1
|
Simard M, Mélançon K, Berthiaume L, Tremblay C, Pshevorskiy L, Julien P, Rajput AH, Rajput A, Calon F. Postmortem Fatty Acid Abnormalities in the Cerebellum of Patients with Essential Tremor. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2341-2359. [PMID: 39215908 PMCID: PMC11585516 DOI: 10.1007/s12311-024-01736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Fatty acids play many critical roles in brain function but have not been investigated in essential tremor (ET), a frequent movement disorder suspected to involve cerebellar dysfunction. Here, we report a postmortem comparative analysis of fatty acid profiles by gas chromatography in the cerebellar cortex from ET patients (n = 15), Parkinson's disease (PD) patients (n = 15) and Controls (n = 17). Phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI)/ phosphatidylserine (PS) were separated by thin-layer chromatography and analyzed separately. First, the total amounts of fatty acids retrieved from the cerebellar cortex were lower in ET patients compared with PD patients, including monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA). The diagnosis of ET was associated with lower cerebellar levels of saturated fatty acids (SFA) and PUFA (DHA and ARA) in the PE fraction specifically, but with a higher relative content of dihomo-γ-linolenic acid (DGLA; 20:3 ω-6) in the PC fraction. In contrast, a diagnosis of PD was associated with higher absolute concentrations of SFA, MUFA and ω-6 PUFA in the PI + PS fractions. However, relative PI + PS contents of ω-6 PUFA were lower in both PD and ET patients. Finally, linear regression analyses showed that the ω-3:ω-6 PUFA ratio was positively associated with age of death, but inversely associated with insoluble α-synuclein. Although it remains unclear how these FA changes in the cerebellum are implicated in ET or PD pathophysiology, they may be related to an ongoing neurodegenerative process or to dietary intake differences. The present findings provide a window of opportunity for lipid-based therapeutic nutritional intervention.
Collapse
Affiliation(s)
- Mélissa Simard
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Koralie Mélançon
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Room T-2-67 (CHUL) 2705 boul. Laurier, Québec, QC, G1V 4G2, Canada
| | - Line Berthiaume
- Faculté de Médecine, Université Laval, Québec, QC, Canada
- Axe Endocrinologie et Néphrologie, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Cyntia Tremblay
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Room T-2-67 (CHUL) 2705 boul. Laurier, Québec, QC, G1V 4G2, Canada
| | - Laura Pshevorskiy
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Room T-2-67 (CHUL) 2705 boul. Laurier, Québec, QC, G1V 4G2, Canada
| | - Pierre Julien
- Faculté de Médecine, Université Laval, Québec, QC, Canada
- Axe Endocrinologie et Néphrologie, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Ali H Rajput
- Division of Neurology, Royal University Hospital, University of Saskatchewan, Saskatoon, SK, Canada
| | - Alex Rajput
- Division of Neurology, Royal University Hospital, University of Saskatchewan, Saskatoon, SK, Canada
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada.
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Room T-2-67 (CHUL) 2705 boul. Laurier, Québec, QC, G1V 4G2, Canada.
| |
Collapse
|
2
|
Smith ME, Bazinet RP. Unraveling brain palmitic acid: Origin, levels and metabolic fate. Prog Lipid Res 2024; 96:101300. [PMID: 39222711 DOI: 10.1016/j.plipres.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
In the human brain, palmitic acid (16:0; PAM) comprises nearly half of total brain saturates and has been identified as the third most abundant fatty acid overall. Brain PAM supports the structure of membrane phospholipids, provides energy, and regulates protein stability. Sources underlying the origin of brain PAM are both diet and endogenous synthesis via de novo lipogenesis (DNL), primarily from glucose. However, studies investigating the origin of brain PAM are limited to tracer studies utilizing labelled (14C/11C/3H/2H) PAM, and results vary based on the model and tracer used. Nevertheless, there is evidence PAM is synthesized locally in the brain, in addition to obtained directly from the diet. Herein, we provide an overview of brain PAM origin, entry to the brain, metabolic fate, and factors influencing brain PAM kinetics and levels, the latter in the context of age, as well as neurological diseases and psychiatric disorders. Additionally, we briefly summarize the role of PAM in signaling at the level of the brain. We add to the literature a rudimentary summary on brain PAM metabolism.
Collapse
Affiliation(s)
- Mackenzie E Smith
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
3
|
Li J, Xu Y, Wang X, Liu C, Li Z, Xiu M, Chen H. Cognitive improvements linked to lysophosphatidylethanolamine after olanzapine treatment in drug-naïve first-episode schizophrenia. Metabolomics 2024; 20:108. [PMID: 39354275 DOI: 10.1007/s11306-024-02171-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/07/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Cognitive impairments are a hallmark symptom of schizophrenia (SCZ). Phosphatidylethanolamine (PE) is the second most abundant phospholipid in mammalian cells, yet its role in cognitive deficits remains unexplored. The aim of this study was to investigate the association between plasma LysoPE and cognitive improvements following olanzapine monotherapy in drug-naïve first-episode (DNFE) SCZ patients. METHODS Twenty-five female DNFE SCZ patients were treated with olanzapine for four weeks, and cognitive function was assessed using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) at baseline and after the 4-week follow-up. Utilizing an untargeted ultra-performance liquid chromatography-mass spectrometry (UPLC-MS)-based metabolomics approach, we measured LysoPE concentrations. RESULTS Significant improvements in immediate and delayed memory domains were observed post-treatment. We identified nine differential LysoPE species after olanzapine monotherapy, with increased concentrations for all LysoPE except LysoPE (22:6). Elevated LysoPE (22:1) concentration positively correlated with cognitive improvement in patients. Baseline LysoPE (16:1) emerged as a predictive factor for cognitive improvement following olanzapine monotherapy. CONCLUSIONS This study offers preliminary evidence for the involvement of LysoPE in cognitive improvements observed in drug-naïve first-episode SCZ patients after olanzapine treatment.
Collapse
Affiliation(s)
- Juanhua Li
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | | | - Xin Wang
- Qingdao Mental Health Center, Qingdao, China
| | - Caixing Liu
- Qingdao Mental Health Center, Qingdao, China
| | - Zezhi Li
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Changping District, Beijing, China.
| | - Hongying Chen
- Shanghai Changning Mental Health Center, Affiliated Mental Health Center of East China Normal University, Changning District, Shanghai, China.
| |
Collapse
|
4
|
α-Lipoic Acid as Adjunctive Treatment for Schizophrenia: A Randomized Double-Blind Study. J Clin Psychopharmacol 2023; 43:39-45. [PMID: 36584248 DOI: 10.1097/jcp.0000000000001639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND/PURPOSE There is evidence for low endogenous antioxidant levels and oxidative imbalance in patients with schizophrenia. A previous open-label study with α-lipoic acid (ALA), a potent antioxidant, improved patients' negative and cognitive symptoms and markers of lipid peroxidation. Here we report the results of a randomized double-blind, placebo-controlled study to verify the response of patients with schizophrenia to adjunctive treatment with ALA (100 mg/d) in a 4-month follow-up. METHODS We conducted a 16-week, double-blind, placebo-controlled study of ALA at 100 mg/d dosages. We compared negative and positive symptoms, cognitive function, extrapyramidal symptoms, body mass index, and oxidative/inflammatory parameters between placebo and control groups. RESULTS We found no significant improvement in body mass index, cognition, psychopathology, antipsychotic adverse effects, or oxidative stress and inflammation in the experimental group compared with placebo. The whole group of patients improved in several measures, indicating a strong placebo effect in this population. A surprising finding was a significant decrease in red blood cells, white blood cells, and platelets in the group treated with ALA. CONCLUSIONS The decrease in red blood cells, white blood cells, and platelet counts requires further investigation and attention when prescribing ALA for patients with schizophrenia.
Collapse
|
5
|
Sinclair AJ, Wang Y, Li D. What Is the Evidence for Dietary-Induced DHA Deficiency in Human Brains? Nutrients 2022; 15:nu15010161. [PMID: 36615819 PMCID: PMC9824463 DOI: 10.3390/nu15010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Docosahexaenoic acid (DHA) is a major constituent of neural and visual membranes and is required for optimal neural and visual function. DHA is derived from food or by endogenous synthesis from α-linolenic acid (ALA), an essential fatty acid. Low blood levels of DHA in some westernised populations have led to speculations that child development disorders and various neurological conditions are associated with sub-optimal neural DHA levels, a proposition which has been supported by the supplement industry. This review searched for evidence of deficiency of DHA in human populations, based on elevated levels of the biochemical marker of n-3 deficiency, docosapentaenoic acid (22:5n-6). Three scenarios/situations were identified for the insufficient supply of DHA, namely in the brain of new-born infants fed with high-linoleic acid (LA), low-ALA formulas, in cord blood of women at birth who were vegetarians and in the milk of women from North Sudan. Twenty post-mortem brain studies from the developed world from adults with various neurological disorders revealed no evidence of raised levels of 22:5n-6, even in the samples with reduced DHA levels compared with control subjects. Human populations most likely at risk of n-3 deficiency are new-born and weanling infants, children and adolescents in areas of dryland agriculture, in famines, or are refugees, however, these populations have rarely been studied. This is an important topic for future research.
Collapse
Affiliation(s)
- Andrew J. Sinclair
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Monash University, Notting Hill, VIC 3168, Australia
- Faculty of Health, Deakin University, Burwood, VIC 3152, Australia
- Correspondence: ; Tel.: +61-(0)414-906-341
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Duo Li
- Institute of Nutrition & Health, College of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
6
|
Schmidt M, Rossetti AC, Brandwein C, Riva MA, Gass P, Elsner P, Hesse-Macabata J, Hipler UC, Smesny S, Milleit B. Brain Derived Neurotrophic Factor Deficiency is Associated with Cognitive Impairment and Elevated Phospholipase A2 Activity in Plasma of Mice. Neuroscience 2022; 480:167-177. [PMID: 34801657 DOI: 10.1016/j.neuroscience.2021.11.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022]
Abstract
Decreased levels of Brain-Derived Neurotrophic Factor (BDNF) are a common finding in schizophrenia. Another well-documented protein linked to schizophrenia is intracellular Ca2+-independent Phospholipase (PLA2). However, the potential association between PLA2 and BDNF with regard to schizophrenia has yet to be examined. In the present study, male and female BDNF knockout mice, a possible genetic model of schizophrenia, were exposed to prenatal stress and tested in the nest test, open field test and T-maze. Following behavioral tests, whole brain and plasma samples were harvested to measure the activity of PLA2. BDNF knockout mice showed cognitive deficits in the T-maze. Furthermore, there was a quadratic association of PLA2 with performance in the open field test. Moreover, BDNF deficiency and female sex were associated with elevated plasma PLA2 levels. The cognitive impairment of BDNF heterozygous mice as well as their increased PLA2 activity in plasma is consistent with findings in schizophrenia patients. The particular elevation of PLA2 activity in females may partly explain sex differences of clinical symptoms in schizophrenia (e.g. age of onset, severity of symptoms). Additionally, PLA2 was significantly correlated with body and adrenal weight after weaning, whereby the latter emphasizes the possible connection of PLA2 with steroidogenesis.
