1
|
Payet JM, Baratta MV, Christianson JP, Lowry CA, Hale MW. Modulation of dorsal raphe nucleus connectivity and serotonergic signalling to the insular cortex in the prosocial effects of chronic fluoxetine. Neuropharmacology 2025; 272:110406. [PMID: 40081797 DOI: 10.1016/j.neuropharm.2025.110406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/22/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Long-term exposure to fluoxetine and other selective serotonin reuptake inhibitors alters social and anxiety-related behaviours, including social withdrawal, which is a symptom of several neuropsychiatric disorders. Adaptive changes in serotonergic neurotransmission likely mediate this delayed effect, although the exact mechanisms are still unclear. Here we investigated the functional circuitry underlying the biphasic effects of fluoxetine on social approach-avoidance behaviour and explored the place of serotonergic dorsal raphe nucleus (DR) ensembles in this network, using c-Fos-immunoreactivity as a correlate of activity. Graph theory-based network analysis revealed changes in patterns of functional connectivity and identified neuronal populations in the insular cortex (IC) and serotonergic populations in the DR as central targets to the prosocial effects of chronic fluoxetine. To determine the role of serotonergic projections to the IC, a retrograde tracer was micro-injected in the IC prior to fluoxetine treatment and social behaviour testing. Chronic fluoxetine increased c-Fos immunoreactivity in insula-projecting neurons of the rostral, ventral part of the DR (DRV). Using a virally delivered Tet-Off platform for temporally-controlled marking of neuronal activation, we observed that chronic fluoxetine may affect social behaviour by influencing independent but interconnected populations of serotonergic DR ensembles. These findings suggest that sustained fluoxetine exposure causes adaptive changes in functional connectivity due to altered serotonergic neurotransmission in DR projection targets, and the increased serotonergic signalling to the IC likely mediates some of the therapeutic effects of fluoxetine on social behaviour.
Collapse
Affiliation(s)
- Jennyfer M Payet
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Michael V Baratta
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA
| | - John P Christianson
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, Center for Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Matthew W Hale
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
2
|
Coassolo L, B Danneskiold-Samsøe N, Nguyen Q, Wiggenhorn A, Zhao M, Wang DCH, Toomer D, Lone J, Wei Y, Patel A, Liparulo I, Kavi D, Wat LW, Reghupaty SC, Kim JJ, Asemi T, Bielczyk-Maczynska E, Li VL, Moya-Garzon MD, Krentz NAJ, Stahl A, Chou DHC, Luo L, Svensson KJ. Prohormone cleavage prediction uncovers a non-incretin anti-obesity peptide. Nature 2025; 641:192-201. [PMID: 40044869 PMCID: PMC12043402 DOI: 10.1038/s41586-025-08683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/22/2025] [Indexed: 03/26/2025]
Abstract
Peptide hormones, a class of pharmacologically active molecules, have a critical role in regulating energy homeostasis. Prohormone convertase 1/3 (also known as PCSK1/3) represents a key enzymatic mechanism in peptide processing, as exemplified with the therapeutic target glucagon-like peptide 1 (GLP-1)1,2. However, the full spectrum of peptides generated by PCSK1 and their functional roles remain largely unknown. Here we use computational drug discovery to systematically map more than 2,600 previously uncharacterized human proteolytic peptide fragments cleaved by prohormone convertases, enabling the identification of novel bioactive peptides. Using this approach, we identified a 12-mer peptide, BRINP2-related peptide (BRP). When administered pharmacologically, BRP reduces food intake and exhibits anti-obesity effects in mice and pigs without inducing nausea or aversion. Mechanistically, BRP administration triggers central FOS activation and acts independently of leptin, GLP-1 receptor and melanocortin 4 receptor. Together, these data introduce a method to identify new bioactive peptides and establish pharmacologically that BRP may be useful for therapeutic modulation of body weight.
Collapse
Affiliation(s)
- Laetitia Coassolo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Niels B Danneskiold-Samsøe
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Quennie Nguyen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Amanda Wiggenhorn
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Meng Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - David Cheng-Hao Wang
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - David Toomer
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jameel Lone
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Yichao Wei
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Aayan Patel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Irene Liparulo
- Department of Nutrition and Toxicology, University of California Berkeley, Berkeley, CA, USA
| | - Deniz Kavi
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lianna W Wat
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Saranya Chidambaranathan Reghupaty
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Julie Jae Kim
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Tina Asemi
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Veronica L Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Maria Dolores Moya-Garzon
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Nicole A J Krentz
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andreas Stahl
- Department of Nutrition and Toxicology, University of California Berkeley, Berkeley, CA, USA
| | - Danny Hung-Chieh Chou
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
3
|
Beckham J, Kim YJ, Vargas Paniagua E, Kent N, Nagao K, Selvaraji S, Koehler F, Malkin E, Smith X, Tabet A, Kang S, Anikeeva P. Magnetite Nanodiscs Activate Mechanotransductive Calcium Signaling in Diverse Cell Types. J Am Chem Soc 2025; 147:13303-13314. [PMID: 40215485 PMCID: PMC12024462 DOI: 10.1021/jacs.4c18227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/24/2025]
Abstract
Remote magnetomechanical stimulation using magnetic nanomaterials has emerged as a robust and minimally invasive technique for modulating neuronal activity. However, despite the presence of machinery to convert mechanical force into biochemical signals in many types of cells, magnetomechanical stimulation of non-neuronal tissue remains largely unexplored. Here, we demonstrate that in the presence of weak magnetic fields (12-56 mT) with frequencies 5-125 Hz, magnetite nanodiscs (MNDs) activate ubiquitous mechano-sensitive calcium signaling pathways, including transmembrane calcium entry, the release of intracellular calcium reserves, and store-operated calcium signaling. MNDs mediate calcium transients in cells with disparate calcium signaling machinery, such as cardiomyocytes and hippocampal astrocytes. The characteristics of these calcium responses depend on the protein machinery available in each cell type. These findings expand the reach of cellular modulation strategies using magnetic nanoparticles to non-neuronal cells and thereby open new applications probing endocrine, immune, and circulatory functions and related disorders with remote magnetic approaches.
Collapse
Affiliation(s)
- Jacob
L. Beckham
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ye Ji Kim
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Emmanuel Vargas Paniagua
- Department
of Brain and Cognitive Sciences, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Noah Kent
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Keisuke Nagao
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Sharmelee Selvaraji
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- McGovern
Institute for Brain Research, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Florian Koehler
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Elian Malkin
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Xavier Smith
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Anthony Tabet
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Sehoon Kang
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Polina Anikeeva
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department
of Brain and Cognitive Sciences, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Ahmad JN, Modrak M, Fajfrova M, Sotoca BMB, Benada O, Sebo P. Bordetella adenylate cyclase toxin elicits chromatin remodeling and transcriptional reprogramming that blocks differentiation of monocytes into macrophages. mBio 2025; 16:e0013825. [PMID: 40105369 PMCID: PMC11980580 DOI: 10.1128/mbio.00138-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/18/2025] [Indexed: 03/20/2025] Open
Abstract
Bordetella pertussis infects human upper airways and deploys an array of immunosuppressive virulence factors, among which the adenylate cyclase toxin (CyaA) plays a prominent role in disarming host phagocytes. CyaA binds the complement receptor-3 (CR3 aka αMβ2 integrin CD11b/CD18 or Mac-1) of myeloid cells and delivers into their cytosol an adenylyl cyclase enzyme that hijacks cellular signaling through unregulated conversion of cytosolic ATP to cAMP. We found that the action of as little CyaA as 22 pM (4 ng/mL) blocks macrophage colony-stimulating factor (M-CSF)-driven transition of migratory human CD14+ monocytes into macrophages. Global transcriptional profiling (RNAseq) revealed that exposure of monocytes to 22 pM CyaA for 40 hours in culture with 20 ng/mL of M-CSF led to upregulation of genes that exert negative control of monocyte to macrophage differentiation (e.g., SERPINB2, DLL1, and CSNK1E). The sustained CyaA action yielded downregulation of numerous genes involved in processes crucial for host defense, such as myeloid cell differentiation, chemotaxis of inflammatory cells, antigen presentation, phagocytosis, and bactericidal activities. CyaA-elicited signaling also promoted deacetylation and trimethylation of lysines 9 and 27 of histone 3 (H3K9me3 and H3K27me3) and triggered the formation of transcriptionally repressive heterochromatin patches in the nuclei of CyaA-exposed monocytes. These effects were partly reversed by the G9a methyltransferase inhibitor UNC 0631 and by the pleiotropic HDAC inhibitor Trichostatin-A, revealing that CyaA-elicited epigenetic alterations mediate transcriptional reprogramming of monocytes and play a role in CyaA-triggered block of monocyte differentiation into bactericidal macrophage cells.IMPORTANCETo proliferate on host airway mucosa and evade elimination by patrolling sentinel cells, the whooping cough agent Bordetella pertussis produces a potently immunosubversive adenylate cyclase toxin (CyaA) that blocks opsonophagocytic killing of bacteria by phagocytes like neutrophils and macrophages. Indeed, chemotactic migration of CD14+ monocytes to the infection site and their transition into bactericidal macrophages, thus replenishing the exhausted mucosa-patrolling macrophages, represents one of the key mechanisms of innate immune defense to infection. We show that the cAMP signaling action of CyaA already at a very low toxin concentration triggers massive transcriptional reprogramming of monocytes that is accompanied by chromatin remodeling and epigenetic histone modifications, which block the transition of migratory monocytes into bactericidal macrophage cells. This reveals a novel layer of toxin action-mediated hijacking of functional differentiation of innate immune cells for the sake of mucosal pathogen proliferation and transmission to new hosts.
Collapse
Affiliation(s)
- Jawid Nazir Ahmad
- Institute of Microbiology of Czech Academy of Sciences, Prague, Czechia
| | - Martin Modrak
- Institute of Microbiology of Czech Academy of Sciences, Prague, Czechia
| | - Marketa Fajfrova
- Institute of Microbiology of Czech Academy of Sciences, Prague, Czechia
| | | | - Oldrich Benada
- Institute of Microbiology of Czech Academy of Sciences, Prague, Czechia
| | - Peter Sebo
- Institute of Microbiology of Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
5
|
Feng X, Xu M, Liu Y, Wang X, Duan Y, Zheng X, Yin W, Cai Y, Zhang W, Jiang Q, Pang J, Li J. The sperm quality in DIO male mice is linked to the NF-κB signaling and Ppp2ca expression in the hypothalamus. iScience 2025; 28:112110. [PMID: 40160428 PMCID: PMC11951025 DOI: 10.1016/j.isci.2025.112110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/24/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025] Open
Abstract
Recent studies show obesity correlated with reduced sperm quality in males, but the mechanism is unclear. In this study, diet-induced obese (DIO) male mice exhibited disrupted luteinizing hormone (LH) pulse release due to altered function of the hypothalamic-pituitary-gonadal (HPG) axis. This alteration was caused by activation of nuclear factor kappa B (NF-κB) signaling in the hypothalamus, which led to decreased sperm quality. RNA sequencing (RNA-seq) analysis of the hypothalamic arcuate nucleus (ARC) revealed a signaling network involving protein phosphatase 2 catalytic subunit alpha (Ppp2ca). This network disrupted LH pulse secretion by inhibiting Akt kinase (AKT) and cAMP responsive element-binding protein 1 (CREB1) activities, thereby reducing KiSS-1 metastasis-suppressor (Kiss1) expression. Furthermore, overexpression of the Ppp2ca gene in the ARC led to disrupted LH patterns and reduced sperm quality. These findings offer new insights into the molecular mechanisms underlying sperm quality decline in DIO male mice.
Collapse
Affiliation(s)
- Xu Feng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Maoxing Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ying Liu
- Clinical Center of Reproductive Medicine, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xiaoyu Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yiman Duan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoyan Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wen Yin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jing Pang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Juxue Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Provincial Key Laboratory of Molecular Targets and Intervention of Metabolic Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, China
| |
Collapse
|
6
|
Lai J, Demirbas D, Phillips K, Zhao B, Wallace H, Seferian M, Nakayama T, Harris H, Chatzipli A, Lee EA, Yu TW. Multi-omic analysis of the ciliogenic transcription factor RFX3 reveals a role in promoting activity-dependent responses via enhancing CREB binding in human neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640588. [PMID: 40060598 PMCID: PMC11888390 DOI: 10.1101/2025.02.27.640588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Heterozygous loss-of-function (LoF) variants in RFX3, a transcription factor known to play key roles in ciliogenesis, result in autism spectrum disorder (ASD) and neurodevelopmental delay. RFX binding motifs are also enriched upstream of genes found to be commonly dysregulated in transcriptomic analyses of brain tissue from individuals with idiopathic ASD. Still, the precise functions of RFX3 in the human brain is unknown. Here, we studied the impact of RFX3 deficiency using human iPSC-derived neurons and forebrain organoids. Biallelic loss of RFX3 disrupted ciliary gene expression and delayed neuronal differentiation, while monoallelic loss of RFX3 did not. Instead, transcriptomic and DNA binding analyses demonstrated that monoallelic RFX3 loss disrupted synaptic target gene expression and diminished neuronal activity-dependent gene expression. RFX3 binding sites co-localized with CREB binding sites near activity-dependent genes, and RFX3 deficiency led to decreased CREB binding and impaired induction of CREB targets in response to neuronal depolarization. This study demonstrates a novel role of the ASD-associated gene RFX3 in shaping neuronal synaptic development and plasticity.
