1
|
Schellino R, Besusso D, Parolisi R, Gómez-González GB, Dallere S, Scaramuzza L, Ribodino M, Campus I, Conforti P, Parmar M, Boido M, Cattaneo E, Buffo A. hESC-derived striatal progenitors grafted into a Huntington's disease rat model support long-term functional motor recovery by differentiating, self-organizing and connecting into the lesioned striatum. Stem Cell Res Ther 2023; 14:189. [PMID: 37507794 PMCID: PMC10386300 DOI: 10.1186/s13287-023-03422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Huntington's disease (HD) is a motor and cognitive neurodegenerative disorder due to prominent loss of striatal medium spiny neurons (MSNs). Cell replacement using human embryonic stem cells (hESCs) derivatives may offer new therapeutic opportunities to replace degenerated neurons and repair damaged circuits. METHODS With the aim to develop effective cell replacement for HD, we assessed the long-term therapeutic value of hESC-derived striatal progenitors by grafting the cells into the striatum of a preclinical model of HD [i.e., adult immunodeficient rats in which the striatum was lesioned by monolateral injection of quinolinic acid (QA)]. We examined the survival, maturation, self-organization and integration of the graft as well as its impact on lesion-dependent motor alterations up to 6 months post-graft. Moreover, we tested whether exposing a cohort of QA-lesioned animals to environmental enrichment (EE) could improve graft integration and function. RESULTS Human striatal progenitors survived up to 6 months after transplantation and showed morphological and neurochemical features typical of human MSNs. Donor-derived interneurons were also detected. Grafts wired in both local and long-range striatal circuits, formed domains suggestive of distinct ganglionic eminence territories and displayed emerging striosome features. Moreover, over time grafts improved complex motor performances affected by QA. EE selectively increased cell differentiation into MSN phenotype and promoted host-to-graft connectivity. However, when combined to the graft, the EE paradigm used in this study was insufficient to produce an additive effect on task execution. CONCLUSIONS The data support the long-term therapeutic potential of ESC-derived human striatal progenitor grafts for the replacement of degenerated striatal neurons in HD and suggest that EE can effectively accelerate the maturation and promote the integration of human striatal cells.
Collapse
Affiliation(s)
- Roberta Schellino
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy.
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy.
| | - Dario Besusso
- Department of Biosciences, University of Milan, 20122, Milan, Italy
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20133, Milan, Italy
| | - Roberta Parolisi
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy
| | - Gabriela B Gómez-González
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy
| | - Sveva Dallere
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy
| | - Linda Scaramuzza
- Department of Biosciences, University of Milan, 20122, Milan, Italy
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20133, Milan, Italy
| | - Marta Ribodino
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy
| | - Ilaria Campus
- Department of Biosciences, University of Milan, 20122, Milan, Italy
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20133, Milan, Italy
| | - Paola Conforti
- Department of Biosciences, University of Milan, 20122, Milan, Italy
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20133, Milan, Italy
| | - Malin Parmar
- Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, 22184, Lund, Sweden
| | - Marina Boido
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, 20122, Milan, Italy
- National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi", 20133, Milan, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy.
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043, Orbassano, Italy.
| |
Collapse
|
2
|
Holley SM, Kamdjou T, Reidling JC, Fury B, Coleal-Bergum D, Bauer G, Thompson LM, Levine MS, Cepeda C. Therapeutic effects of stem cells in rodent models of Huntington's disease: Review and electrophysiological findings. CNS Neurosci Ther 2018; 24:329-342. [PMID: 29512295 DOI: 10.1111/cns.12839] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 01/01/2023] Open
Abstract
The principal symptoms of Huntington's disease (HD), chorea, cognitive deficits, and psychiatric symptoms are associated with the massive loss of striatal and cortical projection neurons. As current drug therapies only partially alleviate symptoms, finding alternative treatments has become peremptory. Cell replacement using stem cells is a rapidly expanding field that offers such an alternative. In this review, we examine recent studies that use mesenchymal cells, as well as pluripotent, cell-derived products in animal models of HD. Additionally, we provide further electrophysiological characterization of a human neural stem cell line, ESI-017, which has already demonstrated disease-modifying properties in two mouse models of HD. Overall, the field of regenerative medicine represents a viable and promising avenue for the treatment of neurodegenerative disorders including HD.
Collapse
Affiliation(s)
- Sandra M Holley
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Talia Kamdjou
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Jack C Reidling
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, CA, USA
| | - Brian Fury
- Institute for Regenerative Cures, University of California, Davis, Sacramento, CA, USA
| | - Dane Coleal-Bergum
- Institute for Regenerative Cures, University of California, Davis, Sacramento, CA, USA
| | - Gerhard Bauer
- Institute for Regenerative Cures, University of California, Davis, Sacramento, CA, USA
| | - Leslie M Thompson
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, CA, USA.,Department of Neurobiology & Behavior and Department of Psychiatry & Human Behavior, University of California, Irvine, CA, USA.,Sue and Bill Gross Stem Cell Center, University of California, Irvine, CA, USA
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Fricker RA, Barker RA, Fawcett JW, Dunnett SB. A Comparative Study of Preparation Techniques for Improving the Viability of Striatal Grafts Using Vital Stains, in Vitro Cultures, and in Vivo Grafts. Cell Transplant 2017; 5:599-611. [PMID: 8951218 DOI: 10.1177/096368979600500603] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cell suspension grafts from embryonic striatal primordia placed into the adult rat striatum survive well and are able to alleviate a number of behavioral deficits caused by excitotoxic lesions to this structure. However, neither the anatomical connectivity between the graft and host nor the functional recovery elicited by the grafts is completely restored. One way in which the survival and function of embryonic striatal grafts may be enhanced is by the improvement of techniques for the preparation of the cell suspension prior to implantation, an issue that has been addressed only to a limited extent. We have evaluated a number of parameters during the preparation procedure, looking at the effects on cell survival over the first 24 h from preparation using vital dyes and the numbers of surviving neurons in vitro, after 4 days in culture, in addition to graft survival and function in vivo. Factors influencing cell survival include the type of trypsinization procedure and the age of donor tissues used for suspension preparation. The presence of DNase has no effect on cell viability but aids the dissociation of the tissue to form single cells. These results have important implications for the use of embryonic striatal grafts in animal models of Huntington's disease, and in any future clinical application of this research.
Collapse
Affiliation(s)
- R A Fricker
- Department of Experimental Psychology, University of Cambridge, UK
| | | | | | | |
Collapse
|
4
|
Emerich DF, Ragozzino M, Lehman MN, Sanberg PR. Behavioral Effects of Neural Transplantation. Cell Transplant 2017; 1:401-27. [PMID: 1344313 DOI: 10.1177/096368979200100604] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Considerable evidence suggests that transplantation of fetal neural tissue ameliorates the behavioral deficits observed in a variety of animal models of CNS disorders. However, it is also becoming increasingly clear that neural transplants do not necessarily produce behavioral recovery, and in some cases have either no beneficial effects, magnify existing behavioral abnormalities, or even produce a unique constellation of deficits. Regardless, studies demonstrating the successful use of neural transplants in reducing or eliminating behavioral deficits in these animal models has led directly to their clinical application in human neurodegenerative disorders such as Parkinson's disease. This review examines the beneficial and deleterious behavioral consequences of neural transplants in different animal models of human diseases, and discusses the possible mechanisms by which neural transplants might produce behavior recovery.
Collapse
Affiliation(s)
- D F Emerich
- Cyto Therapeutics, Inc., Providence, RI 02906
| | | | | | | |
Collapse
|
5
|
Shannon KM, Kordower JH. Neural Transplantation for Huntington's Disease: Experimental Rationale and Recommendations for Clinical Trials. Cell Transplant 2017; 5:339-52. [PMID: 8689044 DOI: 10.1177/096368979600500222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder affecting motor function, personality, and cognition. This paper reviews the experimental data that demonstrate the potential for transplantation of fetal striatum and trophic factor secreting cells to serve as innovative treatment strategies for HD. Transplantation strategies have been effective in replacing lost neurons or preventing the degeneration of neurons destined to die in both rodent and nonhuman primate models of HD. In this regard, a logical series of investigations has proven that grafts of fetal striatum survive, reinnervate the host, and restore function impaired following excitotoxic lesions of the striatum. Furthermore, transplants of cells genetically modified to secrete trophic factors such as nerve growth factor protect striatal neurons from degeneration due to excitotoxicity or mitochondrial dysfunction. Given the disabling and progressive nature of HD, coupled with the absence of any meaningful medical therapy, it is reasonable to consider clinical trials of neural transplantation for this disease. Fetal striatal implants will most likely be the first transplant strategy attempted for HD. This paper describes the variable parameters we believe to be critical for consideration for the design of clinical trials using fetal striatal implants for the treatment of HD.
Collapse
Affiliation(s)
- K M Shannon
- Research Center for Brain Repair, Rush-Presbyterian-St. Luke's Medical Center, Chicago, IL 60612, USA
| | | |
Collapse
|
6
|
Strömberg I, Björklund L, Förander P. The Age of Striatum Determines the Pattern and Extent of Dopaminergic Innervation: a Nigrostriatal Double Graft Study. Cell Transplant 2017; 6:287-96. [PMID: 9171161 DOI: 10.1177/096368979700600311] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In animal models of Parkinson's disease, transplanted fetal mesencephalic dopaminergic neurons can innervate the dopamine-depleted host brain, but it is unclear why large portions of the host striatum are left uninnervated. During normal development, the dopaminergic innervation first occurs in the form of a dense patchy pattern in the striatum, followed by a widespread nerve fiber network. Using intraocular double grafts we have investigated dopaminergic growth patterns initiated when ventral mesencephalic grafts innervate striatal targets. The fetal lateral ganglionic eminence was implanted into the anterior eye chamber. After maturation in oculo, fetal ventral mesencephalon was implanted and placed in contact with the first graft. In other animals the two pieces of tissue were implanted simultaneously. Tyrosine hydroxylase (TH) immunohistochemistry revealed a pattern of dense TH-positive patches throughout the total volume of the striatal grafts in simultaneously transplanted cografts, while a widespread, less dense, pattern was found when mature striatal transplants were innervated by fetal dopaminergic grafts. To investigate which type or types of growth patterns that developed after grafting to striatum in situ of an adult host, fetal ventral mesencephalic tissue was implanted into the lateral ventricle adjacent to the dopamine-lesioned striatum. After maturation of the mesencephalic graft, the fetal lateral ganglionic eminence was implanted into the reinnervated part of the host striatum. TH immunohistochemistry revealed a few nerve fibers within the striatal graft and the growth pattern was of the widespread type. In conclusion, grafted dopaminergic neurons preferably innervate mature striatum with a widespread sparse nerve fiber network, while the innervation of the immature striatum occurs in the form of dense patches. Furthermore, when the patchy pattern is formed, the total volume of the striatal target is innervated while growth of the widespread type terminates prior to reaching distal striatal parts. Thus, the growth pattern seems essential to the final volume that is innervated. Once the widespread growth pattern is initiated, the presence of immature striatum does not change the dopaminergic growth pattern.