Collapse
Affiliation(s)
- Michaela Schmidt
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, D-68159 Mannheim, Germany.
| | - Andrea Carlo Rossetti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, I-20133 Milan, Italy
| | - Christiane Brandwein
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, D-68159 Mannheim, Germany
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, I-20133 Milan, Italy
| | - Peter Gass
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, D-68159 Mannheim, Germany
| | - Peter Elsner
- Department of Psychiatry, University Hospital Jena, D-07743 Jena, Germany
| | - Jana Hesse-Macabata
- Department of Dermatology, University Hospital Jena, Erfurter Straße 35, D-07743 Jena, Germany
| | - Uta-Christina Hipler
- Department of Dermatology, University Hospital Jena, Erfurter Straße 35, D-07743 Jena, Germany
| | - Stefan Smesny
- Department of Psychiatry, University Hospital Jena, D-07743 Jena, Germany
| | - Berko Milleit
- Department of Psychiatry, University Hospital Jena, D-07743 Jena, Germany; Department of Dermatology, University Hospital Jena, Erfurter Straße 35, D-07743 Jena, Germany
| |
Collapse
|
7
|
Shimamoto-Mitsuyama C, Nakaya A, Esaki K, Balan S, Iwayama Y, Ohnishi T, Maekawa M, Toyota T, Dean B, Yoshikawa T. Lipid Pathology of the Corpus Callosum in Schizophrenia and the Potential Role of Abnormal Gene Regulatory Networks with Reduced Microglial Marker Expression. Cereb Cortex 2020; 31:448-462. [PMID: 32924060 PMCID: PMC7727339 DOI: 10.1093/cercor/bhaa236] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Structural changes in the corpus callosum have been reported in schizophrenia; however, the underlying molecular mechanism remains unclear. As the corpus callosum is high in lipid content, we analyzed the lipid contents of the corpora callosa from 15 patients with schizophrenia and 15 age- and sex-matched controls using liquid chromatography coupled to tandem mass spectrometry and identified lipid combinations associated with schizophrenia. Real-time quantitative polymerase chain reaction analyses using extended samples (schizophrenia, n = 95; control, n = 91) showed low expression levels of lipid metabolism-related genes and their potential upstream transcription factors in schizophrenia. Subsequent pathway analysis identified a gene regulatory network where nuclear factor of activated T cells 2 (NFATC2) is placed most upstream. We also observed low gene expression levels of microglial markers, inflammatory cytokines, and colony-stimulating factor 1 receptor (CSF1R), which is known to regulate the density of microglia, in the corpus callosum in schizophrenia. The interactions between CSF1R and several genes in the presently identified gene network originating from NFATC2 have been reported. Collectively, this study provides evidence regarding lipid abnormalities in the corpora callosa of patients with schizophrenia and proposes the potential role of impaired “NFATC2-relevant gene network-microglial axis” as its underlying mechanism.
Collapse
Affiliation(s)
| | - Akihiro Nakaya
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan.,Laboratory of Genome Data Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Kayoko Esaki
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Shabeesh Balan
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Yoshimi Iwayama
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan.,Support Unit for Bio-Material Analysis, Research Resources Division, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Tetsuo Ohnishi
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Motoko Maekawa
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Tomoko Toyota
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Brian Dean
- The Florey Institute of Neuroscience and Mental Health, Howard Florey Laboratories, The University of Melbourne, Parkville, Victoria, Australia.,The Centre for Mental Health, Swinburne University, Hawthorn, Victoria, Australia
| | - Takeo Yoshikawa
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| |
Collapse
|
8
|
Zhou X, Long T, Haas GL, Cai H, Yao JK. Reduced Levels and Disrupted Biosynthesis Pathways of Plasma Free Fatty Acids in First-Episode Antipsychotic-Naïve Schizophrenia Patients. Front Neurosci 2020; 14:784. [PMID: 32848558 PMCID: PMC7403507 DOI: 10.3389/fnins.2020.00784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/03/2020] [Indexed: 01/01/2023] Open
Abstract
Membrane phospholipid deficits have been well-documented in schizophrenia (SZ) patients. Free fatty acids (FFAs) partially come from the hydrolysis of membrane phospholipids and serve as the circulating pool of body fatty acids. These FFAs are involved in many important biochemical reactions such as membrane regeneration, oxidation, and prostaglandin production which may have important implications in SZ pathology. Thus, we compared plasma FFA levels and profiles among healthy controls (HCs), affective psychosis (AP) patients, and first-episode antipsychotic-naïve schizophrenia (FEANS) patients. A significant reduction of total FFAs levels was observed in SZ patients. Specifically, significant reductions of 16:0, 18:2n6c, and 20:4n6 levels were detected in FEANS patients but not in APs when compared with levels in HCs. Also, disrupted metabolism of fatty acids especially in saturated and n-6 fatty acid families were observed by comparing correlations between precursor and product fatty acid levels within each fatty acid family. These findings may suggest an increased demand of membrane regeneration, a homeostatic imbalance of fatty acid biosynthesis pathway and a potential indication of increased beta oxidation. Collectively, these findings could help us better understand the lipid metabolism with regard to SZ pathophysiology.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- Medical Research Service and The VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Tao Long
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- Medical Research Service and The VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Gretchen L. Haas
- Medical Research Service and The VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - HuaLin Cai
- The Department of Pharmacy, The second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jeffrey K. Yao
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- Medical Research Service and The VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Chen SF, Hu TM, Lan TH, Chiu HJ, Sheen LY, Loh EW. Severity of psychosis syndrome and change of metabolic abnormality in chronic schizophrenia patients: Severe negative syndrome may be related to a distinct lipid pathophysiology. Eur Psychiatry 2020; 29:167-71. [DOI: 10.1016/j.eurpsy.2013.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/30/2013] [Accepted: 04/21/2013] [Indexed: 12/01/2022] Open
Abstract
AbstractBackground:Metabolic abnormality is common among schizophrenia patients. Some metabolic traits were found associated with subgroups of schizophrenia patients.Objectives:We examined a possible relationship between metabolic abnormality and psychosis profile in schizophrenia patients.Method:Three hundred and seventy-two chronic schizophrenia patients treated with antipsychotics for more than 2 years were assessed with the Positive and Negative Syndrome Scale. A set of metabolic traits was measured at scheduled checkpoints between October 2004 and September 2006.Results:Multiple regressions adjusted for sex showed negative correlations between body mass index (BMI) and total score and all subscales; triglycerides (TG) was negatively correlated with total score and negative syndrome, while HDLC was positively correlated with negative syndrome. When sex interaction was concerned, total score was negatively correlated with BMI but not with others; negative syndrome was negatively correlated with BMI and positively with HDLC. No metabolic traits were correlated with positive syndrome or general psychopathology.Conclusions:Loss of body weight is a serious health problem in schizophrenia patients with severe psychosis syndrome, especially the negative syndrome. Schizophrenia patients with severe negative syndrome may have a distinct lipid pathophysiology in comparison with those who were less severe in the domain.
Collapse
|
10
|
Beasley CL, Honer WG, Ramos-Miguel A, Vila-Rodriguez F, Barr AM. Prefrontal fatty acid composition in schizophrenia and bipolar disorder: Association with reelin expression. Schizophr Res 2020; 215:493-498. [PMID: 28583708 DOI: 10.1016/j.schres.2017.05.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/23/2017] [Accepted: 05/26/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The extracellular matrix protein reelin regulates early brain development and synaptic plasticity in adulthood. Reelin is decreased in the postmortem brain in schizophrenia patients. Reelin's two receptors, ApoER2 and VLDLR, are also substrates for ApoE - a key lipoprotein that regulates phospholipid homeostasis in the brain. The goal of the present study was therefore to examine phospholipids and their constituent fatty acids, and determine whether there is an association between reelin, its receptors and phospholipids in the brain. METHODS Dorsolateral prefrontal cortex (BA9) grey matter was obtained from the Stanley Foundation Neuropathology Consortium. Samples included tissue from 35 controls, 35 schizophrenia and 34 bipolar disorder patients. Phospholipids were measured using gas liquid chromatography. RESULTS We quantified 15 individual fatty acid or plasmalogen species for phosphatidylethanolamine and phosphatidylcholine fractions, each comprising >0.5% of the total fatty acid pool. There were no group differences in phospholipids or individual fatty acid species after correcting for multiple comparisons. However, for the entire cohort, both the polyunsaturated subclass of fatty acids, and ApoE, correlated significantly with reelin expression, with a number of individual ω-6 fatty acid species also demonstrating a significant positive correlation. There was a non-significant trend for similar effects with VLDLR expression as for reelin. CONCLUSION Phospholipids and fatty acids in the dorsolateral cortex do not differ in patients with schizophrenia, bipolar disorder and controls. Reelin expression in this brain region is associated with polyunsaturated fatty acids and ApoE, suggesting further study of potential physiological interactions between these substrates is warranted.
Collapse
Affiliation(s)
- Clare L Beasley
- Department of Psychiatry, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - William G Honer
- Department of Psychiatry, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - Alfredo Ramos-Miguel
- Department of Psychiatry, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - Fidel Vila-Rodriguez
- Department of Psychiatry, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - Alasdair M Barr
- Department of Pharmacology, 2176 Health Sciences Mall, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada.
| |
Collapse
|
11
|
Cadenhead KS, Minichino A, Kelsven S, Addington J, Bearden C, Cannon TD, Cornblatt BA, Mathalon D, McGlashan TH, Perkins DO, Seidman LJ, Tsuang M, Walker EF, Woods SW, Yao J. Metabolic abnormalities and low dietary Omega 3 are associated with symptom severity and worse functioning prior to the onset of psychosis: Findings from the North American Prodrome Longitudinal Studies Consortium. Schizophr Res 2019; 204:96-103. [PMID: 30249470 PMCID: PMC6402991 DOI: 10.1016/j.schres.2018.09.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/16/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Patients with schizophrenia have a high prevalence of metabolic disorders and cardiovascular mortality. It is possible that a vulnerability to metabolic abnormalities is associated with risk for psychosis, symptoms and functionality. In this study, we evaluate demographic information, cardiometabolic indices, symptoms and functioning in an antipsychotic free cohort at Clinical High Risk (CHR) for psychosis from the NAPLS Omega 3 fatty acid clinical trial. METHOD Subjects received physical exams and metabolic monitoring prior to randomization into the Omega 3 versus Placebo trial. Anthropometrical measures, vital signs, glucose, and lipids were assessed along with symptoms, functioning, dietary Omega 3 fatty acids, erythrocyte polyunsaturated fatty acid content and a measure of lipid peroxidation (TBARS, Thiobarbituric acid-reactive substances). RESULTS The sample included 113 CHR subjects (42.1% female; 17.5% Latino) ages 12-29. The mean BMI was 24.3 with a trend toward higher BMI and a higher incidence of metabolic syndrome in Latino subjects; 36% of the sample was obese/overweight; 37.6% met criteria for prehypertension/hypertension; 4.2% met criteria for prediabetes/diabetes; 9.6% showed evidence of insulin resistance and 44.7% had dyslipidemia. The TBARS was elevated at 9.8 μM ± 6.1 (normal 1.86-3.94 μM). Metabolic parameters and a diet low in Omega 3 rich foods were significantly associated with prodromal symptoms and poor functioning. CONCLUSIONS CHR subjects show a high percentage of metabolic abnormalities prior to exposure to antipsychotic medication. These findings reinforce that early detection of metabolic disturbances and food insecurity is crucial since these factors are modifiable with the potential for significant gains in terms of quality of life, physical and mental health.
