemented with Next Generation Sequencing (NGS) analyses of the hippocampus to unravel molecular pathways underlying brain histopathology. Results We show that chow-fed Ldlr-/-.Leiden mice have more severe neurodegeneration and show an age-dependent astrogliosis that is not observed in age-matched C57BL/6J controls. This was substantiated by pathway enrichment analysis using the NGS data which showed that oxidative phosphorylation, EIF2 signaling and mitochondrial dysfunction pathways, all associated with neurodegeneration, were significantly altered in the hippocampus of Ldlr-/-.Leiden mice compared with C57BL/6J controls. Obesity-inducing HFD-feeding did not aggravate neurodegeneration and astrogliosis in Ldlr-/-.Leiden mice. However, brains from HFD-fed Ldlr-/-.Leiden mice showed reduced IBA-1 immunoreactivity and increased CD68 immunoreactivity compared with chow-fed Ldlr-/-.Leiden mice, indicating alteration of microglial immunophenotype by HFD feeding. The systemic administration of an anti-C5 treatment partially restored the HFD effect on microglial immunophenotype. In addition, NGS data of hippocampi from Ldlr-/-.Leiden mice showed that HFD feeding affected multiple molecular pathways relative to chow-fed controls: HFD notably inactivated synaptogenesis and activated neuroinflammation pathways. The anti-C5 treatment restored the HFD-induced effect on molecular pathways to a large extent. Conclusion This study shows that the Ldlr-/-.Leiden mouse model is suitable to study brain histopathology and associated biological processes in a context of obesity and provides evidence of the potential therapeutic value of anti-complement therapy against obesity-induced neuroinflammation.
Collapse
Affiliation(s)
- Florine Seidel
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
- Department of Medical Imaging, Anatomy, Preclinical Imaging Center (PRIME), Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kees Fluiter
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Nicole Worms
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Anita van Nieuwkoop
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Martien P. M. Caspers
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2 Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Amanda J. Kiliaan
- Department of Medical Imaging, Anatomy, Preclinical Imaging Center (PRIME), Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Iliana Michailidou
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2 Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Martine C. Morrison
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| |
Collapse
|
25
|
Chen L, Zhao S, Wang Y, Niu X, Zhang B, Li X, Peng D. Genetic Insights into Obesity and Brain: Combine Mendelian Randomization Study and Gene Expression Analysis. Brain Sci 2023; 13:892. [PMID: 37371369 PMCID: PMC10295948 DOI: 10.3390/brainsci13060892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
As a major public-health concern, obesity is imposing an increasing social burden around the world. The link between obesity and brain-health problems has been reported, but controversy remains. To investigate the relationship among obesity, brain-structure changes and diseases, a two-stage analysis was performed. At first, we used the Mendelian-randomization (MR) approach to identify the causal relationship between obesity and cerebral structure. Obesity-related data were retrieved from the Genetic Investigation of ANthropometric Traits (GIANT) consortium and the UK Biobank, whereas the cortical morphological data were from the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) consortium. Further, we extracted region-specific expressed genes according to the Allen Human Brian Atlas (AHBA) and carried out a series of bioinformatics analyses to find the potential mechanism of obesity and diseases. In the univariable MR, a higher body mass index (BMI) or larger visceral adipose tissue (VAT) was associated with a smaller global cortical thickness (pBMI = 0.006, pVAT = 1.34 × 10-4). Regional associations were found between obesity and specific gyrus regions, mainly in the fusiform gyrus and inferior parietal gyrus. Multivariable MR results showed that a greater body fat percentage was linked to a smaller fusiform-gyrus thickness (p = 0.029) and precuneus surface area (p = 0.035). As for the gene analysis, region-related genes were enriched to several neurobiological processes, such as compound transport, neuropeptide-signaling pathway, and neuroactive ligand-receptor interaction. These genes contained a strong relationship with some neuropsychiatric diseases, such as Alzheimer's disease, epilepsy, and other disorders. Our results reveal a causal relationship between obesity and brain abnormalities and suggest a pathway from obesity to brain-structure abnormalities to neuropsychiatric diseases.
Collapse
Affiliation(s)
- Leian Chen
- Department of Neurology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100029, China
| | - Shaokun Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Yuye Wang
- Department of Neurology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100029, China
| | - Xiaoqian Niu
- Department of Neurology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Bin Zhang
- Department of Neurology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100029, China
| | - Xin Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Dantao Peng
- Department of Neurology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100029, China
- Department of Neurology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| |
Collapse
|
26
|
Afsar A, Chacon Castro MDC, Soladogun AS, Zhang L. Recent Development in the Understanding of Molecular and Cellular Mechanisms Underlying the Etiopathogenesis of Alzheimer's Disease. Int J Mol Sci 2023; 24:7258. [PMID: 37108421 PMCID: PMC10138573 DOI: 10.3390/ijms24087258] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to dementia and patient death. AD is characterized by intracellular neurofibrillary tangles, extracellular amyloid beta (Aβ) plaque deposition, and neurodegeneration. Diverse alterations have been associated with AD progression, including genetic mutations, neuroinflammation, blood-brain barrier (BBB) impairment, mitochondrial dysfunction, oxidative stress, and metal ion imbalance.Additionally, recent studies have shown an association between altered heme metabolism and AD. Unfortunately, decades of research and drug development have not produced any effective treatments for AD. Therefore, understanding the cellular and molecular mechanisms underlying AD pathology and identifying potential therapeutic targets are crucial for AD drug development. This review discusses the most common alterations associated with AD and promising therapeutic targets for AD drug discovery. Furthermore, it highlights the role of heme in AD development and summarizes mathematical models of AD, including a stochastic mathematical model of AD and mathematical models of the effect of Aβ on AD. We also summarize the potential treatment strategies that these models can offer in clinical trials.
Collapse
Affiliation(s)
| | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
27
|
Lohkamp KJ, van den Hoek AM, Solé-Guardia G, Lisovets M, Alves Hoffmann T, Velanaki K, Geenen B, Verweij V, Morrison MC, Kleemann R, Wiesmann M, Kiliaan AJ. The Preventive Effect of Exercise and Oral Branched-Chain Amino Acid Supplementation on Obesity-Induced Brain Changes in Ldlr−/−.Leiden Mice. Nutrients 2023; 15:nu15071716. [PMID: 37049556 PMCID: PMC10097391 DOI: 10.3390/nu15071716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Exercise and dietary interventions are promising approaches to tackle obesity and its obesogenic effects on the brain. We investigated the impact of exercise and possible synergistic effects of exercise and branched-chain amino acids (BCAA) supplementation on the brain and behavior in high-fat-diet (HFD)-induced obese Ldlr−/−.Leiden mice. Baseline measurements were performed in chow-fed Ldlr−/−.Leiden mice to assess metabolic risk factors, cognition, and brain structure using magnetic resonance imaging. Thereafter, a subgroup was sacrificed, serving as a healthy reference. The remaining mice were fed an HFD and divided into three groups: (i) no exercise, (ii) exercise, or (iii) exercise and dietary BCAA. Mice were followed for 6 months and aforementioned tests were repeated. We found that exercise alone changed cerebral blood flow, attenuated white matter loss, and reduced neuroinflammation compared to non-exercising HFD-fed mice. Contrarily, no favorable effects of exercise on the brain were found in combination with BCAA, and neuroinflammation was increased. However, cognition was slightly improved in exercising mice on BCAA. Moreover, BCAA and exercise increased the percentage of epididymal white adipose tissue and muscle weight, decreased body weight and fasting insulin levels, improved the circadian rhythm, and transiently improved grip strength. In conclusion, BCAA should be supplemented with caution, although beneficial effects on metabolism, behavior, and cognition were observed.
Collapse
Affiliation(s)
- Klara J. Lohkamp
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Anita M. van den Hoek
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands; (A.M.v.d.H.); (M.C.M.); (R.K.)
| | - Gemma Solé-Guardia
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Maria Lisovets
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Talissa Alves Hoffmann
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Konstantina Velanaki
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Bram Geenen
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Vivienne Verweij
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Martine C. Morrison
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands; (A.M.v.d.H.); (M.C.M.); (R.K.)
| | - Robert Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), 2333 BE Leiden, The Netherlands; (A.M.v.d.H.); (M.C.M.); (R.K.)
| | - Maximilian Wiesmann
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
| | - Amanda J. Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, 6525 EZ Nijmegen, The Netherlands; (K.J.L.); (G.S.-G.); (M.L.); (T.A.H.); (K.V.); (B.G.); (V.V.); (M.W.)