Collapse
Affiliation(s)
- I Strömberg
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
7
|
Reddington AE, Rosser AE, Dunnett SB. Differentiation of pluripotent stem cells into striatal projection neurons: a pure MSN fate may not be sufficient. Front Cell Neurosci 2014; 8:398. [PMID: 25520619 PMCID: PMC4251433 DOI: 10.3389/fncel.2014.00398] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/05/2014] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant inherited disorder leading to the loss inter alia of DARPP-32 positive medium spiny projection neurons ("MSNs") in the striatum. There is no known cure for HD but the relative specificity of cell loss early in the disease has made cell replacement by neural transplantation an attractive therapeutic possibility. Transplantation of human fetal striatal precursor cells has shown "proof-of-principle" in clinical trials; however, the practical and ethical difficulties associated with sourcing fetal tissues have stimulated the need to identify alternative source(s) of donor cells that are more readily available and more suitable for standardization. We now have available the first generation of protocols to generate DARPP-32 positive MSN-like neurons from pluripotent stem cells and these have been successfully grafted into animal models of HD. However, whether these grafts can provide stable functional recovery to the level that can regularly be achieved with primary fetal striatal grafts remains to be demonstrated. Of particular concern, primary fetal striatal grafts are not homogenous; they contain not only the MSN subpopulation of striatal projection neurons but also include all the different cell types that make up the mature striatum, such as the multiple populations of striatal interneurons and striatal glia, and which certainly contribute to normal striatal function. By contrast, present protocols for pluripotent stem cell differentiation are almost entirely targeted at specifying just neurons of an MSN lineage. So far, evidence for the functionality and integration of stem-cell derived grafts is correspondingly limited. Indeed, consideration of the features of full striatal reconstruction that is achieved with primary fetal striatal grafts suggests that optimal success of the next generations of stem cell-derived replacement therapy in HD will require that graft protocols be developed to allow inclusion of multiple striatal cell types, such as interneurons and/or glia. Almost certainly, therefore, more sophisticated differentiation protocols will be necessary, over and above replacement of a specific population of MSNs. A rational solution to this technical challenge requires that we re-address the underlying question-what constitutes a functional striatal graft?
Collapse
Affiliation(s)
- Amy E Reddington
- The Brain Repair Group, School of Biosciences, Cardiff University Cardiff, UK
| | - Anne E Rosser
- The Brain Repair Group, School of Biosciences, Cardiff University Cardiff, UK ; Department of Psychological Medicine and Neurology, Cardiff University Cardiff, UK
| | - Stephen B Dunnett
- The Brain Repair Group, School of Biosciences, Cardiff University Cardiff, UK
| |
Collapse
|
8
|
Southwell DG, Nicholas CR, Basbaum AI, Stryker MP, Kriegstein AR, Rubenstein JL, Alvarez-Buylla A. Interneurons from embryonic development to cell-based therapy. Science 2014; 344:1240622. [PMID: 24723614 DOI: 10.1126/science.1240622] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many neurologic and psychiatric disorders are marked by imbalances between neural excitation and inhibition. In the cerebral cortex, inhibition is mediated largely by GABAergic (γ-aminobutyric acid-secreting) interneurons, a cell type that originates in the embryonic ventral telencephalon and populates the cortex through long-distance tangential migration. Remarkably, when transplanted from embryos or in vitro culture preparations, immature interneurons disperse and integrate into host brain circuits, both in the cerebral cortex and in other regions of the central nervous system. These features make interneuron transplantation a powerful tool for the study of neurodevelopmental processes such as cell specification, cell death, and cortical plasticity. Moreover, interneuron transplantation provides a novel strategy for modifying neural circuits in rodent models of epilepsy, Parkinson's disease, mood disorders, and chronic pain.
Collapse
Affiliation(s)
- Derek G Southwell
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Riss PJ, Hong YT, Marton J, Caprioli D, Williamson DJ, Ferrari V, Saigal N, Roth BL, Henriksen G, Fryer TD, Dalley JW, Aigbirhio FI. Synthesis and Evaluation of 18F-FE-PEO in Rodents: An 18F-Labeled Full Agonist for Opioid Receptor Imaging. J Nucl Med 2013; 54:299-305. [DOI: 10.2967/jnumed.112.108688] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Trueman RC, Klein A, Lindgren HS, Lelos MJ, Dunnett SB. Repair of the CNS using endogenous and transplanted neural stem cells. Curr Top Behav Neurosci 2013; 15:357-98. [PMID: 22907556 DOI: 10.1007/7854_2012_223] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Restoration of the damaged central nervous system is a vast challenge. However, there is a great need for research into this topic, due to the prevalence of central nervous system disorders and the devastating impact they have on people's lives. A number of strategies are being examined to achieve this goal, including cell replacement therapy, enhancement of endogenous plasticity and the recruitment of endogenous neurogenesis. The current chapter reviews this topic within the context of Parkinson's disease, Huntington's disease and stroke. For each disease exogenous cell therapies are discussed including primary (foetal) cell transplants, neural stem cells, induced pluripotent stem cells and marrow stromal cells. This chapter highlights the different mechanistic approaches of cell replacement therapy versus cells that deliver neurotropic factors, or enhance the endogenous production of these factors. Evidence of exogenously transplanted cells functionally integrating into the host brain, replacing cells, and having a behavioural benefit are discussed, along with the ability of some cell sources to stimulate endogenous neuroprotective and restorative events. Alongside exogenous cell therapy, the role of endogenous neurogenesis in each of the three diseases is outlined and methods to enhance this phenomenon are discussed.
Collapse
Affiliation(s)
- R C Trueman
- School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | | | | | | | | |
Collapse
|
11
|
McBride JL, Ramaswamy S, Gasmi M, Bartus RT, Herzog CD, Brandon EP, Zhou L, Pitzer MR, Berry-Kravis EM, Kordower JH. Viral delivery of glial cell line-derived neurotrophic factor improves behavior and protects striatal neurons in a mouse model of Huntington's disease. Proc Natl Acad Sci U S A 2006; 103:9345-50. [PMID: 16751280 PMCID: PMC1482612 DOI: 10.1073/pnas.0508875103] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Huntington's disease (HD) is a fatal, genetic, neurological disorder resulting from a trinucleotide repeat expansion in the gene that encodes for the protein huntingtin. These excessive repeats confer a toxic gain of function on huntingtin, which leads to the degeneration of striatal and cortical neurons and a devastating motor, cognitive, and psychological disorder. Trophic factor administration has emerged as a compelling potential therapy for a variety of neurodegenerative disorders, including HD. We previously demonstrated that viral delivery of glial cell line-derived neurotrophic factor (GDNF) provides structural and functional neuroprotection in a rat neurotoxin model of HD. In this report we demonstrate that viral delivery of GDNF into the striatum of presymptomatic mice ameliorates behavioral deficits on the accelerating rotorod and hind limb clasping tests in transgenic HD mice. Behavioral neuroprotection was associated with anatomical preservation of the number and size of striatal neurons from cell death and cell atrophy. Additionally, GDNF-treated mice had a lower percentage of neurons containing mutant huntingtin-stained inclusion bodies, a hallmark of HD pathology. These data further support the concept that viral vector delivery of GDNF may be a viable treatment for patients suffering from HD.
Collapse
Affiliation(s)
- Jodi L. McBride
- *Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison Street, Suite 300, Chicago, IL 60612
| | - Shilpa Ramaswamy
- *Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison Street, Suite 300, Chicago, IL 60612
| | - Mehdi Gasmi
- Ceregene Inc., 9381 Judicial Drive, Suite 130, San Diego, CA 92121; and
| | - Raymond T. Bartus
- Ceregene Inc., 9381 Judicial Drive, Suite 130, San Diego, CA 92121; and
| | | | - Eugene P. Brandon
- Ceregene Inc., 9381 Judicial Drive, Suite 130, San Diego, CA 92121; and
| | - Lili Zhou
- *Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison Street, Suite 300, Chicago, IL 60612
| | - Mark R. Pitzer
- Department of Psychology, Grinnell College, 1116 Eighth Avenue, Grinnell, IA 50112
| | - Elizabeth M. Berry-Kravis
- *Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison Street, Suite 300, Chicago, IL 60612
| | - Jeffrey H. Kordower
- *Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison Street, Suite 300, Chicago, IL 60612
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
12
|
Hussain N, Flumerfelt BA, Rajakumar N. Glutamatergic regulation of long-term grafts of fetal lateral ganglionic eminence in a rat model of Huntington's disease. Neurobiol Dis 2004; 15:648-53. [PMID: 15056473 DOI: 10.1016/j.nbd.2003.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2002] [Revised: 08/27/2003] [Accepted: 12/12/2003] [Indexed: 11/29/2022] Open
Abstract
Transplanting fetal striatal tissue is currently considered to be an important alternative strategy in the treatment of Huntington's disease. Although grafted striatal tissue differentiates and shows certain structural and neurochemical features of the normal striatum and receives host afferents, it is not clear whether host-derived afferent inputs can modulate the activity of neurotransmitter receptors and their signaling in the graft. An intricate interaction between dopaminergic and glutamatergic systems is pivotal for striatal function. In the present study, the modulation of D(2) receptors in the graft by host-derived glutamatergic afferents via NMDA receptors was investigated using haloperidol-induced c-Fos expression. The results indicate that haloperidol induces c-Fos in a large number of neurons in the P-zones of the graft and this induction is significantly suppressed by pretreatment with the NMDA receptor antagonist, MK-801. Therefore, the NMDA receptor-mediated modulation of D(2) receptor function seen in the normal striatum is established in the striatostriatal grafts.
Collapse
Affiliation(s)
- N Hussain
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada N6A 5C1
| | | | | |
Collapse
|
13
|
Waldner R, Puschban Z, Scherfler C, Seppi K, Jellinger K, Poewe W, Wenning GK. No functional effects of embryonic neuronal grafts on motor deficits in a 3-nitropropionic acid rat model of advanced striatonigral degeneration (multiple system atrophy). Neuroscience 2001; 102:581-92. [PMID: 11226695 DOI: 10.1016/s0306-4522(00)00500-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intrastriatal injection of 3-nitropropionic acid results in secondary excitotoxic local damage and retrograde neuronal cell loss in substantia nigra pars compacta, thus mimicking salient features of striatonigral degeneration, the core pathology underlying Parkinsonism associated with multiple system atrophy. We used 3-nitropropionic acid to create a rat model of advanced striatonigral degeneration in order to assess the effects of embryonic allografts upon rotational and complex-motor behavioural abnormalities. Following stereotaxic intrastriatal administration of 500nmol 3-nitropropionic acid in male Wistar rats we observed consistent amphetamine- and apomorphine-induced ipsiversive rotation. Furthermore, there were marked deficits of contralateral paw reaching. Subsequently, animals received intrastriatal implantations of either E14 mesencephalic or striatal or mixed embryonic cell suspensions. In addition, one group received sham injections. Grafted rats were followed for up to 21 weeks and repeated behavioural tests were obtained during this period. Drug-induced rotation asymmetries and complex motor deficits measured by paw reaching tests were not compensated by embryonic grafts. Persistence of drug-induced rotations and of paw reaching deficits following transplantation probably reflects severe atrophy of adult striatum, additional nigral degeneration as well as glial demarcation of embryonic grafts. We suggest that dopamine rich embryonic grafts fail to induce functional recovery in a novel 3-nitropropionic acid rat model of advanced striatonigral degeneration (multiple system atrophy).
