1
|
Wang L, Lu D, Yang M, Chai S, Du H, Jiang H. Nipah virus: epidemiology, pathogenesis, treatment, and prevention. Front Med 2024:10.1007/s11684-024-1078-2. [PMID: 39417975 DOI: 10.1007/s11684-024-1078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/18/2024] [Indexed: 10/19/2024]
Abstract
Nipah virus (NiV) is a zoonotic paramyxovirus that has recently emerged as a crucial public health issue. It can elicit severe encephalitis and respiratory diseases in animals and humans, leading to fatal outcomes, exhibiting a wide range of host species tropism, and directly transmitting from animals to humans or through an intermediate host. Human-to-human transmission associated with recurrent NiV outbreaks is a potential global health threat. Currently, the lack of effective therapeutics or licensed vaccines for NiV necessitates the primary utilization of supportive care. In this review, we summarize current knowledge of the various aspects of the NiV, including therapeutics, vaccines, and its biological characteristics, epidemiology, pathogenesis, and clinical features. The objective is to provide valuable information from scientific and clinical research and facilitate the formulation of strategies for preventing and controlling the NiV.
Collapse
Affiliation(s)
- Limei Wang
- Department of Microbiology and Pathogenic Biology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Denghui Lu
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Maosen Yang
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Shiqi Chai
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Hong Du
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Hong Jiang
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
2
|
Natasha A, Pye SE, Cho SH, Pangestu HS, Park J, Park K, Prayitno SP, Kim B, Lee JS, Kim J, Budhathoki S, Oh Y, Song JW, López CB, Suh JG, Kim WK. Molecular detection and genomic characterization of Samak Micromys paramyxovirus-1 and -2 in Micromys minutus, Republic of Korea. Virol J 2024; 21:255. [PMID: 39407289 PMCID: PMC11481300 DOI: 10.1186/s12985-024-02532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The discovery of viruses in small mammalian populations, particularly rodents, has expanded the family Paramyxoviridae. The overlap in habitats between rodents and humans increases the risk of zoonotic events, underscoring the importance of active surveillance. Rodent species, such as Apodemus agrarius, are natural hosts for Paramyxoviridae in the Republic of Korea (ROK). However, it is unknown whether Paramyxoviridae is present in Micromys minutus, another common rodent. METHOD Here, we screened M. minutus collected from the Gangwon Province in the ROK for paramyxoviruses using nested polymerase chain reaction and confirm positive samples by next-generation metagenomic sequencing. Complete paramyxovirus genomes were further characterized by phylogenetic analysis, amino acid similarity, secondary structure, and cophylogeny. RESULT Overall, 57 of 145 (39.3%) M. minutus kidney samples tested positive for paramyxoviruses. Among them, four whole genome sequences were identified and clustered within the genus Jeilongvirus. One sequence was determined as Samak Micromys paramyxovirus 1 (SMPV-1; 19,911 nucleotides long) and three sequences as Samak Micromys paramyxovirus 2 (SMPV-2; 18,199 nucleotides long). SMPV-1 has a smaller hydrophobic gene and a longer glycoprotein gene than SMPV-2. Cophylogenetic analysis suggests that SMPV-1 evolved through co-divergence, whereas SMPV-2 was inferred to have undergone transfer events. CONCLUSION These findings highlight the prevalence of paramyxoviruses in the wild and the potential of M. minutus as a natural viral reservoir. The discovery of SMPV-1 and SMPV - 2 also reveals the genetic diversity and evolutionary history of the genus Jeilongvirus in the Paramyxoviridae.
Collapse
Affiliation(s)
- Augustine Natasha
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Sarah E Pye
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Seung Hye Cho
- Department of Biomedical Science, College of Natural Sciences, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Haryo Seno Pangestu
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Jieun Park
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Kyungmin Park
- Department of Microbiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Sara P Prayitno
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Bohyeon Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Jong Sun Lee
- Department of Medical Genetics, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Jongwoo Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Shailesh Budhathoki
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Yeonsu Oh
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- BK21 Graduate Program, Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Carolina B López
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jun Gyo Suh
- Department of Medical Genetics, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea.
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea.
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
3
|
Gan M, Hu B, Ding Q, Zhang N, Wei J, Nie T, Cai K, Zheng Z. Discovery and characterization of novel jeilongviruses in wild rodents from Hubei, China. Virol J 2024; 21:146. [PMID: 38918816 PMCID: PMC11201313 DOI: 10.1186/s12985-024-02417-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
The genus Jeilongvirus comprises non-segmented negative-stranded RNA viruses that are classified within the Paramyxoviridae family by phylogeny. Jeilongviruses are found in various reservoirs, including rodents and bats. Rodents are typical viral reservoirs with diverse spectra and zoonotic potential. Little is currently known about jeilongviruses in rodents from central China. The study utilized high-throughput and Sanger sequencing to obtain jeilongvirus genomes, including those of two novel strains (HBJZ120/CHN/2021 (17,468 nt) and HBJZ157/CHN/2021 (19,143 nt)) and three known viruses (HBXN18/CHN/2021 (19,212 nt), HBJZ10/CHN/2021 (19,700 nt), HBJM106/CHN/2021 (18,871 nt)), which were characterized by genome structure, identity matrix, and phylogenetic analysis. Jeilongviruses were classified into three subclades based on their topology, phylogeny, and hosts. Based on the amino acid sequence identities and phylogenetic analysis of the L protein, HBJZ120/CHN/2021 and HBJZ157/CHN/2021 were found to be strains rather than novel species. Additionally, according to specific polymerase chain reaction screening, the positive percentage of Beilong virus in Hubei was 6.38%, suggesting that Beilong virus, belonging to the Jeilongvirus genus, is likely to be widespread in wild rodents. The identification of novel strains further elucidated the genomic diversity of jeilongviruses. Additionally, the prevalence of jeilongviruses in Hubei, China, was profiled, establishing a foundation for the surveillance and early warning of emerging paramyxoviruses.
Collapse
Affiliation(s)
- Min Gan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Bing Hu
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, Hubei, China
| | - Qingwen Ding
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | - Nailou Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | - Jinbo Wei
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | - Tao Nie
- Xianning Municipal Center for Disease Control and Prevention, Xianning, 437199, Hubei, China
| | - Kun Cai
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, Hubei, China.
| | - Zhenhua Zheng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China.
| |
Collapse
|
4
|
Yin C, Yao YF, Yang P, Liu H, Gao G, Peng Y, Chen M, Lu M, Zhang X, Guo W, Zhang Z, Hu X, Yuan Z, Shan C. A highly effective ferritin-based divalent nanoparticle vaccine shields Syrian hamsters against lethal Nipah virus. Front Immunol 2024; 15:1387811. [PMID: 38911870 PMCID: PMC11191641 DOI: 10.3389/fimmu.2024.1387811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024] Open
Abstract
The Nipah virus (NiV), a highly deadly bat-borne paramyxovirus, poses a substantial threat due to recurrent outbreaks in specific regions, causing severe respiratory and neurological diseases with high morbidity. Two distinct strains, NiV-Malaysia (NiV-M) and NiV-Bangladesh (NiV-B), contribute to outbreaks in different geographical areas. Currently, there are no commercially licensed vaccines or drugs available for prevention or treatment. In response to this urgent need for protection against NiV and related henipaviruses infections, we developed a novel homotypic virus-like nanoparticle (VLP) vaccine co-displaying NiV attachment glycoproteins (G) from both strains, utilizing the self-assembling properties of ferritin protein. In comparison to the NiV G subunit vaccine, our nanoparticle vaccine elicited significantly higher levels of neutralizing antibodies and provided complete protection against a lethal challenge with NiV infection in Syrian hamsters. Remarkably, the nanoparticle vaccine stimulated the production of antibodies that exhibited superior cross-reactivity to homologous or heterologous henipavirus. These findings underscore the potential utility of ferritin-based nanoparticle vaccines in providing both broad-spectrum and long-term protection against NiV and emerging zoonotic henipaviruses challenges.
Collapse
Affiliation(s)
- Chunhong Yin
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Feng Yao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Peipei Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Hang Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ge Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yun Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Miaoyu Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Mingqing Lu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xuekai Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Weiwei Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zihan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhiming Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chao Shan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
- Hubei Jiangxia Laboratory, Wuhan, China
| |
Collapse
|
5
|
Sharma N, Jamwal VL, Nagial S, Ranjan M, Rath D, Gandhi SG. Current status of diagnostic assays for emerging zoonotic viruses: Nipah and Hendra. Expert Rev Mol Diagn 2024; 24:473-485. [PMID: 38924448 DOI: 10.1080/14737159.2024.2368591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION Nipah and Hendra viruses belong to the Paramyxoviridae family, which pose a significant threat to human health, with sporadic outbreaks causing severe morbidity and mortality. Early symptoms include fever, cough, sore throat, and headache, which offer little in terms of differential diagnosis. There are no specific therapeutics and vaccines for these viruses. AREAS COVERED This review comprehensively covers a spectrum of diagnostic techniques for Nipah and Hendra virus infections, discussed in conjunction with appropriate type of samples during the progression of infection. Serological assays, reverse transcriptase Real-Time PCR assays, and isothermal amplification assays are discussed in detail, along with a listing of few commercially available detection kits. Patents protecting inventions in Nipah and Hendra virus detection are also covered. EXPERT OPINION Despite several outbreaks of Nipah and Hendra infections in the past decade, in-depth research into their pathogenesis, Point-of-Care diagnostics, specific therapies, and human vaccines is lacking. A prompt and accurate diagnosis is pivotal for efficient outbreak management, patient treatment, and the adoption of preventative measures. The emergence of rapid point-of-care tests holds promise in enhancing diagnostic capabilities in real-world settings. The patent landscape emphasizes the importance of innovation and collaboration within the legal and business realms.
Collapse
Affiliation(s)
- Nancy Sharma
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vijay Lakshmi Jamwal
- Microfluidics Design and Bioengineering Lab, Chemical Engineering Department, Indian Institute of Technology Jammu (IIT), Jammu, India
| | - Sakshi Nagial
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, India
| | - Manish Ranjan
- Department of Microbiology, All India Institute of Medical Sciences Jammu (AIIMS), Jammu, India
| | - Dharitri Rath
- Microfluidics Design and Bioengineering Lab, Chemical Engineering Department, Indian Institute of Technology Jammu (IIT), Jammu, India
| | - Sumit G Gandhi
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Xu JL, Chen JT, Hu B, Guo WW, Guo JJ, Xiong CR, Qin LX, Yu XN, Chen XM, Cai K, Li YR, Liu MQ, Chen LJ, Hou W. Discovery and genetic characterization of novel paramyxoviruses from small mammals in Hubei Province, Central China. Microb Genom 2024; 10:001229. [PMID: 38700925 PMCID: PMC11145887 DOI: 10.1099/mgen.0.001229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
Paramyxoviruses are a group of single-stranded, negative-sense RNA viruses, some of which are responsible for acute human disease, including parainfluenza virus, measles virus, Nipah virus and Hendra virus. In recent years, a large number of novel paramyxoviruses, particularly members of the genus Jeilongvirus, have been discovered in wild mammals, suggesting that the diversity of paramyxoviruses may be underestimated. Here we used hemi-nested reverse transcription PCR to obtain 190 paramyxovirus sequences from 969 small mammals in Hubei Province, Central China. These newly identified paramyxoviruses were classified into four clades: genera Jeilongvirus, Morbillivirus, Henipavirus and Narmovirus, with most of them belonging to the genus Jeilongvirus. Using Illumina sequencing and Sanger sequencing, we successfully recovered six near-full-length genomes with different genomic organizations, revealing the more complex genome content of paramyxoviruses. Co-divergence analysis of jeilongviruses and their known hosts indicates that host-switching occurred more frequently in the evolutionary histories of the genus Jeilongvirus. Together, our findings demonstrate the high prevalence of paramyxoviruses in small mammals, especially jeilongviruses, and highlight the diversity of paramyxoviruses and their genome content, as well as the evolution of jeilongviruses.