Collapse
Affiliation(s)
- Jenny Lai
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Program in Neuroscience, Harvard University, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Didem Demirbas
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Kaitlyn Phillips
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Boxun Zhao
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Harrison Wallace
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Megan Seferian
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Tojo Nakayama
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Holly Harris
- Department of Pediatrics, Baylor College of Medicine and Meyer Center for Developmental Pediatrics, Texas Children's Hospital, Houston, Texas, 77054, USA
| | - Aikaterini Chatzipli
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Timothy W Yu
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
7
|
Li J, Sun B, Tan LX, Griffin N, Niknezhad SV, Yu C, Berthoin L, Cruz-Pacheco N, Mohabbat S, Sinada H, Efraim Y, Chen FYT, An L, Gaylord EA, Bahney CS, Lombaert IM, Knox SM. Rescue of non-healing, degenerative salivary glands by cholinergic-calcium signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630834. [PMID: 39803569 PMCID: PMC11722244 DOI: 10.1101/2024.12.31.630834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Chronic degenerative wounds are often deemed irreparable, directing research efforts to focus predominantly on acute tissue injury regeneration while leaving endogenous repair mechanisms for chronically damaged tissues largely unexplored. In this study, we demonstrate that non-healing, severely degenerated salivary gland tissues can be fundamentally restored through first-line treatment with muscarinic agonists. This approach rescues tissue structure and function, returning it to a homeostatic-like state, and reactivates endogenous regeneration processes to drive new cell expansion that persists for months post-treatment. Furthermore, neuromimetic activation profoundly depletes radiation-induced DNA damage and re-establishes the nerve-acinar relationship, ultimately restoring the tissues physiological capacity to maintain homeostasis, even in the absence of treatment. We show that full recovery of organ function, comparable to uninjured controls, is primarily mediated by the re-differentiation of aberrantly de-differentiated epithelial acinar cells and the restoration of mitochondrial function via a muscarinic-calcium signaling pathway. These findings challenge the prevailing notion that chronic organ degeneration is irreversible and propose a readily testable therapeutic strategy for epithelial restoration with potential applications across a spectrum of chronic injuries.
Collapse
Affiliation(s)
- Jianlong Li
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, California, USA; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
- These authors contributed equally
| | - Bo Sun
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, California, USA
- These authors contributed equally
| | - Li Xuan Tan
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, California, USA; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
- These authors contributed equally
| | - Nathan Griffin
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Seyyed Vahid Niknezhad
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Chieh Yu
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Lionel Berthoin
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Noel Cruz-Pacheco
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Seayar Mohabbat
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Hanan Sinada
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Yael Efraim
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Feeling Yu Ting Chen
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Luye An
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Eliza A. Gaylord
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Chelsey S. Bahney
- University of California, San Francisco. Orthopedic Trauma Institute, San Francisco, CA
| | - Isabelle M.A. Lombaert
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
- Co–senior authors
| | - Sarah M. Knox
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, California, USA
- Co–senior authors
- Lead contact
| |
Collapse
|
8
|
Duarte-Guterman P, Skandalis DA, Merkl A, Geissler DB, Ehret G. Brain aromatase and its relationship with parental experience and behavior in male mice. Front Neurosci 2025; 19:1502764. [PMID: 40035063 PMCID: PMC11872740 DOI: 10.3389/fnins.2025.1502764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction In most mammals, paternal care is not mandatory for raising offspring. In house mice, experience with pups governs the extent and quality of paternal care. First-time fathers undergo a dramatic transition from ignoring or killing pups to caring for pups. The behavioral shift occurs together with changes in brain estrogen signaling as indicated by changes in estrogen receptor presence and distribution in multiple areas regulating olfaction, emotion, and motivation. Methods We measured changes in the expression of aromatase, the enzyme converting testosterone into estrogen, as an indirect measure of estrogen synthesis, in various areas of the limbic system in mice with increasing paternal experience. Results The amount of paternal experience (5 or 27 days) was associated with increased numbers of immunocytochemically-identified aromatase expressing cells in the medial and cortical amygdala, posterior piriform cortex, and ventromedial hypothalamus. Functionally, these changes can be related to the disappearance of aggression or neglect towards pups when first-time fathers or, even more, well-experienced fathers are handling their own pups. In the lateral septum, the anterior piriform cortex and to some extent in the medial preoptic area, parental experience increased the number of aromatase-positive cells only in fathers with 27 days of experience, and only in the right hemisphere. This represents a novel case of brain-functional lateralization triggered by experience. Nuclei/areas associated with maternal care (medial preoptic area, bed nucleus of stria terminalis, nucleus accumbens) exhibited a left-hemisphere advantage in aromatase expressing cells, both in pup-naïve and pup-experienced males. This newly found lateralization may contribute to the left-hemisphere dominant processing and perception of pup calls to release parental behavior. Conclusion In general, the experience-dependent changes in aromatase expression we observed in most brain areas did not mirror the previously reported changes in estrogen receptors (ERα) when pup-naïve males became pup-caring fathers. Hence, paternal behavior may depend, in a brain area-specific way, on the differential action of estrogen through its receptors and/or direct local modulation of neural processing.
Collapse
Affiliation(s)
| | | | - Ariane Merkl
- Institute of Neurobiology, University of Ulm, Ulm, Germany
| | | | - Günter Ehret
- Institute of Neurobiology, University of Ulm, Ulm, Germany
| |
Collapse
|
9
|
Ganesan K, Ghorbanpour S, Kendall W, Broome ST, Gladding JM, Dhungana A, Abiero AR, Mahmoudi M, Castorina A, Kendig MD, Becchi S, Valova V, Cole L, Bradfield LA. Hippocampal neuroinflammation induced by lipopolysaccharide causes sex-specific disruptions in action selection, food approach memories, and neuronal activation. Brain Behav Immun 2025; 124:9-27. [PMID: 39547520 DOI: 10.1016/j.bbi.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024] Open
Abstract
Hippocampal neuroinflammation is present in multiple diseases and disorders that impact motivated behaviour in a sex-specific manner, but whether neuroinflammation alone is sufficient to disrupt this behaviour is unknown. We investigated this question here using mice. First, the application of an endotoxin to primary cultures containing only hippocampal neurons did not affect their activation. However, when the same endotoxin was applied to mixed neuronal/glial cultures it did increase neuronal activation, providing initial indications of how it might be able to effect behavioural change. We next showed neuroinflammatory effects on behaviour directly, demonstrating that intra-hippocampal administration of the same endotoxin increased locomotor activity and accelerated goal-directed learning in both male and female mice. In contrast, lipopolysaccharide-induced hippocampal neuroinflammation caused sex-specific disruptions to the acquisition of instrumental actions and to Pavlovian food-approach memories. Finally, we showed that LPS-induced hippocampal neuroinflammation had a sexually dimorphic effect on neuronal activation: increasing it in females and decreasing it in males.
Collapse
Affiliation(s)
- Kiruthika Ganesan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia; Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St. Vincent's Health Network, Sydney, New South Wales 2010, Australia; School of Psychology, Faculty of Science, University of Sydney, New South Wales 2006, Australia
| | - Sahar Ghorbanpour
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia; Institute of Cell and Tissue Culture Technologies, Department of Biotechnology, BOKU University, Vienna, Austria
| | - William Kendall
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Sarah Thomas Broome
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia; Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Joanne M Gladding
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Amolika Dhungana
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia; Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St. Vincent's Health Network, Sydney, New South Wales 2010, Australia
| | - Arvie Rodriguez Abiero
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia; Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St. Vincent's Health Network, Sydney, New South Wales 2010, Australia; School of Psychology, Faculty of Science, University of Sydney, New South Wales 2006, Australia
| | - Maedeh Mahmoudi
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Alessandro Castorina
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Michael D Kendig
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Serena Becchi
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales Sydney, Sydney, New South Wales 2052, Australia; Teva Pharmaceuticals, Sydney, New South Wales 2113, Australia
| | - Veronika Valova
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, New South Wales 2050, Australia
| | - Louise Cole
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Laura A Bradfield
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia; Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St. Vincent's Health Network, Sydney, New South Wales 2010, Australia.
| |
Collapse
|
10
|
Zent KH, Dell'Acqua ML. Synapse-to-Nucleus ERK→CREB Transcriptional Signaling Requires Dendrite-to-Soma Ca 2+ Propagation Mediated by L-Type Voltage-Gated Ca 2+ Channels. J Neurosci 2025; 45:e1216242024. [PMID: 39562039 PMCID: PMC11756630 DOI: 10.1523/jneurosci.1216-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/02/2024] [Accepted: 11/09/2024] [Indexed: 11/21/2024] Open
Abstract
The cAMP-response element-binding protein (CREB) transcription factor controls the expression of the neuronal immediate early genes c-fos, Arc, and Bdnf and is essential for long-lasting synaptic plasticity underlying learning and memory. Despite this critical role, there is still ongoing debate regarding the synaptic excitation-transcription (E-T) coupling mechanisms mediating CREB activation in the nucleus. Here we employed optical uncaging of glutamate to mimic synaptic excitation of distal dendrites in conjunction with simultaneous imaging of intracellular Ca2+ dynamics and transcriptional reporter gene expression to elucidate CREB E-T coupling mechanisms in hippocampal neurons cultured from both male and female rats. Using this approach, we found that CREB-dependent transcription was engaged following dendritic stimulation of N-methyl-d-aspartate receptors (NMDARs) only when Ca2+ signals propagated to the soma via subsequent activation of L-type voltage-gated Ca2+ channels resulting in activation of extracellular signal-regulated kinase MAP kinase signaling to sustain CREB phosphorylation in the nucleus. In contrast, dendrite-restricted Ca2+ signals generated by NMDARs failed to stimulate CREB-dependent transcription. Furthermore, Ca2+-CaM-dependent kinase-mediated signaling pathways that may transiently contribute to CREB phosphorylation following stimulation were ultimately dispensable for downstream CREB-dependent transcription and c-Fos induction. These findings emphasize the essential role that L-type Ca2+ channels play in rapidly relaying signals over long distances from synapses located on distal dendrites to the nucleus to control gene expression.
Collapse
Affiliation(s)
- Katlin H Zent
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Neurotechnology Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
11
|
Stanisavljević Ilić A, Filipović D. Mapping of c-Fos Expression in Rat Brain Sub/Regions Following Chronic Social Isolation: Effective Treatments of Olanzapine, Clozapine or Fluoxetine. Pharmaceuticals (Basel) 2024; 17:1527. [PMID: 39598437 PMCID: PMC11597560 DOI: 10.3390/ph17111527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
The c-Fos as a marker of cell activation is used to identify brain regions involved in stimuli processing. This review summarizes a pattern of c-Fos immunoreactivity and the overlapping brain sub/regions which may provide hints for the identification of neural circuits that underlie depressive- and anxiety-like behaviors of adult male rats following three and six weeks of chronic social isolation (CSIS), relative to controls, as well as the antipsychotic-like effects of olanzapine (Olz), and clozapine (Clz), and the antidepressant-like effect of fluoxetine (Flx) in CSIS relative to CSIS alone. Additionally, drug-treated controls relative to control rats were also characterized. The overlapping rat brain sub/regions with increased expression of c-Fos immunoreactivity following three or six weeks of CSIS were the retrosplenial granular cortex, c subregion, retrosplenial dysgranular cortex, dorsal dentate gyrus, paraventricular nucleus of the thalamus (posterior part, PVP), lateral/basolateral (LA/BL) complex of the amygdala, caudate putamen, and nucleus accumbens shell. Increased activity of the nucleus accumbens core following exposure of CSIS rats either to Olz, Clz, and Flx treatments was found, whereas these treatments in controls activated the LA/BL complex of the amygdala and PVP. We also outline sub/regions that might represent potential neuroanatomical targets for the aforementioned antipsychotics or antidepressant treatments.