Collapse
Affiliation(s)
| | | | - Skylar Kelsven
- University of California San Diego, La Jolla, CA,San Diego State University/University of California-San Diego Joint Doctoral Program in Clinical
Psychology
| | - Jean Addington
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | | | - Barbara A. Cornblatt
- The Zucker Hillside Hospital, New York, NY; Hofstra North Shore-LIJ School of Medicine, Hempstead, New York;
The Feinstein Institute for Medical Research, Manhasset, New York
| | - Dan Mathalon
- University of California San Francisco, San Francisco, CA
| | | | | | | | - Ming Tsuang
- University of California San Diego, La Jolla, CA
| | | | | | - Jeff Yao
- VA Pittsburgh Healthcare System and University of Pittsburg School of Medicine, Pittsburgh, PA
| | | |
Collapse
|
12
|
Chiu PW, Lui SSY, Hung KSY, Chan RCK, Chan Q, Sham PC, Cheung EFC, Mak HKF. In vivo gamma-aminobutyric acid and glutamate levels in people with first-episode schizophrenia: A proton magnetic resonance spectroscopy study. Schizophr Res 2018; 193:295-303. [PMID: 28751130 DOI: 10.1016/j.schres.2017.07.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Gamma-aminobutyric acid (GABA) dysfunction and its consequent imbalance are implicated in the pathophysiology of schizophrenia. Reduced GABA production would lead to a disinhibition of glutamatergic neurons and subsequently cause a disruption of the modulation between GABAergic interneurons and glutamatergic neurons. In this study, levels of GABA, Glx (summation of glutamate and glutamine), and other metabolites in the anterior cingulate cortex were measured and compared between first-episode schizophrenia subjects and healthy controls (HC). Diagnostic potential of GABA and Glx as upstream biomarkers for schizophrenia was explored. METHODS Nineteen first-episode schizophrenia subjects and fourteen HC participated in this study. Severity of clinical symptoms of patients was measured with Positive and Negative Syndrome Scale (PANSS). Metabolites were measured using proton magnetic resonance spectroscopy, and quantified using internal water as reference. RESULTS First-episode schizophrenia subjects revealed reduced GABA and myo-inositol (mI), and increased Glx and choline (Cho), compared to HC. No significant correlation was found between metabolite levels and PANSS scores. Receiver operator characteristics analyses showed Glx had higher sensitivity and specificity (84.2%, 92.9%) compared to GABA (73.7%, 64.3%) for differentiating schizophrenia patients from HC. Combined model of both GABA and Glx revealed the best sensitivity and specificity (89.5%, 100%). CONCLUSION This study simultaneously showed reduction in GABA and elevation in Glx in first-episode schizophrenia subjects, and this might provide insights on explaining the disruption of modulation between GABAergic interneurons and glutamatergic neurons. Elevated Cho might indicate increased membrane turnover; whereas reduced mI might reflect dysfunction of the signal transduction pathway. In vivo Glx and GABA revealed their diagnostic potential for schizophrenia.
Collapse
Affiliation(s)
- P W Chiu
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Simon S Y Lui
- Castle Peak Hospital, Hong Kong, China; Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | | | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China; Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | | | - P C Sham
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | | | - Henry K F Mak
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Alzheimer's Disease Research Network, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
Brain docosahexaenoic acid uptake and metabolism. Mol Aspects Med 2018; 64:109-134. [PMID: 29305120 DOI: 10.1016/j.mam.2017.12.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/21/2017] [Accepted: 12/28/2017] [Indexed: 12/22/2022]
Abstract
Docosahexaenoic acid (DHA) is the most abundant n-3 polyunsaturated fatty acid in the brain where it serves to regulate several important processes and, in addition, serves as a precursor to bioactive mediators. Given that the capacity of the brain to synthesize DHA locally is appreciably low, the uptake of DHA from circulating lipid pools is essential to maintaining homeostatic levels. Although, several plasma pools have been proposed to supply the brain with DHA, recent evidence suggests non-esterified-DHA and lysophosphatidylcholine-DHA are the primary sources. The uptake of DHA into the brain appears to be regulated by a number of complementary pathways associated with the activation and metabolism of DHA, and may provide mechanisms for enrichment of DHA within the brain. Following entry into the brain, DHA is esterified into and recycled amongst membrane phospholipids contributing the distribution of DHA in brain phospholipids. During neurotransmission and following brain injury, DHA is released from membrane phospholipids and converted to bioactive mediators which regulate signaling pathways important to synaptogenesis, cell survival, and neuroinflammation, and may be relevant to treating neurological diseases. In the present review, we provide a comprehensive overview of brain DHA metabolism, encompassing many of the pathways and key enzymatic regulators governing brain DHA uptake and metabolism. In addition, we focus on the release of non-esterified DHA and subsequent production of bioactive mediators and the evidence of their proposed activity within the brain. We also provide a brief review of the evidence from post-mortem brain analyses investigating DHA levels in the context of neurological disease and mood disorder, highlighting the current disparities within the field.
Collapse
|
14
|
Tang M, Zhang M, Wang L, Li H, Cai H, Dang R, Jiang P, Liu Y, Xue Y, Wu Y. Maternal dietary of n-3 polyunsaturated fatty acids affects the neurogenesis and neurochemical in female rat at weaning. Prostaglandins Leukot Essent Fatty Acids 2018; 128:11-20. [PMID: 29413357 DOI: 10.1016/j.plefa.2017.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 10/16/2017] [Accepted: 11/08/2017] [Indexed: 12/17/2022]
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFAs) are rapidly accumulated in brain during pre- and neonatal life, which is important for the development and function of central nervous system. Deficiency of biologically important n-3 PUFA docosahexaenoic acid (C22:6n-3, DHA) is associated with impaired visual, attention and cognition, and would precipitate psychiatric symptoms. However, clinical studies of the potential mechanism on the effect of dietary DHA deficiency on neural development remain unclear. In addition, the effects of n-6 PUFAs and n-3 PUFAs ingestion on the dynamic process of the cell proliferation in neurogenesis of offspring were investigated using immunefluorescence. And GC-MS was used to determine the fatty acid content in the liver of offspring. To further investigate the neurochemical influence on maternal PUFAs levels, we assessed the functioning of various neurotransmitter systems including glutamatergic, dopaminergic, norepinephrinergic and serotoninergic systems in the brain of female rats at weaning by HPLC-MS/MS. Lastly, we analyzed the turnover rates and between-metabolite ratios (the ratios between metabolites of monoamine neurotransmitters) to seek potential links between the neurotransmitters and dietary fatty acids compositions. There were significant differences between the deficiency group and the control or supplementary group in liver fatty acids compositions, showing that n-3 PUFAs were largely replaced by n-6 PUFAs. The generation of n-3 PUFAs deficiency rats exhibited abnormal neurogenesis and neurochemical. Altered dopamine or norepinephrine transmission and between-metabolite ratios in brain areas may be a key neuronal mechanism that contributes to the potential detrimental effects of n-3 PUFAs deficiency for mental health.
Collapse
Affiliation(s)
- Mimi Tang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Pharmaceutical Sciences, Central South University, Changsha, PR China.
| | - Min Zhang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Pharmaceutical Sciences, Central South University, Changsha, PR China.
| | - Lu Wang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | - Huande Li
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | - Hualin Cai
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | - Ruili Dang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining 272000, PR China.
| | - Pei Jiang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining 272000, PR China.
| | - Yiping Liu
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | - Ying Xue
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Pharmaceutical Sciences, Central South University, Changsha, PR China.
| | - Yanqin Wu
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Pharmaceutical Sciences, Central South University, Changsha, PR China.
| |
Collapse
|
15
|
Lipid profile disturbances in antipsychotic-naive patients with first-episode non-affective psychosis: A systematic review and meta-analysis. Schizophr Res 2017; 190:18-27. [PMID: 28325572 DOI: 10.1016/j.schres.2017.03.031] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Dyslipidaemia is one of the most prevalent metabolic disturbances observed in schizophrenia patients and has been largely attributed to the effects of poor lifestyle habits and adverse effects of antipsychotic treatment. However, less is known whether patients with first-episode non-affective psychosis (FENP) present subthreshold indices of dyslipidaemia. Therefore, we tested the hypothesis whether subclinical lipid profile alterations occur already in antipsychotic-naïve FENP patients. METHODS In this systematic review and meta-analysis we adhered to the PRISMA guidelines and searched PubMed, CINAHL Complete, Academic Search Complete, ERIC and Health Source: Nursing/Academic Edition from database inception to Dec 12, 2016, for case-control studies measuring the levels of total cholesterol, low- and high-density lipoproteins (LDL and HDL) and triglycerides in patients with FENP and controls. W calculated effect size (ES) estimates as Hedges' g and pooled data using random- or fixed-effects models depending on heterogeneity. Our study was registered in the PROSPERO database (CRD42016051732). RESULTS Out of 2466 records identified, 19 studies representing 1803 participants were finally included in our systematic review and meta-analysis. Pooled analysis revealed that FENP patients had significantly lower levels of total cholesterol [ES=-0.16 (95% CI: -0.27, -0.06), p=0.003], LDL [ES=-0.13 (95% CI: -0.24, -0.01), p=0.034] and HDL [ES=-0.27 (95% CI: -0.49, -0.05), p=0.018] as well as significantly higher levels of triglycerides [ES=0.22 (95% CI: 0.11, 0.32), p<0.001] compared to controls. After removing single studies in sensitivity analysis, ES estimate for LDL levels was insignificant. CONCLUSIONS Antipsychotic-naïve patients with FENP present subclinical dyslipidaemia. Future studies should disentangle whether our findings reflect disease-specific mechanisms.
Collapse
|
16
|
Ghosh S, Dyer RA, Beasley CL. Evidence for altered cell membrane lipid composition in postmortem prefrontal white matter in bipolar disorder and schizophrenia. J Psychiatr Res 2017; 95:135-142. [PMID: 28843843 DOI: 10.1016/j.jpsychires.2017.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/24/2017] [Accepted: 08/09/2017] [Indexed: 11/30/2022]
Abstract
Brain imaging suggests that white matter abnormalities, including compromised white matter integrity in the frontal lobe, are shared across bipolar disorder (BD) and schizophrenia (SCZ). However, the precise molecular and cellular correlates remain to be elucidated. Given evidence for widespread alterations in cell membrane lipid composition in both disorders, we sought to investigate whether lipid composition is disturbed in frontal white matter in SCZ and BD. The phospholipids phosphatidylethanolamine (PE) and phosphatidylcholine (PC) were quantified in white matter adjacent to the dorsolateral prefrontal cortex in subjects with BD (n = 34), SCZ (n = 35), and non-psychiatric controls (n = 35) using high-pressure liquid chromatography. Individual fatty acid species and plasmalogens were then quantified separately in PE and PC fractions by gas liquid chromatography. PC was significantly lower in the BD group, compared to controls. The fatty acids PE22:0, PE24:1 and PE20:2n6 were higher, and PC20:4n6, PE22:5n6 and PC22:5n6 lower in the BD group, relative to the control group. PE22:1 was higher and PC20:3n6, PE22:5n6 and PC22:5n6 lower in the SCZ group, compared to the control group. These data provide evidence for altered lipid composition in white matter in both BD and SCZ. Changes in white matter lipid composition could ultimately contribute to dysfunction of frontal white matter circuits in SCZ and BD.