Collapse
Affiliation(s)
- R Waldner
- Neurological Research Laboratory, Department of Neurology, University Hospital Innsbruck, Anichstrasse 35, A-6020, Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
14
|
Kendall AL, Hantraye P, Palfi S. Striatal tissue transplantation in non-human primates. PROGRESS IN BRAIN RESEARCH 2001; 127:381-404. [PMID: 11142037 DOI: 10.1016/s0079-6123(00)27018-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The caudate nucleus and putamen form part of a complex but topographically connected circuitry that links the cortex, the basal ganglia and the thalamus. Within this complex system lie a series of functionally and anatomically segregated loops that allow the concurrent processing of a wide range of cognitive and motor information (Alexander et al., 1986; Alexander and Crutcher, 1990). As a constituent of these loops it has been shown that the striatum is involved in movement initiation, response selection and attentional processes (Robbins and Brown, 1990; Alexander, 1994; Lawrence et al., 1998). Although it is the medium spiny GABAergic projection neurones that are primarily lost in HD, it is not sufficient merely to replace the GABA. Instead it is crucial for striatal tissue transplants to integrate with the host tissue in such a way that the cortico-striatal-thalamic circuitry is restored and is functional. Rodent studies have progressed a long way in establishing the principle that striatal grafts can, at least partially, restore function and integrate appropriately with the host (Dunnett and Svendsen, 1993; Björklund et al., 1994; Sanberg et al., 1998) but the limited behavioural repertoire and the undifferentiated striatum meant that it was inevitable that studies should progress into primate models. Anatomical tracing studies have demonstrated that motor, premotor and somatosensory cortical areas send corticostriatal projections primarily to the putamen region in primates, whereas the head and body of the caudate nucleus mostly receive efferent input from associative cortical areas (Kemp and Powell, 1970; Kunzle, 1975, 1977, 1978; Selemon and Goldman-Rakic, 1985). Based on such anatomical, and functional, studies Alexander and colleagues have proposed the existence of at least five cortico-striatal-thalamic loops including a motor, a dorsolateral-prefrontal and an orbito-frontal loop (Alexander et al., 1986). The concentration of motor inputs to the putamen region suggests a particular involvement of this structure in the motor loop. Indeed, unilateral lesions of the putamen disrupt motor performance in the marmoset and generate apomorphine-induced dyskinesias in larger primates (Burns et al., 1995; Kendall et al., 2000). The implantation of striatal grafts into marmosets that had previously received unilateral putamen lesions ameliorated some of the motor impairments, which suggested at least partial restoration of the motor loop. In support of this we found direct evidence of host-graft cortico-striatal connectivity using an anterograde tracer injected in the primary motor cortical region (Kendall et al., 1998a). In larger primates, with lesions of the caudate and putamen, striatal [figure: see text] allografts and xenografts have been shown to reduce apomorphine-induced dyskinesias (Isacson et al., 1989; Hantraye et al., 1992; Palfi et al., 1998). The mechanism by which dyskinesias are elicited is not fully understood but alterations in firing patterns within both segments of the globus pallidus have been identified during dyskinetic movements (Matsumura et al., 1995). It seems likely that it would actually require re-establishment of afferent connections between the implanted putamen and the globus pallidus as well as of functioning dopamine receptors within the graft for the reduction in the dyskinetic profile to be observed. Certainly there is evidence, from rodent studies and the marmoset study described here, that close proximity of the graft to the globus pallidus yields better functional recovery (Isacson et al., 1986). In addition, anatomical tracing studies in rats have demonstrated connections between the implanted tissue and the host globus pallidus (Wictorin et al., 1989b, 1990) However, the relationship between graft placement and functional recovery remains to be fully substantiated.
Collapse
Affiliation(s)
- A L Kendall
- Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK.
| | | | | |
Collapse
|
15
|
Freeman TB, Hauser RA, Sanberg PR, Saporta S. Neural transplantation for the treatment of Huntington's disease. PROGRESS IN BRAIN RESEARCH 2001; 127:405-11. [PMID: 11142038 DOI: 10.1016/s0079-6123(00)27019-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- T B Freeman
- Department of Neurosurgery, University of South Florida, Tampa, FL 33606, USA.
| | | | | | | |
Collapse
|
16
|
Nakao N, Nakai K, Itakura T. Fetal striatal transplants reinstate the electrophysiological response of pallidal neurons to systemic apomorphine challenge in rats with excitotoxic striatal lesions. Eur J Neurosci 2000; 12:3426-32. [PMID: 10998125 DOI: 10.1046/j.1460-9568.2000.00212.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies with single-unit recording and 2-[14C]deoxyglucose quantitative autoradiography have shown that systemic administration of apomorphine increases the functional activity of pallidal neurons, and that the enhancement in the globus pallidus (GP) activity is abolished by striatal lesions. The present study employing electrophysiological techniques tested whether embryonic striatal tissue implanted in the excitotoxically damaged striatum of rats may affect the lesion-induced alteration in the neuronal response of GP to apomorphine. Systemically administered apomorphine significantly increased spontaneously firing rates of GP cells. The blockade of dopamine receptors with haloperidol reversed the increased rate to baseline levels. Quinolinate-induced striatal lesions attenuated the rate-increasing effect of apomorphine. Embryonic striatal grafts placed in the lesioned striatum restored the response of GP cells to systemic apomorphine. The graft-mediated restoration of the GP neuron response to apomorphine were accompanied by an improvement in the motor asymmetry induced by this drug. Considering previous anatomical data to demonstrate extensive innervation of the GP by embryonic striatal grafts, the present results suggest that the grafts reconstruct the functional striatopallidal pathway which is capable of transmitting apomorphine-induced changes in the neuronal activity.
Collapse
Affiliation(s)
- N Nakao
- Department of Neurological Surgery, Department of Neurological Surgery, Wakayama Medical College, 811-1 Kimiidera, Wakayama 641-0012, Japan.
| | | | | |
Collapse
|
17
|
Nakao N, Itakura T. Fetal tissue transplants in animal models of Huntington's disease: the effects on damaged neuronal circuitry and behavioral deficits. Prog Neurobiol 2000; 61:313-38. [PMID: 10727778 DOI: 10.1016/s0301-0082(99)00058-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Accumulating evidence indicates that grafts of embryonic neurons achieve the anatomical and functional reconstruction of damaged neuronal circuitry. The restorative capacity of grafted embryonic neural tissue is most illustrated by studies with striatal tissue transplantation in animals with striatal lesions. Striatal neurons implanted into the lesioned striatum receive some of the major striatal afferents such as the nigrostriatal dopaminergic inputs and the gluatmatergic afferents from the neocortex and thalamus. The grafted neurons also send efferents to the primary striatal targets, including the globus pallidus (GP, the rodent homologue of the external segment of the globus pallidus) and the entopeduncular nucleus (EP, the rodent homologue of the internal segment of the globus pallidus). These anatomical connections provide the reversal of the lesion-induced alterations in neuronal activities of primary and secondary striatal targets. Furthermore, intrastriatal striatal grafts improve motor and cognitive deficits seen in animals with striatal lesions. Since the grafts affect motor and cognitive behaviors that are critically dependent on the integrity of neuronal circuits of the basal ganglia, the graft-mediated recovery in these behavioral deficits is most likely attributable to the functional reconstruction of the damaged neuronal circuits. The fact that the extent of the behavioral recovery is positively correlated to the amount of grafted neurons surviving in the striatum encourages this view. Based on the animal studies, embryonic striatal tissue grafting could be a viable strategy to alleviate motor and cognitive disorders seen in patients with Huntington's disease where massive degeneration of striatal neurons occurs.
Collapse
Affiliation(s)
- N Nakao
- Department of Neurological Surgery, Wakayama Medical College, Wakayama, Japan.
| | | |
Collapse
|
18
|
Puschban Z, Scherfler C, Granata R, Laboyrie P, Quinn NP, Jenner P, Poewe W, Wenning GK. Autoradiographic study of striatal dopamine re-uptake sites and dopamine D1 and D2 receptors in a 6-hydroxydopamine and quinolinic acid double-lesion rat model of striatonigral degeneration (multiple system atrophy) and effects of embryonic ventral mesencephalic, striatal or co-grafts. Neuroscience 2000; 95:377-88. [PMID: 10658617 DOI: 10.1016/s0306-4522(99)00457-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The influence of embryonic mesencephalic, striatal and mesencephalic/striatal co-grafts on amphetamine- and apomorphine-induced rotation behaviour was assessed in a rat model of multiple system atrophy/striatonigral degeneration type using dopamine D1 ([3H]SCH23390) and D2 ([3H]spiperone) receptor and dopamine re-uptake ([3H]mazindol) autoradiography. Male Wistar rats subjected to a sequential unilateral 6-hydroxydopamine lesion of the medial forebrain bundle followed by a quinolinic acid lesion of the ipsilateral striatum were divided into four treatment groups, receiving either mesencephalic, striatal, mesencephalic/striatal co-grafts or sham grafts. Amphetamine- and apomorphine-induced rotation behaviour was recorded prior to and up to 10 weeks following transplantation. 6-Hydroxydopamine-lesioned animals showed ipsiversive amphetamine-induced and contraversive apomorphine-induced rotation behaviour. Amphetamine-induced rotation rates persisted after the subsequent quinolinic acid lesion, whereas rotation induced by apomorphine was decreased. In 11 of 14 animals receiving mesencephalic or mesencephalic/striatal co-grafts, amphetamine-induced rotation scores were decreased by >50% at the 10-week post-grafting time-point. In contrast, only one of 12 animals receiving non-mesencephalic (striatal or sham) grafts exhibited diminished rotation rates at this time-point. Apomorphine-induced rotation rates were significantly increased following transplantation of mesencephalic, striatal or sham grafts. The largest increase of apomorphine-induced rotation rates approaching post-6-hydroxydopamine levels were observed in animals with striatal grafts. In contrast, in the co-graft group, there was no significant increase of apomorphine-induced rotation compared to the post-quinolinic acid time-point. Morphometric analysis revealed a 63-74% reduction of striatal surface areas across the treatment groups. Striatal [3H]mazindol binding on the lesioned side (excluding the demarcated graft area) revealed a marked loss of dopamine re-uptake sites across all treatment groups, indicating missing graft-induced dopaminergic re-innervation of the host. In eight (73%) of the 11 animals with mesencephalic grafts and reduced amphetamine-induced circling, discrete areas of [3H]mazindol binding ("hot spots") were observed, indicating graft survival. Dopamine D1 and D2 receptor binding was preserved in the remaining lesioned striatum irrespective of treatment assignment, except for a significant reduction of D2 receptor binding in animals receiving mesencephalic grafts. "Hot spots" of dopamine D1 and D2 receptor binding were observed in 10 (83%) and nine (75%) of 12 animals receiving striatal grafts or co-grafts, consistent with survival of embryonic primordial striatum grafted into a severely denervated and lesioned striatum. Our study confirms that functional improvement may be obtained from embryonic neuronal grafts in a double-lesion rat model of multiple system atrophy/striatonigral degeneration type. Co-grafts appear to be required for reversal of both amphetamine- and apomorphine-induced rotation behaviour in this model. We propose that the partial reversal of amphetamine-induced rotation asymmetry in double-lesioned rats receiving mesencephalic or mesencephalic/striatal co-grafts reflects non-synaptic graft-derived dopamine release. The changes of apomorphine-induced rotation following transplantation are likely to reflect a complex interaction of graft- and host-derived striatal projection pathways and basal ganglia output nuclei. Further studies in a larger number of animals are required to determine whether morphological parameters and behavioural improvement in the neurotransplantation multiple system atrophy rat model correlate.