Collapse
Affiliation(s)
| | - Dragana Filipović
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
12
|
Kyriakopoulos AM, Nigh G, McCullough PA, Seneff S. Clinical rationale for dietary lutein supplementation in long COVID and mRNA vaccine injury syndromes. F1000Res 2024; 13:191. [PMID: 39526116 PMCID: PMC11549548 DOI: 10.12688/f1000research.143517.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Lutein, a plant-derived xanthophyl-carotenoid, is an exceptional antioxidant and anti-inflammatory constituent found in food. High dietary intake of lutein is beneficial against eye disease, improves cardiometabolic health, protects from neurodegenerative diseases, and is beneficial for liver, kidney, and respiratory health. Lutein protects against oxidative and nitrosative stress, both of which play a major role in long COVID and mRNA vaccination injury syndromes. Lutein is an important natural agent for therapeutic use against oxidative and nitrosative stress in chronic illnesses such as cardiovascular and neurodegenerative diseases and cancer. It can also potentially inhibit spike protein-induced inflammation. Rich dietary supplementation of lutein, naturally derived in non-biodegradable Extra Virgin Olive Oil (EVOO), can most optimally be used against oxidative and nitrosative stress during post-COVID and mRNA vaccination injury syndromes. Due to its high oleic acid (OA) content, EVOO supports optimal absorption of dietary lutein. The main molecular pathways by which the SARS-CoV-2 spike protein induces pathology, nuclear factor kappa-light-chain-enhancer activated B cells (NF-κB) and activated protein (AP)-1, can be suppressed by lutein. Synergy with other natural compounds for spike protein detoxification is likely.
Collapse
Affiliation(s)
| | - Greg Nigh
- Naturopathic Oncologist, Immersion Health, Portland, Oregon, USA
| | | | - Stephanie Seneff
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
13
|
Horrocks MS, Zhurenkov KE, Malmström J. Conducting polymer hydrogels for biomedical application: Current status and outstanding challenges. APL Bioeng 2024; 8:031503. [PMID: 39323539 PMCID: PMC11424142 DOI: 10.1063/5.0218251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Conducting polymer hydrogels (CPHs) are composite polymeric materials with unique properties that combine the electrical capabilities of conducting polymers (CPs) with the excellent mechanical properties and biocompatibility of traditional hydrogels. This review aims to highlight how the unique properties CPHs have from combining their two constituent materials are utilized within the biomedical field. First, the synthesis approaches and applications of non-CPH conductive hydrogels are discussed briefly, contrasting CPH-based systems. The synthesis routes of hydrogels, CPs, and CPHs are then discussed. This review also provides a comprehensive overview of the recent advancements and applications of CPHs in the biomedical field, encompassing their applications as biosensors, drug delivery scaffolds (DDSs), and tissue engineering platforms. Regarding their applications within tissue engineering, a comprehensive discussion of the usage of CPHs for skeletal muscle prosthetics and regeneration, cardiac regeneration, epithelial regeneration and wound healing, bone and cartilage regeneration, and neural prosthetics and regeneration is provided. Finally, critical challenges and future perspectives are also addressed, emphasizing the need for continued research; however, this fascinating class of materials holds promise within the vastly evolving field of biomedicine.
Collapse
|
14
|
Dando O, McQueen J, Burr K, Kind PC, Chandran S, Hardingham GE, Qiu J. A comparison of basal and activity-dependent exon splicing in cortical-patterned neurons of human and mouse origin. Front Mol Neurosci 2024; 17:1392408. [PMID: 39268251 PMCID: PMC11390650 DOI: 10.3389/fnmol.2024.1392408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Rodent studies have shown that alternative splicing in neurons plays important roles in development and maturity, and is regulatable by signals such as electrical activity. However, rodent-human similarities are less well explored. We compared basal and activity-dependent exon splicing in cortical-patterned human ESC-derived neurons with that in cortical mouse ESC-derived neurons, primary mouse cortical neurons at two developmental stages, and mouse hippocampal neurons, focussing on conserved orthologous exons. Both basal exon inclusion levels and activity-dependent changes in splicing showed human-mouse correlation. Conserved activity regulated exons are enriched in RBFOX, SAM68, NOVA and PTBP targets, and centered on cytoskeletal organization, mRNA processing, and synaptic signaling genes. However, human-mouse correlations were weaker than inter-mouse comparisons of neurons from different brain regions, developmental stages and origin (ESC vs. primary), suggestive of some inter-species divergence. The set of genes where activity-dependent splicing was observed only in human neurons were dominated by those involved in lipid biosynthesis, signaling and trafficking. Study of human exon splicing in mouse Tc1 neurons carrying human chromosome-21 showed that neuronal basal exon inclusion was influenced by cis-acting sequences, although may not be sufficient to confer activity-responsiveness in an allospecific environment. Overall, these comparisons suggest that neuronal alternative splicing should be confirmed in a human-relevant system even when exon structure is evolutionarily conserved.
Collapse
Affiliation(s)
- Owen Dando
- Edinburgh Medical School, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh, United Kingdom
| | - Jamie McQueen
- Edinburgh Medical School, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh, United Kingdom
| | - Karen Burr
- Edinburgh Medical School, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter C Kind
- Edinburgh Medical School, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh, United Kingdom
| | - Siddharthan Chandran
- Edinburgh Medical School, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
- Centre for Clinical Brain Sciences, Edinburgh Medical School, Edinburgh, United Kingdom
| | - Giles E Hardingham
- Edinburgh Medical School, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh, United Kingdom
| | - Jing Qiu
- Edinburgh Medical School, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
15
|
Ferro A, Arshad A, Boyd L, Stanley T, Berisha A, Vrudhula U, Gomez AM, Borniger JC, Cheadle L. The cytokine receptor Fn14 is a molecular brake on neuronal activity that mediates circadian function in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587786. [PMID: 38617238 PMCID: PMC11014623 DOI: 10.1101/2024.04.02.587786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
To survive, organisms must adapt to a staggering diversity of environmental signals, ranging from sensory information to pathogenic infection, across the lifespan. At the same time, organisms intrinsically generate biological oscillations, such as circadian rhythms, without input from the environment. While the nervous system is well-suited to integrate extrinsic and intrinsic cues, how the brain balances these influences to shape biological function system-wide is not well understood at the molecular level. Here, we demonstrate that the cytokine receptor Fn14, previously identified as a mediator of sensory experience-dependent synaptic refinement during brain development, regulates neuronal activity and function in adult mice in a time-of-day-dependent manner. We show that a subset of excitatory pyramidal (PYR) neurons in the CA1 subregion of the hippocampus increase Fn14 expression when neuronal activity is heightened. Once expressed, Fn14 constrains the activity of these same PYR neurons, suggesting that Fn14 operates as a molecular brake on neuronal activity. Strikingly, differences in PYR neuron activity between mice lacking or expressing Fn14 were most robust at daily transitions between light and dark, and genetic ablation of Fn14 caused aberrations in circadian rhythms, sleep-wake states, and sensory-cued and spatial memory. At the cellular level, microglia contacted fewer, but larger, excitatory synapses in CA1 in the absence of Fn14, suggesting that these brain-resident immune cells may dampen neuronal activity by modifying synaptic inputs onto PYR neurons. Finally, mice lacking Fn14 exhibited heightened susceptibility to chemically induced seizures, implicating Fn14 in disorders characterized by hyperexcitation, such as epilepsy. Altogether, these findings reveal that cytokine receptors that mediates inflammation in the periphery, such as Fn14, can also play major roles in healthy neurological function in the adult brain downstream of both extrinsic and intrinsic cues.
Collapse
Affiliation(s)
- Austin Ferro
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
| | - Anosha Arshad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
- Department of Neurobiology and Behavior, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA
| | - Leah Boyd
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
| | - Tess Stanley
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
| | - Adrian Berisha
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
| | - Uma Vrudhula
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
| | - Adrian M. Gomez
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
| | | | - Lucas Cheadle
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
- Howard Hughes Medical Institute, Cold Spring Harbor, NY 11740, USA
| |
Collapse
|
16
|
Wu P, Li W, Lv R, Cheng X, Lian F, Cai W, Hu Y, Zeng Y, Ke B, Chen Y, Ma Z, Ma M, Dai W, Xia P, Lin Y, Lin WJ, Ye X. Hyperactive lateral habenula mediates the comorbidity between rheumatoid arthritis and depression-like behaviors. Brain Behav Immun 2024; 117:412-427. [PMID: 38320683 DOI: 10.1016/j.bbi.2024.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024] Open
Abstract
Rheumatoid arthritis (RA) patients have a high prevalence for depression. On the other hand, comorbid with depression is associated with worse prognosis for RA. However, little is known about the underlying mechanisms for the comorbidity between RA and depression. It remains to be elucidated which brain region is critically involved in the development of depression in RA, and whether alterations in the brain may affect pathological development of RA symptoms. Here, by combining clinical and animal model studies, we show that in RA patients, the level of depression is significantly correlated with the severity of RA disease activity and affects patients' quality of life. The collagen antibody-induced arthritis (CAIA) mouse model of RA also develops depression-like behaviors, accompanied by hyperactivity and alterations in gene expression reflecting cerebrovascular disruption in the lateral habenula (LHb), a brain region critical for processing negative valence. Importantly, inhibition of the LHb not only alleviates depression-like behaviors, but also results in rapid remission of RA symptoms and amelioration of RA-related pathological changes. Together, our study highlights a critical but previously overlooked contribution of hyperactive LHb to the comorbidity between RA and depression, suggesting that targeting LHb in conjunction with RA treatments may be a promising strategy for RA patients comorbid with depression.
Collapse
Affiliation(s)
- Peihui Wu
- Department of Sports Medicine, the First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Wenchang Li
- Department of Sports Medicine, the First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Rongke Lv
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Physical Education, Huanghuai University, Zhumadian, China
| | - Xin Cheng
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fan Lian
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Wenbao Cai
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yubo Hu
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Medical College, Jiaying University, Meizhou, China
| | - Yanni Zeng
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bizhen Ke
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yi Chen
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zaohui Ma
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Meiqi Ma
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiping Dai
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pei Xia
- Department of Pathology, the First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Yangyang Lin
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Clinical Research Center for Rehabilitation Medicine, Guangzhou, China; Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Wei-Jye Lin
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, China.
| | - Xiaojing Ye
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
17
|
Dinevska M, Widodo SS, Cook L, Stylli SS, Ramsay RG, Mantamadiotis T. CREB: A multifaceted transcriptional regulator of neural and immune function in CNS tumors. Brain Behav Immun 2024; 116:140-149. [PMID: 38070619 DOI: 10.1016/j.bbi.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 01/21/2024] Open
Abstract
Cancers of the central nervous system (CNS) are unique with respect to their tumor microenvironment. Such a status is due to immune-privilege and the cellular behaviors within a highly networked, neural-rich milieu. During tumor development in the CNS, neural, immune and cancer cells establish complex cell-to-cell communication networks which mimic physiological functions, including paracrine signaling and synapse-like formations. This crosstalk regulates diverse pathological functions contributing to tumor progression. In the CNS, regulation of physiological and pathological functions relies on various cell signaling and transcription programs. At the core of these events lies the cyclic adenosine monophosphate (cAMP) response element binding protein (CREB), a master transcriptional regulator in the CNS. CREB is a kinase inducible transcription factor which regulates many CNS functions, including neurogenesis, neuronal survival, neuronal activation and long-term memory. Here, we discuss how CREB-regulated mechanisms operating in diverse cell types, which control development and function of the CNS, are co-opted in CNS tumors.
Collapse
Affiliation(s)
- Marija Dinevska
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Samuel S Widodo
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Laura Cook
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Stanley S Stylli
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Neurosurgery, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Robert G Ramsay
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology and the Department of Clinical Pathology, The University of Melbourne, Melbourne, Australia
| | - Theo Mantamadiotis
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia; Centre for Stem Cell Systems, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
18
|
Jiang SZ, Shahoha M, Zhang HY, Brancaleone W, Elkahloun A, Tejeda HA, Ashery U, Eiden LE. The guanine nucleotide exchange factor RapGEF2 is required for ERK-dependent immediate-early gene (Egr1) activation during fear memory formation. Cell Mol Life Sci 2024; 81:48. [PMID: 38236296 PMCID: PMC11071968 DOI: 10.1007/s00018-023-04999-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/16/2023] [Accepted: 10/04/2023] [Indexed: 01/19/2024]
Abstract
The MAP kinase ERK is important for neuronal plasticity underlying associative learning, yet specific molecular pathways for neuronal ERK activation are undetermined. RapGEF2 is a neuron-specific cAMP sensor that mediates ERK activation. We investigated whether it is required for cAMP-dependent ERK activation leading to other downstream neuronal signaling events occurring during associative learning, and if RapGEF2-dependent signaling impairments affect learned behavior. Camk2α-cre+/-::RapGEF2fl/fl mice with depletion of RapGEF2 in hippocampus and amygdala exhibit impairments in context- and cue-dependent fear conditioning linked to corresponding impairment in Egr1 induction in these two brain regions. Camk2α-cre+/-::RapGEF2fl/fl mice show decreased RapGEF2 expression in CA1 and dentate gyrus associated with abolition of pERK and Egr1, but not of c-Fos induction, following fear conditioning, impaired freezing to context after fear conditioning, and impaired cAMP-dependent long-term potentiation at perforant pathway and Schaffer collateral synapses in hippocampal slices ex vivo. RapGEF2 expression is largely eliminated in basolateral amygdala, also involved in fear memory, in Camk2α-cre+/-::RapGEF2fl/fl mice. Neither Egr1 nor c-fos induction in BLA after fear conditioning, nor cue-dependent fear learning, are affected by ablation of RapGEF2 in BLA. However, Egr1 induction (but not that of c-fos) in BLA is reduced after restraint stress-augmented fear conditioning, as is freezing to cue after restraint stress-augmented fear conditioning, in Camk2α-cre+/-::RapGEF2fl/fl mice. Cyclic AMP-dependent GEFs have been genetically associated as risk factors for schizophrenia, a disorder associated with cognitive deficits. Here we show a functional link between one of them, RapGEF2, and cognitive processes involved in associative learning in amygdala and hippocampus.