Collapse
Affiliation(s)
- Sanjoy Ghosh
- Department of Biology, Irving K. Barber School of Arts & Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Roger A Dyer
- Nutrition and Metabolism Research Program, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Clare L Beasley
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
17
|
Chilton FH, Dutta R, Reynolds LM, Sergeant S, Mathias RA, Seeds MC. Precision Nutrition and Omega-3 Polyunsaturated Fatty Acids: A Case for Personalized Supplementation Approaches for the Prevention and Management of Human Diseases. Nutrients 2017; 9:E1165. [PMID: 29068398 PMCID: PMC5707637 DOI: 10.3390/nu9111165] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/07/2017] [Accepted: 10/19/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Dietary essential omega-6 (n-6) and omega-3 (n-3) 18 carbon (18C-) polyunsaturated fatty acids (PUFA), linoleic acid (LA) and α-linolenic acid (ALA), can be converted (utilizing desaturase and elongase enzymes encoded by FADS and ELOVL genes) to biologically-active long chain (LC; >20)-PUFAs by numerous cells and tissues. These n-6 and n-3 LC-PUFAs and their metabolites (ex, eicosanoids and endocannabinoids) play critical signaling and structural roles in almost all physiologic and pathophysiologic processes. METHODS This review summarizes: (1) the biosynthesis, metabolism and roles of LC-PUFAs; (2) the potential impact of rapidly altering the intake of dietary LA and ALA; (3) the genetics and evolution of LC-PUFA biosynthesis; (4) Gene-diet interactions that may lead to excess levels of n-6 LC-PUFAs and deficiencies of n-3 LC-PUFAs; and (5) opportunities for precision nutrition approaches to personalize n-3 LC-PUFA supplementation for individuals and populations. CONCLUSIONS The rapid nature of transitions in 18C-PUFA exposure together with the genetic variation in the LC-PUFA biosynthetic pathway found in different populations make mal-adaptations a likely outcome of our current nutritional environment. Understanding this genetic variation in the context of 18C-PUFA dietary exposure should enable the development of individualized n-3 LC-PUFA supplementation regimens to prevent and manage human disease.
Collapse
Affiliation(s)
- Floyd H Chilton
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Rahul Dutta
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Lindsay M Reynolds
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Susan Sergeant
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Rasika A Mathias
- GeneSTAR Research Program, General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| | - Michael C Seeds
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
18
|
Schmitt A, Martins-de-Souza D, Akbarian S, Cassoli JS, Ehrenreich H, Fischer A, Fonteh A, Gattaz WF, Gawlik M, Gerlach M, Grünblatt E, Halene T, Hasan A, Hashimoto K, Kim YK, Kirchner SK, Kornhuber J, Kraus TFJ, Malchow B, Nascimento JM, Rossner M, Schwarz M, Steiner J, Talib L, Thibaut F, Riederer P, Falkai P. Consensus paper of the WFSBP Task Force on Biological Markers: Criteria for biomarkers and endophenotypes of schizophrenia, part III: Molecular mechanisms. World J Biol Psychiatry 2017; 18:330-356. [PMID: 27782767 DOI: 10.1080/15622975.2016.1224929] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Despite progress in identifying molecular pathophysiological processes in schizophrenia, valid biomarkers are lacking for both the disease and treatment response. METHODS This comprehensive review summarises recent efforts to identify molecular mechanisms on the level of protein and gene expression and epigenetics, including DNA methylation, histone modifications and micro RNA expression. Furthermore, it summarises recent findings of alterations in lipid mediators and highlights inflammatory processes. The potential that this research will identify biomarkers of schizophrenia is discussed. RESULTS Recent studies have not identified clear biomarkers for schizophrenia. Although several molecular pathways have emerged as potential candidates for future research, a complete understanding of these metabolic pathways is required to reveal better treatment modalities for this disabling condition. CONCLUSIONS Large longitudinal cohort studies are essential that pair a thorough phenotypic and clinical evaluation for example with gene expression and proteome analysis in blood at multiple time points. This approach might identify biomarkers that allow patients to be stratified according to treatment response and ideally also allow treatment response to be predicted. Improved knowledge of molecular pathways and epigenetic mechanisms, including their potential association with environmental influences, will facilitate the discovery of biomarkers that could ultimately be effective tools in clinical practice.
Collapse
Affiliation(s)
- Andrea Schmitt
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany.,b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Daniel Martins-de-Souza
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil.,c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Schahram Akbarian
- d Division of Psychiatric Epigenomics, Departments of Psychiatry and Neuroscience , Mount Sinai School of Medicine , New York , USA
| | - Juliana S Cassoli
- c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Hannelore Ehrenreich
- e Clinical Neuroscience , Max Planck Institute of Experimental Medicine, DFG Centre for Nanoscale Microscopy & Molecular Physiology of the Brain , Göttingen , Germany
| | - Andre Fischer
- f Research Group for Epigenetics in Neurodegenerative Diseases , German Centre for Neurodegenerative Diseases (DZNE), Göttingen , Germany.,g Department of Psychiatry and Psychotherapy , University Medical Centre Göttingen , Germany
| | - Alfred Fonteh
- h Neurosciences , Huntington Medical Research Institutes , Pasadena , CA , USA
| | - Wagner F Gattaz
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Michael Gawlik
- i Department of Psychiatry and Psychotherapy , University of Würzburg , Germany
| | - Manfred Gerlach
- j Centre for Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University of Würzburg , Germany
| | - Edna Grünblatt
- i Department of Psychiatry and Psychotherapy , University of Würzburg , Germany.,k Department of Child and Adolescent Psychiatry and Psychotherapy , Psychiatric Hospital, University of Zürich , Switzerland.,l Neuroscience Centre Zurich , University of Zurich and the ETH Zurich , Switzerland.,m Zurich Centre for Integrative Human Physiology , University of Zurich , Switzerland
| | - Tobias Halene
- d Division of Psychiatric Epigenomics, Departments of Psychiatry and Neuroscience , Mount Sinai School of Medicine , New York , USA
| | - Alkomiet Hasan
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Kenij Hashimoto
- n Division of Clinical Neuroscience , Chiba University Centre for Forensic Mental Health , Chiba , Japan
| | - Yong-Ku Kim
- o Department of Psychiatry , Korea University, College of Medicine , Republic of Korea
| | | | - Johannes Kornhuber
- p Department of Psychiatry and Psychotherapy , Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | | | - Berend Malchow
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Juliana M Nascimento
- c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Moritz Rossner
- r Department of Psychiatry, Molecular and Behavioural Neurobiology , LMU Munich , Germany.,s Research Group Gene Expression , Max Planck Institute of Experimental Medicine , Göttingen , Germany
| | - Markus Schwarz
- t Institute for Laboratory Medicine, LMU Munich , Germany
| | - Johann Steiner
- u Department of Psychiatry , University of Magdeburg , Magdeburg , Germany
| | - Leda Talib
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Florence Thibaut
- v Department of Psychiatry , University Hospital Cochin (site Tarnier), University of Paris-Descartes, INSERM U 894 Centre Psychiatry and Neurosciences , Paris , France
| | - Peter Riederer
- w Center of Psychic Health; Department of Psychiatry, Psychosomatics and Psychotherapy , University Hospital of Würzburg , Germany
| | - Peter Falkai
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | | |
Collapse
|
19
|
Matsumoto J, Nakanishi H, Kunii Y, Sugiura Y, Yuki D, Wada A, Hino M, Niwa SI, Kondo T, Waki M, Hayasaka T, Masaki N, Akatsu H, Hashizume Y, Yamamoto S, Sato S, Sasaki T, Setou M, Yabe H. Decreased 16:0/20:4-phosphatidylinositol level in the post-mortem prefrontal cortex of elderly patients with schizophrenia. Sci Rep 2017; 7:45050. [PMID: 28332626 PMCID: PMC5362900 DOI: 10.1038/srep45050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/17/2017] [Indexed: 01/17/2023] Open
Abstract
The etiology of schizophrenia includes phospholipid abnormalities. Phospholipids are bioactive substances essential for brain function. To analyze differences in the quantity and types of phospholipids present in the brain tissue of patients with schizophrenia, we performed a global analysis of phospholipids in multiple brain samples using liquid chromatography electrospray ionization mass/mass spectrometry (LC-ESI/MS/MS) and imaging mass spectrometry (IMS). We found significantly decreased 16:0/20:4-phosphatidylinositol (PI) levels in the prefrontal cortex (PFC) in the brains from patients with schizophrenia in the LC-ESI/MS/MS, and that the 16:0/20:4-PI in grey matter was most prominently diminished according to the IMS experiments. Previous reports investigating PI pathology of schizophrenia did not identify differences in the sn-1 and sn-2 fatty acyl chains. This study is the first to clear the fatty acid composition of PI in brains from patients with schizophrenia. Alteration in the characteristic fatty acid composition of PI may also affect neuronal function, and could play a role in the etiology of schizophrenia. Although further studies are necessary to understand the role of reduced 16:0/20:4-PI levels within the prefrontal cortex in the etiology of schizophrenia, our results provide insight into the development of a novel therapy for the clinical treatment of schizophrenia.
Collapse
Affiliation(s)
- Junya Matsumoto
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima 960-1295, Japan
| | - Hiroki Nakanishi
- Research Center for Biosignal, Akita University, 1-1-1 Hondo, Akita, Akita 010-8543, Japan
- Akita Lipid Technologies, LLC.,1-2, Nukazuka, Yanagida, Akita, 010-0825, Japan
| | - Yasuto Kunii
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima 960-1295, Japan
- Department of Psychiatry, Aizu Medical Center, Fukushima Medical University, 21-2 Maeda, Yazawa Kawahigashimachi, Aizuwakamatsu, Fukushima 969-3492, Japan
| | - Yuki Sugiura
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Dai Yuki
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Akira Wada
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima 960-1295, Japan
- Department of Neuropsychiatry, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Mizuki Hino
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima 960-1295, Japan
| | - Shin-Ichi Niwa
- Department of Psychiatry, Aizu Medical Center, Fukushima Medical University, 21-2 Maeda, Yazawa Kawahigashimachi, Aizuwakamatsu, Fukushima 969-3492, Japan
| | - Takeshi Kondo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Michihiko Waki
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Takahiro Hayasaka
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Noritaka Masaki
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Hiroyasu Akatsu
- Choju Medical Institute, Fukushimura Hospital, 19-14 Yamanaka, Noyori-cho, Toyohashi, Aichi 441-8124, Japan
- Department of Community-based Medical Education/Department of Community-based Medicine, Nagoya City University Graduate School of Medical Science, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Yoshio Hashizume
- Choju Medical Institute, Fukushimura Hospital, 19-14 Yamanaka, Noyori-cho, Toyohashi, Aichi 441-8124, Japan
| | - Sakon Yamamoto
- Choju Medical Institute, Fukushimura Hospital, 19-14 Yamanaka, Noyori-cho, Toyohashi, Aichi 441-8124, Japan
| | - Shinji Sato
- Choju Medical Institute, Fukushimura Hospital, 19-14 Yamanaka, Noyori-cho, Toyohashi, Aichi 441-8124, Japan
- Quests Research Institute, Otsuka Pharmaceutical Co. Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima, Tokushima 771-0192, Japan
| | - Takehiko Sasaki
- Research Center for Biosignal, Akita University, 1-1-1 Hondo, Akita, Akita 010-8543, Japan
- Akita Lipid Technologies, LLC.,1-2, Nukazuka, Yanagida, Akita, 010-0825, Japan
- Department of Medical Biology Graduate School of Medicine, Akita University, 1-1-1 Hondo, Akita, Tokushima 010-8543, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Anatomy, The university of Hong Kong, 6/F, William MW Mong Block 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Division of Neural Systematics, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Riken Center for Molecular Imaging Science, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima 960-1295, Japan
| |
Collapse
|
20
|
Róg J, Karakuła-Juchnowicz H. Omega – 3 fatty acids in schizophrenia – part I: importance in the pathophysiology of schizophrenia. CURRENT PROBLEMS OF PSYCHIATRY 2016. [DOI: 10.1515/cpp-2016-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Abstract
Despite the increasing offer of antipsychotic drugs, the effectiveness of pharmacotherapy in schizophrenia is still unsatisfactory. Drug resistance, lack of complete remission and the increasing risk of metabolic complications are the reasons why the new forms of therapy in schizophrenia among which unsaturated essential fatty acids omega 3 (EFAs ω-3) affecting the proper functioning of nervous system, are mentioned, are being looked for.