Collapse
Affiliation(s)
- Z Puschban
- Neurological Research Laboratory, University Hospital, Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Armstrong RJ, Watts C, Svendsen CN, Dunnett SB, Rosser AE. Survival, neuronal differentiation, and fiber outgrowth of propagated human neural precursor grafts in an animal model of Huntington's disease. Cell Transplant 2000; 9:55-64. [PMID: 10784067 DOI: 10.1177/096368970000900108] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Expanded neural precursor cells provide an attractive alternative to primary fetal tissue for cell replacement therapies in neurodegenerative diseases. In this study we transplanted epigenetically propagated human neural precursor cells into a rat model of Huntington's disease. Neural precursors survived transplantation and large numbers differentiated to express neuronal antigens, including some that expressed DARPP-32, indicating a mature striatal phenotype had been adopted. Neuronal fibers from the grafts projected diffusely throughout the host brain, although there was no evidence that outgrowth was specifically target directed. This study supports the contention that propagated human neural precursors may ultimately be of use in therapeutic neural transplantation paradigms for diseases such as Huntington's disease.
Collapse
Affiliation(s)
- R J Armstrong
- MRC Cambridge Centre for Brain Repair, University of Cambridge, UK.
| | | | | | | | | |
Collapse
|
20
|
Breeze RE, Wang MC. An overview of central nervous system transplantation in human disease. Neurosurg Focus 1999; 7:e1. [PMID: 16918229 DOI: 10.3171/foc.1999.7.3.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although its roots date back over a century, the field of neurotransplantation has been shaped mostly by advances over the past 30 years. Animal models of nigrostriatal disconnection in the 1970s allowed investigators to explore the feasibility of neural grafting. By the end of that decade, functional and behavioral effects had been demonstrated using fetal tissue grafts. In the 1980s, animal experimentation continued, as did clinical trials involving patients with idiopathic Parkinson's disease. Both autologous adrenal medullary tissue and fetal allografts were tested in the clinical setting, with the latter proving to yield superior results. Animal models of striatal cell loss provided the impetus for limited clinical trials in patients with Huntington's disease by the early 1990s, and work with both diseases continues today. Although much has been learned, neural grafting remains experimental. Broader applications are being explored even now, though, as transplant techniques are applied to animal models of dementia, spinal cord injury, cortical injury, and pain. Some very limited human trials have already begun in some of these areas. In this review some of the advances in the field are highlighted.
Collapse
Affiliation(s)
- R E Breeze
- Department of Neurosurgery, University of Colorado Health Sciences Center, Denver, Colorado
| | | |
Collapse
|
21
|
Guzman R, Meyer M, Lövblad KO, Ozdoba C, Schroth G, Seiler RW, Widmer HR. Striatal grafts in a rat model of Huntington's disease: time course comparison of MRI and histology. Exp Neurol 1999; 156:180-90. [PMID: 10192789 DOI: 10.1006/exnr.1999.7015] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Survival and integration into the host brain of grafted tissue are crucial factors in neurotransplantation approaches. The present study explored the feasibility of using a clinical MR scanner to study striatal graft development in a rat model of Huntington's disease. Rat fetal lateral ganglionic eminences grown as free-floating roller-tube cultures were grafted into the quinolinic acid-lesioned striatum, and T1- and T2-weighted sequences were acquired at 2, 7, 21, and 99 days posttransplantation. MR images were then compared with images of corresponding histological sections. The lesion-induced striatal degeneration caused a progressive ventricle enlargement, which was significantly different from controls at 21 days posttransplantation. Seven days posttransplantation, T1-weighted images revealed a defined liquid-isointense signal surrounded by a hyperintense rim at the site of graft placement, which was found unaltered for the first 21 days posttransplantation, whereas a hypointense graft signal was detected at 99 days posttransplantation. At 2 days posttransplantation, T2-weighted images showed the graft region as a hyperintense area surrounded by a rim of low signal intensity but at later time-points graft location could not be further verified. Measures for graft size and ventricle size obtained from MR images highly correlated with measures obtained from histologically processed sections (R = 0.8, P < 0.001). In conclusion, the present study shows that fetal rat lateral ganglionic eminences grown as free-floating roller-tube cultures can be successfully grafted in a rat Huntington model and that a clinical MR scanner offers a useful noninvasive tool for studying striatal graft development.
Collapse
Affiliation(s)
- R Guzman
- Department of Neurosurgery, Inselspital, Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
22
|
Love S, Hilton DA. Transplantation in the central nervous system. CURRENT TOPICS IN PATHOLOGY. ERGEBNISSE DER PATHOLOGIE 1999; 92:181-213. [PMID: 9919811 DOI: 10.1007/978-3-642-59877-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- S Love
- Department of Neuropathology, Frenchay Hospital, Bristol, UK
| | | |
Collapse
|
23
|
Watts C, Dunnett SB. Effects of severity of host striatal damage on the morphological development of intrastriatal transplants in a rodent model of Huntington's disease: implications for timing of surgical intervention. J Neurosurg 1998; 89:267-74. [PMID: 9688122 DOI: 10.3171/jns.1998.89.2.0267] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The goal of this study was to investigate the effect of the severity of host neural damage on the morphological development of intrastriatal transplants in a rodent model of Huntington's disease. METHODS Sprague-Dawley rats were subjected to unilateral striatal lesioning induced by administration of quinolinic acid (20 nM, 40 nM, or 90 nM). Seven days postlesioning, intrastriatal cell suspension grafts were placed in the right striatum in some of these animals. Grafts were also placed in the right striatum of additional animals that had not been subjected to lesioning. The rats were killed and processed for morphological analysis 8 weeks after grafting. The results indicate that striatal grafts survive and grow much better when implanted into a lesioned striatum rather than into an intact striatum, as measured both by the volume and the numbers of medium-sized spiny neurons within the graft. Only a small or modest lesion is necessary to produce this effect. By some measures (such as graft volume) grafts survive less well when the lesion is more extensive. The presence of a graft reduced the extent of striatal atrophy induced by the lesions, but this effect was not caused by differences in the numbers of surviving neurons per se. CONCLUSIONS These results have significant implications for the timing of surgical intervention and patient selection with respect to current and future clinical trials of striatal transplantation in the treatment of Huntington's disease.
Collapse
Affiliation(s)
- C Watts
- Academic Department of Neurosurgery and MRC Cambridge Centre for Brain Repair, University of Cambridge, United Kingdom
| | | |
Collapse
|
24
|
Borlongan CV, Tajima Y, Trojanowski JQ, Lee VM, Sanberg PR. Transplantation of cryopreserved human embryonal carcinoma-derived neurons (NT2N cells) promotes functional recovery in ischemic rats. Exp Neurol 1998; 149:310-21. [PMID: 9500961 DOI: 10.1006/exnr.1997.6730] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was designed to explore the efficacy of a human clone cell line as an alternative neural graft source and to validate the practice of cryopreservation and xenografting as logistical approaches toward conducting neural transplantation. We investigated the biological effects of transplanting cultured human neurons (NT2N cells) derived from a well-characterized embryonal carcinoma cell line into the brains of rats subjected to transient, focal cerebral ischemia induced by embolic occlusion of the middle cerebral artery. At 1 month and extending throughout the 6-month posttransplantation test period, ischemic animals that were transplanted with NT2N cells and treated with an immunosuppressive drug displayed a significant improvement in a passive avoidance task as well as a normalization of asymmetrical motor behavior compared to ischemic animals that received rat fetal cerebellar cell grafts or vehicle alone. Remarkably, cryopreserved NT2N cell grafts compared with fresh NT2N cell grafts, remained viable in the immunosuppressed rat brain and effective in producing behavioral recovery in immunosuppressed ischemic animals. The long-term viability of cryopreserved NT2N cell xenografts in vivo and their sustained effectiveness in promoting behavioral recovery suggest potential utilization of xenografting and cryopreservation as useful protocols for establishing clone cell lines as graft source in neural transplantation therapies for central nervous system disorders.
Collapse
Affiliation(s)
- C V Borlongan
- Department of Surgery, University of South Florida College of Medicine, Tampa 33612, USA
| | | | | | | | | |
Collapse
|
25
|
Sanberg PR, Borlongan CV, Koutouzis TK, Norgren RB, Cahill DW, Freeman TB. Human fetal striatal transplantation in an excitotoxic lesioned model of Huntington's disease. Ann N Y Acad Sci 1997; 831:452-60. [PMID: 9616734 DOI: 10.1111/j.1749-6632.1997.tb52217.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- P R Sanberg
- Division of Neurological Surgery, University of South Florida College of Medicine, Tampa 33612, USA
| | | | | | | | | | | |
Collapse
|
26
|
Liste I, Caruncho HJ, Guerra MJ, Labandeira-Garcia JL. GABA(A) receptor subunit expression in intrastriatal striatal grafts comparison between normal developing striatum and developing striatal grafts. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 103:185-94. [PMID: 9427482 DOI: 10.1016/s0165-3806(97)81794-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Expression of the alpha1, alpha2 and beta2/3 GABA(A) receptor subunits in maturing cell-suspension striatal grafts and in normal developing striatum was studied by immunocytochemistry. During normal postnatal development, the alpha1 subunit was present in the striatum only at very low density, while the alpha2 and beta2/3 subunits were present with a patchy distribution, in some patches at high density. Double-staining techniques indicated that DARPP-32 (a marker of striatal projection neurons) was not colocalized with alpha1, but was present in some beta2/3-positive areas and all alpha2-positive areas. In striatal grafts, alpha1 immunoreactivity was first detected 2 weeks post-grafting (p.g.), and by 3-10 weeks p.g. the pattern was similar to that observed in mature grafts (1 year p.g.), in which alpha1-immunopositive patches surrounding DARPP-32-positive (i.e. striatum-like) areas are observed. Alpha2 and beta2/3 immunoreactivity was observed within the first week p.g., and by 3-10 weeks p.g. was similar to that observed in mature grafts (i.e. immunoreactivity throughout the graft but with patches of different intensity). During graft maturation there was a marked decline in alpha2 immunoreactivity in DARPP-32-negative areas, as is observed during normal development of the globus pallidus and ventral pallidum. Interestingly, alpha1- and beta2/3-positive fibers (perhaps mostly dendrites) entered DARPP-32-positive patches from DARPP-32-negative areas. This study indicates that the time course of expression of GABA(A) receptor subunits in grafted striatal neurons, closely matches that of morphological maturation of the transplant, that of the development of functional synaptic activity and that of GABA(A) receptor subunit immunoreactivity in normal developing striatum. Our results also suggest that there are significant interactions between DARPP-32-positive and DARPP-32-negative areas with respect to the expression of GABA(A) receptors, and support the suggestion that miniature 'striatopallidal systems' may develop within grafts; such interactions may be important for the functional integration of striatal grafts with the host brain.