Collapse
Affiliation(s)
- Sunny Zhihong Jiang
- Section On Molecular Neuroscience, NIMH Intramural Research Program, 9000 Rockville Pike, Building 49, Room 5A38, Bethesda, MD, 20892, USA
| | - Meishar Shahoha
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, and Sagol School of Neuroscience, Tel Aviv University, Sherman Building Rm 719, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Hai-Ying Zhang
- Section On Molecular Neuroscience, NIMH Intramural Research Program, 9000 Rockville Pike, Building 49, Room 5A38, Bethesda, MD, 20892, USA
| | - William Brancaleone
- Section On Molecular Neuroscience, NIMH Intramural Research Program, 9000 Rockville Pike, Building 49, Room 5A38, Bethesda, MD, 20892, USA
| | | | - Hugo A Tejeda
- Unit on Neuromodulation and Synaptic Integration, NIMH-IRP, Bethesda, MD, USA
| | - Uri Ashery
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, and Sagol School of Neuroscience, Tel Aviv University, Sherman Building Rm 719, Ramat Aviv, 69978, Tel Aviv, Israel.
| | - Lee E Eiden
- Section On Molecular Neuroscience, NIMH Intramural Research Program, 9000 Rockville Pike, Building 49, Room 5A38, Bethesda, MD, 20892, USA.
| |
Collapse
|
19
|
Zhou P, Ouyang L, Jiang T, Tian Y, Deng W, Wang H, Kong S, Lu Z. Progesterone and cAMP synergistically induce SHP2 expression via PGR and CREB1 during uterine stromal decidualization. FEBS J 2024; 291:142-157. [PMID: 37786383 DOI: 10.1111/febs.16966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/31/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Decidualization of endometrial stroma is a key step in embryo implantation and its abnormality often leads to pregnancy failure. Stromal decidualization is a very complex process that is co-regulated by estrogen, progesterone and many local factors. The signaling protein SHP2 encoded by PTPN11 is dynamically expressed in decidualized endometrial stroma and mediates and integrates various signals to govern the decidualization. In the present study, we investigate the mechanism of PTPN11 gene transcription. Estrogen, progesterone and cAMP co-induced decidualization of human endometrial stromal cell in vitro, but only progesterone and cAMP induced SHP2 expression. Using the luciferase reporter, we refined a region from -229 bp to +1 bp in the PTPN11 gene promoter comprising the transcriptional core regions that respond to progesterone and cAMP. Progesterone receptor (PGR) and cAMP-responsive element-binding protein 1 (CREB1) were predicted to be transcription factors in this core region by bioinformatic methods. The direct binding of PGR and CREB1 on the PTPN11 promoter was confirmed by electrophoretic mobility and chromatin immunoprecipitation in vitro. Knockdown of PGR and CREB1 protein significantly inhibited the expression of SHP2 induced by medroxyprogesterone acetate and cAMP. These results demonstrate that transcription factors PGR and CREB1 bind to the PTPN11 promoter to regulate the expression of SHP2 in response to decidual signals. Our results explain the transcriptional expression mechanism of SHP2 during decidualization and promote the understanding of the mechanism of decidualization of stromal cells.
Collapse
Affiliation(s)
- Peiyi Zhou
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, China
| | - Liqun Ouyang
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, China
| | - Ting Jiang
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, China
| | - Yingpu Tian
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, China
| | - Wenbo Deng
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, China
| | - Haibin Wang
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, China
| | - Shuangbo Kong
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, China
| | - Zhongxian Lu
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, China
| |
Collapse
|
20
|
Jung JH, Wang Y, Rashid AJ, Zhang T, Frankland PW, Josselyn SA. Examining memory linking and generalization using scFLARE2, a temporally precise neuronal activity tagging system. Cell Rep 2023; 42:113592. [PMID: 38103203 PMCID: PMC10842737 DOI: 10.1016/j.celrep.2023.113592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
How memories are organized in the brain influences whether they are remembered discretely versus linked with other experiences or whether generalized information is applied to entirely novel situations. Here, we used scFLARE2 (single-chain fast light- and activity-regulated expression 2), a temporally precise tagging system, to manipulate mouse lateral amygdala neurons active during one of two 3 min threat experiences occurring close (3 h) or further apart (27 h) in time. Silencing scFLARE2-tagged neurons showed that two threat experiences occurring at distal times are dis-allocated to orthogonal engram ensembles and remembered discretely, whereas the same two threat experiences occurring in close temporal proximity are linked via co-allocation to overlapping engram ensembles. Moreover, we found that co-allocation mediates memory generalization applied to a completely novel stimulus. These results indicate that endogenous temporal evolution of engram ensemble neuronal excitability determines how memories are organized and remembered and that this would not be possible using conventional immediate-early gene-based tagging methods.
Collapse
Affiliation(s)
- Jung Hoon Jung
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Ying Wang
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Asim J Rashid
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Tao Zhang
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Paul W Frankland
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada; Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| | - Sheena A Josselyn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada.
| |
Collapse
|
21
|
Ma H, Khaled HG, Wang X, Mandelberg NJ, Cohen SM, He X, Tsien RW. Excitation-transcription coupling, neuronal gene expression and synaptic plasticity. Nat Rev Neurosci 2023; 24:672-692. [PMID: 37773070 PMCID: PMC12024187 DOI: 10.1038/s41583-023-00742-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/30/2023]
Abstract
Excitation-transcription coupling (E-TC) links synaptic and cellular activity to nuclear gene transcription. It is generally accepted that E-TC makes a crucial contribution to learning and memory through its role in underpinning long-lasting synaptic enhancement in late-phase long-term potentiation and has more recently been linked to late-phase long-term depression: both processes require de novo gene transcription, mRNA translation and protein synthesis. E-TC begins with the activation of glutamate-gated N-methyl-D-aspartate-type receptors and voltage-gated L-type Ca2+ channels at the membrane and culminates in the activation of transcription factors in the nucleus. These receptors and ion channels mediate E-TC through mechanisms that include long-range signalling from the synapse to the nucleus and local interactions within dendritic spines, among other possibilities. Growing experimental evidence links these E-TC mechanisms to late-phase long-term potentiation and learning and memory. These advances in our understanding of the molecular mechanisms of E-TC mean that future efforts can focus on understanding its mesoscale functions and how it regulates neuronal network activity and behaviour in physiological and pathological conditions.
Collapse
Affiliation(s)
- Huan Ma
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China.
- Research Units for Emotion and Emotional Disorders, Chinese Academy of Medical Sciences, Beijing, China.
| | - Houda G Khaled
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Xiaohan Wang
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Nataniel J Mandelberg
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Samuel M Cohen
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Xingzhi He
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
- Research Units for Emotion and Emotional Disorders, Chinese Academy of Medical Sciences, Beijing, China
| | - Richard W Tsien
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
22
|
Enck JR, Olson EC. Calcium Signaling during Cortical Apical Dendrite Initiation: A Role for Cajal-Retzius Neurons. Int J Mol Sci 2023; 24:12965. [PMID: 37629145 PMCID: PMC10455361 DOI: 10.3390/ijms241612965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The apical dendrite of a cortical projection neuron (CPN) is generated from the leading process of the migrating neuron as the neuron completes migration. This transformation occurs in the cortical marginal zone (MZ), a layer that contains the Cajal-Retzius neurons and their axonal projections. Cajal-Retzius neurons (CRNs) are well known for their critical role in secreting Reelin, a glycoprotein that controls dendritogenesis and cell positioning in many regions of the developing brain. In this study, we examine the possibility that CRNs in the MZ may provide additional signals to arriving CPNs, that may promote the maturation of CPNs and thus shape the development of the cortex. We use whole embryonic hemisphere explants and multiphoton microscopy to confirm that CRNs display intracellular calcium transients of <1-min duration and high amplitude during early corticogenesis. In contrast, developing CPNs do not show high-amplitude calcium transients, but instead show a steady increase in intracellular calcium that begins at the time of dendritic initiation, when the leading process of the migrating CPN is encountering the MZ. The possible existence of CRN to CPN communication was revealed by the application of veratridine, a sodium channel activator, which has been shown to preferentially stimulate more mature cells in the MZ at an early developmental time. Surprisingly, veratridine application also triggers large calcium transients in CPNs, which can be partially blocked by a cocktail of antagonists that block glutamate and glycine receptor activation. These findings outline a model in which CRN spontaneous activity triggers the release of glutamate and glycine, neurotransmitters that can trigger intracellular calcium elevations in CPNs. These elevations begin as CPNs initiate dendritogenesis and continue as waves in the post-migratory cells. Moreover, we show that the pharmacological blockade of glutamatergic signaling disrupts migration, while forced expression of a bacterial voltage-gated calcium channel (CavMr) in the migrating neurons promotes dendritic growth and migration arrest. The identification of CRN to CPN signaling during early development provides insight into the observation that many autism-linked genes encode synaptic proteins that, paradoxically, are expressed in the developing cortex well before the appearance of synapses and the establishment of functional circuits.
Collapse
Affiliation(s)
| | - Eric C. Olson
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, 505 Irving Ave., Syracuse, NY 13210, USA;
| |
Collapse
|
23
|
Mukherjee S, Sarkar AK, Lahiri A, Sengupta Bandyopadhyay S. Analysis of the interaction of a non-canonical twin half-site of Cyclic AMP-Response Element (CRE) with CRE-binding protein. Biochimie 2023; 211:25-34. [PMID: 36842626 DOI: 10.1016/j.biochi.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/23/2022] [Accepted: 02/17/2023] [Indexed: 02/26/2023]
Abstract
Differential regulation of a gene having either canonical or non-canonical cyclic AMP response element (CRE) in its promoter is primarily accomplished by its interactions with CREB (cAMP-response element binding protein). The present study aims to delineate the mechanism of the CREB-CRE interactions at the Oncostatin-M (osm) promoter by in vitro and in silico approaches. The non-canonical CREosm consists of two half-CREs separated by a short intervening sequence of 9 base pairs. In this study, in vitro binding assays revealed that out of the two CRE half-sites, the right half-CRE was indispensable for binding of CREB, while the left sequence showed weaker binding ability and specificity. Genome-wide modeling and high throughput free energy calculations for the energy-minimized models containing CREB-CREosm revealed that there was no difference in the binding of CREB to the right half of CREosm site when compared to the entire CREosm. These results were in accordance with the in vitro studies, confirming the indispensable role of the right half-CREosm site in stable complex formation with the CREB protein. Additionally, conversion of the right half-CREosm site to a canonical CRE palindrome showed stronger CREB binding, irrespective of the presence or absence of the left CRE sequence. Thus, the present study establishes an interesting insight into the interaction of CREB with a CRE variant located at the far end of a TATA-less promoter of a cytokine-encoding gene, which in turn could be involved in the regulation of transcription under specific conditions.
Collapse
Affiliation(s)
- Srimoyee Mukherjee
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Aditya Kumar Sarkar
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Ansuman Lahiri
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Sumita Sengupta Bandyopadhyay
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India.
| |
Collapse
|
24
|
Iyer DR, Arige V, Ananthamohan K, Venkatasubramaniam S, Tokinoya K, Akoi K, Kurtz CL, Sethupathy P, Takekoshi K, Mahapatra NR. Cyclic-AMP response element binding protein (CREB) and microRNA miR-29b regulate renalase gene expression under catecholamine excess conditions. Life Sci 2023:121859. [PMID: 37315838 DOI: 10.1016/j.lfs.2023.121859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
AIMS Renalase, a key mediator of cross-talk between kidneys and sympathetic nervous system, exerts protective roles in various cardiovascular/renal disease states. However, molecular mechanisms underpinning renalase gene expression remain incompletely understood. Here, we sought to identify the key molecular regulators of renalase under basal/catecholamine-excess conditions. MATERIALS AND METHODS Identification of the core promoter domain of renalase was carried out by promoter-reporter assays in N2a/HEK-293/H9c2 cells. Computational analysis of the renalase core promoter domain, over-expression of cyclic-AMP-response-element-binding-protein (CREB)/dominant negative mutant of CREB, ChIP assays were performed to determine the role of CREB in transcription regulation. Role of the miR-29b-mediated-suppression of renalase was validated in-vivo by using locked-nucleic-acid-inhibitors of miR-29. qRT-PCR and Western-blot analyses measured the expression of renalase, CREB, miR-29b and normalization controls in cell lysates/ tissue samples under basal/epinephrine-treated conditions. KEY FINDINGS CREB, a downstream effector in epinephrine signaling, activated renalase expression via its binding to the renalase-promoter. Physiological doses of epinephrine and isoproteronol enhanced renalase-promoter activity and endogenous renalase protein level while propranolol diminished the promoter activity and endogenous renalase protein level indicating a potential role of beta-adrenergic receptor in renalase gene regulation. Multiple animal models (acute exercise, genetically hypertensive/stroke-prone mice/rat) displayed directionally-concordant expression of CREB and renalase. Administration of miR-29b inhibitor in mice upregulated endogenous renalase expression. Moreover, epinephrine treatment down-regulated miR-29b promoter-activity/transcript levels. SIGNIFICANCE This study provides evidence for renalase gene regulation by concomitant transcriptional activation via CREB and post-transcriptional attenuation via miR-29b under excess epinephrine conditions. These findings have implications for disease states with dysregulated catecholamines.