Fatty acids represent 50-60% of the dry weight of the brain and diet is one of the factors that influence the value of each of the fat fractions in the neuron membranes. Patients with schizophrenia tend to have irregular nutritional status concerning essential fatty acids ω-3, which might result from metabolic disorders or irregular consumption of fatty acids.
Apart from being a review of the literature on this subject, this very paper characterizes essential fatty acids ω-3, their metabolism, the most important sources in the diet and the opinions of experts in the field about the recommended intake. It pays attention to the role of essential fatty acids in both the structure and functioning of the central nervous system is, as well as their role in the pathophysiology of schizophrenia, with particular emphasis on the membrane concept by David Horrobin. The assessment of the errors in consumption and metabolism of essential fatty acids are described as well.
The evidence was found both in epidemiological and modeling studies. It supports the participation of EFAs in etiopathogenesis and pathophysiology of schizophrenia. Further research is needed, both observational and interventional, as to the role of essential fatty acids ω-3 in the functioning of the CNS as well as the development and course of schizophrenia.
Collapse
Affiliation(s)
- Joanna Róg
- Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences
| | - Hanna Karakuła-Juchnowicz
- I Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin
- Department of Clinical Neuropsychiatry, Medical University in Lublin
| |
Collapse
|
21
|
Fatty acid composition of the postmortem corpus callosum of patients with schizophrenia, bipolar disorder, or major depressive disorder. Eur Psychiatry 2016; 39:51-56. [PMID: 27821355 DOI: 10.1016/j.eurpsy.2016.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/22/2016] [Accepted: 05/13/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Studies investigating the relationship between n-3 polyunsaturated fatty acid (PUFA) levels and psychiatric disorders have thus far focused mainly on analyzing gray matter, rather than white matter, in the postmortem brain. In this study, we investigated whether PUFA levels showed abnormalities in the corpus callosum, the largest area of white matter, in the postmortem brain tissue of patients with schizophrenia, bipolar disorder, or major depressive disorder. METHODS Fatty acids in the phospholipids of the postmortem corpus callosum were evaluated by thin-layer chromatography and gas chromatography. Specimens were evaluated for patients with schizophrenia (n=15), bipolar disorder (n=15), or major depressive disorder (n=15) and compared with unaffected controls (n=15). RESULTS In contrast to some previous studies, no significant differences were found in the levels of PUFAs or other fatty acids in the corpus callosum between patients and controls. A subanalysis by sex gave the same results. No significant differences were found in any PUFAs between suicide completers and non-suicide cases regardless of psychiatric disorder diagnosis. CONCLUSIONS Patients with psychiatric disorders did not exhibit n-3 PUFAs deficits in the postmortem corpus callosum relative to the unaffected controls, and the corpus callosum might not be involved in abnormalities of PUFA metabolism. This area of research is still at an early stage and requires further investigation.
Collapse
|
22
|
Domenichiello AF, Kitson AP, Chen CT, Trépanier MO, Stavro PM, Bazinet RP. The effect of linoleic acid on the whole body synthesis rates of polyunsaturated fatty acids from α-linolenic acid and linoleic acid in free-living rats. J Nutr Biochem 2016; 30:167-76. [DOI: 10.1016/j.jnutbio.2015.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/07/2015] [Accepted: 11/20/2015] [Indexed: 11/30/2022]
|
23
|
Abstract
In this column we examine the recent literature regarding adjunctive antipsychotic treatment of schizophrenia. We provide a brief introduction outlining the urgent need for new therapeutics, particularly for the treatment of negative and cognitive symptoms of schizophrenia. We then address (by mechanism of action) the most extensively studied adjunctive antipsychotic treatments. We conclude that adjunctive treatments targeting glutamatergic modulation, as well as supplementation with certain vitamins, have the strongest evidence for use in the treatment of schizophrenia. Further, larger randomized, controlled trials are needed, focusing on certain subgroups of patients and specific antipsychotic medications.
Collapse
|
24
|
Hamazaki K, Maekawa M, Toyota T, Iwayama Y, Dean B, Hamazaki T, Yoshikawa T. Fatty acid composition and fatty acid binding protein expression in the postmortem frontal cortex of patients with schizophrenia: A case-control study. Schizophr Res 2016; 171:225-32. [PMID: 26792082 DOI: 10.1016/j.schres.2016.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/17/2015] [Accepted: 01/05/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND Abnormal levels of n-3 polyunsaturated fatty acids (PUFAs), particularly docosahexaenoic acid (DHA), have been found in the postmortem frontal cortex, particularly the orbitofrontal cortex, of patients with schizophrenia. Altered mRNA expression of fatty acid binding protein (FABP) 5 and FABP7 has likewise been reported. METHODS This study investigated whether PUFAs in the frontal cortex [Brodmann area (BA) 8] and mRNA expression of FABP3, 5, and 7 were different between patients with schizophrenia (n=95) and unaffected controls (n=93). RESULTS In contrast to previous studies, no significant differences were found in DHA between the groups. Although arachidonic acid (AA) levels were significantly decreased in the schizophrenia group, no association was found between AA and schizophrenia on logistic regression analysis. Only FABP3 expression was significantly lower in the schizophrenia group than in the control group. Significant inverse associations were seen between only two saturated fatty acids, behenic acid and lignoceric acid, and FABP3 expression. CONCLUSIONS We found no evidence that major PUFA levels in BA8 are involved in the etiology of schizophrenia. Although FABP3 expression was not correlated with any of the major PUFAs, it might play a novel role in the pathology of BA8 in a subset of patients with schizophrenia.
Collapse
Affiliation(s)
- Kei Hamazaki
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan; Department of Public Health, Faculty of Medicine, University of Toyama, Toyama City, Toyama 9300194, Japan.
| | - Motoko Maekawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Brian Dean
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Tomohito Hamazaki
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| |
Collapse
|
25
|
Miller LR, Jorgensen MJ, Kaplan JR, Seeds MC, Rahbar E, Morgan TM, Welborn A, Chilton SM, Gillis J, Hester A, Rukstalis M, Sergeant S, Chilton FH. Alterations in levels and ratios of n-3 and n-6 polyunsaturated fatty acids in the temporal cortex and liver of vervet monkeys from birth to early adulthood. Physiol Behav 2015; 156:71-8. [PMID: 26705667 DOI: 10.1016/j.physbeh.2015.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 12/03/2015] [Accepted: 12/10/2015] [Indexed: 11/29/2022]
Abstract
Deficiencies in omega-3 (n-3) long chain polyunsaturated fatty acids (LC-PUFAs) and increases in the ratio of omega-6 (n-6) to n-3 LC-PUFAs in brain tissues and blood components have been associated with psychiatric and developmental disorders. Most studies have focused on n-3 LC-PUFA accumulation in the brain from birth until 2years of age, well before the symptomatic onset of such disorders. The current study addresses changes that occur in childhood and adolescence. Postmortem brain (cortical gray matter, inferior temporal lobe; n=50) and liver (n=60) from vervet monkeys fed a uniform diet from birth through young adulthood were collected from archived tissues. Lipids were extracted and fatty acid levels determined. There was a marked reduction in the ratio of n-6 LC-PUFAs, arachidonic acid (ARA) and adrenic acid (ADR), relative to the n-3 LC-PUFA, docosahexaenoic acid (DHA), in temporal cortex lipids from birth to puberty and then a more gradual decrease though adulthood. This decrease in ratio resulted from a 3-fold accumulation of DHA levels while concentrations of ARA remained constant. Early childhood through adolescence appears to be a critical period for DHA accretion in the cortex of vervet monkeys and may represent a vulnerable stage where lack of dietary n-3 LC-PUFAs impacts development in humans.
Collapse
Affiliation(s)
- Leslie R Miller
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Matthew J Jorgensen
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jay R Kaplan
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Michael C Seeds
- The Center for Botanical Lipids and Inflammatory Disease Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Elaheh Rahbar
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Timothy M Morgan
- Department of Biostatistics, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Andrea Welborn
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Sarah M Chilton
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Julianne Gillis
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Austin Hester
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Mae Rukstalis
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Susan Sergeant
- The Center for Botanical Lipids and Inflammatory Disease Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Floyd H Chilton
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; The Center for Botanical Lipids and Inflammatory Disease Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
26
|
Hamazaki K, Maekawa M, Toyota T, Dean B, Hamazaki T, Yoshikawa T. Fatty acid composition of the postmortem prefrontal cortex of patients with schizophrenia, bipolar disorder, and major depressive disorder. Psychiatry Res 2015; 227:353-9. [PMID: 25858798 DOI: 10.1016/j.psychres.2015.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/12/2014] [Accepted: 01/02/2015] [Indexed: 02/07/2023]
Abstract
Postmortem brain studies have shown abnormal levels of n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid, in the frontal cortex (particularly the orbitofrontal cortex) of patients with depression, schizophrenia, or bipolar disorder. However, the results from regions in the frontal cortex other than the orbitofrontal cortex are inconsistent. In this study we investigated whether patients with schizophrenia, bipolar disorder, or major depressive disorder have abnormalities in PUFA levels in the prefrontal cortex [Brodmann area (BA) 8]. In postmortem studies, fatty acids in the phospholipids of the prefrontal cortex (BA8) were evaluated by thin layer chromatography and gas chromatography. Specimens were evaluated for patients with schizophrenia (n=15), bipolar disorder (n=15), or major depressive disorder (n=15) and compared with unaffected controls (n=15). In contrast to previous studies, we found no significant differences in the levels of PUFAs or other fatty acids in the prefrontal cortex (BA8) between patients and controls. Subanalysis by sex also showed no significant differences. No significant differences were found in any individual fatty acids between suicide and non-suicide cases. These psychiatric disorders might be characterized by very specific fatty acid compositions in certain areas of the brain, and BA8 might not be involved in abnormalities of PUFA metabolism.