Collapse
Affiliation(s)
- I Liste
- Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
27
|
Watts C, Dunnett SB, Rosser AE. Effect of embryonic donor age and dissection on the DARPP-32 content of cell suspensions used for intrastriatal transplantation. Exp Neurol 1997; 148:271-80. [PMID: 9398469 DOI: 10.1006/exnr.1997.6646] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of this study was to determine in vitro the DARPP-32 content of donor cells used for striatal transplantation in vivo. The effect of selective embryonic dissection of the lateral ganglionic eminence (LGE) was compared with the standard dissection of the whole ganglionic eminence (WGE) at each of three embryonic ages (14, 15, and 16 days of gestation) in the rat. The resultant cell suspensions were cultured for up to 7 days and incubated with antibodies against DARPP-32, a marker of striatal medium spiny neurons; beta-tubulin III, a neuronal marker; GFAP, a marker of reactive astrocytes; and Gal-C, a marker of oligodendrocytes. LGE dissection gave rise to more DARPP-32 neurons compared to WGE; but this relationship was only observed in the younger embryos. When older (16 days gestation) embryos are used there is no difference in the yield of DARPP-32 cells obtained from LGE and WGE. LGE dissections were also observed to contain fewer glial cells. There was no beneficial effect of LGE over WGE on survival of striatal neurons in vitro. These results have important implications for the selection and dissection of fetal donor material used in clinical trials of intrastriatal transplantation as a potential treatment for Huntington's disease.
Collapse
Affiliation(s)
- C Watts
- Academic Department of Neurosurgery, University of Cambridge, United Kingdom
| | | | | |
Collapse
|
28
|
Fricker RA, Torres EM, Hume SP, Myers R, Opacka-Juffrey J, Ashworth S, Brooks DJ, Dunnett SB. The effects of donor stage on the survival and function of embryonic striatal grafts in the adult rat brain. II. Correlation between positron emission tomography and reaching behaviour. Neuroscience 1997; 79:711-21. [PMID: 9219935 DOI: 10.1016/s0306-4522(96)00657-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Grafts of embryonic striatal primordia are able to elicit behavioural recovery in rats which have received an excitotoxic lesion to the striatum, and it is believed that the P zones or striatal-like tissue within the transplants play a crucial role in these functional effects. We performed this study to compare the effects of different donor stage of embryonic tissue on both the morphology (see accompanying paper) and function of striatal transplants. Both the medial and lateral ganglionic eminence was dissected from rat embryos of either 10 mm, 15 mm, 19 mm, or 23 mm crown-rump length, and implanted as a cell suspension into adult rats which had received an ibotenic acid lesion 10 days prior to transplantation. After four months the animals were tested on the "staircase task" of skilled forelimb use. At 10-14 months rats from the groups which had received grafts from 10 mm or 15 mm donor embryos were taken for positron emission tomography scanning in a small diameter positron emission tomography scanner, using ligands to the dopamine D1 and D2 receptors, [11C]SCH 23390 and [11C]raclopride, respectively. A lesion-alone group was also scanned with the same ligands for comparison. Animals which had received transplants from the 10 mm donors showed a significant recovery with their contralateral paw on the "staircase test". No other groups showed recovery on this task. Similarly, the animals with grafts from the youngest donors showed a significant increase in D1 and D2 receptor binding when compared to the lesion-alone group. No increase in signal was observed with either ligand in the group which had received grafts from 15 mm donors. Success in paw reaching showed a strong correlation to both the positron emission tomography signal obtained and the P zone volume of the grafts. These results suggest that striatal grafts from younger donors (10 mm CRL) give greater behavioural recovery than grafts prepared from older embryos. This recovery is due to both the increased proportion of striatal-like tissue within the grafts and an increase in functional D1 and D2 dopamine receptors measured by positron emission tomography, i.e. a more extensive integration of the graft with the host brain.
Collapse
Affiliation(s)
- R A Fricker
- Department of Experimental Psychology and MRC Cambridge Centre for Brain Repair, University of Cambridge, U.K
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Fricker RA, Torres EM, Dunnett SB. The effects of donor stage on the survival and function of embryonic striatal grafts in the adult rat brain. I. Morphological characteristics. Neuroscience 1997; 79:695-710. [PMID: 9219934 DOI: 10.1016/s0306-4522(96)00656-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of the stage of donor embryos on the survival of grafts from different neuronal cell types have been well documented. Indeed, this parameter has been shown to be highly important in the survival and function of transplants of various tissues of the CNS. However this question has not been addressed in grafts of embryonic striatal tissue transplanted into animal models of Huntington's disease. In this study, rats which had received a unilateral ibotenic acid lesion in the dorsal striatum received grafts from a standard dissection of embryonic striatal primordium taken from donors of embryonic stage either E14, E16, E17 or E19 days. Three months after transplantation six rats from each group were killed for analysis of graft survival and morphology. The remaining animals in each group were killed between 10 and 14 months after grafting. Graft morphology was detected using a range of markers including: acetylcholinesterase and Cresyl Violet, the 32,000 mol. wt dopamine- and cyclic AMP-regulated phosphoprotein (DARPP-32), tyrosine hydroxylase and striatally-enriched phosphatase. All the grafts from different donor stages survived well at both time-points and Cresyl Violet staining indicated neuronal cell types spread throughout the grafts. The transplants were seen to have a characteristic "patchy" appearance with areas of dense AChE activity and DARPP-32 immunopositivity interspersed with areas of much lighter expression. These areas also co-localized consistently with striatally-enriched phosphatase and tyrosine hydroxylase expression, indicating that they comprised the striatal-like compartment of the graft (the so called P zones, containing cells of the mature striatum), and receiving specific afferent input from the host dopaminergic system. There was no significant difference in total graft volume, when comparing individual groups at both time-points from grafting. However, when comparing the volume of the P zones, the striatal primordium from the youngest donor stages (E14 and E16) produced grafts with a significantly higher proportion of striatal-like tissue. Therefore, in order to increase the proportion of striatal tissue within these grafts, tissue from younger embryonic donors should be used. This has important implications in the application of this model towards clinical trials in Huntington's disease.
Collapse
Affiliation(s)
- R A Fricker
- Department of Experimental Psychology and MRC Cambridge, Centre for Brain Repair, University of Cambridge, U.K
| | | | | |
Collapse
|
30
|
STROMBERG I. The age of striatum determines the pattern and extent of dopaminergic innervation: A nigrostriatal double graft study. Cell Transplant 1997. [DOI: 10.1016/s0963-6897(97)86922-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
31
|
Costantini LC, Snyder-Keller A. Co-transplantation of fetal lateral ganglionic eminence and ventral mesencephalon can augment function and development of intrastriatal transplants. Exp Neurol 1997; 145:214-27. [PMID: 9184123 DOI: 10.1006/exnr.1997.6477] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Methods to increase the development and sustained function of embryonic mesencephalic dopamine cells after transplantation into dopamine (DA)-depleted striatum are currently under investigation. Elements that are crucial for the maturation and connectivity of neurons during normal development of the brain may also play a role in the development and integration of grafted embryonic tissue. Based on in vitro and in vivo observations of the enhancing effects of striatal tissue on nigral dopaminergic cell development and survival, we demonstrate that inclusion of embryonic striatal cells, specifically from the lateral ganglionic eminence (LGE), produces dopaminergic transplants with augmented functional effects. Rats neonatally DA-depleted and co-transplanted with embryonic nigral and LGE cells developed improved functional outcome when compared with animals receiving only nigral cells, and they required the transplantation of fewer nigral cells to produce a strong behavioral effect. Anatomically, the inclusion of LGE cells produced increased DA cell survival, a higher density of reinnervation into the DA-depleted host striatum, and patches of DA fibers within the co-transplants. There were also an increased number of host striatal cells which induced the immediate-early gene c-fos in co-transplanted animals compared to animals receiving nigral cells alone, indicating a higher degree of host-cell activation. The ability to enhance function, cell survival, reinnervation, and host activation with nigral-striatal co-transplants in the presence of fewer nigral cells supports the hypothesis of a trophic influence of striatal cells on nigral DA cells.
Collapse
Affiliation(s)
- L C Costantini
- Wadsworth Center for Laboratories and Research, University at Albany School of Public Health, New York State Department of Health, 12201-0509, USA.
| | | |
Collapse
|
32
|
Shoham S, Norris PJ, Baker WA, Emson PC. Nitric oxide synthase in ventral forebrain grafts and in early ventral forebrain development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 99:155-66. [PMID: 9125469 DOI: 10.1016/s0165-3806(96)00214-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Embryonic ventral forebrain (VFB) grafts to cortex contain neurons that synthesize acetylcholine and partially ameliorate behavioral deficits caused by excitotoxic damage to the nucleus basalis magnocelullaris in rats. An additional neurotransmitter, nitric oxide (NO), is synthesized by a subset of cholinergic neurons in rat ventral forebrain. If this neurotransmitter is expressed also by grafted cholinergic neurons (which include the embryonic medial septum and diagonal band), its functional contribution should be considered. Six to twelve months after transplantation of embryonic VFB tissue rats were sacrificed. Brain tissue was processed either for in situ hybridization of nNOS and neuropeptide Y (NPY) or for immunohistochemistry of choline acetyltransferase (ChAT) and neuronal nitric oxide synthase (nNOS). Quantification of messenger ribonucleic acid (mRNA) for nNOS was performed with radioactively labeled probes (silver grains were counted) and a preliminary comparison was made of graft sections to sections of the ventral forebrain of developing rats. Plots of silver grain counts against cell size revealed similar patterns in the grafts and in the ventral forebrain of developing rats. The rates of expression of mRNA for nNOS in the grafts were intermediate between those of the ventral forebrain of postnatal day 19 and those of postnatal day 12. Double immunohistochemical labeling revealed that 45.87 + 8.26% of cells expressing ChAT also expressed nNOS in the grafts, significantly higher than 33.16 + 3.9% which was the rate of co-expression observed in the adult ventral forebrain. This study suggests that possible contribution of NO to graft-associated modulation of behavior should be examined.