Collapse
Affiliation(s)
- Dhanya R Iyer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Vikas Arige
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Kalyani Ananthamohan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - S Venkatasubramaniam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Katsuyuki Tokinoya
- Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kai Akoi
- Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - C Lisa Kurtz
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Kazuhiro Takekoshi
- Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
25
|
Harris N, Bates S, Zhuang Z, Bernstein M, Stonemetz J, Hill T, Yu YV, Calarco JA, Sengupta P. Molecular encoding of stimulus features in a single sensory neuron type enables neuronal and behavioral plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525070. [PMID: 36711719 PMCID: PMC9882311 DOI: 10.1101/2023.01.22.525070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Neurons modify their transcriptomes in response to an animal’s experience. How specific experiences are transduced to modulate gene expression and precisely tune neuronal functions are not fully defined. Here, we describe the molecular profile of a thermosensory neuron pair in C. elegans experiencing different temperature stimuli. We find that distinct salient features of the temperature stimulus including its duration, magnitude of change, and absolute value are encoded in the gene expression program in this single neuron, and identify a novel transmembrane protein and a transcription factor whose specific transcriptional dynamics are essential to drive neuronal, behavioral, and developmental plasticity. Expression changes are driven by broadly expressed activity-dependent transcription factors and corresponding cis -regulatory elements that nevertheless direct neuron- and stimulus-specific gene expression programs. Our results indicate that coupling of defined stimulus characteristics to the gene regulatory logic in individual specialized neuron types can customize neuronal properties to drive precise behavioral adaptation.
Collapse
Affiliation(s)
- Nathan Harris
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Samuel Bates
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Zihao Zhuang
- Department of Biology, Brandeis University, Waltham, MA, USA
- Current address: Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | | | - Jamie Stonemetz
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Tyler Hill
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Yanxun V. Yu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - John A. Calarco
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA, USA
| |
Collapse
|
26
|
Pate T, Anthony DC, Radford-Smith DE. cFOS expression in the prefrontal cortex correlates with altered cerebral metabolism in developing germ-free mice. Front Mol Neurosci 2023; 16:1155620. [PMID: 37152431 PMCID: PMC10157641 DOI: 10.3389/fnmol.2023.1155620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction The microbiota plays a critical role in modulating various aspects of host physiology, particularly through the microbiota-gut-brain (MGB) axis. However, the mechanisms that transduce and affect gut-to-brain communication are still not well understood. Recent studies have demonstrated that dysbiosis of the microbiome is associated with anxiety and depressive symptoms, which are common complications of metabolic syndrome. Germ-free (GF) animal models offer a valuable tool for studying the causal effects of microbiota on the host. Methods We employed gene expression and nuclear magnetic resonance (NMR)-based metabolomic techniques to investigate the relationships between brain plasticity and immune gene expression, peripheral immunity, and cerebral and liver metabolism in GF and specific pathogen-free (SPF) mice. Results Our principal findings revealed that brain acetate (p = 0.012) was significantly reduced in GF relative to SPF mice, whereas glutamate (p = 0.0013), glutamine (p = 0.0006), and N-acetyl aspartate (p = 0.0046) metabolites were increased. Notably, cFOS mRNA expression, which was significantly decreased in the prefrontal cortex of GF mice relative to SPF mice (p = 0.044), correlated with the abundance of a number of key brain metabolites altered by the GF phenotype, including glutamate and glutamine. Discussion These results highlight the connection between the GF phenotype, altered brain metabolism, and immediate-early gene expression. The study provides insight into potential mechanisms by which microbiota can regulate neurotransmission through modulation of the host's brain and liver metabolome, which may have implications for stress-related psychiatric disorders such as anxiety.
Collapse
|
27
|
Nakamura Y, Yahiro T, Fukushima A, Kataoka N, Hioki H, Nakamura K. Prostaglandin EP3 receptor-expressing preoptic neurons bidirectionally control body temperature via tonic GABAergic signaling. SCIENCE ADVANCES 2022; 8:eadd5463. [PMID: 36563142 PMCID: PMC9788766 DOI: 10.1126/sciadv.add5463] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/08/2022] [Indexed: 05/30/2023]
Abstract
The bidirectional controller of the thermoregulatory center in the preoptic area (POA) is unknown. Using rats, here, we identify prostaglandin EP3 receptor-expressing POA neurons (POAEP3R neurons) as a pivotal bidirectional controller in the central thermoregulatory mechanism. POAEP3R neurons are activated in response to elevated ambient temperature but inhibited by prostaglandin E2, a pyrogenic mediator. Chemogenetic stimulation of POAEP3R neurons at room temperature reduces body temperature by enhancing heat dissipation, whereas inhibition of them elicits hyperthermia involving brown fat thermogenesis, mimicking fever. POAEP3R neurons innervate sympathoexcitatory neurons in the dorsomedial hypothalamus (DMH) via tonic (ceaseless) inhibitory signaling. Although many POAEP3R neuronal cell bodies express a glutamatergic messenger RNA marker, their axons in the DMH predominantly release γ-aminobutyric acid (GABA), and their GABAergic terminals are increased by chronic heat exposure. These findings demonstrate that tonic GABAergic inhibitory signaling from POAEP3R neurons is a fundamental determinant of body temperature for thermal homeostasis and fever.
Collapse
Affiliation(s)
- Yoshiko Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takaki Yahiro
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Akihiro Fukushima
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Naoya Kataoka
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Nagoya University Institute for Advanced Research, Nagoya 464-8601, Japan
| | - Hiroyuki Hioki
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kazuhiro Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
28
|
CaMKIV mediates spine growth deficiency of hippocampal neurons by regulation of EGR3/BDNF signal axis in congenital hypothyroidism. Cell Death Dis 2022; 8:482. [PMID: 36473844 PMCID: PMC9723595 DOI: 10.1038/s41420-022-01270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Congenital hypothyroidism (CH) will cause cognitive impairment in the condition of delayed treatment. The hippocampus is one of the most affected tissues by CH, in which the functional structures of hippocampal neurons manifest deficiency due to aberrant expression of effector molecules. The Ca2+/Calmodulin-dependent protein kinase, CaMKIV, is downregulated in the hippocampal neurons, influencing the growth of dendritic spines in response to CH. However, the underlying mechanism is not fully elucidated. In the present study, the early growth response factor 3 (EGR3) was regulated by CaMKIV in the hippocampal neurons of CH rat pups, as was analyzed by transcriptome sequencing and in vitro cell experiments. EGR3 localized within hippocampal neurons in CA1, CA3, and dentate gyrus regions. Deficient EGR3 in the primary hippocampal neurons significantly reduced the density of dendritic spines by downregulating the expression of BDNF, and such effects could be rescued by supplementing recombinant BDNF protein. Taken together, CH mediates cognitive impairment of pups through the inactivation of CaMKIV in the hippocampal neurons, which decreases the expression of EGR3 and further reduces the production of BDNF, thereby impairing the growth of dendritic spines. Identifying CaMKIV/EGR3/BDNF pathway in the hippocampal neurons in the context of CH will benefit the drug development of intellectual disability caused by CH.
Collapse
|
29
|
Owoc MS, Rubio ME, Brockway B, Sadagopan S, Kandler K. Embryonic medial ganglionic eminence cells survive and integrate into the inferior colliculus of adult mice. Hear Res 2022; 420:108520. [PMID: 35617926 PMCID: PMC11697826 DOI: 10.1016/j.heares.2022.108520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Accepted: 05/14/2022] [Indexed: 11/20/2022]
Abstract
Acoustic overexposure can lead to decreased inhibition in auditory centers, including the inferior colliculus (IC), and has been implicated in the development of central auditory pathologies. While systemic drugs that increase GABAergic transmission have been shown to provide symptomatic relief, their side effect profiles impose an upper-limit on the dose and duration of use. A treatment that locally increases inhibition in auditory nuclei could mitigate these side effects. One such approach could be transplantation of inhibitory precursor neurons derived from the medial ganglionic eminence (MGE). The present study investigated whether transplanted MGE cells can survive and integrate into the IC of non-noise exposed and noise exposed mice. MGE cells were harvested on embryonic days 12-14 and injected bilaterally into the IC of adult mice, with or without previous noise exposure. At one-week post transplantation, MGE cells possessed small, elongated soma and bipolar processes, characteristic of migrating cells. By 5 weeks, MGE cells exhibited a more mature morphology, with multiple branching processes and axons with boutons that stain positive for the vesicular GABA transporter (VGAT). The MGE survival rate after 14 weeks post transplantation was 1.7% in non-noise exposed subjects. MGE survival rate was not significantly affected by noise exposure (1.2%). In both groups the vast majority of transplanted MGE cells (>97%) expressed the vesicular GABA transporter. Furthermore, electronmicroscopic analysis indicated that transplanted MGE cells formed synapses with and received synaptic endings from host IC neurons. Acoustic stimulation lead to a significant increase in the percentage of endogenous inhibitory cells that express c-fos but had no effect on the percentage of c-fos expressing transplanted MGE cells. MGE cells were observed in the IC up to 22 weeks post transplantation, the longest time point investigated, suggesting long term survival and integration. These data provide the first evidence that transplantation of MGE cells is viable in the IC and provides a new strategy to explore treatment options for central hearing dysfunction following noise exposure.
Collapse
Affiliation(s)
- Maryanna S Owoc
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Medical Scientist Training Program, University of Pittsburgh - Carnegie Mellon University, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States.
| | - María E Rubio
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brian Brockway
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Srivatsun Sadagopan
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Medical Scientist Training Program, University of Pittsburgh - Carnegie Mellon University, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, United States
| | - Karl Kandler
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Medical Scientist Training Program, University of Pittsburgh - Carnegie Mellon University, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
30
|
Sanchez-Priego C, Hu R, Boshans LL, Lalli M, Janas JA, Williams SE, Dong Z, Yang N. Mapping cis-regulatory elements in human neurons links psychiatric disease heritability and activity-regulated transcriptional programs. Cell Rep 2022; 39:110877. [PMID: 35649373 PMCID: PMC9219592 DOI: 10.1016/j.celrep.2022.110877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/01/2022] [Accepted: 05/05/2022] [Indexed: 12/17/2022] Open
Abstract
Genome-wide association studies (GWASs) have identified hundreds of loci associated with psychiatric diseases, yet there is a lack of understanding of disease pathophysiology. Common risk variants can shed light on the underlying molecular mechanisms; however, identifying causal variants remains challenging. We map cis-regulatory elements in human neurons derived from pluripotent stem cells. This system allows us to determine enhancers that activate the transcription of neuronal activity-regulated gene programs, which are thought to be critical for synaptic plasticity and are not possible to identify from postmortem tissues. Using the activity-by-contact model, we create variant-to-gene maps to interpret the function of GWAS variants. Our work nominates a subset of variants to elucidate the molecular mechanisms involving GWAS-significant loci. It also highlights that in vitro human cellular models are a powerful platform for identifying and mechanistic studies of human trait-associated genetic variants in cell states that are inaccessible from other types of human samples.
Collapse
Affiliation(s)
- Carlos Sanchez-Priego
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ruiqi Hu
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Linda L Boshans
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew Lalli
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Justyna A Janas
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah E Williams
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhiqiang Dong
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Nan Yang
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
31
|
Plexin-A1 expression in the inhibitory neurons of infralimbic cortex regulates the specificity of fear memory in male mice. Neuropsychopharmacology 2022; 47:1220-1230. [PMID: 34508226 PMCID: PMC9018853 DOI: 10.1038/s41386-021-01177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/02/2023]
Abstract
Maintaining appropriate levels of fear memory specificity is crucial for individual's survival and mental health, whereas overgeneralized fear commonly occurs in neuropsychiatric disorders, including posttraumatic stress disorder and generalized anxiety disorder. However, the molecular mechanisms regulating fear memory specificity remain poorly understood. The medial prefrontal cortex (mPFC) is considered as a key brain region in fear memory regulation. Previous transcriptomic studies have identified that plexin-A1, a transmembrane receptor critical for axon development, was downregulated in the mPFC after fear memory training. In this study, we identified that learning-induced downregulation of the mRNA and protein levels of plexin-A1 specifically occurred in the inhibitory but not excitatory neurons in the infralimbic cortex (IL) of mPFC. Further studies of plexin-A1 by virus-mediated over-expression of functional mutants selectively in the IL inhibitory neurons revealed the critical roles of plexin-A1 for regulating memory specificity and anxiety. Moreover, our findings revealed that plexin-A1 regulated the distribution of glutamic acid decarboxylase 67, a GABA synthetase, which in turn modulated the activity of IL and its downstream brain regions. Collectively, our findings elucidate the molecular modifier of IL inhibitory neurons in regulating memory specificity and anxiety, and provide candidates for developing therapeutic strategies for the prevention or treatment of a series of fear generalization-related neuropsychiatric disorders.
