1
|
Clarke B, Holtkamp E, Öztürk H, Mück M, Wahlberg M, Meyer K, Munzlinger F, Brechtmann F, Hölzlwimmer FR, Lindner J, Chen Z, Gagneur J, Stegle O. Integration of variant annotations using deep set networks boosts rare variant association testing. Nat Genet 2024; 56:2271-2280. [PMID: 39322779 PMCID: PMC11525182 DOI: 10.1038/s41588-024-01919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/20/2024] [Indexed: 09/27/2024]
Abstract
Rare genetic variants can have strong effects on phenotypes, yet accounting for rare variants in genetic analyses is statistically challenging due to the limited number of allele carriers and the burden of multiple testing. While rich variant annotations promise to enable well-powered rare variant association tests, methods integrating variant annotations in a data-driven manner are lacking. Here we propose deep rare variant association testing (DeepRVAT), a model based on set neural networks that learns a trait-agnostic gene impairment score from rare variant annotations and phenotypes, enabling both gene discovery and trait prediction. On 34 quantitative and 63 binary traits, using whole-exome-sequencing data from UK Biobank, we find that DeepRVAT yields substantial gains in gene discoveries and improved detection of individuals at high genetic risk. Finally, we demonstrate how DeepRVAT enables calibrated and computationally efficient rare variant tests at biobank scale, aiding the discovery of genetic risk factors for human disease traits.
Collapse
Affiliation(s)
- Brian Clarke
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- AI Health Innovation Cluster, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Eva Holtkamp
- TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Helmholtz Association-Munich School for Data Science (MUDS), Munich, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Hakime Öztürk
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcel Mück
- AI Health Innovation Cluster, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Magnus Wahlberg
- AI Health Innovation Cluster, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kayla Meyer
- AI Health Innovation Cluster, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Munzlinger
- AI Health Innovation Cluster, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Brechtmann
- TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Munich Center for Machine Learning, Munich, Germany
| | - Florian R Hölzlwimmer
- TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Jonas Lindner
- TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Zhifen Chen
- Department of Cardiology, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Julien Gagneur
- TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany.
- Munich Center for Machine Learning, Munich, Germany.
- Institute of Human Genetics, School of Medicine and Health, Technical University of Munich, Munich, Germany.
| | - Oliver Stegle
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK.
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.
| |
Collapse
|
2
|
Chen SM, Huang TY, Lee WJ, Chuang LM, Chang TJ. Positive correlation of ANGPTL8 expression in human visceral adipose tissue with body mass index. J Formos Med Assoc 2024; 123:860-865. [PMID: 38191275 DOI: 10.1016/j.jfma.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Angiopoietin-like protein 8 (ANGPTL8) is an important regulator of lipid metabolism. We aimed to investigate the difference of ANGPTL8 expression in different depots of adipose tissues between individuals with and without obesity, and its correlation with various metabolic parameters. METHODS Subcutaneous (SAT) and visceral adipose tissue (VAT) samples were collected from patients who underwent bariatric or intra-abdominal surgery. Expression levels of ANGPTL8, monoglyceride lipase (MGL), monocyte chemoattractant protein-1 (MCP-1), leptin and adiponectin (APM1) were determined using real-time quantitative polymerase chain reaction. The correlation of ANGPTL8 expression with various metabolic parameters and other gene expression levels was analyzed using Person's correlation analysis. Logistic regression was used to establish a prediction model of obesity. RESULTS Totally 330 subjects (obese: 281, non-obese: 49) were recruited. ANGPTL8 expression in VAT was significantly higher in the obesity group than in the non-obesity group (P = 0.0096). ANGPTL8 expression in VAT was positively correlated with body mass index (BMI) (r = 0.1169, P < 0.05) and was independently associated with obesity (O.R., 1.246; 95 % C.I. 1.013-21.533, P = 0.038). We also found the gene expression of ANGPTL8 in SAT and VAT was negatively correlated with APM1 expression in respective SAT and VAT. CONCLUSION ANGPTL8 expression levels in VAT were higher in subjects with obesity, and positively correlated with BMI. This suggests a role of ANGPTL8 in the pathophysiology of obesity and may pave the way for novel treatment target of obesity.
Collapse
Affiliation(s)
- Shiau-Mei Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tse-Ying Huang
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Taiwan
| | - Wei-Jei Lee
- Department of Surgery, Taoyuan Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; School of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Tien-Jyun Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; School of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Zhang R, Zhang K. A unified model for regulating lipoprotein lipase activity. Trends Endocrinol Metab 2024; 35:490-504. [PMID: 38521668 DOI: 10.1016/j.tem.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
The regulation of triglyceride (TG) tissue distribution, storage, and utilization, a fundamental process of energy homeostasis, critically depends on lipoprotein lipase (LPL). We review the intricate mechanisms by which LPL activity is regulated by angiopoietin-like proteins (ANGPTL3, 4, 8), apolipoproteins (APOA5, APOC3, APOC2), and the cAMP-responsive element-binding protein H (CREBH). ANGPTL8 functions as a molecular switch, through complex formation, activating ANGPTL3 while deactivating ANGPTL4 in their LPL inhibition. The ANGPTL3-4-8 model integrates the roles of the aforementioned proteins in TG partitioning between white adipose tissue (WAT) and oxidative tissues (heart and skeletal muscles) during the feed/fast cycle. This model offers a unified perspective on LPL regulation, providing insights into TG metabolism, metabolic diseases, and therapeutics.
Collapse
Affiliation(s)
- Ren Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
4
|
Khan TG, Cunha JB, Raut C, Burroughs M, Goonewardena SN, Smrcka AV, Speliotes EK, Emmer BT. Functional interrogation of cellular Lp(a) uptake by genome-scale CRISPR screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593568. [PMID: 38766193 PMCID: PMC11100788 DOI: 10.1101/2024.05.11.593568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
An elevated level of lipoprotein(a), or Lp(a), in the bloodstream has been causally linked to the development of atherosclerotic cardiovascular disease and calcific aortic valve stenosis. Steady state levels of circulating lipoproteins are modulated by their rate of clearance, but the identity of the Lp(a) uptake receptor(s) has been controversial. In this study, we performed a genome-scale CRISPR screen to functionally interrogate all potential Lp(a) uptake regulators in HuH7 cells. Strikingly, the top positive and negative regulators of Lp(a) uptake in our screen were LDLR and MYLIP, encoding the LDL receptor and its ubiquitin ligase IDOL, respectively. We also found a significant correlation for other genes with established roles in LDLR regulation. No other gene products, including those previously proposed as Lp(a) receptors, exhibited a significant effect on Lp(a) uptake in our screen. We validated the functional influence of LDLR expression on HuH7 Lp(a) uptake, confirmed in vitro binding between the LDLR extracellular domain and purified Lp(a), and detected an association between loss-of-function LDLR variants and increased circulating Lp(a) levels in the UK Biobank cohort. Together, our findings support a central role for the LDL receptor in mediating Lp(a) uptake by hepatocytes.
Collapse
Affiliation(s)
- Taslima G. Khan
- Program in Chemical Biology, University of Michigan, Ann Arbor MI
| | - Juliana Bragazzi Cunha
- Division of Hospital Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor MI
| | - Chinmay Raut
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor MI
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor MI
| | | | - Sascha N. Goonewardena
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor MI
- Frankel Cardiovascular Center, University of Michigan, Ann Arbor MI
| | - Alan V. Smrcka
- Department of Pharmacology, University of Michigan, Ann Arbor MI
| | - Elizabeth K. Speliotes
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor MI
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor MI
| | - Brian T. Emmer
- Division of Hospital Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor MI
- Frankel Cardiovascular Center, University of Michigan, Ann Arbor MI
| |
Collapse
|
5
|
Wen Y, Chen YQ, Konrad RJ. Angiopoietin-like protein 8: a multifaceted protein instrumental in regulating triglyceride metabolism. Curr Opin Lipidol 2024; 35:58-65. [PMID: 37962908 DOI: 10.1097/mol.0000000000000910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
PURPOSE OF REVIEW The angiopoietin-like (ANGPTL) proteins ANGPTL3 and ANGPTL4 are critical lipoprotein lipase (LPL) inhibitors. This review discusses the unique ability of the insulin-responsive protein ANGPTL8 to regulate triglyceride (TG) metabolism by forming ANGPTL3/8 and ANGPTL4/8 complexes that control tissue-specific LPL activities. RECENT FINDINGS After feeding, ANGPTL4/8 acts locally in adipose tissue, has decreased LPL-inhibitory activity compared to ANGPTL4, and binds tissue plasminogen activator (tPA) and plasminogen to generate plasmin, which cleaves ANGPTL4/8 and other LPL inhibitors. This enables LPL to be fully active postprandially to promote efficient fatty acid (FA) uptake and minimize ectopic fat deposition. In contrast, liver-derived ANGPTL3/8 acts in an endocrine manner, has markedly increased LPL-inhibitory activity compared to ANGPTL3, and potently inhibits LPL in oxidative tissues to direct TG toward adipose tissue for storage. Circulating ANGPTL3/8 levels are strongly correlated with serum TG, and the ANGPTL3/8 LPL-inhibitory epitope is blocked by the TG-lowering protein apolipoprotein A5 (ApoA5). SUMMARY ANGPTL8 plays a crucial role in TG metabolism by forming ANGPTL3/8 and ANGPTL4/8 complexes that differentially modulate LPL activities in oxidative and adipose tissues respectively. Selective ANGPTL8 inhibition in the context of the ANGPTL3/8 complex has the potential to be a promising strategy for treating dyslipidemia.
Collapse
Affiliation(s)
- Yi Wen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
6
|
Ghosh A, Leung YH, Yu J, Sladek R, Chénier I, Oppong AK, Peyot ML, Madiraju SRM, Al-Khairi I, Thanaraj TA, Abubaker J, Al-Mulla F, Prentki M, Abu-Farha M. Silencing ANGPTL8 reduces mouse preadipocyte differentiation and insulin signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159461. [PMID: 38272177 DOI: 10.1016/j.bbalip.2024.159461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
ANGPTL8, expressed mainly in the liver and adipose tissue, regulates the activity of lipoprotein lipase (LPL) present in the extracellular space and triglyceride (TG) metabolism through its interaction with ANGPTL3 and ANGPTL4. Whether intracellular ANGPTL8 can also exert effects in tissues where it is expressed is uncertain. ANGPTL8 expression was low in preadipocytes and much increased during differentiation. To better understand the role of intracellular ANGPTL8 in adipocytes and assess whether it may play a role in adipocyte differentiation, we knocked down its expression in normal mouse subcutaneous preadipocytes. ANGPTL8 knockdown reduced adipocyte differentiation, cellular TG accumulation and also isoproterenol-stimulated lipolysis at day 7 of differentiation. RNA-Seq analysis of ANGPTL8 siRNA or control siRNA transfected SC preadipocytes on days 0, 2, 4 and 7 of differentiation showed that ANGPTL8 knockdown impeded the early (day 2) expression of adipogenic and insulin signaling genes, PPARγ, as well as genes related to extracellular matrix and NF-κB signaling. Insulin mediated Akt phosphorylation was reduced at an early stage during adipocyte differentiation. This study based on normal primary cells shows that ANGPTL8 has intracellular actions in addition to effects in the extracellular space, like modulating LPL activity. Preadipocyte ANGPTL8 expression modulates their differentiation possibly via changes in insulin signaling gene expression.
Collapse
Affiliation(s)
- Anindya Ghosh
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Yat Hei Leung
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Jeffrey Yu
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Robert Sladek
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Isabelle Chénier
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Abel K Oppong
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Marie-Line Peyot
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - S R Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | | | | | | | | | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| | | |
Collapse
|
7
|
Aghasizadeh M, Ahmadi Hoseini A, Sahebi R, Kazemi T, Asadiyan‐Sohan P, Esmaily H, Samadi S, Avan A, Ferns GA, Khosravi S, Ghazizadeh H, Miri‐Moghaddam E, Ghayour‐Mobarhan M. Association of a genetic variant in angiopoietin-like 3 with serum HDL-C and risk of cardiovascular disease: A study of the MASHAD cohort over 6 years. Mol Genet Genomic Med 2024; 12:e2418. [PMID: 38634215 PMCID: PMC11024632 DOI: 10.1002/mgg3.2418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/17/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Loss-of-function (LOF) variants of the angiopoietin-like 3 (ANGPTL3) gene are reported to be associated with serum triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C) concentrations and thereby affect the risk of cardiovascular disease (CVD). OBJECTIVE In the present study, we examined the association of rs10789117 in the ANGPTL 3 gene locus and the risk of CVD in the group of people who were part of the Mashhad-Stroke and Heart-Atherosclerotic-Disorders (MASHAD) cohort. METHODS One thousand and two healthy individuals enrolled in this study of whom 849 subjects were healthy and 153 subjects developed CVD outcomes after 6 years of follow-up. After a 12-h overnight fasting, 20 mL of blood samples were collected for the measurement of fasting blood glucose and lipid profile. DNA was extracted, and the Tetra-ARMS PCR (amplification refractory mutation system) was used for genotyping of rs10789117 in the ANGPTL3 gene. The genotype frequencies of the variant of rs10789117 in the ANGPTL3 gene were estimated using χ2 tests. Eventually, the statistical analysis was done by SPSS version 20. RESULTS Individuals with AC/CC genotypes (rs10789117) were found to have to greater risk of CVD events compared to AA genotype (OR = 1.43, 95%CI = 1.01-2.02, p = 0.041). There was a 1.3-fold increase in cardiovascular events in individuals carrying the C allele of rs10789117 variant compared to non-carriers (OR = 1.32, 95%CI = 1.06-1.72, p value = 0.038). There were significant differences between different genotypes for serum triglyceride levels within the control group, but this difference was not significant in the group with CVD. Moreover, there was a significant association between CC genotype and CVD risk in the individuals with a normal serum HDL-C. CONCLUSION We have found that a rs10789117 C>A in ANGPTL3 gene polymorphism was associated with incident CVD events, and this may be of value as a risk stratification biomarker in CVD in the Iranian population.
Collapse
Affiliation(s)
- Malihe Aghasizadeh
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IranMashhad University of Medical SciencesMashhadIran
| | - Asieh Ahmadi Hoseini
- Department of Nutrition, Ghaem HospitalMashhad University of Medical SciencesMashhadIran
| | - Reza Sahebi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IranMashhad University of Medical SciencesMashhadIran
- Department of Modern Sciences and Technologies, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Tooba Kazemi
- Cardiovascular Diseases Research CenterBirjand University of Medical SciencesBirjandIran
- Razi Clinical Research Development Unit (RCRDU)Birjand University of Medical SciencesBirjandIran
| | - Parisa Asadiyan‐Sohan
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IranMashhad University of Medical SciencesMashhadIran
| | - Habibollah Esmaily
- Social Determinants of Health Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Biostatistics, School of HealthMashhad University of Medical SciencesMashhadIran
| | - Sara Samadi
- Department of Modern Sciences and Technologies, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Amir Avan
- Student Research Committee, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
| | - Gordon A. Ferns
- Division of Medical EducationBrighton & Sussex Medical SchoolBrightonUK
| | - Saeede Khosravi
- Cardiovascular Diseases Research CenterBirjand University of Medical SciencesBirjandIran
| | - Hamideh Ghazizadeh
- Department of Modern Sciences and Technologies, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Ebrahim Miri‐Moghaddam
- Cardiovascular Diseases Research CenterBirjand University of Medical SciencesBirjandIran
| | - Majid Ghayour‐Mobarhan
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IranMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
8
|
Akbarzadeh M, Riahi P, Saeidian AH, Zarkesh M, Masjoudi S, Asgarian S, Guity K, Moheimani H, Masoudi H, Roudbar MA, Khalili D, Hosseinpanah F, Barzin M, Hogan CT, Hakonarson H, Hedayati M, Daneshpour MS, Azizi F. The Tehran longitudinal family-based cardiometabolic cohort study sheds new light on dyslipidemia transmission patterns. Sci Rep 2024; 14:4739. [PMID: 38413617 PMCID: PMC10899171 DOI: 10.1038/s41598-024-53504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
Dyslipidemia, as a metabolic risk factor, with the strongest and most heritable independent cause of cardiovascular diseases worldwide. We investigated the familial transmission patterns of dyslipidemia through a longitudinal family-based cohort, the Tehran Cardiometabolic Genetic Study (TCGS) in Iran. We enrolled 18,729 individuals (45% were males) aged > 18 years (mean: 38.15 (15.82)) and observed them over five 3-year follow-up periods. We evaluated the serum concentrations of total cholesterol, triglyceride, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol with the first measurement among longitudinal measures and the average measurements (AM) of the five periods. Heritability analysis was conducted using a mixed-effect framework with likelihood-based and Bayesian approaches. The periodic prevalence and heritability of dyslipidemia were estimated to be 65.7 and 42%, respectively. The likelihood of an individual having at least one dyslipidemic parent reveals an OR = 6.94 (CI 5.28-9.30) compared to those who do not have dyslipidemic parents. The most considerable intraclass correlation of family members was for the same-sex siblings, with ICC ~ 25.5%. For serum concentrations, heritability ranged from 33.64 to 60.95%. Taken together, these findings demonstrate that familial transmission of dyslipidemia in the Tehran population is strong, especially within the same-gender siblings. According to previous reports, the heritability of dyslipidemia in this population is considerably higher than the global average.
Collapse
Affiliation(s)
- Mahdi Akbarzadeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Riahi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Saeidian
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA
| | - Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajedeh Masjoudi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Asgarian
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamran Guity
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Moheimani
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Homayoon Masoudi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Amiri Roudbar
- Department of Animal Science, Safiabad-Dezful Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), Dezful, Iran
| | - Davood Khalili
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhad Hosseinpanah
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Barzin
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Carolyn T Hogan
- Division of Hepatology, Temple University Hospital, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Abramson Building, Philadelphia, PA, 19104, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam S Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Konaklieva MI, Plotkin BJ. Targeting host-specific metabolic pathways-opportunities and challenges for anti-infective therapy. Front Mol Biosci 2024; 11:1338567. [PMID: 38455763 PMCID: PMC10918472 DOI: 10.3389/fmolb.2024.1338567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024] Open
Abstract
Microorganisms can takeover critical metabolic pathways in host cells to fuel their replication. This interaction provides an opportunity to target host metabolic pathways, in addition to the pathogen-specific ones, in the development of antimicrobials. Host-directed therapy (HDT) is an emerging strategy of anti-infective therapy, which targets host cell metabolism utilized by facultative and obligate intracellular pathogens for entry, replication, egress or persistence of infected host cells. This review provides an overview of the host lipid metabolism and links it to the challenges in the development of HDTs for viral and bacterial infections, where pathogens are using important for the host lipid enzymes, or producing their own analogous of lecithin-cholesterol acyltransferase (LCAT) and lipoprotein lipase (LPL) thus interfering with the human host's lipid metabolism.
Collapse
Affiliation(s)
| | - Balbina J. Plotkin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, United States
| |
Collapse
|
10
|
Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Barone Gibbs B, Beaton AZ, Boehme AK, Commodore-Mensah Y, Currie ME, Elkind MSV, Evenson KR, Generoso G, Heard DG, Hiremath S, Johansen MC, Kalani R, Kazi DS, Ko D, Liu J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Perman SM, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Tsao CW, Urbut SM, Van Spall HGC, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024; 149:e347-e913. [PMID: 38264914 DOI: 10.1161/cir.0000000000001209] [Citation(s) in RCA: 182] [Impact Index Per Article: 182.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2024 AHA Statistical Update is the product of a full year's worth of effort in 2023 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. The AHA strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional global data, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
11
|
Sachan V, Le Dévéhat M, Roubtsova A, Essalmani R, Laurendeau JF, Garçon D, Susan-Resiga D, Duval S, Mikaeeli S, Hamelin J, Evagelidis A, Chong M, Paré G, Chernetsova E, Gao ZH, Robillard I, Ruiz M, Trinh VQH, Estall JL, Faraj M, Austin RC, Sauvageau M, Prat A, Kiss RS, Seidah NG. PCSK7: A novel regulator of apolipoprotein B and a potential target against non-alcoholic fatty liver disease. Metabolism 2024; 150:155736. [PMID: 37967646 DOI: 10.1016/j.metabol.2023.155736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Epidemiological evidence links the proprotein convertase subtilisin/kexin 7 (PCSK7) to triglyceride (TG) metabolism. We associated the known PCSK7 gain-of-function non-coding SNP rs236918 with higher levels of plasma apolipoprotein B (apoB) and the loss-of-function coding variant p.Pro777Leu (SNP rs201598301) with lower apoB and TG. Herein, we aimed to unravel the in vivo role of liver PCSK7. METHODS We biochemically defined the functional role of PCSK7 in lipid metabolism using hepatic cell lines and Pcsk7-/- mice. Our findings were validated following subcutaneous administration of hepatocyte-targeted N-acetylgalactosamine (GalNAc)-antisense oligonucleotides (ASOs) against Pcsk7. RESULTS Independent of its proteolytic activity, membrane-bound PCSK7 binds apoB100 in the endoplasmic reticulum and enhances its secretion. Mechanistically, the loss of PCSK7/Pcsk7 leads to apoB100 degradation, triggering an unfolded protein response, autophagy, and β-oxidation, eventually reducing lipid accumulation in hepatocytes. Non-alcoholic fatty liver disease (NAFLD) was induced by a 12-week high fat/fructose/cholesterol diet in wild type (WT) and Pcsk7-/- mice that were then allowed to recover on a 4-week control diet. Pcsk7-/- mice recovered more effectively than WT mice from all NAFLD-related liver phenotypes. Finally, subcutaneous administration of GalNAc-ASOs targeting hepatic Pcsk7 to WT mice validated the above results. CONCLUSIONS Our data reveal hepatic PCSK7 as one of the major regulators of apoB, and its absence reduces apoB secretion from hepatocytes favoring its ubiquitination and degradation by the proteasome. This results in a cascade of events, eventually reducing hepatic lipid accumulation, thus supporting the notion of silencing PCSK7 mRNA in hepatocytes for targeting NAFLD.
Collapse
Affiliation(s)
- Vatsal Sachan
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Maïlys Le Dévéhat
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Anna Roubtsova
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Rachid Essalmani
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Jean-Francois Laurendeau
- RNA and Noncoding Mechanisms of Disease, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Damien Garçon
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Delia Susan-Resiga
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Stéphanie Duval
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Sahar Mikaeeli
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Josée Hamelin
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Alexandra Evagelidis
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Michael Chong
- Department of Biochemistry & Biomedical Sciences, McMaster University Faculty of Health Sciences, Hamilton, Ontario, Canada
| | - Guillaume Paré
- Department of Biochemistry & Biomedical Sciences, McMaster University Faculty of Health Sciences, Hamilton, Ontario, Canada
| | | | - Zu-Hua Gao
- Department of Pathology, McGill University Health Centre, Montréal, QC, Canada
| | - Isabelle Robillard
- Montreal Heart Institute, Metabolomics Platform, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montréal, QC, Canada
| | - Matthieu Ruiz
- Montreal Heart Institute, Metabolomics Platform, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montréal, QC, Canada
| | - Vincent Quoc-Huy Trinh
- Departement of Pathology and Cellular Biology, Institut de Recherche en Immunologie et Cancérologie, Université de Montréal, Montréal, QC, Canada
| | - Jennifer L Estall
- Molecular Mechanisms of Diabetes, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - May Faraj
- Nutrition Department, Université de Montréal, Research Unit on Nutrition, Lipoproteins and Cardiometabolic Diseases, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe's Hamilton and the Hamilton Center for Kidney Research, Hamilton, ON, Canada
| | - Martin Sauvageau
- RNA and Noncoding Mechanisms of Disease, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Annik Prat
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Robert S Kiss
- McGill University Health Centre Research Institute, Montréal, QC, Canada
| | - Nabil G Seidah
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
12
|
Thorin E, Labbé P, Lambert M, Mury P, Dagher O, Miquel G, Thorin-Trescases N. Angiopoietin-Like Proteins: Cardiovascular Biology and Therapeutic Targeting for the Prevention of Cardiovascular Diseases. Can J Cardiol 2023; 39:1736-1756. [PMID: 37295611 DOI: 10.1016/j.cjca.2023.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Despite the best pharmacologic tools available, cardiovascular diseases (CVDs) remain a major cause of morbidity and mortality in developed countries. After 2 decades of research, new therapeutic targets, such as angiopoietin-like proteins (ANGPTLs), are emerging. ANGPTLs belong to a family of 8 members, from ANGPTL1 to ANGPTL8; they have structural homology with angiopoietins and are secreted in the circulation. ANGPTLs display a multitude of physiological and pathologic functions; they contribute to inflammation, angiogenesis, cell death, senescence, hematopoiesis, and play a role in repair, maintenance, and tissue homeostasis. ANGPTLs-particularly the triad ANGPTL3, 4, and 8-have an established role in lipid metabolism through the regulation of triacylglycerol trafficking according to the nutritional status. Some ANGPTLs also contribute to glucose metabolism. Therefore, dysregulation in ANGPTL expression associated with abnormal circulating levels are linked to a plethora of CVD and metabolic disorders including atherosclerosis, heart diseases, diabetes, but also obesity and cancers. Because ANGPTLs bind to different receptors according to the cell type, antagonists are therapeutically inadequate. Recently, direct inhibitors of ANGPTLs, mainly ANGPTL3, have been developed, and specific monoclonal antibodies and antisense oligonucleotides are currently being tested in clinical trials. The aim of the current review is to provide an up-to-date preclinical and clinical overview on the function of the 8 members of the ANGPTL family in the cardiovascular system, their contribution to CVD, and the therapeutic potential of manipulating some of them.