Collapse
Affiliation(s)
- S Shoham
- Department of Research, Herzog Hospital, Jerusalem, Israel
| | | | | | | |
Collapse
|
33
|
Pundt LL, Narang N, Kondoh T, Low WC. Localization of dopamine receptors and associated mRNA in transplants of human fetal striatal tissue in rodents with experimental Huntington's disease. Neurosci Res 1997; 27:305-15. [PMID: 9152043 DOI: 10.1016/s0168-0102(96)01163-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Huntington's Disease (HD) is characterized by deficits in motor and cognitive functions. This neurodegenerative disease shows an extensive loss of medium-sized spiny projection neurons (GABAergic) within the neostriatum. With the loss of these neurons, there is a concomitant loss of associated receptors, such as those for GABA, glutamate, and dopamine. In the present study, we have addressed the question of whether dopamine receptors are re-established in the lesioned rodent striatum following the transplantation of human striatal cells. Human striatal cell suspension or saline (transplant controls) was injected into the striatum of rats previously lesioned with quinolinic acid (QA). Three nine months following transplantation, the animals were sacrificed and the brains were processed for receptor autoradiography and in situ hybridization of dopamine D1 and D2 receptor subtypes. Our results demonstrate that animals transplanted with human striatal cells show a significant increase in D1 receptors following transplantation when compared to the lesion area in control animals, while D1 receptor mRNA remains unchanged. In contrast to D1 receptor binding, D2 receptor levels are not increased in the lesioned and transplanted area of the striatum when compared to controls; however, D2 receptor mRNA levels are significantly increased. These results demonstrate that at the times the animals were examined, D1 and D2 receptors were differentially regulated. Our results further indicate that human striatal primordium will survive following transplantation and will express D1 receptors and D2 receptor mRNA that are depleted in the QA lesioned rodent striatum. This study compliments and extends previous findings on human striatal cell transplantation in rodent models of HD.
Collapse
Affiliation(s)
- L L Pundt
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | | | |
Collapse
|
34
|
Belkadi AM, Gény C, Naimi S, Jeny R, Peschanski M, Riche D. Maturation of fetal human neural xenografts in the adult rat brain. Exp Neurol 1997; 144:369-80. [PMID: 9168837 DOI: 10.1006/exnr.1997.6414] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transplantation of human fetal neural cells has been used for several years as a treatment for Parkinson's disease. These therapeutic trials were based on a large number of rat allografts studies, and the species to species extrapolation appeared valid in many respects. One major difference between neurons of various species, however, is their rate of maturation; indeed, human neurons have been proven to grow much more slowly than rat neurons. This has been studied mostly, up to now, at the light microscope level. In an attempt to determine the fine structural correlates of this protracted development and to detail the schedule of morphogenesis and synaptogenesis, human fetal brain stem tissue (at 8 weeks of gestation) was transplanted into a previously lesioned brain area of immunosuppressed adult rats. Transplants, which were allowed to develop for 15 days to 3 months, were analyzed using the electron microscope. At 15 days, small cells containing a large nucleus were surrounded by wide extracellular spaces. At 1 month, grafted neurons displayed a thin rim of cytoplasm and few thin processes. At 2 months, extracellular spaces tended to diminish. Thin processes formed bundles and large processes extended from enlarged neurons. Major changes were observed at 3 months survival as the neuropile filled up with cells and processes and synaptogenesis began. Comparison with a similar ultrastructural study of thalamic rat allografts shows that human cells develop following a pattern similar to that in rat cells but that the duration of each maturation step is largely extended.
Collapse
Affiliation(s)
- A M Belkadi
- INSERM Unité 421, IM3, Faculté de Médecine, Créteil, France
| | | | | | | | | | | |
Collapse
|
35
|
Grasbon-Frodl EM, Nakao N, Lindvall O, Brundin P. Phenotypic development of the human embryonic striatal primordium: a study of cultured and grafted neurons from the lateral and medial ganglionic eminences. Neuroscience 1996; 73:171-83. [PMID: 8783240 DOI: 10.1016/0306-4522(96)00008-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Basic parameters which are crucial for the survival of human embryonic striatal grafts need to be investigated before initiating clinical trials in Huntington's disease. In order to define the dissection of human striatal-donor tissue which gives rise to the largest amount of striatal neurons after intrastriatal transplantation, we studied the lateral and medial ganglionic eminences of embryonic striatal primordia obtained from human embryos sized 17-30 mm in crown-to-rump length (corresponding to Carnegie stages 18-23). Anatomical landmarks that demarcated the lateral and medial ganglionic eminences from each other were present only in embryos with 20 mm crown-to-rump length or larger. In monolayer cultures, the lateral ganglionic eminence gave rise to a six-fold higher yield of dopamine- and cyclic AMP-regulated phosphoprotein 32-immunoreactive striatal neurons as compared to the medial ganglionic eminence. We also xenografted the lateral and medial ganglionic eminences from five embryos sized 21-30 mm in crown-to-rump length to the ibotenate lesioned striatum of immunosuppressed rats. The grafts were evaluated with respect to general morphology, survival and integration using (immuno-) histochemical stains for acetylcholinesterase/Cresyl Violet, nicotinamide adenine dinucleotide phosphate-diaphorase, dopamine- and cyclic AMP-regulated phosphoprotein-32, tyrosine hydroxylase and calbindin-D28KD. As assessed 9-25 weeks after implantation, 13 out of 16 and 8 out of 13 grafts, in the groups grafted with the medial and lateral ganglionic eminences, respectively, had survived. Previous studies with rat donor tissue have indicated that the functional efficacy of striatal grafts is related to the development of striatal-specific P-zone regions and that these are enriched in transplants derived from the lateral as opposed to the medial ganglionic eminence. Also in the human striatal xenografts of the present study, P-zones appeared more abundant when the donor tissue was derived from the lateral ganglionic eminence. However, the proportion of graft tissue that expressed P-zone properties was always very low (at most 30%) and never approached the 80-90% previously observed in transplants of rat lateral ganglionic eminence. We conclude that the relative yield of striatal neurons in grafts of the human embryonic striatal primordium has to be improved before neural transplantation should be applied in patients with Huntington's disease.
Collapse
|
36
|
Pundt LL, Kondoh T, Conrad JA, Low WC. Transplantation of human fetal striatum into a rodent model of Huntington's disease ameliorates locomotor deficits. Neurosci Res 1996; 24:415-20. [PMID: 8861112 DOI: 10.1016/0168-0102(95)01009-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Previous studies have demonstrated that syngeneic transplants of striatal tissue can ameliorate locomotor deficits in rodent models of Huntington's disease (HD). In the present study, we have examined whether human to rat xenografts of fetal striatal tissue can exert a similar recovery of function. Rodents with unilateral striatal lesions were transplanted with human striatal cells from a donor 14 weeks post-conception, and subsequently displayed a progressive decrease in rotational asymmetry in comparison to sham (saline) transplanted animals. Histological analysis revealed acetylcholinesterase (AChE)-positive fibers and NADPH-diaphorase (NADPH-d)-positive neurons within transplanted tissue. These results suggest that human fetal striatum at a gestational age of 14 weeks may potentially be useful as a source of donor tissue for transplantation in the treatment of HD.
Collapse
Affiliation(s)
- L L Pundt
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | | | |
Collapse
|
37
|
Pundt LL, Kondoh T, Conrad JA, Low WC. Transplantation of human striatal tissue into a rodent model of Huntington's disease: phenotypic expression of transplanted neurons and host-to-graft innervation. Brain Res Bull 1996; 39:23-32. [PMID: 8846104 DOI: 10.1016/0361-9230(95)02029-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present study was undertaken to investigate the phenotypic expression and integration of human striatal neurons transplanted into an animal model of Huntington's disease. Sprague-Dawley rats were anesthetized and subjected to quinolinic acid lesions of the left striatum. Three human fetal cadavers were utilized for transplantation in this study (7, 8, and 10 weeks in gestation). The striatal primordia was dissected from each fetus and subsequently dissociated into cell suspensions. Following the initial lesion surgeries (3-4 months), the rats were reanesthetized and transplanted with human striatal cells (400,000 cells per rat). The animals were processed for histochemical analysis 9-17 weeks posttransplantation. Histochemistry was performed utilizing thionin (Nissl staining), acetylcholinesterase, NADPH-diaphorase, and antibodies against tyrosine hydroxylase and glial fibrillary acidic protein. Examination of stained brain sections demonstrate that human striatal transplants grow to fill a substantial portion of the remaining striatum, and contain clusters of immature and mature cells. Acetylcholinesterase activity is present in the transplant neuropil, varying in intensity, and distributed in a heterogeneous fashion. In addition, host afferent dopaminergic fibers penetrate into the transplant, and are occasionally found in patches. NADPH-diaphorase histochemistry revealed medium sized aspiny striatal neurons of donor origin in the transplants. The results of this study are similar to those obtained with rodent fetal striatal transplants, and suggest that human striatal tissue is capable of surviving, expressing normal striatal cell phenotypes, and receiving host dopaminergic innervation.
Collapse
Affiliation(s)
- L L Pundt
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
38
|
Freeman TB, Sanberg PR, Isacson O. Article Commentary: Development of the Human Striatum: Implications for Fetal Striatal Transplantation in the Treatment of Huntington's Disease. Cell Transplant 1995; 4:539-45. [PMID: 8714776 DOI: 10.1177/096368979500400604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Fetal neural transplantation has recently been demonstrated to ameliorate motor and other behavioral deficits in animal models of Huntington's disease, and reconstruct many of the damaged striatal circuits. However, there has been significant variability in the histological appearance of these grafts, most likely related to differences of the regions of dissection of the donor tissue. Selective dissection and transplantation of the lateral ventricular eminence in rodents has resulted in grafts consisting of primarily striatal-like tissue. This data, combined with data from our own and other laboratories has led to a description of the development of the human striatum, with a particular emphasis on the relevance of human striatal development to the field of fetal tissue transplantation for the treatment of Huntington's disease. If the goal of transplantation is to graft GABAergic striatal projection neurons, it is our impression that optimal grafting results will occur when transplants are derived from the lateral ventricular eminence and the lateral aspect of the body of the ventricular eminence anterior to the foramen of Monro. Optimal results are likely to occur when donor ages range from Stage 19 to 23, with possible graft success when donor age extends to as late as postovulatory week 22.
Collapse
Affiliation(s)
- T B Freeman
- Department of Pharmacology and Experimental Therapeutics, University of South Florida, Tampa 33606, USA
| | | | | |
Collapse
|
39
|
Peschanski M, Cesaro P, Hantraye P. Rationale for intrastriatal grafting of striatal neuroblasts in patients with Huntington's disease. Neuroscience 1995; 68:273-85. [PMID: 7477940 DOI: 10.1016/0306-4522(95)00162-c] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Huntington's disease is a genetic disease, autosomal and dominant, that induces motor disorders, an inexorable deterioration of higher brain functions and psychiatric disturbances. At present, there are no known therapeutics against Huntington's disease. The Network of European CNS Transplantation and Restoration (NECTAR) has begun a program aimed at defining the conditions under which intrastriatal transplantation of fetal striatal cells could be attempted as an experimental treatment for Huntington's disease. This review presents the reasons why our group is considering participating in these trials. The validity of this therapeutic approach is supported by three main series of data: (i) neuropathological, clinical and imaging data indicate that Huntington's disease is, above all, a localized affection of a specific neuronal population ("medium-spiny" neurons) in the striatum; (ii) a large body of experimental results, obtained in rats and non-human primates, demonstrates that transplanted fetal striatal cells are able to integrate the host brain and to substitute for previously lesioned host striatal neurons; (iii) expertise in clinical neural transplantation has now been acquired from the treatment of patients with Parkinson's disease. These different sets of data are presented and discussed in this review. There are a number of problems which do not yet appear to be entirely resolved, nor are they likely to be using the experimental models currently available. These problems are identified and explicitly presented as working hypotheses. (1) Anatomo-functional results obtained in rodents and non-human primates with excitotoxic striatal lesions can serve as a basis for the extrapolation of what can be obtained from patients with Huntington's disease. (2). Huntington's disease can be efficiently fought by substituting degenerated striatal neurons alone. (3) Huntington's disease is due to a genetic defect which either hits the neurons that carry it directly or hits them indirectly only after several decades. Transplanted neurons, because they do not carry the gene or because they are of fetal origin, will not be rapidly affected by the ongoing disease process. Given the current state of knowledge, intracerebral transplantation appears to be the most serious opportunity (if not the only one that has been experimentally validated) for clinical improvement to be obtained in patients with Huntington's disease. The purpose of this review is to open a scientific discussion on its experimental bases before actual clinical trials start.