Collapse
Affiliation(s)
- Jia-le Xu
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Jin-tao Chen
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Bing Hu
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control & Prevention, 6 Zhuodaoquan Road, Wuhan, Hubei, 430079, PR China
| | - Wei-wei Guo
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Jing-jing Guo
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Chao-rui Xiong
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Ling-xin Qin
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Xin-nai Yu
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Xiao-min Chen
- Division of Virology, Wuhan Center for Disease Control & Prevention, 288 Machang Road, Wuhan, Hubei, 430015, PR China
| | - Kun Cai
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control & Prevention, 6 Zhuodaoquan Road, Wuhan, Hubei, 430079, PR China
| | - Yi-rong Li
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Man-qing Liu
- Division of Virology, Wuhan Center for Disease Control & Prevention, 288 Machang Road, Wuhan, Hubei, 430015, PR China
| | - Liang-jun Chen
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Wei Hou
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
- School of Public Health, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| |
Collapse
|
7
|
Ma F, Xu Q, Wang A, Yang D, Li Q, Guo J, Zhang L, Ou J, Li R, Yin H, Li K, Wang L, Wang Y, Zhao X, Niu X, Zhang S, Li X, Chai S, Zhang E, Rao Z, Zhang G. A universal design of restructured dimer antigens: Development of a superior vaccine against the paramyxovirus in transgenic rice. Proc Natl Acad Sci U S A 2024; 121:e2305745121. [PMID: 38236731 PMCID: PMC10823241 DOI: 10.1073/pnas.2305745121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
The development of vaccines, which induce effective immune responses while ensuring safety and affordability, remains a substantial challenge. In this study, we proposed a vaccine model of a restructured "head-to-tail" dimer to efficiently stimulate B cell response. We also demonstrate the feasibility of using this model to develop a paramyxovirus vaccine through a low-cost rice endosperm expression system. Crystal structure and small-angle X-ray scattering data showed that the restructured hemagglutinin-neuraminidase (HN) formed tetramers with fully exposed quadruple receptor binding domains and neutralizing epitopes. In comparison with the original HN antigen and three traditional commercial whole virus vaccines, the restructured HN facilitated critical epitope exposure and initiated a faster and more potent immune response. Two-dose immunization with 0.5 μg of the restructured antigen (equivalent to one-127th of a rice grain) and one-dose with 5 μg completely protected chickens against a lethal challenge of the virus. These results demonstrate that the restructured HN from transgenic rice seeds is safe, effective, low-dose useful, and inexpensive. We provide a plant platform and a simple restructured model for highly effective vaccine development.
Collapse
Affiliation(s)
- Fanshu Ma
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou450046, China
- School of Advanced Agriculture Sciences, Peking University, Beijing100871, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou450046, China
- College of Life Sciences, Zhengzhou University, Zhengzhou450001, China
- Chinese Academy of Sciences Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Qianru Xu
- School of Basic Medical Sciences, Henan University, Kaifeng475004, China
| | - Aiping Wang
- College of Life Sciences, Zhengzhou University, Zhengzhou450001, China
| | - Daichang Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan430074, China
| | - Qingmei Li
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, China
| | - Junqing Guo
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, China
| | - Longxian Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou450046, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou450046, China
| | - Jiquan Ou
- Wuhan Healthgen Biotechnology Corp., Wuhan430074, China
| | - Rui Li
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, China
| | - Heng Yin
- Wuhan Healthgen Biotechnology Corp., Wuhan430074, China
| | - Kunpeng Li
- Wuhan Healthgen Biotechnology Corp., Wuhan430074, China
| | - Li Wang
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, China
| | - Yanan Wang
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, China
| | - Xiangyue Zhao
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, China
| | - Xiangxiang Niu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou450046, China
| | - Shenli Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou450046, China
| | - Xueyang Li
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou450046, China
| | - Shujun Chai
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou450002, China
| | - Erqin Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou450046, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou450046, China
| | - Zihe Rao
- Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing100084, China
| | - Gaiping Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou450046, China
- School of Advanced Agriculture Sciences, Peking University, Beijing100871, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou450046, China
- College of Life Sciences, Zhengzhou University, Zhengzhou450001, China
| |
Collapse
|
8
|
Haas G, Lee B. Reverse Genetics Systems for the De Novo Rescue of Diverse Members of Paramyxoviridae. Methods Mol Biol 2024; 2733:15-35. [PMID: 38064024 DOI: 10.1007/978-1-0716-3533-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Paramyxoviruses place significant burdens on both human and wildlife health; while some paramyxoviruses are established within human populations, others circulate within diverse animal reservoirs. Concerningly, bat-borne paramyxoviruses have spilled over into humans with increasing frequency in recent years, resulting in severe disease. The risk of future zoonotic outbreaks, as well as the persistence of paramyxoviruses that currently circulate within humans, highlights the need for efficient tools through which to interrogate paramyxovirus biology. Reverse genetics systems provide scientists with the ability to rescue paramyxoviruses de novo, offering versatile tools for implementation in both research and public health settings. Reverse genetics systems have greatly improved over the past 30 years, with several key innovations optimizing the success of paramyxovirus rescue. Here, we describe the significance of such advances and provide a generally applicable guide for the development and use of reverse genetics systems for the rescue of diverse members of Paramyxoviridae.
Collapse
Affiliation(s)
- Griffin Haas
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Weber MN, da Silva MS. Corona- and Paramyxoviruses in Bats from Brazil: A Matter of Concern? Animals (Basel) 2023; 14:88. [PMID: 38200819 PMCID: PMC10778288 DOI: 10.3390/ani14010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Chiroptera are one of the most diverse mammal orders. They are considered reservoirs of main human pathogens, where coronaviruses (CoVs) and paramyxoviruses (PMVs) may be highlighted. Moreover, the growing number of publications on CoVs and PMVs in wildlife reinforces the scientific community's interest in eco-vigilance, especially because of the emergence of important human pathogens such as the SARS-CoV-2 and Nipha viruses. Considering that Brazil presents continental dimensions, is biologically rich containing one of the most diverse continental biotas and presents a rich biodiversity of animals classified in the order Chiroptera, the mapping of CoV and PMV genetics related to human pathogens is important and the aim of the present work. CoVs can be classified into four genera: Alphacoronavirus, Betacoronavirus, Deltacoronavirus and Gammacoronavirus. Delta- and gammacoronaviruses infect mainly birds, while alpha- and betacoronaviruses contain important animal and human pathogens. Almost 60% of alpha- and betacoronaviruses are related to bats, which are considered natural hosts of these viral genera members. The studies on CoV presence in bats from Brazil have mainly assayed phyllostomid, molossid and vespertilionid bats in the South, Southeast and North territories. Despite Brazil not hosting rhinophilid or pteropodid bats, which are natural reservoirs of SARS-related CoVs and henipaviruses, respectively, CoVs and PMVs reported in Brazilian bats are genetically closely related to some human pathogens. Most works performed with Brazilian bats reported alpha-CoVs that were closely related to other bat-CoVs, despite a few reports of beta-CoVs grouped in the Merbecovirus and Embecovirus subgenera. The family Paramyxoviridae includes four subfamilies (Avulavirinae, Metaparamyxovirinae, Orthoparamyxovirinae and Rubulavirinae), and bats are significant drivers of PMV cross-species viral transmission. Additionally, the studies that have evaluated PMV presence in Brazilian bats have mainly found sequences classified in the Jeilongvirus and Morbillivirus genera that belong to the Orthoparamyxovirinae subfamily. Despite the increasing amount of research on Brazilian bats, studies analyzing these samples are still scarce. When surveying the representativeness of the CoVs and PMVs found and the available genomic sequences, it can be perceived that there may be gaps in the knowledge. The continuous monitoring of viral sequences that are closely related to human pathogens may be helpful in mapping and predicting future hotspots in the emergence of zoonotic agents.
Collapse
Affiliation(s)
- Matheus Nunes Weber
- Laboratório de Microbiologia Molecular, Universidade FEEVALE, Novo Hamburgo 93525-075, RS, Brazil;
| | | |
Collapse
|
10
|
Duprex WP, Dutch RE. Paramyxoviruses: Pathogenesis, Vaccines, Antivirals, and Prototypes for Pandemic Preparedness. J Infect Dis 2023; 228:S390-S397. [PMID: 37849400 PMCID: PMC11009463 DOI: 10.1093/infdis/jiad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
The Paramyxoviridae family includes established human pathogens such as measles virus, mumps virus, and the human parainfluenza viruses; highly lethal zoonotic pathogens such as Nipah virus; and a number of recently identified agents, such as Sosuga virus, which remain poorly understood. The high human-to-human transmission rate of paramyxoviruses such as measles virus, high case fatality rate associated with other family members such as Nipah virus, and the existence of poorly characterized zoonotic pathogens raise concern that known and unknown paramyxoviruses have significant pandemic potential. In this review, the general life cycle, taxonomic relationships, and viral pathogenesis are described for paramyxoviruses that cause both systemic and respiratory system-restricted infections. Next, key gaps in critical areas are presented, following detailed conversations with subject matter experts and based on the current literature. Finally, we present an assessment of potential prototype pathogen candidates that could be used as models to study this important virus family, including assessment of the strengths and weaknesses of each potential prototype.
Collapse
Affiliation(s)
- W Paul Duprex
- Center for Vaccine Research
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pennsylvania
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington
| |
Collapse
|
11
|
Vaslin MFS, Arruda LDB, Campos FS. Surveillance, Prevention, Evolution and Control of Emerging Viruses: A 2022 Editorial Update. Viruses 2023; 15:2098. [PMID: 37896875 PMCID: PMC10612040 DOI: 10.3390/v15102098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The Special Issue "Emerging Viruses: Surveillance, Prevention, Evolution and Control" has been published annually by Viruses, since 2019, highlighting the increasing effort of the scientific community for the surveillance and further research of new emerging or re-emerging viruses [...].
Collapse
Affiliation(s)
- Maite Freitas Silva Vaslin
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Luciana de Barros Arruda
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Fabricio Souza Campos
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre CEP 90035-003, RS, Brazil
| |
Collapse
|
12
|
Lunardi M, Darold GM, Francescon RRS, Alfieri AA. First report of porcine respirovirus 1 in Brazil. Microb Pathog 2023; 182:106222. [PMID: 37406836 DOI: 10.1016/j.micpath.2023.106222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Porcine respirovirus 1 (PRV1), currently referred to as Respirovirus suis, was first described in deceased pigs at a Hong Kong slaughterhouse. Since then, PRV1 strains have been detected in pig herds in American, European, and Asian countries. Considering that Brazil is the fourth-largest global producer and exporter of pork, we aimed to detect the PRV1 RNA in biological samples collected from intensive pig farming in the midwestern region of Brazil. Oropharyngeal and rectal swabs were collected from pigs of different ages at an intensive commercial pig operation. These samples were tested using reverse transcription semi-nested polymerase chain reaction. In this study, the frequency of identification of PRV1 RNA in feces was found to be 2% (1/50), whereas the detection rate of PRV1 in the respiratory mucosa was approximately 1% (1/90). Therefore, a low rate of PRV1 detection was observed only in weaned pigs aged 33-50 days. Sequence analyses revealed that the two Brazilian PRV1 strains were closely related to previously reported strains mainly from Asian countries such as Vietnam, China, and South Korea. These strains clustered with PRV1 sequences classified into the European lineage 1. This is the first report of PRV1 in a commercial pig herd in Brazil. To accurately determine the frequency of detection of PRV1 among pigs in intensive commercial pig farms in Brazil, additional prospective and retrospective studies should be conducted. These studies should aim to detect PRV1 in pig herds with diverse respiratory disease statuses.
Collapse
Affiliation(s)
- Michele Lunardi
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Celso Garcia Cid Road, PO Box 10011, Londrina, Parana, CEP 86057-970, Brazil; Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Celso Garcia Cid Road, PO Box 10011, Londrina, Parana, CEP 86057-970, Brazil.
| | - Gabriela M Darold
- Laboratory of Veterinary Microbiology, Universidade de Cuiaba, 3300 Historiador Rubens de Mendonça Avenue, Cuiaba, Mato Grosso, CEP 78050-000, Brazil.
| | - Roger R S Francescon
- Laboratory of Veterinary Microbiology, Universidade de Cuiaba, 3300 Historiador Rubens de Mendonça Avenue, Cuiaba, Mato Grosso, CEP 78050-000, Brazil.
| | - Amauri A Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Celso Garcia Cid Road, PO Box 10011, Londrina, Parana, CEP 86057-970, Brazil; Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Celso Garcia Cid Road, PO Box 10011, Londrina, Parana, CEP 86057-970, Brazil.
| |
Collapse
|
13
|
Muzeniek T, Perera T, Siriwardana S, Bas D, Bayram F, Öruc M, Becker-Ziaja B, Perera I, Weerasena J, Handunnetti S, Schwarz F, Premawansa G, Premawansa S, Yapa W, Nitsche A, Kohl C. Comparative virome analysis of individual shedding routes of Miniopterus phillipsi bats inhabiting the Wavul Galge cave, Sri Lanka. Sci Rep 2023; 13:12859. [PMID: 37553373 PMCID: PMC10409741 DOI: 10.1038/s41598-023-39534-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
Bats are described as the natural reservoir host for a wide range of viruses. Although an increasing number of bat-associated, potentially human pathogenic viruses were discovered in the past, the full picture of the bat viromes is not explored yet. In this study, the virome composition of Miniopterus phillipsi bats (formerly known as Miniopterus fuliginosus bats in Sri Lanka) inhabiting the Wavul Galge cave, Sri Lanka, was analyzed. To assess different possible excretion routes, oral swabs, feces and urine were collected and analyzed individually by using metagenomic NGS. The data obtained was further evaluated by using phylogenetic reconstructions, whereby a special focus was set on RNA viruses that are typically associated with bats. Two different alphacoronavirus strains were detected in feces and urine samples. Furthermore, a paramyxovirus was detected in urine samples. Sequences related to Picornaviridae, Iflaviridae, unclassified Riboviria and Astroviridae were identified in feces samples and further sequences related to Astroviridae in urine samples. No viruses were detected in oral swab samples. The comparative virome analysis in this study revealed a diversity in the virome composition between the collected sample types which also represent different potential shedding routes for the detected viruses. At the same time, several novel viruses represent first reports of these pathogens from bats in Sri Lanka. The detection of two different coronaviruses in the samples indicates the potential general persistence of this virus species in M. phillipsi bats. Based on phylogenetics, the identified viruses are closely related to bat-associated viruses with comparably low estimation of human pathogenic potential. In further studies, the seasonal variation of the virome will be analyzed to identify possible shedding patterns for particular viruses.