Collapse
Affiliation(s)
- Eric Thorin
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada.
| | - Pauline Labbé
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Mélanie Lambert
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - Pauline Mury
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - Olina Dagher
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada; Department of Cardiac Sciences, Libin Cardiovascular Institute, Calgary, Alberta, Canada
| | - Géraldine Miquel
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
13
|
Ølnes ÅS, Teigen M, Laerdahl JK, Leren TP, Strøm TB, Bjune K. Variants in the CETP gene affect levels of HDL cholesterol by reducing the amount, and not the specific lipid transfer activity, of secreted CETP. PLoS One 2023; 18:e0294764. [PMID: 38039300 PMCID: PMC10691695 DOI: 10.1371/journal.pone.0294764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/31/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Cholesteryl ester transfer protein (CETP) transfers cholesteryl esters in plasma from high density lipoprotein (HDL) to very low density lipoprotein and low density lipoprotein. Loss-of-function variants in the CETP gene cause elevated levels of HDL cholesterol. In this study, we have determined the functional consequences of 24 missense variants in the CETP gene. The 24 missense variants studied were the ones reported in the Human Gene Mutation Database and in the literature to affect HDL cholesterol levels, as well as two novel variants identified at the Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital in subjects with hyperalphalipoproteinemia. METHODS HEK293 cells were transiently transfected with mutant CETP plasmids. The amounts of CETP protein in lysates and media were determined by Western blot analysis, and the lipid transfer activities of the CETP variants were determined by a fluorescence-based assay. RESULTS Four of the CETP variants were not secreted. Five of the variants were secreted less than 15% compared to the WT-CETP, while the other 15 variants were secreted in varying amounts. There was a linear relationship between the levels of secreted protein and the lipid transfer activities (r = 0.96, p<0.001). Thus, the secreted variants had similar specific lipid transfer activities. CONCLUSION The effect of the 24 missense variants in the CETP gene on the lipid transfer activity was mediated predominantly by their impact on the secretion of the CETP protein. The four variants that prevented CETP secretion cause autosomal dominant hyperalphalipoproteinemia. The five variants that markedly reduced secretion of the respective variants cause mild hyperalphalipoproteinemia. The majority of the remaining 15 variants had minor effects on the secretion of CETP, and are considered neutral genetic variants.
Collapse
Affiliation(s)
- Åsa Schawlann Ølnes
- Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, Oslo, Norway
| | - Marianne Teigen
- Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, Oslo, Norway
| | - Jon K. Laerdahl
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
- Department of Informatics, ELIXIR Norway, University of Oslo, Oslo, Norway
| | - Trond P. Leren
- Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, Oslo, Norway
| | - Thea Bismo Strøm
- Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, Oslo, Norway
| | - Katrine Bjune
- Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
14
|
de las Fuentes L, Schwander KL, Brown MR, Bentley AR, Winkler TW, Sung YJ, Munroe PB, Miller CL, Aschard H, Aslibekyan S, Bartz TM, Bielak LF, Chai JF, Cheng CY, Dorajoo R, Feitosa MF, Guo X, Hartwig FP, Horimoto A, Kolčić I, Lim E, Liu Y, Manning AK, Marten J, Musani SK, Noordam R, Padmanabhan S, Rankinen T, Richard MA, Ridker PM, Smith AV, Vojinovic D, Zonderman AB, Alver M, Boissel M, Christensen K, Freedman BI, Gao C, Giulianini F, Harris SE, He M, Hsu FC, Kühnel B, Laguzzi F, Li X, Lyytikäinen LP, Nolte IM, Poveda A, Rauramaa R, Riaz M, Robino A, Sofer T, Takeuchi F, Tayo BO, van der Most PJ, Verweij N, Ware EB, Weiss S, Wen W, Yanek LR, Zhan Y, Amin N, Arking DE, Ballantyne C, Boerwinkle E, Brody JA, Broeckel U, Campbell A, Canouil M, Chai X, Chen YDI, Chen X, Chitrala KN, Concas MP, de Faire U, de Mutsert R, de Silva HJ, de Vries PS, Do A, Faul JD, Fisher V, Floyd JS, Forrester T, Friedlander Y, Girotto G, Gu CC, Hallmans G, Heikkinen S, Heng CK, Homuth G, Hunt S, Ikram MA, Jacobs DR, Kavousi M, Khor CC, Kilpeläinen TO, Koh WP, Komulainen P, Langefeld CD, Liang J, Liu K, Liu J, Lohman K, Mägi R, Manichaikul AW, McKenzie CA, Meitinger T, Milaneschi Y, Nauck M, Nelson CP, O’Connell JR, Palmer ND, Pereira AC, Perls T, Peters A, Polašek O, Raitakari OT, Rice K, Rice TK, Rich SS, Sabanayagam C, Schreiner PJ, Shu XO, Sidney S, Sims M, Smith JA, Starr JM, Strauch K, Tai ES, Taylor KD, Tsai MY, Uitterlinden AG, van Heemst D, Waldenberger M, Wang YX, Wei WB, Wilson G, Xuan D, Yao J, Yu C, Yuan JM, Zhao W, Becker DM, Bonnefond A, Bowden DW, Cooper RS, Deary IJ, Divers J, Esko T, Franks PW, Froguel P, Gieger C, Jonas JB, Kato N, Lakka TA, Leander K, Lehtimäki T, Magnusson PKE, North KE, Ntalla I, Penninx B, Samani NJ, Snieder H, Spedicati B, van der Harst P, Völzke H, Wagenknecht LE, Weir DR, Wojczynski MK, Wu T, Zheng W, Zhu X, Bouchard C, Chasman DI, Evans MK, Fox ER, Gudnason V, Hayward C, Horta BL, Kardia SLR, Krieger JE, Mook-Kanamori DO, Peyser PA, Province MM, Psaty BM, Rudan I, Sim X, Smith BH, van Dam RM, van Duijn CM, Wong TY, Arnett DK, Rao DC, Gauderman J, Liu CT, Morrison AC, Rotter JI, Fornage M. Gene-educational attainment interactions in a multi-population genome-wide meta-analysis identify novel lipid loci. Front Genet 2023; 14:1235337. [PMID: 38028628 PMCID: PMC10651736 DOI: 10.3389/fgene.2023.1235337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Educational attainment, widely used in epidemiologic studies as a surrogate for socioeconomic status, is a predictor of cardiovascular health outcomes. Methods: A two-stage genome-wide meta-analysis of low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglyceride (TG) levels was performed while accounting for gene-educational attainment interactions in up to 226,315 individuals from five population groups. We considered two educational attainment variables: "Some College" (yes/no, for any education beyond high school) and "Graduated College" (yes/no, for completing a 4-year college degree). Genome-wide significant (p < 5 × 10-8) and suggestive (p < 1 × 10-6) variants were identified in Stage 1 (in up to 108,784 individuals) through genome-wide analysis, and those variants were followed up in Stage 2 studies (in up to 117,531 individuals). Results: In combined analysis of Stages 1 and 2, we identified 18 novel lipid loci (nine for LDL, seven for HDL, and two for TG) by two degree-of-freedom (2 DF) joint tests of main and interaction effects. Four loci showed significant interaction with educational attainment. Two loci were significant only in cross-population analyses. Several loci include genes with known or suggested roles in adipose (FOXP1, MBOAT4, SKP2, STIM1, STX4), brain (BRI3, FILIP1, FOXP1, LINC00290, LMTK2, MBOAT4, MYO6, SENP6, SRGAP3, STIM1, TMEM167A, TMEM30A), and liver (BRI3, FOXP1) biology, highlighting the potential importance of brain-adipose-liver communication in the regulation of lipid metabolism. An investigation of the potential druggability of genes in identified loci resulted in five gene targets shown to interact with drugs approved by the Food and Drug Administration, including genes with roles in adipose and brain tissue. Discussion: Genome-wide interaction analysis of educational attainment identified novel lipid loci not previously detected by analyses limited to main genetic effects.
Collapse
Affiliation(s)
- Lisa de las Fuentes
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
| | - Karen L. Schwander
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael R. Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Amy R. Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Thomas W. Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Yun Ju Sung
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Patricia B. Munroe
- Clinical Pharmacology, Queen Mary University of London, London, United Kingdom
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, United Kingdom
| | - Clint L. Miller
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
- Biochemistry and Molecular Genetics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Hugo Aschard
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, United States
- Département de Génomes et Génétique, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Stella Aslibekyan
- School of Public Health, Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Traci M. Bartz
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, United States
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Lawrence F. Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Jin Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Ching-Yu Cheng
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Medical School, Duke-National University of Singapore, Singapore, Singapore
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Mary F. Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Xiuqing Guo
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Los Angeles, CA, United States
| | - Fernando P. Hartwig
- Postgraduate Programme in Epidemiology, Faculty of Medicine, Federal University of Pelotas, Pelotas, RS, Brazil
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Andrea Horimoto
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil
| | - Ivana Kolčić
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Elise Lim
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | - Yongmei Liu
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Alisa K. Manning
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Jonathan Marten
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Solomon K. Musani
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Raymond Noordam
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Melissa A. Richard
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Paul M. Ridker
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Albert V. Smith
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
- Icelandic Heart Association, Kopavogur, Iceland
| | - Dina Vojinovic
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
- National Institutes of Health, Baltimore, MD, United States
| | - Maris Alver
- Estonian Genome Center, Insititute of Genomics, University of Tartu, Tartu, Estonia
| | - Mathilde Boissel
- European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
| | - Kaare Christensen
- Unit of Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Barry I. Freedman
- Nephrology Division, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Chuan Gao
- Molecular Genetics and Genomics Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Sarah E. Harris
- Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Brigitte Kühnel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Federica Laguzzi
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoyin Li
- Department of Population and Quantitative Health Sciences, Cleveland, OH, United States
- Department of Mathematics and Statistics, St. Cloud State University, St. Cloud, MN, United States
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, University of Tampere, Tampere, Finland
- Finnish Cardiovascular Research Center, University of Tampere, Tampere, Finland
| | - Ilja M. Nolte
- Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Alaitz Poveda
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Rainer Rauramaa
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Muhammad Riaz
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Antonietta Robino
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Tamar Sofer
- Biostatistics, Department of Medicine, Brigham and Women’s Hospital, Harvard University, Boston, MA, United States
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Bamidele O. Tayo
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, United States
| | - Peter J. van der Most
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Niek Verweij
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Erin B. Ware
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald and University of Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research, Greifswald, Germany
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Lisa R. Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yiqiang Zhan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Dan E. Arking
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christie Ballantyne
- Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX, United States
- Houston Methodist Debakey Heart and Vascular Center, Houston, TX, United States
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, United States
| | - Ulrich Broeckel
- Section on Genomic Pediatrics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Mickaël Canouil
- European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
| | - Xiaoran Chai
- Data Science Unit, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Yii-Der Ida Chen
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Los Angeles, CA, United States
| | - Xu Chen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kumaraswamy Naidu Chitrala
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Maria Pina Concas
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Ulf de Faire
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - H. Janaka de Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Paul S. de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ahn Do
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Jessica D. Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States
| | - Virginia Fisher
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | - James S. Floyd
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, United States
| | - Terrence Forrester
- Tropical Medicine Research Institute, University of the West Indies, Mona, Jamaica
| | - Yechiel Friedlander
- Braun School of Public Health, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Giorgia Girotto
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - C. Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
| | - Göran Hallmans
- Section for Nutritional Research, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Sami Heikkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald and University of Greifswald, Greifswald, Germany
| | - Steven Hunt
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
- Department of Genetic Medicine, Weill Cornell Medicine in Qatar, Doha, Qatar
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - David R. Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Tuomas O. Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Environmental Medicine and Public Health, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | | | - Carl D. Langefeld
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Jingjing Liang
- Department of Population and Quantitative Health Sciences, Cleveland, OH, United States
| | - Kiang Liu
- Epidemiology, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kurt Lohman
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Reedik Mägi
- Estonian Genome Center, Insititute of Genomics, University of Tartu, Tartu, Estonia
| | - Ani W. Manichaikul
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| | - Colin A. McKenzie
- Tropical Medicine Research Institute, University of the West Indies, Mona, Jamaica
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | | | - Matthias Nauck
- German Center for Cardiovascular Research, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Christopher P. Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Jeffrey R. O’Connell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, United States
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nicholette D. Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Alexandre C. Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil
| | - Thomas Perls
- Geriatrics Section, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Cardiovascular Research, Neuherberg, Germany
| | - Ozren Polašek
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Olli T. Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Treva K. Rice
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
| | - Stephen S. Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| | - Charumathi Sabanayagam
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Medical School, Duke-National University of Singapore, Singapore, Singapore
| | - Pamela J. Schreiner
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Stephen Sidney
- Division of Research, Kaiser Permanente of Northern California, Oakland, CA, United States
| | - Mario Sims
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom
- Alzheimer Scotland Dementia Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Konstantin Strauch
- German Research Center for Environmental Health, Helmholtz Zentrum München, Institute of Genetic Epidemiology, Neuherberg, Germany
- Institute of Medical Informatics Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - E. Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Kent D. Taylor
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Los Angeles, CA, United States
| | - Michael Y. Tsai
- Department of Laboratory Medicine and Pathology, Minneapolis, MN, United States
| | - André G. Uitterlinden
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Diana van Heemst
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Ya-Xing Wang
- Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
| | - Wen-Bin Wei
- Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
| | - Gregory Wilson
- Jackson Heart Study Graduate Training Center, School of Public, Jackson State University, Jackson, MS, United States
| | - Deng Xuan
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | - Jie Yao
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Los Angeles, CA, United States
| | - Caizheng Yu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Min Yuan
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Cancer Control and Population Sciences, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Diane M. Becker
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Amélie Bonnefond
- European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Donald W. Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Richard S. Cooper
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, United States
| | - Ian J. Deary
- Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jasmin Divers
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Tõnu Esko
- Estonian Genome Center, Insititute of Genomics, University of Tartu, Tartu, Estonia
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Boston, MA, United States
| | - Paul W. Franks
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
- Department of Nutrition, Harvard Chan School of Public Health, Boston, MA, United States
| | - Philippe Froguel
- European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Jost B. Jonas
- Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
- Department of Ophthalmology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Timo A. Lakka
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Karin Leander
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Terho Lehtimäki
- Department of Clinical Chemistry, University of Tampere, Tampere, Finland
- Finnish Cardiovascular Research Center, University of Tampere, Tampere, Finland
| | - Patrik K. E. Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kari E. North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ioanna Ntalla
- Clinical Pharmacology, Queen Mary University of London, London, United Kingdom
- Celgene, Bristol Myers Squibb, Mississauga, ON, Canada
| | | | - Nilesh J. Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Harold Snieder
- Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Beatrice Spedicati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Pim van der Harst
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Henry Völzke
- German Center for Cardiovascular Research, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Lynne E. Wagenknecht
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - David R. Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States
| | - Mary K. Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Tangchun Wu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Cleveland, OH, United States
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Daniel I. Chasman
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
- National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Ervin R. Fox
- Division of Cardiology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Bernardo L. Horta
- Postgraduate Programme in Epidemiology, Faculty of Medicine, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Jose Eduardo Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil
| | - Dennis O. Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, Netherlands
| | - Patricia A. Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Michael M. Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, United States
- Department of Epidemiology, University of Washington, Seattle, WA, United States
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, United States
| | - Igor Rudan
- Centre for Global Health, The Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Blair H. Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Rob M. van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - Cornelia M. van Duijn
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Tien Yin Wong
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Medical School, Duke-National University of Singapore, Singapore, Singapore
| | - Donna K. Arnett
- College of Public Health, Dean’s Office, University of Kentucky, Lexington, KY, United States
| | - Dabeeru C. Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
| | - James Gauderman
- Division of Biostatistics, Population and Public Health Sciences, University of Southern California, Los Angeles, CA, United States
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jerome I. Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Los Angeles, CA, United States
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
15
|
Urbut SM, Koyama S, Hornsby W, Bhukar R, Kheterpal S, Truong B, Selvaraj MS, Neale B, O’Donnell CJ, Peloso GM, Natarajan P. Bayesian multivariate genetic analysis improves translational insights. iScience 2023; 26:107854. [PMID: 37766997 PMCID: PMC10520309 DOI: 10.1016/j.isci.2023.107854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/15/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
While lipid traits are known essential mediators of cardiovascular disease, few approaches have taken advantage of their shared genetic effects. We apply a Bayesian multivariate size estimator, mash, to GWAS of four lipid traits in the Million Veterans Program (MVP) and provide posterior mean and local false sign rates for all effects. These estimates borrow information across traits to improve effect size accuracy. We show that controlling local false sign rates accurately and powerfully identifies replicable genetic associations and that multivariate control furthers the ability to explain complex diseases. Our application yields high concordance between independent datasets, more accurately prioritizes causal genes, and significantly improves polygenic prediction beyond state-of-the-art methods by up to 59% for lipid traits. The use of Bayesian multivariate genetic shrinkage has yet to be applied to human quantitative trait GWAS results, and we present a staged approach to prediction on a polygenic scale.
Collapse
Affiliation(s)
- Sarah M. Urbut
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - Satoshi Koyama
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine Harvard Medical School, Boston, MA 02115, USA
| | - Whitney Hornsby
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine Harvard Medical School, Boston, MA 02115, USA
| | - Rohan Bhukar
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine Harvard Medical School, Boston, MA 02115, USA
| | - Sumeet Kheterpal
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - Buu Truong
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine Harvard Medical School, Boston, MA 02115, USA
| | - Margaret S. Selvaraj
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin Neale
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine Harvard Medical School, Boston, MA 02115, USA
- Analytic Translational and Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christopher J. O’Donnell
- Department of Medicine Harvard Medical School, Boston, MA 02115, USA
- VA Boston Department of Veterans Affairs, Boston, MA 02130, USA
| | - Gina M. Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02218, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
16
|
Hai Y, Zhao W, Meng Q, Liu L, Wen Y. Bayesian linear mixed model with multiple random effects for family-based genetic studies. Front Genet 2023; 14:1267704. [PMID: 37928242 PMCID: PMC10620972 DOI: 10.3389/fgene.2023.1267704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Motivation: Family-based study design is one of the popular designs used in genetic research, and the whole-genome sequencing data obtained from family-based studies offer many unique features for risk prediction studies. They can not only provide a more comprehensive view of many complex diseases, but also utilize information in the design to further improve the prediction accuracy. While promising, existing analytical methods often ignore the information embedded in the study design and overlook the predictive effects of rare variants, leading to a prediction model with sub-optimal performance. Results: We proposed a Bayesian linear mixed model for the prediction analysis of sequencing data obtained from family-based studies. Our method can not only capture predictive effects from both common and rare variants, but also easily accommodate various disease model assumptions. It uses information embedded in the study design to form surrogates, where the predictive effects from unmeasured/unknown genetic and environmental risk factors can be modelled. Through extensive simulation studies and the analysis of sequencing data obtained from the Michigan State University Twin Registry study, we have demonstrated that the proposed method outperforms commonly adopted techniques. Availability: R package is available at https://github.com/yhai943/FBLMM.
Collapse
Affiliation(s)
- Yang Hai
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Wenxuan Zhao
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Qingyu Meng
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Long Liu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yalu Wen
- Department of Statistics, University of Auckland, Auckland, New Zealand
| |
Collapse
|
17
|
Wang Y, Selvaraj MS, Li X, Li Z, Holdcraft JA, Arnett DK, Bis JC, Blangero J, Boerwinkle E, Bowden DW, Cade BE, Carlson JC, Carson AP, Chen YDI, Curran JE, de Vries PS, Dutcher SK, Ellinor PT, Floyd JS, Fornage M, Freedman BI, Gabriel S, Germer S, Gibbs RA, Guo X, He J, Heard-Costa N, Hildalgo B, Hou L, Irvin MR, Joehanes R, Kaplan RC, Kardia SL, Kelly TN, Kim R, Kooperberg C, Kral BG, Levy D, Li C, Liu C, Lloyd-Jone D, Loos RJ, Mahaney MC, Martin LW, Mathias RA, Minster RL, Mitchell BD, Montasser ME, Morrison AC, Murabito JM, Naseri T, O'Connell JR, Palmer ND, Preuss MH, Psaty BM, Raffield LM, Rao DC, Redline S, Reiner AP, Rich SS, Ruepena MS, Sheu WHH, Smith JA, Smith A, Tiwari HK, Tsai MY, Viaud-Martinez KA, Wang Z, Yanek LR, Zhao W, Rotter JI, Lin X, Natarajan P, Peloso GM. Rare variants in long non-coding RNAs are associated with blood lipid levels in the TOPMed whole-genome sequencing study. Am J Hum Genet 2023; 110:1704-1717. [PMID: 37802043 PMCID: PMC10577076 DOI: 10.1016/j.ajhg.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 10/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are known to perform important regulatory functions in lipid metabolism. Large-scale whole-genome sequencing (WGS) studies and new statistical methods for variant set tests now provide an opportunity to assess more associations between rare variants in lncRNA genes and complex traits across the genome. In this study, we used high-coverage WGS from 66,329 participants of diverse ancestries with measurement of blood lipids and lipoproteins (LDL-C, HDL-C, TC, and TG) in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) program to investigate the role of lncRNAs in lipid variability. We aggregated rare variants for 165,375 lncRNA genes based on their genomic locations and conducted rare-variant aggregate association tests using the STAAR (variant-set test for association using annotation information) framework. We performed STAAR conditional analysis adjusting for common variants in known lipid GWAS loci and rare-coding variants in nearby protein-coding genes. Our analyses revealed 83 rare lncRNA variant sets significantly associated with blood lipid levels, all of which were located in known lipid GWAS loci (in a ±500-kb window of a Global Lipids Genetics Consortium index variant). Notably, 61 out of 83 signals (73%) were conditionally independent of common regulatory variation and rare protein-coding variation at the same loci. We replicated 34 out of 61 (56%) conditionally independent associations using the independent UK Biobank WGS data. Our results expand the genetic architecture of blood lipids to rare variants in lncRNAs.
Collapse
Affiliation(s)
- Yuxuan Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Margaret Sunitha Selvaraj
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Xihao Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zilin Li
- School of Mathematics and Statistics, Northeast Normal University, Changchun, Jilin, China; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jacob A Holdcraft
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Donna K Arnett
- Provost Office, University of South Carolina, Columbia, SC, USA; Department of Epidemiology and Biostatistics, University of South Carolina Arnold School of Public Health, Columbia, SC, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Brian E Cade
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Jenna C Carlson
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Susan K Dutcher
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Patrick T Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA; Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James S Floyd
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Myriam Fornage
- Center for Human Genetics, University of Texas Health at Houston, Houston, TX, USA
| | - Barry I Freedman
- Department of Internal Medicine, Nephrology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | - Richard A Gibbs
- Baylor College of Medicine Human Genome Sequencing Center, Houston, TX, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA; Tulane University Translational Science Institute, New Orleans, LA, USA
| | - Nancy Heard-Costa
- Framingham Heart Study, Framingham, MA, USA; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Bertha Hildalgo
- Department of Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | - Roby Joehanes
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sharon Lr Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Tanika N Kelly
- Department of Medicine, Division of Nephrology, University of Illinois Chicago, Chicago, IL, USA
| | - Ryan Kim
- Psomagen, Inc. (formerly Macrogen USA), Rockville, MD, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Brian G Kral
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA, USA; Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Changwei Li
- Tulane University Translational Science Institute, New Orleans, LA, USA; Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Chunyu Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA; Framingham Heart Study, Framingham, MA, USA
| | - Don Lloyd-Jone
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Ruth Jf Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; NNF Center for Basic Metabolic Research, University of Copenhagen, Cophenhagen, Denmark
| | - Michael C Mahaney
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Lisa W Martin
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Rasika A Mathias
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan L Minster
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - May E Montasser
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joanne M Murabito
- Framingham Heart Study, Framingham, MA, USA; Department of Medicine, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Take Naseri
- Naseri & Associates Public Health Consultancy Firm and Family Health Clinic, Apia, Samoa; International Health Institute, School of Public Health, Brown University, Providence, RI, USA
| | - Jeffrey R O'Connell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA; Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dabeeru C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan Redline
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | | | - Wayne H-H Sheu
- Institute of Molecular and Genomic Medicine, National Health Research Institute (NHRI), Miaoli County, Taiwan
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Albert Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Hemant K Tiwari
- Department of Biostatistics, University of Alabama, Birmingham, AL, USA
| | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | | | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lisa R Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xihong Lin
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Statistics, Harvard University, Cambridge, MA, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
18
|
Gouni-Berthold I, Schwarz J, Berthold HK. Updates in Drug Treatment of Severe Hypertriglyceridemia. Curr Atheroscler Rep 2023; 25:701-709. [PMID: 37642858 PMCID: PMC10564803 DOI: 10.1007/s11883-023-01140-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW To provide an insight into the new pharmacological options for the treatment of severe hypertriglyceridemia (sHTG). RECENT FINDINGS sHTG is difficult to treat. The majority of the traditional pharmacological agents available have limited success in both robustly decreasing triglyceride levels and/or in reducing the incidence of acute pancreatitis (AP), the most severe complication of sHTG. Therapeutic options with novel mechanisms of action have been developed, such as antisense oligonucleotides (ASO) and small interfering RNA (siRNA) targeting APOC3 and ANGPTL3. The review discusses also 2 abandoned drugs for sHTG treatment, evinacumab and vupanorsen. The ASO targeting APOC3, volanesorsen, is approved for use in patients with familial chylomicronemia syndrome (FCS) in Europe. Olezarsen, an N-acetylgalactosamine (GalNAc)-conjugated ASO with the same target, seems to have a better safety and efficacy profile. siRNA targeting APOC3 and ANGPTL3, namely ARO-APOC3 and ARO-ANG3, are also promising for the treatment of sHTG. However, the ultimate clinical goal of any sHTG treatment, the decrease in the risk of AP, has not been definitively achieved till now by any pharmacotherapy, either approved or in development.