- Correspondence:
| |
Collapse
|
28
|
Chen X, Chen S, Li Z, Zhu R, Jia Z, Ban J, Zhen R, Chen X, Pan X, Ren Q, Yue L, Niu S. Effect of semaglutide and empagliflozin on cognitive function and hippocampal phosphoproteomic in obese mice. Front Pharmacol 2023; 14:975830. [PMID: 37007007 PMCID: PMC10063902 DOI: 10.3389/fphar.2023.975830] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Objective: Based on the 4D label-free phosphoproteomic technique, we examined the differences in cognitive function and hippocampal phosphorylated protein expression in high-fat diet-induced obese mice after the intervention of semaglutide and empagliflozin, as well as the effects of both on protein activity and function in obese mice’s hippocampal tissues and the signaling pathways involved.Methods: Thirty-two C57BL/6JC male mice were assigned to two groups randomly: A control group (group C, 10% of energy is from fat, n = 8) and a high-fat diet group (group H, 60% of energy is from fat, n = 24). The high-fat diet-induced obese mice were screened after 12 weeks of feeding based on the criterion that the bodyweight of mice in fat rich diet group was greater than or equal to 20% of the average body weight of the mice in the blank control group. Group H separate into group H (n = 8), group Semaglutide (group S, n = 8), and group empagliflozin (group E, n = 8). For a total of 12 weeks, group S received 30 nmol/kg/d bodyweight of semaglutide intraperitoneally, group E received 10 mg/kg/d bodyweight of empagliflozin via gavage, and groups C and H received equal amounts of saline by intraperitoneal injection and gavage. At the end of treatment, the mice were appraised for cognitive function employing the Morris water maze (MWM), and serum fasting glucose, lipids, and inflammatory parameters were measured. The 4D label-free phosphoproteomics method was employed to screen the differential phosphoproteins and loci in hippocampal tissues of mice in different treatment groups, and bioinformatics was used to analyze the biological processes, signaling pathways, and related protein–protein interaction (PPI) network analysis of these differentially phosphorylated proteins.Results: In comparison to normal controls, The escape latency of obese mice induced by high-fat diet was prolonged, the percentage of swimming time in the target quadrant was reduced, and the number of times of crossing the platform was reduced, whereas semaglutide and empagliflozin treatment reduced escape latency, increase the percentage of swim time in the target quadrant and increase the frequency of passing through the platform area, although there is little difference in the effect of the two drugs. The phosphoproteomic results showed 20,493 unique phosphorylated peptides, representing 21,239 phosphorylation sites and 4,290 phosphorylated proteins. Further analysis revealed that the proteins corresponding to these differentially phosphorylated sites are jointly distributed in signaling pathways such as dopaminergic synapses and axon guidance, and are involved in biological processes such as neuronal projection development, synaptic plasticity, and axonogenesis. Notably, the key factors voltage-dependent L-type calcium channel subunit alpha-1D (CACNA1D), voltage-dependent P/Q-type calcium channel subunit alpha-1A (CACNA1A), and voltage-dependent N-type calcium channel subunit alpha-1B (CACNA1B) were all found to be involved in the dopaminergic synapse pathway, and their expression was upregulated by semaglutide and empagliflozin.Conclusion: We found for the first time that a high-fat diet decreased CACNA1D, CACNA1A, and CACNA1B protein serine phosphorylation, which may affect neuronal development, synaptic plasticity, and cognitive function in mice. Notably, semaglutide and empagliflozin increased the phosphorylation of these proteins.
Collapse
Affiliation(s)
- Xiaoyi Chen
- Department of Internal Medicine, Hebei North University, Zhangjiakou, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- *Correspondence: Shuchun Chen,
| | - Zelin Li
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Ruiyi Zhu
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Zhuoya Jia
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jiangli Ban
- Department of Internal Medicine, Hebei North University, Zhangjiakou, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Ruoxi Zhen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xing Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaoyu Pan
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Qingjuan Ren
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Lin Yue
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Shu Niu
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
29
|
Peng K, Dong W, Luo T, Tang H, Zhu W, Huang Y, Yang X. Butyrate and obesity: Current research status and future prospect. Front Endocrinol (Lausanne) 2023; 14:1098881. [PMID: 36909336 PMCID: PMC9999029 DOI: 10.3389/fendo.2023.1098881] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/07/2023] [Indexed: 03/14/2023] Open
Abstract
Over the past few decades, increasing prevalence of obesity caused an enormous medical, social, and economic burden. As the sixth most important risk factor contributing to the overall burden of disease worldwide, obesity not only directly harms the human body, but also leads to many chronic diseases such as diabetes, cardiovascular diseases (CVD), nonalcoholic fatty liver disease (NAFLD), and mental illness. Weight loss is still one of the most effective strategies against obesity and related disorders. Recently, the link between intestinal microflora and metabolic health has been constantly established. Butyrate, a four-carbon short-chain fatty acid, is a major metabolite of the gut microbiota that has many beneficial effects on metabolic health. The anti-obesity activity of butyrate has been demonstrated, but its mechanisms of action have not been fully described. This review summarizes current knowledge of butyrate, including its production, absorption, distribution, metabolism, and the effect and mechanisms involved in weight loss and obesity-related diseases. The aim was to contribute to and advance our understanding of butyrate and its role in obesity. Further exploration of butyrate and its pathway may help to identify new anti-obesity.
Collapse
Affiliation(s)
- Ke Peng
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Wenjie Dong
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Taimin Luo
- Department of Pharmacy, Chengdu Seventh People’s Hospital, Chengdu, Sichuan, China
| | - Hui Tang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Wanlong Zhu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yilan Huang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xuping Yang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
30
|
Nascimento MDM, Kliegel M, Silva PST, Rios PMB, Nascimento LDS, Silva CN, Ihle A. The Association of Obesity and Overweight with Executive Functions in Community-Dwelling Older Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2440. [PMID: 36767806 PMCID: PMC9915331 DOI: 10.3390/ijerph20032440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Among the risk factors reported for cognitive decline, the literature highlights changes in body composition. Thus, the aim of the present study was to examine the relationship between obesity/overweight and executive functions in cognitively normal older adult women. This cross-sectional study included 224 individuals (60-80 years), stratified into normal weight (n = 45), overweight (n = 98), and obesity (n = 81). As outcomes, body mass index (BMI), waist circumference (WC), and Trail Making Test Parts A and B were assessed. We found positive correlations of BMI and WC with completion times of TMT-A and TMT-B, and a negative correlation of BMI and WC with education. ANCOVA showed an association between higher BMI and slower completion time of TMT-A, TMT-B, and ΔTMT (B-A). Impairment of executive functions of cognitively normal older women may be positively associated with obesity and negatively associated with years of education. The findings may contribute to designing strategies that make it possible to prevent cognitive decline in women during aging.
Collapse
Affiliation(s)
- Marcelo de Maio Nascimento
- Department of Physical Education, Federal University of Vale do São Francisco, Petrolina 56304-917, Brazil
| | - Matthias Kliegel
- Department of Psychology, University of Geneva, 1205 Geneva, Switzerland
- Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, 1205 Geneva, Switzerland
- Swiss National Centre of Competence in Research LIVES—Overcoming Vulnerability: Life Course Perspectives, 1015 Lausanne, Switzerland
| | - Paloma Sthefane Teles Silva
- Multiprofessional Residence, Hospital das Clínicas of the Federal University of Minas Gerais, Belo Horizonte 30130-100, Brazil
| | | | - Lara dos Santos Nascimento
- Department of Physical Education, Federal University of Vale do São Francisco, Petrolina 56304-917, Brazil
| | | | - Andreas Ihle
- Department of Psychology, University of Geneva, 1205 Geneva, Switzerland
- Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, 1205 Geneva, Switzerland
- Swiss National Centre of Competence in Research LIVES—Overcoming Vulnerability: Life Course Perspectives, 1015 Lausanne, Switzerland
| |
Collapse
|
31
|
Animali S, Steinwurzel C, Dardano A, Sancho-Bornez V, Del Prato S, Morrone MC, Daniele G, Binda P. Effect of fasting on short-term visual plasticity in adult humans. Eur J Neurosci 2023; 57:148-162. [PMID: 36437778 PMCID: PMC10108283 DOI: 10.1111/ejn.15873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
Brain plasticity and function is impaired in conditions of metabolic dysregulation, such as obesity. Less is known on whether brain function is also affected by transient and physiological metabolic changes, such as the alternation between fasting and fed state. Here we asked whether these changes affect the transient shift of ocular dominance that follows short-term monocular deprivation, a form of homeostatic plasticity. We further asked whether variations in three of the main metabolic and hormonal pathways affected in obesity (glucose metabolism, leptin signalling and fatty acid metabolism) correlate with plasticity changes. We measured the effects of 2 h monocular deprivation in three conditions: post-absorptive state (fasting), after ingestion of a standardised meal and during infusion of glucagon-like peptide-1 (GLP-1), an incretin physiologically released upon meal ingestion that plays a key role in glucose metabolism. We found that short-term plasticity was less manifest in fasting than in fed state, whereas GLP-1 infusion did not elicit reliable changes compared to fasting. Although we confirmed a positive association between plasticity and supraphysiological GLP-1 levels, achieved by GLP-1 infusion, we found that none of the parameters linked to glucose metabolism could predict the plasticity reduction in the fasting versus fed state. Instead, this was selectively associated with the increase in plasma beta-hydroxybutyrate (B-OH) levels during fasting, which suggests a link between neural function and energy substrates alternative to glucose. These results reveal a previously unexplored link between homeostatic brain plasticity and the physiological changes associated with the daily fast-fed cycle.