Collapse
Affiliation(s)
- Therese Muzeniek
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353, Berlin, Germany
| | - Thejanee Perera
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, 00300, Sri Lanka
| | - Sahan Siriwardana
- IDEA (Identification of Emerging Agents) Laboratory, Department of Zoology and Environment Sciences, University of Colombo, Colombo, 00300, Sri Lanka
| | - Dilara Bas
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353, Berlin, Germany
| | - Fatimanur Bayram
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353, Berlin, Germany
| | - Mizgin Öruc
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353, Berlin, Germany
| | - Beate Becker-Ziaja
- Centre for International Health Protection, Public Health Laboratory Support (ZIG 4), Robert Koch Institute, 13353, Berlin, Germany
| | - Inoka Perera
- IDEA (Identification of Emerging Agents) Laboratory, Department of Zoology and Environment Sciences, University of Colombo, Colombo, 00300, Sri Lanka
| | - Jagathpriya Weerasena
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, 00300, Sri Lanka
| | - Shiroma Handunnetti
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, 00300, Sri Lanka
| | - Franziska Schwarz
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353, Berlin, Germany
| | | | - Sunil Premawansa
- IDEA (Identification of Emerging Agents) Laboratory, Department of Zoology and Environment Sciences, University of Colombo, Colombo, 00300, Sri Lanka
| | - Wipula Yapa
- IDEA (Identification of Emerging Agents) Laboratory, Department of Zoology and Environment Sciences, University of Colombo, Colombo, 00300, Sri Lanka
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353, Berlin, Germany
| | - Claudia Kohl
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, 13353, Berlin, Germany.
| |
Collapse
|
14
|
Graaf A, Hennig C, Jaschniski KL, Koechling M, Stadler J, Boehmer J, Ripp U, Pohlmann A, Schwarz BA, Beer M, Harder T. Emergenceof swine influenza A virus, porcine respirovirus 1 and swine orthopneumovirus in porcine respiratory disease in Germany. Emerg Microbes Infect 2023:2239938. [PMID: 37470510 PMCID: PMC10402848 DOI: 10.1080/22221751.2023.2239938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Respiratory disease is a significant economic issue in pig farming, with a complex aetiology that includes swine influenza A viruses (swIAV), which are common in European domestic pig populations. The most recent human influenza pandemic in 2009 showed swIAV's zoonotic potential. Monitoring pathogens and disease control are critical from a preventive standpoint, and are based on quick, sensitive, and specific diagnostic assays capable of detecting and distinguishing currently circulating swIAV in clinical samples. For passive surveillance, a set of multiplex quantitative reverse transcription real-time PCRs (mRT-qPCR) and MinION-directed sequencing was updated and deployed. Several lineages and genotypes of swIAV were shown to be dynamically developing, including novel reassortants between human pandemic H1N1 and the avian-derived H1 lineage of swIAV. Despite this, nearly 70% (842/1216) of individual samples from pigs with respiratory symptoms were swIAV-negative, hinting to different aetiologies. The complex and synergistic interactions of swIAV infections with other viral and bacterial infectious agents contribute to the aggravation of pig respiratory diseases. Using a newly developed mRT-qPCR for the combined detection of swIAV and the recently described porcine respirovirus 1 (PRV1) and swine orthopneumovirus (SOV) widespread co-circulation of PRV1 (19.6%, 238/1216 samples) and SOV (14.2%, 173/1216 samples) was evident. Because of the high incidence of PRV1 and SOV infections in pigs with respiratory disease, these viruses may emerge as new allies in the porcine respiratory disease syndrome.
Collapse
Affiliation(s)
- Annika Graaf
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Christin Hennig
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | | | | - Julia Stadler
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleissheim, Germany
| | - Jan Boehmer
- IVD Society for Innovative Veterinary Diagnostics mbH, Seelze-Letter, Germany
| | - Ulrike Ripp
- Vaxxinova diagnostics GmbH, Leipzig, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
15
|
Ikegame S, Carmichael JC, Wells H, Furler O'Brien RL, Acklin JA, Chiu HP, Oguntuyo KY, Cox RM, Patel AR, Kowdle S, Stevens CS, Eckley M, Zhan S, Lim JK, Veit EC, Evans MJ, Hashiguchi T, Durigon E, Schountz T, Epstein JH, Plemper RK, Daszak P, Anthony SJ, Lee B. Metagenomics-enabled reverse-genetics assembly and characterization of myotis bat morbillivirus. Nat Microbiol 2023; 8:1108-1122. [PMID: 37142773 PMCID: PMC11089651 DOI: 10.1038/s41564-023-01380-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/06/2023] [Indexed: 05/06/2023]
Abstract
Morbilliviruses are among the most contagious viral pathogens of mammals. Although previous metagenomic surveys have identified morbillivirus sequences in bats, full-length morbilliviruses from bats are limited. Here we characterize the myotis bat morbillivirus (MBaMV) from a bat surveillance programme in Brazil, whose full genome was recently published. We demonstrate that the fusion and receptor binding protein of MBaMV utilize bat CD150 and not human CD150, as an entry receptor in a mammalian cell line. Using reverse genetics, we produced a clone of MBaMV that infected Vero cells expressing bat CD150. Electron microscopy of MBaMV-infected cells revealed budding of pleomorphic virions, a characteristic morbillivirus feature. MBaMV replication reached 103-105 plaque-forming units ml-1 in human epithelial cell lines and was dependent on nectin-4. Infection of human macrophages also occurred, albeit 2-10-fold less efficiently than measles virus. Importantly, MBaMV is restricted by cross-neutralizing human sera elicited by measles, mumps and rubella vaccination and is inhibited by orally bioavailable polymerase inhibitors in vitro. MBaMV-encoded P/V genes did not antagonize human interferon induction. Finally, we show that MBaMV does not cause disease in Jamaican fruit bats. We conclude that, while zoonotic spillover into humans may theoretically be plausible, MBaMV replication would probably be controlled by the human immune system.
Collapse
Affiliation(s)
- Satoshi Ikegame
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jillian C Carmichael
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Heather Wells
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Robert L Furler O'Brien
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Joshua A Acklin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hsin-Ping Chiu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Robert M Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Aum R Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shreyas Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian S Stevens
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miles Eckley
- Center for Vector-borne Infectious Diseases Department of Microbiology, Immunology and Pathology College of Veterinary Medicine Colorado State University, Fort Collins, CO, USA
| | - Shijun Zhan
- Center for Vector-borne Infectious Diseases Department of Microbiology, Immunology and Pathology College of Veterinary Medicine Colorado State University, Fort Collins, CO, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ethan C Veit
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew J Evans
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Edison Durigon
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Tony Schountz
- Center for Vector-borne Infectious Diseases Department of Microbiology, Immunology and Pathology College of Veterinary Medicine Colorado State University, Fort Collins, CO, USA
| | | | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | | | - Simon J Anthony
- Department of Pathology, Microbiology, and Immunology, UC Davis School of Veterinary Medicine, Davis, CA, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
16
|
Sozzi E, Lelli D, Barbieri I, Chiapponi C, Moreno A, Trogu T, Tosi G, Lavazza A. Isolation and Molecular Characterisation of Respirovirus 3 in Wild Boar. Animals (Basel) 2023; 13:1815. [PMID: 37889684 PMCID: PMC10252080 DOI: 10.3390/ani13111815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 10/29/2023] Open
Abstract
Paramyxoviruses are important pathogens affecting various animals, including humans. In this study, we identified a paramyxovirus in 2004 (180608_2004), isolated from a sample of the femoral marrow bone of a wild boar carcass imported from Australia. Antigenic and morphological characteristics indicated that this virus was similar to members of the family Paramyxoviridae. The complete genome phylogenetic analysis grouped this virus into genotype A of bovine parainfluenza virus type 3 (BPIV-3), recently renamed bovine respirovirus type 3 (BRV3), which also includes two swine paramyxoviruses (SPMV)-Texas-81 and ISU-92-isolated from encephalitic pigs in the United States in 1982 and 1992, respectively. The wild boar 180608_2004 strain was more closely related to both the BRV3 shipping fever (SF) strain and the SPMV Texas-81 strain at the nucleotide and amino acid levels than the SPMV ISU-92 strain. The high sequence identity to BRV3 suggested that this virus can be transferred from cattle to wild boars. The potential for cross-species transmission in the Respirovirus genus makes it essential for intensified genomic surveillance.
Collapse
Affiliation(s)
- Enrica Sozzi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (D.L.); (I.B.); (C.C.); (A.M.); (T.T.); (G.T.); (A.L.)
| | | | | | | | | | | | | | | |
Collapse
|
17
|
T.Sinnott J, Somboonwit C, F.Alrabaa S, Shapshak P. Dangerous Risk Group-4 (RG-4) emergent viruses. Bioinformation 2023; 19:345-347. [PMID: 37822829 PMCID: PMC10563550 DOI: 10.6026/97320630019345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 04/30/2023] [Accepted: 04/30/2023] [Indexed: 10/13/2023] Open
Abstract
World Health Organization (WHO) Risk Group-4 (RG-4) pathogens are among the most dangerous of the emergent and re-emergent viruses. International health agencies, working in concert, bridge the gaps in health care for populations at risk for RG-4 viral pathogen exposure. RG-4 virus research incorporates Biodefense Program and Biosafety Laboratory (BSL)-4 technologies. RG-4 viruses include Arena-viridae, Filo-viridae, Flavi-viridae, Herpes-viridae, Nairo-viridae, Paramyxo-viridae, and Pox-viridae.
Collapse
Affiliation(s)
- John T.Sinnott
- 1Department of Internal Medicine, Morsani College of Medicine, Tampa, Florida 33606, USA
| | - Charurut Somboonwit
- 1Department of Internal Medicine, Morsani College of Medicine, Tampa, Florida 33606, USA
| | - Sally F.Alrabaa
- 1Department of Internal Medicine, Morsani College of Medicine, Tampa, Florida 33606, USA
| | - Paul Shapshak
- 1Department of Internal Medicine, Morsani College of Medicine, Tampa, Florida 33606, USA
| |
Collapse
|
18
|
Haas GD, Lee B. Paramyxoviruses from bats: changes in receptor specificity and their role in host adaptation. Curr Opin Virol 2023; 58:101292. [PMID: 36508860 PMCID: PMC9974588 DOI: 10.1016/j.coviro.2022.101292] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
Global metagenomic surveys have revealed that bats host a diverse array of paramyxoviruses, including species from at least five major genera. An essential determinant of successful spillover is the entry of a virus into a new host. We evaluate the role of receptor usage in the zoonotic potential of bat-borne henipaviruses, morbilliviruses, pararubulaviruses, orthorubulaviruses, and jeilongviruses; successful spillover into humans depends upon compatibility of a respective viral attachment protein with its cognate receptor. We also emphasize the importance of postentry restrictions in preventing spillover. Metagenomics and characterization of newly identified paramyxoviruses have greatly improved our understanding of spillover determinants, allowing for better forecasts of which bat-borne viruses may pose the greatest risk for cross-species transmission into humans.