Collapse
Affiliation(s)
- Ioanna Gouni-Berthold
- Center for Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Faculty of Medicine and University Hospital, Kerpener Str. 6, 50937 Cologne, Germany
| | - Jonas Schwarz
- Center for Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Faculty of Medicine and University Hospital, Kerpener Str. 6, 50937 Cologne, Germany
| | - Heiner K. Berthold
- Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB) and Medical School EWL, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
19
|
Saghafi S, Chamani E, Salmani F, Fadaei R, Shafiei E, Moradi N, Tavakoli T. Genetic predisposition to nonalcoholic fatty liver disease: insights from ANGPTL8 gene variants in Iranian adults. Lipids Health Dis 2023; 22:147. [PMID: 37679750 PMCID: PMC10483745 DOI: 10.1186/s12944-023-01905-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disease with a global prevalence, and modulation of ANGPTL8 expression has emerged as a promising predictor of NAFLD susceptibility. This research was conducted to scrutinize ANGPTL8 protein expression in NAFLD patients and elucidate the interplay between ANGPTL8 gene polymorphisms and their lipid profiles, thus shedding new light on the pathophysiology of this complex disease. The study comprised 423 unrelated participants, including 222 healthy controls and 201 individuals with NAFLD, screened using FibroScan/ultrasonography and laboratory tests. The main goal focused on the genotype and allele frequency distribution in the ANGPTL8 gene, specifically analyzing two genetic variations: rs737337 (T/C) and rs2278426 (C/T). The participants diagnosed with NAFLD were slightly younger (P ≥ 0.05) and had a higher body mass index (BMI) than the individuals in the control group. Notably, there was a significant difference in the occurrence of the rs737337 polymorphism between the NAFLD and control groups, with a lower frequency observed in the NAFLD group. Our results indicated that individuals with the TC + CC genotype and C allele of rs737337 (T/C) had a decreased risk of higher levels of ALT and AST. Conversely, those with the CT, CT + TT genotype, and T allele of rs2278426 (C/T) exhibited an increased risk of higher levels of ALT and AST. The results imply that the rs2278426 (C/T) variant of the ANGPTL8 gene is more strongly linked to an increased risk of NAFLD compared to the rs737337 polymorphism. However, additional research is needed to understand the specific molecular mechanisms responsible for the upregulation of ANGPTL8 in individuals with NAFLD.
Collapse
Affiliation(s)
- Samira Saghafi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Elham Chamani
- Department of Clinical Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Salmani
- Department of Epidemiology and Biostatistics, Social Determinants of Health Research Center, Faculty of Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Efat Shafiei
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nariman Moradi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Tahmine Tavakoli
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.
- Cardiovascular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
20
|
McCaw ZR, O'Dushlaine C, Somineni H, Bereket M, Klein C, Karaletsos T, Casale FP, Koller D, Soare TW. An allelic-series rare-variant association test for candidate-gene discovery. Am J Hum Genet 2023; 110:1330-1342. [PMID: 37494930 PMCID: PMC10432147 DOI: 10.1016/j.ajhg.2023.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/28/2023] Open
Abstract
Allelic series are of candidate therapeutic interest because of the existence of a dose-response relationship between the functionality of a gene and the degree or severity of a phenotype. We define an allelic series as a collection of variants in which increasingly deleterious mutations lead to increasingly large phenotypic effects, and we have developed a gene-based rare-variant association test specifically targeted to identifying genes containing allelic series. Building on the well-known burden test and sequence kernel association test (SKAT), we specify a variety of association models covering different genetic architectures and integrate these into a Coding-Variant Allelic-Series Test (COAST). Through extensive simulations, we confirm that COAST maintains the type I error and improves the power when the pattern of coding-variant effect sizes increases monotonically with mutational severity. We applied COAST to identify allelic-series genes for four circulating-lipid traits and five cell-count traits among 145,735 subjects with available whole-exome sequencing data from the UK Biobank. Compared with optimal SKAT (SKAT-O), COAST identified 29% more Bonferroni-significant associations with circulating-lipid traits, on average, and 82% more with cell-count traits. All of the gene-trait associations identified by COAST have corroborating evidence either from rare-variant associations in the full cohort (Genebass, n = 400,000) or from common-variant associations in the GWAS Catalog. In addition to detecting many gene-trait associations present in Genebass by using only a fraction (36.9%) of the sample, COAST detects associations, such as that between ANGPTL4 and triglycerides, that are absent from Genebass but that have clear common-variant support.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Paolo Casale
- Institute of AI for Health, Helmholtz Munich, Neuherberg, Germany; Helmholtz Pioneer Campus, Helmholtz Munich, Neuherberg, Germany; School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | | | | |
Collapse
|
21
|
He S, McArdle PF, Ryan KA, Daue M, Xu H, Barry KH, Magder LS, Shuldiner AR, Pollin TI, Mitchell BD. Association of parity with body mass index and cardiometabolic risk in high-parous women. Menopause 2023; 30:703-708. [PMID: 37159869 PMCID: PMC10313795 DOI: 10.1097/gme.0000000000002194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
OBJECTIVE Postpregnancy weight retention contributes to obesity, but the long-term effect of parity on body mass index (BMI) and other cardiometabolic risk factors is unclear. We aimed to evaluate the relationship between parity and BMI among highly parous Amish women, both before and after menopause, and to evaluate the associations of parity with glucose, blood pressure, and lipids. METHODS We conducted a cross-sectional study among 3,141 Amish women 18 years or older from Lancaster County, PA, who participated in our community-based Amish Research Program between 2003 and 2020. We evaluated the association between parity and BMI across different age groups, both before and after the menopausal transition. We further assessed associations between parity and cardiometabolic risk factors among the 1,128 postmenopausal women. Finally, we evaluated the association of change in parity with change in BMI in 561 women followed longitudinally. RESULTS Approximately 62% of women in this sample (mean age, 45.2 y) reported having four or more children, and 36% reported having seven or more. A one-child increase in parity was associated with increased BMI in both premenopausal women (estimate [95% confidence interval], 0.4 kg/m 2 [0.2-0.5]) and to a lesser degree in postmenopausal women (0.2 kg/m 2 [0.02-0.3], Pint = 0.02), suggesting that the impact of parity on BMI decreases over time. Parity was not associated with glucose, blood pressure, total cholesterol, low-density lipoprotein, or triglycerides ( Padj > 0.05). CONCLUSIONS Higher parity was associated with increased BMI in both premenopausal and postmenopausal women, but more so in younger/premenopausal women. Parity was not associated with other indices of cardiometabolic risk.
Collapse
Affiliation(s)
- Shisi He
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine and Program for Personalized Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick F. McArdle
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine and Program for Personalized Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathleen A. Ryan
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine and Program for Personalized Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Melanie Daue
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine and Program for Personalized Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Huichun Xu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine and Program for Personalized Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Kathryn Hughes Barry
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Oncology, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | - Laurence S. Magder
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alan R. Shuldiner
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine and Program for Personalized Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Toni I. Pollin
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine and Program for Personalized Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Braxton D. Mitchell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine and Program for Personalized Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Wang Y, Selvaraj MS, Li X, Li Z, Holdcraft JA, Arnett DK, Bis JC, Blangero J, Boerwinkle E, Bowden DW, Cade BE, Carlson JC, Carson AP, Chen YDI, Curran JE, de Vries PS, Dutcher SK, Ellinor PT, Floyd JS, Fornage M, Freedman BI, Gabriel S, Germer S, Gibbs RA, Guo X, He J, Heard-Costa N, Hildalgo B, Hou L, Irvin MR, Joehanes R, Kaplan RC, Kardia SLR, Kelly TN, Kim R, Kooperberg C, Kral BG, Levy D, Li C, Liu C, Lloyd-Jone D, Loos RJF, Mahaney MC, Martin LW, Mathias RA, Minster RL, Mitchell BD, Montasser ME, Morrison AC, Murabito JM, Naseri T, O’Connell JR, Palmer ND, Preuss MH, Psaty BM, Raffield LM, Rao DC, Redline S, Reiner AP, Rich SS, Ruepena MS, Sheu WHH, Smith JA, Smith A, Tiwari HK, Tsai MY, Viaud-Martinez KA, Wang Z, Yanek LR, Zhao W, Rotter JI, Lin X, Natarajan P, Peloso GM. Rare variants in long non-coding RNAs are associated with blood lipid levels in the TOPMed Whole Genome Sequencing Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.28.23291966. [PMID: 37425772 PMCID: PMC10327287 DOI: 10.1101/2023.06.28.23291966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Long non-coding RNAs (lncRNAs) are known to perform important regulatory functions. Large-scale whole genome sequencing (WGS) studies and new statistical methods for variant set tests now provide an opportunity to assess the associations between rare variants in lncRNA genes and complex traits across the genome. In this study, we used high-coverage WGS from 66,329 participants of diverse ancestries with blood lipid levels (LDL-C, HDL-C, TC, and TG) in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) program to investigate the role of lncRNAs in lipid variability. We aggregated rare variants for 165,375 lncRNA genes based on their genomic locations and conducted rare variant aggregate association tests using the STAAR (variant-Set Test for Association using Annotation infoRmation) framework. We performed STAAR conditional analysis adjusting for common variants in known lipid GWAS loci and rare coding variants in nearby protein coding genes. Our analyses revealed 83 rare lncRNA variant sets significantly associated with blood lipid levels, all of which were located in known lipid GWAS loci (in a ±500 kb window of a Global Lipids Genetics Consortium index variant). Notably, 61 out of 83 signals (73%) were conditionally independent of common regulatory variations and rare protein coding variations at the same loci. We replicated 34 out of 61 (56%) conditionally independent associations using the independent UK Biobank WGS data. Our results expand the genetic architecture of blood lipids to rare variants in lncRNA, implicating new therapeutic opportunities.
Collapse
Affiliation(s)
- Yuxuan Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Margaret Sunitha Selvaraj
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Xihao Li
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zilin Li
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology & Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jacob A. Holdcraft
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Donna K. Arnett
- Provost Office, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, University of South Carolina Arnold School of Public Health, Columbia, SC, USA
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Donald W. Bowden
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Brian E. Cade
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Jenna C. Carlson
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - April P. Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Joanne E. Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Paul S. de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Susan K. Dutcher
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James S. Floyd
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Myriam Fornage
- Center for Human Genetics, University of Texas Health at Houston, Houston, TX, USA
| | - Barry I. Freedman
- Department of Internal Medicine, Nephrology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | - Richard A. Gibbs
- Baylor College of Medicine Human Genome Sequencing Center, Houston, TX, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
- Tulane University Translational Science Institute, New Orleans, LA, USA
| | - Nancy Heard-Costa
- Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Bertha Hildalgo
- Department of Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | - Roby Joehanes
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sharon LR. Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Tanika N. Kelly
- Department of Medicine, Division of Nephrology, University of Illinois Chicago, Chicago, IL, USA
| | - Ryan Kim
- Psomagen, Inc. (formerly Macrogen USA), Rockville, MD, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Brian G. Kral
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
- Tulane University Translational Science Institute, New Orleans, LA, USA
| | - Chunyu Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Don Lloyd-Jone
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Ruth JF. Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- NNF Center for Basic Metabolic Research, University of Copenhagen, Cophenhagen, Denmark
| | - Michael C. Mahaney
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Lisa W. Martin
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Rasika A. Mathias
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan L. Minster
- Department of Human Genetics and Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Braxton D. Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - May E. Montasser
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joanne M. Murabito
- Framingham Heart Study, Framingham, MA, USA
- Department of Medicine, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | | | - Jeffrey R. O’Connell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicholette D. Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Michael H. Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dabeeru C. Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan Redline
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | | | | | - Jennifer A. Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Albert Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Hemant K. Tiwari
- Department of Biostatistics, University of Alabama, Birmingham, AL, USA
| | - Michael Y. Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | | | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lisa R. Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xihong Lin
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Statistics, Harvard University, Cambridge, MA, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Gina M. Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
23
|
Jääskeläinen I, Petäistö T, Mirzarazi Dahagi E, Mahmoodi M, Pihlajaniemi T, Kaartinen MT, Heljasvaara R. Collagens Regulating Adipose Tissue Formation and Functions. Biomedicines 2023; 11:biomedicines11051412. [PMID: 37239083 DOI: 10.3390/biomedicines11051412] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The globally increasing prevalence of obesity is associated with the development of metabolic diseases such as type 2 diabetes, dyslipidemia, and fatty liver. Excess adipose tissue (AT) often leads to its malfunction and to a systemic metabolic dysfunction because, in addition to storing lipids, AT is an active endocrine system. Adipocytes are embedded in a unique extracellular matrix (ECM), which provides structural support to the cells as well as participating in the regulation of their functions, such as proliferation and differentiation. Adipocytes have a thin pericellular layer of a specialized ECM, referred to as the basement membrane (BM), which is an important functional unit that lies between cells and tissue stroma. Collagens form a major group of proteins in the ECM, and some of them, especially the BM-associated collagens, support AT functions and participate in the regulation of adipocyte differentiation. In pathological conditions such as obesity, AT often proceeds to fibrosis, characterized by the accumulation of large collagen bundles, which disturbs the natural functions of the AT. In this review, we summarize the current knowledge on the vertebrate collagens that are important for AT development and function and include basic information on some other important ECM components, principally fibronectin, of the AT. We also briefly discuss the function of AT collagens in certain metabolic diseases in which they have been shown to play central roles.
Collapse
Affiliation(s)
- Iida Jääskeläinen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Tiina Petäistö
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Elahe Mirzarazi Dahagi
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| | - Mahdokht Mahmoodi
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| | - Taina Pihlajaniemi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Mari T Kaartinen
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| | - Ritva Heljasvaara
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| |
Collapse
|
24
|
Gelemanović A, Ćatipović Ardalić T, Pribisalić A, Hayward C, Kolčić I, Polašek O. Genome-Wide Meta-Analysis Identifies Multiple Novel Rare Variants to Predict Common Human Infectious Diseases Risk. Int J Mol Sci 2023; 24:7006. [PMID: 37108169 PMCID: PMC10138356 DOI: 10.3390/ijms24087006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Infectious diseases still threaten global human health, and host genetic factors have been indicated as determining risk factors for observed variations in disease susceptibility, severity, and outcome. We performed a genome-wide meta-analysis on 4624 subjects from the 10,001 Dalmatians cohort, with 14 infection-related traits. Despite a rather small number of cases in some instances, we detected 29 infection-related genetic associations, mostly belonging to rare variants. Notably, the list included the genes CD28, INPP5D, ITPKB, MACROD2, and RSF1, all of which have known roles in the immune response. Expanding our knowledge on rare variants could contribute to the development of genetic panels that could assist in predicting an individual's life-long susceptibility to major infectious diseases. In addition, longitudinal biobanks are an interesting source of information for identifying the host genetic variants involved in infectious disease susceptibility and severity. Since infectious diseases continue to act as a selective pressure on our genomes, there is a constant need for a large consortium of biobanks with access to genetic and environmental data to further elucidate the complex mechanisms behind host-pathogen interactions and infectious disease susceptibility.
Collapse
Affiliation(s)
- Andrea Gelemanović
- Department of Public Health, University of Split School of Medicine, 21000 Split, Croatia
| | | | - Ajka Pribisalić
- Department of Public Health, University of Split School of Medicine, 21000 Split, Croatia
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Ivana Kolčić
- Department of Public Health, University of Split School of Medicine, 21000 Split, Croatia
- Department of General Courses, Algebra University College, 10000 Zagreb, Croatia
| | - Ozren Polašek
- Department of Public Health, University of Split School of Medicine, 21000 Split, Croatia
- Department of General Courses, Algebra University College, 10000 Zagreb, Croatia
| |
Collapse
|
25
|
Wang N, Yu B, Jun G, Qi Q, Durazo-Arvizu RA, Lindstrom S, Morrison AC, Kaplan RC, Boerwinkle E, Chen H. StocSum: stochastic summary statistics for whole genome sequencing studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535886. [PMID: 37066281 PMCID: PMC10104122 DOI: 10.1101/2023.04.06.535886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Genomic summary statistics, usually defined as single-variant test results from genome-wide association studies, have been widely used to advance the genetics field in a wide range of applications. Applications that involve multiple genetic variants also require their correlations or linkage disequilibrium (LD) information, often obtained from an external reference panel. In practice, it is usually difficult to find suitable external reference panels that represent the LD structure for underrepresented and admixed populations, or rare genetic variants from whole genome sequencing (WGS) studies, limiting the scope of applications for genomic summary statistics. Here we introduce StocSum, a novel reference-panel-free statistical framework for generating, managing, and analyzing stochastic summary statistics using random vectors. We develop various downstream applications using StocSum including single-variant tests, conditional association tests, gene-environment interaction tests, variant set tests, as well as meta-analysis and LD score regression tools. We demonstrate the accuracy and computational efficiency of StocSum using two cohorts from the Trans-Omics for Precision Medicine Program. StocSum will facilitate sharing and utilization of genomic summary statistics from WGS studies, especially for underrepresented and admixed populations.
Collapse
Affiliation(s)
- Nannan Wang
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bing Yu
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Goo Jun
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Qibin Qi
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ramon A. Durazo-Arvizu
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sara Lindstrom
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, 3980 15th Ave NE, Seattle, WA, USA
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Robert C. Kaplan
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
26
|
Update of a Genetic Risk Score Predictive of the Plasma Triglyceride Response to an Omega-3 Fatty Acid Supplementation in the FAS Study. Nutrients 2023; 15:nu15051156. [PMID: 36904157 PMCID: PMC10005670 DOI: 10.3390/nu15051156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
A genetic risk score (GRS) predictive of the plasma triglyceride (TG) response to an omega-3 fatty acid (n-3 FA) supplementation has been previously developed in the Fatty Acid Sensor (FAS) Study. Recently, novel single nucleotide polymorphisms (SNPs) interacting with a fish oil supplementation and associated with plasma lipid levels have been identified in the UK Biobank. The aim of this study was to verify whether the addition of SNPs identified in the UK Biobank to the GRS built in the FAS Study improves its capacity to predict the plasma TG response to an n-3 FA supplementation. SNPs interacting with fish oil supplementation in the modulation of plasma lipid levels in the UK Biobank and associated with plasma TG levels have been genotyped in participants of the FAS Study (n = 141). Participants have been supplemented with 5 g fish oil/day for six weeks. Plasma TG concentrations were measured before and after the supplementation. Based on the initial GRS of 31 SNPs (GRS31), we computed three new GRSs by adding new SNPs identified in the UK Biobank: GRS32 (rs55707100), GRS38 (seven new SNPs specifically associated with plasma TG levels), and GRS46 (all 15 new SNPs associated with plasma lipid levels). The initial GRS31 explained 50.1% of the variance in plasma TG levels during the intervention, whereas GRS32, GRS38, and GRS46 explained 49.1%, 45.9%, and 45%, respectively. A significant impact on the probability of being classified as a responder or a nonresponder was found for each of the GRSs analyzed, but none of them outperformed the predictive capacity of GRS31 in any of the metrics analyzed, i.e., accuracy, area under the response operating curve (AUC-ROC), sensitivity, specificity and McFadden's pseudo R2. The addition of SNPs identified in the UK Biobank to the initial GRS31 did not significantly improve its capacity to predict the plasma TG response to an n-3 FA supplementation. Thus, GRS31 still remains the most precise tool so far by which to discriminate the individual responsiveness to n-3 FAs. Further studies are needed in the field to increase our knowledge of factors underlying the heterogeneity observed in the metabolic response to an n-3 FA supplementation.
Collapse
|
27
|
Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK, Buxton AE, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Fugar S, Generoso G, Heard DG, Hiremath S, Ho JE, Kalani R, Kazi DS, Ko D, Levine DA, Liu J, Ma J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Virani SS, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 2023; 147:e93-e621. [PMID: 36695182 DOI: 10.1161/cir.0000000000001123] [Citation(s) in RCA: 1550] [Impact Index Per Article: 1550.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2023 Statistical Update is the product of a full year's worth of effort in 2022 by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. The American Heart Association strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional COVID-19 (coronavirus disease 2019) publications, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
28
|
Abstract
Atherosclerotic cardiovascular disease is the leading cause of death globally. Despite its important risk of premature atherosclerosis and cardiovascular disease, familial hypercholesterolemia (FH) is still largely underdiagnosed worldwide. It is one of the most frequently inherited diseases due to mutations, for autosomal dominant forms, in either of the LDLR, APOB, and PCSK9 genes or possibly a few mutations in the APOE gene and, for the rare autosomal forms, in the LDLRAP1 gene. The discovery of the genes implicated in the disease has largely helped to improve the diagnosis and treatment of FH from the LDLR by Brown and Goldstein, as well as the introduction of statins, to PCSK9 discovery in FH by Abifadel et al., and the very rapid availability of PCSK9 inhibitors. In the last two decades, major progress has been made in clinical and genetic diagnostic tools and the therapeutic arsenal against FH. Improving prevention, diagnosis, and treatment and making them more accessible to all patients will help reduce the lifelong burden of the disease.
Collapse
Affiliation(s)
- Marianne Abifadel
- UMR1148, Inserm, Hôpital Bichat-Claude Bernard, 46 rue Henri Huchard, F-75018 Paris, France.,Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie-Santé, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Catherine Boileau
- UMR1148, Inserm, Hôpital Bichat-Claude Bernard, 46 rue Henri Huchard, F-75018 Paris, France.,Département de Génétique, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France
| |
Collapse
|
29
|
Ouidir M, Chatterjee S, Wu J, Tekola-Ayele F. Genomic study of maternal lipid traits in early pregnancy concurs with four known adult lipid loci. J Clin Lipidol 2023; 17:168-180. [PMID: 36443208 PMCID: PMC9974591 DOI: 10.1016/j.jacl.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Blood lipids during pregnancy are associated with cardiovascular diseases and adverse pregnancy outcomes. Genome-wide association studies (GWAS) in predominantly male European ancestry populations have identified genetic loci associated with blood lipid levels. However, the genetic architecture of blood lipids in pregnant women remains poorly understood. OBJECTIVE Our goal was to identify genetic loci associated with blood lipid levels among pregnant women from diverse ancestry groups and to evaluate whether previously known lipid loci in predominantly European adults are transferable to pregnant women. METHODS The trans-ancestry GWAS were conducted on serum levels of total cholesterol, high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL) and triglycerides during first trimester among pregnant women from four population groups (608 European-, 623 African-, 552 Hispanic- and 235 East Asian-Americans) recruited in the NICHD Fetal Growth Studies cohort. The four GWAS summary statistics were combined using trans-ancestry meta-analysis approaches that account for genetic heterogeneity among populations. RESULTS Loci in CELSR2 and APOE were genome-wide significantly associated (p-value < 5×10-8) with total cholesterol and LDL levels. Loci near CETP and ABCA1 approached genome-wide significant association with HDL (p-value = 2.97×10-7 and 9.71×10-8, respectively). Less than 20% of previously known adult lipid loci were transferable to pregnant women. CONCLUSION This trans-ancestry GWAS meta-analysis in pregnant women identified associations that concur with four known adult lipid loci. Limited replication of known lipid-loci from predominantly European study populations to pregnant women underlines the need for genomic studies of lipids in ancestrally diverse pregnant women. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, NCT00912132.