Collapse
Affiliation(s)
- Silvia Animali
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Cecilia Steinwurzel
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy.,Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Angela Dardano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maria Concetta Morrone
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,IRCCS Stella Maris Foundation, Pisa, Italy
| | - Giuseppe Daniele
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Binda
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
32
|
Wen ZF, Peng SH, Wang JL, Wang HY, Yang LP, Liu Q, Zhang XG. Prevalence of motoric cognitive risk syndrome among older adults: a systematic review and meta-analysis. Aging Ment Health 2022:1-13. [PMID: 36533320 DOI: 10.1080/13607863.2022.2158305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Motoric cognitive risk syndrome (MCR) is a newly proposed pre-dementia syndrome. Several studies on the prevalence of MCR have been published; however, the data vary across studies with different epidemiological characteristics. Thus, this study aimed to quantitatively analyse the overall prevalence and associated epidemiological characteristics of MCR among older adults aged ≥ 60 years. METHODS The Cochrane Library, PubMed, Web of Science, CINAHL, Embase, Scopus, PsycInfo, China National Knowledge Infrastructure, Weipu Database, China Biology Medicine disc and Wanfang Database were searched from their inception to January 2022. A modified Newcastle-Ottawa Scale evaluated the risk of bias. Statistical heterogeneity among the included studies was analysed using Cochran's Q and I2 tests. A random effect model calculated pooled prevalence owing to study heterogeneity. Begg's and Egger's tests were used to assess the publication bias. Additionally, subgroup analysis and meta-regression were performed based on different epidemiological characteristics to determine heterogeneity sources. RESULTS Sixty-two studies comprising 187,558 samples were obtained. The pooled MCR prevalence was 9.0% (95% confidence interval: 8.3-9.8). A higher MCR prevalence was observed in females, older adults with a low educational level, depression and cardiovascular risk factors, South American populations, and studies with small sample sizes and cross-section designs. Furthermore, subjective cognitive complaint using scale score and gait speed using instrument gait showed higher MCR prevalence. CONCLUSION MCR is common in older adults, and various epidemiological characteristics influence its prevalence. Thus, preventive measures are required for older adults with higher MCR prevalence.
Collapse
Affiliation(s)
- Zhi-Fei Wen
- School of Nursing, Chengdu university of Traditional Chinese Medicine, Sichuan, China
| | - Si-Han Peng
- School Clinical, Chengdu university of Traditional Chinese Medicine, Sichuan, China
| | - Jia-Lin Wang
- School of Nursing, Chengdu university of Traditional Chinese Medicine, Sichuan, China
| | - Hong-Yan Wang
- Dean Office, Sichuan Nursing Vocational College, Sichuan, China
| | - Li-Ping Yang
- School of Nursing, Chengdu university of Traditional Chinese Medicine, Sichuan, China
| | - Qin Liu
- School of Nursing, Chengdu university of Traditional Chinese Medicine, Sichuan, China
| | - Xian-Geng Zhang
- Dean Office, Sichuan Nursing Vocational College, Sichuan, China
| |
Collapse
|
33
|
Wing D, Eyler LT, Lenze EJ, Wetherell JL, Nichols JF, Meeusen R, Godino JG, Shimony JS, Snyder AZ, Nishino T, Nicol GE, Nagels G, Roelands B. Fatness, fitness and the aging brain: A cross sectional study of the associations between a physiological estimate of brain age and physical fitness, activity, sleep, and body composition. NEUROIMAGE. REPORTS 2022; 2:100146. [PMID: 36743444 PMCID: PMC9894084 DOI: 10.1016/j.ynirp.2022.100146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Introduction Changes in brain structure and function occur with aging. However, there is substantial heterogeneity both in terms of when these changes begin, and the rate at which they progress. Understanding the mechanisms and/or behaviors underlying this heterogeneity may allow us to act to target and slow negative changes associated with aging. Methods Using T1 weighted MRI images, we applied a novel algorithm to determine the physiological age of the brain (brain-predicted age) and the predicted age difference between this physiologically based estimate and chronological age (BrainPAD) to 551 sedentary adults aged 65 to 84 with self-reported cognitive complaint measured at baseline as part of a larger study. We also assessed maximal aerobic capacity with a graded exercise test, physical activity and sleep with accelerometers, and body composition with dual energy x-ray absorptiometry. Associations were explored both linearly and logistically using categorical groupings. Results Visceral Adipose Tissue (VAT), Total Sleep Time (TST) and maximal aerobic capacity all showed significant associations with BrainPAD. Greater VAT was associated with higher (i.e,. older than chronological) BrainPAD (r = 0.149 p = 0.001)Greater TST was associated with higher BrainPAD (r = 0.087 p = 0.042) and greater aerobic capacity was associated with lower BrainPAD (r = - 0.088 p = 0.040). With linear regression, both VAT and TST remained significant (p = 0.036 and 0.008 respectively). Each kg of VAT predicted a 0.741 year increase in BrainPAD, and each hour of increased TST predicted a 0.735 year increase in BrainPAD. Maximal aerobic capacity did not retain statistical significance in fully adjusted linear models. Discussion Accumulation of visceral adipose tissue and greater total sleep time, but not aerobic capacity, total daily physical activity, or sleep quantity and/or quality are associated with brains that are physiologically older than would be expected based upon chronological age alone (BrainPAD).
Collapse
Affiliation(s)
- David Wing
- Herbert Wertheim School of Public Health and Human Longevity, University of California, San Diego, United States
- Exercise and Physical Activity Resource Center (EPARC), University of California, San Diego, United States
| | - Lisa T. Eyler
- Department of Psychiatry, University of California, San Diego, United States
- San Diego Veterans Administration Health Care System, San Diego, United States
| | - Eric J. Lenze
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Julie Loebach Wetherell
- Mental Health Service, VA San Diego Healthcare System, United States
- Department of Psychiatry, University of California, San Diego, United States
| | - Jeanne F. Nichols
- Herbert Wertheim School of Public Health and Human Longevity, University of California, San Diego, United States
- Exercise and Physical Activity Resource Center (EPARC), University of California, San Diego, United States
| | - Romain Meeusen
- Human Physiology & Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Job G. Godino
- Herbert Wertheim School of Public Health and Human Longevity, University of California, San Diego, United States
- Exercise and Physical Activity Resource Center (EPARC), University of California, San Diego, United States
| | - Joshua S. Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Abraham Z. Snyder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Tomoyuki Nishino
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Ginger E. Nicol
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Guy Nagels
- Department of Neurology, UZ Brussel, Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Bart Roelands
- Human Physiology & Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
34
|
Shao X, Tan LH, He L. Physical activity and exercise alter cognitive abilities, and brain structure and activity in obese children. Front Neurosci 2022; 16:1019129. [PMID: 36340766 PMCID: PMC9631829 DOI: 10.3389/fnins.2022.1019129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022] Open
Abstract
The prevalence of childhood obesity is increasing to such an extent that it has become a major global public health problem in the 21st century. Obesity alters children’s brain structure and activity and impairs their cognitive abilities. On the basis of these findings, it is necessary for educational and healthcare institutions to combat childhood obesity through preventive and therapeutic strategies. In general, exercise and physical activity are considered common but effective methods for improving physical, psychological, and brain health across the life span. Therefore, this review article mainly focuses on existing neuroimaging studies that have used magnetic resonance imaging (MRI), and functional magnetic resonance imaging (fMRI)to assess children’s brain anatomy and neural activity. We intended to explore the roles of physical activity and exercise in modulating the associations among childhood obesity, cognitive abilities, and the structure and activity of the brain.