Collapse
Affiliation(s)
- Kei Hamazaki
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan; Department of Public Health, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama City, Toyama 930-0194, Japan.
| | - Motoko Maekawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Brian Dean
- The Molecular Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, Howard Florey Laboratories, The University of Melbourne, Parkville, Victoria, Australia; The Department of Psychiatry, The University of Melbourne, Victoria 3010, Australia
| | - Tomohito Hamazaki
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| |
Collapse
|
27
|
Jamilian H, Solhi H, Jamilian M. Randomized, placebo-controlled clinical trial of omega-3 as supplemental treatment in schizophrenia. Glob J Health Sci 2014; 6:103-8. [PMID: 25363186 PMCID: PMC4796520 DOI: 10.5539/gjhs.v6n7p103] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/14/2014] [Accepted: 07/28/2014] [Indexed: 11/12/2022] Open
Abstract
Introduction: Recent studies found omega-3 fatty acid deficiency in brain cell membranes of schizophrenic patients. Conventional antipsychotics have many adverse reactions. Safety, availability and low price made omega-3 as a potential supplement for treatment of these patients. This study investigated the efficacy of omega-3 fatty acid as add-on treatment in schizophrenia. Material & Methods: A randomized, double blind, placebo controlled fixed-dose, add-on clinical trial conducted over 8 weeks. 60 patients with documented schizophrenia randomly divided into two groups: omega-3(1000 mg/day) (n=30) and placebo (n=30). Patients received omega-3 or placebo in addition to their standard antipsychotic treatment. Patient follow up was done using Positive and Negative syndrome Scale (PANSS). Data analyzed using SPSS software v.20. Result: At the end of 8 weeks treatment, PANSS score decreased significantly in both groups (p<0.05) in comparison to baseline. Efficacy of omega-3 in decreasing general psychopathologic and total scores was significant in comparison to placebo group from 4 and 6 weeks after onset of treatment, respectively (p<0.05). Totally, omega-3 supplement therapy efficacy in comparison to sole conventional antipsychotics was 0.86 which was not significant (p>0.05). Conclusion: We found that supplemental omega-3 might increase efficacy of conventional antipsychotics in decreasing symptoms of schizophrenia. Low price, rare adverse reactions and availability of omega-3 made this substance a potential supplement in improved treatment of schizophrenia.
Collapse
|
28
|
Arroll MA, Wilder L, Neil J. Nutritional interventions for the adjunctive treatment of schizophrenia: a brief review. Nutr J 2014; 13:91. [PMID: 25228271 PMCID: PMC4171568 DOI: 10.1186/1475-2891-13-91] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/28/2014] [Indexed: 12/20/2022] Open
Abstract
Schizophrenia is a chronic condition that impacts significantly not only on the individual and family, but the disorder also has wider consequences for society in terms of significant costs to the economy. This highly prevalent condition affects approximately 1% of the worldwide population, yet there are few therapeutic options. The predominant treatment strategy for schizophrenia is anti-psychotic medication (with or without additional talking therapy) even though this approach lacks efficacy in managing the negative symptoms of the condition, is not effective in one-third of the patient group and the side effects of the medication can be severe and debilitating. In recent years, a number of pathophysiological processes have been identified in groups of people with schizophrenia including oxidative stress, one-carbon metabolism and immune-mediated responses. A number of studies have shown that these altered physiological mechanisms can be ameliorated by nutritional interventions in some individuals with schizophrenia. This review briefly describes the aforementioned processes and outlines research that has investigated the utility of nutritional approaches as an adjunct to anti-psychotic medication including antioxidant and vitamin B supplementation, neuroprotective and anti-inflammatory nutrients and exclusion diets. Whilst none of these interventions provides a ‘one-size-fits-all’ therapeutic solution, we suggest that a personalised approach warrants research attention as there is growing agreement that schizophrenia is a spectrum disorder that develops from the interplay between environmental and genetic factors.
Collapse
|
29
|
McNamara RK, Rider T, Jandacek R, Tso P. Abnormal fatty acid pattern in the superior temporal gyrus distinguishes bipolar disorder from major depression and schizophrenia and resembles multiple sclerosis. Psychiatry Res 2014; 215:560-7. [PMID: 24439517 PMCID: PMC3949121 DOI: 10.1016/j.psychres.2013.12.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/08/2013] [Accepted: 12/14/2013] [Indexed: 12/20/2022]
Abstract
This study investigated the fatty acid composition of the postmortem superior temporal gyrus (STG), a cortical region implicated in emotional processing, from normal controls (n=15) and patients with bipolar disorder (BD, n=15), major depressive disorder (MDD, n=15), and schizophrenia (SZ, n=15). For comparative purposes, STG fatty acid composition was determined in a separate cohort of multiple sclerosis patients (MS, n=15) and normal controls (n=15). Compared with controls, patients with BD, but not MDD or SZ, exhibited abnormal elevations in the saturated fatty acids (SFA) palmitic acid (16:0), stearic acid (18:0), the polyunsaturated fatty acids (PUFA) linoleic acid (18:2n-6), arachidonic acid (20:4n-6), and docosahexaenoic acid (22:6n-3), and reductions in the monounsaturated fatty acid (MUFA) oleic acid (18:1n-9). The total MUFA/SFA and 18:1/18:0 ratios were lower in the STG of BD patients and were inversely correlated with total PUFA composition. MS patients exhibited a pattern of fatty acid abnormalities similar to that observed in BD patients including elevated PUFA and a lower 18:1/18:0 ratio. Collectively, these data demonstrate that BD patients exhibit a pattern of fatty acid abnormalities in the STG that is not observed in MDD and SZ patients and closely resembles MS patients.
Collapse
Affiliation(s)
- Robert K. McNamara
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45267
,Department of Psychiatry and Behavioral Neuroscience University of Cincinnati College of Medicine 260 Stetson Street Cincinnati, OH 45219-0516 PH: 513-558-5601 FAX: 513-558-4805
| | - Therese Rider
- Department of Pathology, University of Cincinnati, Cincinnati OH 45237
| | - Ronald Jandacek
- Department of Pathology, University of Cincinnati, Cincinnati OH 45237
| | - Patrick Tso
- Department of Pathology, University of Cincinnati, Cincinnati OH 45237
| |
Collapse
|
30
|
Polyphenols from Berries of Aronia melanocarpa Reduce the Plasma Lipid Peroxidation Induced by Ziprasidone. SCHIZOPHRENIA RESEARCH AND TREATMENT 2014; 2014:602390. [PMID: 25061527 PMCID: PMC4099167 DOI: 10.1155/2014/602390] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/21/2014] [Accepted: 05/26/2014] [Indexed: 02/07/2023]
Abstract
Background. Oxidative stress in schizophrenia may be caused partially by the treatment of patients with antipsychotics. The aim of the study was to establish the effects of polyphenol compounds derived from berries of Aronia melanocarpa (Aronox) on the plasma lipid peroxidation induced by ziprasidone in vitro. Methods. Lipid peroxidation was measured by the level of thiobarbituric acid reactive species (TBARS). The samples of plasma from healthy subjects were incubated with ziprasidone (40 ng/ml; 139 ng/ml; and 250 ng/ml) alone and with Aronox (5 ug/ml; 50 ug/ml). Results. We observed a statistically significant increase of TBARS level after incubation of plasma with ziprasidone (40 ng/ml; 139 ng/ml; and 250 ng/ml) (after 24 h incubation: P = 7.0 × 10(-4), P = 1.6 × 10(-3), and P = 2.7 × 10(-3), resp.) and Aronox lipid peroxidation caused by ziprasidone was significantly reduced. After 24-hour incubation of plasma with ziprasidone (40 ng/ml; 139 ng/ml; and 250 ng/ml) in the presence of 50 ug/ml Aronox, the level of TBARS was significantly decreased: P = 6.5 × 10(-8), P = 7.0 × 10(-6), and P = 3.0 × 10(-5), respectively. Conclusion. Aronox causes a distinct reduction of lipid peroxidation induced by ziprasidone.
Collapse
|
31
|
Bondi CO, Taha AY, Tock JL, Totah NK, Cheon Y, Torres GE, Rapoport SI, Moghaddam B. Adolescent behavior and dopamine availability are uniquely sensitive to dietary omega-3 fatty acid deficiency. Biol Psychiatry 2014; 75:38-46. [PMID: 23890734 PMCID: PMC3858419 DOI: 10.1016/j.biopsych.2013.06.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/04/2013] [Accepted: 06/11/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Understanding the nature of environmental factors that contribute to behavioral health is critical for successful prevention strategies in individuals at risk for psychiatric disorders. These factors are typically experiential in nature, such as stress and urbanicity, but nutrition--in particular dietary deficiency of omega-3 polyunsaturated fatty acids (n-3 PUFAs)-has increasingly been implicated in the symptomatic onset of schizophrenia and mood disorders, which typically occurs during adolescence to early adulthood. Thus, adolescence might be the critical age range for the negative impact of diet as an environmental insult. METHODS A rat model involving consecutive generations of n-3 PUFA deficiency was developed on the basis of the assumption that dietary trends toward decreased consumption of these fats began 4-5 decades ago when the parents of current adolescents were born. Behavioral performance in a wide range of tasks as well as markers of dopamine-related neurotransmission was compared in adolescents and adults fed n-3 PUFA adequate and deficient diets. RESULTS In adolescents, dietary n-3 PUFA deficiency across consecutive generations produced a modality-selective and task-dependent impairment in cognitive and motivated behavior distinct from the deficits observed in adults. Although this dietary deficiency affected expression of dopamine-related proteins in both age groups in adolescents but not adults, there was an increase in tyrosine hydroxylase expression that was selective to the dorsal striatum. CONCLUSIONS These data support a nutritional contribution to optimal cognitive and affective functioning in adolescents. Furthermore, they suggest that n-3 PUFA deficiency disrupts adolescent behaviors through enhanced dorsal striatal dopamine availability.
Collapse
Affiliation(s)
- Corina O. Bondi
- Department of Neuroscience, Univ. of Pittsburgh, Pittsburgh, PA
| | - Ameer Y. Taha
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, NIH, Bethesda, MD
| | - Jody L. Tock
- Department of Neuroscience, Univ. of Pittsburgh, Pittsburgh, PA
| | - Nelson K. Totah
- Department of Neuroscience, Univ. of Pittsburgh, Pittsburgh, PA
| | - Yewon Cheon
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, NIH, Bethesda, MD
| | | | - Stanley I. Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, NIH, Bethesda, MD
| | - Bita Moghaddam
- Department of Neuroscience, Univ. of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
32
|
Ramos-Loyo J, Medina-Hernández V, Estarrón-Espinosa M, Canales-Aguirre A, Gómez-Pinedo U, Cerdán-Sánchez LF. Sex differences in lipid peroxidation and fatty acid levels in recent onset schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:154-61. [PMID: 23421976 DOI: 10.1016/j.pnpbp.2013.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 01/17/2013] [Accepted: 02/08/2013] [Indexed: 01/14/2023]
Abstract
Sex differences in the symptomatology and course of illness have been reported among schizophrenic patients. Hence, the principal objective of the present study was to investigate sex differences in the concentrations of the lipid peroxidation metabolites MDA and 4-HNE, and in the membrane phospholipid levels of ARA, EPA and DHA in patients with schizophrenia. A total of 46 paranoid schizophrenics (25 women) with short-term evolution who were in an acute psychotic stage and 40 healthy controls (23 women) participated in the study. Psychopathology was evaluated by BPRS and PANSS. Lipid peroxidation sub-products (MDA, 4-HNE) and fatty acid levels (ARA, EPA, DHA) were determined in erythrocyte membranes. The men in both groups showed higher lipid peroxidation levels and those values were higher in schizophrenic patients than controls, with only EPA fatty acid concentrations found to be lower in the former than the latter. These results suggest that men may suffer greater oxidative neuronal damage than women, and that this could worsen the course of illness and result in greater disease severity.
Collapse
|
33
|
Rao JS, Kim HW, Harry GJ, Rapoport SI, Reese EA. RETRACTED: Increased neuroinflammatory and arachidonic acid cascade markers, and reduced synaptic proteins, in the postmortem frontal cortex from schizophrenia patients. Schizophr Res 2013; 147:24-31. [PMID: 23566496 PMCID: PMC3812915 DOI: 10.1016/j.schres.2013.02.017] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 02/12/2013] [Accepted: 02/19/2013] [Indexed: 12/22/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editors. The National Institutes of Health has found that Dr. Jagadeesh S. Rao engaged in research misconduct by falsifying data. Data in Figures 1A, 1E, 3E and 3F were falsified. Dr. Rao was solely responsible for the falsification. None of the other authors are implicated in any way.