Collapse
|
32
|
Miranda JG, Schleicher WE, Wells KL, Ramirez DG, Landgrave SP, Benninger RKP. Dynamic changes in β-cell [Ca 2+] regulate NFAT activation, gene transcription, and islet gap junction communication. Mol Metab 2022; 57:101430. [PMID: 34979329 PMCID: PMC8804269 DOI: 10.1016/j.molmet.2021.101430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Diabetes occurs because of insufficient insulin secretion due to β-cell dysfunction within the islet of Langerhans. Elevated glucose levels trigger β-cell membrane depolarization, action potential generation, and slow sustained free-Ca2+ ([Ca2+]) oscillations, which trigger insulin release. Nuclear factor of activated T-cell (NFAT) is a transcription factor, which is regulated by the increases in [Ca2+] and calceineurin (CaN) activation. NFAT regulation links cell activity with gene transcription in many systems and regulates proliferation and insulin granule biogenesis within the β-cell. However, the link between the regulation of β-cell electrical activity and oscillatory [Ca2+] dynamics with NFAT activation and downstream transcription is poorly understood. Here, we tested whether dynamic changes to β-cell electrical activity and [Ca2+] regulate NFAT activation and downstream transcription. METHODS In cell lines, mouse islets, and human islets, including those from donors with type 2 diabetes, we applied both agonists/antagonists of ion channels together with optogenetics to modulate β-cell electrical activity. We measured the dynamics of [Ca2+] and NFAT activation as well as performed whole transcriptome and functional analyses. RESULTS Both glucose-induced membrane depolarization and optogenetic stimulation triggered NFAT activation as well as increased the transcription of NFAT targets and intermediate early genes (IEGs). Importantly, slow, sustained [Ca2+] oscillation conditions led to NFAT activation and downstream transcription. In contrast, in human islets from donors with type2 diabetes, NFAT activation by glucose was diminished, but rescued upon pharmacological stimulation of electrical activity. NFAT activation regulated GJD2 expression and increased Cx36 gap junction permeability upon elevated oscillatory [Ca2+] dynamics. However, it is unclear if NFAT directly binds the GJD2 gene to regulate expression. CONCLUSIONS This study provides an insight into the specific patterns of electrical activity that regulate NFAT activation, gene transcription, and islet function. In addition, it provides information on how these factors are disrupted in diabetes.
Collapse
Affiliation(s)
- Jose G Miranda
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora CO, 80045, USA
| | - Wolfgang E Schleicher
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora CO, 80045, USA
| | - Kristen L Wells
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - David G Ramirez
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora CO, 80045, USA
| | - Samantha P Landgrave
- Program in Cell Biology, Stem Cell and Development, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Richard K P Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora CO, 80045, USA; Program in Cell Biology, Stem Cell and Development, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
33
|
Olive Oil Improves While Trans Fatty Acids Further Aggravate the Hypomethylation of LINE-1 Retrotransposon DNA in an Environmental Carcinogen Model. Nutrients 2022; 14:nu14040908. [PMID: 35215560 PMCID: PMC8878525 DOI: 10.3390/nu14040908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023] Open
Abstract
DNA methylation is an epigenetic mechanism that is crucial for mammalian development and genomic stability. Aberrant DNA methylation changes have been detected not only in malignant tumor tissues; the decrease of global DNA methylation levels is also characteristic for aging. The consumption of extra virgin olive oil (EVOO) as part of a balanced diet shows preventive effects against age-related diseases and cancer. On the other hand, consuming trans fatty acids (TFA) increases the risk of cardiovascular diseases as well as cancer. The aim of the study was to investigate the LINE-1 retrotransposon (L1-RTP) DNA methylation pattern in liver, kidney, and spleen of mice as a marker of genetic instability. For that, mice were fed with EVOO or TFA and were pretreated with environmental carcinogen 7,12-dimethylbenz[a]anthracene (DMBA)-a harmful substance known to cause L1-RTP DNA hypomethylation. Our results show that DMBA and its combination with TFA caused significant L1-RTP DNA hypomethylation compared to the control group via inhibition of DNA methyltransferase (DNMT) enzymes. EVOO had the opposite effect by significantly decreasing DMBA and DMBA + TFA-induced hypomethylation, thereby counteracting their effects.
Collapse
|
34
|
Zhang R, Gao Y, Li Y, Geng D, Liang Y, He Q, Wang L, Cui H. Nrf2 improves hippocampal synaptic plasticity, learning and memory through the circ-Vps41/miR-26a-5p/CaMKIV regulatory network. Exp Neurol 2022; 351:113998. [PMID: 35143833 DOI: 10.1016/j.expneurol.2022.113998] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/24/2022]
Abstract
Antioxidant response transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2/Nfe2l2) is a neuroprotective agent in learning and memory impairment. This study provides a new perspective to explore the regulatory mechanisms of Nrf2. Here, we found that Nrf2 regulated circular RNA circ-Vps41 to increase hippocampal synaptic plasticity; Nrf2 bound the Vps41 promoter to activate transcription of the Vps41 gene and promote expression of circ-Vps41; circ-Vps41 positively correlated with Nrf2, synaptic plasticity, and learning and memory but negatively correlated with reactive oxygen species; and Nrf2 promoted CaMKIV expression by increasing levels of circ-Vps41, which can absorb miR-26a-5p that targets CaMKIV. Our findings revealed a new circRNA-based regulatory network regulated by Nrf2 and provided novel insights into the potential mechanism involved in the improvement of learning and memory impairment.
Collapse
Affiliation(s)
- Runjiao Zhang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Yanjing Gao
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Yibo Li
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Dandan Geng
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Yuxiang Liang
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Qingwen He
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Lei Wang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China.
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China.
| |
Collapse
|
35
|
Desouza LA, Benekareddy M, Fanibunda SE, Mohammad F, Janakiraman B, Ghai U, Gur T, Blendy JA, Vaidya VA. The Hallucinogenic Serotonin 2A Receptor Agonist, 2,5-Dimethoxy-4-Iodoamphetamine, Promotes cAMP Response Element Binding Protein-Dependent Gene Expression of Specific Plasticity-Associated Genes in the Rodent Neocortex. Front Mol Neurosci 2022; 14:790213. [PMID: 35002622 PMCID: PMC8739224 DOI: 10.3389/fnmol.2021.790213] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/26/2021] [Indexed: 12/27/2022] Open
Abstract
Psychedelic compounds that target the 5-HT2A receptor are reported to evoke psychoplastogenic effects, including enhanced dendritic arborization and synaptogenesis. Transcriptional regulation of neuronal plasticity-associated genes is implicated in the cytoarchitectural effects of serotonergic psychedelics, however, the transcription factors that drive this regulation are poorly elucidated. Here, we addressed the contribution of the transcription factor cyclic adenosine monophosphate (cAMP)-response element binding protein (CREB) in the regulation of neuronal plasticity-associated genes by the hallucinogenic 5-HT2A receptor agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI). In vitro studies with rat cortical neurons indicated that DOI enhances the phosphorylation of CREB (pCREB) through mitogen-activated protein (MAP) kinase and calcium/calmodulin dependent kinase II (CaMKII) pathways, with both cascades contributing to the DOI-evoked upregulation of Arc, Bdnf1, Cebpb, and Egr2 expression, whilst the upregulation of Egr1 and cFos mRNA involved the MAP kinase and CaMKII pathway respectively. We observed a robust DOI-evoked increase in the expression of several neuronal plasticity-associated genes in the rat neocortex in vivo. This DOI-evoked upregulation of neuronal plasticity-associated genes was completely blocked by the 5-HT2A receptor antagonist MDL100,907 in vitro and was also abrogated in the neocortex of 5-HT2A receptor deficient mice. Further, 5-HT2A receptor stimulation enhanced pCREB enrichment at putative cAMP response element (CRE) binding sites in the Arc, Bdnf1, Cebpb, cFos, but not Egr1 and Egr2, promoters in the rodent neocortex. The DOI-mediated transcriptional induction of Arc, cFos and Cebpb was significantly attenuated in the neocortex of CREB deficient/knockout (CREBαδ KO) mice. Collectively, these results indicate that the hallucinogenic 5-HT2A receptor agonist DOI leads to a rapid transcriptional upregulation of several neuronal plasticity-associated genes, with a subset of them exhibiting a CREB-dependent regulation. Our findings raise the intriguing possibility that similar to slow-acting classical antidepressants, rapid-action serotonergic psychedelics that target the 5-HT2A receptor may also recruit the transcription factor CREB to enhance the expression of neuronal plasticity-associated genes in the neocortex, which could in turn contribute to the rapid psychoplastogenic changes evoked by these compounds.
Collapse
Affiliation(s)
- Lynette A Desouza
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Madhurima Benekareddy
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sashaina E Fanibunda
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.,Medical Research Centre, Kasturba Health Society, Mumbai, India
| | - Farhan Mohammad
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Balaganesh Janakiraman
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Utkarsha Ghai
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Tamar Gur
- Department of Psychiatry and Behavioral Health, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
36
|
Nguyen HT, Najih M, Martin LJ. The AP-1 family of transcription factors are important regulators of gene expression within Leydig cells. Endocrine 2021; 74:498-507. [PMID: 34599696 DOI: 10.1007/s12020-021-02888-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Members of the AP-1 family of transcription factors are immediate early genes being modulated by different extracellular signals. The aim of this review is to highlight the important roles of AP-1 members in transcriptional regulation of genes important for testicular Leydig cell function and male testosterone production. METHODS A search of the relevant literature was performed in Google Scholar and NCBI Pubmed for AP-1 members and Leydig cells. Additional information was accessed from references of relevant articles. Only primary data from original peer-reviewed articles was considered for this review. RESULTS Different signaling pathways important for Leydig cells' functions are involved in the regulation of the activity of AP-1 members. These transcription factors participate in the regulation of genes related to different biological processes important for Leydig cells. CONCLUSIONS We conclude that members of the AP-1 family of transcription factors play critical roles in the regulation of Leydig cell proliferation, steroidogenesis, and cell-to-cell communication.
Collapse
Affiliation(s)
- Ha Tuyen Nguyen
- Biology Department, Université de Moncton, Moncton, NB, E1A 3E9, Canada
| | - Mustapha Najih
- Biology Department, Université de Moncton, Moncton, NB, E1A 3E9, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, Moncton, NB, E1A 3E9, Canada.
| |
Collapse
|
37
|
Nadal-Gratacós N, Alberto-Silva AS, Rodríguez-Soler M, Urquizu E, Espinosa-Velasco M, Jäntsch K, Holy M, Batllori X, Berzosa X, Pubill D, Camarasa J, Sitte HH, Escubedo E, López-Arnau R. Structure-Activity Relationship of Novel Second-Generation Synthetic Cathinones: Mechanism of Action, Locomotion, Reward, and Immediate-Early Genes. Front Pharmacol 2021; 12:749429. [PMID: 34764870 PMCID: PMC8576102 DOI: 10.3389/fphar.2021.749429] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/23/2021] [Indexed: 01/06/2023] Open
Abstract
Several new synthetic cathinones, which mimic the effect of classical psychostimulants such as cocaine or MDMA, have appeared in the global illicit drug market in the last decades. In fact, the illicit drug market is continually evolving by constantly adding small modifications to the common chemical structure of synthetic cathinones. Thus, the aim of this study was to investigate the in vitro and in vivo structure–activity relationship (SAR) of six novel synthetic cathinones currently popular as recreational drugs, pentedrone, pentylone, N-ethyl-pentedrone (NEPD), N-ethyl-pentylone (NEP), 4-methyl-pentedrone (4-MPD), and 4-methyl-ethylaminopentedrone (4-MeAP), which structurally differ in the absence or presence of different aromatic substituents and in their amino terminal group. Human embryonic kidney (HEK293) cells expressing the human isoforms of SERT and DAT were used for the uptake inhibition and release assays. Moreover, Swiss CD-1 mice were used to investigate the psychostimulant effect, rewarding properties (3, 10, and 30 mg/kg, i.p.), and the induction of immediate-early genes (IEGs), such as Arc and c-fos in the dorsal striatum (DS) and ventral striatum (VS) as well as bdnf in the medial prefrontal cortex (mPFC), of the test compounds. Our results demonstrated that all tested synthetic cathinones are potent dopamine (DA) uptake inhibitors, especially the N-ethyl analogs, while the ring-substituted cathinones tested showed higher potency as SERT inhibitors than their no ring-substituted analogs. Moreover, unlike NEP, the remaining test compounds showed clear “hybrid” properties, acting as DAT blockers but SERT substrates. Regarding the locomotion, NEP and NEPD were more efficacious (10 mg/kg) than their N-methyl analogs, which correlates with their higher potency inhibiting the DAT and an overexpression of Arc levels in the DS and VS. Furthermore, all compounds tested induced an increase in c-fos expression in the DS, except for 4-MPD, the least effective compound in inducing hyperlocomotion. Moreover, NEP induced an up-regulation of bdnf in the mPFC that correlates with its 5-HTergic properties. Finally, the present study demonstrated for the first time that NEP, 4-MPD, and 4-MeAP induce reward in mice. Altogether, this study provides valuable information about the mechanism of action and psychostimulant and rewarding properties as well as changes in the expression of IEGs related to addiction induced by novel second-generation synthetic cathinones.