Collapse
Affiliation(s)
- Marion Ouidir
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Suvo Chatterjee
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jing Wu
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
30
|
Landfors F, Chorell E, Kersten S. Genetic Mimicry Analysis Reveals the Specific Lipases Targeted by the ANGPTL3-ANGPTL8 Complex and ANGPTL4. J Lipid Res 2023; 64:100313. [PMID: 36372100 PMCID: PMC9852701 DOI: 10.1016/j.jlr.2022.100313] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/14/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022] Open
Abstract
Angiopoietin-like proteins, ANGPTL3, ANGPTL4, and ANGPTL8, are involved in regulating plasma lipids. In vitro and animal-based studies point to LPL and endothelial lipase (EL, LIPG) as key targets of ANGPTLs. To examine the ANGPTL mechanisms for plasma lipid modulation in humans, we pursued a genetic mimicry analysis of enhancing or suppressing variants in the LPL, LIPG, lipase C hepatic type (LIPC), ANGPTL3, ANGPTL4, and ANGPTL8 genes using data on 248 metabolic parameters derived from over 110,000 nonfasted individuals in the UK Biobank and validated in over 13,000 overnight fasted individuals from 11 other European populations. ANGPTL4 suppression was highly concordant with LPL enhancement but not HL or EL, suggesting ANGPTL4 impacts plasma metabolic parameters exclusively via LPL. The LPL-independent effects of ANGPTL3 suppression on plasma metabolic parameters showed a striking inverse resemblance with EL suppression, suggesting ANGPTL3 not only targets LPL but also targets EL. Investigation of the impact of the ANGPTL3-ANGPTL8 complex on plasma metabolite traits via the ANGPTL8 R59W substitution as an instrumental variable showed a much higher concordance between R59W and EL activity than between R59W and LPL activity, suggesting the R59W substitution more strongly affects EL inhibition than LPL inhibition. Meanwhile, when using a rare and deleterious protein-truncating ANGPTL8 variant as an instrumental variable, the ANGPTL3-ANGPTL8 complex was very LPL specific. In conclusion, our analysis provides strong human genetic evidence that the ANGPTL3-ANGPTL8 complex regulates plasma metabolic parameters, which is achieved by impacting LPL and EL. By contrast, ANGPTL4 influences plasma metabolic parameters exclusively via LPL.
Collapse
Affiliation(s)
- Fredrik Landfors
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, Umeå, Sweden.
| | - Elin Chorell
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, Umeå, Sweden
| | - Sander Kersten
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
31
|
Kanoni S, Graham SE, Wang Y, Surakka I, Ramdas S, Zhu X, Clarke SL, Bhatti KF, Vedantam S, Winkler TW, Locke AE, Marouli E, Zajac GJM, Wu KHH, Ntalla I, Hui Q, Klarin D, Hilliard AT, Wang Z, Xue C, Thorleifsson G, Helgadottir A, Gudbjartsson DF, Holm H, Olafsson I, Hwang MY, Han S, Akiyama M, Sakaue S, Terao C, Kanai M, Zhou W, Brumpton BM, Rasheed H, Havulinna AS, Veturi Y, Pacheco JA, Rosenthal EA, Lingren T, Feng Q, Kullo IJ, Narita A, Takayama J, Martin HC, Hunt KA, Trivedi B, Haessler J, Giulianini F, Bradford Y, Miller JE, Campbell A, Lin K, Millwood IY, Rasheed A, Hindy G, Faul JD, Zhao W, Weir DR, Turman C, Huang H, Graff M, Choudhury A, Sengupta D, Mahajan A, Brown MR, Zhang W, Yu K, Schmidt EM, Pandit A, Gustafsson S, Yin X, Luan J, Zhao JH, Matsuda F, Jang HM, Yoon K, Medina-Gomez C, Pitsillides A, Hottenga JJ, Wood AR, Ji Y, Gao Z, Haworth S, Yousri NA, Mitchell RE, Chai JF, Aadahl M, Bjerregaard AA, Yao J, Manichaikul A, Hwu CM, Hung YJ, Warren HR, Ramirez J, Bork-Jensen J, Kårhus LL, Goel A, Sabater-Lleal M, Noordam R, Mauro P, Matteo F, McDaid AF, Marques-Vidal P, Wielscher M, Trompet S, Sattar N, Møllehave LT, Munz M, Zeng L, Huang J, Yang B, Poveda A, Kurbasic A, Lamina C, Forer L, Scholz M, Galesloot TE, Bradfield JP, Ruotsalainen SE, Daw EW, Zmuda JM, Mitchell JS, Fuchsberger C, Christensen H, Brody JA, Vazquez-Moreno M, Feitosa MF, Wojczynski MK, Wang Z, Preuss MH, Mangino M, Christofidou P, Verweij N, Benjamins JW, Engmann J, Tsao NL, Verma A, Slieker RC, Lo KS, Zilhao NR, Le P, Kleber ME, Delgado GE, Huo S, Ikeda DD, Iha H, Yang J, Liu J, Demirkan A, Leonard HL, Marten J, Frank M, Schmidt B, Smyth LJ, Cañadas-Garre M, Wang C, Nakatochi M, Wong A, Hutri-Kähönen N, Sim X, Xia R, Huerta-Chagoya A, Fernandez-Lopez JC, Lyssenko V, Nongmaithem SS, Bayyana S, Stringham HM, Irvin MR, Oldmeadow C, Kim HN, Ryu S, Timmers PRHJ, Arbeeva L, Dorajoo R, Lange LA, Prasad G, Lorés-Motta L, Pauper M, Long J, Li X, Theusch E, Takeuchi F, Spracklen CN, Loukola A, Bollepalli S, Warner SC, Wang YX, Wei WB, Nutile T, Ruggiero D, Sung YJ, Chen S, Liu F, Yang J, Kentistou KA, Banas B, Nardone GG, Meidtner K, Bielak LF, Smith JA, Hebbar P, Farmaki AE, Hofer E, Lin M, Concas MP, Vaccargiu S, van der Most PJ, Pitkänen N, Cade BE, van der Laan SW, Chitrala KN, Weiss S, Bentley AR, Doumatey AP, Adeyemo AA, Lee JY, Petersen ERB, Nielsen AA, Choi HS, Nethander M, Freitag-Wolf S, Southam L, Rayner NW, Wang CA, Lin SY, Wang JS, Couture C, Lyytikäinen LP, Nikus K, Cuellar-Partida G, Vestergaard H, Hidalgo B, Giannakopoulou O, Cai Q, Obura MO, van Setten J, Li X, Liang J, Tang H, Terzikhan N, Shin JH, Jackson RD, Reiner AP, Martin LW, Chen Z, Li L, Kawaguchi T, Thiery J, Bis JC, Launer LJ, Li H, Nalls MA, Raitakari OT, Ichihara S, Wild SH, Nelson CP, Campbell H, Jäger S, Nabika T, Al-Mulla F, Niinikoski H, Braund PS, Kolcic I, Kovacs P, Giardoglou T, Katsuya T, de Kleijn D, de Borst GJ, Kim EK, Adams HHH, Ikram MA, Zhu X, Asselbergs FW, Kraaijeveld AO, Beulens JWJ, Shu XO, Rallidis LS, Pedersen O, Hansen T, Mitchell P, Hewitt AW, Kähönen M, Pérusse L, Bouchard C, Tönjes A, Chen YDI, Pennell CE, Mori TA, Lieb W, Franke A, Ohlsson C, Mellström D, Cho YS, Lee H, Yuan JM, Koh WP, Rhee SY, Woo JT, Heid IM, Stark KJ, Zimmermann ME, Völzke H, Homuth G, Evans MK, Zonderman AB, Polasek O, Pasterkamp G, Hoefer IE, Redline S, Pahkala K, Oldehinkel AJ, Snieder H, Biino G, Schmidt R, Schmidt H, Bandinelli S, Dedoussis G, Thanaraj TA, Kardia SLR, Peyser PA, Kato N, Schulze MB, Girotto G, Böger CA, Jung B, Joshi PK, Bennett DA, De Jager PL, Lu X, Mamakou V, Brown M, Caulfield MJ, Munroe PB, Guo X, Ciullo M, Jonas JB, Samani NJ, Kaprio J, Pajukanta P, Tusié-Luna T, Aguilar-Salinas CA, Adair LS, Bechayda SA, de Silva HJ, Wickremasinghe AR, Krauss RM, Wu JY, Zheng W, Hollander AI, Bharadwaj D, Correa A, Wilson JG, Lind L, Heng CK, Nelson AE, Golightly YM, Wilson JF, Penninx B, Kim HL, Attia J, Scott RJ, Rao DC, Arnett DK, Hunt SC, Walker M, Koistinen HA, Chandak GR, Mercader JM, Costanzo MC, Jang D, Burtt NP, Villalpando CG, Orozco L, Fornage M, Tai ES, van Dam RM, Lehtimäki T, Chaturvedi N, Yokota M, Liu J, Reilly DF, McKnight AJ, Kee F, Jöckel KH, McCarthy MI, Palmer CNA, Vitart V, Hayward C, Simonsick E, van Duijn CM, Jin ZB, Qu J, Hishigaki H, Lin X, März W, Gudnason V, Tardif JC, Lettre G, Hart LM', Elders PJM, Damrauer SM, Kumari M, Kivimaki M, van der Harst P, Spector TD, Loos RJF, Province MA, Parra EJ, Cruz M, Psaty BM, Brandslund I, Pramstaller PP, Rotimi CN, Christensen K, Ripatti S, Widén E, Hakonarson H, Grant SFA, Kiemeney LALM, de Graaf J, Loeffler M, Kronenberg F, Gu D, Erdmann J, Schunkert H, Franks PW, Linneberg A, Jukema JW, Khera AV, Männikkö M, Jarvelin MR, Kutalik Z, Francesco C, Mook-Kanamori DO, van Dijk KW, Watkins H, Strachan DP, Grarup N, Sever P, Poulter N, Chuang LM, Rotter JI, Dantoft TM, Karpe F, Neville MJ, Timpson NJ, Cheng CY, Wong TY, Khor CC, Li H, Sabanayagam C, Peters A, Gieger C, Hattersley AT, Pedersen NL, Magnusson PKE, Boomsma DI, Willemsen AHM, Cupples LA, van Meurs JBJ, Ghanbari M, Gordon-Larsen P, Huang W, Kim YJ, Tabara Y, Wareham NJ, Langenberg C, Zeggini E, Kuusisto J, Laakso M, Ingelsson E, Abecasis G, Chambers JC, Kooner JS, de Vries PS, Morrison AC, Hazelhurst S, Ramsay M, North KE, Daviglus M, Kraft P, Martin NG, Whitfield JB, Abbas S, Saleheen D, Walters RG, Holmes MV, Black C, Smith BH, Baras A, Justice AE, Buring JE, Ridker PM, Chasman DI, Kooperberg C, Tamiya G, Yamamoto M, van Heel DA, Trembath RC, Wei WQ, Jarvik GP, Namjou B, Hayes MG, Ritchie MD, Jousilahti P, Salomaa V, Hveem K, Åsvold BO, Kubo M, Kamatani Y, Okada Y, Murakami Y, Kim BJ, Thorsteinsdottir U, Stefansson K, Zhang J, Chen YE, Ho YL, Lynch JA, Rader DJ, Tsao PS, Chang KM, Cho K, O'Donnell CJ, Gaziano JM, Wilson PWF, Frayling TM, Hirschhorn JN, Kathiresan S, Mohlke KL, Sun YV, Morris AP, Boehnke M, Brown CD, Natarajan P, Deloukas P, Willer CJ, Assimes TL, Peloso GM. Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis. Genome Biol 2022; 23:268. [PMID: 36575460 PMCID: PMC9793579 DOI: 10.1186/s13059-022-02837-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 12/06/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. RESULTS To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. CONCLUSIONS Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.
Collapse
Affiliation(s)
- Stavroula Kanoni
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Sarah E Graham
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yuxuan Wang
- Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Ave, Boston, MA, 02118, USA
| | - Ida Surakka
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shweta Ramdas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xiang Zhu
- Department of Statistics, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- VA Palo Alto Health Care Systems, Palo Alto, CA, USA
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Shoa L Clarke
- VA Palo Alto Health Care Systems, Palo Alto, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Konain Fatima Bhatti
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Sailaja Vedantam
- Boston Children's Hospital, EndocrinologyBoston, MA, 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Adam E Locke
- McDonnell Genome Institute and Department of Medicine, Washington University, St. Louis, MO, 63108, USA
| | - Eirini Marouli
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Greg J M Zajac
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Kuan-Han H Wu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ioanna Ntalla
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Qin Hui
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, GA, USA
| | - Derek Klarin
- VA Palo Alto Health Care Systems, Palo Alto, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Zeyuan Wang
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, GA, USA
| | - Chao Xue
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Anna Helgadottir
- deCODE Genetics/Amgen, Inc. Sturlugata 8, Reykjavik, 102, Iceland
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc. Sturlugata 8, Reykjavik, 102, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Sæmundargötu 2, Reykjavik, 102, Iceland
| | - Hilma Holm
- deCODE Genetics/Amgen, Inc. Sturlugata 8, Reykjavik, 102, Iceland
| | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspitali - National University Hospital of Iceland, Hringbraut, Reykjavik, 101, Iceland
| | - Mi Yeong Hwang
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Chungcheongbuk-Do, South Korea
| | - Sohee Han
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Chungcheongbuk-Do, South Korea
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Saori Sakaue
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masahiro Kanai
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Wei Zhou
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Ben M Brumpton
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Humaira Rasheed
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Division of Medicine and Laboratory Sciences, University of Oslo, Oslo, Norway
| | - Aki S Havulinna
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Tukholmankatu 8, 00014, Helsinki, Finland
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Yogasudha Veturi
- Department of Genetics, Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jennifer Allen Pacheco
- Center for Genetic Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60618, USA
| | - Elisabeth A Rosenthal
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA, USA
| | - Todd Lingren
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - QiPing Feng
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine and the Gonda Vascular Center, Mayo Clinic, Rochester, MN, USA
| | - Akira Narita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Jun Takayama
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | | | - Karen A Hunt
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Bhavi Trivedi
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jeffrey Haessler
- Fred Hutchinson Cancer Center, Division of Public Health Sciences, Seattle, WA, 9810, USA
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
| | - Yuki Bradford
- Department of Genetics, Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jason E Miller
- Department of Genetics, Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
- Usher Institute, The University of Edinburgh, Nine, Edinburgh Bioquarter, 9 Little France Road, Edinburgh, EH16 4UX, UK
| | - Kuang Lin
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Iona Y Millwood
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Asif Rasheed
- Center for Non-Communicable Diseases, Karachi, Sindh, Pakistan
| | - George Hindy
- Department of Population Medicine, Qatar University College of Medicine, QU Health, Doha, Qatar
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Wei Zhao
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Constance Turman
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Hongyan Huang
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Dhriti Sengupta
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, School of Public Health, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, W2 1PG, UK
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, UB1 3HW, UK
| | - Ketian Yu
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ellen M Schmidt
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Anita Pandit
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Stefan Gustafsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Xianyong Yin
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Jing-Hua Zhao
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge, CB1 8RN, UK
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hye-Mi Jang
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Chungcheongbuk-Do, South Korea
| | - Kyungheon Yoon
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Chungcheongbuk-Do, South Korea
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Achilleas Pitsillides
- Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Ave, Boston, MA, 02118, USA
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam UMC, the Netherlands
| | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
| | - Yingji Ji
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
| | - Zishan Gao
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Simon Haworth
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol, BS1 2LY, UK
| | - Noha A Yousri
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
- Department of Computer and Systems Engineering, Alexandria University, Alexandria, Egypt
| | - Ruth E Mitchell
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Jin Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, 117549, Singapore
| | - Mette Aadahl
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne A Bjerregaard
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovations (Formerly LABioMed) at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22903, USA
| | - Chii-Min Hwu
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Jen Hung
- Institute of Preventive Medicine, National Defense Medical Center, Postbox 90048~700, Sanhsia Dist, New Taipei City, 237101, Taiwan
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Julia Ramirez
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
- Aragon Institute of Engineering Research, University of Zaragoza and Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales Y Nanomedicina, Spain
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Line L Kårhus
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Anuj Goel
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Maria Sabater-Lleal
- Unit of Genomics of Complex Diseases, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Pala Mauro
- Istituto Di Ricerca Genetica E Biomedica, Consiglio Nazionale Delle Ricerche, Rome, Italy
| | - Floris Matteo
- Istituto Di Ricerca Genetica E Biomedica, Consiglio Nazionale Delle Ricerche, Rome, Italy
- Dipartimento Di Scienze Biomediche, Università Degli Studi Di Sassari, Sardinia, Italy
| | - Aaron F McDaid
- University Center for Primary Care and Public Health, University of Lausanne, Rte de Berne 113, 1010, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Matthias Wielscher
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Dept of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Naveed Sattar
- BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, Glasgow, UK
| | - Line T Møllehave
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Matthias Munz
- Institute for Cardiogenetics, University of Lübeck, DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, University Heart Center Lübeck, Lübeck and Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for Dental and Craniofacial Sciences, Department of Periodontology and Synoptic Dentistry, Berlin, Germany
| | - Lingyao Zeng
- Deutsches Herzzentrum München, Klinik Für Herz- Und Kreislauferkrankungen, Technische Universität München, Munich, Germany
- Deutsches Zentrum Für Herz-Kreislauf-Forschung (DZHK) E.V., Partner Site Munich Heart Alliance, Munich, Germany
| | - Jianfeng Huang
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Bin Yang
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Alaitz Poveda
- Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - Azra Kurbasic
- Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - Claudia Lamina
- Institute of Genetic Epidemiology, Department of Genetics, Medical University of Innsbruck, Innsbruck, Austria
- German Chronic Kidney Disease Study, Berlin, Germany
| | - Lukas Forer
- Institute of Genetic Epidemiology, Department of Genetics, Medical University of Innsbruck, Innsbruck, Austria
- German Chronic Kidney Disease Study, Berlin, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany
- LIFE Research Centre for Civilization Diseases, University of Leipzig, Philipp-Rosenthal-Straße 27, 04103, Leipzig, Germany
| | - Tessel E Galesloot
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | | | - Sanni E Ruotsalainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Tukholmankatu 8, 00014, Helsinki, Finland
| | - EWarwick Daw
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph M Zmuda
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan S Mitchell
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100, Bolzano, Italy
| | - Christian Fuchsberger
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100, Bolzano, Italy
| | - Henry Christensen
- Department of Clinical Biochemistry, Lillebaelt Hospital, Vejle, Denmark
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, 98101, USA
| | - Miguel Vazquez-Moreno
- Unidad de Investigacion Medica en Bioquimica, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Mary K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
- NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, SE1 9RT, UK
| | - Paraskevi Christofidou
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Niek Verweij
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan W Benjamins
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jorgen Engmann
- Institute of Cardiovascular Sciences, University College London, Gower Street, London, WC1E 6BT, UK
- Department of Epidemiology and Public Health, University College London, 1-19 Torrington Place, London, WC1E 6BT, UK
| | - Noah L Tsao
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Anurag Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Roderick C Slieker
- Amsterdam UMC, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam, 1081HV, the Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, 2333ZA, The Netherlands
| | - Ken Sin Lo
- Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, PQ, H1T1C8, Canada
| | - Nuno R Zilhao
- Icelandic Heart Association, 201, Kopavogur, Iceland
| | - Phuong Le
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Marcus E Kleber
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- SYNLAB MVZ Humangenetik Mannheim GmbH, 68163, Mannheim, Germany
| | - Graciela E Delgado
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Shaofeng Huo
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Daisuke D Ikeda
- Biomedical Technology Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd, Tokushima, Japan
| | - Hiroyuki Iha
- Biomedical Technology Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd, Tokushima, Japan
| | - Jian Yang
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jun Liu
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ayşe Demirkan
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Section of Statistical Multi-Omics, Department of Clinical and Experimental Research, University of Surrey, Guildford, Surrey, UK
| | - Hampton L Leonard
- Laboratory of Neurogenetics, National Institute On Aging, NIH, Bethesda, MD, USA
- Data Tecnica International, Glen Echo, MD, USA
| | - Jonathan Marten
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, Scotland
| | - Mirjam Frank
- Institute for Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Essen, Germany
| | - Börge Schmidt
- Institute for Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Essen, Germany
| | - Laura J Smyth
- Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland
| | - Marisa Cañadas-Garre
- Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer-University of Granada-Andalusian Regional Government, Granada, Spain
- Hematology Department, Hospital Universitario Virgen de Las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
| | - Chaolong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, 461-8673, Japan
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCL, 1-19 Torrington Place, London, WC1E 7HB, UK
| | - Nina Hutri-Kähönen
- Tampere Centre for Skills Training and Simulation, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, 117549, Singapore
| | - Rui Xia
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Alicia Huerta-Chagoya
- CONACYT, Instituto Nacional de Ciencias Médicas Y Nutrición Salvador Zubirán, Ciudad de Mexico, Mexico
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Departamento de Medicina Genómica Y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, Mexico
| | | | - Valeriya Lyssenko
- Lund University Diabetes Center, Lund University, Malmö, Sweden
- Center for Diabetes Research, University of Bergen, Bergen, Norway
| | | | - Swati Bayyana
- Genomic Research On Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Heather M Stringham
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Marguerite R Irvin
- Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Han-Na Kim
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 03181, Korea
- Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, 06355, Korea
| | - Seungho Ryu
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 04514, Korea
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 03181, Korea
| | - Paul R H J Timmers
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, Scotland
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
| | - Liubov Arbeeva
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Duke-NUS Medical School, Health Services and Systems Research, Singapore, 169857, Singapore
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Aurora, CO, 80045, USA
| | - Gauri Prasad
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110020, India
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Ghaziabad, Uttar Pradesh, India
| | - Laura Lorés-Motta
- Departments of Ophthalmology and Human Genetics, Radboud University Nijmegen Medical Center, Philips Van Leydenlaan 15, Nijmegen, 6525 EX, the Netherlands
| | - Marc Pauper
- Departments of Ophthalmology and Human Genetics, Radboud University Nijmegen Medical Center, Philips Van Leydenlaan 15, Nijmegen, 6525 EX, the Netherlands
| | - Jirong Long
- Vanderbilt Epidemiology Center, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, USA
| | - Xiaohui Li
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovations (Formerly LABioMed) at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Elizabeth Theusch
- Department of Pediatrics, University of California San Francisco, Oakland, CA, 94609, USA
| | - Fumihiko Takeuchi
- National Center for Global Health and Medicine, Tokyo, 1628655, Japan
| | - Cassandra N Spracklen
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Biostatistics and Epidemiology, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - Anu Loukola
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Tukholmankatu 8, 00014, Helsinki, Finland
| | - Sailalitha Bollepalli
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Tukholmankatu 8, 00014, Helsinki, Finland
| | - Sophie C Warner
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 17 Hougou Lane, Chong Wen Men, Beijing, 100005, China
| | - Wen B Wei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 1 Dong Jiao Min Xiang, Beijing, 100730, Dong Cheng District, China
| | - Teresa Nutile
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso" - CNR, Naples, Italy
| | - Daniela Ruggiero
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso" - CNR, Naples, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Yun Ju Sung
- Division of Biostatistics, Washington University, St. Louis, MO, 63110, USA
| | - Shufeng Chen
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Fangchao Liu
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Katherine A Kentistou
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
| | - Bernhard Banas
- Dept of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | | | - Karina Meidtner
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jennifer A Smith
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Prashantha Hebbar
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
- Department of Clinical Epidemiology, Institute of Health Informatics, University College London, London, UK
| | - Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Maoxuan Lin
- Massachusetts General Hospital Cancer Center, Charlestown, MA, 02129, USA
| | - Maria Pina Concas
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Simona Vaccargiu
- Institute of Genetic and Biomedical Research, National Research Council of Italy, UOS of Sassari, Sassari, Italy
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, the Netherlands
| | - Niina Pitkänen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Brian E Cade
- Sleep Medicine and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Kumaraswamy Naidu Chitrala
- Laboratory of Epidemiology and Population Sciences, National Institute On Aging, NIH, Baltimore, MD, 20892-9205, USA
- Department of Engineering Technology, University of Houston-Sugarland, Houston, TX, USA
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University of Greifswald and University Medicine Greifswald, Greifswald, Germany
| | - Amy R Bentley
- Center for Research On Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Room 1025, Bethesda, MD, 20892, USA
| | - Ayo P Doumatey
- Center for Research On Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Room 1025, Bethesda, MD, 20892, USA
| | - Adebowale A Adeyemo
- Center for Research On Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Room 1025, Bethesda, MD, 20892, USA
| | - Jong Young Lee
- , Oneomics. Co. Ltd. 2F, Soonchunhyang Mirai Medical Center 173, Buheuyng-Ro, Bucheon-Si Gyeonggi-Do, 14585, Korea
| | - Eva R B Petersen
- Department of Clinical Biochemistry and Immunology, Hospital of Southern Jutland, Kresten Philipsens Vej 15, 6200, Aabenraa, Denmark
| | - Aneta A Nielsen
- Department of Clinical Biochemistry, Lillebaelt Hospital, Kolding, Denmark
| | - Hyeok Sun Choi
- Department of Biomedical Science, Hallym University, Chuncheon, 24252, Gangwon-Do, Korea
| | - Maria Nethander
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Lorraine Southam
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Nigel W Rayner
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Carol A Wang
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Jun-Sing Wang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, 33520, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
| | - Kjell Nikus
- Department of Cardiology, Heart Center, Tampere University Hospital, 33521, Tampere, Finland
- Department of Cardiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
| | - Gabriel Cuellar-Partida
- University of Queensland Diamantina Institute, Translational Research Institute, Kent St, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Bornholms Hospital, Rønne, Denmark
| | - Bertha Hidalgo
- Department of Epidemiology, Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Olga Giannakopoulou
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Qiuyin Cai
- Vanderbilt Epidemiology Center, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, USA
| | - Morgan O Obura
- Amsterdam UMC, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam, 1081HV, the Netherlands
| | - Jessica van Setten
- Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Xiaoyin Li
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jingjing Liang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine Stanford, Palo Alto, CA, 94305, USA
| | - Natalie Terzikhan
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jae Hun Shin
- Department of Biomedical Science, Hallym University, Chuncheon, 24252, Gangwon-Do, Korea
| | - Rebecca D Jackson
- Division of Endocrinology, Ohio State University, Columbus, OH, 43210, USA
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, 98195, USA
| | - Lisa Warsinger Martin
- School of Medicine and Health Sciences, George Washington University, Washington, DC, 20037, USA
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Liming Li
- Department of Epidemiology, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Joachim Thiery
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany
- Institute for Laboratory Medicine, University Hospital Leipzig, Paul-List-Strasse 13/15, 04103, Leipzig, Germany
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, 98101, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute On Aging, NIH, Baltimore, MD, 20892-9205, USA
| | - Huaixing Li
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias, NIH, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, 329-0498, Japan
| | - Sarah H Wild
- Centre for Population Health Sciences, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
| | - Susanne Jäger
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Toru Nabika
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, 6938501, Japan
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Harri Niinikoski
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
- Department of Physiology, University of Turku, Turku, Finland
| | - Peter S Braund
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Ivana Kolcic
- University of Split School of Medicine, Šoltanska 2, HR-21000, Split, Croatia
| | - Peter Kovacs
- University of Leipzig Medical Center, Liebigstr. 18, 04103, Medical Department III - Endocrinology, Nephrology, RheumatologyLeipzig, Germany
| | - Tota Giardoglou
- Department of Nutrition-Dietetics, Harokopio University, Eleftheriou Venizelou, 17676, Athens, Greece
| | - Tomohiro Katsuya
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, 5650871, Japan
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, 5650871, Japan
| | - Dominique de Kleijn
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Gert J de Borst
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Eung Kweon Kim
- Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Saevit Eye Hospital, SeoulIlsan, 03722, Korea
| | - Hieab H H Adams
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Dept of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Folkert W Asselbergs
- Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Adriaan O Kraaijeveld
- Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Joline W J Beulens
- Amsterdam UMC, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam, 1081HV, the Netherlands