Collapse
Affiliation(s)
- Jagadeesh Sridhara Rao
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | - Hyung-Wook Kim
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Gaylia Jean Harry
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Stanley Isaac Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Edmund Arthur Reese
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
34
|
Hoen WP, Lijmer JG, Duran M, Wanders RJA, van Beveren NJM, de Haan L. Red blood cell polyunsaturated fatty acids measured in red blood cells and schizophrenia: a meta-analysis. Psychiatry Res 2013; 207:1-12. [PMID: 23068078 DOI: 10.1016/j.psychres.2012.09.041] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 09/20/2012] [Accepted: 09/22/2012] [Indexed: 11/17/2022]
Abstract
Alterations of polyunsaturated fatty acids (PUFA) in schizophrenia have been reported, but there is substantial variation in the findings. We performed a systematic review and meta-analysis for docosapentaenoic acid (DPA), docosahexaenoic acid (DHA), linoleic acid (LA), and arachidonic acid (AA). We identified 18 studies which compared PUFA in the erythrocyte cell membrane between patients with schizophrenia and controls. A total of 642 patients (169 were antipsychotic-naïve) and 574 controls participated in these studies. We found suggestive evidence that the levels of DPA (C22:5n3) and DHA (C22:6n3) are decreased both in patients currently being treated with antipsychotic medication and antipsychotic-naïve patients. Our findings furthermore suggest that the levels of LA (C18:2n6) are decreased in the medicated subgroup, but not in the antipsychotic-naive group. Finally, we found decreased levels of AA (C20:4n6), most convincingly in antipsychotic-naive patients. Taken together, there is substantial evidence that decreased levels of DPA (C22:5n3), DHA (C22:6n3), and AA (C20:4n6) are associated with the schizophrenia syndrome, apart from a possible influence of antipsychotic medication. Given the large heterogeneity in results, these conclusions should be interpreted cautiously.
Collapse
Affiliation(s)
- Wendela P Hoen
- Mentrum Institute for Mental Health, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
35
|
Taha AY, Cheon Y, Ma K, Rapoport SI, Rao JS. Altered fatty acid concentrations in prefrontal cortex of schizophrenic patients. J Psychiatr Res 2013; 47:636-43. [PMID: 23428160 PMCID: PMC3620602 DOI: 10.1016/j.jpsychires.2013.01.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Disturbances in prefrontal cortex phospholipid and fatty acid composition have been reported in patients with schizophrenia (SCZ), often as an incomplete lipid profile or a percent of total lipid concentration. In this study, we quantified absolute concentrations (nmol/g wet weight) and fractional concentrations (i.e. percent of total fatty acids) of several lipid classes and their constituent fatty acids in postmortem prefrontal cortex of SCZ patients (n = 10) and age-matched controls (n = 10). METHODS Lipids were extracted, fractionated with thin layer chromatography and assayed. RESULTS Mean total lipid, phospholipid, individual phospholipids, plasmalogen, triglyceride and cholesteryl ester concentrations did not differ significantly between the groups. Compared to controls, SCZ brains showed significant increases in several monounsaturated and polyunsaturated fatty acid absolute concentrations in cholesteryl ester. Significant increases or decreases occurred in palmitoleic, linoleic, γ-linolenic and n-3 docosapentaenoic acid absolute concentrations in total lipids, triglycerides or phospholipids. Changes in fractional concentrations did not consistently reflect absolute concentration changes. CONCLUSION These findings suggest disturbed prefrontal cortex fatty acid absolute concentrations, particularly within cholesteryl esters, as a pathological aspect of schizophrenia.
Collapse
Affiliation(s)
- Ameer Y Taha
- Brain Physiology and Metabolism Section, Laboratory of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
36
|
van der Kemp WJM, Klomp DWJ, Kahn RS, Luijten PR, Hulshoff Pol HE. A meta-analysis of the polyunsaturated fatty acid composition of erythrocyte membranes in schizophrenia. Schizophr Res 2012; 141:153-61. [PMID: 22981812 DOI: 10.1016/j.schres.2012.08.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 11/17/2022]
Abstract
BACKGROUND Membrane abnormalities in polyunsaturated fatty acids (PUFAs) have been reported in schizophrenia and have been associated with brain tissue loss in normal ageing. Therefore PUFA may be involved in the excessive brain tissue loss reported in schizophrenia. METHODS A systematic MEDLINE database search was conducted to identify studies that compared PUFAs in erythrocyte membranes in patients and controls. Patients were categorized by medication regime in medication naive first-episode patients, and patients receiving typical or atypical antipsychotics. SAMPLE Fourteen studies were included, comprising a total of 429 patients with schizophrenia and 444 healthy control subjects. Cohen's d effect sizes were calculated for PUFAs in erythrocyte membranes using the random-effects model. Combined Cohen's d was calculated separately for patients on different medication regime. RESULTS Medication-naive patients and patients taking typical antipsychotics showed significantly (p<0.01) decreased concentrations of arachidonic (AA), docosahexaenoic (DHA), and docosapentaenoic (DPA) acid. In addition, patients taking typical antipsychotics showed decreased linoleic (LA), dihomo-γ-linolenic acid (DGLA), eicosapentaenoic (EPA) and docosatetraenoic (DTA) acid (p<0.01). Patients taking atypical antipsychotics showed decreased DHA (p<0.01) only. CONCLUSIONS PUFA concentrations in erythrocyte membranes are decreased in schizophrenia. Of particular importance in patients are lower concentrations of DHA and AA, two fatty acids that are abundant in the brain and important precursors in the cell-signalling cascade.
Collapse
Affiliation(s)
- W J M van der Kemp
- Image Sciences Institute, Department of Radiology, University Medical Center Utrecht, The Netherlands, P.O. Box 85500, 3508 GA Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
37
|
Schizophrenia-like features in transgenic mice overexpressing human HO-1 in the astrocytic compartment. J Neurosci 2012; 32:10841-53. [PMID: 22875919 DOI: 10.1523/jneurosci.6469-11.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Delineation of key molecules that act epigenetically to transduce diverse stressors into established patterns of disease would facilitate the advent of preventive and disease-modifying therapeutics for a host of neurological disorders. Herein, we demonstrate that selective overexpression of the stress protein heme oxygenase-1 (HO-1) in astrocytes of novel GFAP.HMOX1 transgenic mice results in subcortical oxidative stress and mitochondrial damage/autophagy; diminished neuronal reelin content (males); induction of Nurr1 and Pitx3 with attendant suppression of their targeting miRNAs, 145 and 133b; increased tyrosine hydroxylase and α-synuclein expression with downregulation of the targeting miR-7b of the latter; augmented dopamine and serotonin levels in basal ganglia; reduced D1 receptor binding in nucleus accumbens; axodendritic pathology and altered hippocampal cytoarchitectonics; impaired neurovascular coupling; attenuated prepulse inhibition (males); and hyperkinetic behavior. The GFAP.HMOX1 neurophenotype bears resemblances to human schizophrenia and other neurodevelopmental conditions and implicates glial HO-1 as a prime transducer of inimical (endogenous and environmental) influences on the development of monoaminergic circuitry. Containment of the glial HO-1 response to noxious stimuli at strategic points of the life cycle may afford novel opportunities for the effective management of human neurodevelopmental and neurodegenerative conditions.
Collapse
|
38
|
Kaddurah-Daouk R, McEvoy J, Baillie R, Zhu H, K Yao J, Nimgaonkar VL, Buckley PF, Keshavan MS, Georgiades A, Nasrallah HA. Impaired plasmalogens in patients with schizophrenia. Psychiatry Res 2012; 198:347-52. [PMID: 22513041 DOI: 10.1016/j.psychres.2012.02.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 02/16/2012] [Accepted: 02/20/2012] [Indexed: 12/24/2022]
Abstract
Plasmalogens are a subclass of glycerophospholipids and ubiquitous constituents of cellular membranes and serum lipoproteins. Several neurological disorders show decreased level of plasmogens. An earlier study found differences in plasma phospholipids between unmedicated patients with schizophrenia and matched healthy control subjects. We here report a comparison of plasma plasmalogen levels across 20 drug-naïve patients experiencing first psychotic episodes, 20 recently unmedicated patients experiencing psychotic relapses after failing to comply with prescribed medications, and 17 matched healthy control subjects. Multiple plasma phosphatidylcholine and phosphatidylethanolamine plasmalogen levels were significantly lower in first episode patients and patients with recurrent disease compared to healthy controls. Reduced plasmalogen levels appear to be a trait evident at the onset of psychotic illness and after multiple psychotic relapses. It is implied that reductions in plasmalogen levels are not related to antipsychotic treatment but due to the illness itself. Reduced plasmalogen levels suggest impairments in membrane structure and function in patients with schizophrenia that might happen early in development. This may serve as a clue to the neurobiology of schizophrenia and should be studied as a potential biomarker for individuals at risk for schizophrenia.
Collapse
Affiliation(s)
- Rima Kaddurah-Daouk
- Duke University Medical Center, Department of Psychiatry and Behavioral Sciences, DUMC Box 3950 Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Clozapine is an antipsychotic drug that has a greater efficacy than other medications in some contexts, especially for the treatment of treatment-resistant schizophrenia. However, clozapine induces more metabolic side-effects involving abnormality in lipid metabolism compared to other antipsychotics. AMP-activated protein kinase (AMPK) plays a central role in controlling lipid metabolism through modulating the downstream acetyl CoA carboxylase (ACC) and carnitine palmitoyl transferase 1 (CPT1) pathway. In this study, we investigated the effect of a single intraperitoneal injection of clozapine on the AMPK-ACC-CPT1 pathway in the rat frontal cortex, which has been implicated as a target site for this antipsychotic drug. At 2 h after injection, the clinically relevant dose of clozapine had activated AMPK, with increased phosphorylation of AMPKα at Thr(172), and had inactivated ACC, with increased phosphorylation of ACC at Ser(79). In addition, clozapine activated the brain-specific isoform of CPT1, CPT1c, whose activity is inhibited by unphosphorylated ACC, in the rat frontal cortex. Immunohistochemistry and immunofluorescence analysis showed that clozapine induced an increase in number of p-AMPKα (Thr(172))- and p-ACC (Ser(79))-positive cells among the neurons of the rat frontal cortex. Taken together, these results show that clozapine activated the AMPK-ACC-CPT1 pathway in the neurons of the rat frontal cortex. These findings indicate that the antipsychotic agent clozapine affects the lipid regulatory system of neurons in the brain.