Collapse
Affiliation(s)
- M Peschanski
- INSERM U 421, IM3, Neuroplasticité et Thérapeutique, Faculté de Médecine, Créteil, France
| | | | | |
Collapse
|
40
|
Campbell K, Björklund A. Neurotransmitter-related gene expression in intrastriatal striatal transplants. III. Regulation by host cortical and dopaminergic afferents. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 29:263-72. [PMID: 7609615 DOI: 10.1016/0169-328x(94)00258-g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Grafted striatal neurons have previously been shown to receive innervation from both the host cerebral cortex and dopaminergic substantia nigra. In the present study, we have used quantitative in situ hybridization histochemistry for striatal neuropeptide mRNAs, to determine the extent of functional integration exhibited by these two afferent systems. DARPP-32, preproenkephalin (PPE) and preprotachykinin (PPT) mRNAs were all expressed within discrete patches of the graft (termed P-regions) which corresponded well with each other on adjacent sections. Dopamine-depleting 6-OHDA lesions resulted in a marked increase in PPE mRNA levels and a concomitant decrease in PPT mRNA expression both in the remaining host striatum and in the P-regions of the graft. In a previous report [7], we have shown that cortical and dopaminergic afferents to the striatum interact in the regulation of PPE mRNA expression, such that in the absence of functional dopaminergic inputs, intact prefrontal corticostriatal afferents are necessary in order to maintain increased PPE mRNA levels. In the present study, we observed that cortical knife cut lesions placed at the level of the foreceps minor in previously 6-OHDA-lesioned animals resulted in a normalization of PPE mRNA expression, not only in the remaining host striatum but also within the P-regions of striatal grafts. Cellular analysis showed that this normalization was most pronounced in the peripherally situated P-regions (along the graft borders), which are known to receive dense host-derived cortical input. The cortical lesions had no significant effect on the 6-OHDA-induced reduction of PPT mRNA levels neither in the remaining lost striatum nor in the striatal graft. The expression of DARPP-32 mRNA in the remaining host striatum or striatal graft was not affected by either 6-OHDA lesion or cortical transection, demonstrating the specificity of the cortical lesion effect. These results indicate that both cortical and dopaminergic afferents originating in the host, functionally regulate neuropeptide mRNA expression within the striatal grafts, and that the two afferent systems interact with each other in the regulation of enkephalin gene expression in grafted neurons. On basis of recent results [9] showing that the enkephalin-expressing neurons are identical, at least in part, to efferent graft neurons projecting to the host globus pallidus, it is proposed that the cortical-dopamine interaction demonstrated here may play an important role in the recovery of complex motor performance induced by the striatal transplants.
Collapse
Affiliation(s)
- K Campbell
- Department of Medical Cell Research, University of Lund, Sweden
| | | |
Collapse
|
41
|
Dunnett SB. Functional repair of striatal systems by neural transplants: evidence for circuit reconstruction. Behav Brain Res 1995; 66:133-42. [PMID: 7755884 DOI: 10.1016/0166-4328(94)00134-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Intrastriatal grafts of nigral and adrenal tissues have been found to be effective in alleviating many of the simple motor and sensorimotor deficits associated with lesions of the nigrostriatal dopamine system. However, the mechanisms by which such grafts exert their effects may be less specific than originally conceived, and both pharmacological and trophic actions play an essential role. Damage to intrinsic cortico-striatal circuits are unlikely to prove similarly amenable to such diffuse mechanisms of repair. Nevertheless, striatal grafts have been found to alleviate cognitive and motor deficits after excitotoxic lesions of the neostriatum. Accumulating evidence suggests that in this particular case many aspects of functional recovery may indeed be attributable to the striatal grafts providing an effective functional reconstruction of damaged neuronal circuits within the host brain.
Collapse
Affiliation(s)
- S B Dunnett
- MRC Cambridge Centre for Brain Repair, University of Cambridge, UK
| |
Collapse
|
42
|
Campbell K, Wictorin K, Björklund A. Neurotransmitter-related gene expression in intrastriatal striatal transplants--II. Characterization of efferent projecting graft neurons. Neuroscience 1995; 64:35-47. [PMID: 7708212 DOI: 10.1016/0306-4522(94)00411-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The phenotypic characteristics of identified graft neurons in intrastriatal striatal transplants which give rise to efferent projections innervating the host brain were examined using a combination of in situ hybridization histochemistry and fluorescent retrograde tracing. Cell suspension grafts of embryonic day 14-15 rat striatal primordia (including both the medial and lateral ganglionic eminences) were implanted into the previously excitotoxically lesioned striatum of adult rats, and after longer than one year the retrograde tracer Fluoro-Gold was injected bilaterally into either the globus pallidus or the substantia nigra. Injections into the globus pallidus resulted in significant retrograde labelling of graft neurons within most of the experimental animals, whereas very few graft cells were labelled after the nigral injections. The vast majority of the neurons retrogradely labelled from the globus pallidus occurred in clusters or patches in the caudal half of the transplants, which corresponded well with DARPP-32 messenger RNA expressing (i.e. striatal) regions of the grafts. Indeed, within these Fluoro-Gold-labelled graft patches, the proportion of retrogradely labelled cells found to contain DARPP-32 messenger RNA was identical to that observed in the intact striatum after similar pallidal injections (93%). In addition, some Fluoro-Gold-labelled cells were found scattered outside the DARPP-32-positive cell clusters; these cells were overall larger and rarely (c. 9%) DARPP-32 messenger RNA-positive. Messenger RNA encoding for glutamate decarboxylase (which was found in 95% of Fluoro-Gold-labelled neurons in the intact striatum) was detected in almost all retrogradely labelled graft neurons located in both the DARPP-32-positive patches of retrograde labelling (93%) and in the DARPP-32-negative regions (82%). In the intact striatum, neurons labelled after pallidal injections of Fluoro-Gold were observed to express preproenkephalin messenger RNA to a greater extent than preprotachykinin messenger RNA (81% vs 21%). Conversely, within the grafts, retrogradely labelled neurons in the patches of Fluoro-Gold-labelled cells were more often found to contain preprotachykinin messenger RNA (50%) than preproenkephalin messenger RNA (21%). The Fluoro-Gold-labelled cells scattered outside the patches of retrograde labelling rarely expressed either preproenkephalin or preprotachykinin messenger RNA. Fluoro-Gold injections into the host substantia nigra resulted in very few retrogradely labelled graft neurons; however, many (85%) of these cells were observed to express glutamate decarboxylase messenger RNA, while only rarely were they observed to contain either DARPP-32, preproenkephalin or preprotachykinin messenger RNAs (c. 10%).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Campbell
- Department of Medical Cell Research, University of Lund, Sweden
| | | | | |
Collapse
|
43
|
Campbell K, Wictorin K, Björklund A. Neurotransmitter-related gene expression in intrastriatal striatal transplants--I. Phenotypical characterization of striatal and non-striatal graft regions. Neuroscience 1995; 64:17-33. [PMID: 7708203 DOI: 10.1016/0306-4522(94)00412-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the present study, we have re-examined the heterogeneous nature of intrastriatal striatal transplants derived from embryonic day 14-15 rat striatal primordia implanted into the previously excitotoxically lesioned striatum of adult rats, using in situ hybridization histochemistry to localize neurotransmitter-related messenger RNAs. These grafts are characterized by discrete patches of DARPP-32 messenger RNA expression, which cover approximately one-third of the cross-sectional graft area. The messenger RNAs encoding for preproenkephalin (the enkephalin precursor), preprotachykinin (precursor to substance P), choline acetyltransferase, as well as the D1 and D2 dopamine receptors, which are abundant in the normal striatum, were all present in the striatal grafts and were expressed almost exclusively in the DARPP-32-positive graft regions. In these graft regions, the expression of the neurotransmitter-related messenger RNAs was generally similar to that seen in the intact striatum, although the level of expression of preproenkephalin and preprotachykinin messenger RNAs varied notably among the patches of expression. Cellular analysis performed on individual patches showed that the expression per cell of preproenkephalin and preprotachykinin messenger RNAs was inversely related, such that patches with higher than normal preproenkephalin messenger RNA levels displayed lower than normal preprotachykinin messenger RNA levels, and vice versa. Moreover, messenger RNA expression for the dopamine D2 receptor was overall lower than that for the dopamine D1 receptor, both with respect to the level per cell and the number of positive cells within the DARPP-32 patches. Glutamate decarboxylase messenger RNA was expressed throughout the grafts, in 98% of all neurons located in the DARPP-32-positive regions and in 75% of all neurons in the non-DARPP-32 regions of the graft. Interestingly, the cellular expression of glutamate decarboxylase messenger RNA was considerably higher in the non-DARPP-32 expressing regions than that in the DARPP-32 messenger RNA-rich areas, where it approximated that of the intact striatum. Furthermore, grafted neurons located outside the DARPP-32-expressing regions displayed similar levels of expression to those found in the overlying cortex and in the closely adjacent globus pallidus. To further characterize the DARPP and non-DARPP graft compartments, messenger RNAs encoding the alpha 1 and beta 2 subunits of the GABAA receptor were studied. These receptor subunits, which exhibit a high expression in the host cortex and pallidum but little in the intact striatum, were found in discrete patches situated outside, but often closely associated with, the DARPP-32-rich areas of the graft.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K Campbell
- Department of Medical Cell Research, University of Lund, Sweden
| | | | | |
Collapse
|
44
|
Deacon TW, Pakzaban P, Isacson O. The lateral ganglionic eminence is the origin of cells committed to striatal phenotypes: neural transplantation and developmental evidence. Brain Res 1994; 668:211-9. [PMID: 7704606 DOI: 10.1016/0006-8993(94)90526-6] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In order to determine whether the lateral ganglionic eminence (LGE) of the fetal telencephalon is the primary source of striatal precursors in striatal transplants and tissue cultures, cells derived exclusively from the LGE of fetal rat brains were transplanted into the quinolinic-acid-lesioned striatum of adult rats. After 2-3 months they produced grafts that were almost entirely AChE-positive as well as DARPP-32-, TH-, and calbindin-immunoreactive. The grafts were integrated into the host striatum so that host corticofugal fiber tracts interdigitated with graft tissues similar to the way they penetrate the gray matter of the normal striatum. Fast Blue dye injected into the ipsilateral globus pallidus of LGE grafted produced retrogradely labeled neurons within the grafts, but Fluorogold dye injected into the ipsilateral substantia nigra did not. In a separate experiment using DARPP-32-immunohistochemstry as a striatal marker, fetal (E16) and neonatal (P2) rat brains showed DARPP-32 immunoreactivity in the LGE but not in the adjacent medial ganglionic eminence (MGE). In summary, both fetal LGE cells and LGE grafts express specific striatal markers, and LGE grafts integrate into the host striatum and innervate the major striatal efferent target within the host brain. These data suggest that the LGE is the origin of cells committed to striatal phenotypes in the developing brain.