Collapse
Affiliation(s)
- Xueyun Shao
- School of Sports, Shenzhen University, Shenzhen, China
- Shenzhen Institute of Neuroscience, Shenzhen, China
- *Correspondence: Xueyun Shao,
| | - Li Hai Tan
- Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Longfei He
- School of Sports, Shenzhen University, Shenzhen, China
| |
Collapse
|
35
|
Lu W, Cheng Z, Xie X, Li K, Duan Y, Li M, Ma C, Liu S, Qiu J. An atlas of glucose uptake across the entire human body as measured by the total-body PET/CT scanner: a pilot study. LIFE METABOLISM 2022; 1:190-199. [PMID: 39872349 PMCID: PMC11749875 DOI: 10.1093/lifemeta/loac030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/24/2022] [Accepted: 10/24/2022] [Indexed: 01/30/2025]
Abstract
Glucose uptake differs in organs and tissues across the human body. To date, however, there has been no single atlas providing detailed glucose uptake profiles across the entire human body. Therefore, we aimed to generate a detailed profile of glucose uptake across the entire human body using the uEXPLORER positron emission tomography/computed tomography scanner, which offers the opportunity to collect glucose metabolic imaging quickly and simultaneously in all sites of the body. The standardized uptake value normalized by lean body mass (SUL) of 18F-fluorodeoxyglucose was used as a measure of glucose uptake. We developed a fingerprint of glucose uptake reflecting the mean SULs of major organs and parts across the entire human body in 15 healthy-weight and 18 overweight subjects. Using the segmentation of organs and body parts from the atlas, we uncovered the significant impacts of age, sex, and obesity on glucose uptake in organs and parts across the entire body. A difference was recognized between the right and left side of the body. Overall, we generated a total-body glucose uptake atlas that could be used as the reference for the diagnosis and evaluation of disordered states involving dysregulated glucose metabolism.
Collapse
Affiliation(s)
- Weizhao Lu
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Zhaoping Cheng
- Department of PET/CT, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, China
| | - Xue Xie
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Kun Li
- Department of PET/CT, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, China
| | - Yanhua Duan
- Department of PET/CT, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, China
| | - Min Li
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Chao Ma
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Sijin Liu
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250100, China
- State Key Laboratory of Environment Chemistry and Ecotoxicology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| |
Collapse
|
36
|
Acute sleep loss increases CNS health biomarkers and compromises the ability to stay awake in a sex-and weight-specific manner. Transl Psychiatry 2022; 12:379. [PMID: 36088460 PMCID: PMC9464235 DOI: 10.1038/s41398-022-02146-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Night shift work impairs vigilance performance, reduces the ability to stay awake, and compromises brain health. To investigate if the magnitude of these adverse night shift work effects differs between sexes and weight groups, 47 men and women with either normal weight or obesity participated in one night of sleep and one night of total sleep loss. During the night of sleep loss, participants' subjective sleepiness, vigilance performance, and ability to stay awake during 2-min quiet wake with eyes closed were repeatedly assessed. In addition, blood was collected in the morning after sleep loss and sleep to measure central nervous system (CNS) health biomarkers. Our analysis showed that women were sleepier during the night of sleep loss (P < 0.05) and spent more time in microsleep during quiet wake testing (P < 0.05). Finally, higher blood levels of neurofilament light chain, a biomarker of axonal damage, were found among women in the morning after sleep loss (P < 0.002). Compared with normal-weight subjects, those with obesity were more prone to fall asleep during quiet wake (P < 0.05) and exhibited higher blood levels of the CNS health biomarker pTau181 following sleep loss (P = 0.001). Finally, no differences in vigilance performance were noted between the sex and weight groups. Our findings suggest that the ability to stay awake during and the CNS health biomarker response to night shift work may differ between sexes and weight groups. Follow-up studies must confirm our findings under more long-term night shift work conditions.
Collapse
|
37
|
Qiao YS, Tang X, Chai YH, Gong HJ, Xu H, Patel I, Li L, Lu T, Zhao WY, Li ZY, Cardoso MA, Zhou JB. Cerebral Blood Flow Alterations and Obesity: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2022; 90:15-31. [DOI: 10.3233/jad-220601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Reduction in cerebral blood flow (CBF) plays an essential role in the cognitive impairment and dementia in obesity. However, current conclusions regarding CBF changes in patients with obesity are inconsistent. Objective: A systematic review and meta-analysis was performed to evaluate the relationship between obesity and CBF alterations. Methods: We systematically screened published cross-sectional and longitudinal studies focusing on the differences in CBF between obese and normal-weight individuals. Eighteen studies including 24,866 participants, of which seven articles reported longitudinal results, were evaluated in the present study. Results: The results of the meta-analysis showed that in cross-sectional studies, body mass index (BMI) was negatively associated with CBF (β= –0.31, 95% confidence interval [CI]: –0.44, –0.19). Moreover, this systematic review demonstrated that obese individuals showed global and regional reductions in the CBF and increased CBF in diverse functional areas of the frontal lobe, including the prefrontal cortex, left frontal superior orbital, right frontal mid-orbital cortex, and left premotor superior frontal gyrus. Conclusion: Our findings suggest that BMI, rather than waist circumference and waist-to-hip ratio, is inversely associated with CBF in cross-sectional studies. The CBF of obese individuals showed global and regional reductions, including the frontal lobe, temporal and parietal lobes, cerebellum, hippocampus, and thalamus.
Collapse
Affiliation(s)
- Yu-Shun Qiao
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | | | - Yin-He Chai
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hong-Jian Gong
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hui Xu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ikramulhaq Patel
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Li Li
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Tong Lu
- Department of Clinical Nutrition, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wan-Ying Zhao
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ze-Yu Li
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Marly Augusto Cardoso
- Department of Nutrition, School of Public Health, University of Sao Paulo, Sao Paulo, Brazil
| | - Jian-Bo Zhou
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
38
|
Arjmand G, Abbas-Zadeh M, Fardaei M, Eftekhari MH. The Effect of Short-term Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) Diet on Hunger Hormones, Anthropometric Parameters, and Brain Structures in Middle-aged Overweight and Obese Women: A Randomized Controlled Trial. IRANIAN JOURNAL OF MEDICAL SCIENCES 2022; 47:422-432. [PMID: 36117580 PMCID: PMC9445865 DOI: 10.30476/ijms.2021.90829.2180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 11/15/2022]
Abstract
Background The rising prevalence of obesity, as well as its detrimental effects on the brain, has drawn attention to specific dietary patterns. This study aimed to examine the effect of the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) pattern on anthropometric parameters, hunger hormones, and brain structures in overweight and obese women. Methods This randomized trial was conducted in Shiraz between October 2018 and March 2019. We analyzed 37 healthy women with a mean age of 48±5.38 years and a Body Mass Index (BMI) of 32±0.69 Kg/m2. Participants were randomly allocated to a hypocaloric modified MIND diet or a hypocaloric control diet. Differences in anthropometric, laboratory analysis, and brain structure were determined at baseline and three-month follow-up. Data were analyzed using SPSS 22.0. Independent and paired sample t test were used to determine between and within differences. We also used mixed-model ANOVA to compare the mean differences between two-factor groups. Results A more significant weight reduction (P<0.0001), BMI (P<0.0001), percentage of body fat (P=0.03), waist circumference (P=0.01), and Leptin concentration (P=0.03) were found in the MIND diet group. The results also showed a significant increase in Ghrelin (P=0.002) and GLP-1 (P=0.01) levels in the MIND diet group. The findings revealed no differences in the whole and regional brain structures between the two groups. Conclusion For the first time, this study showed that the MIND diet intervention could improve the devastating effect of obesity on metabolic profiles and anthropometric parameters. However, we could not find its effect on brain structures.Trial registration number: IRCT20190427043387N1.A preprint of this study was published at https://www.medrxiv.org/content/10.1101/2020.06.28.20142018v1.
Collapse
Affiliation(s)
- Golnaz Arjmand
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Abbas-Zadeh
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Majid Fardaei
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hassan Eftekhari
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
39
|
Davidson TL, Stevenson RJ. Appetitive interoception, the hippocampus and western-style diet. Rev Endocr Metab Disord 2022; 23:845-859. [PMID: 35067848 DOI: 10.1007/s11154-021-09698-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 02/06/2023]
Abstract
Obesity, Type 2 diabetes and other metabolic disorders continue to pose serious challenges to human health and well-being. An important source of these challenges is the overconsumption of saturated fats and sugar, main staples of what has been called the Western-style diet (WD). The current paper describes a theoretical model and supporting evidence that links intake of a WD to interference with a specific brain substrate that underlies processing of interoceptive signals of hunger and satiety. We review findings from rats and humans that the capacity of these signals to modulate the strength of appetitive and eating behavior depends on the functional integrity of the hippocampus and the learning memory operations it performs. Important among these operations is the use of contextual information to retrieve memories that are associated with other events. Within our framework, satiety provides an interoceptive context that informs animals that food cues and appetitive behavior will not be followed by rewarding postingestive outcomes. This serves to prevent those cues and responses from retrieving those reward memories. The findings reviewed provide evidence that consuming a WD and the high amounts of saturated fat and sugar it contains (a) is associated with the emergence of pathophysiologies to which the hippocampus appears selectively vulnerable (b) impairs hippocampal-dependent learning and memory (HDLM) and (c) weakens behavioral control by interoceptive hunger and satiety contextual stimuli. It is hypothesized that these consequences of WD intake may establish the conditions for a vicious cycle of further WD intake, obesity, and potentially cognitive decline.