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, 3584CG, Utrecht, the Netherlands
| | - Xiao-Ou Shu
- Vanderbilt Epidemiology Center, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, USA
| | - Loukianos S Rallidis
- Second Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paul Mitchell
- Center for Vision Research, Department of Ophthalmology and The Westmead Institute, University of Sydney, Hawkesbury Rd, Sydney, NSW, 2145, Australia
| | - Alex W Hewitt
- School of Medicine, Menzies Institute for Medical Research, University of Tasmania, Liverpool St, Hobart, TAS, 7000, Australia
- Centre for Eye Research Australia, University of Melbourne, Melbourne, VIC, 3002, Australia
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, 33521, Tampere, Finland
- Department of Clinical Physiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
| | - Louis Pérusse
- Department of Kinesiology, Université Laval, Québec, Canada
- Centre Nutrition, Santé Et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Québec, Canada
| | - Claude Bouchard
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Anke Tönjes
- University of Leipzig Medical Center, Liebigstr. 18, 04103, Medical Department III - Endocrinology, Nephrology, RheumatologyLeipzig, Germany
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovations (Formerly LABioMed) at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Craig E Pennell
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Trevor A Mori
- Discipline of Internal Medicine, Medical School, The University of Western Australia, Perth, WA, Australia
| | - Wolfgang Lieb
- Institute of Epidemiology, Kiel University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Dan Mellström
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Geriatric Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yoon Shin Cho
- Department of Biomedical Science, Hallym University, Chuncheon, 24252, Gangwon-Do, Korea
| | - Hyejin Lee
- Department of Internal Medicine, EwhaWomans University School of Medicine, Seoul, Korea
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore, 117609, Singapore
| | - Sang Youl Rhee
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, 02447, Korea
| | - Jeong-Taek Woo
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, 02447, Korea
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Klaus J Stark
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Martina E Zimmermann
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University of Greifswald and University Medicine Greifswald, Greifswald, Germany
| | - Michele K Evans
- Laboratory of Epidemiology and Population Science, National Institute On Aging Intramural Research Program, NIH Biomedical Research Center, NIH 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Science, National Institute On Aging Intramural Research Program, NIH Biomedical Research Center, NIH 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Ozren Polasek
- University of Split School of Medicine, Šoltanska 2, HR-21000, Split, Croatia
- Algebra University College, Ilica 242, Zagreb, Croatia
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Imo E Hoefer
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Susan Redline
- Sleep Medicine and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Katja Pahkala
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Physical Activity and Health, Paavo Nurmi Centre, Sports and Exercise Medicine Unit, University of Turku, Turku, Finland
| | - Albertine J Oldehinkel
- Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, the Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, the Netherlands
| | - Ginevra Biino
- Institute of Molecular Genetics, National Research Council of Italy, Pavia, Italy
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
| | - Helena Schmidt
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | | | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
| | | | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Norihiro Kato
- National Center for Global Health and Medicine, Tokyo, 1628655, Japan
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Giorgia Girotto
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada Di Fiume 447, 34149, Trieste, Italy
| | - Carsten A Böger
- Dept of Nephrology, University Hospital Regensburg, Regensburg, Germany
- Department of Nephrology, , Traunstein Hospital, Diabetology, RheumatologyTraunstein, Germany
- KfH Kidney Center Traunstein, Traunstein, Germany
| | - Bettina Jung
- Dept of Nephrology, University Hospital Regensburg, Regensburg, Germany
- Department of Nephrology, , Traunstein Hospital, Diabetology, RheumatologyTraunstein, Germany
- KfH Kidney Center Traunstein, Traunstein, Germany
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Philip L De Jager
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Neurology, Center for Translational and Systems Neuroimmunology, Columbia University Medical Center, New York, NY, USA
| | - Xiangfeng Lu
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Vasiliki Mamakou
- Medical School, National and Kapodistrian University Athens, 75 M. Assias Street, 115 27, Athens, Greece
- Dromokaiteio Psychiatric Hospital, 124 61, Athens, Greece
| | - Morris Brown
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovations (Formerly LABioMed) at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Marina Ciullo
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso" - CNR, Naples, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Jost B Jonas
- Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 17 Hougou Lane, Chong Wen Men, Beijing, 100005, China
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Kutzerufer 1, 68167, Mannheim, Germany
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
- Privatpraxis Prof Jonas Und Dr Panda-Jonas, Heidelberg, Germany
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Tukholmankatu 8, 00014, Helsinki, Finland
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Teresa Tusié-Luna
- Unidad de Biología Molecular Y Medicina Genómica, Instituto de Investigaciones Biomédicas UNAM/ Instituto Nacional de Ciencias Médicas Y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Carlos A Aguilar-Salinas
- Departamento de Endocrinología Y Metabolismo, Instituto Nacional de Ciencias Médicas Y Nutrición Salvador Zubirán, 14080, Mexico, Mexico
| | - Linda S Adair
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
- Carolina Population Center, University of North Carolina, Chapel Hill, NC, 27516, USA
| | - Sonny Augustin Bechayda
- USC-Office of Population Studies Foundation, University of San Carlos, 6000, Cebu City, Philippines
- Department of Anthropology, Sociology, and History, University of San Carlos, 6000, Cebu City, Philippines
| | - H Janaka de Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, 11010, Sri Lanka
| | - Ananda R Wickremasinghe
- Department of Public Health, Faculty of Medicine, University of Kelaniya, Ragama, 11010, Sri Lanka
| | - Ronald M Krauss
- Children's Hospital Oakland Research Institute, Oakland, CA, 94609, USA
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei Zheng
- Vanderbilt Epidemiology Center, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, USA
| | - Anneke Iden Hollander
- Departments of Ophthalmology and Human Genetics, Radboud University Nijmegen Medical Center, Philips Van Leydenlaan 15, Nijmegen, 6525 EX, the Netherlands
| | - Dwaipayan Bharadwaj
- Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Ghaziabad, Uttar Pradesh, India
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore and Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Amanda E Nelson
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Yvonne M Golightly
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
- Injury Prevention Research Center, University of North Carolina, Chapel Hill, NC, USA
- Division of Physical Therapy, University of North Carolina, Chapel Hill, NC, USA
| | - James F Wilson
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, Scotland
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
| | - Brenda Penninx
- Amsterdam Public Health Research Institute, Amsterdam UMC, the Netherlands
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Hyung-Lae Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07804, Korea
| | - John Attia
- Hunter Medical Research Institute, Newcastle, Australia
- Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia
| | - Rodney J Scott
- Hunter Medical Research Institute, Newcastle, Australia
- Faculty of Health and Medicine, University of Newcastle, Callaghan, Australia
| | - D C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, USA
| | - Donna K Arnett
- Office of the Provost, University of South Carolina, Columbia, SC, USA
| | - Steven C Hunt
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, 84132, USA
| | - Mark Walker
- Institute of Cellular Medicine (Diabetes), The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Heikki A Koistinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Medicine, Helsinki University Hospital, University of Helsinki, Haartmaninkatu 4, P.O.Box 340, 00029, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Giriraj R Chandak
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
- JSS Academy of Higher Education and Research, Mysuru, India
| | - Josep M Mercader
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Maria C Costanzo
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dongkeun Jang
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Noël P Burtt
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Lorena Orozco
- Laboratorio de Inmunogenómica Y Enfermedades Metabólicas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - EShyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, 117549, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, 119228, Singapore
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, 117549, Singapore
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC, 20052, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, 33520, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
| | - Nish Chaturvedi
- MRC Unit for Lifelong Health and Ageing at UCL, 1-19 Torrington Place, London, WC1E 7HB, UK
| | | | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Dermot F Reilly
- Genetics, Merck Sharp & Dohme Corp., Kenilworth, NJ, 07033, USA
| | - Amy Jayne McKnight
- Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland
| | - Frank Kee
- Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Essen, Germany
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Colin N A Palmer
- Population Health and Genomics, University of Dundee, Ninwells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, Scotland
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, Scotland
| | - Eleanor Simonsick
- Intramural Research Program, National Institute On Aging, 3001 S. Hanover St., Baltimore, MD, 21225, USA
| | - Cornelia M van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, 100730, China
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jia Qu
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Haretsugu Hishigaki
- Biomedical Technology Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd, Tokushima, Japan
| | - Xu Lin
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Winfried März
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Synlab Academy, SYNLAB Holding Deutschland GmbH, Mannheim and Augsburg, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Vilmundur Gudnason
- Icelandic Heart Association, 201, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Jean-Claude Tardif
- Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, PQ, H1T1C8, Canada
| | - Guillaume Lettre
- Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, PQ, H1T1C8, Canada
| | - Leen M 't Hart
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, 2333ZA, The Netherlands
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, 2333ZA, The Netherlands
- Department of Epidemiology and Data Science, Amsterdam UMC, Amsterdam, 1081HV, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam Cardiovascular Sciences, Amsterdam, 1081HV, the Netherlands
| | - Petra J M Elders
- Department of General Practice, Amsterdam UMC, Amsterdam, 1081HV, the Netherlands
- Amsterdam Public Health Research Institute, Health Behaviours and Chronic Diseases, Amsterdam, 1081HV, the Netherlands
| | - Scott M Damrauer
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Meena Kumari
- Institute of Social and Economic Research, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Mika Kivimaki
- Department of Epidemiology and Public Health, University College London, 1-19 Torrington Place, London, WC1E 6BT, UK
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Ruth J F Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Esteban J Parra
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Miguel Cruz
- Unidad de Investigacion Medica en Bioquimica, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, 98101, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Ivan Brandslund
- Department of Clinical Biochemistry, Lillebaelt Hospital, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100, Bolzano, Italy
| | - Charles N Rotimi
- Center for Research On Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Room 1025, Bethesda, MD, 20892, USA
| | - Kaare Christensen
- Danish Aging Research Center, University of Southern Denmark, Odense C, Denmark
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Tukholmankatu 8, 00014, Helsinki, Finland
- Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elisabeth Widén
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Tukholmankatu 8, 00014, Helsinki, Finland
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Struan F A Grant
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Lambertus A L M Kiemeney
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Jacqueline de Graaf
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany
- LIFE Research Centre for Civilization Diseases, University of Leipzig, Philipp-Rosenthal-Straße 27, 04103, Leipzig, Germany
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics, Medical University of Innsbruck, Innsbruck, Austria
- German Chronic Kidney Disease Study, Berlin, Germany
| | - Dongfeng Gu
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, and University Heart Center Lübeck, Lübeck, Germany
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik Für Herz- Und Kreislauferkrankungen, Technische Universität München, Munich, Germany
- Deutsches Zentrum Für Herz-Kreislauf-Forschung (DZHK) E.V., Partner Site Munich Heart Alliance, Munich, Germany
| | - Paul W Franks
- Lund University Diabetes Center, Lund University, Malmö, Sweden
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Amit V Khera
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Verve Therapeutics, Cambridge, MA, USA
| | - Minna Männikkö
- Northern Finland Birth Cohorts, Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter of Oulu, University of Oulu, Oulu, Finland
| | - Zoltan Kutalik
- University Center for Primary Care and Public Health, University of Lausanne, Rte de Berne 113, 1010, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Cucca Francesco
- Institute for Genetic and Biomedical Research, Italian National Council of Research (IRGB CNR), Cagliari, Italy
- University of Sassari, Sassari, Italy
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Ko Willems van Dijk
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Hugh Watkins
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - David P Strachan
- Population Health Research Institute, St George's, University of London, London, SW17 0RE, UK
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Sever
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Neil Poulter
- School of Public Health, Imperial College London, London, W12 7RH, UK
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, Taiwan
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovations (Formerly LABioMed) at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Thomas M Dantoft
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Fredrik Karpe
- OCDEM, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Matt J Neville
- OCDEM, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Ching-Yu Cheng
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 168751, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Tien-Yin Wong
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 168751, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Hengtong Li
- Data Science, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 168751, Singapore
| | - Charumathi Sabanayagam
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 168751, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Deutsches Zentrum Für Herz-Kreislauf-Forschung (DZHK) E.V., Partner Site Munich Heart Alliance, Munich, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Andrew T Hattersley
- Medical School, University of Exeter, University of Exeter, Exeter, EX2 5DW, UK
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam UMC, the Netherlands
| | - Allegonda H M Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam UMC, the Netherlands
| | - LAdrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Ave, Boston, MA, 02118, USA
- Framingham Heart Study, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
- Carolina Population Center, University of North Carolina, Chapel Hill, NC, 27516, USA
| | - Wei Huang
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China
| | - Young Jin Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Chungcheongbuk-Do, South Korea
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin, Berlin, Germany
| | - Eleftheria Zeggini
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Technical University of Munich (TUM) and Klinikum Rechts Der Isar, TUM School of Medicine, Munich, Germany
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, 94305, USA
| | - Goncalo Abecasis
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - John C Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, London, W2 1PG, UK
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, UB1 3HW, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- Imperial College Healthcare NHS Trust, Imperial College London, London, W12 0HS, UK
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, UB1 3HW, UK
- School of Public Health, Imperial College London, London, W12 7RH, UK
- Imperial College Healthcare NHS Trust, London, W12 0HS, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, W2 1PG, UK
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, School of Public Health, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, School of Public Health, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Martha Daviglus
- Institute for Minority Health Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - John B Whitfield
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Shahid Abbas
- Center for Non-Communicable Diseases, Karachi, Sindh, Pakistan
- Faisalabad Institute of Cardiology, Faislabad, Pakistan
| | - Danish Saleheen
- Center for Non-Communicable Diseases, Karachi, Sindh, Pakistan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Robin G Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
- Big Data Institute, University of Oxford, Oxford, OX3 7LF, UK
| | - Michael V Holmes
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| | - Corri Black
- Aberdeen Centre for Health Data Science,1:042 Polwarth Building School of Medicine, Medical Science and Nutrition University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Blair H Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Aris Baras
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Anne E Justice
- Department of Population Health Sciences, Geisinger Health, Danville, PA, 17822, USA
| | - Julie E Buring
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Charles Kooperberg
- Fred Hutchinson Cancer Center, Division of Public Health Sciences, Seattle, WA, 9810, USA
| | - Gen Tamiya
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - David A van Heel
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Richard C Trembath
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gail P Jarvik
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington, Washington, USA
| | - Bahram Namjou
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - M Geoffrey Hayes
- Center for Genetic Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60618, USA
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60618, USA
- Department of Anthropology, Northwestern University, Evanston, IL, 60208, USA
| | - Marylyn D Ritchie
- Department of Genetics, Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Public Health and Nursing, HUNT Research Centre, NTNU, Norwegian University of Science and Technology, 7600, Levanger, Norway
- Department of Research, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Bjørn Olav Åsvold
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Public Health and Nursing, HUNT Research Centre, NTNU, Norwegian University of Science and Technology, 7600, Levanger, Norway
- Department of Endocrinology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Chungcheongbuk-Do, South Korea
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Inc. Sturlugata 8, Reykjavik, 102, Iceland
- Faculty of Medicine, University of Iceland, Sæmundargötu 2, Reykjavik, 102, Iceland
| | - Kari Stefansson
- deCODE Genetics/Amgen, Inc. Sturlugata 8, Reykjavik, 102, Iceland
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, UK
| | - Jifeng Zhang
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - YEugene Chen
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yuk-Lam Ho
- VA Boston Healthcare System, Boston, MA, USA
| | - Julie A Lynch
- VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT, USA
- University of Massachusetts, Boston, MA, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Philip S Tsao
- VA Palo Alto Health Care Systems, Palo Alto, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kelly Cho
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital, Boston, MA, USA
| | - Christopher J O'Donnell
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital, Boston, MA, USA
| | - John M Gaziano
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital, Boston, MA, USA
| | - Peter W F Wilson
- Atlanta VA Health Care System, Decatur, GA, USA
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
| | - Joel N Hirschhorn
- Boston Children's Hospital, EndocrinologyBoston, MA, 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, MA, USA
| | - Sekar Kathiresan
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, GA, USA
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, UK
| | - Michael Boehnke
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Christopher D Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Pradeep Natarajan
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Panos Deloukas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Themistocles L Assimes
- VA Palo Alto Health Care Systems, Palo Alto, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Ave, Boston, MA, 02118, USA.
| |
Collapse
|
32
|
Li Z, Li X, Zhou H, Gaynor SM, Selvaraj MS, Arapoglou T, Quick C, Liu Y, Chen H, Sun R, Dey R, Arnett DK, Auer PL, Bielak LF, Bis JC, Blackwell TW, Blangero J, Boerwinkle E, Bowden DW, Brody JA, Cade BE, Conomos MP, Correa A, Cupples LA, Curran JE, de Vries PS, Duggirala R, Franceschini N, Freedman BI, Göring HHH, Guo X, Kalyani RR, Kooperberg C, Kral BG, Lange LA, Lin BM, Manichaikul A, Manning AK, Martin LW, Mathias RA, Meigs JB, Mitchell BD, Montasser ME, Morrison AC, Naseri T, O'Connell JR, Palmer ND, Peyser PA, Psaty BM, Raffield LM, Redline S, Reiner AP, Reupena MS, Rice KM, Rich SS, Smith JA, Taylor KD, Taub MA, Vasan RS, Weeks DE, Wilson JG, Yanek LR, Zhao W, Rotter JI, Willer CJ, Natarajan P, Peloso GM, Lin X. A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies. Nat Methods 2022; 19:1599-1611. [PMID: 36303018 PMCID: PMC10008172 DOI: 10.1038/s41592-022-01640-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 09/06/2022] [Indexed: 02/07/2023]
Abstract
Large-scale whole-genome sequencing studies have enabled analysis of noncoding rare-variant (RV) associations with complex human diseases and traits. Variant-set analysis is a powerful approach to study RV association. However, existing methods have limited ability in analyzing the noncoding genome. We propose a computationally efficient and robust noncoding RV association detection framework, STAARpipeline, to automatically annotate a whole-genome sequencing study and perform flexible noncoding RV association analysis, including gene-centric analysis and fixed window-based and dynamic window-based non-gene-centric analysis by incorporating variant functional annotations. In gene-centric analysis, STAARpipeline uses STAAR to group noncoding variants based on functional categories of genes and incorporate multiple functional annotations. In non-gene-centric analysis, STAARpipeline uses SCANG-STAAR to incorporate dynamic window sizes and multiple functional annotations. We apply STAARpipeline to identify noncoding RV sets associated with four lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several of them in an additional 9,123 TOPMed samples. We also analyze five non-lipid TOPMed traits.
Collapse
Affiliation(s)
- Zilin Li
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Xihao Li
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hufeng Zhou
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sheila M Gaynor
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Margaret Sunitha Selvaraj
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Theodore Arapoglou
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Corbin Quick
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yaowu Liu
- School of Statistics, Southwestern University of Finance and Economics, Chengdu, China
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ryan Sun
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rounak Dey
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Donna K Arnett
- Dean's Office, University of Kentucky, College of Public Health, Lexington, KY, USA
| | - Paul L Auer
- Division of Biostatistics, Institute for Health & Equity and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas W Blackwell
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Brian E Cade
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Matthew P Conomos
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Adolfo Correa
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University, Framingham, MA, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ravindranath Duggirala
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Barry I Freedman
- Department of Internal Medicine, Nephrology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Harald H H Göring
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Rita R Kalyani
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Brian G Kral
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bridget M Lin
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Alisa K Manning
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Metabolism Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA, USA
| | - Lisa W Martin
- Division in Cardiology, George Washington School of Medicine and Health Sciences, Washington, DC, USA
| | - Rasika A Mathias
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James B Meigs
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatrics Research and Education Clinical Center, Baltimore VA Medical Center, Baltimore, MD, USA
| | - May E Montasser
- Division of Endocrinology, Diabetes, and Nutrition, Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Take Naseri
- Ministry of Health, Government of Samoa, Apia, Samoa
| | - Jeffrey R O'Connell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Departments of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | | | - Kenneth M Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Margaret A Taub
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ramachandran S Vasan
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University, Framingham, MA, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Daniel E Weeks
- Department of Human Genetics and Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - James G Wilson
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Lisa R Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Cristen J Willer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Pradeep Natarajan
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University, Framingham, MA, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Statistics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
33
|
Pleiotropic Effects of APOB Variants on Lipid Profiles, Metabolic Syndrome, and the Risk of Diabetes Mellitus. Int J Mol Sci 2022; 23:ijms232314963. [PMID: 36499290 PMCID: PMC9735756 DOI: 10.3390/ijms232314963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Apolipoprotein B (ApoB) plays a crucial role in lipid and lipoprotein metabolism. The effects of APOB locus variants on lipid profiles, metabolic syndrome, and the risk of diabetes mellitus (DM) in Asian populations are unclear. We included 1478 Taiwan Biobank participants with whole-genome sequence (WGS) data and 115,088 TWB participants with Axiom genome-wide CHB array data and subjected them to genotype-phenotype analyses using APOB locus variants. Five APOB nonsynonymous mutations, including Asian-specific rs144467873 and rs13306194 variants, were selected from participants with the WGS data. Using a combination of regional association studies, a linkage disequilibrium map, and multivariate analysis, we revealed that the APOB locus variants rs144467873, rs13306194, and rs1367117 were independently associated with total, low-density lipoprotein (LDL), and non-high-density lipoprotein (non-HDL) cholesterol levels; rs1318006 was associated with HDL cholesterol levels; rs13306194 and rs35131127 were associated with serum triglyceride levels; rs144467873, rs13306194, rs56213756, and rs679899 were associated with remnant cholesterol levels; and rs144467873 and rs4665709 were associated with metabolic syndrome. Mendelian randomization (MR) analyses conducted using weighted genetic risk scores from three or two LDL-cholesterol-level-associated APOB variants revealed significant association with prevalent DM (p = 0.0029 and 8.2 × 10-5, respectively), which became insignificant after adjustment for LDL-C levels. In conclusion, these results indicate that common and rare APOB variants are independently associated with various lipid levels and metabolic syndrome in Taiwanese individuals. MR analyses supported APOB variants associated with the risk of DM through their associations with LDL cholesterol levels.
Collapse
|
34
|
Wen Y, Chen YQ, Konrad RJ. The Regulation of Triacylglycerol Metabolism and Lipoprotein Lipase Activity. Adv Biol (Weinh) 2022; 6:e2200093. [PMID: 35676229 DOI: 10.1002/adbi.202200093] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/03/2022] [Indexed: 01/28/2023]
Abstract
Triacylglycerol (TG) metabolism is tightly regulated to maintain a pool of TG within circulating lipoproteins that can be hydrolyzed in a tissue-specific manner by lipoprotein lipase (LPL) to enable the delivery of fatty acids to adipose or oxidative tissues as needed. Elevated serum TG concentrations, which result from a deficiency of LPL activity or, more commonly, an imbalance in the regulation of tissue-specific LPL activities, have been associated with an increased risk of atherosclerotic cardiovascular disease through multiple studies. Among the most critical LPL regulators are the angiopoietin-like (ANGPTL) proteins ANGPTL3, ANGPTL4, and ANGPTL8, and a number of different apolipoproteins including apolipoprotein A5 (ApoA5), apolipoprotein C2 (ApoC2), and apolipoprotein C3 (ApoC3). These ANGPTLs and apolipoproteins work together to orchestrate LPL activity and therefore play pivotal roles in TG partitioning, hydrolysis, and utilization. This review summarizes the mechanisms of action, epidemiological findings, and genetic data most relevant to these ANGPTLs and apolipoproteins. The interplay between these important regulators of TG metabolism in both fasted and fed states is highlighted with a holistic view toward understanding key concepts and interactions. Strategies for developing safe and effective therapeutics to reduce circulating TG by selectively targeting these ANGPTLs and apolipoproteins are also discussed.