Collapse
Affiliation(s)
- T W Deacon
- Neuroregeneration Laboratory, McLean Hospital, Belmont, MA 02178, USA
| | | | | |
Collapse
|
45
|
Pakzaban P, Isacson O. Neural xenotransplantation: reconstruction of neuronal circuitry across species barriers. Neuroscience 1994; 62:989-1001. [PMID: 7845600 DOI: 10.1016/0306-4522(94)90338-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Selective replacement of degenerated neurons in the adult brain with allogeneic fetal neuroblasts is a promising therapeutic modality for human neurodegenerative diseases, but is confounded with practical and potential ethical problems. To evaluate the potential of xenogeneic donors as a cell source for neural transplantation, we have critically examined the available experimental evidence in animal models pertaining to the survival, integration and function of xenogeneic fetal neuroblasts in the host brain. A statistical meta-analysis across multiple studies revealed that immunologically-related transplantation parameters (immunosuppression and donor-host phylogenetic distance) were the main determinants of neural xenograft survival. The immunological basis for xenograft rejection is reviewed in the context of novel immunoprotection strategies designed to enhance xenograft survival. Furthermore, the evidence for behavioral recovery based on anatomical and functional integration of neural xenografts in the host brain is examined with an awareness of developmental considerations. It is concluded that neural xenotransplantation offers a unique opportunity for effective neuronal replacement with significant potential for clinical use.
Collapse
Affiliation(s)
- P Pakzaban
- Neuroregeneration Laboratory, McLean Hospital, Belmont, MA 02178
| | | |
Collapse
|
46
|
Labandeira-Garcia JL, Guerra MJ. Cortical stimulation induces fos expression in intrastriatal striatal grafts. Brain Res 1994; 652:87-97. [PMID: 7953725 DOI: 10.1016/0006-8993(94)90321-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Innervation of intrastriatal grafts of fetal striatal tissue by host corticostriatal projections has been shown in a number of previous studies in rats. In the work reported here, induction of Fos protein in grafted striatal neurons by electrical stimulation of the host frontoparietal cortex has been used as cell-level marker of corticostriatal postsynaptic responses within the striatal grafts. Unilateral cortical stimulation 30 min before sacrifice led to bilateral widespread and intense Fos induction throughout the normal striatum, although the response was somewhat more intense ipsilaterally and in the dorsolateral rostral striatum. In adult rats whose striatum had been lesioned with ibotenic acid 10-12 days prior to implantation of fetal striatal tissue, 3- and 18-month-old striatal grafts showed Fos immunoreactivity in a considerable number of cells after either bilateral, or ipsilateral (approximately 30-40% of the density of Fos-immunoreactive cells in the normal striatum) or contralateral cortical stimulation. Double-Fos and -DARPP-32 immunohistochemistry revealed that the Fos-immunoreactive nuclei were concentrated in the DARPP-32-positive (i.e. striatum-like) patches, which contained approximately 60% of the density of Fos-positive nuclei in the normal striatum after either ipsilateral or bilateral stimulation. However, Fos-immunoreactive nuclei were unevenly distributed within the DARPP-32-positive compartment of the graft, with some clusters of Fos-immunoreactive nuclei at 2-3 x the density observed in the normal striatum and other areas with Fos-immunoreactive nuclei present at lower density or absent. Fos induction was also observed in 4-week-old grafts, indicating that functional corticostriatal synaptic contacts develop rapidly. Striatal grafts implanted either in non-lesioned host striatum or in long-term (18 months) lesioned striatum, similarly showed Fos-positive nuclei after cortical stimulation, indicating that host corticostriatal fibers are equally capable of establishing functional synaptic contacts under these conditions. These results indicate that host corticostriatal fibres not only form an axonal network within the graft but also induce postsynaptic responses which may contribute to the observed graft-induced amelioration of lesion-derived behavioural deficits.
Collapse
Affiliation(s)
- J L Labandeira-Garcia
- Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Spain
| | | |
Collapse
|
47
|
Schumacher JM, Hantraye P, Brownell AL, Riche D, Madras BK, Davenport PD, Maziere M, Elmaleh DR, Brownell GL, Isacson O. A primate model of Huntington's disease: functional neural transplantation and CT-guided stereotactic procedures. Cell Transplant 1994; 1:313-22. [PMID: 1344304 DOI: 10.1177/096368979200100409] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this article, we show that 1) computed tomographic (CT)-guided stereotactic infusion of an excitotoxin into the striatum of a nonhuman primate provides a useful neuropathologic and behavioral model for Huntington's disease. 2) High-resolution positron emission tomography (PET) can be used to image the decreased glucose utilization and the preservation of dopaminergic terminals in the lesioned striatum by using 2-fluoro-deoxy-D-glucose (2FDG) and N-(C-11)-methyl-2-beta-carbomethoxy-3-beta-phenyl tropane (CPT) as tracers. 3) Transplantation of cross-species striatal fetal tissue into the lesioned caudate-putamen reduces many of the abnormal motor movements and behavioral changes seen in the Huntington's disease primate model. 4) Graft rejection results in the return of the abnormal signs of the pregrafted state. These results indicate that treatment of the neuronal deficit in Huntington's disease can involve intervention at the local neuronal circuit level. CT-guided stereotactic implantation of cells that might protect or replace this defective circuitry may eventually provide an effective treatment for Huntington's disease.
Collapse
Affiliation(s)
- J M Schumacher
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston 02114
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Labandeira-Garcia JL, Tobio JP, Guerra MJ. Comparison between normal developing striatum and developing striatal grafts using drug-induced Fos expression and neuron-specific enolase immunohistochemistry. Neuroscience 1994; 60:399-415. [PMID: 7915411 DOI: 10.1016/0306-4522(94)90253-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The cell-level functional maturation of cell suspension grafts from embryonic day 14-15 rat striatal primordia implanted unilaterally into ibotenic acid lesioned striata of adult female rats was studied from two days to 10 weeks post-grafting. The functional and morphological characteristics of the grafts were compared with those of adult grafts (one year after implantation), normal adult striata and postnatal developing striata (up to four weeks after birth). Serial sections were stained with Cresyl Violet and investigated immunohistochemically with antibodies against dopamine- and adenosine 3',5'-monophosphate-regulated phosphoprotein (DARPP-32, as a striatal marker), tyrosine hydroxylase (as a marker of dopaminergic fibres), Fos protein (as a cell-level marker of functional dopaminergic host-graft interactions), and neuron-specific enolase (correlated to differentiation and functional maturation of neuronal cells). Selected sections were double-stained for DARPP-32 and either tyrosine hydroxylase, Fos or neuron-specific enolase. The rats used to study dopamine receptor-activated expression of Fos were killed 2 h after administration of either the dopamine-releasing agent D-amphetamine (5 mg/kg intraperitoneally) or the dopamine-receptor agonist apomorphine (0.25 mg/kg subcutaneously, at which dosage it is active only on supersensitive receptors of denervated neurons). In normally developing rats, amphetamine induced Fos expression in both the striatum and globus pallidus by two weeks after birth; by four weeks, the pattern of amphetamine-induced Fos immunoreactivity was similar to that observed in adults. In the globus pallidus of both two- and three-week-old rats, amphetamine induced greater expression of Fos than in adults. Apomorphine did not induce appreciable Fos activation in either the striatum or the globus pallidus at any stage of development. In striatal grafts, amphetamine induced Fos expression from three weeks after implantation onwards, and by five to 10 weeks post-grafting the pattern of Fos immunoreactivity was similar to that observed in adult grafts. However, apomorphine induced a considerable number of Fos-positive nuclei in striatal grafts at three and four weeks after grafting. Neuron-specific enolase immunoreactivity was moderate in normal adult striatum and very high in the adult globus pallidus, and mainly located in neuronal perikarya and processes. Before two weeks of age, most neuron-specific enolase immunoreactivity was observed in internal capsule fascicles and the striatal afferents. Between two and four weeks after birth, neuron-specific enolase immunoreactivity in striatal and globus pallidus neurons gradually increased, while that in afferent fibres decreased to adult levels.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J L Labandeira-Garcia
- Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Spain
| | | | | |
Collapse
|
49
|
Internal Composition of Striatal Grafts: Light and Electron Microscopy. ADVANCES IN BEHAVIORAL BIOLOGY 1994. [DOI: 10.1007/978-1-4613-0485-2_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
50
|
Rogel-Fuchs Y, Zahalka EA, Yanai J. Reversal of early phenobarbital-induced cholinergic and related behavioral deficits by neuronal grafting. Brain Res Bull 1994; 33:273-9. [PMID: 8293312 DOI: 10.1016/0361-9230(94)90194-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The present experiment was performed to assess the possible restoration of normal maze behavior, as well as parallel muscarinic receptor binding capabilities, in mice pre- or neonatally exposed to phenobarbital. Mice were exposed to phenobarbital prenatally by feeding the mother phenobarbital (3 gkg milled food) on gestation days 9-18 (PreB mice), or neonatally, by daily injections of 50 mg/kg Na phenobarbital to the pups on days 2-21 (NeoB). At adulthood, PreB and NeoB mice were 61.3% and 65% deficient, respectively, in the hippocampus-related Morris maze behavior, as compared to control. Both groups had a 58% increase in their hippocampal muscarinic receptors maximal binding (Bmax) (p < 0.001); the dissociation constant (Kd) was not affected by the phenobarbital exposure. Treated animals and their respective controls received septal cholinergic embryonic graft into the hippocampus. The viability of the transplants was confirmed by AChE histochemistry. Nine weeks later the grafted mice showed significant improvement in the Morris maze (52% for both PreB and NeoB (p < 0.001)). Their Bmax was also reduced from early phenobarbital exposed animals' levels by 15% for PreB and by 25% for NeoB (p < 0.001). The results suggest that early phenobarbital-induced behavioral deficit and their related biochemical alterations can be partially corrected by the appropriate neural grafting, and thus provide further support to the apparent relationship between the early phenobarbital-induced septohippocampal cholinergic alterations and the hippocampus-related behavioral deficits.
Collapse
Affiliation(s)
- Y Rogel-Fuchs
- Melvin A. and Eleanor Ross Laboratory for Studies in Neural Birth Defects, Department of Anatomy and Embryology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|