Collapse
Affiliation(s)
- Griffin D Haas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA.
| |
Collapse
|
19
|
Pseudotyped Virus for Henipavirus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:175-190. [PMID: 36920697 DOI: 10.1007/978-981-99-0113-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The genus Henipavirus (HNV) includes two virulent infectious viruses, Nipah virus (NiV) and Hendra virus (HeV), which are the focus of considerable public health research efforts and have been classified as priority infectious diseases by the World Health Organization. Both viruses are high risk and should be handled in biosafety level 4 laboratories. Pseudotyped viruses containing the envelope proteins of HNV viruses have the same envelope protein structure as the authentic viruses; thus, they can mimic the receptor-binding and membrane fusion processes of authentic viruses with host cells and can be handled in biosafety level 2 laboratories. These characteristics enable pseudotyped viruses to be widely used in studies of viral infection mechanisms (packaging, budding, virus attachment, membrane fusion, viral entry, and glycosylation), inhibitory drug screening assays, and monoclonal antibody neutralization characteristics. This review will provide an overview of the progress of research concerning pseudotyped virus packaging systems for NiV and HeV.
Collapse
|
20
|
Characterization of Two Porcine Parainfluenza Virus 1 Isolates and Human Parainfluenza Virus 1 Infection in Weaned Nursery Pigs. Vet Sci 2022; 10:vetsci10010018. [PMID: 36669019 PMCID: PMC9863182 DOI: 10.3390/vetsci10010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Porcine parainfluenza virus 1 (PPIV1) is a newly characterized porcine respiratory virus. Recent experimental challenge studies in three-week-old nursery pigs failed to cause disease. However, it remains unclear how genetic differences contribute to viral pathogenesis. To characterize the pathogenesis of different PPIV1 isolates, three-week-old nursery pigs were challenged with either PPIV1 isolate USA/MN25890NS/2016 (MN16) or USA/IA84915LG/2017 (IA17). A human parainfluenza virus 1 (HPIV1) strain C35 ATCC® VR-94™ was included to evaluate swine as a model for human parainfluenza. All viruses were successfully re-isolated from bronchoalveolar lavage fluid and detected by RT-qPCR at necropsy. Microscopic lung lesions were more severe in the IA17 group compared to the non-challenged negative control (Ctrl) group whereas differences were not found between the MN16 and Ctrl groups. Immunohistochemistry staining in respiratory samples showed a consistent trend of higher levels of PPIV1 signal in the IA17 group followed by the MN16 group, and no PPIV1 signal observed in the HPIV1 or Ctrl groups. This study suggests potential pathogenesis differences between PPIV1 isolates. Additionally, these results indicate that HPIV1 is capable of replicating in nursery pigs after experimental inoculation. However, clinical disease or gross lung lesions were not observed in any of the challenge groups.
Collapse
|
21
|
Zhang Y, Zhang J, Wang Y, Tian F, Zhang X, Wang G, Li S, Ding H, Hu Z, Liu W, Zhang X. Genetic Diversity and Expanded Host Range of J Paramyxovirus Detected in Wild Small Mammals in China. Viruses 2022; 15:49. [PMID: 36680089 PMCID: PMC9866557 DOI: 10.3390/v15010049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
J paramyxovirus (JPV) is a rodent-borne Jeilongvirus isolated from moribund mice (Mus musculus) with hemorrhagic lung lesions trapped in the 1972 in northern Queensland, Australia. The JPV antibodies have been detected in wild mice, wild rats, pigs, and human populations in Australia. Here, by next-generation sequencing (NGS), we detected JPV from M. musculus in Shandong Province of China. Molecular detection of JPV was performed to survey to survey the infection among 66 species of wild small mammals collected from six eco-climate regions in China by applying JPV specific RT-PCR and sequencing. Altogether, 21 out of 3070 (0.68%) wild small mammals of four species were positive for JPV, including 5.26% (1/19) of Microtus fortis, 3.76% (17/452) of M. musculus, 1.67% (1/60) of Apodemus peninsulae, and 0.48% (2/421) of Apodemus agrarius, which captured three eco-climate regions of China (northeastern China, northern China, and Inner Mongolia-Xinjiang). Sequence analysis revealed the currently identified JPV was clustered with other 14 Jeilongvirus members, and shared 80.2% and 89.2% identity with Australia's JPV partial RNA polymerase (L) and glycoprotein (G) genes, respectively. Phylogenetic analysis demonstrated the separation of three lineages of the current JPV sequences. Our results show three new hosts (A. agrarius, A. peninsulae, and M. fortis) for JPV, most of which were widely distributed in China, and highlight the potential zoonotic transmission of JPV in humans. The detection of JPV in wild small mammals in China broaden the viral diversity, geographical distribution, and reservoir types of JPV. Future studies should prioritize determining the epidemiological characteristics of JPV, so that potential risks can be mitigated.
Collapse
Affiliation(s)
- Yunfa Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jingtao Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yuna Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Feng Tian
- Urumqi Customs Port Outpatient Department, Xinjiang International Travel Health Care Center, Urumqi 830011, China
| | - Xiaolong Zhang
- Science and Technology Research Center of China Customs (STRC), Beijing 100026, China
| | - Gang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Shuang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Heng Ding
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Zhenyu Hu
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Xiaoai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| |
Collapse
|
22
|
Mohd-Qawiem F, Nawal-Amani AR, Faranieyza-Afiqah F, Yasmin AR, Arshad SS, Norfitriah MS, Nur-Fazila SH. Paramyxoviruses in rodents: A review. Open Vet J 2022; 12:868-876. [PMID: 36650879 PMCID: PMC9805762 DOI: 10.5455/ovj.2022.v12.i6.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/20/2022] [Indexed: 11/27/2022] Open
Abstract
Paramyxoviruses have been shown to infect a wide range of hosts, including rodents, and humans. Several novel murine paramyxoviruses have been discovered in the last several decades. Although these viruses are unclassified, they are recognized as Beilong virus, Mojiang virus (MojV), and Tailam virus in rats, Jeilongvirus, Nariva, Paju Apodemus paramyxovirus-1 and -2 in mice, and Pentlands paramyxovirus-1, -2, and -3 in squirrels. These paramyxoviruses were reported mainly in China and a few other countries like Australia, the Republic of Korea, Trinidad, and France. In June 2012, it becomes a great concern in China whereby, three miners were reported dead potentially caused by a novel zoonotic MojV, a henipa-like virus isolated from tissue samples of rats from the same cave. Rats are considered to be natural hosts for the MojV from the literature research. The classified paramyxovirus, Sendai virus in rodents is also reviewed. Paramyxoviruses infection in rodents leads to respiratory distress such as necrotizing rhinitis, tracheitis, bronchiolitis, and interstitial pneumonia. Infections caused by paramyxoviruses often spread between species, manifesting disease in spillover hosts, including humans. This review focuses on the paramyxoviruses in rodents, including the epidemiological distributions, transmission and pathogenesis, clinical manifestations, diagnostic methods, and control and prevention of paramyxoviruses infection to provide a better understanding of these highly mutating viruses.
Collapse
Affiliation(s)
- Firdaus Mohd-Qawiem
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abdul Rahman Nawal-Amani
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Farzee Faranieyza-Afiqah
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abd Rahaman Yasmin
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siti Suri Arshad
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohamed Sohaimi Norfitriah
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Saulol Hamid Nur-Fazila
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
23
|
Abstract
RNA viruses include respiratory viruses, such as coronaviruses and influenza viruses, as well as vector-borne viruses, like dengue and West Nile virus. RNA viruses like these encounter various environments when they copy themselves and spread from cell to cell or host to host. Ex vivo differences, such as geographical location and humidity, affect their stability and transmission, while in vivo differences, such as pH and host gene expression, impact viral receptor binding, viral replication, and the host immune response against the viral infection. A critical factor affecting RNA viruses both ex vivo and in vivo, and defining the outcome of viral infections and the direction of viral evolution, is temperature. In this minireview, we discuss the impact of temperature on viral replication, stability, transmission, and adaptation, as well as the host innate immune response. Improving our understanding of how RNA viruses function, survive, and spread at different temperatures will improve our models of viral replication and transmission risk analyses.
Collapse
Affiliation(s)
- Karishma Bisht
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
24
|
First Genomic Evidence of a Henipa-like Virus in Brazil. Viruses 2022; 14:v14102167. [PMID: 36298723 PMCID: PMC9608811 DOI: 10.3390/v14102167] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
The viral genus Henipavirus includes two highly virulent zoonotic viruses of serious public health concern. Hendra henipavirus and Nipah henipavirus outbreaks are restricted to Australia and Southeast Asia, respectively. The Henipavirus genus comprises mostly bat-borne viruses, but exceptions have already been described as novel viruses with rodents and shrews as reservoir animals. In the Americas, scarce evidence supports the circulation of these viruses. In this communication, we report a novel henipa-like virus from opossums (Marmosa demerarae) from a forest fragment area in the Peixe-Boi municipality, Brazil, after which the virus was named the Peixe-Boi virus (PBV). The application of next-generation sequencing and metagenomic approach led us to discover the original evidence of a henipa-like virus genome in Brazil and South America and the original description of a henipa-like virus in marsupial species. These findings emphasize the importance of further studies to characterize PBV and clarify its ecology, impact on public health, and its relationship with didelphid marsupials and henipaviruses.
Collapse
|
25
|
Jang SS, Noh JY, Kim MC, Lim HA, Song MS, Kim HK. α2,3-Linked Sialic Acids Are the Potential Attachment Receptor for Shaan Virus Infection in MARC-145 Cells. Microbiol Spectr 2022; 10:e0125622. [PMID: 35924912 PMCID: PMC9430483 DOI: 10.1128/spectrum.01256-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Abstract
Shaan virus (ShaV), a novel species of the genus Jeilongvirus, family Paramyxoviridae, was isolated from an insectivore bat (Miniopterus schreibersii) in Korea in 2016. ShaV particles contain a hemagglutinin-neuraminidase (HN) glycoprotein in their envelope that allows the virus to target cells. Typically, diverse paramyxoviruses with HN glycoprotein are reported to interact predominantly with sialic acids, but there are no studies of receptors for ShaV. In this study, the identification of potential receptors for ShaV was demonstrated using sialidase treatments, glycan microarray, magnetic bead-based virus binding assay, and neuraminidase inhibitor treatments. Pretreatment of MARC-145 cells with sialidase, which cleaves α2,3-linked sialic acids, showed higher inhibition of viral infection than α2,6-linked-specific sialidase. These data were supported by the binding of ShaV to predominantly α2,3-linked sialylated glycans in the screening of sialyl linkage patterns through glycan microarray. To further confirm the direct interaction between ShaV and α2,3-linked sialic acids, ShaV was incubated with α2,3- or α2,6-linked sialylated glycans conjugated to magnetic beads, and binding signals were detected only for α2,3-linked sialylated glycans. In addition, the potential of sialic acids as a receptor was demonstrated by the viral replication inhibitory effect of the neuraminidase inhibitor 2,3-dehydro-2-deoxy-N-acetylneuraminicacid (DANA) in the mature virion release steps. Collectively, these results support that α2,3-linked sialic acids are the potential receptor for ShaV infection in MARC-145 cells. IMPORTANCE Bats host major mammalian paramyxoviruses, and novel paramyxoviruses are increasingly being reported around the world. Shaan virus (ShaV), from the genus Jeilongvirus, family Paramyxoviridae, has a potential attachment glycoprotein, HN. Here, we identify that ShaV binds to sialic acid and demonstrate that α2,3-linked sialic acids are the potential receptor for ShaV infection. The presented data regarding ShaV receptor specificity will enable studies into the viral tropism for the host and contribute to the development of new antiviral strategies targeting viral receptors.
Collapse
Affiliation(s)
- Seong Sik Jang
- Department of Biological Sciences and Biotechnology, College of Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Ji Yeong Noh
- Department of Biological Sciences and Biotechnology, College of Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Min Chan Kim
- Department of Biological Sciences and Biotechnology, College of Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyun A. Lim
- Department of Biological Sciences and Biotechnology, College of Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Min Suk Song
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Hye Kwon Kim
- Department of Biological Sciences and Biotechnology, College of Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
26
|
Norris MJ, Husby ML, Kiosses WB, Yin J, Saxena R, Rennick LJ, Heiner A, Harkins SS, Pokhrel R, Schendel SL, Hastie KM, Landeras-Bueno S, Salie ZL, Lee B, Chapagain PP, Maisner A, Duprex WP, Stahelin RV, Saphire EO. Measles and Nipah virus assembly: Specific lipid binding drives matrix polymerization. SCIENCE ADVANCES 2022; 8:eabn1440. [PMID: 35857835 PMCID: PMC9299542 DOI: 10.1126/sciadv.abn1440] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/06/2022] [Indexed: 05/03/2023]
Abstract
Measles virus, Nipah virus, and multiple other paramyxoviruses cause disease outbreaks in humans and animals worldwide. The paramyxovirus matrix (M) protein mediates virion assembly and budding from host cell membranes. M is thus a key target for antivirals, but few high-resolution structures of paramyxovirus M are available, and we lack the clear understanding of how viral M proteins interact with membrane lipids to mediate viral assembly and egress that is needed to guide antiviral design. Here, we reveal that M proteins associate with phosphatidylserine and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] at the plasma membrane. Using x-ray crystallography, electron microscopy, and molecular dynamics, we demonstrate that PI(4,5)P2 binding induces conformational and electrostatic changes in the M protein surface that trigger membrane deformation, matrix layer polymerization, and virion assembly.