Collapse
Affiliation(s)
- Yi Wen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Yan Q Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| |
Collapse
|
35
|
Kim K, Ginsberg HN, Choi SH. New, Novel Lipid-Lowering Agents for Reducing Cardiovascular Risk: Beyond Statins. Diabetes Metab J 2022; 46:517-532. [PMID: 35929170 PMCID: PMC9353557 DOI: 10.4093/dmj.2022.0198] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Statins are the cornerstone of the prevention and treatment of atherosclerotic cardiovascular disease (ASCVD). However, even under optimal statin therapy, a significant residual ASCVD risk remains. Therefore, there has been an unmet clinical need for novel lipid-lowering agents that can target low-density lipoprotein cholesterol (LDL-C) and other atherogenic particles. During the past decade, several drugs have been developed for the treatment of dyslipidemia. Inclisiran, a small interfering RNA that targets proprotein convertase subtilisin/kexin type 9 (PCSK9), shows comparable effects to that of PCSK9 monoclonal antibodies. Bempedoic acid, an ATP citrate lyase inhibitor, is a valuable treatment option for the patients with statin intolerance. Pemafibrate, the first selective peroxisome proliferator-activated receptor alpha modulator, showed a favorable benefit-risk balance in phase 2 trial, but the large clinical phase 3 trial (PROMINENT) was recently stopped for futility based on a late interim analysis. High dose icosapent ethyl, a modified eicosapentaenoic acid preparation, shows cardiovascular benefits. Evinacumab, an angiopoietin-like 3 (ANGPTL3) monoclonal antibody, reduces plasma LDL-C levels in patients with refractory hypercholesterolemia. Novel antisense oligonucleotides targeting apolipoprotein C3 (apoC3), ANGPTL3, and lipoprotein(a) have significantly attenuated the levels of their target molecules with beneficial effects on associated dyslipidemias. Apolipoprotein A1 (apoA1) is considered as a potential treatment to exploit the athero-protective effects of high-density lipoprotein cholesterol (HDL-C), but solid clinical evidence is necessary. In this review, we discuss the mode of action and clinical outcomes of these novel lipid-lowering agents beyond statins.
Collapse
Affiliation(s)
- Kyuho Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Henry N. Ginsberg
- Department of Preventive Medicine and Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY,
USA
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul,
Korea
| |
Collapse
|
36
|
Post-Transcriptional Effects of miRNAs on PCSK7 Expression and Function: miR-125a-5p, miR-143-3p, and miR-409-3p as Negative Regulators. Metabolites 2022; 12:metabo12070588. [PMID: 35888711 PMCID: PMC9323720 DOI: 10.3390/metabo12070588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022] Open
Abstract
The regulatory mechanism of PCSK7 gene is still unknown, although its encoded protein PC7 is the most ancient and highly conserved of all proprotein convertases and exhibits enzymatic and non-enzymatic functions in liver triglyceride regulation. Bioinformatics algorithms were used to predict regulatory microRNAs (miRNAs) of PCSK7 expression. This led to the identification of four miRNAs, namely miR-125a-5p, miR-143-3p, miR-409-3p, and miR-320a-3p, with potential binding sites on the 3′-untranslated region (3′-UTR) of human PCSK7 mRNA. The expression patterns of these miRNAs and PCSK7 mRNA were assessed in three different cell lines with quantitative polymerase chain reaction (qPCR), which revealed reciprocal expression patterns between the expression levels of the four selected miRNAs and PCSK7. Next, the interactions and effects of these miRNAs on PCSK7 expression levels were investigated via cell-based expression analysis, dual-luciferase assay, and Western blot analysis. The data revealed that PCSK7 mRNA levels decreased in cells transfected with vectors overexpressing miR-125a-5p, miR-143-3p, and miR-409-3p, but not miR-320a-3p. The dual-luciferase assay demonstrated that the above three miRNAs could directly interact with putative target sites in PCSK7 3′-UTR and regulate its expression, whereas miR-320-3p exhibited no interaction. Western blot analysis further revealed that the overexpression of miR-125a-5p in Huh7 cells inhibits the expression and ability of PC7 to cleave human transferrin receptor 1. Our results support a regulatory role of these miRNAs on PCSK7 expression and function and open the way to assess their roles in the regulation of PC7 activity in vivo in the development of hepatic steatosis.
Collapse
|
37
|
Ma J, Hao X, Nie X, Yang S, Zhou M, Wang D, Wang B, Cheng M, Ye Z, Xie Y, Wang C, Chen W. Longitudinal relationships of polycyclic aromatic hydrocarbons exposure and genetic susceptibility with blood lipid profiles. ENVIRONMENT INTERNATIONAL 2022; 164:107259. [PMID: 35500530 DOI: 10.1016/j.envint.2022.107259] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 03/22/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE We aim to analyze the effects of polycyclic aromatic hydrocarbons (PAHs) exposure and genetic predisposition on blood lipid through a longitudinal epidemiological study. METHODS We enrolled 4,356 observations who participated at baseline (n = 2,435) and 6-year follow-up (n = 1,921) from Wuhan-Zhuhai cohort. Ten urinary PAHs metabolites and blood lipid (i.e., total cholesterol [TC], triglycerides [TG], low-density lipoprotein cholesterol [LDL-C], and high-density lipoprotein cholesterol [HDL-C]) were measured at both baseline and follow-up. The polygenic risk scores (PRS) of blood lipid were constructed by the corresponding genome-wide association studies. Linear mixed models were fit to identify associations between urinary PAHs metabolites, blood lipid, and lipid-PRSs in the repeated-measure analysis. Besides, longitudinal relationships of blood lipid with urinary PAHs metabolites and respective lipid-PRSs were examined by using linear regression models. RESULTS Compared with subjects who had persistently low urinary total hydroxyphenanthrene (ΣOHPh), those with persistently high levels had an average increase of 0.137 mmol/l for TC and 0.129 mmol/l for LDL-C over 6 years. Each 1-unit increase of TC-, TG-, LDL-C-, and HDL-C-specific PRS were associated with an average increase of 0.438 mmol/l for TC, 0.264 mmol/l for TG, 0.198 mmol/l for LDL-C, and 0.043 mmol/l for HDL-C over 6 years, respectively. Compared with subjects who had low genetic risk and persistently low ΣOHPh, subjects with high LDL-specific PRS and persistently high ΣOHPh had an average increase of 0.652 mmol/l for LDL-C. CONCLUSIONS Our results suggest that high-level ΣOHPh exposure is associated with an average increase of LDL-C over 6 years, and those relationships can be aggravated by a higher LDL-C-genetic risk. No significant relationships were observed between other PAHs metabolites (including hydroxynaphthalene, hydroxyfluorene, and hydroxypyrene) and blood lipid changes over 6 years. Our findings emphasize the importance of preventing PAHs exposure, particularly among those with a higher genetic predisposition of hyperlipidemia.
Collapse
Affiliation(s)
- Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xingjie Hao
- Department of Epidemiology & Statistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiuquan Nie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Man Cheng
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yujia Xie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chaolong Wang
- Department of Epidemiology & Statistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
38
|
Choudhury A, Brandenburg JT, Chikowore T, Sengupta D, Boua PR, Crowther NJ, Agongo G, Asiki G, Gómez-Olivé FX, Kisiangani I, Maimela E, Masemola-Maphutha M, Micklesfield LK, Nonterah EA, Norris SA, Sorgho H, Tinto H, Tollman S, Graham SE, Willer CJ, Hazelhurst S, Ramsay M. Meta-analysis of sub-Saharan African studies provides insights into genetic architecture of lipid traits. Nat Commun 2022; 13:2578. [PMID: 35546142 PMCID: PMC9095599 DOI: 10.1038/s41467-022-30098-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 04/18/2022] [Indexed: 12/30/2022] Open
Abstract
Genetic associations for lipid traits have identified hundreds of variants with clear differences across European, Asian and African studies. Based on a sub-Saharan-African GWAS for lipid traits in the population cross-sectional AWI-Gen cohort (N = 10,603) we report a novel LDL-C association in the GATB region (P-value=1.56 × 10−8). Meta-analysis with four other African cohorts (N = 23,718) provides supporting evidence for the LDL-C association with the GATB/FHIP1A region and identifies a novel triglyceride association signal close to the FHIT gene (P-value =2.66 × 10−8). Our data enable fine-mapping of several well-known lipid-trait loci including LDLR, PMFBP1 and LPA. The transferability of signals detected in two large global studies (GLGC and PAGE) consistently improves with an increase in the size of the African replication cohort. Polygenic risk score analysis shows increased predictive accuracy for LDL-C levels with the narrowing of genetic distance between the discovery dataset and our cohort. Novel discovery is enhanced with the inclusion of African data. Genetic associations and polygenic scores for lipid traits have low transferability to African individuals. Here, the authors perform a large sub-Sarahan African lipid GWAS and find that larger datasets and better global representation in discovery GWAS help to bridge this gap.
Collapse
Affiliation(s)
- Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Jean-Tristan Brandenburg
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tinashe Chikowore
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,South African Medical Research Council/University of the Witwatersrand Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Dhriti Sengupta
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Palwende Romuald Boua
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santè, Nanoro, Burkina Faso
| | - Nigel J Crowther
- Department of Chemical Pathology, National Health Laboratory Service, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Godfred Agongo
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana.,C.K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| | - Gershim Asiki
- African Population and Health Research Center, Nairobi, Kenya
| | - F Xavier Gómez-Olivé
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Eric Maimela
- Department of Public Health, School of Health Care Sciences, Faculty of Health Sciences, University of Limpopo, Polokwane, South Africa
| | - Matshane Masemola-Maphutha
- Department of Pathology and Medical Sciences, School of Health Care Sciences, Faculty of Health Sciences, University of Limpopo, Polokwane, South Africa
| | - Lisa K Micklesfield
- South African Medical Research Council/University of the Witwatersrand Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Shane A Norris
- South African Medical Research Council/University of the Witwatersrand Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Hermann Sorgho
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santè, Nanoro, Burkina Faso
| | - Halidou Tinto
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santè, Nanoro, Burkina Faso
| | - Stephen Tollman
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sarah E Graham
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48019, USA
| | | | | | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
39
|
An Amish founder population reveals rare-population genetic determinants of the human lipidome. Commun Biol 2022; 5:334. [PMID: 35393526 PMCID: PMC8989972 DOI: 10.1038/s42003-022-03291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/17/2022] [Indexed: 12/02/2022] Open
Abstract
Identifying the genetic determinants of inter-individual variation in lipid species (lipidome) may provide deeper understanding and additional insight into the mechanistic effect of complex lipidomic pathways in CVD risk and progression beyond simple traditional lipids. Previous studies have been largely population based and thus only powered to discover associations with common genetic variants. Founder populations represent a powerful resource to accelerate discovery of previously unknown biology associated with rare population alleles that have risen to higher frequency due to genetic drift. We performed a genome-wide association scan of 355 lipid species in 650 individuals from the Amish founder population including 127 lipid species not previously tested. To the best of our knowledge, we report for the first time the lipid species associated with two rare-population but Amish-enriched lipid variants: APOB_rs5742904 and APOC3_rs76353203. We also identified novel associations for 3 rare-population Amish-enriched loci with several sphingolipids and with proposed potential functional/causal variant in each locus including GLTPD2_rs536055318, CERS5_rs771033566, and AKNA_rs531892793. We replicated 7 previously known common loci including novel associations with two sterols: androstenediol with UGT locus and estriol with SLC22A8/A24 locus. Our results show the double power of founder populations and detailed lipidome to discover novel trait-associated variants. A GWAS of 355 lipid species in the Old Order Amish founder population reveals associations between Amish-enriched loci and several sphingolipids.
Collapse
|
40
|
Balasubramaniam D, Schroeder O, Russell AM, Fitchett JR, Austin AK, Beyer TP, Chen YQ, Day JW, Ehsani M, Heng AR, Zhen EY, Davies J, Glaesner W, Jones BE, Siegel RW, Qian YW, Konrad RJ. An anti-ANGPTL3/8 antibody decreases circulating triglycerides by binding to a LPL-inhibitory leucine zipper-like motif. J Lipid Res 2022; 63:100198. [PMID: 35307397 PMCID: PMC9036128 DOI: 10.1016/j.jlr.2022.100198] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 12/20/2022] Open
Abstract
Triglycerides (TG) are required for fatty acid transport and storage and are essential for human health. Angiopoietin-like-protein 8 (ANGPTL8) has previously been shown to form a complex with ANGPTL3 that increases circulating TG by potently inhibiting LPL. We also recently showed that the TG-lowering apolipoprotein A5 (ApoA5) decreases TG levels by suppressing ANGPTL3/8-mediated LPL inhibition. To understand how LPL binds ANGPTL3/8 and ApoA5 blocks this interaction, we used hydrogen-deuterium exchange mass-spectrometry and molecular modeling to map binding sites of LPL and ApoA5 on ANGPTL3/8. Remarkably, we found that LPL and ApoA5 both bound a unique ANGPTL3/8 epitope consisting of N-terminal regions of ANGPTL3 and ANGPTL8 that are unmasked upon formation of the ANGPTL3/8 complex. We further used ANGPTL3/8 as an immunogen to develop an antibody targeting this same epitope. After refocusing on antibodies that bound ANGPTL3/8, as opposed to ANGPTL3 or ANGPTL8 alone, we utilized bio-layer interferometry to select an antibody exhibiting high-affinity binding to the desired epitope. We revealed an ANGPTL3/8 leucine zipper-like motif within the anti-ANGPTL3/8 epitope, the LPL-inhibitory region, and the ApoA5-interacting region, suggesting the mechanism by which ApoA5 lowers TG is via competition with LPL for the same ANGPTL3/8-binding site. Supporting this hypothesis, we demonstrate that the anti-ANGPTL3/8 antibody potently blocked ANGPTL3/8-mediated LPL inhibition in vitro and dramatically lowered TG levels in vivo. Together, these data show that an anti-ANGPTL3/8 antibody targeting the same leucine zipper-containing epitope recognized by LPL and ApoA5 markedly decreases TG by suppressing ANGPTL3/8-mediated LPL inhibition.
Collapse
Affiliation(s)
| | - Oliver Schroeder
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Anna M Russell
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Aaron K Austin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Thomas P Beyer
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Yan Q Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jonathan W Day
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Mariam Ehsani
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Aik Roy Heng
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Eugene Y Zhen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Julian Davies
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Wolfgang Glaesner
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Bryan E Jones
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Robert W Siegel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Yue-Wei Qian
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA.
| |
Collapse
|
41
|
Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Ferguson JF, Generoso G, Ho JE, Kalani R, Khan SS, Kissela BM, Knutson KL, Levine DA, Lewis TT, Liu J, Loop MS, Ma J, Mussolino ME, Navaneethan SD, Perak AM, Poudel R, Rezk-Hanna M, Roth GA, Schroeder EB, Shah SH, Thacker EL, VanWagner LB, Virani SS, Voecks JH, Wang NY, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation 2022; 145:e153-e639. [PMID: 35078371 DOI: 10.1161/cir.0000000000001052] [Citation(s) in RCA: 2700] [Impact Index Per Article: 1350.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2022 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population and an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, and the global burden of cardiovascular disease and healthy life expectancy. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
42
|
Zhang C, Hansen MEB, Tishkoff SA. Advances in integrative African genomics. Trends Genet 2022; 38:152-168. [PMID: 34740451 PMCID: PMC8752515 DOI: 10.1016/j.tig.2021.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022]
Abstract
There has been a rapid increase in human genome sequencing in the past two decades, resulting in the identification of millions of previously unknown genetic variants. However, African populations are under-represented in sequencing efforts. Additional sequencing from diverse African populations and the construction of African-specific reference genomes is needed to better characterize the full spectrum of variation in humans. However, sequencing alone is insufficient to address the molecular and cellular mechanisms underlying variable phenotypes and disease risks. Determining functional consequences of genetic variation using multi-omics approaches is a fundamental post-genomic challenge. We discuss approaches to close the knowledge gaps about African genomic diversity and review advances in African integrative genomic studies and their implications for precision medicine.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew E B Hansen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah A Tishkoff
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
43
|
Gudjonsson A, Gudmundsdottir V, Axelsson GT, Gudmundsson EF, Jonsson BG, Launer LJ, Lamb JR, Jennings LL, Aspelund T, Emilsson V, Gudnason V. A genome-wide association study of serum proteins reveals shared loci with common diseases. Nat Commun 2022; 13:480. [PMID: 35078996 PMCID: PMC8789779 DOI: 10.1038/s41467-021-27850-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023] Open
Abstract
With the growing number of genetic association studies, the genotype-phenotype atlas has become increasingly more complex, yet the functional consequences of most disease associated alleles is not understood. The measurement of protein level variation in solid tissues and biofluids integrated with genetic variants offers a path to deeper functional insights. Here we present a large-scale proteogenomic study in 5,368 individuals, revealing 4,035 independent associations between genetic variants and 2,091 serum proteins, of which 36% are previously unreported. The majority of both cis- and trans-acting genetic signals are unique for a single protein, although our results also highlight numerous highly pleiotropic genetic effects on protein levels and demonstrate that a protein's genetic association profile reflects certain characteristics of the protein, including its location in protein networks, tissue specificity and intolerance to loss of function mutations. Integrating protein measurements with deep phenotyping of the cohort, we observe substantial enrichment of phenotype associations for serum proteins regulated by established GWAS loci, and offer new insights into the interplay between genetics, serum protein levels and complex disease.
Collapse
Affiliation(s)
| | - Valborg Gudmundsdottir
- Icelandic Heart Association, Holtasmari 1, 201, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Gisli T Axelsson
- Icelandic Heart Association, Holtasmari 1, 201, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | | | | | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Bethesda, MD, 20892-9205, USA
| | - John R Lamb
- GNF Novartis, 10675 John Jay Hopkins Drive, San Diego, CA, 92121, USA
| | - Lori L Jennings
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Thor Aspelund
- Icelandic Heart Association, Holtasmari 1, 201, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Valur Emilsson
- Icelandic Heart Association, Holtasmari 1, 201, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Vilmundur Gudnason
- Icelandic Heart Association, Holtasmari 1, 201, Kopavogur, Iceland.
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland.
| |
Collapse
|
44
|
Emilsson V, Gudmundsdottir V, Gudjonsson A, Jonmundsson T, Jonsson BG, Karim MA, Ilkov M, Staley JR, Gudmundsson EF, Launer LJ, Lindeman JH, Morton NM, Aspelund T, Lamb JR, Jennings LL, Gudnason V. Coding and regulatory variants are associated with serum protein levels and disease. Nat Commun 2022; 13:481. [PMID: 35079000 PMCID: PMC8789809 DOI: 10.1038/s41467-022-28081-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 01/07/2022] [Indexed: 12/20/2022] Open
Abstract
Circulating proteins can be used to diagnose and predict disease-related outcomes. A deep serum proteome survey recently revealed close associations between serum protein networks and common disease. In the current study, 54,469 low-frequency and common exome-array variants were compared to 4782 protein measurements in the serum of 5343 individuals from the AGES Reykjavik cohort. This analysis identifies a large number of serum proteins with genetic signatures overlapping those of many diseases. More specifically, using a study-wide significance threshold, we find that 2021 independent exome array variants are associated with serum levels of 1942 proteins. These variants reside in genetic loci shared by hundreds of complex disease traits, highlighting serum proteins' emerging role as biomarkers and potential causative agents of a wide range of diseases.
Collapse
Affiliation(s)
- Valur Emilsson
- Icelandic Heart Association, Holtasmari 1, IS-201 Kopavogur, Kopavogur, Iceland.
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Reykjavík, Iceland.
| | | | | | | | | | - Mohd A Karim
- Wellcome Trust Sanger Institute, Welcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Marjan Ilkov
- Icelandic Heart Association, Holtasmari 1, IS-201 Kopavogur, Kopavogur, Iceland
| | - James R Staley
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Elias F Gudmundsson
- Icelandic Heart Association, Holtasmari 1, IS-201 Kopavogur, Kopavogur, Iceland
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Bethesda, MD, 20892-9205, USA
| | - Jan H Lindeman
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Nicholas M Morton
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Thor Aspelund
- Icelandic Heart Association, Holtasmari 1, IS-201 Kopavogur, Kopavogur, Iceland
| | - John R Lamb
- GNF Novartis, 10675 John Jay Hopkins Drive, San Diego, CA, 92121, USA
| | - Lori L Jennings
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, 02139, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Holtasmari 1, IS-201 Kopavogur, Kopavogur, Iceland.
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Reykjavík, Iceland.
| |
Collapse
|
45
|
Hindy G, Dornbos P, Chaffin MD, Liu DJ, Wang M, Selvaraj MS, Zhang D, Park J, Aguilar-Salinas CA, Antonacci-Fulton L, Ardissino D, Arnett DK, Aslibekyan S, Atzmon G, Ballantyne CM, Barajas-Olmos F, Barzilai N, Becker LC, Bielak LF, Bis JC, Blangero J, Boerwinkle E, Bonnycastle LL, Bottinger E, Bowden DW, Bown MJ, Brody JA, Broome JG, Burtt NP, Cade BE, Centeno-Cruz F, Chan E, Chang YC, Chen YDI, Cheng CY, Choi WJ, Chowdhury R, Contreras-Cubas C, Córdova EJ, Correa A, Cupples LA, Curran JE, Danesh J, de Vries PS, DeFronzo RA, Doddapaneni H, Duggirala R, Dutcher SK, Ellinor PT, Emery LS, Florez JC, Fornage M, Freedman BI, Fuster V, Garay-Sevilla ME, García-Ortiz H, Germer S, Gibbs RA, Gieger C, Glaser B, Gonzalez C, Gonzalez-Villalpando ME, Graff M, Graham SE, Grarup N, Groop LC, Guo X, Gupta N, Han S, Hanis CL, Hansen T, He J, Heard-Costa NL, Hung YJ, Hwang MY, Irvin MR, Islas-Andrade S, Jarvik GP, Kang HM, Kardia SLR, Kelly T, Kenny EE, Khan AT, Kim BJ, Kim RW, Kim YJ, Koistinen HA, Kooperberg C, Kuusisto J, Kwak SH, Laakso M, Lange LA, Lee J, Lee J, Lee S, Lehman DM, Lemaitre RN, Linneberg A, Liu J, Loos RJF, Lubitz SA, Lyssenko V, Ma RCW, Martin LW, Martínez-Hernández A, Mathias RA, McGarvey ST, McPherson R, Meigs JB, Meitinger T, Melander O, Mendoza-Caamal E, Metcalf GA, Mi X, Mohlke KL, Montasser ME, Moon JY, Moreno-Macías H, Morrison AC, Muzny DM, Nelson SC, Nilsson PM, O'Connell JR, Orho-Melander M, Orozco L, Palmer CNA, Palmer ND, Park CJ, Park KS, Pedersen O, Peralta JM, Peyser PA, Post WS, Preuss M, Psaty BM, Qi Q, Rao DC, Redline S, Reiner AP, Revilla-Monsalve C, Rich SS, Samani N, Schunkert H, Schurmann C, Seo D, Seo JS, Sim X, Sladek R, Small KS, So WY, Stilp AM, Tai ES, Tam CHT, Taylor KD, Teo YY, Thameem F, Tomlinson B, Tsai MY, Tuomi T, Tuomilehto J, Tusié-Luna T, Udler MS, van Dam RM, Vasan RS, Viaud Martinez KA, Wang FF, Wang X, Watkins H, Weeks DE, Wilson JG, Witte DR, Wong TY, Yanek LR, Kathiresan S, Rader DJ, Rotter JI, Boehnke M, McCarthy MI, Willer CJ, Natarajan P, Flannick JA, Khera AV, Peloso GM. Rare coding variants in 35 genes associate with circulating lipid levels-A multi-ancestry analysis of 170,000 exomes. Am J Hum Genet 2022; 109:81-96. [PMID: 34932938 PMCID: PMC8764201 DOI: 10.1016/j.ajhg.2021.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/21/2021] [Indexed: 01/14/2023] Open
Abstract
Large-scale gene sequencing studies for complex traits have the potential to identify causal genes with therapeutic implications. We performed gene-based association testing of blood lipid levels with rare (minor allele frequency < 1%) predicted damaging coding variation by using sequence data from >170,000 individuals from multiple ancestries: 97,493 European, 30,025 South Asian, 16,507 African, 16,440 Hispanic/Latino, 10,420 East Asian, and 1,182 Samoan. We identified 35 genes associated with circulating lipid levels; some of these genes have not been previously associated with lipid levels when using rare coding variation from population-based samples. We prioritize 32 genes in array-based genome-wide association study (GWAS) loci based on aggregations of rare coding variants; three (EVI5, SH2B3, and PLIN1) had no prior association of rare coding variants with lipid levels. Most of our associated genes showed evidence of association among multiple ancestries. Finally, we observed an enrichment of gene-based associations for low-density lipoprotein cholesterol drug target genes and for genes closest to GWAS index single-nucleotide polymorphisms (SNPs). Our results demonstrate that gene-based associations can be beneficial for drug target development and provide evidence that the gene closest to the array-based GWAS index SNP is often the functional gene for blood lipid levels.