Collapse
Affiliation(s)
- Terry L Davidson
- Department of Neuroscience and the Center for Neuroscience and Behavior, American University, Washington, DC, USA.
| | | |
Collapse
|
40
|
Skurvydas A, Lisinskiene A, Majauskiene D, Valanciene D, Dadeliene R, Fatkulina N, Sarkauskiene A. Do Physical Activity, BMI, and Wellbeing Affect Logical Thinking? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116631. [PMID: 35682215 PMCID: PMC9180028 DOI: 10.3390/ijerph19116631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023]
Abstract
We studied 6368 people (4544 women and 1824 men; aged 18–74 years). The research goal was to determine whether the Cognitive Reflection Test score (logical thinking compared with intuitive thinking) depends—and in what way it depends—on the healthy lifestyle components and emotional health-related components as well as age (18–74 years) and gender. We established that analytical vs. intuitive thinking depended on components of a healthy lifestyle, physical activity, sleep, eating habits, smoking and alcohol consumption, specificity of sporting activity, body mass index, and emotional health-related components (stress, depression, impulsivity, subjective health, emotional intelligence), as well as age and gender. We found that logical thinking was not associated with sleep, moderate-to-vigorous PA, impulsivity, subjective health, and components of a healthy lifestyle. However, logical thinking decreases with age, gender (higher in men than in women), BMI (decreases in both genders over the second degree of obesity), depression (the more severe depression in women, the worse their logical thinking), sedentary behavior (people who sat for longer periods had more difficulty solving problems), and in professional sportswomen (logical thinking is worse in professional sportswomen than in sedentary women, amateur sportswomen, or women who use gyms). Finally, we determined inverse correlations between logical thinking, emotional intelligence, and stress.
Collapse
Affiliation(s)
- Albertas Skurvydas
- Institute of Educational Research, Education Academy, Vytautas Magnus University, K. Donelaičio Street 58, 44248 Kaunas, Lithuania; (A.S.); (A.L.); (D.M.)
- Department of Rehabilitation, Physical and Sports Medicine, Faculty of Medicine, Institute of Health Sciences, Vilnius University, 21/27 M.K. Čiurlionio St., 03101 Vilnius, Lithuania;
| | - Ausra Lisinskiene
- Institute of Educational Research, Education Academy, Vytautas Magnus University, K. Donelaičio Street 58, 44248 Kaunas, Lithuania; (A.S.); (A.L.); (D.M.)
| | - Daiva Majauskiene
- Institute of Educational Research, Education Academy, Vytautas Magnus University, K. Donelaičio Street 58, 44248 Kaunas, Lithuania; (A.S.); (A.L.); (D.M.)
| | - Dovile Valanciene
- Institute of Educational Research, Education Academy, Vytautas Magnus University, K. Donelaičio Street 58, 44248 Kaunas, Lithuania; (A.S.); (A.L.); (D.M.)
- Correspondence:
| | - Ruta Dadeliene
- Department of Rehabilitation, Physical and Sports Medicine, Faculty of Medicine, Institute of Health Sciences, Vilnius University, 21/27 M.K. Čiurlionio St., 03101 Vilnius, Lithuania;
| | - Natalja Fatkulina
- Institute of Health Sciences, Faculty of Medicine, Vilnius University, 21/27 M.K. Čiurlionio Street, 03101 Vilnius, Lithuania;
| | - Asta Sarkauskiene
- Department of Sports, Recreation and Tourism, Klaipėda University, Herkaus Manto Street 84, 92294 Klaipėda, Lithuania;
| |
Collapse
|
41
|
Cognitive Functions Associated with Brain Imaging Markers in Patients with Psoriasis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095687. [PMID: 35565082 PMCID: PMC9105445 DOI: 10.3390/ijerph19095687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023]
Abstract
Psoriasis is a severe inflammatory disease associated with a higher comorbidity of depression, cognitive dysfunction and brain atrophy. The association between psoriasis, magnetic resonance imaging (MRI) markers and cognitive impairment has rarely been investigated, and the existing results are conflicting. Methods. This study included 89 subjects (53 patients with psoriasis and 36 healthy controls). The severity of psoriasis was evaluated using the Psoriasis Area and Severity Index (PASI) score; for depression, the Hospital Anxiety and Depression Scale (HADS) scale was used. Neuropsychological tests were also applied, including a Trail Making Test (TMT) as well as Digit Span, Stroop, Verbal Fluency and Rey Auditory Verbal Learning tests. MRI scans were performed using a 1.5 T scanner. Brain volumetry, white matter lesions, grey matter and white matter were evaluated. The extent of these changes was assessed on the Fazekas scale. The differences between groups were evaluated using a Student’s t-test and a Mann-Whitney U test, and a Pearson correlation analysis was also performed. Results. Patients with psoriasis presented worse achievements on all the neuropsychological tests and showed more intense changes on MRI compared to healthy controls. The severity of psoriasis as determined by PASI scores was associated with depression, and a greater psychomotor slowness severity of changes in the brain was associated with poorer results on the neurological tests. Conclusions. Our results indicate the possibility of progressive brain atrophy related to cognitive decline in psoriasis.
Collapse
|
42
|
Ren G, Hwang PTJ, Millican R, Shin J, Brott BC, van Groen T, Powell CM, Bhatnagar S, Young ME, Jun HW, Kim JA. Subcutaneous Administration of a Nitric Oxide-Releasing Nanomatrix Gel Ameliorates Obesity and Insulin Resistance in High-Fat Diet-Induced Obese Mice. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19104-19115. [PMID: 35467831 PMCID: PMC9233978 DOI: 10.1021/acsami.1c24113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nitric oxide (NO) is a gaseous signaling molecule, which plays crucial roles in various biological processes, including inflammatory responses, metabolism, cardiovascular functions, and cognitive function. NO bioavailability is reduced with aging and cardiometabolic disorders in humans and rodents. NO stimulates the metabolic rate by increasing the mitochondrial biogenesis and brown fat activation. Therefore, we propose a novel technology of providing exogenous NO to improve the metabolic rate and cognitive function by promoting the development of brown adipose tissue. In the present study, we demonstrate the effects of the peptide amphiphiles-NO-releasing nanomatrix gel (PANO gel) on high-fat diet-induced obesity, insulin resistance, and cognitive functions. Eight-week-old male C57BL/6 mice were subcutaneously injected in the brown fat area with the PANO gel or vehicle (PA gel) every 2 weeks for 12 weeks. The PANO gel-injected mice gained less body weight, improved glucose tolerance, and decreased fasting serum insulin and leptin levels compared with the PA gel-injected mice. Insulin signaling in the muscle, liver, and epididymal white adipose tissue was improved by the PANO gel injection. The PANO gel reduced inflammation, increased lipolysis in the epididymal white adipose tissue, and decreased serum lipids and liver triglycerides. Interestingly, the PANO gel stimulated uncoupled protein 1 gene expression in the brown and beige fat tissues. Furthermore, the PANO gel increased the cerebral blood flow and improved learning and memory abilities. Our results suggest that using the PANO gel to supply exogenous NO is a novel technology to treat metabolic disorders and cognitive dysfunctions.
Collapse
Affiliation(s)
- Guang Ren
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294
| | | | | | - Juhee Shin
- Department of Biomedical engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Brigitta C. Brott
- Endomimetics, LLC, Birmingham, AL 35242
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Thomas van Groen
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Craig M. Powell
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Sushant Bhatnagar
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294
- UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Martin E. Young
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294
- UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ho-Wook Jun
- Endomimetics, LLC, Birmingham, AL 35242
- Department of Biomedical engineering, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jeong-a Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294
- UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
43
|
Park SK, Lee HL, Kang JY, Kim JM, Heo HJ. Peanut (Arachis hypogaea) sprout prevents high-fat diet-induced cognitive impairment by improving mitochondrial function. Sci Rep 2022; 12:6213. [PMID: 35418581 PMCID: PMC9008020 DOI: 10.1038/s41598-022-10520-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/06/2022] [Indexed: 11/09/2022] Open
Abstract
This study was performed to evaluate the improvement effect of the ethyl acetate fraction from peanut (Arachis hypogaea) sprout (EFPS) on high-fat diet (HFD)-induced cognitive deficits in C57BL/6 mice. Mice were randomly divided four groups (n = 13) as control (normal chow), HFD, EFPS 20 (20 mg/kg of body weight; intragastric administration) and EFPS 50 (50 mg/kg of body weight; intragastric administration) groups. HFD was provide for 15 weeks excepting control group. EFPS ameliorated cognitive dysfunction in Y-maze, passive avoidance test and Morris water maze test. EFPS significantly improved glucose tolerance and serum lipid profile, and reduced body weight. EFPS ameliorated oxidative stress by regulating MDA levels and SOD activity in liver and brain tissues. In addition, EFPS restored brain mitochondrial dysfunction related to energy metabolism. Moreover, the bioactive compounds of EFPS were identified as di-caffeic acid, caffeic acid, dihydrokaempferol-hexoside, di-p-coumaroyl tartaric acid isomer and group B soyasaponins using ultra-performance liquid chromatography-quadrupole-time-of-flight (UPLC-Q-TOF) mass spectrometry. These results show that EFPS can improve cognitive functions in HFD-induced diabetic mice.