Collapse
Affiliation(s)
- Michael J. Norris
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Monica L. Husby
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - William B. Kiosses
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Jieyun Yin
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Roopashi Saxena
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Linda J. Rennick
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Anja Heiner
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Stephanie S. Harkins
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Rudramani Pokhrel
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Sharon L. Schendel
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kathryn M. Hastie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Sara Landeras-Bueno
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Zhe Li Salie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Prem P. Chapagain
- Department of Physics, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Andrea Maisner
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - W. Paul Duprex
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Robert V. Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
27
|
Wells HL, Loh E, Nava A, Solorio MR, Lee MH, Lee J, Sukor JRA, Navarrete-Macias I, Liang E, Firth C, Epstein JH, Rostal MK, Zambrana-Torrelio C, Murray K, Daszak P, Goldstein T, Mazet JAK, Lee B, Hughes T, Durigon E, Anthony SJ. Classification of new morbillivirus and jeilongvirus sequences from bats sampled in Brazil and Malaysia. Arch Virol 2022; 167:1977-1987. [PMID: 35781557 PMCID: PMC9402765 DOI: 10.1007/s00705-022-05500-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/27/2022] [Indexed: 11/24/2022]
Abstract
As part of a broad One Health surveillance effort to detect novel viruses in wildlife and people, we report several paramyxovirus sequences sampled primarily from bats during 2013 and 2014 in Brazil and Malaysia, including seven from which we recovered full-length genomes. Of these, six represent the first full-length paramyxovirid genomes sequenced from the Americas, including two that are the first full-length bat morbillivirus genome sequences published to date. Our findings add to the vast number of viral sequences in public repositories, which have been increasing considerably in recent years due to the rising accessibility of metagenomics. Taxonomic classification of these sequences in the absence of phenotypic data has been a significant challenge, particularly in the subfamily Orthoparamyxovirinae, where the rate of discovery of novel sequences has been substantial. Using pairwise amino acid sequence classification (PAASC), we propose that five of these sequences belong to members of the genus Jeilongvirus and two belong to members of the genus Morbillivirus. We also highlight inconsistencies in the classification of Tupaia virus and Mòjiāng virus using the same demarcation criteria and suggest reclassification of these viruses into new genera. Importantly, this study underscores the critical importance of sequence length in PAASC analysis as well as the importance of biological characteristics such as genome organization in the taxonomic classification of viral sequences.
Collapse
Affiliation(s)
- Heather L Wells
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA.
| | - Elizabeth Loh
- EcoHealth Alliance, New York, NY, USA
- Division of Natural Sciences and Mathematics, Transylvania University, Lexington, KY, USA
| | - Alessandra Nava
- Instituto Leônidas and Maria Deane, Fiocruz Amazônia, Manaus, Brazil
| | - Mónica Romero Solorio
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Mei Ho Lee
- EcoHealth Alliance, New York, NY, USA
- Conservation Medicine, Sungai Buloh, Selangor, Malaysia
| | - Jimmy Lee
- EcoHealth Alliance, New York, NY, USA
- Conservation Medicine, Sungai Buloh, Selangor, Malaysia
| | - Jum R A Sukor
- Sabah Wildlife Department, Kota Kinabalu, Sabah, Malaysia
| | - Isamara Navarrete-Macias
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Eliza Liang
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | | | | | | | - Kris Murray
- School of Public Health, Imperial College London, London, UK
- MRC Unit The Gambia at London, School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, The Gambia
| | | | - Tracey Goldstein
- Zoological Pathology Program, University of Illinois at Urbana-Champaign, Brookfield, IL, USA
| | - Jonna A K Mazet
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tom Hughes
- EcoHealth Alliance, New York, NY, USA
- Conservation Medicine, Sungai Buloh, Selangor, Malaysia
| | - Edison Durigon
- Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Simon J Anthony
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| |
Collapse
|
28
|
Vanmechelen B, Meurs S, Horemans M, Loosen A, Joly Maes T, Laenen L, Vergote V, Koundouno FR, Magassouba N, Konde MK, Condé IS, Carroll MW, Maes P. The Characterization of Multiple Novel Paramyxoviruses Highlights the Diverse Nature of the Subfamily Orthoparamyxovirinae. Virus Evol 2022; 8:veac061. [PMID: 35854826 PMCID: PMC9290864 DOI: 10.1093/ve/veac061] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/14/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022] Open
Abstract
The subfamily Orthoparamyxovirinae is a group of single-stranded, negative-sense RNA viruses that contains many human, animal, and zoonotic pathogens. While there are currently only forty-two recognized species in this subfamily, recent research has revealed that much of its diversity remains to be characterized. Using a newly developed nested PCR-based screening assay, we report here the discovery of fifteen orthoparamyxoviruses in rodents and shrews from Belgium and Guinea, thirteen of which are believed to represent new species. Using a combination of nanopore and sanger sequencing, complete genomes could be determined for almost all these viruses, enabling a detailed evaluation of their genome characteristics. While most viruses are thought to belong to the rapidly expanding genus Jeilongvirus, we also identify novel members of the genera Narmovirus, Henipavirus, and Morbillivirus. Together with other recently discovered orthoparamyxoviruses, both henipaviruses and the morbillivirus discovered here appear to form distinct rodent-/shrew-borne clades within their respective genera, clustering separately from all currently classified viruses. In the case of the henipaviruses, a comparison of the different members of this clade revealed the presence of a secondary conserved open reading frame, encoding for a transmembrane protein, within the F gene, the biological relevance of which remains to be established. While the characteristics of the viruses described here shed further light on the complex evolutionary origin of paramyxoviruses, they also illustrate that the diversity of this group of viruses in terms of genome organization appears to be much larger than previously assumed.
Collapse
Affiliation(s)
- Bert Vanmechelen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research , Herestraat 49/Box 1040, BE3000 Leuven, Belgium
| | - Sien Meurs
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research , Herestraat 49/Box 1040, BE3000 Leuven, Belgium
| | - Marie Horemans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research , Herestraat 49/Box 1040, BE3000 Leuven, Belgium
| | - Arne Loosen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research , Herestraat 49/Box 1040, BE3000 Leuven, Belgium
| | - Tibe Joly Maes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research , Herestraat 49/Box 1040, BE3000 Leuven, Belgium
| | - Lies Laenen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research , Herestraat 49/Box 1040, BE3000 Leuven, Belgium
| | - Valentijn Vergote
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research , Herestraat 49/Box 1040, BE3000 Leuven, Belgium
| | - Fara Raymond Koundouno
- Laboratoire des fièvres hémorragiques et virales de Guinée , Conakry Guinea – Direction préfectorale de la santé de Gueckedou
| | - N’Faly Magassouba
- Projet des Fièvres Hémorragiques en Guinée, Laboratoire de Recherche en Virologie , Conakry, Guinea
| | - Mandy Kader Konde
- Center of Excellence for Training, Research on Malaria and Disease Control in Guinea (CEFORPAG) , Quartier Nongo, Ratoma, Conakry, Guinea
| | - Ibrahima Sory Condé
- Center of Excellence for Training, Research on Malaria and Disease Control in Guinea (CEFORPAG) , Quartier Nongo, Ratoma, Conakry, Guinea
| | - Miles W Carroll
- Pandemic Science Centre, Oxford University, Nuffield Department of Medicine, Wellcome Centre for Human Genetics , CCMP1st South, Roosevelt Dr, Headington, Oxford OX3 7BN, United Kingdom
| | - Piet Maes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research , Herestraat 49/Box 1040, BE3000 Leuven, Belgium
| |
Collapse
|
29
|
Tian J, Sun J, Li D, Wang N, Wang L, Zhang C, Meng X, Ji X, Suchard MA, Zhang X, Lai A, Su S, Veit M. Emerging viruses: Cross-species transmission of coronaviruses, filoviruses, henipaviruses, and rotaviruses from bats. Cell Rep 2022; 39:110969. [PMID: 35679864 PMCID: PMC9148931 DOI: 10.1016/j.celrep.2022.110969] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/10/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
Emerging infectious diseases, especially if caused by bat-borne viruses, significantly affect public health and the global economy. There is an urgent need to understand the mechanism of interspecies transmission, particularly to humans. Viral genetics; host factors, including polymorphisms in the receptors; and ecological, environmental, and population dynamics are major parameters to consider. Here, we describe the taxonomy, geographic distribution, and unique traits of bats associated with their importance as virus reservoirs. Then, we summarize the origin, intermediate hosts, and the current understanding of interspecies transmission of Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, Nipah, Hendra, Ebola, Marburg virus, and rotaviruses. Finally, the molecular interactions of viral surface proteins with host cell receptors are examined, and a comparison of these interactions in humans, intermediate hosts, and bats is conducted. This uncovers adaptive mutations in virus spike protein that facilitate cross-species transmission and risk factors associated with the emergence of novel viruses from bats.
Collapse
Affiliation(s)
- Jin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Harbin 150069, China.
| | - Jiumeng Sun
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Dongyan Li
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Ningning Wang
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Lifang Wang
- College of Veterinary Medicine, China Agricultural University, No. 17 Qinghua Donglu, Beijing 100083, China
| | - Chang Zhang
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Xiaorong Meng
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Robert-von-Ostertag-Str. 7, 14163 Berlin, Germany
| | - Xiang Ji
- Department of Mathematics, School of Science & Engineering, Tulane University, 6823 St., Charles Avenue, New Orleans, LA 70118, USA
| | - Marc A Suchard
- Departments of Biomathematics, Human Genetics and Biostatistics, David Geffen School of Medicine and Fielding School of Public Health, University of California, Los Angeles, Geffen Hall 885 Tiverton Drive, Los Angeles, CA 90095, USA
| | - Xu Zhang
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Alexander Lai
- School of Science, Technology, Engineering, and Mathematics, Kentucky State University, 400 East Main St., Frankfort, KY 40601, USA
| | - Shuo Su
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China.
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Robert-von-Ostertag-Str. 7, 14163 Berlin, Germany.
| |
Collapse
|
30
|
Novel Roles of the Nipah Virus Attachment Glycoprotein and Its Mobility in Early and Late Membrane Fusion Steps. mBio 2022; 13:e0322221. [PMID: 35506666 PMCID: PMC9239137 DOI: 10.1128/mbio.03222-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Paramyxoviridae family comprises important pathogens that include measles (MeV), mumps, parainfluenza, and the emerging deadly zoonotic Nipah virus (NiV) and Hendra virus (HeV). Paramyxoviral entry into cells requires viral-cell membrane fusion, and formation of paramyxoviral pathognomonic syncytia requires cell-cell membrane fusion. Both events are coordinated by intricate interactions between the tetrameric attachment (G/H/HN) and trimeric fusion (F) glycoproteins. We report that receptor binding induces conformational changes in NiV G that expose its stalk domain, which triggers F through a cascade from prefusion to prehairpin intermediate (PHI) to postfusion conformations, executing membrane fusion. To decipher how the NiV G stalk may trigger F, we introduced cysteines along the G stalk to increase tetrameric strength and restrict stalk mobility. While most point mutants displayed near-wild-type levels of cell surface expression and receptor binding, most yielded increased NiV G oligomeric strength, and showed remarkably strong defects in syncytium formation. Furthermore, most of these mutants displayed stronger F/G interactions and significant defects in their ability to trigger F, indicating that NiV G stalk mobility is key to proper F triggering via moderate G/F interactions. Also remarkably, a mutant capable of triggering F and of fusion pore formation yielded little syncytium formation, implicating G or G/F interactions in a late step occurring post fusion pore formation, such as the extensive fusion pore expansion required for syncytium formation. This study uncovers novel mechanisms by which the G stalk and its oligomerization/mobility affect G/F interactions, the triggering of F, and a late fusion pore expansion step-exciting novel findings for paramyxoviral attachment glycoproteins. IMPORTANCE The important Paramyxoviridae family includes measles, mumps, human parainfluenza, and the emerging deadly zoonotic Nipah virus (NiV) and Hendra virus (HeV). The deadly emerging NiV can cause neurologic and respiratory symptoms in humans with a >60% mortality rate. NiV has two surface proteins, the receptor binding protein (G) and fusion (F) glycoproteins. They mediate the required membrane fusion during viral entry into host cells and during syncytium formation, a hallmark of paramyxoviral and NiV infections. We previously discovered that the G stalk domain is important for triggering F (via largely unknown mechanisms) to induce membrane fusion. Here, we uncovered new roles and mechanisms by which the G stalk and its mobility modulate the triggering of F and also unexpectedly affect a very late step in membrane fusion, namely fusion pore expansion. Importantly, these novel findings may extend to other paramyxoviruses, offering new potential targets for therapeutic interventions.