Collapse
|
40
|
Smesny S, Kunstmann C, Kunstmann S, Willhardt I, Lasch J, Yotter RA, Proffitt TM, Kerr M, Marculev C, Milleit B, Milleit C, Nenadic I, Amminger P, McGorry PD, Sauer H, Berger GE. Phospholipase A₂ activity in first episode schizophrenia: associations with symptom severity and outcome at week 12. World J Biol Psychiatry 2011; 12:598-607. [PMID: 21143005 DOI: 10.3109/15622975.2010.541283] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Intracellular phospholipases A₂ (inPLA₂) are activated during monoaminergic neurotranismision and act as key enzymes in cell membrane repair and remodelling, neuroplasticity, neurodevelopment, apoptosis, synaptic pruning, neurodegenerative processes and neuroinflammation. Several independent studies found increased inPLA₂ activity in drug-naïve first episode and chronic schizophrenia. This study investigates if inPLA₂ activity is associated with symptoms severity and treatment response in first episode schizophrenia (FES). METHODS InPLA₂ activity was measured in serum of 35 young FES patients (mean age: 19.36 ± 3.32, mean duration of illness: 7.53 ± 6.28 months, 16 neuroleptic-naïve) before and after 12 weeks of treatment with second-generation antipsychotic medications (olanzapine, quetiapine or risperidone), as well as in 22 healthy controls matched for age. Psychopathology and social functioning were assessed at the same time points. RESULTS Baseline inPLA₂ activity was significantly increased in drug-naïve and treated FES patients compared to healthy controls. Baseline inPLA₂ activity was also associated with severity of negative symptoms and lower functioning at baseline. Furthermore, baseline inPLA₂ activity was associated with improvement in negative symptoms and functioning within the first 12 weeks of treatment. CONCLUSIONS Intracellular PLA₂ activity is increased in first episode schizophrenia and associated with symptom severity and outcome after 12 weeks of treatment. Future studies should investigate the implications of inPLA₂ activity as a potential predictor of treatment response for different antipsychotic agents.
Collapse
Affiliation(s)
- Stefan Smesny
- Department of Psychiatry, Friedrich-Schiller-University Jena, Jena, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Astarita G, Piomelli D. Towards a whole-body systems [multi-organ] lipidomics in Alzheimer's disease. Prostaglandins Leukot Essent Fatty Acids 2011; 85:197-203. [PMID: 21543199 PMCID: PMC3161165 DOI: 10.1016/j.plefa.2011.04.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Preclinical and clinical evidence suggests that docosahexaenoic acid (DHA), an omega-3 fatty acid derived from diet or synthesized in the liver, decreases the risk of developing Alzheimer's disease (AD). DHA levels are reduced in the brain of subjects with AD, but it is still unclear whether human dementias are associated with dysregulations of DHA metabolism. A systems biological view of omega-3 fatty acid metabolism offered unexpected insights on the regulation of DHA homeostasis in AD [1]. Results of multi-organ lipidomic analyses were integrated with clinical and gene-expression data sets to develop testable hypotheses on the functional significance of lipid abnormalities observed and on their possible mechanistic bases. One surprising outcome of this integrative approach was the discovery that the liver of AD patients has a limited capacity to convert shorter chain omega-3 fatty acids into DHA due to a deficit in the peroxisomal d-bifunctional protein. This deficit may contribute to the decrease in brain DHA levels and contribute to cognitive impairment.
Collapse
Affiliation(s)
- Giuseppe Astarita
- Department of Pharmacology, 3101 Gillespie NRF, University of California, Irvine, CA 92697-4625, USA
| | | |
Collapse
|
42
|
Yao JK, Keshavan MS. Antioxidants, redox signaling, and pathophysiology in schizophrenia: an integrative view. Antioxid Redox Signal 2011; 15:2011-35. [PMID: 21126177 PMCID: PMC3159108 DOI: 10.1089/ars.2010.3603] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/26/2010] [Accepted: 12/02/2010] [Indexed: 12/19/2022]
Abstract
Schizophrenia (SZ) is a brain disorder that has been intensively studied for over a century; yet, its etiology and multifactorial pathophysiology remain a puzzle. However, significant advances have been made in identifying numerous abnormalities in key biochemical systems. One among these is the antioxidant defense system (AODS) and redox signaling. This review summarizes the findings to date in human studies. The evidence can be broadly clustered into three major themes: perturbations in AODS, relationships between AODS alterations and other systems (i.e., membrane structure, immune function, and neurotransmission), and clinical implications. These domains of AODS have been examined in samples from both the central nervous system and peripheral tissues. Findings in patients with SZ include decreased nonenzymatic antioxidants, increased lipid peroxides and nitric oxides, and homeostatic imbalance of purine catabolism. Reductions of plasma antioxidant capacity are seen in patients with chronic illness as well as early in the course of SZ. Notably, these data indicate that many AODS alterations are independent of treatment effects. Moreover, there is burgeoning evidence indicating a link among oxidative stress, membrane defects, immune dysfunction, and multineurotransmitter pathologies in SZ. Finally, the body of evidence reviewed herein provides a theoretical rationale for the development of novel treatment approaches.
Collapse
Affiliation(s)
- Jeffrey K Yao
- Medical Research Service, VA Pittsburgh Healthcare System,7180 Highland Drive, Pittsburgh, PA 15206, USA.
| | | |
Collapse
|
43
|
Khatibjoo A, Kermanshahi H, Golian A, Zaghari M. The effect of dietary n-6:n-3 ratio and sex on broiler breeder immunity. Poult Sci 2011; 90:2209-16. [DOI: 10.3382/ps.2011-01373] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
44
|
Zhao J, Gillam ME, Taylor CG, Weiler HA. Deposition of docosahexaenoic acid (DHA) is limited in forebrain of young obese fa/fa Zucker rats fed a diet high in α-linolenic acid but devoid of DHA. J Nutr Biochem 2011; 22:835-42. [DOI: 10.1016/j.jnutbio.2010.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 06/20/2010] [Accepted: 06/30/2010] [Indexed: 10/18/2022]
|
45
|
Akter K, Gallo DA, Martin SA, Myronyuk N, Roberts RT, Stercula K, Raffa RB. A review of the possible role of the essential fatty acids and fish oils in the aetiology, prevention or pharmacotherapy of schizophrenia. J Clin Pharm Ther 2011; 37:132-9. [DOI: 10.1111/j.1365-2710.2011.01265.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Llewellyn S. If waking and dreaming consciousness became de-differentiated, would schizophrenia result? Conscious Cogn 2011; 20:1059-83. [PMID: 21498086 DOI: 10.1016/j.concog.2011.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 03/17/2011] [Accepted: 03/22/2011] [Indexed: 12/31/2022]
Abstract
If both waking and dreaming consciousness are functional, their de-differentiation would be doubly detrimental. Differentiation between waking and dreaming is achieved through neuromodulation. During dreaming, without external sensory data and with mesolimbic dopaminergic input, hyper-cholinergic input almost totally suppresses the aminergic system. During waking, with sensory gates open, aminergic modulation inhibits cholinergic and mesocortical dopaminergic suppresses mesolimbic. These neuromodulatory systems are reciprocally interactive and self-organizing. As a consequence of neuromodulatory reciprocity, phenomenologically, the self and the world that appear during dreaming differ from those that emerge during waking. As a result of self-organizing, the self and the world in both states are integrated. Some loss of self-organization would precipitate a degree of de-differentiation between waking and dreaming, resulting in a hybrid state which would be expressed heterogeneously, both neurobiologically and phenomenologically. As a consequence of progressive de-differentiation, certain identifiable psychiatric disorders may emerge. Ultimately, schizophrenia, a disorganized-fragmented self, may result.
Collapse
Affiliation(s)
- Sue Llewellyn
- Faculty of Humanities, The University of Manchester, Booth Street West, Manchester M15 6PB, UK.
| |
Collapse
|
47
|
Do KQ, Conus P, Cuenod M. Redox dysregulation and oxidative stress in schizophrenia: nutrigenetics as a challenge in psychiatric disease prevention. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2011; 3:267-89. [PMID: 21474958 DOI: 10.1159/000324366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Kim Q Do
- Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland.
| | | | | |
Collapse
|
48
|
Matsumoto J, Sugiura Y, Yuki D, Hayasaka T, Goto-Inoue N, Zaima N, Kunii Y, Wada A, Yang Q, Nishiura K, Akatsu H, Hori A, Hashizume Y, Yamamoto T, Ikemoto K, Setou M, Niwa SI. Abnormal phospholipids distribution in the prefrontal cortex from a patient with schizophrenia revealed by matrix-assisted laser desorption/ionization imaging mass spectrometry. Anal Bioanal Chem 2011; 400:1933-43. [PMID: 21461619 PMCID: PMC3098351 DOI: 10.1007/s00216-011-4909-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 03/08/2011] [Accepted: 03/12/2011] [Indexed: 12/29/2022]
Abstract
Schizophrenia is one of the major psychiatric disorders, and lipids have focused on the important roles in this disorder. In fact, lipids related to various functions in the brain. Previous studies have indicated that phospholipids, particularly ones containing polyunsaturated fatty acyl residues, are deficient in postmortem brains from patients with schizophrenia. However, due to the difficulties in handling human postmortem brains, particularly the large size and complex structures of the human brain, there is little agreement regarding the qualitative and quantitative abnormalities of phospholipids in brains from patients with schizophrenia, particularly if corresponding brain regions are not used. In this study, to overcome these problems, we employed matrix-assisted laser desorption/ionization imaging mass spectrometry (IMS), enabling direct microregion analysis of phospholipids in the postmortem brain of a patient with schizophrenia via brain sections prepared on glass slides. With integration of traditional histochemical examination, we could analyze regions of interest in the brain at the micrometric level. We found abnormal phospholipid distributions within internal brain structures, namely, the frontal cortex and occipital cortex. IMS revealed abnormal distributions of phosphatidylcholine molecular species particularly in the cortical layer of frontal cortex region. In addition, the combined use of liquid chromatography/electrospray ionization tandem mass spectrometry strengthened the capability for identification of numerous lipid molecular species. Our results are expected to further elucidate various metabolic processes in the neural system.
Collapse
Affiliation(s)
- Junya Matsumoto
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Reddy R, Fleet-Michaliszyn S, Condray R, Yao JK, Keshavan MS, Reddy R. Reduction in perseverative errors with adjunctive ethyl-eicosapentaenoic acid in patients with schizophrenia: Preliminary study. Prostaglandins Leukot Essent Fatty Acids 2011; 84:79-83. [PMID: 21211955 PMCID: PMC3033407 DOI: 10.1016/j.plefa.2010.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 12/01/2010] [Accepted: 12/06/2010] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Patients with schizophrenia have significant cognitive deficits, generally resistant to conventional treatment. This preliminary study examined the effects of ethyl-eicosapentanoate (EPA) on an executive function in early course patients. PATIENTS AND METHODS Patients with schizophrenia were given, after an informed consent, 2 g of an EPA daily for 24 weeks, in an open-label study. The Wisconsin Card Sort Test (WCST) was administered at baseline, weeks 4, 12 and 24. RESULTS The 27 patients, with a mean duration of illness of 4.2 years, were all receiving atypical antipsychotics; treatment remained unchanged for the study. Perseverative errors - the key measure derived from WCST - were significantly reduced from the baseline mean of 28.2 to 18.4 errors at week 24. Positive symptoms also improved significantly. There were no correlations between EPA levels and any clinical or other neuropsychological measures. CONCLUSION These findings suggest that an EPA has procognitive effects for patients with schizophrenia, but controlled trials are required.
Collapse
Affiliation(s)
- R Reddy
- University of Toledo School of Medicine, OH, USA.
| | | | | | | | | | | |
Collapse
|
50
|
McNamara RK, Jandacek R. Investigation of postmortem brain polyunsaturated fatty acid composition in psychiatric disorders: limitations, challenges, and future directions. J Psychiatr Res 2011; 45:44-6. [PMID: 20537661 PMCID: PMC2937205 DOI: 10.1016/j.jpsychires.2010.04.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 04/22/2010] [Accepted: 04/30/2010] [Indexed: 11/28/2022]
Affiliation(s)
- Robert K. McNamara
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Ronald Jandacek
- Department of Pathology, University of Cincinnati, Cincinnati OH
| |
Collapse
|