Collapse
Affiliation(s)
- Seon Kyeong Park
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
- Korea Food Research Institute, Wanju-gun, 55365, Republic of Korea
| | - Hyo Lim Lee
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jin Yong Kang
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
- Advanced Process Technology and Fermentation Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Jong Min Kim
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science, Institute of Agriculture and Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
44
|
Chen Y, Qiu C, Yu W, Shao X, Zhou M, Wang Y, Shao X. The relationship between brain glucose metabolism and insulin resistance in subjects with normal cognition - a study based on 18F-FDG PET. Nucl Med Commun 2022; 43:275-283. [PMID: 34816810 DOI: 10.1097/mnm.0000000000001511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Insulin resistance can increase the risk of cognitive dysfunction and dementia. Our purpose is to use 18F-FDG PET imaging to explore the effect of insulin resistance on brain glucose metabolism in cognitively normal subjects. METHODS A total of 189 cognitively normal subjects who underwent PET examinations were enrolled. The homeostasis model assessment of insulin resistance (HOMA-IR) was used to evaluate the presence of insulin resistance. Multivariate linear regression and generalized additive models were used to analyze the association between HOMA-IR and glucose metabolism in the whole brain and evaluate the effects of various covariates. The SPM12 software was used to evaluate the regional effect of insulin resistance on brain glucose metabolism. RESULTS After being fully adjusted for confounding factors, HOMA-IR showed an approximately linear negative correlation with brain glucose metabolism (β = -0.219, T = -3.331, P = 0.021). Compared with normal subjects, insulin-resistant subjects had reduced glucose metabolism in bilateral middle temporal gyrus, bilateral middle frontal gyrus, right precentral gyrus, right inferior frontal gyrus, right cuneiform lobe and bilateral cerebellar regions. In cognitively normal subjects, systemic insulin resistance has a significant effect on brain glucose metabolism. CONCLUSIONS 18F-FDG brain PET imaging could be helpful for the early diagnosis and treatment of changes in brain glucose metabolism caused by insulin resistance.
Collapse
Affiliation(s)
- Yuqi Chen
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University
- Changzhou Key Laboratory of Molecular Imaging, Changzhou, China
| | - Chun Qiu
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University
- Changzhou Key Laboratory of Molecular Imaging, Changzhou, China
| | - Wenji Yu
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University
- Changzhou Key Laboratory of Molecular Imaging, Changzhou, China
| | - Xiaonan Shao
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University
- Changzhou Key Laboratory of Molecular Imaging, Changzhou, China
| | - Mingge Zhou
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University
- Changzhou Key Laboratory of Molecular Imaging, Changzhou, China
| | - Yuetao Wang
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University
- Changzhou Key Laboratory of Molecular Imaging, Changzhou, China
| | - Xiaoliang Shao
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University
- Changzhou Key Laboratory of Molecular Imaging, Changzhou, China
| |
Collapse
|
45
|
Forgetting in obesity: The pregnenolone link. Cell Metab 2022; 34:187-188. [PMID: 35108507 DOI: 10.1016/j.cmet.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cognitive dysfunction is often diagnosed in people with obesity and associated metabolic disorders. In the latest issue of Cell Metabolism, Ramírez et al. highlight an impaired production of the neurosteroid pregnenolone in the hypothalamus as a mechanism for obesity-induced cognitive impairment in both rodent models and patients with obesity.
Collapse
|
46
|
Ramírez S, Haddad-Tóvolli R, Radosevic M, Toledo M, Pané A, Alcolea D, Ribas V, Milà-Guasch M, Pozo M, Obri A, Eyre E, Gómez-Valadés AG, Chivite I, Van Eeckhout T, Zalachoras I, Altirriba J, Bauder C, Imbernón M, Garrabou G, Garcia-Ruiz C, Nogueiras R, Soto D, Gasull X, Sandi C, Brüning JC, Fortea J, Jiménez A, Fernández-Checa JC, Claret M. Hypothalamic pregnenolone mediates recognition memory in the context of metabolic disorders. Cell Metab 2022; 34:269-284.e9. [PMID: 35108514 PMCID: PMC8815774 DOI: 10.1016/j.cmet.2021.12.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 10/29/2021] [Accepted: 12/27/2021] [Indexed: 12/30/2022]
Abstract
Obesity and type 2 diabetes are associated with cognitive dysfunction. Because the hypothalamus is implicated in energy balance control and memory disorders, we hypothesized that specific neurons in this brain region are at the interface of metabolism and cognition. Acute obesogenic diet administration in mice impaired recognition memory due to defective production of the neurosteroid precursor pregnenolone in the hypothalamus. Genetic interference with pregnenolone synthesis by Star deletion in hypothalamic POMC, but not AgRP neurons, deteriorated recognition memory independently of metabolic disturbances. Our data suggest that pregnenolone's effects on cognitive function were mediated via an autocrine mechanism on POMC neurons, influencing hippocampal long-term potentiation. The relevance of central pregnenolone on cognition was also confirmed in metabolically unhealthy patients with obesity. Our data reveal an unsuspected role for POMC neuron-derived neurosteroids in cognition. These results provide the basis for a framework to investigate new facets of POMC neuron biology with implications for cognitive disorders.
Collapse
Affiliation(s)
- Sara Ramírez
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Roberta Haddad-Tóvolli
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marija Radosevic
- Neuroimmunology Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Miriam Toledo
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Adriana Pané
- Obesity Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Daniel Alcolea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Vicent Ribas
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Maria Milà-Guasch
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Macarena Pozo
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Arnaud Obri
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elena Eyre
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alicia G Gómez-Valadés
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Iñigo Chivite
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Tomas Van Eeckhout
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ioannis Zalachoras
- Laboratory of Behavioral Genetics, Brain Mind Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Jordi Altirriba
- Laboratory of Metabolism, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Corinna Bauder
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Mónica Imbernón
- Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Gloria Garrabou
- Muscle Research and Mitochondrial Function Laboratory, CELLEX-IDIBAPS, Internal Medicine Department, Faculty of Medicine, University of Barcelona, Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rubén Nogueiras
- Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Barcelona, Spain
| | - David Soto
- Neurophysiology Laboratory, Department of Biomedicine, Faculty of Medicine, Neuroscience Institute, University of Barcelona, Barcelona, Spain
| | - Xavier Gasull
- Neurophysiology Laboratory, Department of Biomedicine, Faculty of Medicine, Neuroscience Institute, University of Barcelona, Barcelona, Spain
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany; National Center for Diabetes Research (DZD), Neuherberg, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEPD), University Hospital of Cologne, Cologne, Germany
| | - Juan Fortea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain; Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Amanda Jiménez
- Obesity Unit, Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Barcelona, Spain; Translational Research in Diabetes, Lipids and Obesity, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - José C Fernández-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain; Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
47
|
Carneiro L, Pellerin L. Nutritional Impact on Metabolic Homeostasis and Brain Health. Front Neurosci 2022; 15:767405. [PMID: 35153657 PMCID: PMC8829049 DOI: 10.3389/fnins.2021.767405] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Aging in modern societies is often associated with various diseases including metabolic and neurodegenerative disorders. In recent years, researchers have shown that both dysfunctions are related to each other. Although the relationship is not fully understood, recent evidence indicate that metabolic control plays a determinant role in neural defects onset. Indeed, energy balance dysregulation affects neuroenergetics by altering energy supply and thus neuronal activity. Consistently, different diets to help control body weight, blood glucose or insulin sensitivity are also effective in improving neurodegenerative disorders, dampening symptoms, or decreasing the risk of disease onset. Moreover, adapted nutritional recommendations improve learning, memory, and mood in healthy subjects as well. Interestingly, adjusted carbohydrate content of meals is the most efficient for both brain function and metabolic regulation improvement. Notably, documented neurological disorders impacted by specific diets suggest that the processes involved are inflammation, mitochondrial function and redox balance as well as ATP production. Interestingly, processes involving inflammation, mitochondrial function and redox balance as well as ATP production are also described in brain regulation of energy homeostasis. Therefore, it is likely that changes in brain function induced by diets can affect brain control of energy homeostasis and other brain functions such as memory, anxiety, social behavior, or motor skills. Moreover, a defect in energy supply could participate to the development of neurodegenerative disorders. Among the possible processes involved, the role of ketone bodies metabolism, neurogenesis and synaptic plasticity, oxidative stress and inflammation or epigenetic regulations as well as gut-brain axis and SCFA have been proposed in the literature. Therefore, the goal of this review is to provide hints about how nutritional studies could help to better understand the tight relationship between metabolic balance, brain activity and aging. Altogether, diets that help maintaining a metabolic balance could be key to both maintain energy homeostasis and prevent neurological disorders, thus contributing to promote healthy aging.