Collapse
|
31
|
Paramyxovirus Diversity within One Population of Miniopterus fuliginosus Bats in Sri Lanka. Pathogens 2022; 11:pathogens11040434. [PMID: 35456109 PMCID: PMC9030695 DOI: 10.3390/pathogens11040434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 01/06/2023] Open
Abstract
Bats are known as typical reservoirs for a number of viruses, including viruses of the family Paramyxoviridae. Representatives of the subfamily Orthoparamyxovirinae are distributed worldwide and can cause mild to fatal diseases when infecting humans. The research on Paramyxoviruses (PMVs) from different bat hosts all over the world aims to understand the diversity, evolution and distribution of these viruses and to assess their zoonotic potential. A high number of yet unclassified PMVs from bats are recorded. In our study, we investigated bat species from the families Rhinolophidae, Hipposiderae, Pteropodidae and Miniopteridae that are roosting sympatrically in the Wavul Galge cave (Koslanda, Sri Lanka). The sampling at three time points (March and July 2018; January 2019) and screening for PMVs with a generic PCR show the presence of different novel PMVs in 10 urine samples collected from Miniopterus fuliginosus. Sequence analysis revealed a high similarity of the novel strains among each other and to other unclassified PMVs collected from Miniopterus bats. In this study, we present the first detection of PMVs in Sri Lanka and the presence of PMVs in the bat species M. fuliginosus for the first time.
Collapse
|
32
|
Ibrahim YM, Zhang W, Werid GM, Zhang H, Pan Y, Zhang L, Xu Y, Li C, Chen H, Wang Y. Characterization of parainfluenza virus 5 from diarrheic piglet highlights its zoonotic potential. Transbound Emerg Dis 2022; 69:e1510-e1525. [PMID: 35179303 DOI: 10.1111/tbed.14482] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/25/2022] [Accepted: 02/16/2022] [Indexed: 11/28/2022]
Abstract
Parainfluenza virus 5 (PIV5), a member of paramyxoviruses, causes respiratory and neurological infection in several animal species. Whereas information on PIV5 infection in digestive system is very scarce. Here, we successfully isolated one PIV5 strain from diarrhetic piglets. After four times plaque purification and ultracentrifugation, the paramyxovirus-like particles were observed by electron microscopy. The genome-wide phylogenetic analysis showed that the isolated strain was closely related to the PIV5 strain from a lesser panda and pigs in China. Therefore, we characterized this isolated PIV5 and found that this virus could hemagglutinate red blood cells from both guinea pigs and chickens. Further, we observed that this PIV5 could infect cell lines from various host species including pig, human, monkey, bovine, dog, cat, rabbit, hamster, and mouse, which was confirmed with the immunofluorescent assay. To evaluate the distribution of PIV5 in the field, we developed an indirect ELISA (iELISA) for the first time to detect the specific antibodies based on recombinant nucleocapsid protein. A total of 530 porcine serum samples were tested and the PIV5-positive rate was 75.7%. To our knowledge, this is the first report describing the full characterization of PIV5 strain isolated from a diarrheic piglet. The ability of this PIV5 strain to infect a wide range of mammalian cell types indicates that PIV5 can transmit across different species, providing a remarkable insight into potential zoonosis. The virus strain and iELISA developed in this study can be used to investigate the pathogenesis, epidemiology, and zoonotic potential of PIV5. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yassein M Ibrahim
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenli Zhang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Gebremeskel Mamu Werid
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - He Zhang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu Pan
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lin Zhang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yunfei Xu
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changwen Li
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yue Wang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
33
|
Zhu W, Huang Y, Yu X, Chen H, Li D, Zhou L, Huang Q, Liu L, Yang J, Lu S. Discovery and Evolutionary Analysis of a Novel Bat-Borne Paramyxovirus. Viruses 2022; 14:288. [PMID: 35215881 PMCID: PMC8879077 DOI: 10.3390/v14020288] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
Paramyxoviruses are a group of RNA viruses, such as mumps virus, measles virus, Nipah virus, Hendra virus, Newcastle disease virus, and parainfluenza virus, usually transmitted by airborne droplets that are predominantly responsible for acute respiratory diseases. In this paper, we identified a novel paramyxovirus belonging to genus Jeilongvirus infecting 4/112 (3.6%) bats from two trapping sites of Hainan Province of China. In these animals, the viral RNA was detected exclusively in kidney tissues. This is the first full-length Jeilongvirus genome (18,095 nucleotides) from bats of genus Hipposideros, which exhibits a canonical genome organization and encodes SH and TM proteins. Results, based on phylogenic analysis and genetic distances, indicate that the novel paramyxovirus formed an independent lineage belonging to genus Jeilongvirus, representing, thus, a novel species. In addition, the virus-host macro-evolutionary analysis revealed that host-switching was not only a common co-phylogenetic event, but also a potential mechanism by which rats are infected by bat-origin Jeilongvirus through cross-species virus transmission, indicating a bat origin of the genus Jeilongvirus. Overall, our study broadens the viral diversity, geographical distribution, host range, and evolution of genus Jeilongvirus.
Collapse
Affiliation(s)
- Wentao Zhu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (W.Z.); (Y.H.); (Q.H.); (L.L.)
| | - Yuyuan Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (W.Z.); (Y.H.); (Q.H.); (L.L.)
| | - Xiaojie Yu
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570203, China; (X.Y.); (H.C.); (D.L.); (L.Z.)
| | - Haiyun Chen
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570203, China; (X.Y.); (H.C.); (D.L.); (L.Z.)
| | - Dandan Li
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570203, China; (X.Y.); (H.C.); (D.L.); (L.Z.)
| | - Libo Zhou
- Hainan Provincial Center for Disease Control and Prevention, Haikou 570203, China; (X.Y.); (H.C.); (D.L.); (L.Z.)
| | - Qianni Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (W.Z.); (Y.H.); (Q.H.); (L.L.)
| | - Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (W.Z.); (Y.H.); (Q.H.); (L.L.)
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (W.Z.); (Y.H.); (Q.H.); (L.L.)
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (W.Z.); (Y.H.); (Q.H.); (L.L.)
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
34
|
Detection of Porcine Respirovirus 1 (PRV1) in Poland: Incidence of Co-Infections with Influenza A Virus (IAV) and Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) in Herds with a Respiratory Disease. Viruses 2022; 14:v14010148. [PMID: 35062350 PMCID: PMC8781826 DOI: 10.3390/v14010148] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
Porcine respirovirus 1 (PRV1) is also known as porcine parainfluenza virus 1 (PPIV1). The prevalence and the role of PRV1 infections for pig health is largely unknown. In order to assess the PRV1 prevalence in Poland, nasal swabs and oral fluids collected from pigs from 30 farms were examined with RT real-time PCR. Additionally, IAV and PRRSV infection statuses of PRV1-positive samples were examined. The results showed that the virus is highly prevalent (76.7% farms positive) and different patterns of PRV1 circulation in herds with mild–moderate respiratory disease were observed. Co-infections with IAV and PRRSV were infrequent and detected in 8 (23.5%) and 4 (11.8%) out of 34 PRV1-positive nasal swab pools from diseased pens, respectively. In one pen PRV1, IAV, and PRRSV were detected at the same time. Interestingly, PRV1 mean Ct value in samples with co-infections was significantly lower (29.8 ± 3.1) than in samples with a single PRV1 infection (32.5 ± 3.6) (p < 0.05), which suggested higher virus replication in these populations. On the other hand, the virus detection in pig populations exhibiting respiratory clinical signs, negative for PRRSV and IAV, suggests that PRV1 should be involved in differential diagnosis of respiratory problems.
Collapse
|
35
|
de Souza WM, Fumagalli MJ, Carrera JP, de Araujo J, Cardoso JF, de Carvalho C, Durigon EL, Queiroz LH, Faria NR, Murcia PR, Figueiredo LTM. Paramyxoviruses from neotropical bats suggest a novel genus and nephrotropism. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 95:105041. [PMID: 34411742 DOI: 10.1016/j.meegid.2021.105041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/21/2022]
Abstract
Paramyxoviruses have a broad host range and geographic distribution, including human pathogens transmitted by bats, such as Nipah and Hendra viruses. In this study, we combined high-throughput sequencing and molecular approaches to investigate the presence of paramyxoviruses in neotropical bats (Microchiroptera suborder) in Brazil. We discovered and characterized three novel paramyxoviruses in the kidney tissues of apparently healthy common vampire bats (D. rotundus) and Seba's short-tailed bats (C. perspicillata), which we tentatively named Kanhgág virus (KANV), Boe virus (BOEV), and Guató virus (GUATV). In this study, we classified these viruses as putative species into the Macrojêvirus genus, a newly proposed genus of the Orthoparamyxovirinae subfamily. Using RT-PCR, we detected these viruses in 20.9% (9 out of 43) of bats tested, and viral RNA was detected exclusively in kidney tissues. Attempts to isolate infectious virus were successful for KANV and GUATV. Our results expand the viral diversity, host range, and geographical distribution of the paramyxoviruses.
Collapse
Affiliation(s)
- William Marciel de Souza
- World Reference Center for Emerging Viruses and Arboviruses and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Marcilio Jorge Fumagalli
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jean Paul Carrera
- Department of Zoology, University of Oxford, Oxford, UK; Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Jansen de Araujo
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Cristiano de Carvalho
- Faculty of Veterinary Medicine, São Paulo State University, Araçatuba, São Paulo, Brazil
| | - Edison Luiz Durigon
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Luzia Helena Queiroz
- Faculty of Veterinary Medicine, São Paulo State University, Araçatuba, São Paulo, Brazil
| | - Nuno Rodrigues Faria
- Department of Zoology, University of Oxford, Oxford, UK; Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Pablo R Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Luiz Tadeu Moraes Figueiredo
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
36
|
Abstract
Paramyxoviruses are a diverse group of negative-sense, single-stranded RNA viruses of which several species cause significant mortality and morbidity. In recent years the collection of paramyxoviruses sequences detected in wild mammals has substantially grown, however little is known about paramyxovirus diversity in North American mammals. To better understand natural paramyxovirus diversity, host range, and host specificity, we sought to comprehensively characterize paramyxoviruses across a range of diverse co-occurring wild small mammals in Southern Arizona. We used highly degenerate primers to screen fecal and urine samples and obtained a total of 55 paramyxovirus sequences from 12 rodent species and 6 bat species. We also performed illumina RNA-seq and de novo assembly on 14 of the positive samples to recover a total of five near full-length viral genomes. We show there are at least two clades of rodent-borne paramyxoviruses in Arizona, while bat-associated paramyxoviruses formed a putative single clade. Using structural homology modeling of the viral attachment protein, we infer that three of the five novel viruses likely bind sialic acid in a manner similar to other Respiroviruses, while the other two viruses from Heteromyid rodents likely bind a novel host receptor. We find no evidence for cross-species transmission, even among closely related sympatric host species. Taken together, these data suggest paramyxoviruses are a common viral infection in some bat and rodent species present in North America, and illuminate the evolution of these viruses. Importance There are a number of viral lineages that are potential zoonotic threats to humans. One of these, paramyxoviruses, have jumped into humans multiple times from wild and domestic animals. We conducted one of the largest viral surveys of wild mammals in the United States to better understand paramyxovirus diversity and evolution.
Collapse
|
37
|
Discovery and Genetic Characterization of Novel Paramyxoviruses Related to the Genus Henipavirus in Crocidura Species in the Republic of Korea. Viruses 2021; 13:v13102020. [PMID: 34696450 PMCID: PMC8537881 DOI: 10.3390/v13102020] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 12/21/2022] Open
Abstract
Paramyxoviruses, negative-sense single-stranded RNA viruses, pose a critical threat to human public health. Currently, 78 species, 17 genera, and 4 subfamilies of paramyxoviruses are harbored by multiple natural reservoirs, including rodents, bats, birds, reptiles, and fish. Henipaviruses are critical zoonotic pathogens that cause severe acute respiratory distress and neurological diseases in humans. Using reverse transcription-polymerase chain reaction, 115 Crocidura species individuals were examined for the prevalence of paramyxovirus infections. Paramyxovirus RNA was observed in 26 (22.6%) shrews collected at five trapping sites, Republic of Korea. Herein, we report two genetically distinct novel paramyxoviruses (genus: Henipavirus): Gamak virus (GAKV) and Daeryong virus (DARV) isolated from C. lasiura and C. shantungensis, respectively. Two GAKVs and one DARV were nearly completely sequenced using next-generation sequencing. GAKV and DARV contain six genes (3′-N-P-M-F-G-L-5′) with genome sizes of 18,460 nucleotides and 19,471 nucleotides, respectively. The phylogenetic inference demonstrated that GAKV and DARV form independent genetic lineages of Henipavirus in Crocidura species. GAKV-infected human lung epithelial cells elicited the induction of type I/III interferons, interferon-stimulated genes, and proinflammatory cytokines. In conclusion, this study contributes further understandings of the molecular prevalence, genetic characteristics and diversity, and zoonotic potential of novel paramyxoviruses in shrews.