Collapse
Affiliation(s)
- Nuria Nadal-Gratacós
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, Pharmacology Section and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Ana Sofia Alberto-Silva
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Vienna, Austria
| | - Míriam Rodríguez-Soler
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, Pharmacology Section and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Edurne Urquizu
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, Pharmacology Section and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Maria Espinosa-Velasco
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, Pharmacology Section and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Kathrin Jäntsch
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Vienna, Austria
| | - Marion Holy
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Vienna, Austria
| | - Xavier Batllori
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Xavier Berzosa
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - David Pubill
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, Pharmacology Section and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Jordi Camarasa
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, Pharmacology Section and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Harald H Sitte
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Vienna, Austria.,Center for Addiction Research and Science, Medical University Vienna, Vienna, Austria
| | - Elena Escubedo
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, Pharmacology Section and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Raúl López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, Pharmacology Section and Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
38
|
Melzer S, Newmark ER, Mizuno GO, Hyun M, Philson AC, Quiroli E, Righetti B, Gregory MR, Huang KW, Levasseur J, Tian L, Sabatini BL. Bombesin-like peptide recruits disinhibitory cortical circuits and enhances fear memories. Cell 2021; 184:5622-5634.e25. [PMID: 34610277 PMCID: PMC8556345 DOI: 10.1016/j.cell.2021.09.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 07/12/2021] [Accepted: 09/08/2021] [Indexed: 01/09/2023]
Abstract
Disinhibitory neurons throughout the mammalian cortex are powerful enhancers of circuit excitability and plasticity. The differential expression of neuropeptide receptors in disinhibitory, inhibitory, and excitatory neurons suggests that each circuit motif may be controlled by distinct neuropeptidergic systems. Here, we reveal that a bombesin-like neuropeptide, gastrin-releasing peptide (GRP), recruits disinhibitory cortical microcircuits through selective targeting and activation of vasoactive intestinal peptide (VIP)-expressing cells. Using a genetically encoded GRP sensor, optogenetic anterograde stimulation, and trans-synaptic tracing, we reveal that GRP regulates VIP cells most likely via extrasynaptic diffusion from several local and long-range sources. In vivo photometry and CRISPR-Cas9-mediated knockout of the GRP receptor (GRPR) in auditory cortex indicate that VIP cells are strongly recruited by novel sounds and aversive shocks, and GRP-GRPR signaling enhances auditory fear memories. Our data establish peptidergic recruitment of selective disinhibitory cortical microcircuits as a mechanism to regulate fear memories.
Collapse
Affiliation(s)
- Sarah Melzer
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Elena R Newmark
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Grace Or Mizuno
- Departments of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Minsuk Hyun
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Adrienne C Philson
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Eleonora Quiroli
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Beatrice Righetti
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Malika R Gregory
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Kee Wui Huang
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - James Levasseur
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Lin Tian
- Departments of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Bernardo L Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
39
|
Phosphorylation of CREB at Serine 142 and 143 Is Essential for Visual Cortex Plasticity. eNeuro 2021; 8:ENEURO.0217-21.2021. [PMID: 34607805 PMCID: PMC8555886 DOI: 10.1523/eneuro.0217-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 11/21/2022] Open
Abstract
The transcription factor cAMP response element-binding protein (CREB) is involved in a myriad of cellular functions in the central nervous system. For instance, the role of CREB via phosphorylation at the amino-acid residue Serine (Ser)133 in expressing plasticity-related genes and activity-dependent neuronal plasticity processes has been extensively demonstrated. However, much less is known about the role of CREB phosphorylation at Ser142 and Ser143. Here, we employed a viral vector containing a dominant negative form of CREB, with serine-to-alanine mutations at residue 142 and 143 to specifically block phosphorylation at both sites. We then transfected this vector into primary neurons in vitro or intracortically injected it into mice in vivo, to test whether these phosphorylation events were important for activity-dependent plasticity. We demonstrated by immunohistochemistry of cortical neuronal cultures that the expression of Arc, a known plasticity-related gene, requires triple phosphorylation of CREB at Ser133, Ser142, and Ser143. Moreover, we recorded visually-evoked field potentials in awake mice before and after a 7-d period of monocular deprivation (MD) to show that, in addition to CREB phosphorylation at Ser133, ocular dominance plasticity (ODP) in the visual cortex also requires CREB phosphorylation at Ser142/143. Our findings suggest that Ser142/143 phosphorylation is an additional post-translational modification of CREB that triggers the expression of specific target genes and activity-dependent neuronal plasticity processes.
Collapse
|
40
|
Petrisko TJ, Konat GW. Peripheral viral challenge increases c-fos level in cerebral neurons. Metab Brain Dis 2021; 36:1995-2002. [PMID: 34406561 DOI: 10.1007/s11011-021-00819-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/05/2021] [Indexed: 12/01/2022]
Abstract
Peripheral viral infection can substantially alter brain function. We have previously shown that intraperitoneal (i.p.) injection of a viral mimetic, polyinosinic-polycytidylic acid (PIC), engenders hyperexcitability of cerebral neurons. Because neuronal activity is invariably associated with their expression of the Cfos gene, the present study was undertaken to determine whether PIC challenge also increases neuronal c-fos protein level. Female C57BL/6 mice were i.p. injected with PIC, and neuronal c-fos was analyzed in the motor cortex by immunohistochemistry. PIC challenge instigated a robust increase in the number of c-fos-positive neurons. This increase reached approximately tenfold over control at 24 h. Also, the c-fos staining intensity of individual neurons increased. AMG-487, a specific inhibitor of the chemokine receptor CXCR3, profoundly attenuated the accumulation of neuronal c-fos, indicating the activation of CXCL10/CXCR3 axis as the trigger of the process. Together, these results show that the accumulation of c-fos is a viable readout to assess the response of cerebral neurons to peripheral PIC challenge, and to elucidate the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Tiffany J Petrisko
- Department of Biochemistry, Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Gregory W Konat
- Department of Biochemistry, Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, 26506, USA.
- Department of Biochemistry, West Virginia University School of Medicine, 4052 HSCN, P.O. Box 9128, Morgantown, WV, 26506-9128, USA.
| |
Collapse
|
41
|
Metzdorf K, Fricke S, Balia MT, Korte M, Zagrebelsky M. Nogo-A Modulates the Synaptic Excitation of Hippocampal Neurons in a Ca 2+-Dependent Manner. Cells 2021; 10:cells10092299. [PMID: 34571950 PMCID: PMC8467072 DOI: 10.3390/cells10092299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
A tight regulation of the balance between inhibitory and excitatory synaptic transmission is a prerequisite for synaptic plasticity in neuronal networks. In this context, the neurite growth inhibitor membrane protein Nogo-A modulates synaptic plasticity, strength, and neurotransmitter receptor dynamics. However, the molecular mechanisms underlying these actions are unknown. We show that Nogo-A loss-of-function in primary mouse hippocampal cultures by application of a function-blocking antibody leads to higher excitation following a decrease in GABAARs at inhibitory and an increase in the GluA1, but not GluA2 AMPAR subunit at excitatory synapses. This unbalanced regulation of AMPAR subunits results in the incorporation of Ca2+-permeable GluA2-lacking AMPARs and increased intracellular Ca2+ levels due to a higher Ca2+ influx without affecting its release from the internal stores. Increased neuronal activation upon Nogo-A loss-of-function prompts the phosphorylation of the transcription factor CREB and the expression of c-Fos. These results contribute to the understanding of the molecular mechanisms underlying the regulation of the excitation/inhibition balance and thereby of plasticity in the brain.
Collapse
Affiliation(s)
- Kristin Metzdorf
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, D-38106 Braunschweig, Germany; (K.M.); (M.T.B.); (M.K.)
- Helmholtz Centre for Infection Research, AG NIND, Inhoffenstr. 7, D-38124 Braunschweig, Germany
| | - Steffen Fricke
- Division of Cell Physiology, Zoological Institute, TU Braunschweig, D-38106 Braunschweig, Germany;
| | - Maria Teresa Balia
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, D-38106 Braunschweig, Germany; (K.M.); (M.T.B.); (M.K.)
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, D-38106 Braunschweig, Germany; (K.M.); (M.T.B.); (M.K.)
- Helmholtz Centre for Infection Research, AG NIND, Inhoffenstr. 7, D-38124 Braunschweig, Germany
| | - Marta Zagrebelsky
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, D-38106 Braunschweig, Germany; (K.M.); (M.T.B.); (M.K.)
- Correspondence: ; Tel.: +49-(0)-531-3913225
| |
Collapse
|
42
|
Jain PP, Zhao T, Xiong M, Song S, Lai N, Zheng Q, Chen J, Carr SG, Babicheva A, Izadi A, Rodriguez M, Rahimi S, Balistrieri F, Rahimi S, Simonson T, Valdez-Jasso D, Thistlethwaite PA, Shyy JYJ, Wang J, Makino A, Yuan JXJ. Halofuginone, a promising drug for treatment of pulmonary hypertension. Br J Pharmacol 2021; 178:3373-3394. [PMID: 33694155 PMCID: PMC9792225 DOI: 10.1111/bph.15442] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Halofuginone is a febrifugine derivative originally isolated from Chinese traditional herb Chang Shan that exhibits anti-hypertrophic, anti-fibrotic and anti-proliferative effects. We sought to investigate whether halofuginone induced pulmonary vasodilation and attenuates chronic hypoxia-induced pulmonary hypertension (HPH). EXPERIMENTAL APPROACH Patch-clamp experiments were conducted to examine the activity of voltage-dependent Ca2+ channels (VDCCs) in pulmonary artery smooth muscle cells (PASMCs). Digital fluorescence microscopy was used to measure intracellular Ca2+ concentration in PASMCs. Isolated perfused and ventilated mouse lungs were used to measure pulmonary artery pressure (PAP). Mice exposed to hypoxia (10% O2 ) for 4 weeks were used as model of HPH for in vivo experiments. KEY RESULTS Halofuginone increased voltage-gated K+ (Kv ) currents in PASMCs and K+ currents through KCNA5 channels in HEK cells transfected with KCNA5 gene. HF (0.03-1 μM) inhibited receptor-operated Ca2+ entry in HEK cells transfected with calcium-sensing receptor gene and attenuated store-operated Ca2+ entry in PASMCs. Acute (3-5 min) intrapulmonary application of halofuginone significantly and reversibly inhibited alveolar hypoxia-induced pulmonary vasoconstriction dose-dependently (0.1-10 μM). Intraperitoneal administration of halofuginone (0.3 mg·kg-1 , for 2 weeks) partly reversed established PH in mice. CONCLUSION AND IMPLICATIONS Halofuginone is a potent pulmonary vasodilator by activating Kv channels and blocking VDCC and receptor-operated and store-operated Ca2+ channels in PASMCs. The therapeutic effect of halofuginone on experimental PH is probably due to combination of its vasodilator effects, via inhibition of excitation-contraction coupling and anti-proliferative effects, via inhibition of the PI3K/Akt/mTOR signalling pathway.
Collapse
Affiliation(s)
- Pritesh P. Jain
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Tengteng Zhao
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Mingmei Xiong
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Ning Lai
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
- State Key Laboratory of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiuyu Zheng
- Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, USA
| | - Jiyuan Chen
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
- State Key Laboratory of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Aleksandra Babicheva
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Amin Izadi
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Marisela Rodriguez
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Shamin Rahimi
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Francesca Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Shayan Rahimi
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Tatum Simonson
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Daniela Valdez-Jasso
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Patricia A. Thistlethwaite
- Division of Cardiothoracic Surgery, Department of Surgery, University of California, San Diego, La Jolla, California, USA
| | - John Y.-J. Shyy
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jian Wang
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
- State Key Laboratory of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ayako Makino
- Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, USA
| | - Jason X.-J. Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
43
|
Traniello IM, Robinson GE. Neural and Molecular Mechanisms of Biological Embedding of Social Interactions. Annu Rev Neurosci 2021; 44:109-128. [PMID: 34236891 DOI: 10.1146/annurev-neuro-092820-012959] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Animals operate in complex environments, and salient social information is encoded in the nervous system and then processed to initiate adaptive behavior. This encoding involves biological embedding, the process by which social experience affects the brain to influence future behavior. Biological embedding is an important conceptual framework for understanding social decision-making in the brain, as it encompasses multiple levels of organization that regulate how information is encoded and used to modify behavior. The framework we emphasize here is that social stimuli provoke short-term changes in neural activity that lead to changes in gene expression on longer timescales. This process, simplified-neurons are for today and genes are for tomorrow-enables the assessment of the valence of a social interaction, an appropriate and rapid response, and subsequent modification of neural circuitry to change future behavioral inclinations in anticipation of environmental changes. We review recent research on the neural and molecular basis of biological embedding in the context of social interactions, with a special focus on the honeybee.