Collapse
Affiliation(s)
- Lionel Carneiro
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, United States
| | - Luc Pellerin
- Inserm U1082, Université de Poitiers and CHU de Poitiers, Poitiers, France
| |
Collapse
|
48
|
Pathways linking abdominal obesity to poor memory function: Explore the mediating role of hypertension and depressive symptoms. J Affect Disord 2021; 295:492-497. [PMID: 34509063 DOI: 10.1016/j.jad.2021.08.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The negative effect of abdominal obesity on cognitive function has been widely reported, especially on memory function, however, it is unclear how the effect is mediated. We aim to investigate the mediating role of hypertension and depressive symptoms. METHODS Data were collected from wave 6 (2012-2013) of the English Longitudinal Study of Ageing (ELSA). Abdominal obesity was defined as a waist circumference (WC) ≥88cm for women and ≥102cm for men. Hypertension was determined on the basis of objective blood pressure measurement and previous physician diagnosis. Depressive symptoms were assessed with the 8-item version of the Center for Epidemiologic Studies (CESD) scale. Memory function was measured with the 10-word immediate and delayed recall tests. Baron and Kenny's causal steps and Karlson/Holm/Breen (KHB) method were used to examine the mediating effect. RESULTS A total of 7,448 participants aged ≥50 years were included in this study. We found a negative effect of abdominal obesity on memory function (β=-0.047, p=0.031). KHB method identified significant mediating effect of hypertension and depressive symptoms on the relationship between abdominal obesity and memory function, they explained 16.92 and 6.32% of the total effect of abdominal obesity on memory function, respectively. LIMITATIONS This study was limited by its cross-sectional design and possibility of residual confounding. CONCLUSIONS Hypertension and depressive symptoms might be possible pathways linking abdominal obesity and poor memory function, suggesting that collaborative interventions of abdominal obesity, hypertension and depressive symptoms are beneficial in maintaining memory function.
Collapse
|
49
|
Enaud R, Cambos S, Viaud E, Guichoux E, Chancerel E, Marighetto A, Etchamendy N, Clark S, Mohammedi K, Cota D, Delhaes L, Gatta-Cherifi B. Gut Microbiota and Mycobiota Evolution Is Linked to Memory Improvement after Bariatric Surgery in Obese Patients: A Pilot Study. Nutrients 2021; 13:nu13114061. [PMID: 34836316 PMCID: PMC8620125 DOI: 10.3390/nu13114061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/07/2021] [Accepted: 11/11/2021] [Indexed: 12/23/2022] Open
Abstract
Patients with obesity are known to exhibit gut microbiota dysbiosis and memory deficits. Bariatric surgery (BS) is currently the most efficient anti-obesity treatment and may improve both gut dysbiosis and cognition. However, no study has investigated association between changes of gut microbiota and cognitive function after BS. We prospectively evaluated 13 obese patients on anthropometric data, memory functions, and gut microbiota-mycobiota before and six months after BS. The Rey Auditory Verbal Learning Test (AVLT) and the symbol span (SS) of the Weschler Memory Scale were used to assess verbal and working memory, respectively. Fecal microbiota and mycobiota were longitudinally analyzed by 16S and ITS2 rRNA sequencing respectively. AVLT and SS scores were significantly improved after BS (AVLT scores: 9.7 ± 1.7 vs. 11.2 ± 1.9, p = 0.02, and SS scores: 9.7 ± 23.0 vs. 11.6 ± 2.9, p = 0.05). An increase in bacterial alpha-diversity, and Ruminococcaceae, Prevotella, Agaricus, Rhodotorula, Dipodascus, Malassezia, and Mucor were significantly associated with AVLT score improvement after BS, while an increase in Prevotella and a decrease in Clostridium, Akkermansia, Dipodascus and Candida were linked to SS scores improvement. We identified several changes in the microbial communities that differ according to the improvement of either the verbal or working memories, suggesting a complex gut-brain-axis that evolves after BS.
Collapse
Affiliation(s)
- Raphaël Enaud
- Centre Hospitalier de Bordeaux, CRCM Pédiatrique, CIC 1401, 33000 Bordeaux, France;
- Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Hôpital Xavier Arnozan, University of Bordeaux, Avenue du Haut Lévêque, 33604 Pessac, France;
- Centre Hospitalier de Bordeaux, University of Bordeaux, FHU ACRONIM, 33000 Bordeaux, France;
| | - Sophie Cambos
- Centre Hospitalier de Bordeaux, Department of Endocrinology, Diabetes and Nutrition, University Hospital of Bordeaux, 33604 Pessac, France;
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, INSERM, 146 rue Léo Saignat, 33076 Bordeaux, France; (E.V.); (A.M.); (N.E.); (S.C.); (D.C.)
| | - Esther Viaud
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, INSERM, 146 rue Léo Saignat, 33076 Bordeaux, France; (E.V.); (A.M.); (N.E.); (S.C.); (D.C.)
| | - Erwan Guichoux
- BIOGECO, INRAE, University of Bordeaux, 69 route d’Arcachon, 33610 Cestas, France; (E.G.); (E.C.)
| | - Emilie Chancerel
- BIOGECO, INRAE, University of Bordeaux, 69 route d’Arcachon, 33610 Cestas, France; (E.G.); (E.C.)
| | - Aline Marighetto
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, INSERM, 146 rue Léo Saignat, 33076 Bordeaux, France; (E.V.); (A.M.); (N.E.); (S.C.); (D.C.)
| | - Nicole Etchamendy
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, INSERM, 146 rue Léo Saignat, 33076 Bordeaux, France; (E.V.); (A.M.); (N.E.); (S.C.); (D.C.)
| | - Samantha Clark
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, INSERM, 146 rue Léo Saignat, 33076 Bordeaux, France; (E.V.); (A.M.); (N.E.); (S.C.); (D.C.)
| | - Kamel Mohammedi
- Centre Hospitalier de Bordeaux, University of Bordeaux, FHU ACRONIM, 33000 Bordeaux, France;
- Centre Hospitalier de Bordeaux, Department of Endocrinology, Diabetes and Nutrition, University Hospital of Bordeaux, 33604 Pessac, France;
| | - Daniela Cota
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, INSERM, 146 rue Léo Saignat, 33076 Bordeaux, France; (E.V.); (A.M.); (N.E.); (S.C.); (D.C.)
- Centre Hospitalier de Bordeaux, University of Bordeaux, FHU TALISMENT, 33000 Bordeaux, France
| | - Laurence Delhaes
- Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Hôpital Xavier Arnozan, University of Bordeaux, Avenue du Haut Lévêque, 33604 Pessac, France;
- Centre Hospitalier de Bordeaux, University of Bordeaux, FHU ACRONIM, 33000 Bordeaux, France;
| | - Blandine Gatta-Cherifi
- Centre Hospitalier de Bordeaux, Department of Endocrinology, Diabetes and Nutrition, University Hospital of Bordeaux, 33604 Pessac, France;
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, INSERM, 146 rue Léo Saignat, 33076 Bordeaux, France; (E.V.); (A.M.); (N.E.); (S.C.); (D.C.)