Collapse
Affiliation(s)
- George Hindy
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Clinical Sciences, Lund University, Malmö, Sweden; Department of Population Medicine, Qatar University College of Medicine, QU Health, Doha, Qatar
| | - Peter Dornbos
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mark D Chaffin
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dajiang J Liu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Minxian Wang
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Margaret Sunitha Selvaraj
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David Zhang
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Lucinda Antonacci-Fulton
- Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA; The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Diego Ardissino
- ASTC: Associazione per lo Studio Della Trombosi in Cardiologia, Pavia, Italy; Azienda Ospedaliero-Universitaria di Parma, Parma, Italy; Universitˆ, degli Studi di Parma, Parma, Italy
| | - Donna K Arnett
- Dean's Office, College of Public Health, University of Kentucky, Lexington, KY 40536, USA
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Gil Atzmon
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; University of Haifa, Faculty of Natural Science, Haifa, Israel
| | - Christie M Ballantyne
- Houston Methodist Debakey Heart and Vascular Center, Houston, TX 77030, USA; Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Nir Barzilai
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lewis C Becker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 49109, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lori L Bonnycastle
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erwin Bottinger
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Digital Health Center, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Matthew J Bown
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Jai G Broome
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Noël P Burtt
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - Brian E Cade
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | - Edmund Chan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Yi-Cheng Chang
- Institute of Biomedical Sciences, Academia Sinica, Taiwan
| | - Yii-Der I Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Ching-Yu Cheng
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore; Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Won Jung Choi
- Psomagen, Inc. (formerly Macrogen USA), 1330 Piccard Drive Ste 103, Rockville, MD 20850, USA
| | - Rajiv Chowdhury
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; Centre for Non-Communicable Disease Research, Bangladesh
| | | | | | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA; NHLBI Framingham Heart Study, Framingham, MA 01702, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | - John Danesh
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; The National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ralph A DeFronzo
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ravindranath Duggirala
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA; The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Patrick T Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Leslie S Emery
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Jose C Florez
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Diabetes Research Center (Diabetes Unit), Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 770030, USA
| | - Barry I Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Valentin Fuster
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Ma Eugenia Garay-Sevilla
- Department of Medical Science, Division of Health Science, University of Guanajuato, Guanajuanto, Mexico
| | | | | | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Clicerio Gonzalez
- Unidad de Diabetes y Riesgo Cardiovascular, Instituto Nacional de Salud Pœblica, Cuernavaca, Morelos, Mexico
| | | | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Sarah E Graham
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leif C Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden; Finnish Institute for Molecular Genetics, University of Helsinki, Helsinki, Finland
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Namrata Gupta
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Sohee Han
- Division of Genome Science, Department of Precision Medicine, Chungcheongbuk-do, Republic of Korea
| | - Craig L Hanis
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA; Tulane University Translational Science Institute, New Orleans, LA 70112, USA
| | - Nancy L Heard-Costa
- NHLBI Framingham Heart Study, Framingham, MA 01702, USA; Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Yi-Jen Hung
- Division of Endocrine and Metabolism, Tri-Service General Hospital Songshan Branch, Taipei, Taiwan
| | - Mi Yeong Hwang
- Division of Genome Science, Department of Precision Medicine, Chungcheongbuk-do, Republic of Korea
| | - Marguerite R Irvin
- Department of Epidemiology, School of Public Health, UAB, Birmingham, AL 35294, USA
| | - Sergio Islas-Andrade
- Dirección de Investigación, Hospital General de México "Dr. Eduardo Liceaga," Secretaría de Salud, Mexico City, Mexico
| | - Gail P Jarvik
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Hyun Min Kang
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 49109, USA
| | - Tanika Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Eimear E Kenny
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alyna T Khan
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, Chungcheongbuk-do, Republic of Korea
| | - Ryan W Kim
- Psomagen, Inc. (formerly Macrogen USA), 1330 Piccard Drive Ste 103, Rockville, MD 20850, USA
| | - Young Jin Kim
- Division of Genome Science, Department of Precision Medicine, Chungcheongbuk-do, Republic of Korea
| | - Heikki A Koistinen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland; University of Helsinki and Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98103, USA
| | - Johanna Kuusisto
- Institute of Clinical Medicine, University of Eastern Finland, and Kuopio University Hospital, Kuopio, Finland
| | - Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Markku Laakso
- Institute of Clinical Medicine, University of Eastern Finland, and Kuopio University Hospital, Kuopio, Finland
| | - Leslie A Lange
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jiwon Lee
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Juyoung Lee
- Division of Genome Science, Department of Precision Medicine, Chungcheongbuk-do, Republic of Korea
| | - Seonwook Lee
- Psomagen, Inc. (formerly Macrogen USA), 1330 Piccard Drive Ste 103, Rockville, MD 20850, USA
| | - Donna M Lehman
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jianjun Liu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Ruth J F Loos
- Charles R. Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Steven A Lubitz
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Valeriya Lyssenko
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden; University of Bergen, Bergen, Norway
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lisa Warsinger Martin
- Division of Cardiology, Department of Medicine, George Washington University, Washington, DC 20037, USA
| | | | - Rasika A Mathias
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Stephen T McGarvey
- Department of Epidemiology and International Health Institute, Brown University School of Public Health, Providence, RI 02912, USA
| | - Ruth McPherson
- Ruddy Canadian Cardiovascuar Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - James B Meigs
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; General Medicine Division, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thomas Meitinger
- Deutsches Forschungszentrum fŸr Herz-Kreislauferkrankungen, Partner Site Munich Heart Alliance, Munich, Germany; Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Olle Melander
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden; Department of Emergency and Internal Medicine, SkŒne University Hospital, Malmö, Sweden
| | | | - Ginger A Metcalf
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xuenan Mi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - May E Montasser
- University of Maryland School of Medicine, Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Baltimore, MD 21201, USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah C Nelson
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Peter M Nilsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Jeffrey R O'Connell
- University of Maryland School of Medicine, Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and Genomic Medicine, Baltimore, MD 21201, USA
| | | | - Lorena Orozco
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Colin N A Palmer
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, Division of Population Health and Genomics, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Cheol Joo Park
- Psomagen, Inc. (formerly Macrogen USA), 1330 Piccard Drive Ste 103, Rockville, MD 20850, USA
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juan M Peralta
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 49109, USA
| | - Wendy S Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Michael Preuss
- Charles R. Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA; Department of Epidemiology, University of Washington, Seattle, WA 98101, USA; Department of Health Services, University of Washington, Seattle, WA 98101, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - D C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Susan Redline
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Nilesh Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Technische UniversitŠt München, Deutsches Zentrum fŸr Herz-Kreislauf-Forschung, München, Germany
| | - Claudia Schurmann
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Digital Health Center, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany; Charles R. Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daekwan Seo
- Psomagen, Inc. (formerly Macrogen USA), 1330 Piccard Drive Ste 103, Rockville, MD 20850, USA
| | - Jeong-Sun Seo
- Psomagen, Inc. (formerly Macrogen USA), 1330 Piccard Drive Ste 103, Rockville, MD 20850, USA
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Rob Sladek
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, QC, Canada; McGill University and Génome Québec Innovation Centre, Montreal, QC, Canada
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Wing Yee So
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Adrienne M Stilp
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - E Shyong Tai
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore; Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Duke-NUS Medical School Singapore, Singapore
| | - Claudia H T Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Yik Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Department of Statistics and Applied Probability, National University of Singapore, Singapore; Life Sciences Institute, National University of Singapore, Singapore
| | - Farook Thameem
- Department of Biochemistry, Faculty of Medicine, Health Science Center, Kuwait University, Safat, Kuwait
| | - Brian Tomlinson
- Faculty of Medicine, Macau University of Science & Technology, Macau, China
| | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tiinamaija Tuomi
- Department of Endocrinology, Abdominal Centre, Helsinki University Hospital, Helsinki, Finland; Folkhälsan Research Centre, Helsinki, Finland; Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Jaakko Tuomilehto
- Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland; Department of Public Health, University of Helsinki, Helsinki, Finland; Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Teresa Tusié-Luna
- Instituto Nacional de Ciencias Medicas y Nutricion, Mexico City, Mexico; Departamento de Medicina Genómica y Toxicología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México/ Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Miriam S Udler
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Diabetes Research Center (Diabetes Unit), Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA
| | - Ramachandran S Vasan
- NHLBI Framingham Heart Study, Framingham, MA 01702, USA; Departments of Medicine & Epidemiology, Boston University Schools of Medicine & Public Health, Boston, MA 02118, USA
| | | | - Fei Fei Wang
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Xuzhi Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Hugh Watkins
- Cardiovascular Medicine, Radcliffe Department of Medicine and the Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Daniel E Weeks
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - James G Wilson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Aarhus, Denmark; Steno Diabetes Center Aarhus, Aarhus, Denmark
| | - Tien-Yin Wong
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore; Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sekar Kathiresan
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Verve Therapeutics, Cambridge, MA 02139, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Cristen J Willer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pradeep Natarajan
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jason A Flannick
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Amit V Khera
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA.
| |
Collapse
|
46
|
Zhang R, Zhang K. An updated ANGPTL3-4-8 model as a mechanism of triglyceride partitioning between fat and oxidative tissues. Prog Lipid Res 2022; 85:101140. [PMID: 34793860 PMCID: PMC8760165 DOI: 10.1016/j.plipres.2021.101140] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023]
Abstract
In mammals, triglyceride (TG), the main form of lipids for storing and providing energy, is stored in white adipose tissue (WAT) after food intake, while during fasting it is routed to oxidative tissues (heart and skeletal muscle) for energy production, a process referred to as TG partitioning. Lipoprotein lipase (LPL), a rate-limiting enzyme in this fundamental physiological process, hydrolyzes circulating TG to generate free fatty acids that are taken up by peripheral tissues. The postprandial activity of LPL declines in oxidative tissues but rises in WAT, directing TG to WAT; the reverse is true during fasting. However, the molecular mechanism in regulating tissue-specific LPL activity during the fed-fast cycle has not been completely understood. Research on angiopoietin-like (ANGPTL) proteins (A3, A4, and A8) has resulted in an ANGPTL3-4-8 model to explain the TG partitioning between WAT and oxidative tissues. Food intake induces A8 expression in the liver and WAT. Liver A8 activates A3 by forming the A3-8 complex, which is then secreted into the circulation. The A3-8 complex acts in an endocrine manner to inhibit LPL in oxidative tissues. WAT A8 forms the A4-8 complex, which acts locally to block A4's LPL-inhibiting activity. Therefore, the postprandial activity of LPL is low in oxidative tissues but high in WAT, directing circulating TG to WAT. Conversely, during fasting, reduced A8 expression in the liver and WAT disables A3 from inhibiting oxidative-tissue LPL and restores WAT A4's LPL-inhibiting activity, respectively. Thus, the fasting LPL activity is high in oxidative tissues but low in WAT, directing TG to the former. According to the model, we hypothesize that A8 antagonism has the potential to simultaneously reduce TG and increase HDL-cholesterol plasma levels. Future research on A3, A4, and A8 can hopefully provide more insights into human health, disease, and therapeutics.
Collapse
Affiliation(s)
- Ren Zhang
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 540 East Canfield Street, Detroit, MI 48201, USA.
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 540 East Canfield Street, Detroit, MI 48201, USA
| |
Collapse
|
47
|
Eshraghian A, Moasser E, Azarpira N, Fattahi MR, Nikeghbalian S, Malek-Hosseini SA, Geramizadeh B. Variations in TM6SF2, PCSK9 and PCSK7 genes and risk of hepatic steatosis after liver transplantation: a cross-sectional study. BMC Gastroenterol 2021; 21:458. [PMID: 34876018 PMCID: PMC8650293 DOI: 10.1186/s12876-021-02041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022] Open
Abstract
Background Genetic abnormalities might have important role in pathogenesis of hepatic steatosis after liver transplantation. We aimed to investigate association between genetic variations in transmembrane 6 superfamily member 2 (TM6SF2) rs58542926, proprotein convertase subtilisin/kexin type 9 (PCSK9) rs505151 and proprotein convertase subtilisin/kexin type 7 (PCSK7) rs2277287 with hepatic steatosis in liver transplant recipients.
Methods In a cross-sectional study, adult (> 18 years) liver transplant recipients who were referred for their routine post-transplant follow-up between June 2018 and September 2018 were included in the study. Hepatic steatosis in transplant recipients was assessed by controlled attenuation parameter (CAP). Polymerase chain reaction-restriction fragment length polymorphism (PCR–RFLP) was used to study TM6SF2 rs58542926, PCSK7 rs2277287 and PCSK9 rs505151 genotypes. Results 107 liver transplant recipients were included. There was no association between different genotypes of PCSK9 rs505151 and PCSK7 rs2277287 with hepatic steatosis in liver transplant recipients (P value > 0.05). The presence of TT genotype of TM6SF2 rs58542926 was higher in patients with hepatic steatosis measured by CAP after liver transplantation. In patients with moderate and severe hepatic steatosis (grade 2 and 3 steatosis), AG + GG genotypes of PCSK9 rs505151 were more prevalent than AA genotype (OR 8.667; 95% CI 1.841–40.879; P value = 0.004) compared to patients with mild steatosis (grade 1). In multivariate regression model, AG + GG genotypes of PCSK9 rs505151 were associated with moderate and severe steatosis in liver transplant recipients (OR 5.747; 95% CI 1.086–30.303; P value = 0.040). Conclusions Genetic variations in TM6SF2 rs58542926 and PCSK9 rs505151 might be associated with hepatic steatosis in liver transplant recipients.
Collapse
Affiliation(s)
- Ahad Eshraghian
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Moasser
- Transplant Research Center, Shiraz University of Medical Sciences, Research Tower, PO Box 71994-67985, Shiraz, Iran.
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Research Tower, PO Box 71994-67985, Shiraz, Iran.
| | - Mohammad Reza Fattahi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saman Nikeghbalian
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.,Transplant Research Center, Shiraz University of Medical Sciences, Research Tower, PO Box 71994-67985, Shiraz, Iran
| | - Seyed Ali Malek-Hosseini
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.,Transplant Research Center, Shiraz University of Medical Sciences, Research Tower, PO Box 71994-67985, Shiraz, Iran
| | - Bita Geramizadeh
- Transplant Research Center, Shiraz University of Medical Sciences, Research Tower, PO Box 71994-67985, Shiraz, Iran
| |
Collapse
|
48
|
Zhang R. The Potential of ANGPTL8 Antagonism to Simultaneously Reduce Triglyceride and Increase HDL-Cholesterol Plasma Levels. Front Cardiovasc Med 2021; 8:795370. [PMID: 34869703 PMCID: PMC8635044 DOI: 10.3389/fcvm.2021.795370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Elevated triglyceride (TG) and reduced high-density lipoprotein-cholesterol (HDL-C) plasma levels are risk factors for atherosclerosis and cardiovascular disease. Therefore, a drug that simultaneously reduces TG and increases HDL-C plasma levels has the potential to prevent and treat these diseases. Angiopoietin-like 3 (ANGPTL3) regulates plasma TG and HDL-C levels by inhibiting lipoprotein lipase (LPL) and endothelial lipase (EL), respectively. ANGPTL3 inhibition of LPL requires complex formation with ANGPTL8, which is not required for its inhibition of EL. Therefore, the entire pool of plasma ANGPTL3 can be classified as ANGPTL8-associated ANGPTL3 and ANGPTL8-free ANGPTL3, where the former inhibits LPL and the latter inhibits EL. ANGPTL8 antibodies or inhibitors that block its interactions with ANGPTL3 can disrupt or preclude the ANGPTL3-8 complex formation, resulting in fewer ANGPTL3-8 complexes (reduced LPL inhibition), but more free ANGPTL3 (enhanced EL inhibition). Therefore, ANGPTL8 antagonism increases LPL activity while decreasing EL activity, thus leading to reduced plasma TG while simultaneously increasing HDL-C levels. In humans, carriers of ANGPTL8 truncating variants consistently have lower TG but higher HDL-C levels, supporting this hypothesis.
Collapse
Affiliation(s)
- Ren Zhang
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, United States
| |
Collapse
|
49
|
Graham SE, Clarke SL, Wu KHH, Kanoni S, Zajac GJM, Ramdas S, Surakka I, Ntalla I, Vedantam S, Winkler TW, Locke AE, Marouli E, Hwang MY, Han S, Narita A, Choudhury A, Bentley AR, Ekoru K, Verma A, Trivedi B, Martin HC, Hunt KA, Hui Q, Klarin D, Zhu X, Thorleifsson G, Helgadottir A, Gudbjartsson DF, Holm H, Olafsson I, Akiyama M, Sakaue S, Terao C, Kanai M, Zhou W, Brumpton BM, Rasheed H, Ruotsalainen SE, Havulinna AS, Veturi Y, Feng Q, Rosenthal EA, Lingren T, Pacheco JA, Pendergrass SA, Haessler J, Giulianini F, Bradford Y, Miller JE, Campbell A, Lin K, Millwood IY, Hindy G, Rasheed A, Faul JD, Zhao W, Weir DR, Turman C, Huang H, Graff M, Mahajan A, Brown MR, Zhang W, Yu K, Schmidt EM, Pandit A, Gustafsson S, Yin X, Luan J, Zhao JH, Matsuda F, Jang HM, Yoon K, Medina-Gomez C, Pitsillides A, Hottenga JJ, Willemsen G, Wood AR, Ji Y, Gao Z, Haworth S, Mitchell RE, Chai JF, Aadahl M, Yao J, Manichaikul A, Warren HR, Ramirez J, Bork-Jensen J, Kårhus LL, Goel A, Sabater-Lleal M, Noordam R, Sidore C, Fiorillo E, McDaid AF, Marques-Vidal P, Wielscher M, Trompet S, Sattar N, Møllehave LT, Thuesen BH, Munz M, Zeng L, Huang J, Yang B, Poveda A, Kurbasic A, Lamina C, Forer L, Scholz M, Galesloot TE, Bradfield JP, Daw EW, Zmuda JM, Mitchell JS, Fuchsberger C, Christensen H, Brody JA, Feitosa MF, Wojczynski MK, Preuss M, Mangino M, Christofidou P, Verweij N, Benjamins JW, Engmann J, Kember RL, Slieker RC, Lo KS, Zilhao NR, Le P, Kleber ME, Delgado GE, Huo S, Ikeda DD, Iha H, Yang J, Liu J, Leonard HL, Marten J, Schmidt B, Arendt M, Smyth LJ, Cañadas-Garre M, Wang C, Nakatochi M, Wong A, Hutri-Kähönen N, Sim X, Xia R, Huerta-Chagoya A, Fernandez-Lopez JC, Lyssenko V, Ahmed M, Jackson AU, Yousri NA, Irvin MR, Oldmeadow C, Kim HN, Ryu S, Timmers PRHJ, Arbeeva L, Dorajoo R, Lange LA, Chai X, Prasad G, Lorés-Motta L, Pauper M, Long J, Li X, Theusch E, Takeuchi F, Spracklen CN, Loukola A, Bollepalli S, Warner SC, Wang YX, Wei WB, Nutile T, Ruggiero D, Sung YJ, Hung YJ, Chen S, Liu F, Yang J, Kentistou KA, Gorski M, Brumat M, Meidtner K, Bielak LF, Smith JA, Hebbar P, Farmaki AE, Hofer E, Lin M, Xue C, Zhang J, Concas MP, Vaccargiu S, van der Most PJ, Pitkänen N, Cade BE, Lee J, van der Laan SW, Chitrala KN, Weiss S, Zimmermann ME, Lee JY, Choi HS, Nethander M, Freitag-Wolf S, Southam L, Rayner NW, Wang CA, Lin SY, Wang JS, Couture C, Lyytikäinen LP, Nikus K, Cuellar-Partida G, Vestergaard H, Hildalgo B, Giannakopoulou O, Cai Q, Obura MO, van Setten J, Li X, Schwander K, Terzikhan N, Shin JH, Jackson RD, Reiner AP, Martin LW, Chen Z, Li L, Highland HM, Young KL, Kawaguchi T, Thiery J, Bis JC, Nadkarni GN, Launer LJ, Li H, Nalls MA, Raitakari OT, Ichihara S, Wild SH, Nelson CP, Campbell H, Jäger S, Nabika T, Al-Mulla F, Niinikoski H, Braund PS, Kolcic I, Kovacs P, Giardoglou T, Katsuya T, Bhatti KF, de Kleijn D, de Borst GJ, Kim EK, Adams HHH, Ikram MA, Zhu X, Asselbergs FW, Kraaijeveld AO, Beulens JWJ, Shu XO, Rallidis LS, Pedersen O, Hansen T, Mitchell P, Hewitt AW, Kähönen M, Pérusse L, Bouchard C, Tönjes A, Chen YDI, Pennell CE, Mori TA, Lieb W, Franke A, Ohlsson C, Mellström D, Cho YS, Lee H, Yuan JM, Koh WP, Rhee SY, Woo JT, Heid IM, Stark KJ, Völzke H, Homuth G, Evans MK, Zonderman AB, Polasek O, Pasterkamp G, Hoefer IE, Redline S, Pahkala K, Oldehinkel AJ, Snieder H, Biino G, Schmidt R, Schmidt H, Chen YE, Bandinelli S, Dedoussis G, Thanaraj TA, Kardia SLR, Kato N, Schulze MB, Girotto G, Jung B, Böger CA, Joshi PK, Bennett DA, De Jager PL, Lu X, Mamakou V, Brown M, Caulfield MJ, Munroe PB, Guo X, Ciullo M, Jonas JB, Samani NJ, Kaprio J, Pajukanta P, Adair LS, Bechayda SA, de Silva HJ, Wickremasinghe AR, Krauss RM, Wu JY, Zheng W, den Hollander AI, Bharadwaj D, Correa A, Wilson JG, Lind L, Heng CK, Nelson AE, Golightly YM, Wilson JF, Penninx B, Kim HL, Attia J, Scott RJ, Rao DC, Arnett DK, Hunt SC, Walker M, Koistinen HA, Chandak GR, Yajnik CS, Mercader JM, Tusié-Luna T, Aguilar-Salinas CA, Villalpando CG, Orozco L, Fornage M, Tai ES, van Dam RM, Lehtimäki T, Chaturvedi N, Yokota M, Liu J, Reilly DF, McKnight AJ, Kee F, Jöckel KH, McCarthy MI, Palmer CNA, Vitart V, Hayward C, Simonsick E, van Duijn CM, Lu F, Qu J, Hishigaki H, Lin X, März W, Parra EJ, Cruz M, Gudnason V, Tardif JC, Lettre G, 't Hart LM, Elders PJM, Damrauer SM, Kumari M, Kivimaki M, van der Harst P, Spector TD, Loos RJF, Province MA, Psaty BM, Brandslund I, Pramstaller PP, Christensen K, Ripatti S, Widén E, Hakonarson H, Grant SFA, Kiemeney LALM, de Graaf J, Loeffler M, Kronenberg F, Gu D, Erdmann J, Schunkert H, Franks PW, Linneberg A, Jukema JW, Khera AV, Männikkö M, Jarvelin MR, Kutalik Z, Cucca F, Mook-Kanamori DO, van Dijk KW, Watkins H, Strachan DP, Grarup N, Sever P, Poulter N, Rotter JI, Dantoft TM, Karpe F, Neville MJ, Timpson NJ, Cheng CY, Wong TY, Khor CC, Sabanayagam C, Peters A, Gieger C, Hattersley AT, Pedersen NL, Magnusson PKE, Boomsma DI, de Geus EJC, Cupples LA, van Meurs JBJ, Ghanbari M, Gordon-Larsen P, Huang W, Kim YJ, Tabara Y, Wareham NJ, Langenberg C, Zeggini E, Kuusisto J, Laakso M, Ingelsson E, Abecasis G, Chambers JC, Kooner JS, de Vries PS, Morrison AC, North KE, Daviglus M, Kraft P, Martin NG, Whitfield JB, Abbas S, Saleheen D, Walters RG, Holmes MV, Black C, Smith BH, Justice AE, Baras A, Buring JE, Ridker PM, Chasman DI, Kooperberg C, Wei WQ, Jarvik GP, Namjou B, Hayes MG, Ritchie MD, Jousilahti P, Salomaa V, Hveem K, Åsvold BO, Kubo M, Kamatani Y, Okada Y, Murakami Y, Thorsteinsdottir U, Stefansson K, Ho YL, Lynch JA, Rader DJ, Tsao PS, Chang KM, Cho K, O'Donnell CJ, Gaziano JM, Wilson P, Rotimi CN, Hazelhurst S, Ramsay M, Trembath RC, van Heel DA, Tamiya G, Yamamoto M, Kim BJ, Mohlke KL, Frayling TM, Hirschhorn JN, Kathiresan S, Boehnke M, Natarajan P, Peloso GM, Brown CD, Morris AP, Assimes TL, Deloukas P, Sun YV, Willer CJ. The power of genetic diversity in genome-wide association studies of lipids. Nature 2021; 600:675-679. [PMID: 34887591 PMCID: PMC8730582 DOI: 10.1038/s41586-021-04064-3] [Citation(s) in RCA: 397] [Impact Index Per Article: 132.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 09/27/2021] [Indexed: 01/14/2023]
Abstract
Increased blood lipid levels are heritable risk factors of cardiovascular disease with varied prevalence worldwide owing to different dietary patterns and medication use1. Despite advances in prevention and treatment, in particular through reducing low-density lipoprotein cholesterol levels2, heart disease remains the leading cause of death worldwide3. Genome-wideassociation studies (GWAS) of blood lipid levels have led to important biological and clinical insights, as well as new drug targets, for cardiovascular disease. However, most previous GWAS4-23 have been conducted in European ancestry populations and may have missed genetic variants that contribute to lipid-level variation in other ancestry groups. These include differences in allele frequencies, effect sizes and linkage-disequilibrium patterns24. Here we conduct a multi-ancestry, genome-wide genetic discovery meta-analysis of lipid levels in approximately 1.65 million individuals, including 350,000 of non-European ancestries. We quantify the gain in studying non-European ancestries and provide evidence to support the expansion of recruitment of additional ancestries, even with relatively small sample sizes. We find that increasing diversity rather than studying additional individuals of European ancestry results in substantial improvements in fine-mapping functional variants and portability of polygenic prediction (evaluated in approximately 295,000 individuals from 7 ancestry groupings). Modest gains in the number of discovered loci and ancestry-specific variants were also achieved. As GWAS expand emphasis beyond the identification of genes and fundamental biology towards the use of genetic variants for preventive and precision medicine25, we anticipate that increased diversity of participants will lead to more accurate and equitable26 application of polygenic scores in clinical practice.