Collapse
|
38
|
Husby ML, Stahelin RV. Negative-sense RNA viruses: An underexplored platform for examining virus-host lipid interactions. Mol Biol Cell 2021; 32:pe1. [PMID: 34570653 PMCID: PMC8684762 DOI: 10.1091/mbc.e19-09-0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 07/20/2021] [Accepted: 07/30/2021] [Indexed: 11/11/2022] Open
Abstract
Viruses are pathogenic agents that can infect all varieties of organisms, including plants, animals, and humans. These microscopic particles are genetically simple as they encode a limited number of proteins that undertake a wide range of functions. While structurally distinct, viruses often share common characteristics that have evolved to aid in their infectious life cycles. A commonly underappreciated characteristic of many deadly viruses is a lipid envelope that surrounds their protein and genetic contents. Notably, the lipid envelope is formed from the host cell the virus infects. Lipid-enveloped viruses comprise a diverse range of pathogenic viruses, which often lead to high fatality rates and many lack effective therapeutics and/or vaccines. This perspective primarily focuses on the negative-sense RNA viruses from the order Mononegavirales, which obtain their lipid envelope from the host plasma membrane. Specifically, the perspective highlights the common themes of host cell lipid and membrane biology necessary for virus replication, assembly, and budding.
Collapse
Affiliation(s)
- Monica L. Husby
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907
| | - Robert V. Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
39
|
Lee B, Ikegame S, Carmichael J, Wells H, Furler R, Acklin J, Chiu HP, Oguntuyo K, Cox R, Patel A, Kowdle S, Stevens C, Eckley M, Zhan S, Lim J, Hashiguchi T, Durigon EL, Schountz T, Epstein J, Plemper R, Daszak P, Anthony S. Zoonotic potential of a novel bat morbillivirus. RESEARCH SQUARE 2021. [PMID: 34611656 PMCID: PMC8491849 DOI: 10.21203/rs.3.rs-926789/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bats are significant reservoir hosts for many viruses with zoonotic potential1. SARS-CoV-2, Ebola virus, and Nipah virus are examples of such viruses that have caused deadly epidemics and pandemics when spilled over from bats into human and animal populations2,3. Careful surveillance of viruses in bats is critical for identifying potential zoonotic pathogens. However, metagenomic surveys in bats often do not result in full-length viral sequences that can be used to regenerate such viruses for targeted characterization4. Here, we identify and characterize a novel morbillivirus from a vespertilionid bat species (Myotis riparius) in Brazil, which we term myotis bat morbillivirus (MBaMV). There are 7 species of morbilliviruses including measles virus (MeV), canine distemper virus (CDV) and rinderpest virus (RPV)5. All morbilliviruses cause severe disease in their natural hosts6–10, and pathogenicity is largely determined by species specific expression of canonical morbillivirus receptors, CD150/SLAMF111 and NECTIN412. MBaMV used Myotis spp CD150 much better than human and dog CD150 in fusion assays. We confirmed this using live MBaMV that was rescued by reverse genetics. Surprisingly, MBaMV replicated efficiently in primary human myeloid but not lymphoid cells. Furthermore, MBaMV replicated in human epithelial cells and used human NECTIN4 almost as well as MeV. Our results demonstrate the unusual ability of MBaMV to infect and replicate in some human cells that are critical for MeV pathogenesis and transmission. This raises the specter of zoonotic transmission of a bat morbillivirus.
Collapse
|
40
|
Gamble A, Yeo YY, Butler AA, Tang H, Snedden CE, Mason CT, Buchholz DW, Bingham J, Aguilar HC, Lloyd-Smith JO. Drivers and Distribution of Henipavirus-Induced Syncytia: What Do We Know? Viruses 2021; 13:1755. [PMID: 34578336 PMCID: PMC8472861 DOI: 10.3390/v13091755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022] Open
Abstract
Syncytium formation, i.e., cell-cell fusion resulting in the formation of multinucleated cells, is a hallmark of infection by paramyxoviruses and other pathogenic viruses. This natural mechanism has historically been a diagnostic marker for paramyxovirus infection in vivo and is now widely used for the study of virus-induced membrane fusion in vitro. However, the role of syncytium formation in within-host dissemination and pathogenicity of viruses remains poorly understood. The diversity of henipaviruses and their wide host range and tissue tropism make them particularly appropriate models with which to characterize the drivers of syncytium formation and the implications for virus fitness and pathogenicity. Based on the henipavirus literature, we summarized current knowledge on the mechanisms driving syncytium formation, mostly acquired from in vitro studies, and on the in vivo distribution of syncytia. While these data suggest that syncytium formation widely occurs across henipaviruses, hosts, and tissues, we identified important data gaps that undermined our understanding of the role of syncytium formation in virus pathogenesis. Based on these observations, we propose solutions of varying complexity to fill these data gaps, from better practices in data archiving and publication for in vivo studies, to experimental approaches in vitro.
Collapse
Affiliation(s)
- Amandine Gamble
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.A.B.); (H.T.); (C.E.S.); (J.O.L.-S.)
| | - Yao Yu Yeo
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY 14850, USA; (Y.Y.Y.); (D.W.B.); (H.C.A.)
| | - Aubrey A. Butler
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.A.B.); (H.T.); (C.E.S.); (J.O.L.-S.)
| | - Hubert Tang
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.A.B.); (H.T.); (C.E.S.); (J.O.L.-S.)
| | - Celine E. Snedden
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.A.B.); (H.T.); (C.E.S.); (J.O.L.-S.)
| | - Christian T. Mason
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - David W. Buchholz
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY 14850, USA; (Y.Y.Y.); (D.W.B.); (H.C.A.)
| | - John Bingham
- CSIRO Australian Centre for Disease Preparedness, Geelong, VIC 3220, Australia;
| | - Hector C. Aguilar
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY 14850, USA; (Y.Y.Y.); (D.W.B.); (H.C.A.)
| | - James O. Lloyd-Smith
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.A.B.); (H.T.); (C.E.S.); (J.O.L.-S.)
| |
Collapse
|
41
|
Piewbang C, Wardhani SW, Dankaona W, Yostawonkul J, Boonrungsiman S, Surachetpong W, Kasantikul T, Techangamsuwan S. Feline morbillivirus-1 in dogs with respiratory diseases. Transbound Emerg Dis 2021; 69:e175-e184. [PMID: 34355534 DOI: 10.1111/tbed.14278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 08/04/2021] [Indexed: 01/04/2023]
Abstract
Feline morbillivirus-1 (FeMV-1) is a viral pathogen associated with kidney disease in domestic cats and wild felids. We initially identified the FeMV-1 from the lung of a necropsied dog with severe pulmonary disease by the reverse transcription polymerase chain reaction (RT-PCR). Thereafter, we investigated FeMV-1 in nasal and oral swab samples from 73 healthy and 113 dogs with respiratory illnesses. We found polymerase chain reaction (PCR)-positive FeMV-1 from only 14/113 (12.39%) dogs with respiratory disease (p = .001). Of these 14 dogs, six were co-infected with other canine respiratory viruses (6/14; 42.86%). Two independent immunohistochemistry procedures, using antibodies against matrix and phosphoprotein of FeMV-1, confirmed the presence of FeMV-1 in lung tissues of two necropsied dogs (out of a total of 22 dogs, 9.09%) that died from respiratory disease. This finding corresponded to transmission electron microscopy findings that paramyxoviral particles exist in lung epithelia. FeMV-1 antigen localization was also evident in the kidney, lymphoid and brain tissues of two deceased dogs. FeMV-1 was successfully isolated from a necropsied dog and from two living dogs, all with respiratory illnesses, which supports FeMV infection in dogs. The detection of FeMV-1 in dog tissues expands the known tropism of this virus to a non-felid host. Our findings indicate that FeMV-1, alone or in co-infection with other viral pathogens, might contribute to respiratory illness and death in dogs.
Collapse
Affiliation(s)
- Chutchai Piewbang
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sabrina Wahyu Wardhani
- Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Wichan Dankaona
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Jakarwan Yostawonkul
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Suwimon Boonrungsiman
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand
| | - Win Surachetpong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Tanit Kasantikul
- Clemson Veterinary Diagnostic Center, Clemson University, Columbia, South Carolina, USA
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
42
|
Iampietro M, Dumont C, Mathieu C, Spanier J, Robert J, Charpenay A, Dupichaud S, Dhondt KP, Aurine N, Pelissier R, Ferren M, Mély S, Gerlier D, Kalinke U, Horvat B. Activation of cGAS/STING pathway upon paramyxovirus infection. iScience 2021; 24:102519. [PMID: 34142033 PMCID: PMC8188492 DOI: 10.1016/j.isci.2021.102519] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/02/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
During inflammatory diseases, cancer, and infection, the cGAS/STING pathway is known to recognize foreign or self-DNA in the cytosol and activate an innate immune response. Here, we report that negative-strand RNA paramyxoviruses, Nipah virus (NiV), and measles virus (MeV), can also trigger the cGAS/STING axis. Although mice deficient for MyD88, TRIF, and MAVS still moderately control NiV infection when compared with wild-type mice, additional STING deficiency resulted in 100% lethality, suggesting synergistic roles of these pathways in host protection. Moreover, deletion of cGAS or STING resulted in decreased type I interferon production with enhanced paramyxoviral infection in both human and murine cells. Finally, the phosphorylation and ubiquitination of STING, observed during viral infections, confirmed the activation of cGAS/STING pathway by NiV and MeV. Our data suggest that cGAS/STING activation is critical in controlling paramyxovirus infection and possibly represents attractive targets to develop countermeasures against severe disease induced by these pathogens.
Collapse
Affiliation(s)
- Mathieu Iampietro
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Claire Dumont
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Julia Spanier
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection research, a joint venture between the Hanover Medical School and the Helmholtz Centre for Infection Research, Hanover, Germany
| | - Jonathan Robert
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Aude Charpenay
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Sébastien Dupichaud
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Kévin P. Dhondt
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Noémie Aurine
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Rodolphe Pelissier
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Marion Ferren
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Stéphane Mély
- INSERM- Laboratoire P4 Jean Mérieux-21 Avenue Tony Garnier, 69365 Lyon, France
| | - Denis Gerlier
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection research, a joint venture between the Hanover Medical School and the Helmholtz Centre for Infection Research, Hanover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST), Hanover, Germany
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| |
Collapse
|
43
|
Clementi N, Ghosh S, De Santis M, Castelli M, Criscuolo E, Zanoni I, Clementi M, Mancini N. Viral Respiratory Pathogens and Lung Injury. Clin Microbiol Rev 2021; 34:e00103-20. [PMID: 33789928 PMCID: PMC8142519 DOI: 10.1128/cmr.00103-20] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Several viruses target the human respiratory tract, causing different clinical manifestations spanning from mild upper airway involvement to life-threatening acute respiratory distress syndrome (ARDS). As dramatically evident in the ongoing SARS-CoV-2 pandemic, the clinical picture is not always easily predictable due to the combined effect of direct viral and indirect patient-specific immune-mediated damage. In this review, we discuss the main RNA (orthomyxoviruses, paramyxoviruses, and coronaviruses) and DNA (adenoviruses, herpesviruses, and bocaviruses) viruses with respiratory tropism and their mechanisms of direct and indirect cell damage. We analyze the thin line existing between a protective immune response, capable of limiting viral replication, and an unbalanced, dysregulated immune activation often leading to the most severe complication. Our comprehension of the molecular mechanisms involved is increasing and this should pave the way for the development and clinical use of new tailored immune-based antiviral strategies.