- Centre Hospitalier de Bordeaux, University of Bordeaux, FHU TALISMENT, 33000 Bordeaux, France
- Correspondence:
| |
Collapse
|
50
|
McWhinney SR, Abé C, Alda M, Benedetti F, Bøen E, del Mar Bonnin C, Borgers T, Brosch K, Canales-Rodríguez EJ, Cannon DM, Dannlowski U, Díaz-Zuluaga AM, Elvsåshagen T, Eyler LT, Fullerton JM, Goikolea JM, Goltermann J, Grotegerd D, Haarman BCM, Hahn T, Howells FM, Ingvar M, Kircher TTJ, Krug A, Kuplicki RT, Landén M, Lemke H, Liberg B, Lopez-Jaramillo C, Malt UF, Martyn FM, Mazza E, McDonald C, McPhilemy G, Meier S, Meinert S, Meller T, Melloni EMT, Mitchell PB, Nabulsi L, Nenadic I, Opel N, Ophoff RA, Overs BJ, Pfarr JK, Pineda-Zapata JA, Pomarol-Clotet E, Raduà J, Repple J, Richter M, Ringwald KG, Roberts G, Salvador R, Savitz J, Schmitt S, Schofield PR, Sim K, Stein DJ, Stein F, Temmingh HS, Thiel K, van Haren NEM, Gestel HV, Vargas C, Vieta E, Vreeker A, Waltemate L, Yatham LN, Ching CRK, Andreassen O, Thompson PM, Hajek T. Association between body mass index and subcortical brain volumes in bipolar disorders-ENIGMA study in 2735 individuals. Mol Psychiatry 2021; 26:6806-6819. [PMID: 33863996 PMCID: PMC8760047 DOI: 10.1038/s41380-021-01098-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/26/2021] [Accepted: 04/01/2021] [Indexed: 12/27/2022]
Abstract
Individuals with bipolar disorders (BD) frequently suffer from obesity, which is often associated with neurostructural alterations. Yet, the effects of obesity on brain structure in BD are under-researched. We obtained MRI-derived brain subcortical volumes and body mass index (BMI) from 1134 BD and 1601 control individuals from 17 independent research sites within the ENIGMA-BD Working Group. We jointly modeled the effects of BD and BMI on subcortical volumes using mixed-effects modeling and tested for mediation of group differences by obesity using nonparametric bootstrapping. All models controlled for age, sex, hemisphere, total intracranial volume, and data collection site. Relative to controls, individuals with BD had significantly higher BMI, larger lateral ventricular volume, and smaller volumes of amygdala, hippocampus, pallidum, caudate, and thalamus. BMI was positively associated with ventricular and amygdala and negatively with pallidal volumes. When analyzed jointly, both BD and BMI remained associated with volumes of lateral ventricles and amygdala. Adjusting for BMI decreased the BD vs control differences in ventricular volume. Specifically, 18.41% of the association between BD and ventricular volume was mediated by BMI (Z = 2.73, p = 0.006). BMI was associated with similar regional brain volumes as BD, including lateral ventricles, amygdala, and pallidum. Higher BMI may in part account for larger ventricles, one of the most replicated findings in BD. Comorbidity with obesity could explain why neurostructural alterations are more pronounced in some individuals with BD. Future prospective brain imaging studies should investigate whether obesity could be a modifiable risk factor for neuroprogression.
Collapse
Affiliation(s)
- Sean R. McWhinney
- grid.55602.340000 0004 1936 8200Department of Psychiatry, Dalhousie University, Halifax, NS Canada
| | - Christoph Abé
- grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Martin Alda
- grid.55602.340000 0004 1936 8200Department of Psychiatry, Dalhousie University, Halifax, NS Canada
| | - Francesco Benedetti
- grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milan, Italy ,grid.18887.3e0000000417581884Division of Neuroscience, Psychiatry and Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Erlend Bøen
- grid.55325.340000 0004 0389 8485Unit for Psychosomatics / CL Outpatient Clinic for Adults, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Caterina del Mar Bonnin
- grid.5841.80000 0004 1937 0247Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Tiana Borgers
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Katharina Brosch
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | | | - Dara M. Cannon
- grid.6142.10000 0004 0488 0789Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Udo Dannlowski
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Ana M. Díaz-Zuluaga
- grid.412881.60000 0000 8882 5269Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Torbjørn Elvsåshagen
- grid.5510.10000 0004 1936 8921Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Neurology, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lisa T. Eyler
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California, San Diego, La Jolla, CA USA ,grid.410371.00000 0004 0419 2708Desert-Pacific MIRECC, VA San Diego Healthcare, San Diego, CA USA
| | - Janice M. Fullerton
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Randwick, NSW Australia ,grid.1005.40000 0004 4902 0432School of Medical Sciences, University of New South Wales, Sydney, NSW Australia
| | - Jose M. Goikolea
- grid.5841.80000 0004 1937 0247Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Janik Goltermann
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Bartholomeus C. M. Haarman
- grid.4830.f0000 0004 0407 1981Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tim Hahn
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Fleur M. Howells
- grid.7836.a0000 0004 1937 1151Neuroscience Institute, University of Cape Town, Cape Town, South Africa ,grid.7836.a0000 0004 1937 1151Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Martin Ingvar
- grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tilo T. J. Kircher
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Axel Krug
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany ,grid.10388.320000 0001 2240 3300Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Rayus T. Kuplicki
- grid.417423.70000 0004 0512 8863Laureate Institute for Brain Research, Tulsa, OK USA
| | - Mikael Landén
- grid.8761.80000 0000 9919 9582Department of Neuroscience and Physiology, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden ,grid.4714.60000 0004 1937 0626Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hannah Lemke
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Benny Liberg
- grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Lopez-Jaramillo
- grid.412881.60000 0000 8882 5269Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Ulrik F. Malt
- grid.55325.340000 0004 0389 8485Unit for Psychosomatics / CL Outpatient Clinic for Adults, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, Department of Neurology, University of Oslo, Oslo, Norway
| | - Fiona M. Martyn
- grid.6142.10000 0004 0488 0789Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Elena Mazza
- grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milan, Italy ,grid.18887.3e0000000417581884Division of Neuroscience, Psychiatry and Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Colm McDonald
- grid.6142.10000 0004 0488 0789Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Genevieve McPhilemy
- grid.6142.10000 0004 0488 0789Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Sandra Meier
- grid.55602.340000 0004 1936 8200Department of Psychiatry, Dalhousie University, Halifax, NS Canada
| | - Susanne Meinert
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Tina Meller
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany ,grid.8664.c0000 0001 2165 8627Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Elisa M. T. Melloni
- grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milan, Italy ,grid.18887.3e0000000417581884Division of Neuroscience, Psychiatry and Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Philip B. Mitchell
- grid.1005.40000 0004 4902 0432School of Psychiatry, University of New South Wales, Sydney, NSW Australia
| | - Leila Nabulsi
- grid.6142.10000 0004 0488 0789Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Igor Nenadic
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Nils Opel
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Roel A. Ophoff
- grid.19006.3e0000 0000 9632 6718UCLA Center for Neurobehavioral Genetics, Los Angeles, CA USA ,grid.5645.2000000040459992XDepartment of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bronwyn J. Overs
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Randwick, NSW Australia
| | - Julia-Katharina Pfarr
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Julian A. Pineda-Zapata
- Research Group, Instituto de Alta Tecnología Médica, Ayudas diagnósticas SURA, Medellín, Colombia
| | - Edith Pomarol-Clotet
- grid.466668.cFIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - Joaquim Raduà
- grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden ,grid.5841.80000 0004 1937 0247Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, Barcelona, Spain ,grid.13097.3c0000 0001 2322 6764Institute of Psychiartry, King’s College Londen, London, UK
| | - Jonathan Repple
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Maike Richter
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Kai G. Ringwald
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Gloria Roberts
- grid.1005.40000 0004 4902 0432School of Psychiatry, University of New South Wales, Sydney, NSW Australia
| | - Raymond Salvador
- grid.466668.cFIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - Jonathan Savitz
- grid.417423.70000 0004 0512 8863Laureate Institute for Brain Research, Tulsa, OK USA ,grid.267360.60000 0001 2160 264XOxley College of Health Sciences, The University of Tulsa, Tulsa, OK USA
| | - Simon Schmitt
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Peter R. Schofield
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Randwick, NSW Australia ,grid.1005.40000 0004 4902 0432School of Medical Sciences, University of New South Wales, Sydney, NSW Australia
| | - Kang Sim
- grid.414752.10000 0004 0469 9592West Region, Institute of Mental Health, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dan J. Stein
- grid.7836.a0000 0004 1937 1151Neuroscience Institute, University of Cape Town, Cape Town, South Africa ,grid.7836.a0000 0004 1937 1151Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa ,grid.7836.a0000 0004 1937 1151South African MRC Unit on Risk & Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Frederike Stein
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Henk S. Temmingh
- grid.7836.a0000 0004 1937 1151Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Katharina Thiel
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Neeltje E. M. van Haren
- grid.6906.90000000092621349Department of Child and Adolescent Psychiatry and Psychology, Erasmus University, Rotterdam, The Netherlands ,grid.5477.10000000120346234Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Holly Van Gestel
- grid.55602.340000 0004 1936 8200Department of Psychiatry, Dalhousie University, Halifax, NS Canada
| | - Cristian Vargas
- grid.412881.60000 0000 8882 5269Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Eduard Vieta
- grid.5841.80000 0004 1937 0247Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Annabel Vreeker
- grid.6906.90000000092621349Department of Child and Adolescent Psychiatry and Psychology, Erasmus University, Rotterdam, The Netherlands
| | - Lena Waltemate
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Lakshmi N. Yatham
- grid.17091.3e0000 0001 2288 9830University of British Columbia, Vancouver, BC Canada
| | - Christopher R. K. Ching
- grid.42505.360000 0001 2156 6853Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA USA
| | - Ole Andreassen
- grid.5510.10000 0004 1936 8921Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Paul M. Thompson
- grid.42505.360000 0001 2156 6853Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA USA
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada. .,National Institute of Mental Health, Klecany, Czech Republic.
| | | |
Collapse
|