Collapse
Affiliation(s)
- Ian M Traniello
- Neuroscience Program and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA;
| | - Gene E Robinson
- Neuroscience Program and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA; .,Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
44
|
Lin Y, Jin J, Lv R, Luo Y, Dai W, Li W, Tang Y, Wang Y, Ye X, Lin WJ. Repetitive transcranial magnetic stimulation increases the brain's drainage efficiency in a mouse model of Alzheimer's disease. Acta Neuropathol Commun 2021; 9:102. [PMID: 34078467 PMCID: PMC8170932 DOI: 10.1186/s40478-021-01198-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with high prevalence rate among the elderly population. A large number of clinical studies have suggested repetitive transcranial magnetic stimulation (rTMS) as a promising non-invasive treatment for patients with mild to moderate AD. However, the underlying cellular and molecular mechanisms remain largely uninvestigated. In the current study, we examined the effect of high frequency rTMS treatment on the cognitive functions and pathological changes in the brains of 4- to 5-month old 5xFAD mice, an early pathological stage with pronounced amyloidopathy and cognitive deficit. Our results showed that rTMS treatment effectively prevented the decline of long-term memories of the 5xFAD mice for novel objects and locations. Importantly, rTMS treatment significantly increased the drainage efficiency of brain clearance pathways, including the glymphatic system in brain parenchyma and the meningeal lymphatics, in the 5xFAD mouse model. Significant reduction of Aβ deposits, suppression of microglia and astrocyte activation, and prevention of decline of neuronal activity as indicated by the elevated c-FOS expression, were observed in the prefrontal cortex and hippocampus of the rTMS-treated 5xFAD mice. Collectively, these findings provide a novel mechanistic insight of rTMS in regulating brain drainage system and β-amyloid clearance in the 5xFAD mouse model, and suggest the potential use of the clearance rate of contrast tracer in cerebrospinal fluid as a prognostic biomarker for the effectiveness of rTMS treatment in AD patients.
Collapse
Affiliation(s)
- Yangyang Lin
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Jin
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Sport University, Guangzhou, China
| | - Rongke Lv
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangzhou Sport University, Guangzhou, China
| | - Yuan Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiping Dai
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
| | - Wenchang Li
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yamei Tang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuling Wang
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaojing Ye
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
| | - Wei-Jye Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
45
|
Sakai Y, Li H, Inaba H, Funayama Y, Ishimori E, Kawatake-Kuno A, Yamagata H, Seki T, Hobara T, Nakagawa S, Watanabe Y, Tomita S, Murai T, Uchida S. Gene-environment interactions mediate stress susceptibility and resilience through the CaMKIIβ/TARPγ-8/AMPAR pathway. iScience 2021; 24:102504. [PMID: 34113835 PMCID: PMC8170005 DOI: 10.1016/j.isci.2021.102504] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/07/2021] [Accepted: 04/29/2021] [Indexed: 01/09/2023] Open
Abstract
Although stressful events predispose individuals to psychiatric disorders, such as depression, not all people who undergo a stressful life experience become depressed, suggesting that gene-environment interactions (GxE) determine depression risk. The ventral hippocampus (vHPC) plays key roles in motivation, sociability, anhedonia, despair-like behaviors, anxiety, sleep, and feeding, pointing to the involvement of this brain region in depression. However, the molecular mechanisms underlying the cross talk between the vHPC and GxE in shaping behavioral susceptibility and resilience to chronic stress remain elusive. Here, we show that Ca2+/calmodulin-dependent protein kinase IIβ (CaMKIIβ) activity in the vHPC is differentially modulated in GxE mouse models of depression susceptibility and resilience, and that CaMKIIβ-mediated TARPγ-8 phosphorylation enhances the expression of AMPA receptor subunit GluA1 in the postsynaptic sites to enable stress resilience. We present previously missing molecular mechanisms underlying chronic stress-elicited behavioral changes, providing strategies for preventing and treating stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Yusuke Sakai
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Haiyan Li
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiromichi Inaba
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuki Funayama
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Erina Ishimori
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ayako Kawatake-Kuno
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hirotaka Yamagata
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Tomoe Seki
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Teruyuki Hobara
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Shin Nakagawa
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Yoshifumi Watanabe
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Susumu Tomita
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Toshiya Murai
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
46
|
Takahashi S, Fukushima H, Yu Z, Tomita H, Kida S. Tumor necrosis factor α negatively regulates the retrieval and reconsolidation of hippocampus-dependent memory. Brain Behav Immun 2021; 94:79-88. [PMID: 33677026 DOI: 10.1016/j.bbi.2021.02.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/28/2021] [Accepted: 02/28/2021] [Indexed: 01/05/2023] Open
Abstract
Neural inflammation is associated with cognitive decline, especially learning and memory. Tumor necrosis factor α (TNFα) is a major cytokine generated during neuroinflammation. Previous studies indicated that TNFα impairs hippocampus-dependent memory including contextual fear and spatial memories. However, it is unknown which memory processes are impaired by TNFα. Here, we show that TNFα blocked the retrieval and reconsolidation of contextual fear and spatial memories. Micro-infusion of TNFα into the dorsal hippocampus at 6-18 h before retrieval impaired the retrieval of contextual fear memory, although micro-infusion before contextual fear conditioning had no effect on memory formation. Interestingly, hippocampal TNFα micro-infusion before memory retrieval decreased freezing responses, even at 24 h after retrieval, suggesting that TNFα impairs the reconsolidation of contextual fear memory. Similarly, hippocampal TNFα micro-infusion impaired the retrieval and reconsolidation of spatial memory in the Morris water maze. Consistent with these observations, hippocampal TNFα micro-infusion before retrieval blocked the induction of c-fos expression in the hippocampus, which is a marker of neural activation, in response to the retrieval of contextual fear memory. Collectively, our findings indicate that TNFα negatively regulates the retrieval and reconsolidation of hippocampus-dependent memory.
Collapse
Affiliation(s)
- Shohei Takahashi
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Hotaka Fukushima
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Zhiqian Yu
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Satoshi Kida
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan.
| |
Collapse
|
47
|
Neural substrates involved in the cognitive information processing in teleost fish. Anim Cogn 2021; 24:923-946. [PMID: 33907938 PMCID: PMC8360893 DOI: 10.1007/s10071-021-01514-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/25/2021] [Accepted: 03/06/2021] [Indexed: 02/04/2023]
Abstract
Over the last few decades, it has been shown that fish, comprising the largest group of vertebrates and in many respects one of the least well studied, possess many cognitive abilities comparable to those of birds and mammals. Despite a plethora of behavioural studies assessing cognition abilities and an abundance of neuroanatomical studies, only few studies have aimed to or in fact identified the neural substrates involved in the processing of cognitive information. In this review, an overview of the currently available studies addressing the joint research topics of cognitive behaviour and neuroscience in teleosts (and elasmobranchs wherever possible) is provided, primarily focusing on two fundamentally different but complementary approaches, i.e. ablation studies and Immediate Early Gene (IEG) analyses. More recently, the latter technique has become one of the most promising methods to visualize neuronal populations activated in specific brain areas, both during a variety of cognitive as well as non-cognition-related tasks. While IEG studies may be more elegant and potentially easier to conduct, only lesion studies can help researchers find out what information animals can learn or recall prior to and following ablation of a particular brain area.
Collapse
|
48
|
Morishita M, Kamada A, Tsukahara S. Neuronal activation of the sexually dimorphic nucleus of the preoptic area in female and male rats during copulation and its sex differences. Neurosci Lett 2021; 755:135915. [PMID: 33905774 DOI: 10.1016/j.neulet.2021.135915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
The medial preoptic area, which plays an essential role in the control of sexual behavior in rats, contains a sexually dimorphic nucleus that consists of neurons expressing calbindin-D28 K (Calb) that is referred to as the CALB-SDN. The CALB-SDN is larger and contains more Calb neurons in males than in females. The physiological functions of the CALB-SDN are not fully understood; however, CALB-SDN neurons are activated during sexual behavior in males, suggesting that the male CALB-SDN is involved in regulation of sexual behavior. However, no information exists about the physiological functions of the female CALB-SDN. In the present study, we performed an immunohistochemical analysis of c-Fos, a neuronal activity marker, in the CALB-SDN of female and male rats that had copulated with conspecifics of the opposite sex to determine whether neurons of the female CALB-SDN are activated during copulation and whether the neuronal activity of the CALB-SDN differs between sexes. The numbers of c-Fos-immunoreactive cells with or without Calb-immunoreactivity (c-Fos+/Calb+ and c-Fos+/Calb- cells) were greater in the CALB-SDN of rats that had copulated than in rats that had not copulated in each sex. Although the number of Calb+ cells in the CALB-SDN was smaller in females than in males, the increase in the number of c-Fos+/Calb+ cells in the female CALB-SDN with copulation was comparable to that in the male CALB-SDN with copulation. The increase in the number of c-Fos+/Calb- cells in the CALB-SDN with copulation was more prominent in males than in females. These results suggest that CALB-SDN neurons are activated during copulation in both sexes. The patterns of neuronal activation in the CALB-SDN during copulation may differ between sexes.
Collapse
Affiliation(s)
- Masahiro Morishita
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Arisa Kamada
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.
| |
Collapse
|
49
|
Thiel G, Backes TM, Guethlein LA, Rössler OG. Chromatin-embedded reporter genes: Quantification of stimulus-induced gene transcription. Gene 2021; 787:145645. [PMID: 33848575 DOI: 10.1016/j.gene.2021.145645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
Receptors and ion channels expressed on the cell surface ensure proper communication between the cells and the environment. In multicellular organism, stimulus-regulated gene transcription is the basis for communication with the environment allowing individual cells to respond to stimuli such as nutrients, chemical stressors and signaling molecules released by other cells of the organism. Hormones, cytokines, and mitogens bind to receptors and ion channels and induce intracellular signaling cascades involving second messengers, kinases, phosphatases, and changes in the concentration of particular ions. Ultimately, the signaling cascades reach the nucleus. Transcription factors are activated that respond to cellular stimulation and induce changes in gene transcription. Investigating stimulus-transcription coupling combines cell biology with genetics. In this review, we discuss the molecular biology of stimulus-induced transcriptional activators and their responsiveness to extracellular and intracellular signaling molecules and to epigenetic regulators. Stimulus-induced gene expression is measured by several methods, including detection of nuclear translocation of transcription factors, phosphorylation or DNA binding. In this article, we emphasize that the most reliable method to directly measure transcriptional activation involves the use of chromatin-embedded reporter genes.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany.
| | - Tobias M Backes
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Lisbeth A Guethlein
- Department of Structural Biology and Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| |
Collapse
|
50
|
Thiel G, Schmidt T, Rössler OG. Ca 2+ Microdomains, Calcineurin and the Regulation of Gene Transcription. Cells 2021; 10:cells10040875. [PMID: 33921430 PMCID: PMC8068893 DOI: 10.3390/cells10040875] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/18/2022] Open
Abstract
Ca2+ ions function as second messengers regulating many intracellular events, including neurotransmitter release, exocytosis, muscle contraction, metabolism and gene transcription. Cells of a multicellular organism express a variety of cell-surface receptors and channels that trigger an increase of the intracellular Ca2+ concentration upon stimulation. The elevated Ca2+ concentration is not uniformly distributed within the cytoplasm but is organized in subcellular microdomains with high and low concentrations of Ca2+ at different locations in the cell. Ca2+ ions are stored and released by intracellular organelles that change the concentration and distribution of Ca2+ ions. A major function of the rise in intracellular Ca2+ is the change of the genetic expression pattern of the cell via the activation of Ca2+-responsive transcription factors. It has been proposed that Ca2+-responsive transcription factors are differently affected by a rise in cytoplasmic versus nuclear Ca2+. Moreover, it has been suggested that the mode of entry determines whether an influx of Ca2+ leads to the stimulation of gene transcription. A rise in cytoplasmic Ca2+ induces an intracellular signaling cascade, involving the activation of the Ca2+/calmodulin-dependent protein phosphatase calcineurin and various protein kinases (protein kinase C, extracellular signal-regulated protein kinase, Ca2+/calmodulin-dependent protein kinases). In this review article, we discuss the concept of gene regulation via elevated Ca2+ concentration in the cytoplasm and the nucleus, the role of Ca2+ entry and the role of enzymes as signal transducers. We give particular emphasis to the regulation of gene transcription by calcineurin, linking protein dephosphorylation with Ca2+ signaling and gene expression.
Collapse
|