Collapse
Affiliation(s)
- Nicola Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sreya Ghosh
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, Massachusetts, USA
| | - Maria De Santis
- Department of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Matteo Castelli
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Criscuolo
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Ivan Zanoni
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, Massachusetts, USA
- Harvard Medical School, Boston Children's Hospital, Division of Gastroenterology, Boston, Massachusetts, USA
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicasio Mancini
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
44
|
Meurens F, Dunoyer C, Fourichon C, Gerdts V, Haddad N, Kortekaas J, Lewandowska M, Monchatre-Leroy E, Summerfield A, Wichgers Schreur PJ, van der Poel WHM, Zhu J. Animal board invited review: Risks of zoonotic disease emergence at the interface of wildlife and livestock systems. Animal 2021; 15:100241. [PMID: 34091225 PMCID: PMC8172357 DOI: 10.1016/j.animal.2021.100241] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
The ongoing coronavirus disease 19s pandemic has yet again demonstrated the importance of the human-animal interface in the emergence of zoonotic diseases, and in particular the role of wildlife and livestock species as potential hosts and virus reservoirs. As most diseases emerge out of the human-animal interface, a better understanding of the specific drivers and mechanisms involved is crucial to prepare for future disease outbreaks. Interactions between wildlife and livestock systems contribute to the emergence of zoonotic diseases, especially in the face of globalization, habitat fragmentation and destruction and climate change. As several groups of viruses and bacteria are more likely to emerge, we focus on pathogenic viruses of the Bunyavirales, Coronaviridae, Flaviviridae, Orthomyxoviridae, and Paramyxoviridae, as well as bacterial species including Mycobacterium sp., Brucella sp., Bacillus anthracis and Coxiella burnetii. Noteworthy, it was difficult to predict the drivers of disease emergence in the past, even for well-known pathogens. Thus, an improved surveillance in hotspot areas and the availability of fast, effective, and adaptable control measures would definitely contribute to preparedness. We here propose strategies to mitigate the risk of emergence and/or re-emergence of prioritized pathogens to prevent future epidemics.
Collapse
Affiliation(s)
- François Meurens
- INRAE, Oniris, BIOEPAR, 44307 Nantes, France; Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon S7N5E3, Canada.
| | - Charlotte Dunoyer
- Direction de l'évaluation des risques, Anses, 94700 Maisons-Alfort, France
| | | | - Volker Gerdts
- Vaccine and Infectious Disease Organization (VIDO)-International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Nadia Haddad
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale, BIPAR, 94700 Maisons-Alfort, France
| | - Jeroen Kortekaas
- Wageningen Bioveterinary Research, Wageningen University and Research, Houtribweg 39, 8221 RA Lelystad, the Netherlands
| | - Marta Lewandowska
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Artur Summerfield
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland
| | - Paul J Wichgers Schreur
- Wageningen Bioveterinary Research, Wageningen University and Research, Houtribweg 39, 8221 RA Lelystad, the Netherlands
| | - Wim H M van der Poel
- Wageningen Bioveterinary Research, Wageningen University and Research, Houtribweg 39, 8221 RA Lelystad, the Netherlands
| | - Jianzhong Zhu
- College of Veterinary Medicine, Comparative Medicine Research Institute, Yangzhou University, 225009 Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, 225009 Yangzhou, China
| |
Collapse
|
45
|
Ul-Rahman A, Ishaq HM, Raza MA, Shabbir MZ. Zoonotic potential of Newcastle disease virus: Old and novel perspectives related to public health. Rev Med Virol 2021; 32:e2246. [PMID: 33971048 DOI: 10.1002/rmv.2246] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 12/26/2022]
Abstract
Newcastle disease virus (NDV) has a worldwide distribution, causing lethal infection in a wide range of avian species. Affected birds develop respiratory, digestive and neurologic symptoms with profound immunosuppression. Mild systemic Newcastle disease (ND) infection restricted to the respiratory and neurological systems can be observed in humans and other non-avian hosts. Evidence of ND infection and its genome-based detection have been reported in Bovidae (cattle and sheep), Mustelidae (mink), Cercetidae (hamster), Muridae (mice), Leporidae (rabbit), Camelidae (camel), Suidae (pig), Cercophithecidae (monkeys) and Hominidae (humans). Owing to frequent ND outbreaks in poultry workers, individuals engaged in the veterinary field, including poultry production or evisceration and vaccine production units have constantly been at a much higher risk than the general population. A lethal form of infection has been described in immunocompromised humans and non-avian species including mink, pig and cattle demonstrating the capability of NDV to cross species barriers. Therefore, contact with infectious material and/or affected birds can pose a risk of zoonosis and raise public health concerns. The broad and expanding host range of NDV and its maintenance within non-avian species hampers disease control, particularly in disease-endemic settings.
Collapse
Affiliation(s)
- Aziz Ul-Rahman
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Hafiz Muhammad Ishaq
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Muhammad Asif Raza
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Muhammad Zubair Shabbir
- Quality Operations Laboratory, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
46
|
O'Brien B, Goodridge L, Ronholm J, Nasheri N. Exploring the potential of foodborne transmission of respiratory viruses. Food Microbiol 2021; 95:103709. [PMID: 33397626 PMCID: PMC8035669 DOI: 10.1016/j.fm.2020.103709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
The ongoing pandemic involving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has raised the question whether this virus, which is known to be spread primarily though respiratory droplets, could be spread through the fecal-oral route or via contaminated food. In this article, we present a critical review of the literature exploring the potential foodborne transmission of several respiratory viruses including human coronaviruses, avian influenza virus (AVI), parainfluenza viruses, human respiratory syncytial virus, adenoviruses, rhinoviruses, and Nipah virus. Multiple lines of evidence, including documented expression of receptor proteins on gastrointestinal epithelial cells, in vivo viral replication in gastrointestinal epithelial cell lines, extended fecal shedding of respiratory viruses, and the ability to remain infectious in food environments for extended periods of time raises the theoretical ability of some human respiratory viruses, particularly human coronaviruses and AVI, to spread via food. However, to date, neither epidemiological data nor case reports of clear foodborne transmission of either viruses exist. Thus, foodborne transmission of human respiratory viruses remains only a theoretical possibility.
Collapse
Affiliation(s)
- Bridget O'Brien
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Ste Anne de Bellevue, Québec, Canada
| | | | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Neda Nasheri
- Food Virology Laboratory, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada.
| |
Collapse
|
47
|
Darcissac E, Donato D, de Thoisy B, Lacoste V, Lavergne A. Paramyxovirus circulation in bat species from French Guiana. INFECTION GENETICS AND EVOLUTION 2021; 90:104769. [PMID: 33588065 DOI: 10.1016/j.meegid.2021.104769] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022]
Abstract
Bats are recognized as reservoirs of numerous viruses. Among them, paramyxoviruses, for example, Hendra and Nipah viruses, are highly pathogenic to humans. Nothing is known regarding the circulation of this viral family in bats from French Guiana. To search for the presence of paramyxoviruses in this territory, 103 bats of seven different species were sampled and screened using a molecular approach. Four distinct paramyxovirus sequences were detected from three bat species (Desmodus rotundus, Carollia perspicillata, and Pteronotus alitonus) at high prevalence rates. In D. rotundus, two types of paramyxovirus co-circulate, with most of the bats co-infected. The phylogenetic analysis of these sequences revealed that three of them were closely related to previously characterized sequences from D. rotundus, C. perspicillata, and P. parnellii from Brazil and Costa Rica. The fourth sequence, identified in D. rotundus, was closely related to the one detected in P. alitonus in French Guiana and to previously described sequences detected in P. parnellii in Costa Rica. All paramyxovirus sequences detected in this study are close to the Jeilongvirus genus. Altogether, our results and those of previous studies indicate a wide geographical distribution of these paramyxoviruses (from Central to South America) and suggest potential cross-species transmissions of paramyxoviruses between two different bat families: Mormoopidae (P. alitonus) and Phyllostomidae (D. rotundus). In addition, their closeness to paramyxoviruses identified in rodents emphasizes the need to investigate the role of these animals as potential reservoirs or incidental hosts. Finally, the high prevalence rates of some paramyxoviruses in certain bat species, associated with the presence of large bat colonies and, in some cases, their potential proximity with humans are all parameters that can contribute to the risk of cross-species transmission between bat species and to the emergence of new paramyxoviruses in humans, a risk that deserves further investigation.
Collapse
Affiliation(s)
- Edith Darcissac
- Laboratoire des Interaction Virus Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana.
| | - Damien Donato
- Laboratoire des Interaction Virus Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Benoît de Thoisy
- Laboratoire des Interaction Virus Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Vincent Lacoste
- Laboratoire des Interaction Virus Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana; Département de Virologie, Institut Pasteur, Paris, France
| | - Anne Lavergne
- Laboratoire des Interaction Virus Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana.
| |
Collapse
|
48
|
Monrad JT, Sandbrink JB, Cherian NG. Promoting versatile vaccine development for emerging pandemics. NPJ Vaccines 2021; 6:26. [PMID: 33574335 PMCID: PMC7878788 DOI: 10.1038/s41541-021-00290-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022] Open
Abstract
The ongoing COVID-19 pandemic has demonstrated the importance of rapid and versatile development of emergency medical countermeasures such as vaccines. We discuss the role of platform vaccines and prototype pathogen research in modern vaccine development, and outline how previous pathogen-specific funding approaches can be improved to adequately promote vaccine R&D for emerging pandemics. We present a more comprehensive approach to financing vaccine R&D, which maximises biomedical pandemic preparedness by promoting flexible vaccine platforms and translatable research into prototype pathogens. As the numerous platform-based SARS-CoV-2 vaccines show, funders can accelerate pandemic vaccine development by proactively investing in versatile platform technologies. For certain emerging infectious diseases, where vaccine research can translate to other related pathogens with pandemic potential, investment decisions should reflect the full social value of increasing overall preparedness, rather than just the value of bringing a vaccine to market for individual pathogens.
Collapse
Affiliation(s)
- Joshua T Monrad
- Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, UK.
- Department of Health Policy, London School of Economics, London, UK.
- Future of Humanity Institute, University of Oxford, Oxford, UK.
| | - Jonas B Sandbrink
- Future of Humanity Institute, University of Oxford, Oxford, UK
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Neil G Cherian
- The Coalition of Epidemic Preparedness Innovations, Oslo, Norway
- Johns Hopkins Center for Health Security, Baltimore, USA
| |
Collapse
|
49
|
Geisbert TW, Bobb K, Borisevich V, Geisbert JB, Agans KN, Cross RW, Prasad AN, Fenton KA, Yu H, Fouts TR, Broder CC, Dimitrov AS. A single dose investigational subunit vaccine for human use against Nipah virus and Hendra virus. NPJ Vaccines 2021; 6:23. [PMID: 33558494 PMCID: PMC7870971 DOI: 10.1038/s41541-021-00284-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/07/2021] [Indexed: 11/29/2022] Open
Abstract
Nipah and Hendra viruses are highly pathogenic bat-borne paramyxoviruses recently included in the WHO Blueprint priority diseases list. A fully registered horse anti-Hendra virus subunit vaccine has been in use in Australia since 2012. Based on the same immunogen, the Hendra virus attachment glycoprotein ectodomain, a subunit vaccine formulation for use in people is now in a Phase I clinical trial. We report that a single dose vaccination regimen of this human vaccine formulation protects against otherwise lethal challenges of either Hendra or Nipah virus in a nonhuman primate model. The protection against the Nipah Bangladesh strain begins as soon as 7 days post immunization with low dose of 0.1 mg protein subunit. Our data suggest this human vaccine could be utilized as efficient emergency vaccine to disrupt potential spreading of Nipah disease in an outbreak setting.
Collapse
Affiliation(s)
- Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Joan B Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Krystle N Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Robert W Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Abhishek N Prasad
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Karla A Fenton
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Hao Yu
- Profectus BioSciences, Inc., Baltimore, MD, USA
| | | | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Antony S Dimitrov
- Profectus BioSciences, Inc., Baltimore, MD, USA. .,Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA.
| |
Collapse
|
50
|
Common occurrence of Belerina virus, a novel paramyxovirus found in Belgian hedgehogs. Sci Rep 2020; 10:19341. [PMID: 33168902 PMCID: PMC7653956 DOI: 10.1038/s41598-020-76419-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/14/2020] [Indexed: 11/19/2022] Open
Abstract
Common or European hedgehogs can be found throughout Western Europe. They are known carriers of a variety of parasitic and bacterial pathogens, and have also been shown to carry several viruses, including morbilli-like paramyxoviruses, although the pathogenic and zoonotic potential of some of these viruses has yet to be determined. We report here the discovery of a novel paramyxovirus in Belgian hedgehogs, named Belerina virus. The virus was detected by nanopore sequencing of RNA isolated from hedgehog tissue. Out of 147 animals screened in this study, 57 tested positive for Belerina virus (39%), indicating a high prevalence of this virus in the Belgian hedgehog population. Based on its divergence from other known paramyxovirus species, Belerina virus is thought to represent a new species in the family Paramyxoviridae. Phylogenetic analysis groups Belerina virus together with the bat-borne Shaan virus within the genus Jeilongvirus, although expanding the tree with partial genomes shows Belerina virus forming a separate subclade within this genus, alongside a yet-unnamed paramyxovirus isolated from a greater tube-nosed bat. In summary, we discuss the complete genome sequence of Belerina virus, a putative new paramyxovirus species commonly found in Belgian hedgehogs.
Collapse
|