Collapse
Affiliation(s)
- Sarah E Graham
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Shoa L Clarke
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kuan-Han H Wu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Greg J M Zajac
- Department of Biostatistics and Center for Statistics Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Shweta Ramdas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ida Surakka
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Ioanna Ntalla
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sailaja Vedantam
- Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Adam E Locke
- McDonnell Genome Institute and Department of Medicine, Washington University, St Louis, MO, USA
| | - Eirini Marouli
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mi Yeong Hwang
- Department of Precision Medicine, Division of Genome Science, National Institute of Health, Cheongju-si, South Korea
| | - Sohee Han
- Department of Precision Medicine, Division of Genome Science, National Institute of Health, Cheongju-si, South Korea
| | - Akira Narita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth Ekoru
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anurag Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bhavi Trivedi
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Karen A Hunt
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Qin Hui
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, GA, USA
| | - Derek Klarin
- Malcolm Randall VA Medical Center, Gainesville, FL, USA
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiang Zhu
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Statistics, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Statistics, Stanford University, Stanford, CA, USA
| | | | | | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen, Reykjavik, Iceland
| | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspitali-National University Hospital of Iceland, Reykjavik, Iceland
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Saori Sakaue
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masahiro Kanai
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ben M Brumpton
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Thoracic Medicine, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Humaira Rasheed
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Sanni E Ruotsalainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Aki S Havulinna
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Yogasudha Veturi
- Department of Genetics, Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - QiPing Feng
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elisabeth A Rosenthal
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA, USA
| | - Todd Lingren
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | - Jeffrey Haessler
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, USA
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Yuki Bradford
- Department of Genetics, Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason E Miller
- Department of Genetics, Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Usher Institute for Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK
| | - Kuang Lin
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Iona Y Millwood
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - George Hindy
- Department of Population Medicine, Qatar University College of Medicine, QU Health, Doha, Qatar
| | - Asif Rasheed
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Constance Turman
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Hongyan Huang
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Southall, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Ketian Yu
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ellen M Schmidt
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Anita Pandit
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Stefan Gustafsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Xianyong Yin
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Jing-Hua Zhao
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge Strangeways Research Laboratory, Cambridge, UK
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hye-Mi Jang
- Department of Precision Medicine, Division of Genome Science, National Institute of Health, Cheongju-si, South Korea
| | - Kyungheon Yoon
- Department of Precision Medicine, Division of Genome Science, National Institute of Health, Cheongju-si, South Korea
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Achilleas Pitsillides
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, VU Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Yingji Ji
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Zishan Gao
- Department of Clinical Acupuncture and Moxibustion, Nanjing University of Chinese Medicine, Nanjing, China
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Simon Haworth
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Ruth E Mitchell
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jin Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Mette Aadahl
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovations (Formerly LABioMed) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, John Vane Science Centre, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Julia Ramirez
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Line L Kårhus
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Anuj Goel
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Maria Sabater-Lleal
- Group of Genomics of Complex Diseases, Research Institute of Hospital de la Santa Creu i Sant Pau (IIB Sant Pau), Barcelona, Spain
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Raymond Noordam
- Department of Internal Medicine, Section Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Carlo Sidore
- Institute for Genetic and Biomedical Research, Italian National Council of Research (IRGB CNR), Cagliari,, Italy
| | - Edoardo Fiorillo
- Institute for Genetic and Biomedical Research, Italian National Council of Research (IRGB CNR), Lanusei, Italy
| | - Aaron F McDaid
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Matthias Wielscher
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Naveed Sattar
- BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, Glasgow, UK
| | - Line T Møllehave
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Betina H Thuesen
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Matthias Munz
- Institute for Cardiogenetics, University of Lübeck, DZHK (German Research Centre for Cardiovascular Research), Partner site Hamburg/Lübeck/Kiel, University Heart Center Lübeck, Lübeck, Germany
- Charité-University Medicine Berlin, Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Periodontology and Synoptic Dentistry, Berlin Institute of Health, Institute for Dental and Craniofacial Sciences, Berlin, Germany
| | - Lingyao Zeng
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Partner site Munich Heart Alliance, Munich, Germany
| | - Jianfeng Huang
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Yang
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | - Claudia Lamina
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- German Chronic Kidney Disease Study, Innsbruck, Austria
| | - Lukas Forer
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- German Chronic Kidney Disease Study, Innsbruck, Austria
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Tessel E Galesloot
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | | | - E Warwick Daw
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Joseph M Zmuda
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan S Mitchell
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Christian Fuchsberger
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Henry Christensen
- Department of Clinical Biochemistry, Lillebaelt Hospital, Vejle, Denmark
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Mary K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Michael Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, UK
| | | | - Niek Verweij
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan W Benjamins
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jorgen Engmann
- Institute of Cardiovascular Sciences, University College London, London, UK
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Rachel L Kember
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Roderick C Slieker
- Amsterdam UMC, Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ken Sin Lo
- Montreal Heart Institute, Montreal, Quebec, Canada
| | | | - Phuong Le
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, Ontario, Canada
| | - Marcus E Kleber
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Synlab MVZ Humangenetik Mannheim, Mannheim, Germany
| | - Graciela E Delgado
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shaofeng Huo
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Daisuke D Ikeda
- Biomedical Technology Research Center, Tokushima Research Institute, Otsuka Pharmaceutical, Tokushima, Japan
| | - Hiroyuki Iha
- Biomedical Technology Research Center, Tokushima Research Institute, Otsuka Pharmaceutical, Tokushima, Japan
| | - Jian Yang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Advanced Research, Wenzhou Medical University, Wenzhou, China
| | - Jun Liu
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Hampton L Leonard
- Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, USA
- Data Tecnica International, Glen Echo, MD, USA
| | - Jonathan Marten
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Börge Schmidt
- Institute for Medical Informatics, Biometrie and Epidemiology, University of Duisburg-Essen, Essen, Germany
| | - Marina Arendt
- Institute for Medical Informatics, Biometrie and Epidemiology, University of Duisburg-Essen, Essen, Germany
- Department of Computer Science, University of Applied Sciences and Arts Dortmund, Dortmund, Germany
| | - Laura J Smyth
- Centre for Public Health, Queen's University of Belfast, Belfast, UK
| | | | - Chaolong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCL, London, UK
| | - Nina Hutri-Kähönen
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
- Department of Pediatrics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Rui Xia
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alicia Huerta-Chagoya
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Ciudad de Mexico, Mexico, Mexico
| | - Juan Carlos Fernandez-Lopez
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica, Ciudad de Mexico, Mexico, Mexico
| | - Valeriya Lyssenko
- Center for Diabetes Research, University of Bergen, Bergen, Norway
- Lund University Diabetes Center, Lund University, Malmo, Sweden
| | - Meraj Ahmed
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistics Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Noha A Yousri
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
- Department of Computer and Systems Engineering, Alexandria University, Alexandria, Egypt
| | - Marguerite R Irvin
- Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Han-Na Kim
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Seungho Ryu
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Paul R H J Timmers
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Liubov Arbeeva
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Aurora, CO, USA
| | - Xiaoran Chai
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, National University of Singapore and National University Health System, Singapore, Singapore
| | - Gauri Prasad
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology Campus, New Delhi, India
| | - Laura Lorés-Motta
- Departments of Ophthalmology and Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Marc Pauper
- Departments of Ophthalmology and Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Jirong Long
- Vanderbilt Epidemiology Center, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiaohui Li
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovations (Formerly LABioMed) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Elizabeth Theusch
- Department of Pediatrics, University of California, San Francisco, Oakland, CA,, USA
| | | | - Cassandra N Spracklen
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Biostatistics and Epidemiology, University of Massachusetts-Amherst, Amherst, MA,, USA
| | - Anu Loukola
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sailalitha Bollepalli
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sophie C Warner
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wen B Wei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Teresa Nutile
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso"-CNR, Naples, Italy
| | - Daniela Ruggiero
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso"-CNR, Naples, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Yun Ju Sung
- Department of Psychiatry, Washington University, St Louis, MO, USA
| | - Yi-Jen Hung
- Division of Endocrinology and Metabolism, Tri-Service General Hospital Songshan Branch, Taipei, Taiwan
| | - Shufeng Chen
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangchao Liu
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Katherine A Kentistou
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Mathias Gorski
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Marco Brumat
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Karina Meidtner
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A Smith
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Prashantha Hebbar
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait, Kuwait
| | - Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
- Department of Population Science and Experimental Medicine, University College London, London, UK
| | - Edith Hofer
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Maoxuan Lin
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Chao Xue
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Maria Pina Concas
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Simona Vaccargiu
- Institute of Genetic and Biomedical Research, National Research Council of Italy, UOS of Sassari, Sassari, Italy
| | - Peter J van der Most
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Niina Pitkänen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Brian E Cade
- Sleep Medicine and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Jiwon Lee
- Sleep Medicine and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kumaraswamy Naidu Chitrala
- Laboratory of Epidemiology and Population Science, National Institute on Aging Intramural Research Program, NIH Biomedical Research Center, NIA, Baltimore, MD, USA
| | - Stefan Weiss
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald and University Medicine Greifswald, Greifswald, Germany
| | - Martina E Zimmermann
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | | | - Hyeok Sun Choi
- Department of Biomedical Science, Hallym University, Chuncheon, Korea
| | - Maria Nethander
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Wellcome Trust Sanger Institute, Hinxton, UK
| | - Nigel W Rayner
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Oxford Centre for Diabetes Endocrinology and Metabolism, Oxford, UK
| | - Carol A Wang
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, New South Wales, Australia
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Jun-Sing Wang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kjell Nikus
- Department of Cardiology, Heart Center, Tampere University Hospital, Tampere, Finland
- Department of Cardiology, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Gabriel Cuellar-Partida
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Bornholms Hospital, Ronne, Denmark
| | - Bertha Hildalgo
- School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Olga Giannakopoulou
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Qiuyin Cai
- Vanderbilt Epidemiology Center, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Morgan O Obura
- Amsterdam UMC, Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Jessica van Setten
- Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Xiaoyin Li
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Karen Schwander
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Natalie Terzikhan
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jae Hun Shin
- Department of Biomedical Science, Hallym University, Chuncheon, Korea
| | | | | | - Lisa Warsinger Martin
- School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Liming Li
- Department of Epidemiology, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Kristin L Young
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Joachim Thiery
- LIFE Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Institute for Laboratory Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Girish N Nadkarni
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Huaixing Li
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, USA
- Data Tecnica International, Glen Echo, MD, USA
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Sarah H Wild
- Centre for Population Health Sciences, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Susanne Jäger
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Toru Nabika
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait, Kuwait
| | - Harri Niinikoski
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
- Department of Physiology, University of Turku, Turku, Finland
| | - Peter S Braund
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Ivana Kolcic
- Faculty of Medicine, University of Split, Split, Croatia
| | - Peter Kovacs
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Tota Giardoglou
- Department of Nutrition-Dietetics, Harokopio University, Eleftheriou Venizelou, Athens, Greece
| | - Tomohiro Katsuya
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Konain Fatima Bhatti
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dominique de Kleijn
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Gert J de Borst
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Eung Kweon Kim
- Corneal Dystrophy Research Institute, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Hieab H H Adams
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Folkert W Asselbergs
- Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Adriaan O Kraaijeveld
- Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Joline W J Beulens
- Amsterdam UMC, Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Xiao-Ou Shu
- Vanderbilt Epidemiology Center, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Loukianos S Rallidis
- Second Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paul Mitchell
- Center for Vision Research, Department of Ophthalmology and The Westmead Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Eye Research Australia, University of Melbourne, Melbourne, Victoria, Australia
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
- Department of Clinical Physiology, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Louis Pérusse
- Department of Kinesiology, Université Laval, Quebec, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada
| | | | - Anke Tönjes
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovations (Formerly LABioMed) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Craig E Pennell
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, New South Wales, Australia
| | - Trevor A Mori
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Wolfgang Lieb
- Institute of Epidemiology, Kiel University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Dan Mellström
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Geriatric Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yoon Shin Cho
- Department of Biomedical Science, Hallym University, Chuncheon, Korea
| | - Hyejin Lee
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Sang Youl Rhee
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea
| | - Jeong-Taek Woo
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Klaus J Stark
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald and University Medicine Greifswald, Greifswald, Germany
| | - Michele K Evans
- Laboratory of Epidemiology and Population Science, National Institute on Aging Intramural Research Program, NIH Biomedical Research Center, Baltimore, MD, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Science, National Institute on Aging Intramural Research Program, NIH Biomedical Research Center, Baltimore, MD, USA
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Split, Croatia
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Imo E Hoefer
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Susan Redline
- Sleep Medicine and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Katja Pahkala
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Paavo Nurmi Centre, Sports and Exercise Medicine Unit, Department of Physical Activity and Health, University of Turku, Turku, Finland
| | - Albertine J Oldehinkel
- Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Harold Snieder
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ginevra Biino
- Institute of Molecular Genetics, National Research Council of Italy, Pavia, Italy
| | - Reinhold Schmidt
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University of Graz, Graz, Austria
| | - Helena Schmidt
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Y Eugene Chen
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | | | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
| | | | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Norihiro Kato
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health IRCCS "Burlo Garofolo", Trieste, Italy
| | - Bettina Jung
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Carsten A Böger
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
- Department of Nephrology, Diabetology, Rheumatology, Traunstein Hospital, Traunstein, Germany
- KfH Kidney Center Traunstein, Traunstein, Germany
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Philip L De Jager
- Center for Translational and Systems Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Xiangfeng Lu
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Vasiliki Mamakou
- Medical School, National and Kapodistrian University Athens, Athens, Greece
- Dromokaiteio Psychiatric Hospital, Athens, Greece
| | - Morris Brown
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, John Vane Science Centre, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, John Vane Science Centre, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovations (Formerly LABioMed) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Marina Ciullo
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso"-CNR, Naples, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA
| | - Linda S Adair
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA
| | - Sonny Augustin Bechayda
- USC-Office of Population Studies Foundation, University of San Carlos, Cebu City, Philippines
- Department of Anthropology, Sociology, and History, University of San Carlos, Cebu City, Philippines
| | - H Janaka de Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | | | - Ronald M Krauss
- Departments of Pediatrics and Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei Zheng
- Vanderbilt Epidemiology Center, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anneke I den Hollander
- Departments of Ophthalmology and Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Dwaipayan Bharadwaj
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology Campus, New Delhi, India
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Amanda E Nelson
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Yvonne M Golightly
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Injury Prevention Research Center, University of North Carolina, Chapel Hill, NC, USA
- Division of Physical Therapy, University of North Carolina, Chapel Hill, NC, USA
| | - James F Wilson
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Brenda Penninx
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Hyung-Lae Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Korea
| | - John Attia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| | - Rodney J Scott
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| | - D C Rao
- Division of Biostatistics, Washington University School of Medicine, St Louis, MO, USA
| | - Donna K Arnett
- University of Kentucky, College of Public Health, Lexington, KY, USA
| | - Steven C Hunt
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Mark Walker
- Institute of Cellular Medicine (Diabetes), The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Heikki A Koistinen
- Department of Population Health, Finnish Institute for Health and Welfare, Helsinki, Finland
- University of Helsinki and Department of Medicine, Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Giriraj R Chandak
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | | | - Josep M Mercader
- Harvard Medical School, Boston, MA, USA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Teresa Tusié-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, Mexico
- Instituto de Investigaciones Biomédicas, UNAM, Ciudad de México, Mexico, Mexico
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Bimédicas UNAM/ Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, Mexico
| | - Carlos A Aguilar-Salinas
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, Mexico
- Dirección de Nutrición and Unidad de Estudios de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, Mexico
| | | | - Lorena Orozco
- Instituto Nacional de Medicina Genómica, Mexico, Mexico
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | | | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | | | | | - Frank Kee
- Centre for Public Health, Queen's University of Belfast, Belfast, UK
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometrie and Epidemiology, University of Duisburg-Essen, Essen, Germany
| | - Mark I McCarthy
- Genentech, South San Francisco, CA, USA
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Colin N A Palmer
- Population Health and Genomics, University of Dundee, Ninwells Hospital and Medical School, Dundee, UK
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Eleanor Simonsick
- Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | | | - Fan Lu
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Jia Qu
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Haretsugu Hishigaki
- Biomedical Technology Research Center, Tokushima Research Institute, Otsuka Pharmaceutical, Tokushima, Japan
| | - Xu Lin
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Winfried März
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Synlab Academy, Synlab, Mannheim, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Esteban J Parra
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, Ontario, Canada
| | - Miguel Cruz
- Unidad de Investigacion Medica en Bioquimica, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico, Mexico
| | - Vilmundur Gudnason
- Icelandic Heart Association, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Jean-Claude Tardif
- Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medecine, Université de Montréal, Quebec, Quebec, Canada
| | - Guillaume Lettre
- Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Leen M 't Hart
- Amsterdam UMC, Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Petra J M Elders
- Amsterdam UMC, Department of General Practice and Elderly Care, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Scott M Damrauer
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Meena Kumari
- Institute of Social and Economic Research, University of Essex, Essex, UK
| | - Mika Kivimaki
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanent Washington Health Research Institute, Seattle, WA, USA
| | - Ivan Brandslund
- Department of Clinical Biochemistry, Lillebaelt Hospital, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Kaare Christensen
- Danish Aging Research Center, University of Southern Denmark, Odense, Denmark
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elisabeth Widén
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Struan F A Grant
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lambertus A L M Kiemeney
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Jacqueline de Graaf
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Florian Kronenberg
- German Chronic Kidney Disease Study, Innsbruck, Austria
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dongfeng Gu
- Key Laboratory of Cardiovascular Epidemiology and Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, DZHK (German Research Centre for Cardiovascular Research), Partner site Hamburg/Lübeck/Kiel, and University Heart Center Lübeck, Lübeck, Germany
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V., Partner site Munich Heart Alliance, Munich, Germany
| | | | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Amit V Khera
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program of Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Minna Männikkö
- Northern Finland Birth Cohorts, Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter of Oulu, University of Oulu, Oulu, Finland
| | - Zoltan Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Francesco Cucca
- Institute for Genetic and Biomedical Research, Italian National Council of Research (IRGB CNR), Cagliari, Italy
- University of Sassari, Sassari, Italy
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Ko Willems van Dijk
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hugh Watkins
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - David P Strachan
- Population Health Research Institute, St George's University of London, London, UK
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Sever
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Neil Poulter
- School of Public Health, Imperial College London, London, UK
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovations (Formerly LABioMed) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Thomas M Dantoft
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Fredrik Karpe
- OCDEM, University of Oxford, Churchill Hospital, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Matt J Neville
- OCDEM, University of Oxford, Churchill Hospital, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ching-Yu Cheng
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Tien-Yin Wong
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Charumathi Sabanayagam
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance Partner Site, Munich, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Dorret I Boomsma
- Department of Biological Psychology, Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, VU Medical Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, VU Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Eco J C de Geus
- Department of Biological Psychology, Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, VU Medical Center Amsterdam, Amsterdam, The Netherlands
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA
| | - Wei Huang
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Young Jin Kim
- Department of Precision Medicine, Division of Genome Science, National Institute of Health, Cheongju-si, South Korea
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Wellcome Trust Sanger Institute, Hinxton, UK
- TUM School of Medicine, Technical University of Munich (TUM) and Klinikum Rechts der Isar, Munich, Germany
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Goncalo Abecasis
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - John C Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Southall, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Southall, UK
- Imperial College Healthcare NHS Trust, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Martha Daviglus
- Institute for Minority Health Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - John B Whitfield
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Shahid Abbas
- Center for Non-Communicable Diseases, Karachi, Pakistan
- Faisalabad Institute of Cardiology, Faislabad, Pakistan
| | - Danish Saleheen
- Center for Non-Communicable Diseases, Karachi, Pakistan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Robin G Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Big Data Institute, University of Oxford, Oxford, UK
| | - Michael V Holmes
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| | - Corri Black
- Aberdeen Centre for Health Data Science, School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Blair H Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Anne E Justice
- Biomedical and Translational Informatics, Geisinger Health, Danville, PA, USA
| | - Aris Baras
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Julie E Buring
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Charles Kooperberg
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, USA
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gail P Jarvik
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington Medical Center, Seattle, WA, USA
| | - Bahram Namjou
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - M Geoffrey Hayes
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Department of Anthropology, Northwestern University, Evanston, IL, USA
- Center for Genetic Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Marylyn D Ritchie
- Department of Genetics, Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
- Department of Medicine, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Bjørn Olav Åsvold
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
- Department of Endocrinology, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukinori Okada
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Statistical Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Yuk-Lam Ho
- VA Boston Healthcare System, Boston, MA, USA
| | - Julie A Lynch
- VA Informatics and Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT, USA
- University of Massachusetts, Boston, MA, USA
| | - Daniel J Rader
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Philip S Tsao
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kyong-Mi Chang
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Kelly Cho
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital, Boston, MA, USA
| | - Christopher J O'Donnell
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital, Boston, MA, USA
| | - John M Gaziano
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital, Boston, MA, USA
| | - Peter Wilson
- Atlanta VA Medical Center, Atlanta, GA, USA
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Richard C Trembath
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - David A van Heel
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gen Tamiya
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Bong-Jo Kim
- Department of Precision Medicine, Division of Genome Science, National Institute of Health, Cheongju-si, South Korea
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Joel N Hirschhorn
- Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, MA, USA
| | - Sekar Kathiresan
- Program of Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistics Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Pradeep Natarajan
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Christopher D Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, UK
| | - Themistocles L Assimes
- VA Palo Alto Health Care System, Palo Alto, CA, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Panos Deloukas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, GA, USA
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
50
|
Role of ANGPTL8 in NAFLD Improvement after Bariatric Surgery in Experimental and Human Obesity. Int J Mol Sci 2021; 22:ijms222312945. [PMID: 34884755 PMCID: PMC8657645 DOI: 10.3390/ijms222312945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
Angiopoietin-like protein 8 (ANGPTL8) is an hepatokine altered in several metabolic conditions, such as obesity, type 2 diabetes, dyslipidemia and nonalcoholic fatty liver disease (NAFLD). We sought to explore whether ANGPTL8 is involved in NAFLD amelioration after bariatric surgery in experimental models and patients with severe obesity. Plasma ANGPTL8 was measured in 170 individuals before and 6 months after bariatric surgery. Hepatic ANGPTL8 expression was evaluated in liver biopsies of patients with severe obesity undergoing bariatric surgery with available liver pathology analysis (n = 75), as well as in male Wistar rats with diet-induced obesity subjected to sham operation, sleeve gastrectomy or Roux-en-Y gastric bypass (RYGB) (n = 65). The effect of ANGPTL8 on lipogenesis was assessed in human HepG2 hepatocytes under palmitate-induced lipotoxic conditions. Plasma concentrations and hepatic expression of ANGPTL8 were increased in patients with obesity-associated NAFLD in relation to the degree of hepatic steatosis. Sleeve gastrectomy and RYGB improved hepatosteatosis and reduced the hepatic ANGPTL8 expression in the preclinical model of NAFLD. Interestingly, ANGPTL8 inhibited steatosis and expression of lipogenic factors (PPARG2, SREBF1, MOGAT2 and DGAT1) in palmitate-treated human hepatocytes. Together, ANGPTL8 is involved in the resolution of NAFLD after bariatric surgery partially by the inhibition of lipogenesis in steatotic hepatocytes.
Collapse
|